]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - virt/kvm/kvm_main.c
KVM: move iodev.h from virt/kvm/ to include/kvm
[mirror_ubuntu-bionic-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 unsigned int halt_poll_ns = 0;
70 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
71
72 /*
73 * Ordering of locks:
74 *
75 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
76 */
77
78 DEFINE_SPINLOCK(kvm_lock);
79 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
80 LIST_HEAD(vm_list);
81
82 static cpumask_var_t cpus_hardware_enabled;
83 static int kvm_usage_count = 0;
84 static atomic_t hardware_enable_failed;
85
86 struct kmem_cache *kvm_vcpu_cache;
87 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
88
89 static __read_mostly struct preempt_ops kvm_preempt_ops;
90
91 struct dentry *kvm_debugfs_dir;
92
93 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
94 unsigned long arg);
95 #ifdef CONFIG_KVM_COMPAT
96 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
97 unsigned long arg);
98 #endif
99 static int hardware_enable_all(void);
100 static void hardware_disable_all(void);
101
102 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
103
104 static void kvm_release_pfn_dirty(pfn_t pfn);
105 static void mark_page_dirty_in_slot(struct kvm *kvm,
106 struct kvm_memory_slot *memslot, gfn_t gfn);
107
108 __visible bool kvm_rebooting;
109 EXPORT_SYMBOL_GPL(kvm_rebooting);
110
111 static bool largepages_enabled = true;
112
113 bool kvm_is_reserved_pfn(pfn_t pfn)
114 {
115 if (pfn_valid(pfn))
116 return PageReserved(pfn_to_page(pfn));
117
118 return true;
119 }
120
121 /*
122 * Switches to specified vcpu, until a matching vcpu_put()
123 */
124 int vcpu_load(struct kvm_vcpu *vcpu)
125 {
126 int cpu;
127
128 if (mutex_lock_killable(&vcpu->mutex))
129 return -EINTR;
130 cpu = get_cpu();
131 preempt_notifier_register(&vcpu->preempt_notifier);
132 kvm_arch_vcpu_load(vcpu, cpu);
133 put_cpu();
134 return 0;
135 }
136
137 void vcpu_put(struct kvm_vcpu *vcpu)
138 {
139 preempt_disable();
140 kvm_arch_vcpu_put(vcpu);
141 preempt_notifier_unregister(&vcpu->preempt_notifier);
142 preempt_enable();
143 mutex_unlock(&vcpu->mutex);
144 }
145
146 static void ack_flush(void *_completed)
147 {
148 }
149
150 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
151 {
152 int i, cpu, me;
153 cpumask_var_t cpus;
154 bool called = true;
155 struct kvm_vcpu *vcpu;
156
157 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
158
159 me = get_cpu();
160 kvm_for_each_vcpu(i, vcpu, kvm) {
161 kvm_make_request(req, vcpu);
162 cpu = vcpu->cpu;
163
164 /* Set ->requests bit before we read ->mode */
165 smp_mb();
166
167 if (cpus != NULL && cpu != -1 && cpu != me &&
168 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
169 cpumask_set_cpu(cpu, cpus);
170 }
171 if (unlikely(cpus == NULL))
172 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
173 else if (!cpumask_empty(cpus))
174 smp_call_function_many(cpus, ack_flush, NULL, 1);
175 else
176 called = false;
177 put_cpu();
178 free_cpumask_var(cpus);
179 return called;
180 }
181
182 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
183 void kvm_flush_remote_tlbs(struct kvm *kvm)
184 {
185 long dirty_count = kvm->tlbs_dirty;
186
187 smp_mb();
188 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
189 ++kvm->stat.remote_tlb_flush;
190 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
191 }
192 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
193 #endif
194
195 void kvm_reload_remote_mmus(struct kvm *kvm)
196 {
197 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
198 }
199
200 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
201 {
202 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
203 }
204
205 void kvm_make_scan_ioapic_request(struct kvm *kvm)
206 {
207 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
208 }
209
210 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
211 {
212 struct page *page;
213 int r;
214
215 mutex_init(&vcpu->mutex);
216 vcpu->cpu = -1;
217 vcpu->kvm = kvm;
218 vcpu->vcpu_id = id;
219 vcpu->pid = NULL;
220 init_waitqueue_head(&vcpu->wq);
221 kvm_async_pf_vcpu_init(vcpu);
222
223 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
224 if (!page) {
225 r = -ENOMEM;
226 goto fail;
227 }
228 vcpu->run = page_address(page);
229
230 kvm_vcpu_set_in_spin_loop(vcpu, false);
231 kvm_vcpu_set_dy_eligible(vcpu, false);
232 vcpu->preempted = false;
233
234 r = kvm_arch_vcpu_init(vcpu);
235 if (r < 0)
236 goto fail_free_run;
237 return 0;
238
239 fail_free_run:
240 free_page((unsigned long)vcpu->run);
241 fail:
242 return r;
243 }
244 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
245
246 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
247 {
248 put_pid(vcpu->pid);
249 kvm_arch_vcpu_uninit(vcpu);
250 free_page((unsigned long)vcpu->run);
251 }
252 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
253
254 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
255 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
256 {
257 return container_of(mn, struct kvm, mmu_notifier);
258 }
259
260 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
261 struct mm_struct *mm,
262 unsigned long address)
263 {
264 struct kvm *kvm = mmu_notifier_to_kvm(mn);
265 int need_tlb_flush, idx;
266
267 /*
268 * When ->invalidate_page runs, the linux pte has been zapped
269 * already but the page is still allocated until
270 * ->invalidate_page returns. So if we increase the sequence
271 * here the kvm page fault will notice if the spte can't be
272 * established because the page is going to be freed. If
273 * instead the kvm page fault establishes the spte before
274 * ->invalidate_page runs, kvm_unmap_hva will release it
275 * before returning.
276 *
277 * The sequence increase only need to be seen at spin_unlock
278 * time, and not at spin_lock time.
279 *
280 * Increasing the sequence after the spin_unlock would be
281 * unsafe because the kvm page fault could then establish the
282 * pte after kvm_unmap_hva returned, without noticing the page
283 * is going to be freed.
284 */
285 idx = srcu_read_lock(&kvm->srcu);
286 spin_lock(&kvm->mmu_lock);
287
288 kvm->mmu_notifier_seq++;
289 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
290 /* we've to flush the tlb before the pages can be freed */
291 if (need_tlb_flush)
292 kvm_flush_remote_tlbs(kvm);
293
294 spin_unlock(&kvm->mmu_lock);
295
296 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
297
298 srcu_read_unlock(&kvm->srcu, idx);
299 }
300
301 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
302 struct mm_struct *mm,
303 unsigned long address,
304 pte_t pte)
305 {
306 struct kvm *kvm = mmu_notifier_to_kvm(mn);
307 int idx;
308
309 idx = srcu_read_lock(&kvm->srcu);
310 spin_lock(&kvm->mmu_lock);
311 kvm->mmu_notifier_seq++;
312 kvm_set_spte_hva(kvm, address, pte);
313 spin_unlock(&kvm->mmu_lock);
314 srcu_read_unlock(&kvm->srcu, idx);
315 }
316
317 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
318 struct mm_struct *mm,
319 unsigned long start,
320 unsigned long end)
321 {
322 struct kvm *kvm = mmu_notifier_to_kvm(mn);
323 int need_tlb_flush = 0, idx;
324
325 idx = srcu_read_lock(&kvm->srcu);
326 spin_lock(&kvm->mmu_lock);
327 /*
328 * The count increase must become visible at unlock time as no
329 * spte can be established without taking the mmu_lock and
330 * count is also read inside the mmu_lock critical section.
331 */
332 kvm->mmu_notifier_count++;
333 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
334 need_tlb_flush |= kvm->tlbs_dirty;
335 /* we've to flush the tlb before the pages can be freed */
336 if (need_tlb_flush)
337 kvm_flush_remote_tlbs(kvm);
338
339 spin_unlock(&kvm->mmu_lock);
340 srcu_read_unlock(&kvm->srcu, idx);
341 }
342
343 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
344 struct mm_struct *mm,
345 unsigned long start,
346 unsigned long end)
347 {
348 struct kvm *kvm = mmu_notifier_to_kvm(mn);
349
350 spin_lock(&kvm->mmu_lock);
351 /*
352 * This sequence increase will notify the kvm page fault that
353 * the page that is going to be mapped in the spte could have
354 * been freed.
355 */
356 kvm->mmu_notifier_seq++;
357 smp_wmb();
358 /*
359 * The above sequence increase must be visible before the
360 * below count decrease, which is ensured by the smp_wmb above
361 * in conjunction with the smp_rmb in mmu_notifier_retry().
362 */
363 kvm->mmu_notifier_count--;
364 spin_unlock(&kvm->mmu_lock);
365
366 BUG_ON(kvm->mmu_notifier_count < 0);
367 }
368
369 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
370 struct mm_struct *mm,
371 unsigned long start,
372 unsigned long end)
373 {
374 struct kvm *kvm = mmu_notifier_to_kvm(mn);
375 int young, idx;
376
377 idx = srcu_read_lock(&kvm->srcu);
378 spin_lock(&kvm->mmu_lock);
379
380 young = kvm_age_hva(kvm, start, end);
381 if (young)
382 kvm_flush_remote_tlbs(kvm);
383
384 spin_unlock(&kvm->mmu_lock);
385 srcu_read_unlock(&kvm->srcu, idx);
386
387 return young;
388 }
389
390 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
391 struct mm_struct *mm,
392 unsigned long address)
393 {
394 struct kvm *kvm = mmu_notifier_to_kvm(mn);
395 int young, idx;
396
397 idx = srcu_read_lock(&kvm->srcu);
398 spin_lock(&kvm->mmu_lock);
399 young = kvm_test_age_hva(kvm, address);
400 spin_unlock(&kvm->mmu_lock);
401 srcu_read_unlock(&kvm->srcu, idx);
402
403 return young;
404 }
405
406 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
407 struct mm_struct *mm)
408 {
409 struct kvm *kvm = mmu_notifier_to_kvm(mn);
410 int idx;
411
412 idx = srcu_read_lock(&kvm->srcu);
413 kvm_arch_flush_shadow_all(kvm);
414 srcu_read_unlock(&kvm->srcu, idx);
415 }
416
417 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
418 .invalidate_page = kvm_mmu_notifier_invalidate_page,
419 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
420 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
421 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
422 .test_young = kvm_mmu_notifier_test_young,
423 .change_pte = kvm_mmu_notifier_change_pte,
424 .release = kvm_mmu_notifier_release,
425 };
426
427 static int kvm_init_mmu_notifier(struct kvm *kvm)
428 {
429 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
430 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
431 }
432
433 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
434
435 static int kvm_init_mmu_notifier(struct kvm *kvm)
436 {
437 return 0;
438 }
439
440 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
441
442 static void kvm_init_memslots_id(struct kvm *kvm)
443 {
444 int i;
445 struct kvm_memslots *slots = kvm->memslots;
446
447 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
448 slots->id_to_index[i] = slots->memslots[i].id = i;
449 }
450
451 static struct kvm *kvm_create_vm(unsigned long type)
452 {
453 int r, i;
454 struct kvm *kvm = kvm_arch_alloc_vm();
455
456 if (!kvm)
457 return ERR_PTR(-ENOMEM);
458
459 r = kvm_arch_init_vm(kvm, type);
460 if (r)
461 goto out_err_no_disable;
462
463 r = hardware_enable_all();
464 if (r)
465 goto out_err_no_disable;
466
467 #ifdef CONFIG_HAVE_KVM_IRQFD
468 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
469 #endif
470
471 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
472
473 r = -ENOMEM;
474 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
475 if (!kvm->memslots)
476 goto out_err_no_srcu;
477
478 /*
479 * Init kvm generation close to the maximum to easily test the
480 * code of handling generation number wrap-around.
481 */
482 kvm->memslots->generation = -150;
483
484 kvm_init_memslots_id(kvm);
485 if (init_srcu_struct(&kvm->srcu))
486 goto out_err_no_srcu;
487 if (init_srcu_struct(&kvm->irq_srcu))
488 goto out_err_no_irq_srcu;
489 for (i = 0; i < KVM_NR_BUSES; i++) {
490 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
491 GFP_KERNEL);
492 if (!kvm->buses[i])
493 goto out_err;
494 }
495
496 spin_lock_init(&kvm->mmu_lock);
497 kvm->mm = current->mm;
498 atomic_inc(&kvm->mm->mm_count);
499 kvm_eventfd_init(kvm);
500 mutex_init(&kvm->lock);
501 mutex_init(&kvm->irq_lock);
502 mutex_init(&kvm->slots_lock);
503 atomic_set(&kvm->users_count, 1);
504 INIT_LIST_HEAD(&kvm->devices);
505
506 r = kvm_init_mmu_notifier(kvm);
507 if (r)
508 goto out_err;
509
510 spin_lock(&kvm_lock);
511 list_add(&kvm->vm_list, &vm_list);
512 spin_unlock(&kvm_lock);
513
514 return kvm;
515
516 out_err:
517 cleanup_srcu_struct(&kvm->irq_srcu);
518 out_err_no_irq_srcu:
519 cleanup_srcu_struct(&kvm->srcu);
520 out_err_no_srcu:
521 hardware_disable_all();
522 out_err_no_disable:
523 for (i = 0; i < KVM_NR_BUSES; i++)
524 kfree(kvm->buses[i]);
525 kfree(kvm->memslots);
526 kvm_arch_free_vm(kvm);
527 return ERR_PTR(r);
528 }
529
530 /*
531 * Avoid using vmalloc for a small buffer.
532 * Should not be used when the size is statically known.
533 */
534 void *kvm_kvzalloc(unsigned long size)
535 {
536 if (size > PAGE_SIZE)
537 return vzalloc(size);
538 else
539 return kzalloc(size, GFP_KERNEL);
540 }
541
542 void kvm_kvfree(const void *addr)
543 {
544 if (is_vmalloc_addr(addr))
545 vfree(addr);
546 else
547 kfree(addr);
548 }
549
550 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
551 {
552 if (!memslot->dirty_bitmap)
553 return;
554
555 kvm_kvfree(memslot->dirty_bitmap);
556 memslot->dirty_bitmap = NULL;
557 }
558
559 /*
560 * Free any memory in @free but not in @dont.
561 */
562 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
563 struct kvm_memory_slot *dont)
564 {
565 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
566 kvm_destroy_dirty_bitmap(free);
567
568 kvm_arch_free_memslot(kvm, free, dont);
569
570 free->npages = 0;
571 }
572
573 static void kvm_free_physmem(struct kvm *kvm)
574 {
575 struct kvm_memslots *slots = kvm->memslots;
576 struct kvm_memory_slot *memslot;
577
578 kvm_for_each_memslot(memslot, slots)
579 kvm_free_physmem_slot(kvm, memslot, NULL);
580
581 kfree(kvm->memslots);
582 }
583
584 static void kvm_destroy_devices(struct kvm *kvm)
585 {
586 struct list_head *node, *tmp;
587
588 list_for_each_safe(node, tmp, &kvm->devices) {
589 struct kvm_device *dev =
590 list_entry(node, struct kvm_device, vm_node);
591
592 list_del(node);
593 dev->ops->destroy(dev);
594 }
595 }
596
597 static void kvm_destroy_vm(struct kvm *kvm)
598 {
599 int i;
600 struct mm_struct *mm = kvm->mm;
601
602 kvm_arch_sync_events(kvm);
603 spin_lock(&kvm_lock);
604 list_del(&kvm->vm_list);
605 spin_unlock(&kvm_lock);
606 kvm_free_irq_routing(kvm);
607 for (i = 0; i < KVM_NR_BUSES; i++)
608 kvm_io_bus_destroy(kvm->buses[i]);
609 kvm_coalesced_mmio_free(kvm);
610 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
611 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
612 #else
613 kvm_arch_flush_shadow_all(kvm);
614 #endif
615 kvm_arch_destroy_vm(kvm);
616 kvm_destroy_devices(kvm);
617 kvm_free_physmem(kvm);
618 cleanup_srcu_struct(&kvm->irq_srcu);
619 cleanup_srcu_struct(&kvm->srcu);
620 kvm_arch_free_vm(kvm);
621 hardware_disable_all();
622 mmdrop(mm);
623 }
624
625 void kvm_get_kvm(struct kvm *kvm)
626 {
627 atomic_inc(&kvm->users_count);
628 }
629 EXPORT_SYMBOL_GPL(kvm_get_kvm);
630
631 void kvm_put_kvm(struct kvm *kvm)
632 {
633 if (atomic_dec_and_test(&kvm->users_count))
634 kvm_destroy_vm(kvm);
635 }
636 EXPORT_SYMBOL_GPL(kvm_put_kvm);
637
638
639 static int kvm_vm_release(struct inode *inode, struct file *filp)
640 {
641 struct kvm *kvm = filp->private_data;
642
643 kvm_irqfd_release(kvm);
644
645 kvm_put_kvm(kvm);
646 return 0;
647 }
648
649 /*
650 * Allocation size is twice as large as the actual dirty bitmap size.
651 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
652 */
653 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
654 {
655 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
656
657 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
658 if (!memslot->dirty_bitmap)
659 return -ENOMEM;
660
661 return 0;
662 }
663
664 /*
665 * Insert memslot and re-sort memslots based on their GFN,
666 * so binary search could be used to lookup GFN.
667 * Sorting algorithm takes advantage of having initially
668 * sorted array and known changed memslot position.
669 */
670 static void update_memslots(struct kvm_memslots *slots,
671 struct kvm_memory_slot *new)
672 {
673 int id = new->id;
674 int i = slots->id_to_index[id];
675 struct kvm_memory_slot *mslots = slots->memslots;
676
677 WARN_ON(mslots[i].id != id);
678 if (!new->npages) {
679 WARN_ON(!mslots[i].npages);
680 new->base_gfn = 0;
681 new->flags = 0;
682 if (mslots[i].npages)
683 slots->used_slots--;
684 } else {
685 if (!mslots[i].npages)
686 slots->used_slots++;
687 }
688
689 while (i < KVM_MEM_SLOTS_NUM - 1 &&
690 new->base_gfn <= mslots[i + 1].base_gfn) {
691 if (!mslots[i + 1].npages)
692 break;
693 mslots[i] = mslots[i + 1];
694 slots->id_to_index[mslots[i].id] = i;
695 i++;
696 }
697
698 /*
699 * The ">=" is needed when creating a slot with base_gfn == 0,
700 * so that it moves before all those with base_gfn == npages == 0.
701 *
702 * On the other hand, if new->npages is zero, the above loop has
703 * already left i pointing to the beginning of the empty part of
704 * mslots, and the ">=" would move the hole backwards in this
705 * case---which is wrong. So skip the loop when deleting a slot.
706 */
707 if (new->npages) {
708 while (i > 0 &&
709 new->base_gfn >= mslots[i - 1].base_gfn) {
710 mslots[i] = mslots[i - 1];
711 slots->id_to_index[mslots[i].id] = i;
712 i--;
713 }
714 } else
715 WARN_ON_ONCE(i != slots->used_slots);
716
717 mslots[i] = *new;
718 slots->id_to_index[mslots[i].id] = i;
719 }
720
721 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
722 {
723 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
724
725 #ifdef __KVM_HAVE_READONLY_MEM
726 valid_flags |= KVM_MEM_READONLY;
727 #endif
728
729 if (mem->flags & ~valid_flags)
730 return -EINVAL;
731
732 return 0;
733 }
734
735 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
736 struct kvm_memslots *slots)
737 {
738 struct kvm_memslots *old_memslots = kvm->memslots;
739
740 /*
741 * Set the low bit in the generation, which disables SPTE caching
742 * until the end of synchronize_srcu_expedited.
743 */
744 WARN_ON(old_memslots->generation & 1);
745 slots->generation = old_memslots->generation + 1;
746
747 rcu_assign_pointer(kvm->memslots, slots);
748 synchronize_srcu_expedited(&kvm->srcu);
749
750 /*
751 * Increment the new memslot generation a second time. This prevents
752 * vm exits that race with memslot updates from caching a memslot
753 * generation that will (potentially) be valid forever.
754 */
755 slots->generation++;
756
757 kvm_arch_memslots_updated(kvm);
758
759 return old_memslots;
760 }
761
762 /*
763 * Allocate some memory and give it an address in the guest physical address
764 * space.
765 *
766 * Discontiguous memory is allowed, mostly for framebuffers.
767 *
768 * Must be called holding kvm->slots_lock for write.
769 */
770 int __kvm_set_memory_region(struct kvm *kvm,
771 struct kvm_userspace_memory_region *mem)
772 {
773 int r;
774 gfn_t base_gfn;
775 unsigned long npages;
776 struct kvm_memory_slot *slot;
777 struct kvm_memory_slot old, new;
778 struct kvm_memslots *slots = NULL, *old_memslots;
779 enum kvm_mr_change change;
780
781 r = check_memory_region_flags(mem);
782 if (r)
783 goto out;
784
785 r = -EINVAL;
786 /* General sanity checks */
787 if (mem->memory_size & (PAGE_SIZE - 1))
788 goto out;
789 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
790 goto out;
791 /* We can read the guest memory with __xxx_user() later on. */
792 if ((mem->slot < KVM_USER_MEM_SLOTS) &&
793 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
794 !access_ok(VERIFY_WRITE,
795 (void __user *)(unsigned long)mem->userspace_addr,
796 mem->memory_size)))
797 goto out;
798 if (mem->slot >= KVM_MEM_SLOTS_NUM)
799 goto out;
800 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
801 goto out;
802
803 slot = id_to_memslot(kvm->memslots, mem->slot);
804 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
805 npages = mem->memory_size >> PAGE_SHIFT;
806
807 if (npages > KVM_MEM_MAX_NR_PAGES)
808 goto out;
809
810 if (!npages)
811 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
812
813 new = old = *slot;
814
815 new.id = mem->slot;
816 new.base_gfn = base_gfn;
817 new.npages = npages;
818 new.flags = mem->flags;
819
820 if (npages) {
821 if (!old.npages)
822 change = KVM_MR_CREATE;
823 else { /* Modify an existing slot. */
824 if ((mem->userspace_addr != old.userspace_addr) ||
825 (npages != old.npages) ||
826 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
827 goto out;
828
829 if (base_gfn != old.base_gfn)
830 change = KVM_MR_MOVE;
831 else if (new.flags != old.flags)
832 change = KVM_MR_FLAGS_ONLY;
833 else { /* Nothing to change. */
834 r = 0;
835 goto out;
836 }
837 }
838 } else if (old.npages) {
839 change = KVM_MR_DELETE;
840 } else /* Modify a non-existent slot: disallowed. */
841 goto out;
842
843 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
844 /* Check for overlaps */
845 r = -EEXIST;
846 kvm_for_each_memslot(slot, kvm->memslots) {
847 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
848 (slot->id == mem->slot))
849 continue;
850 if (!((base_gfn + npages <= slot->base_gfn) ||
851 (base_gfn >= slot->base_gfn + slot->npages)))
852 goto out;
853 }
854 }
855
856 /* Free page dirty bitmap if unneeded */
857 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
858 new.dirty_bitmap = NULL;
859
860 r = -ENOMEM;
861 if (change == KVM_MR_CREATE) {
862 new.userspace_addr = mem->userspace_addr;
863
864 if (kvm_arch_create_memslot(kvm, &new, npages))
865 goto out_free;
866 }
867
868 /* Allocate page dirty bitmap if needed */
869 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
870 if (kvm_create_dirty_bitmap(&new) < 0)
871 goto out_free;
872 }
873
874 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
875 GFP_KERNEL);
876 if (!slots)
877 goto out_free;
878
879 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
880 slot = id_to_memslot(slots, mem->slot);
881 slot->flags |= KVM_MEMSLOT_INVALID;
882
883 old_memslots = install_new_memslots(kvm, slots);
884
885 /* slot was deleted or moved, clear iommu mapping */
886 kvm_iommu_unmap_pages(kvm, &old);
887 /* From this point no new shadow pages pointing to a deleted,
888 * or moved, memslot will be created.
889 *
890 * validation of sp->gfn happens in:
891 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
892 * - kvm_is_visible_gfn (mmu_check_roots)
893 */
894 kvm_arch_flush_shadow_memslot(kvm, slot);
895
896 /*
897 * We can re-use the old_memslots from above, the only difference
898 * from the currently installed memslots is the invalid flag. This
899 * will get overwritten by update_memslots anyway.
900 */
901 slots = old_memslots;
902 }
903
904 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
905 if (r)
906 goto out_slots;
907
908 /* actual memory is freed via old in kvm_free_physmem_slot below */
909 if (change == KVM_MR_DELETE) {
910 new.dirty_bitmap = NULL;
911 memset(&new.arch, 0, sizeof(new.arch));
912 }
913
914 update_memslots(slots, &new);
915 old_memslots = install_new_memslots(kvm, slots);
916
917 kvm_arch_commit_memory_region(kvm, mem, &old, change);
918
919 kvm_free_physmem_slot(kvm, &old, &new);
920 kfree(old_memslots);
921
922 /*
923 * IOMMU mapping: New slots need to be mapped. Old slots need to be
924 * un-mapped and re-mapped if their base changes. Since base change
925 * unmapping is handled above with slot deletion, mapping alone is
926 * needed here. Anything else the iommu might care about for existing
927 * slots (size changes, userspace addr changes and read-only flag
928 * changes) is disallowed above, so any other attribute changes getting
929 * here can be skipped.
930 */
931 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
932 r = kvm_iommu_map_pages(kvm, &new);
933 return r;
934 }
935
936 return 0;
937
938 out_slots:
939 kfree(slots);
940 out_free:
941 kvm_free_physmem_slot(kvm, &new, &old);
942 out:
943 return r;
944 }
945 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
946
947 int kvm_set_memory_region(struct kvm *kvm,
948 struct kvm_userspace_memory_region *mem)
949 {
950 int r;
951
952 mutex_lock(&kvm->slots_lock);
953 r = __kvm_set_memory_region(kvm, mem);
954 mutex_unlock(&kvm->slots_lock);
955 return r;
956 }
957 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
958
959 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
960 struct kvm_userspace_memory_region *mem)
961 {
962 if (mem->slot >= KVM_USER_MEM_SLOTS)
963 return -EINVAL;
964 return kvm_set_memory_region(kvm, mem);
965 }
966
967 int kvm_get_dirty_log(struct kvm *kvm,
968 struct kvm_dirty_log *log, int *is_dirty)
969 {
970 struct kvm_memory_slot *memslot;
971 int r, i;
972 unsigned long n;
973 unsigned long any = 0;
974
975 r = -EINVAL;
976 if (log->slot >= KVM_USER_MEM_SLOTS)
977 goto out;
978
979 memslot = id_to_memslot(kvm->memslots, log->slot);
980 r = -ENOENT;
981 if (!memslot->dirty_bitmap)
982 goto out;
983
984 n = kvm_dirty_bitmap_bytes(memslot);
985
986 for (i = 0; !any && i < n/sizeof(long); ++i)
987 any = memslot->dirty_bitmap[i];
988
989 r = -EFAULT;
990 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
991 goto out;
992
993 if (any)
994 *is_dirty = 1;
995
996 r = 0;
997 out:
998 return r;
999 }
1000 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1001
1002 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1003 /**
1004 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1005 * are dirty write protect them for next write.
1006 * @kvm: pointer to kvm instance
1007 * @log: slot id and address to which we copy the log
1008 * @is_dirty: flag set if any page is dirty
1009 *
1010 * We need to keep it in mind that VCPU threads can write to the bitmap
1011 * concurrently. So, to avoid losing track of dirty pages we keep the
1012 * following order:
1013 *
1014 * 1. Take a snapshot of the bit and clear it if needed.
1015 * 2. Write protect the corresponding page.
1016 * 3. Copy the snapshot to the userspace.
1017 * 4. Upon return caller flushes TLB's if needed.
1018 *
1019 * Between 2 and 4, the guest may write to the page using the remaining TLB
1020 * entry. This is not a problem because the page is reported dirty using
1021 * the snapshot taken before and step 4 ensures that writes done after
1022 * exiting to userspace will be logged for the next call.
1023 *
1024 */
1025 int kvm_get_dirty_log_protect(struct kvm *kvm,
1026 struct kvm_dirty_log *log, bool *is_dirty)
1027 {
1028 struct kvm_memory_slot *memslot;
1029 int r, i;
1030 unsigned long n;
1031 unsigned long *dirty_bitmap;
1032 unsigned long *dirty_bitmap_buffer;
1033
1034 r = -EINVAL;
1035 if (log->slot >= KVM_USER_MEM_SLOTS)
1036 goto out;
1037
1038 memslot = id_to_memslot(kvm->memslots, log->slot);
1039
1040 dirty_bitmap = memslot->dirty_bitmap;
1041 r = -ENOENT;
1042 if (!dirty_bitmap)
1043 goto out;
1044
1045 n = kvm_dirty_bitmap_bytes(memslot);
1046
1047 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1048 memset(dirty_bitmap_buffer, 0, n);
1049
1050 spin_lock(&kvm->mmu_lock);
1051 *is_dirty = false;
1052 for (i = 0; i < n / sizeof(long); i++) {
1053 unsigned long mask;
1054 gfn_t offset;
1055
1056 if (!dirty_bitmap[i])
1057 continue;
1058
1059 *is_dirty = true;
1060
1061 mask = xchg(&dirty_bitmap[i], 0);
1062 dirty_bitmap_buffer[i] = mask;
1063
1064 offset = i * BITS_PER_LONG;
1065 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, offset,
1066 mask);
1067 }
1068
1069 spin_unlock(&kvm->mmu_lock);
1070
1071 r = -EFAULT;
1072 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1073 goto out;
1074
1075 r = 0;
1076 out:
1077 return r;
1078 }
1079 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1080 #endif
1081
1082 bool kvm_largepages_enabled(void)
1083 {
1084 return largepages_enabled;
1085 }
1086
1087 void kvm_disable_largepages(void)
1088 {
1089 largepages_enabled = false;
1090 }
1091 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1092
1093 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1094 {
1095 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1096 }
1097 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1098
1099 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1100 {
1101 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1102
1103 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1104 memslot->flags & KVM_MEMSLOT_INVALID)
1105 return 0;
1106
1107 return 1;
1108 }
1109 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1110
1111 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1112 {
1113 struct vm_area_struct *vma;
1114 unsigned long addr, size;
1115
1116 size = PAGE_SIZE;
1117
1118 addr = gfn_to_hva(kvm, gfn);
1119 if (kvm_is_error_hva(addr))
1120 return PAGE_SIZE;
1121
1122 down_read(&current->mm->mmap_sem);
1123 vma = find_vma(current->mm, addr);
1124 if (!vma)
1125 goto out;
1126
1127 size = vma_kernel_pagesize(vma);
1128
1129 out:
1130 up_read(&current->mm->mmap_sem);
1131
1132 return size;
1133 }
1134
1135 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1136 {
1137 return slot->flags & KVM_MEM_READONLY;
1138 }
1139
1140 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1141 gfn_t *nr_pages, bool write)
1142 {
1143 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1144 return KVM_HVA_ERR_BAD;
1145
1146 if (memslot_is_readonly(slot) && write)
1147 return KVM_HVA_ERR_RO_BAD;
1148
1149 if (nr_pages)
1150 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1151
1152 return __gfn_to_hva_memslot(slot, gfn);
1153 }
1154
1155 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1156 gfn_t *nr_pages)
1157 {
1158 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1159 }
1160
1161 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1162 gfn_t gfn)
1163 {
1164 return gfn_to_hva_many(slot, gfn, NULL);
1165 }
1166 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1167
1168 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1169 {
1170 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1171 }
1172 EXPORT_SYMBOL_GPL(gfn_to_hva);
1173
1174 /*
1175 * If writable is set to false, the hva returned by this function is only
1176 * allowed to be read.
1177 */
1178 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1179 gfn_t gfn, bool *writable)
1180 {
1181 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1182
1183 if (!kvm_is_error_hva(hva) && writable)
1184 *writable = !memslot_is_readonly(slot);
1185
1186 return hva;
1187 }
1188
1189 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1190 {
1191 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1192
1193 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1194 }
1195
1196 static int kvm_read_hva(void *data, void __user *hva, int len)
1197 {
1198 return __copy_from_user(data, hva, len);
1199 }
1200
1201 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1202 {
1203 return __copy_from_user_inatomic(data, hva, len);
1204 }
1205
1206 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1207 unsigned long start, int write, struct page **page)
1208 {
1209 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1210
1211 if (write)
1212 flags |= FOLL_WRITE;
1213
1214 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1215 }
1216
1217 static inline int check_user_page_hwpoison(unsigned long addr)
1218 {
1219 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1220
1221 rc = __get_user_pages(current, current->mm, addr, 1,
1222 flags, NULL, NULL, NULL);
1223 return rc == -EHWPOISON;
1224 }
1225
1226 /*
1227 * The atomic path to get the writable pfn which will be stored in @pfn,
1228 * true indicates success, otherwise false is returned.
1229 */
1230 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1231 bool write_fault, bool *writable, pfn_t *pfn)
1232 {
1233 struct page *page[1];
1234 int npages;
1235
1236 if (!(async || atomic))
1237 return false;
1238
1239 /*
1240 * Fast pin a writable pfn only if it is a write fault request
1241 * or the caller allows to map a writable pfn for a read fault
1242 * request.
1243 */
1244 if (!(write_fault || writable))
1245 return false;
1246
1247 npages = __get_user_pages_fast(addr, 1, 1, page);
1248 if (npages == 1) {
1249 *pfn = page_to_pfn(page[0]);
1250
1251 if (writable)
1252 *writable = true;
1253 return true;
1254 }
1255
1256 return false;
1257 }
1258
1259 /*
1260 * The slow path to get the pfn of the specified host virtual address,
1261 * 1 indicates success, -errno is returned if error is detected.
1262 */
1263 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1264 bool *writable, pfn_t *pfn)
1265 {
1266 struct page *page[1];
1267 int npages = 0;
1268
1269 might_sleep();
1270
1271 if (writable)
1272 *writable = write_fault;
1273
1274 if (async) {
1275 down_read(&current->mm->mmap_sem);
1276 npages = get_user_page_nowait(current, current->mm,
1277 addr, write_fault, page);
1278 up_read(&current->mm->mmap_sem);
1279 } else
1280 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1281 write_fault, 0, page,
1282 FOLL_TOUCH|FOLL_HWPOISON);
1283 if (npages != 1)
1284 return npages;
1285
1286 /* map read fault as writable if possible */
1287 if (unlikely(!write_fault) && writable) {
1288 struct page *wpage[1];
1289
1290 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1291 if (npages == 1) {
1292 *writable = true;
1293 put_page(page[0]);
1294 page[0] = wpage[0];
1295 }
1296
1297 npages = 1;
1298 }
1299 *pfn = page_to_pfn(page[0]);
1300 return npages;
1301 }
1302
1303 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1304 {
1305 if (unlikely(!(vma->vm_flags & VM_READ)))
1306 return false;
1307
1308 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1309 return false;
1310
1311 return true;
1312 }
1313
1314 /*
1315 * Pin guest page in memory and return its pfn.
1316 * @addr: host virtual address which maps memory to the guest
1317 * @atomic: whether this function can sleep
1318 * @async: whether this function need to wait IO complete if the
1319 * host page is not in the memory
1320 * @write_fault: whether we should get a writable host page
1321 * @writable: whether it allows to map a writable host page for !@write_fault
1322 *
1323 * The function will map a writable host page for these two cases:
1324 * 1): @write_fault = true
1325 * 2): @write_fault = false && @writable, @writable will tell the caller
1326 * whether the mapping is writable.
1327 */
1328 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1329 bool write_fault, bool *writable)
1330 {
1331 struct vm_area_struct *vma;
1332 pfn_t pfn = 0;
1333 int npages;
1334
1335 /* we can do it either atomically or asynchronously, not both */
1336 BUG_ON(atomic && async);
1337
1338 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1339 return pfn;
1340
1341 if (atomic)
1342 return KVM_PFN_ERR_FAULT;
1343
1344 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1345 if (npages == 1)
1346 return pfn;
1347
1348 down_read(&current->mm->mmap_sem);
1349 if (npages == -EHWPOISON ||
1350 (!async && check_user_page_hwpoison(addr))) {
1351 pfn = KVM_PFN_ERR_HWPOISON;
1352 goto exit;
1353 }
1354
1355 vma = find_vma_intersection(current->mm, addr, addr + 1);
1356
1357 if (vma == NULL)
1358 pfn = KVM_PFN_ERR_FAULT;
1359 else if ((vma->vm_flags & VM_PFNMAP)) {
1360 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1361 vma->vm_pgoff;
1362 BUG_ON(!kvm_is_reserved_pfn(pfn));
1363 } else {
1364 if (async && vma_is_valid(vma, write_fault))
1365 *async = true;
1366 pfn = KVM_PFN_ERR_FAULT;
1367 }
1368 exit:
1369 up_read(&current->mm->mmap_sem);
1370 return pfn;
1371 }
1372
1373 static pfn_t
1374 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1375 bool *async, bool write_fault, bool *writable)
1376 {
1377 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1378
1379 if (addr == KVM_HVA_ERR_RO_BAD)
1380 return KVM_PFN_ERR_RO_FAULT;
1381
1382 if (kvm_is_error_hva(addr))
1383 return KVM_PFN_NOSLOT;
1384
1385 /* Do not map writable pfn in the readonly memslot. */
1386 if (writable && memslot_is_readonly(slot)) {
1387 *writable = false;
1388 writable = NULL;
1389 }
1390
1391 return hva_to_pfn(addr, atomic, async, write_fault,
1392 writable);
1393 }
1394
1395 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1396 bool write_fault, bool *writable)
1397 {
1398 struct kvm_memory_slot *slot;
1399
1400 if (async)
1401 *async = false;
1402
1403 slot = gfn_to_memslot(kvm, gfn);
1404
1405 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1406 writable);
1407 }
1408
1409 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1410 {
1411 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1412 }
1413 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1414
1415 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1416 bool write_fault, bool *writable)
1417 {
1418 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1419 }
1420 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1421
1422 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1423 {
1424 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1425 }
1426 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1427
1428 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1429 bool *writable)
1430 {
1431 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1432 }
1433 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1434
1435 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1436 {
1437 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1438 }
1439
1440 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1441 {
1442 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1443 }
1444 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1445
1446 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1447 int nr_pages)
1448 {
1449 unsigned long addr;
1450 gfn_t entry;
1451
1452 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1453 if (kvm_is_error_hva(addr))
1454 return -1;
1455
1456 if (entry < nr_pages)
1457 return 0;
1458
1459 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1460 }
1461 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1462
1463 static struct page *kvm_pfn_to_page(pfn_t pfn)
1464 {
1465 if (is_error_noslot_pfn(pfn))
1466 return KVM_ERR_PTR_BAD_PAGE;
1467
1468 if (kvm_is_reserved_pfn(pfn)) {
1469 WARN_ON(1);
1470 return KVM_ERR_PTR_BAD_PAGE;
1471 }
1472
1473 return pfn_to_page(pfn);
1474 }
1475
1476 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1477 {
1478 pfn_t pfn;
1479
1480 pfn = gfn_to_pfn(kvm, gfn);
1481
1482 return kvm_pfn_to_page(pfn);
1483 }
1484
1485 EXPORT_SYMBOL_GPL(gfn_to_page);
1486
1487 void kvm_release_page_clean(struct page *page)
1488 {
1489 WARN_ON(is_error_page(page));
1490
1491 kvm_release_pfn_clean(page_to_pfn(page));
1492 }
1493 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1494
1495 void kvm_release_pfn_clean(pfn_t pfn)
1496 {
1497 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1498 put_page(pfn_to_page(pfn));
1499 }
1500 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1501
1502 void kvm_release_page_dirty(struct page *page)
1503 {
1504 WARN_ON(is_error_page(page));
1505
1506 kvm_release_pfn_dirty(page_to_pfn(page));
1507 }
1508 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1509
1510 static void kvm_release_pfn_dirty(pfn_t pfn)
1511 {
1512 kvm_set_pfn_dirty(pfn);
1513 kvm_release_pfn_clean(pfn);
1514 }
1515
1516 void kvm_set_pfn_dirty(pfn_t pfn)
1517 {
1518 if (!kvm_is_reserved_pfn(pfn)) {
1519 struct page *page = pfn_to_page(pfn);
1520 if (!PageReserved(page))
1521 SetPageDirty(page);
1522 }
1523 }
1524 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1525
1526 void kvm_set_pfn_accessed(pfn_t pfn)
1527 {
1528 if (!kvm_is_reserved_pfn(pfn))
1529 mark_page_accessed(pfn_to_page(pfn));
1530 }
1531 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1532
1533 void kvm_get_pfn(pfn_t pfn)
1534 {
1535 if (!kvm_is_reserved_pfn(pfn))
1536 get_page(pfn_to_page(pfn));
1537 }
1538 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1539
1540 static int next_segment(unsigned long len, int offset)
1541 {
1542 if (len > PAGE_SIZE - offset)
1543 return PAGE_SIZE - offset;
1544 else
1545 return len;
1546 }
1547
1548 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1549 int len)
1550 {
1551 int r;
1552 unsigned long addr;
1553
1554 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1555 if (kvm_is_error_hva(addr))
1556 return -EFAULT;
1557 r = kvm_read_hva(data, (void __user *)addr + offset, len);
1558 if (r)
1559 return -EFAULT;
1560 return 0;
1561 }
1562 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1563
1564 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1565 {
1566 gfn_t gfn = gpa >> PAGE_SHIFT;
1567 int seg;
1568 int offset = offset_in_page(gpa);
1569 int ret;
1570
1571 while ((seg = next_segment(len, offset)) != 0) {
1572 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1573 if (ret < 0)
1574 return ret;
1575 offset = 0;
1576 len -= seg;
1577 data += seg;
1578 ++gfn;
1579 }
1580 return 0;
1581 }
1582 EXPORT_SYMBOL_GPL(kvm_read_guest);
1583
1584 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1585 unsigned long len)
1586 {
1587 int r;
1588 unsigned long addr;
1589 gfn_t gfn = gpa >> PAGE_SHIFT;
1590 int offset = offset_in_page(gpa);
1591
1592 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1593 if (kvm_is_error_hva(addr))
1594 return -EFAULT;
1595 pagefault_disable();
1596 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1597 pagefault_enable();
1598 if (r)
1599 return -EFAULT;
1600 return 0;
1601 }
1602 EXPORT_SYMBOL(kvm_read_guest_atomic);
1603
1604 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1605 int offset, int len)
1606 {
1607 int r;
1608 unsigned long addr;
1609
1610 addr = gfn_to_hva(kvm, gfn);
1611 if (kvm_is_error_hva(addr))
1612 return -EFAULT;
1613 r = __copy_to_user((void __user *)addr + offset, data, len);
1614 if (r)
1615 return -EFAULT;
1616 mark_page_dirty(kvm, gfn);
1617 return 0;
1618 }
1619 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1620
1621 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1622 unsigned long len)
1623 {
1624 gfn_t gfn = gpa >> PAGE_SHIFT;
1625 int seg;
1626 int offset = offset_in_page(gpa);
1627 int ret;
1628
1629 while ((seg = next_segment(len, offset)) != 0) {
1630 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1631 if (ret < 0)
1632 return ret;
1633 offset = 0;
1634 len -= seg;
1635 data += seg;
1636 ++gfn;
1637 }
1638 return 0;
1639 }
1640 EXPORT_SYMBOL_GPL(kvm_write_guest);
1641
1642 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1643 gpa_t gpa, unsigned long len)
1644 {
1645 struct kvm_memslots *slots = kvm_memslots(kvm);
1646 int offset = offset_in_page(gpa);
1647 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1648 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1649 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1650 gfn_t nr_pages_avail;
1651
1652 ghc->gpa = gpa;
1653 ghc->generation = slots->generation;
1654 ghc->len = len;
1655 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1656 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1657 if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1658 ghc->hva += offset;
1659 } else {
1660 /*
1661 * If the requested region crosses two memslots, we still
1662 * verify that the entire region is valid here.
1663 */
1664 while (start_gfn <= end_gfn) {
1665 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1666 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1667 &nr_pages_avail);
1668 if (kvm_is_error_hva(ghc->hva))
1669 return -EFAULT;
1670 start_gfn += nr_pages_avail;
1671 }
1672 /* Use the slow path for cross page reads and writes. */
1673 ghc->memslot = NULL;
1674 }
1675 return 0;
1676 }
1677 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1678
1679 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1680 void *data, unsigned long len)
1681 {
1682 struct kvm_memslots *slots = kvm_memslots(kvm);
1683 int r;
1684
1685 BUG_ON(len > ghc->len);
1686
1687 if (slots->generation != ghc->generation)
1688 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1689
1690 if (unlikely(!ghc->memslot))
1691 return kvm_write_guest(kvm, ghc->gpa, data, len);
1692
1693 if (kvm_is_error_hva(ghc->hva))
1694 return -EFAULT;
1695
1696 r = __copy_to_user((void __user *)ghc->hva, data, len);
1697 if (r)
1698 return -EFAULT;
1699 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1700
1701 return 0;
1702 }
1703 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1704
1705 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1706 void *data, unsigned long len)
1707 {
1708 struct kvm_memslots *slots = kvm_memslots(kvm);
1709 int r;
1710
1711 BUG_ON(len > ghc->len);
1712
1713 if (slots->generation != ghc->generation)
1714 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1715
1716 if (unlikely(!ghc->memslot))
1717 return kvm_read_guest(kvm, ghc->gpa, data, len);
1718
1719 if (kvm_is_error_hva(ghc->hva))
1720 return -EFAULT;
1721
1722 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1723 if (r)
1724 return -EFAULT;
1725
1726 return 0;
1727 }
1728 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1729
1730 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1731 {
1732 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1733
1734 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1735 }
1736 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1737
1738 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1739 {
1740 gfn_t gfn = gpa >> PAGE_SHIFT;
1741 int seg;
1742 int offset = offset_in_page(gpa);
1743 int ret;
1744
1745 while ((seg = next_segment(len, offset)) != 0) {
1746 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1747 if (ret < 0)
1748 return ret;
1749 offset = 0;
1750 len -= seg;
1751 ++gfn;
1752 }
1753 return 0;
1754 }
1755 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1756
1757 static void mark_page_dirty_in_slot(struct kvm *kvm,
1758 struct kvm_memory_slot *memslot,
1759 gfn_t gfn)
1760 {
1761 if (memslot && memslot->dirty_bitmap) {
1762 unsigned long rel_gfn = gfn - memslot->base_gfn;
1763
1764 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1765 }
1766 }
1767
1768 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1769 {
1770 struct kvm_memory_slot *memslot;
1771
1772 memslot = gfn_to_memslot(kvm, gfn);
1773 mark_page_dirty_in_slot(kvm, memslot, gfn);
1774 }
1775 EXPORT_SYMBOL_GPL(mark_page_dirty);
1776
1777 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1778 {
1779 if (kvm_arch_vcpu_runnable(vcpu)) {
1780 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1781 return -EINTR;
1782 }
1783 if (kvm_cpu_has_pending_timer(vcpu))
1784 return -EINTR;
1785 if (signal_pending(current))
1786 return -EINTR;
1787
1788 return 0;
1789 }
1790
1791 /*
1792 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1793 */
1794 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1795 {
1796 ktime_t start, cur;
1797 DEFINE_WAIT(wait);
1798 bool waited = false;
1799
1800 start = cur = ktime_get();
1801 if (halt_poll_ns) {
1802 ktime_t stop = ktime_add_ns(ktime_get(), halt_poll_ns);
1803 do {
1804 /*
1805 * This sets KVM_REQ_UNHALT if an interrupt
1806 * arrives.
1807 */
1808 if (kvm_vcpu_check_block(vcpu) < 0) {
1809 ++vcpu->stat.halt_successful_poll;
1810 goto out;
1811 }
1812 cur = ktime_get();
1813 } while (single_task_running() && ktime_before(cur, stop));
1814 }
1815
1816 for (;;) {
1817 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1818
1819 if (kvm_vcpu_check_block(vcpu) < 0)
1820 break;
1821
1822 waited = true;
1823 schedule();
1824 }
1825
1826 finish_wait(&vcpu->wq, &wait);
1827 cur = ktime_get();
1828
1829 out:
1830 trace_kvm_vcpu_wakeup(ktime_to_ns(cur) - ktime_to_ns(start), waited);
1831 }
1832 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1833
1834 #ifndef CONFIG_S390
1835 /*
1836 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1837 */
1838 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1839 {
1840 int me;
1841 int cpu = vcpu->cpu;
1842 wait_queue_head_t *wqp;
1843
1844 wqp = kvm_arch_vcpu_wq(vcpu);
1845 if (waitqueue_active(wqp)) {
1846 wake_up_interruptible(wqp);
1847 ++vcpu->stat.halt_wakeup;
1848 }
1849
1850 me = get_cpu();
1851 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1852 if (kvm_arch_vcpu_should_kick(vcpu))
1853 smp_send_reschedule(cpu);
1854 put_cpu();
1855 }
1856 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1857 #endif /* !CONFIG_S390 */
1858
1859 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1860 {
1861 struct pid *pid;
1862 struct task_struct *task = NULL;
1863 int ret = 0;
1864
1865 rcu_read_lock();
1866 pid = rcu_dereference(target->pid);
1867 if (pid)
1868 task = get_pid_task(pid, PIDTYPE_PID);
1869 rcu_read_unlock();
1870 if (!task)
1871 return ret;
1872 ret = yield_to(task, 1);
1873 put_task_struct(task);
1874
1875 return ret;
1876 }
1877 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1878
1879 /*
1880 * Helper that checks whether a VCPU is eligible for directed yield.
1881 * Most eligible candidate to yield is decided by following heuristics:
1882 *
1883 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1884 * (preempted lock holder), indicated by @in_spin_loop.
1885 * Set at the beiginning and cleared at the end of interception/PLE handler.
1886 *
1887 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1888 * chance last time (mostly it has become eligible now since we have probably
1889 * yielded to lockholder in last iteration. This is done by toggling
1890 * @dy_eligible each time a VCPU checked for eligibility.)
1891 *
1892 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1893 * to preempted lock-holder could result in wrong VCPU selection and CPU
1894 * burning. Giving priority for a potential lock-holder increases lock
1895 * progress.
1896 *
1897 * Since algorithm is based on heuristics, accessing another VCPU data without
1898 * locking does not harm. It may result in trying to yield to same VCPU, fail
1899 * and continue with next VCPU and so on.
1900 */
1901 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1902 {
1903 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1904 bool eligible;
1905
1906 eligible = !vcpu->spin_loop.in_spin_loop ||
1907 vcpu->spin_loop.dy_eligible;
1908
1909 if (vcpu->spin_loop.in_spin_loop)
1910 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1911
1912 return eligible;
1913 #else
1914 return true;
1915 #endif
1916 }
1917
1918 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1919 {
1920 struct kvm *kvm = me->kvm;
1921 struct kvm_vcpu *vcpu;
1922 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1923 int yielded = 0;
1924 int try = 3;
1925 int pass;
1926 int i;
1927
1928 kvm_vcpu_set_in_spin_loop(me, true);
1929 /*
1930 * We boost the priority of a VCPU that is runnable but not
1931 * currently running, because it got preempted by something
1932 * else and called schedule in __vcpu_run. Hopefully that
1933 * VCPU is holding the lock that we need and will release it.
1934 * We approximate round-robin by starting at the last boosted VCPU.
1935 */
1936 for (pass = 0; pass < 2 && !yielded && try; pass++) {
1937 kvm_for_each_vcpu(i, vcpu, kvm) {
1938 if (!pass && i <= last_boosted_vcpu) {
1939 i = last_boosted_vcpu;
1940 continue;
1941 } else if (pass && i > last_boosted_vcpu)
1942 break;
1943 if (!ACCESS_ONCE(vcpu->preempted))
1944 continue;
1945 if (vcpu == me)
1946 continue;
1947 if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
1948 continue;
1949 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1950 continue;
1951
1952 yielded = kvm_vcpu_yield_to(vcpu);
1953 if (yielded > 0) {
1954 kvm->last_boosted_vcpu = i;
1955 break;
1956 } else if (yielded < 0) {
1957 try--;
1958 if (!try)
1959 break;
1960 }
1961 }
1962 }
1963 kvm_vcpu_set_in_spin_loop(me, false);
1964
1965 /* Ensure vcpu is not eligible during next spinloop */
1966 kvm_vcpu_set_dy_eligible(me, false);
1967 }
1968 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1969
1970 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1971 {
1972 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1973 struct page *page;
1974
1975 if (vmf->pgoff == 0)
1976 page = virt_to_page(vcpu->run);
1977 #ifdef CONFIG_X86
1978 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1979 page = virt_to_page(vcpu->arch.pio_data);
1980 #endif
1981 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1982 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1983 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1984 #endif
1985 else
1986 return kvm_arch_vcpu_fault(vcpu, vmf);
1987 get_page(page);
1988 vmf->page = page;
1989 return 0;
1990 }
1991
1992 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1993 .fault = kvm_vcpu_fault,
1994 };
1995
1996 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1997 {
1998 vma->vm_ops = &kvm_vcpu_vm_ops;
1999 return 0;
2000 }
2001
2002 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2003 {
2004 struct kvm_vcpu *vcpu = filp->private_data;
2005
2006 kvm_put_kvm(vcpu->kvm);
2007 return 0;
2008 }
2009
2010 static struct file_operations kvm_vcpu_fops = {
2011 .release = kvm_vcpu_release,
2012 .unlocked_ioctl = kvm_vcpu_ioctl,
2013 #ifdef CONFIG_KVM_COMPAT
2014 .compat_ioctl = kvm_vcpu_compat_ioctl,
2015 #endif
2016 .mmap = kvm_vcpu_mmap,
2017 .llseek = noop_llseek,
2018 };
2019
2020 /*
2021 * Allocates an inode for the vcpu.
2022 */
2023 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2024 {
2025 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2026 }
2027
2028 /*
2029 * Creates some virtual cpus. Good luck creating more than one.
2030 */
2031 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2032 {
2033 int r;
2034 struct kvm_vcpu *vcpu, *v;
2035
2036 if (id >= KVM_MAX_VCPUS)
2037 return -EINVAL;
2038
2039 vcpu = kvm_arch_vcpu_create(kvm, id);
2040 if (IS_ERR(vcpu))
2041 return PTR_ERR(vcpu);
2042
2043 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2044
2045 r = kvm_arch_vcpu_setup(vcpu);
2046 if (r)
2047 goto vcpu_destroy;
2048
2049 mutex_lock(&kvm->lock);
2050 if (!kvm_vcpu_compatible(vcpu)) {
2051 r = -EINVAL;
2052 goto unlock_vcpu_destroy;
2053 }
2054 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2055 r = -EINVAL;
2056 goto unlock_vcpu_destroy;
2057 }
2058
2059 kvm_for_each_vcpu(r, v, kvm)
2060 if (v->vcpu_id == id) {
2061 r = -EEXIST;
2062 goto unlock_vcpu_destroy;
2063 }
2064
2065 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2066
2067 /* Now it's all set up, let userspace reach it */
2068 kvm_get_kvm(kvm);
2069 r = create_vcpu_fd(vcpu);
2070 if (r < 0) {
2071 kvm_put_kvm(kvm);
2072 goto unlock_vcpu_destroy;
2073 }
2074
2075 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2076 smp_wmb();
2077 atomic_inc(&kvm->online_vcpus);
2078
2079 mutex_unlock(&kvm->lock);
2080 kvm_arch_vcpu_postcreate(vcpu);
2081 return r;
2082
2083 unlock_vcpu_destroy:
2084 mutex_unlock(&kvm->lock);
2085 vcpu_destroy:
2086 kvm_arch_vcpu_destroy(vcpu);
2087 return r;
2088 }
2089
2090 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2091 {
2092 if (sigset) {
2093 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2094 vcpu->sigset_active = 1;
2095 vcpu->sigset = *sigset;
2096 } else
2097 vcpu->sigset_active = 0;
2098 return 0;
2099 }
2100
2101 static long kvm_vcpu_ioctl(struct file *filp,
2102 unsigned int ioctl, unsigned long arg)
2103 {
2104 struct kvm_vcpu *vcpu = filp->private_data;
2105 void __user *argp = (void __user *)arg;
2106 int r;
2107 struct kvm_fpu *fpu = NULL;
2108 struct kvm_sregs *kvm_sregs = NULL;
2109
2110 if (vcpu->kvm->mm != current->mm)
2111 return -EIO;
2112
2113 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2114 return -EINVAL;
2115
2116 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2117 /*
2118 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2119 * so vcpu_load() would break it.
2120 */
2121 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
2122 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2123 #endif
2124
2125
2126 r = vcpu_load(vcpu);
2127 if (r)
2128 return r;
2129 switch (ioctl) {
2130 case KVM_RUN:
2131 r = -EINVAL;
2132 if (arg)
2133 goto out;
2134 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2135 /* The thread running this VCPU changed. */
2136 struct pid *oldpid = vcpu->pid;
2137 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2138 rcu_assign_pointer(vcpu->pid, newpid);
2139 if (oldpid)
2140 synchronize_rcu();
2141 put_pid(oldpid);
2142 }
2143 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2144 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2145 break;
2146 case KVM_GET_REGS: {
2147 struct kvm_regs *kvm_regs;
2148
2149 r = -ENOMEM;
2150 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2151 if (!kvm_regs)
2152 goto out;
2153 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2154 if (r)
2155 goto out_free1;
2156 r = -EFAULT;
2157 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2158 goto out_free1;
2159 r = 0;
2160 out_free1:
2161 kfree(kvm_regs);
2162 break;
2163 }
2164 case KVM_SET_REGS: {
2165 struct kvm_regs *kvm_regs;
2166
2167 r = -ENOMEM;
2168 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2169 if (IS_ERR(kvm_regs)) {
2170 r = PTR_ERR(kvm_regs);
2171 goto out;
2172 }
2173 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2174 kfree(kvm_regs);
2175 break;
2176 }
2177 case KVM_GET_SREGS: {
2178 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2179 r = -ENOMEM;
2180 if (!kvm_sregs)
2181 goto out;
2182 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2183 if (r)
2184 goto out;
2185 r = -EFAULT;
2186 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2187 goto out;
2188 r = 0;
2189 break;
2190 }
2191 case KVM_SET_SREGS: {
2192 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2193 if (IS_ERR(kvm_sregs)) {
2194 r = PTR_ERR(kvm_sregs);
2195 kvm_sregs = NULL;
2196 goto out;
2197 }
2198 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2199 break;
2200 }
2201 case KVM_GET_MP_STATE: {
2202 struct kvm_mp_state mp_state;
2203
2204 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2205 if (r)
2206 goto out;
2207 r = -EFAULT;
2208 if (copy_to_user(argp, &mp_state, sizeof mp_state))
2209 goto out;
2210 r = 0;
2211 break;
2212 }
2213 case KVM_SET_MP_STATE: {
2214 struct kvm_mp_state mp_state;
2215
2216 r = -EFAULT;
2217 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2218 goto out;
2219 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2220 break;
2221 }
2222 case KVM_TRANSLATE: {
2223 struct kvm_translation tr;
2224
2225 r = -EFAULT;
2226 if (copy_from_user(&tr, argp, sizeof tr))
2227 goto out;
2228 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2229 if (r)
2230 goto out;
2231 r = -EFAULT;
2232 if (copy_to_user(argp, &tr, sizeof tr))
2233 goto out;
2234 r = 0;
2235 break;
2236 }
2237 case KVM_SET_GUEST_DEBUG: {
2238 struct kvm_guest_debug dbg;
2239
2240 r = -EFAULT;
2241 if (copy_from_user(&dbg, argp, sizeof dbg))
2242 goto out;
2243 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2244 break;
2245 }
2246 case KVM_SET_SIGNAL_MASK: {
2247 struct kvm_signal_mask __user *sigmask_arg = argp;
2248 struct kvm_signal_mask kvm_sigmask;
2249 sigset_t sigset, *p;
2250
2251 p = NULL;
2252 if (argp) {
2253 r = -EFAULT;
2254 if (copy_from_user(&kvm_sigmask, argp,
2255 sizeof kvm_sigmask))
2256 goto out;
2257 r = -EINVAL;
2258 if (kvm_sigmask.len != sizeof sigset)
2259 goto out;
2260 r = -EFAULT;
2261 if (copy_from_user(&sigset, sigmask_arg->sigset,
2262 sizeof sigset))
2263 goto out;
2264 p = &sigset;
2265 }
2266 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2267 break;
2268 }
2269 case KVM_GET_FPU: {
2270 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2271 r = -ENOMEM;
2272 if (!fpu)
2273 goto out;
2274 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2275 if (r)
2276 goto out;
2277 r = -EFAULT;
2278 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2279 goto out;
2280 r = 0;
2281 break;
2282 }
2283 case KVM_SET_FPU: {
2284 fpu = memdup_user(argp, sizeof(*fpu));
2285 if (IS_ERR(fpu)) {
2286 r = PTR_ERR(fpu);
2287 fpu = NULL;
2288 goto out;
2289 }
2290 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2291 break;
2292 }
2293 default:
2294 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2295 }
2296 out:
2297 vcpu_put(vcpu);
2298 kfree(fpu);
2299 kfree(kvm_sregs);
2300 return r;
2301 }
2302
2303 #ifdef CONFIG_KVM_COMPAT
2304 static long kvm_vcpu_compat_ioctl(struct file *filp,
2305 unsigned int ioctl, unsigned long arg)
2306 {
2307 struct kvm_vcpu *vcpu = filp->private_data;
2308 void __user *argp = compat_ptr(arg);
2309 int r;
2310
2311 if (vcpu->kvm->mm != current->mm)
2312 return -EIO;
2313
2314 switch (ioctl) {
2315 case KVM_SET_SIGNAL_MASK: {
2316 struct kvm_signal_mask __user *sigmask_arg = argp;
2317 struct kvm_signal_mask kvm_sigmask;
2318 compat_sigset_t csigset;
2319 sigset_t sigset;
2320
2321 if (argp) {
2322 r = -EFAULT;
2323 if (copy_from_user(&kvm_sigmask, argp,
2324 sizeof kvm_sigmask))
2325 goto out;
2326 r = -EINVAL;
2327 if (kvm_sigmask.len != sizeof csigset)
2328 goto out;
2329 r = -EFAULT;
2330 if (copy_from_user(&csigset, sigmask_arg->sigset,
2331 sizeof csigset))
2332 goto out;
2333 sigset_from_compat(&sigset, &csigset);
2334 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2335 } else
2336 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2337 break;
2338 }
2339 default:
2340 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2341 }
2342
2343 out:
2344 return r;
2345 }
2346 #endif
2347
2348 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2349 int (*accessor)(struct kvm_device *dev,
2350 struct kvm_device_attr *attr),
2351 unsigned long arg)
2352 {
2353 struct kvm_device_attr attr;
2354
2355 if (!accessor)
2356 return -EPERM;
2357
2358 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2359 return -EFAULT;
2360
2361 return accessor(dev, &attr);
2362 }
2363
2364 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2365 unsigned long arg)
2366 {
2367 struct kvm_device *dev = filp->private_data;
2368
2369 switch (ioctl) {
2370 case KVM_SET_DEVICE_ATTR:
2371 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2372 case KVM_GET_DEVICE_ATTR:
2373 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2374 case KVM_HAS_DEVICE_ATTR:
2375 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2376 default:
2377 if (dev->ops->ioctl)
2378 return dev->ops->ioctl(dev, ioctl, arg);
2379
2380 return -ENOTTY;
2381 }
2382 }
2383
2384 static int kvm_device_release(struct inode *inode, struct file *filp)
2385 {
2386 struct kvm_device *dev = filp->private_data;
2387 struct kvm *kvm = dev->kvm;
2388
2389 kvm_put_kvm(kvm);
2390 return 0;
2391 }
2392
2393 static const struct file_operations kvm_device_fops = {
2394 .unlocked_ioctl = kvm_device_ioctl,
2395 #ifdef CONFIG_KVM_COMPAT
2396 .compat_ioctl = kvm_device_ioctl,
2397 #endif
2398 .release = kvm_device_release,
2399 };
2400
2401 struct kvm_device *kvm_device_from_filp(struct file *filp)
2402 {
2403 if (filp->f_op != &kvm_device_fops)
2404 return NULL;
2405
2406 return filp->private_data;
2407 }
2408
2409 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2410 #ifdef CONFIG_KVM_MPIC
2411 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2412 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2413 #endif
2414
2415 #ifdef CONFIG_KVM_XICS
2416 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2417 #endif
2418 };
2419
2420 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2421 {
2422 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2423 return -ENOSPC;
2424
2425 if (kvm_device_ops_table[type] != NULL)
2426 return -EEXIST;
2427
2428 kvm_device_ops_table[type] = ops;
2429 return 0;
2430 }
2431
2432 void kvm_unregister_device_ops(u32 type)
2433 {
2434 if (kvm_device_ops_table[type] != NULL)
2435 kvm_device_ops_table[type] = NULL;
2436 }
2437
2438 static int kvm_ioctl_create_device(struct kvm *kvm,
2439 struct kvm_create_device *cd)
2440 {
2441 struct kvm_device_ops *ops = NULL;
2442 struct kvm_device *dev;
2443 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2444 int ret;
2445
2446 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2447 return -ENODEV;
2448
2449 ops = kvm_device_ops_table[cd->type];
2450 if (ops == NULL)
2451 return -ENODEV;
2452
2453 if (test)
2454 return 0;
2455
2456 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2457 if (!dev)
2458 return -ENOMEM;
2459
2460 dev->ops = ops;
2461 dev->kvm = kvm;
2462
2463 ret = ops->create(dev, cd->type);
2464 if (ret < 0) {
2465 kfree(dev);
2466 return ret;
2467 }
2468
2469 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2470 if (ret < 0) {
2471 ops->destroy(dev);
2472 return ret;
2473 }
2474
2475 list_add(&dev->vm_node, &kvm->devices);
2476 kvm_get_kvm(kvm);
2477 cd->fd = ret;
2478 return 0;
2479 }
2480
2481 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2482 {
2483 switch (arg) {
2484 case KVM_CAP_USER_MEMORY:
2485 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2486 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2487 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2488 case KVM_CAP_SET_BOOT_CPU_ID:
2489 #endif
2490 case KVM_CAP_INTERNAL_ERROR_DATA:
2491 #ifdef CONFIG_HAVE_KVM_MSI
2492 case KVM_CAP_SIGNAL_MSI:
2493 #endif
2494 #ifdef CONFIG_HAVE_KVM_IRQFD
2495 case KVM_CAP_IRQFD_RESAMPLE:
2496 #endif
2497 case KVM_CAP_CHECK_EXTENSION_VM:
2498 return 1;
2499 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2500 case KVM_CAP_IRQ_ROUTING:
2501 return KVM_MAX_IRQ_ROUTES;
2502 #endif
2503 default:
2504 break;
2505 }
2506 return kvm_vm_ioctl_check_extension(kvm, arg);
2507 }
2508
2509 static long kvm_vm_ioctl(struct file *filp,
2510 unsigned int ioctl, unsigned long arg)
2511 {
2512 struct kvm *kvm = filp->private_data;
2513 void __user *argp = (void __user *)arg;
2514 int r;
2515
2516 if (kvm->mm != current->mm)
2517 return -EIO;
2518 switch (ioctl) {
2519 case KVM_CREATE_VCPU:
2520 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2521 break;
2522 case KVM_SET_USER_MEMORY_REGION: {
2523 struct kvm_userspace_memory_region kvm_userspace_mem;
2524
2525 r = -EFAULT;
2526 if (copy_from_user(&kvm_userspace_mem, argp,
2527 sizeof kvm_userspace_mem))
2528 goto out;
2529
2530 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2531 break;
2532 }
2533 case KVM_GET_DIRTY_LOG: {
2534 struct kvm_dirty_log log;
2535
2536 r = -EFAULT;
2537 if (copy_from_user(&log, argp, sizeof log))
2538 goto out;
2539 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2540 break;
2541 }
2542 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2543 case KVM_REGISTER_COALESCED_MMIO: {
2544 struct kvm_coalesced_mmio_zone zone;
2545 r = -EFAULT;
2546 if (copy_from_user(&zone, argp, sizeof zone))
2547 goto out;
2548 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2549 break;
2550 }
2551 case KVM_UNREGISTER_COALESCED_MMIO: {
2552 struct kvm_coalesced_mmio_zone zone;
2553 r = -EFAULT;
2554 if (copy_from_user(&zone, argp, sizeof zone))
2555 goto out;
2556 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2557 break;
2558 }
2559 #endif
2560 case KVM_IRQFD: {
2561 struct kvm_irqfd data;
2562
2563 r = -EFAULT;
2564 if (copy_from_user(&data, argp, sizeof data))
2565 goto out;
2566 r = kvm_irqfd(kvm, &data);
2567 break;
2568 }
2569 case KVM_IOEVENTFD: {
2570 struct kvm_ioeventfd data;
2571
2572 r = -EFAULT;
2573 if (copy_from_user(&data, argp, sizeof data))
2574 goto out;
2575 r = kvm_ioeventfd(kvm, &data);
2576 break;
2577 }
2578 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2579 case KVM_SET_BOOT_CPU_ID:
2580 r = 0;
2581 mutex_lock(&kvm->lock);
2582 if (atomic_read(&kvm->online_vcpus) != 0)
2583 r = -EBUSY;
2584 else
2585 kvm->bsp_vcpu_id = arg;
2586 mutex_unlock(&kvm->lock);
2587 break;
2588 #endif
2589 #ifdef CONFIG_HAVE_KVM_MSI
2590 case KVM_SIGNAL_MSI: {
2591 struct kvm_msi msi;
2592
2593 r = -EFAULT;
2594 if (copy_from_user(&msi, argp, sizeof msi))
2595 goto out;
2596 r = kvm_send_userspace_msi(kvm, &msi);
2597 break;
2598 }
2599 #endif
2600 #ifdef __KVM_HAVE_IRQ_LINE
2601 case KVM_IRQ_LINE_STATUS:
2602 case KVM_IRQ_LINE: {
2603 struct kvm_irq_level irq_event;
2604
2605 r = -EFAULT;
2606 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2607 goto out;
2608
2609 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2610 ioctl == KVM_IRQ_LINE_STATUS);
2611 if (r)
2612 goto out;
2613
2614 r = -EFAULT;
2615 if (ioctl == KVM_IRQ_LINE_STATUS) {
2616 if (copy_to_user(argp, &irq_event, sizeof irq_event))
2617 goto out;
2618 }
2619
2620 r = 0;
2621 break;
2622 }
2623 #endif
2624 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2625 case KVM_SET_GSI_ROUTING: {
2626 struct kvm_irq_routing routing;
2627 struct kvm_irq_routing __user *urouting;
2628 struct kvm_irq_routing_entry *entries;
2629
2630 r = -EFAULT;
2631 if (copy_from_user(&routing, argp, sizeof(routing)))
2632 goto out;
2633 r = -EINVAL;
2634 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2635 goto out;
2636 if (routing.flags)
2637 goto out;
2638 r = -ENOMEM;
2639 entries = vmalloc(routing.nr * sizeof(*entries));
2640 if (!entries)
2641 goto out;
2642 r = -EFAULT;
2643 urouting = argp;
2644 if (copy_from_user(entries, urouting->entries,
2645 routing.nr * sizeof(*entries)))
2646 goto out_free_irq_routing;
2647 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2648 routing.flags);
2649 out_free_irq_routing:
2650 vfree(entries);
2651 break;
2652 }
2653 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2654 case KVM_CREATE_DEVICE: {
2655 struct kvm_create_device cd;
2656
2657 r = -EFAULT;
2658 if (copy_from_user(&cd, argp, sizeof(cd)))
2659 goto out;
2660
2661 r = kvm_ioctl_create_device(kvm, &cd);
2662 if (r)
2663 goto out;
2664
2665 r = -EFAULT;
2666 if (copy_to_user(argp, &cd, sizeof(cd)))
2667 goto out;
2668
2669 r = 0;
2670 break;
2671 }
2672 case KVM_CHECK_EXTENSION:
2673 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2674 break;
2675 default:
2676 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2677 }
2678 out:
2679 return r;
2680 }
2681
2682 #ifdef CONFIG_KVM_COMPAT
2683 struct compat_kvm_dirty_log {
2684 __u32 slot;
2685 __u32 padding1;
2686 union {
2687 compat_uptr_t dirty_bitmap; /* one bit per page */
2688 __u64 padding2;
2689 };
2690 };
2691
2692 static long kvm_vm_compat_ioctl(struct file *filp,
2693 unsigned int ioctl, unsigned long arg)
2694 {
2695 struct kvm *kvm = filp->private_data;
2696 int r;
2697
2698 if (kvm->mm != current->mm)
2699 return -EIO;
2700 switch (ioctl) {
2701 case KVM_GET_DIRTY_LOG: {
2702 struct compat_kvm_dirty_log compat_log;
2703 struct kvm_dirty_log log;
2704
2705 r = -EFAULT;
2706 if (copy_from_user(&compat_log, (void __user *)arg,
2707 sizeof(compat_log)))
2708 goto out;
2709 log.slot = compat_log.slot;
2710 log.padding1 = compat_log.padding1;
2711 log.padding2 = compat_log.padding2;
2712 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2713
2714 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2715 break;
2716 }
2717 default:
2718 r = kvm_vm_ioctl(filp, ioctl, arg);
2719 }
2720
2721 out:
2722 return r;
2723 }
2724 #endif
2725
2726 static struct file_operations kvm_vm_fops = {
2727 .release = kvm_vm_release,
2728 .unlocked_ioctl = kvm_vm_ioctl,
2729 #ifdef CONFIG_KVM_COMPAT
2730 .compat_ioctl = kvm_vm_compat_ioctl,
2731 #endif
2732 .llseek = noop_llseek,
2733 };
2734
2735 static int kvm_dev_ioctl_create_vm(unsigned long type)
2736 {
2737 int r;
2738 struct kvm *kvm;
2739
2740 kvm = kvm_create_vm(type);
2741 if (IS_ERR(kvm))
2742 return PTR_ERR(kvm);
2743 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2744 r = kvm_coalesced_mmio_init(kvm);
2745 if (r < 0) {
2746 kvm_put_kvm(kvm);
2747 return r;
2748 }
2749 #endif
2750 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2751 if (r < 0)
2752 kvm_put_kvm(kvm);
2753
2754 return r;
2755 }
2756
2757 static long kvm_dev_ioctl(struct file *filp,
2758 unsigned int ioctl, unsigned long arg)
2759 {
2760 long r = -EINVAL;
2761
2762 switch (ioctl) {
2763 case KVM_GET_API_VERSION:
2764 if (arg)
2765 goto out;
2766 r = KVM_API_VERSION;
2767 break;
2768 case KVM_CREATE_VM:
2769 r = kvm_dev_ioctl_create_vm(arg);
2770 break;
2771 case KVM_CHECK_EXTENSION:
2772 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2773 break;
2774 case KVM_GET_VCPU_MMAP_SIZE:
2775 if (arg)
2776 goto out;
2777 r = PAGE_SIZE; /* struct kvm_run */
2778 #ifdef CONFIG_X86
2779 r += PAGE_SIZE; /* pio data page */
2780 #endif
2781 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2782 r += PAGE_SIZE; /* coalesced mmio ring page */
2783 #endif
2784 break;
2785 case KVM_TRACE_ENABLE:
2786 case KVM_TRACE_PAUSE:
2787 case KVM_TRACE_DISABLE:
2788 r = -EOPNOTSUPP;
2789 break;
2790 default:
2791 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2792 }
2793 out:
2794 return r;
2795 }
2796
2797 static struct file_operations kvm_chardev_ops = {
2798 .unlocked_ioctl = kvm_dev_ioctl,
2799 .compat_ioctl = kvm_dev_ioctl,
2800 .llseek = noop_llseek,
2801 };
2802
2803 static struct miscdevice kvm_dev = {
2804 KVM_MINOR,
2805 "kvm",
2806 &kvm_chardev_ops,
2807 };
2808
2809 static void hardware_enable_nolock(void *junk)
2810 {
2811 int cpu = raw_smp_processor_id();
2812 int r;
2813
2814 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2815 return;
2816
2817 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2818
2819 r = kvm_arch_hardware_enable();
2820
2821 if (r) {
2822 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2823 atomic_inc(&hardware_enable_failed);
2824 printk(KERN_INFO "kvm: enabling virtualization on "
2825 "CPU%d failed\n", cpu);
2826 }
2827 }
2828
2829 static void hardware_enable(void)
2830 {
2831 raw_spin_lock(&kvm_count_lock);
2832 if (kvm_usage_count)
2833 hardware_enable_nolock(NULL);
2834 raw_spin_unlock(&kvm_count_lock);
2835 }
2836
2837 static void hardware_disable_nolock(void *junk)
2838 {
2839 int cpu = raw_smp_processor_id();
2840
2841 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2842 return;
2843 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2844 kvm_arch_hardware_disable();
2845 }
2846
2847 static void hardware_disable(void)
2848 {
2849 raw_spin_lock(&kvm_count_lock);
2850 if (kvm_usage_count)
2851 hardware_disable_nolock(NULL);
2852 raw_spin_unlock(&kvm_count_lock);
2853 }
2854
2855 static void hardware_disable_all_nolock(void)
2856 {
2857 BUG_ON(!kvm_usage_count);
2858
2859 kvm_usage_count--;
2860 if (!kvm_usage_count)
2861 on_each_cpu(hardware_disable_nolock, NULL, 1);
2862 }
2863
2864 static void hardware_disable_all(void)
2865 {
2866 raw_spin_lock(&kvm_count_lock);
2867 hardware_disable_all_nolock();
2868 raw_spin_unlock(&kvm_count_lock);
2869 }
2870
2871 static int hardware_enable_all(void)
2872 {
2873 int r = 0;
2874
2875 raw_spin_lock(&kvm_count_lock);
2876
2877 kvm_usage_count++;
2878 if (kvm_usage_count == 1) {
2879 atomic_set(&hardware_enable_failed, 0);
2880 on_each_cpu(hardware_enable_nolock, NULL, 1);
2881
2882 if (atomic_read(&hardware_enable_failed)) {
2883 hardware_disable_all_nolock();
2884 r = -EBUSY;
2885 }
2886 }
2887
2888 raw_spin_unlock(&kvm_count_lock);
2889
2890 return r;
2891 }
2892
2893 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2894 void *v)
2895 {
2896 int cpu = (long)v;
2897
2898 val &= ~CPU_TASKS_FROZEN;
2899 switch (val) {
2900 case CPU_DYING:
2901 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2902 cpu);
2903 hardware_disable();
2904 break;
2905 case CPU_STARTING:
2906 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2907 cpu);
2908 hardware_enable();
2909 break;
2910 }
2911 return NOTIFY_OK;
2912 }
2913
2914 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2915 void *v)
2916 {
2917 /*
2918 * Some (well, at least mine) BIOSes hang on reboot if
2919 * in vmx root mode.
2920 *
2921 * And Intel TXT required VMX off for all cpu when system shutdown.
2922 */
2923 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2924 kvm_rebooting = true;
2925 on_each_cpu(hardware_disable_nolock, NULL, 1);
2926 return NOTIFY_OK;
2927 }
2928
2929 static struct notifier_block kvm_reboot_notifier = {
2930 .notifier_call = kvm_reboot,
2931 .priority = 0,
2932 };
2933
2934 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2935 {
2936 int i;
2937
2938 for (i = 0; i < bus->dev_count; i++) {
2939 struct kvm_io_device *pos = bus->range[i].dev;
2940
2941 kvm_iodevice_destructor(pos);
2942 }
2943 kfree(bus);
2944 }
2945
2946 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2947 const struct kvm_io_range *r2)
2948 {
2949 if (r1->addr < r2->addr)
2950 return -1;
2951 if (r1->addr + r1->len > r2->addr + r2->len)
2952 return 1;
2953 return 0;
2954 }
2955
2956 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2957 {
2958 return kvm_io_bus_cmp(p1, p2);
2959 }
2960
2961 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2962 gpa_t addr, int len)
2963 {
2964 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2965 .addr = addr,
2966 .len = len,
2967 .dev = dev,
2968 };
2969
2970 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2971 kvm_io_bus_sort_cmp, NULL);
2972
2973 return 0;
2974 }
2975
2976 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2977 gpa_t addr, int len)
2978 {
2979 struct kvm_io_range *range, key;
2980 int off;
2981
2982 key = (struct kvm_io_range) {
2983 .addr = addr,
2984 .len = len,
2985 };
2986
2987 range = bsearch(&key, bus->range, bus->dev_count,
2988 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2989 if (range == NULL)
2990 return -ENOENT;
2991
2992 off = range - bus->range;
2993
2994 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2995 off--;
2996
2997 return off;
2998 }
2999
3000 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3001 struct kvm_io_range *range, const void *val)
3002 {
3003 int idx;
3004
3005 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3006 if (idx < 0)
3007 return -EOPNOTSUPP;
3008
3009 while (idx < bus->dev_count &&
3010 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3011 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3012 range->len, val))
3013 return idx;
3014 idx++;
3015 }
3016
3017 return -EOPNOTSUPP;
3018 }
3019
3020 /* kvm_io_bus_write - called under kvm->slots_lock */
3021 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3022 int len, const void *val)
3023 {
3024 struct kvm_io_bus *bus;
3025 struct kvm_io_range range;
3026 int r;
3027
3028 range = (struct kvm_io_range) {
3029 .addr = addr,
3030 .len = len,
3031 };
3032
3033 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3034 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3035 return r < 0 ? r : 0;
3036 }
3037
3038 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3039 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3040 gpa_t addr, int len, const void *val, long cookie)
3041 {
3042 struct kvm_io_bus *bus;
3043 struct kvm_io_range range;
3044
3045 range = (struct kvm_io_range) {
3046 .addr = addr,
3047 .len = len,
3048 };
3049
3050 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3051
3052 /* First try the device referenced by cookie. */
3053 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3054 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3055 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3056 val))
3057 return cookie;
3058
3059 /*
3060 * cookie contained garbage; fall back to search and return the
3061 * correct cookie value.
3062 */
3063 return __kvm_io_bus_write(vcpu, bus, &range, val);
3064 }
3065
3066 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3067 struct kvm_io_range *range, void *val)
3068 {
3069 int idx;
3070
3071 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3072 if (idx < 0)
3073 return -EOPNOTSUPP;
3074
3075 while (idx < bus->dev_count &&
3076 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3077 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3078 range->len, val))
3079 return idx;
3080 idx++;
3081 }
3082
3083 return -EOPNOTSUPP;
3084 }
3085 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3086
3087 /* kvm_io_bus_read - called under kvm->slots_lock */
3088 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3089 int len, void *val)
3090 {
3091 struct kvm_io_bus *bus;
3092 struct kvm_io_range range;
3093 int r;
3094
3095 range = (struct kvm_io_range) {
3096 .addr = addr,
3097 .len = len,
3098 };
3099
3100 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3101 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3102 return r < 0 ? r : 0;
3103 }
3104
3105
3106 /* Caller must hold slots_lock. */
3107 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3108 int len, struct kvm_io_device *dev)
3109 {
3110 struct kvm_io_bus *new_bus, *bus;
3111
3112 bus = kvm->buses[bus_idx];
3113 /* exclude ioeventfd which is limited by maximum fd */
3114 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3115 return -ENOSPC;
3116
3117 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3118 sizeof(struct kvm_io_range)), GFP_KERNEL);
3119 if (!new_bus)
3120 return -ENOMEM;
3121 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3122 sizeof(struct kvm_io_range)));
3123 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3124 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3125 synchronize_srcu_expedited(&kvm->srcu);
3126 kfree(bus);
3127
3128 return 0;
3129 }
3130
3131 /* Caller must hold slots_lock. */
3132 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3133 struct kvm_io_device *dev)
3134 {
3135 int i, r;
3136 struct kvm_io_bus *new_bus, *bus;
3137
3138 bus = kvm->buses[bus_idx];
3139 r = -ENOENT;
3140 for (i = 0; i < bus->dev_count; i++)
3141 if (bus->range[i].dev == dev) {
3142 r = 0;
3143 break;
3144 }
3145
3146 if (r)
3147 return r;
3148
3149 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3150 sizeof(struct kvm_io_range)), GFP_KERNEL);
3151 if (!new_bus)
3152 return -ENOMEM;
3153
3154 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3155 new_bus->dev_count--;
3156 memcpy(new_bus->range + i, bus->range + i + 1,
3157 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3158
3159 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3160 synchronize_srcu_expedited(&kvm->srcu);
3161 kfree(bus);
3162 return r;
3163 }
3164
3165 static struct notifier_block kvm_cpu_notifier = {
3166 .notifier_call = kvm_cpu_hotplug,
3167 };
3168
3169 static int vm_stat_get(void *_offset, u64 *val)
3170 {
3171 unsigned offset = (long)_offset;
3172 struct kvm *kvm;
3173
3174 *val = 0;
3175 spin_lock(&kvm_lock);
3176 list_for_each_entry(kvm, &vm_list, vm_list)
3177 *val += *(u32 *)((void *)kvm + offset);
3178 spin_unlock(&kvm_lock);
3179 return 0;
3180 }
3181
3182 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3183
3184 static int vcpu_stat_get(void *_offset, u64 *val)
3185 {
3186 unsigned offset = (long)_offset;
3187 struct kvm *kvm;
3188 struct kvm_vcpu *vcpu;
3189 int i;
3190
3191 *val = 0;
3192 spin_lock(&kvm_lock);
3193 list_for_each_entry(kvm, &vm_list, vm_list)
3194 kvm_for_each_vcpu(i, vcpu, kvm)
3195 *val += *(u32 *)((void *)vcpu + offset);
3196
3197 spin_unlock(&kvm_lock);
3198 return 0;
3199 }
3200
3201 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3202
3203 static const struct file_operations *stat_fops[] = {
3204 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3205 [KVM_STAT_VM] = &vm_stat_fops,
3206 };
3207
3208 static int kvm_init_debug(void)
3209 {
3210 int r = -EEXIST;
3211 struct kvm_stats_debugfs_item *p;
3212
3213 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3214 if (kvm_debugfs_dir == NULL)
3215 goto out;
3216
3217 for (p = debugfs_entries; p->name; ++p) {
3218 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3219 (void *)(long)p->offset,
3220 stat_fops[p->kind]);
3221 if (p->dentry == NULL)
3222 goto out_dir;
3223 }
3224
3225 return 0;
3226
3227 out_dir:
3228 debugfs_remove_recursive(kvm_debugfs_dir);
3229 out:
3230 return r;
3231 }
3232
3233 static void kvm_exit_debug(void)
3234 {
3235 struct kvm_stats_debugfs_item *p;
3236
3237 for (p = debugfs_entries; p->name; ++p)
3238 debugfs_remove(p->dentry);
3239 debugfs_remove(kvm_debugfs_dir);
3240 }
3241
3242 static int kvm_suspend(void)
3243 {
3244 if (kvm_usage_count)
3245 hardware_disable_nolock(NULL);
3246 return 0;
3247 }
3248
3249 static void kvm_resume(void)
3250 {
3251 if (kvm_usage_count) {
3252 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3253 hardware_enable_nolock(NULL);
3254 }
3255 }
3256
3257 static struct syscore_ops kvm_syscore_ops = {
3258 .suspend = kvm_suspend,
3259 .resume = kvm_resume,
3260 };
3261
3262 static inline
3263 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3264 {
3265 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3266 }
3267
3268 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3269 {
3270 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3271 if (vcpu->preempted)
3272 vcpu->preempted = false;
3273
3274 kvm_arch_sched_in(vcpu, cpu);
3275
3276 kvm_arch_vcpu_load(vcpu, cpu);
3277 }
3278
3279 static void kvm_sched_out(struct preempt_notifier *pn,
3280 struct task_struct *next)
3281 {
3282 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3283
3284 if (current->state == TASK_RUNNING)
3285 vcpu->preempted = true;
3286 kvm_arch_vcpu_put(vcpu);
3287 }
3288
3289 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3290 struct module *module)
3291 {
3292 int r;
3293 int cpu;
3294
3295 r = kvm_arch_init(opaque);
3296 if (r)
3297 goto out_fail;
3298
3299 /*
3300 * kvm_arch_init makes sure there's at most one caller
3301 * for architectures that support multiple implementations,
3302 * like intel and amd on x86.
3303 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3304 * conflicts in case kvm is already setup for another implementation.
3305 */
3306 r = kvm_irqfd_init();
3307 if (r)
3308 goto out_irqfd;
3309
3310 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3311 r = -ENOMEM;
3312 goto out_free_0;
3313 }
3314
3315 r = kvm_arch_hardware_setup();
3316 if (r < 0)
3317 goto out_free_0a;
3318
3319 for_each_online_cpu(cpu) {
3320 smp_call_function_single(cpu,
3321 kvm_arch_check_processor_compat,
3322 &r, 1);
3323 if (r < 0)
3324 goto out_free_1;
3325 }
3326
3327 r = register_cpu_notifier(&kvm_cpu_notifier);
3328 if (r)
3329 goto out_free_2;
3330 register_reboot_notifier(&kvm_reboot_notifier);
3331
3332 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3333 if (!vcpu_align)
3334 vcpu_align = __alignof__(struct kvm_vcpu);
3335 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3336 0, NULL);
3337 if (!kvm_vcpu_cache) {
3338 r = -ENOMEM;
3339 goto out_free_3;
3340 }
3341
3342 r = kvm_async_pf_init();
3343 if (r)
3344 goto out_free;
3345
3346 kvm_chardev_ops.owner = module;
3347 kvm_vm_fops.owner = module;
3348 kvm_vcpu_fops.owner = module;
3349
3350 r = misc_register(&kvm_dev);
3351 if (r) {
3352 printk(KERN_ERR "kvm: misc device register failed\n");
3353 goto out_unreg;
3354 }
3355
3356 register_syscore_ops(&kvm_syscore_ops);
3357
3358 kvm_preempt_ops.sched_in = kvm_sched_in;
3359 kvm_preempt_ops.sched_out = kvm_sched_out;
3360
3361 r = kvm_init_debug();
3362 if (r) {
3363 printk(KERN_ERR "kvm: create debugfs files failed\n");
3364 goto out_undebugfs;
3365 }
3366
3367 r = kvm_vfio_ops_init();
3368 WARN_ON(r);
3369
3370 return 0;
3371
3372 out_undebugfs:
3373 unregister_syscore_ops(&kvm_syscore_ops);
3374 misc_deregister(&kvm_dev);
3375 out_unreg:
3376 kvm_async_pf_deinit();
3377 out_free:
3378 kmem_cache_destroy(kvm_vcpu_cache);
3379 out_free_3:
3380 unregister_reboot_notifier(&kvm_reboot_notifier);
3381 unregister_cpu_notifier(&kvm_cpu_notifier);
3382 out_free_2:
3383 out_free_1:
3384 kvm_arch_hardware_unsetup();
3385 out_free_0a:
3386 free_cpumask_var(cpus_hardware_enabled);
3387 out_free_0:
3388 kvm_irqfd_exit();
3389 out_irqfd:
3390 kvm_arch_exit();
3391 out_fail:
3392 return r;
3393 }
3394 EXPORT_SYMBOL_GPL(kvm_init);
3395
3396 void kvm_exit(void)
3397 {
3398 kvm_exit_debug();
3399 misc_deregister(&kvm_dev);
3400 kmem_cache_destroy(kvm_vcpu_cache);
3401 kvm_async_pf_deinit();
3402 unregister_syscore_ops(&kvm_syscore_ops);
3403 unregister_reboot_notifier(&kvm_reboot_notifier);
3404 unregister_cpu_notifier(&kvm_cpu_notifier);
3405 on_each_cpu(hardware_disable_nolock, NULL, 1);
3406 kvm_arch_hardware_unsetup();
3407 kvm_arch_exit();
3408 kvm_irqfd_exit();
3409 free_cpumask_var(cpus_hardware_enabled);
3410 kvm_vfio_ops_exit();
3411 }
3412 EXPORT_SYMBOL_GPL(kvm_exit);