]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - virt/kvm/kvm_main.c
ca08942c78464d2c94214080c252ae81590146dc
[mirror_ubuntu-eoan-kernel.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 #include <asm/pgtable.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "vfio.h"
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66
67 /* Worst case buffer size needed for holding an integer. */
68 #define ITOA_MAX_LEN 12
69
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72
73 /* Architectures should define their poll value according to the halt latency */
74 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
75 module_param(halt_poll_ns, uint, 0644);
76 EXPORT_SYMBOL_GPL(halt_poll_ns);
77
78 /* Default doubles per-vcpu halt_poll_ns. */
79 unsigned int halt_poll_ns_grow = 2;
80 module_param(halt_poll_ns_grow, uint, 0644);
81 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
82
83 /* The start value to grow halt_poll_ns from */
84 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
85 module_param(halt_poll_ns_grow_start, uint, 0644);
86 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
87
88 /* Default resets per-vcpu halt_poll_ns . */
89 unsigned int halt_poll_ns_shrink;
90 module_param(halt_poll_ns_shrink, uint, 0644);
91 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
92
93 /*
94 * Ordering of locks:
95 *
96 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
97 */
98
99 DEFINE_MUTEX(kvm_lock);
100 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
101 LIST_HEAD(vm_list);
102
103 static cpumask_var_t cpus_hardware_enabled;
104 static int kvm_usage_count;
105 static atomic_t hardware_enable_failed;
106
107 struct kmem_cache *kvm_vcpu_cache;
108 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
109
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111
112 struct dentry *kvm_debugfs_dir;
113 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
114
115 static int kvm_debugfs_num_entries;
116 static const struct file_operations *stat_fops_per_vm[];
117
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119 unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122 unsigned long arg);
123 #define KVM_COMPAT(c) .compat_ioctl = (c)
124 #else
125 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
126 unsigned long arg) { return -EINVAL; }
127 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl
128 #endif
129 static int hardware_enable_all(void);
130 static void hardware_disable_all(void);
131
132 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
133
134 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
135
136 __visible bool kvm_rebooting;
137 EXPORT_SYMBOL_GPL(kvm_rebooting);
138
139 static bool largepages_enabled = true;
140
141 #define KVM_EVENT_CREATE_VM 0
142 #define KVM_EVENT_DESTROY_VM 1
143 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
144 static unsigned long long kvm_createvm_count;
145 static unsigned long long kvm_active_vms;
146
147 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
148 unsigned long start, unsigned long end, bool blockable)
149 {
150 return 0;
151 }
152
153 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
154 {
155 /*
156 * The metadata used by is_zone_device_page() to determine whether or
157 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
158 * the device has been pinned, e.g. by get_user_pages(). WARN if the
159 * page_count() is zero to help detect bad usage of this helper.
160 */
161 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
162 return false;
163
164 return is_zone_device_page(pfn_to_page(pfn));
165 }
166
167 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
168 {
169 /*
170 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
171 * perspective they are "normal" pages, albeit with slightly different
172 * usage rules.
173 */
174 if (pfn_valid(pfn))
175 return PageReserved(pfn_to_page(pfn)) &&
176 !kvm_is_zone_device_pfn(pfn);
177
178 return true;
179 }
180
181 /*
182 * Switches to specified vcpu, until a matching vcpu_put()
183 */
184 void vcpu_load(struct kvm_vcpu *vcpu)
185 {
186 int cpu = get_cpu();
187 preempt_notifier_register(&vcpu->preempt_notifier);
188 kvm_arch_vcpu_load(vcpu, cpu);
189 put_cpu();
190 }
191 EXPORT_SYMBOL_GPL(vcpu_load);
192
193 void vcpu_put(struct kvm_vcpu *vcpu)
194 {
195 preempt_disable();
196 kvm_arch_vcpu_put(vcpu);
197 preempt_notifier_unregister(&vcpu->preempt_notifier);
198 preempt_enable();
199 }
200 EXPORT_SYMBOL_GPL(vcpu_put);
201
202 /* TODO: merge with kvm_arch_vcpu_should_kick */
203 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
204 {
205 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
206
207 /*
208 * We need to wait for the VCPU to reenable interrupts and get out of
209 * READING_SHADOW_PAGE_TABLES mode.
210 */
211 if (req & KVM_REQUEST_WAIT)
212 return mode != OUTSIDE_GUEST_MODE;
213
214 /*
215 * Need to kick a running VCPU, but otherwise there is nothing to do.
216 */
217 return mode == IN_GUEST_MODE;
218 }
219
220 static void ack_flush(void *_completed)
221 {
222 }
223
224 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
225 {
226 if (unlikely(!cpus))
227 cpus = cpu_online_mask;
228
229 if (cpumask_empty(cpus))
230 return false;
231
232 smp_call_function_many(cpus, ack_flush, NULL, wait);
233 return true;
234 }
235
236 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
237 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
238 {
239 int i, cpu, me;
240 struct kvm_vcpu *vcpu;
241 bool called;
242
243 me = get_cpu();
244
245 kvm_for_each_vcpu(i, vcpu, kvm) {
246 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
247 continue;
248
249 kvm_make_request(req, vcpu);
250 cpu = vcpu->cpu;
251
252 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
253 continue;
254
255 if (tmp != NULL && cpu != -1 && cpu != me &&
256 kvm_request_needs_ipi(vcpu, req))
257 __cpumask_set_cpu(cpu, tmp);
258 }
259
260 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
261 put_cpu();
262
263 return called;
264 }
265
266 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
267 {
268 cpumask_var_t cpus;
269 bool called;
270
271 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
272
273 called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
274
275 free_cpumask_var(cpus);
276 return called;
277 }
278
279 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
280 void kvm_flush_remote_tlbs(struct kvm *kvm)
281 {
282 /*
283 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
284 * kvm_make_all_cpus_request.
285 */
286 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
287
288 /*
289 * We want to publish modifications to the page tables before reading
290 * mode. Pairs with a memory barrier in arch-specific code.
291 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
292 * and smp_mb in walk_shadow_page_lockless_begin/end.
293 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
294 *
295 * There is already an smp_mb__after_atomic() before
296 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
297 * barrier here.
298 */
299 if (!kvm_arch_flush_remote_tlb(kvm)
300 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
301 ++kvm->stat.remote_tlb_flush;
302 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
303 }
304 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
305 #endif
306
307 void kvm_reload_remote_mmus(struct kvm *kvm)
308 {
309 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
310 }
311
312 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
313 {
314 struct page *page;
315 int r;
316
317 mutex_init(&vcpu->mutex);
318 vcpu->cpu = -1;
319 vcpu->kvm = kvm;
320 vcpu->vcpu_id = id;
321 vcpu->pid = NULL;
322 init_swait_queue_head(&vcpu->wq);
323 kvm_async_pf_vcpu_init(vcpu);
324
325 vcpu->pre_pcpu = -1;
326 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
327
328 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
329 if (!page) {
330 r = -ENOMEM;
331 goto fail;
332 }
333 vcpu->run = page_address(page);
334
335 kvm_vcpu_set_in_spin_loop(vcpu, false);
336 kvm_vcpu_set_dy_eligible(vcpu, false);
337 vcpu->preempted = false;
338 vcpu->ready = false;
339
340 r = kvm_arch_vcpu_init(vcpu);
341 if (r < 0)
342 goto fail_free_run;
343 return 0;
344
345 fail_free_run:
346 free_page((unsigned long)vcpu->run);
347 fail:
348 return r;
349 }
350 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
351
352 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
353 {
354 /*
355 * no need for rcu_read_lock as VCPU_RUN is the only place that
356 * will change the vcpu->pid pointer and on uninit all file
357 * descriptors are already gone.
358 */
359 put_pid(rcu_dereference_protected(vcpu->pid, 1));
360 kvm_arch_vcpu_uninit(vcpu);
361 free_page((unsigned long)vcpu->run);
362 }
363 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
364
365 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
366 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
367 {
368 return container_of(mn, struct kvm, mmu_notifier);
369 }
370
371 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
372 struct mm_struct *mm,
373 unsigned long address,
374 pte_t pte)
375 {
376 struct kvm *kvm = mmu_notifier_to_kvm(mn);
377 int idx;
378
379 idx = srcu_read_lock(&kvm->srcu);
380 spin_lock(&kvm->mmu_lock);
381 kvm->mmu_notifier_seq++;
382
383 if (kvm_set_spte_hva(kvm, address, pte))
384 kvm_flush_remote_tlbs(kvm);
385
386 spin_unlock(&kvm->mmu_lock);
387 srcu_read_unlock(&kvm->srcu, idx);
388 }
389
390 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
391 const struct mmu_notifier_range *range)
392 {
393 struct kvm *kvm = mmu_notifier_to_kvm(mn);
394 int need_tlb_flush = 0, idx;
395 int ret;
396
397 idx = srcu_read_lock(&kvm->srcu);
398 spin_lock(&kvm->mmu_lock);
399 /*
400 * The count increase must become visible at unlock time as no
401 * spte can be established without taking the mmu_lock and
402 * count is also read inside the mmu_lock critical section.
403 */
404 kvm->mmu_notifier_count++;
405 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
406 need_tlb_flush |= kvm->tlbs_dirty;
407 /* we've to flush the tlb before the pages can be freed */
408 if (need_tlb_flush)
409 kvm_flush_remote_tlbs(kvm);
410
411 spin_unlock(&kvm->mmu_lock);
412
413 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
414 range->end,
415 mmu_notifier_range_blockable(range));
416
417 srcu_read_unlock(&kvm->srcu, idx);
418
419 return ret;
420 }
421
422 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
423 const struct mmu_notifier_range *range)
424 {
425 struct kvm *kvm = mmu_notifier_to_kvm(mn);
426
427 spin_lock(&kvm->mmu_lock);
428 /*
429 * This sequence increase will notify the kvm page fault that
430 * the page that is going to be mapped in the spte could have
431 * been freed.
432 */
433 kvm->mmu_notifier_seq++;
434 smp_wmb();
435 /*
436 * The above sequence increase must be visible before the
437 * below count decrease, which is ensured by the smp_wmb above
438 * in conjunction with the smp_rmb in mmu_notifier_retry().
439 */
440 kvm->mmu_notifier_count--;
441 spin_unlock(&kvm->mmu_lock);
442
443 BUG_ON(kvm->mmu_notifier_count < 0);
444 }
445
446 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
447 struct mm_struct *mm,
448 unsigned long start,
449 unsigned long end)
450 {
451 struct kvm *kvm = mmu_notifier_to_kvm(mn);
452 int young, idx;
453
454 idx = srcu_read_lock(&kvm->srcu);
455 spin_lock(&kvm->mmu_lock);
456
457 young = kvm_age_hva(kvm, start, end);
458 if (young)
459 kvm_flush_remote_tlbs(kvm);
460
461 spin_unlock(&kvm->mmu_lock);
462 srcu_read_unlock(&kvm->srcu, idx);
463
464 return young;
465 }
466
467 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
468 struct mm_struct *mm,
469 unsigned long start,
470 unsigned long end)
471 {
472 struct kvm *kvm = mmu_notifier_to_kvm(mn);
473 int young, idx;
474
475 idx = srcu_read_lock(&kvm->srcu);
476 spin_lock(&kvm->mmu_lock);
477 /*
478 * Even though we do not flush TLB, this will still adversely
479 * affect performance on pre-Haswell Intel EPT, where there is
480 * no EPT Access Bit to clear so that we have to tear down EPT
481 * tables instead. If we find this unacceptable, we can always
482 * add a parameter to kvm_age_hva so that it effectively doesn't
483 * do anything on clear_young.
484 *
485 * Also note that currently we never issue secondary TLB flushes
486 * from clear_young, leaving this job up to the regular system
487 * cadence. If we find this inaccurate, we might come up with a
488 * more sophisticated heuristic later.
489 */
490 young = kvm_age_hva(kvm, start, end);
491 spin_unlock(&kvm->mmu_lock);
492 srcu_read_unlock(&kvm->srcu, idx);
493
494 return young;
495 }
496
497 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
498 struct mm_struct *mm,
499 unsigned long address)
500 {
501 struct kvm *kvm = mmu_notifier_to_kvm(mn);
502 int young, idx;
503
504 idx = srcu_read_lock(&kvm->srcu);
505 spin_lock(&kvm->mmu_lock);
506 young = kvm_test_age_hva(kvm, address);
507 spin_unlock(&kvm->mmu_lock);
508 srcu_read_unlock(&kvm->srcu, idx);
509
510 return young;
511 }
512
513 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
514 struct mm_struct *mm)
515 {
516 struct kvm *kvm = mmu_notifier_to_kvm(mn);
517 int idx;
518
519 idx = srcu_read_lock(&kvm->srcu);
520 kvm_arch_flush_shadow_all(kvm);
521 srcu_read_unlock(&kvm->srcu, idx);
522 }
523
524 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
525 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
526 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
527 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
528 .clear_young = kvm_mmu_notifier_clear_young,
529 .test_young = kvm_mmu_notifier_test_young,
530 .change_pte = kvm_mmu_notifier_change_pte,
531 .release = kvm_mmu_notifier_release,
532 };
533
534 static int kvm_init_mmu_notifier(struct kvm *kvm)
535 {
536 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
537 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
538 }
539
540 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
541
542 static int kvm_init_mmu_notifier(struct kvm *kvm)
543 {
544 return 0;
545 }
546
547 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
548
549 static struct kvm_memslots *kvm_alloc_memslots(void)
550 {
551 int i;
552 struct kvm_memslots *slots;
553
554 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
555 if (!slots)
556 return NULL;
557
558 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
559 slots->id_to_index[i] = slots->memslots[i].id = i;
560
561 return slots;
562 }
563
564 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
565 {
566 if (!memslot->dirty_bitmap)
567 return;
568
569 kvfree(memslot->dirty_bitmap);
570 memslot->dirty_bitmap = NULL;
571 }
572
573 /*
574 * Free any memory in @free but not in @dont.
575 */
576 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
577 struct kvm_memory_slot *dont)
578 {
579 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
580 kvm_destroy_dirty_bitmap(free);
581
582 kvm_arch_free_memslot(kvm, free, dont);
583
584 free->npages = 0;
585 }
586
587 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
588 {
589 struct kvm_memory_slot *memslot;
590
591 if (!slots)
592 return;
593
594 kvm_for_each_memslot(memslot, slots)
595 kvm_free_memslot(kvm, memslot, NULL);
596
597 kvfree(slots);
598 }
599
600 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
601 {
602 int i;
603
604 if (!kvm->debugfs_dentry)
605 return;
606
607 debugfs_remove_recursive(kvm->debugfs_dentry);
608
609 if (kvm->debugfs_stat_data) {
610 for (i = 0; i < kvm_debugfs_num_entries; i++)
611 kfree(kvm->debugfs_stat_data[i]);
612 kfree(kvm->debugfs_stat_data);
613 }
614 }
615
616 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
617 {
618 char dir_name[ITOA_MAX_LEN * 2];
619 struct kvm_stat_data *stat_data;
620 struct kvm_stats_debugfs_item *p;
621
622 if (!debugfs_initialized())
623 return 0;
624
625 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
626 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
627
628 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
629 sizeof(*kvm->debugfs_stat_data),
630 GFP_KERNEL_ACCOUNT);
631 if (!kvm->debugfs_stat_data)
632 return -ENOMEM;
633
634 for (p = debugfs_entries; p->name; p++) {
635 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
636 if (!stat_data)
637 return -ENOMEM;
638
639 stat_data->kvm = kvm;
640 stat_data->offset = p->offset;
641 stat_data->mode = p->mode ? p->mode : 0644;
642 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
643 debugfs_create_file(p->name, stat_data->mode, kvm->debugfs_dentry,
644 stat_data, stat_fops_per_vm[p->kind]);
645 }
646 return 0;
647 }
648
649 /*
650 * Called after the VM is otherwise initialized, but just before adding it to
651 * the vm_list.
652 */
653 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
654 {
655 return 0;
656 }
657
658 /*
659 * Called just after removing the VM from the vm_list, but before doing any
660 * other destruction.
661 */
662 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
663 {
664 }
665
666 static struct kvm *kvm_create_vm(unsigned long type)
667 {
668 int r, i;
669 struct kvm *kvm = kvm_arch_alloc_vm();
670
671 if (!kvm)
672 return ERR_PTR(-ENOMEM);
673
674 spin_lock_init(&kvm->mmu_lock);
675 mmgrab(current->mm);
676 kvm->mm = current->mm;
677 kvm_eventfd_init(kvm);
678 mutex_init(&kvm->lock);
679 mutex_init(&kvm->irq_lock);
680 mutex_init(&kvm->slots_lock);
681 refcount_set(&kvm->users_count, 1);
682 INIT_LIST_HEAD(&kvm->devices);
683
684 r = kvm_arch_init_vm(kvm, type);
685 if (r)
686 goto out_err_no_disable;
687
688 r = hardware_enable_all();
689 if (r)
690 goto out_err_no_disable;
691
692 #ifdef CONFIG_HAVE_KVM_IRQFD
693 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
694 #endif
695
696 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
697
698 r = -ENOMEM;
699 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
700 struct kvm_memslots *slots = kvm_alloc_memslots();
701 if (!slots)
702 goto out_err_no_srcu;
703 /* Generations must be different for each address space. */
704 slots->generation = i;
705 rcu_assign_pointer(kvm->memslots[i], slots);
706 }
707
708 if (init_srcu_struct(&kvm->srcu))
709 goto out_err_no_srcu;
710 if (init_srcu_struct(&kvm->irq_srcu))
711 goto out_err_no_irq_srcu;
712 for (i = 0; i < KVM_NR_BUSES; i++) {
713 rcu_assign_pointer(kvm->buses[i],
714 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
715 if (!kvm->buses[i])
716 goto out_err_no_mmu_notifier;
717 }
718
719 r = kvm_init_mmu_notifier(kvm);
720 if (r)
721 goto out_err_no_mmu_notifier;
722
723 r = kvm_arch_post_init_vm(kvm);
724 if (r)
725 goto out_err;
726
727 mutex_lock(&kvm_lock);
728 list_add(&kvm->vm_list, &vm_list);
729 mutex_unlock(&kvm_lock);
730
731 preempt_notifier_inc();
732
733 return kvm;
734
735 out_err:
736 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
737 if (kvm->mmu_notifier.ops)
738 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
739 #endif
740 out_err_no_mmu_notifier:
741 cleanup_srcu_struct(&kvm->irq_srcu);
742 out_err_no_irq_srcu:
743 cleanup_srcu_struct(&kvm->srcu);
744 out_err_no_srcu:
745 hardware_disable_all();
746 out_err_no_disable:
747 refcount_set(&kvm->users_count, 0);
748 for (i = 0; i < KVM_NR_BUSES; i++)
749 kfree(kvm_get_bus(kvm, i));
750 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
751 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
752 kvm_arch_free_vm(kvm);
753 mmdrop(current->mm);
754 return ERR_PTR(r);
755 }
756
757 static void kvm_destroy_devices(struct kvm *kvm)
758 {
759 struct kvm_device *dev, *tmp;
760
761 /*
762 * We do not need to take the kvm->lock here, because nobody else
763 * has a reference to the struct kvm at this point and therefore
764 * cannot access the devices list anyhow.
765 */
766 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
767 list_del(&dev->vm_node);
768 dev->ops->destroy(dev);
769 }
770 }
771
772 static void kvm_destroy_vm(struct kvm *kvm)
773 {
774 int i;
775 struct mm_struct *mm = kvm->mm;
776
777 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
778 kvm_destroy_vm_debugfs(kvm);
779 kvm_arch_sync_events(kvm);
780 mutex_lock(&kvm_lock);
781 list_del(&kvm->vm_list);
782 mutex_unlock(&kvm_lock);
783 kvm_arch_pre_destroy_vm(kvm);
784
785 kvm_free_irq_routing(kvm);
786 for (i = 0; i < KVM_NR_BUSES; i++) {
787 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
788
789 if (bus)
790 kvm_io_bus_destroy(bus);
791 kvm->buses[i] = NULL;
792 }
793 kvm_coalesced_mmio_free(kvm);
794 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
795 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
796 #else
797 kvm_arch_flush_shadow_all(kvm);
798 #endif
799 kvm_arch_destroy_vm(kvm);
800 kvm_destroy_devices(kvm);
801 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
802 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
803 cleanup_srcu_struct(&kvm->irq_srcu);
804 cleanup_srcu_struct(&kvm->srcu);
805 kvm_arch_free_vm(kvm);
806 preempt_notifier_dec();
807 hardware_disable_all();
808 mmdrop(mm);
809 }
810
811 void kvm_get_kvm(struct kvm *kvm)
812 {
813 refcount_inc(&kvm->users_count);
814 }
815 EXPORT_SYMBOL_GPL(kvm_get_kvm);
816
817 void kvm_put_kvm(struct kvm *kvm)
818 {
819 if (refcount_dec_and_test(&kvm->users_count))
820 kvm_destroy_vm(kvm);
821 }
822 EXPORT_SYMBOL_GPL(kvm_put_kvm);
823
824
825 static int kvm_vm_release(struct inode *inode, struct file *filp)
826 {
827 struct kvm *kvm = filp->private_data;
828
829 kvm_irqfd_release(kvm);
830
831 kvm_put_kvm(kvm);
832 return 0;
833 }
834
835 /*
836 * Allocation size is twice as large as the actual dirty bitmap size.
837 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
838 */
839 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
840 {
841 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
842
843 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
844 if (!memslot->dirty_bitmap)
845 return -ENOMEM;
846
847 return 0;
848 }
849
850 /*
851 * Insert memslot and re-sort memslots based on their GFN,
852 * so binary search could be used to lookup GFN.
853 * Sorting algorithm takes advantage of having initially
854 * sorted array and known changed memslot position.
855 */
856 static void update_memslots(struct kvm_memslots *slots,
857 struct kvm_memory_slot *new,
858 enum kvm_mr_change change)
859 {
860 int id = new->id;
861 int i = slots->id_to_index[id];
862 struct kvm_memory_slot *mslots = slots->memslots;
863
864 WARN_ON(mslots[i].id != id);
865 switch (change) {
866 case KVM_MR_CREATE:
867 slots->used_slots++;
868 WARN_ON(mslots[i].npages || !new->npages);
869 break;
870 case KVM_MR_DELETE:
871 slots->used_slots--;
872 WARN_ON(new->npages || !mslots[i].npages);
873 break;
874 default:
875 break;
876 }
877
878 while (i < KVM_MEM_SLOTS_NUM - 1 &&
879 new->base_gfn <= mslots[i + 1].base_gfn) {
880 if (!mslots[i + 1].npages)
881 break;
882 mslots[i] = mslots[i + 1];
883 slots->id_to_index[mslots[i].id] = i;
884 i++;
885 }
886
887 /*
888 * The ">=" is needed when creating a slot with base_gfn == 0,
889 * so that it moves before all those with base_gfn == npages == 0.
890 *
891 * On the other hand, if new->npages is zero, the above loop has
892 * already left i pointing to the beginning of the empty part of
893 * mslots, and the ">=" would move the hole backwards in this
894 * case---which is wrong. So skip the loop when deleting a slot.
895 */
896 if (new->npages) {
897 while (i > 0 &&
898 new->base_gfn >= mslots[i - 1].base_gfn) {
899 mslots[i] = mslots[i - 1];
900 slots->id_to_index[mslots[i].id] = i;
901 i--;
902 }
903 } else
904 WARN_ON_ONCE(i != slots->used_slots);
905
906 mslots[i] = *new;
907 slots->id_to_index[mslots[i].id] = i;
908 }
909
910 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
911 {
912 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
913
914 #ifdef __KVM_HAVE_READONLY_MEM
915 valid_flags |= KVM_MEM_READONLY;
916 #endif
917
918 if (mem->flags & ~valid_flags)
919 return -EINVAL;
920
921 return 0;
922 }
923
924 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
925 int as_id, struct kvm_memslots *slots)
926 {
927 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
928 u64 gen = old_memslots->generation;
929
930 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
931 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
932
933 rcu_assign_pointer(kvm->memslots[as_id], slots);
934 synchronize_srcu_expedited(&kvm->srcu);
935
936 /*
937 * Increment the new memslot generation a second time, dropping the
938 * update in-progress flag and incrementing then generation based on
939 * the number of address spaces. This provides a unique and easily
940 * identifiable generation number while the memslots are in flux.
941 */
942 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
943
944 /*
945 * Generations must be unique even across address spaces. We do not need
946 * a global counter for that, instead the generation space is evenly split
947 * across address spaces. For example, with two address spaces, address
948 * space 0 will use generations 0, 2, 4, ... while address space 1 will
949 * use generations 1, 3, 5, ...
950 */
951 gen += KVM_ADDRESS_SPACE_NUM;
952
953 kvm_arch_memslots_updated(kvm, gen);
954
955 slots->generation = gen;
956
957 return old_memslots;
958 }
959
960 /*
961 * Allocate some memory and give it an address in the guest physical address
962 * space.
963 *
964 * Discontiguous memory is allowed, mostly for framebuffers.
965 *
966 * Must be called holding kvm->slots_lock for write.
967 */
968 int __kvm_set_memory_region(struct kvm *kvm,
969 const struct kvm_userspace_memory_region *mem)
970 {
971 int r;
972 gfn_t base_gfn;
973 unsigned long npages;
974 struct kvm_memory_slot *slot;
975 struct kvm_memory_slot old, new;
976 struct kvm_memslots *slots = NULL, *old_memslots;
977 int as_id, id;
978 enum kvm_mr_change change;
979
980 r = check_memory_region_flags(mem);
981 if (r)
982 goto out;
983
984 r = -EINVAL;
985 as_id = mem->slot >> 16;
986 id = (u16)mem->slot;
987
988 /* General sanity checks */
989 if (mem->memory_size & (PAGE_SIZE - 1))
990 goto out;
991 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
992 goto out;
993 /* We can read the guest memory with __xxx_user() later on. */
994 if ((id < KVM_USER_MEM_SLOTS) &&
995 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
996 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
997 mem->memory_size)))
998 goto out;
999 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1000 goto out;
1001 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1002 goto out;
1003
1004 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1005 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1006 npages = mem->memory_size >> PAGE_SHIFT;
1007
1008 if (npages > KVM_MEM_MAX_NR_PAGES)
1009 goto out;
1010
1011 new = old = *slot;
1012
1013 new.id = id;
1014 new.base_gfn = base_gfn;
1015 new.npages = npages;
1016 new.flags = mem->flags;
1017
1018 if (npages) {
1019 if (!old.npages)
1020 change = KVM_MR_CREATE;
1021 else { /* Modify an existing slot. */
1022 if ((mem->userspace_addr != old.userspace_addr) ||
1023 (npages != old.npages) ||
1024 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1025 goto out;
1026
1027 if (base_gfn != old.base_gfn)
1028 change = KVM_MR_MOVE;
1029 else if (new.flags != old.flags)
1030 change = KVM_MR_FLAGS_ONLY;
1031 else { /* Nothing to change. */
1032 r = 0;
1033 goto out;
1034 }
1035 }
1036 } else {
1037 if (!old.npages)
1038 goto out;
1039
1040 change = KVM_MR_DELETE;
1041 new.base_gfn = 0;
1042 new.flags = 0;
1043 }
1044
1045 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1046 /* Check for overlaps */
1047 r = -EEXIST;
1048 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1049 if (slot->id == id)
1050 continue;
1051 if (!((base_gfn + npages <= slot->base_gfn) ||
1052 (base_gfn >= slot->base_gfn + slot->npages)))
1053 goto out;
1054 }
1055 }
1056
1057 /* Free page dirty bitmap if unneeded */
1058 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1059 new.dirty_bitmap = NULL;
1060
1061 r = -ENOMEM;
1062 if (change == KVM_MR_CREATE) {
1063 new.userspace_addr = mem->userspace_addr;
1064
1065 if (kvm_arch_create_memslot(kvm, &new, npages))
1066 goto out_free;
1067 }
1068
1069 /* Allocate page dirty bitmap if needed */
1070 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1071 if (kvm_create_dirty_bitmap(&new) < 0)
1072 goto out_free;
1073 }
1074
1075 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1076 if (!slots)
1077 goto out_free;
1078 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1079
1080 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1081 slot = id_to_memslot(slots, id);
1082 slot->flags |= KVM_MEMSLOT_INVALID;
1083
1084 old_memslots = install_new_memslots(kvm, as_id, slots);
1085
1086 /* From this point no new shadow pages pointing to a deleted,
1087 * or moved, memslot will be created.
1088 *
1089 * validation of sp->gfn happens in:
1090 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1091 * - kvm_is_visible_gfn (mmu_check_roots)
1092 */
1093 kvm_arch_flush_shadow_memslot(kvm, slot);
1094
1095 /*
1096 * We can re-use the old_memslots from above, the only difference
1097 * from the currently installed memslots is the invalid flag. This
1098 * will get overwritten by update_memslots anyway.
1099 */
1100 slots = old_memslots;
1101 }
1102
1103 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1104 if (r)
1105 goto out_slots;
1106
1107 /* actual memory is freed via old in kvm_free_memslot below */
1108 if (change == KVM_MR_DELETE) {
1109 new.dirty_bitmap = NULL;
1110 memset(&new.arch, 0, sizeof(new.arch));
1111 }
1112
1113 update_memslots(slots, &new, change);
1114 old_memslots = install_new_memslots(kvm, as_id, slots);
1115
1116 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1117
1118 kvm_free_memslot(kvm, &old, &new);
1119 kvfree(old_memslots);
1120 return 0;
1121
1122 out_slots:
1123 kvfree(slots);
1124 out_free:
1125 kvm_free_memslot(kvm, &new, &old);
1126 out:
1127 return r;
1128 }
1129 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1130
1131 int kvm_set_memory_region(struct kvm *kvm,
1132 const struct kvm_userspace_memory_region *mem)
1133 {
1134 int r;
1135
1136 mutex_lock(&kvm->slots_lock);
1137 r = __kvm_set_memory_region(kvm, mem);
1138 mutex_unlock(&kvm->slots_lock);
1139 return r;
1140 }
1141 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1142
1143 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1144 struct kvm_userspace_memory_region *mem)
1145 {
1146 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1147 return -EINVAL;
1148
1149 return kvm_set_memory_region(kvm, mem);
1150 }
1151
1152 int kvm_get_dirty_log(struct kvm *kvm,
1153 struct kvm_dirty_log *log, int *is_dirty)
1154 {
1155 struct kvm_memslots *slots;
1156 struct kvm_memory_slot *memslot;
1157 int i, as_id, id;
1158 unsigned long n;
1159 unsigned long any = 0;
1160
1161 as_id = log->slot >> 16;
1162 id = (u16)log->slot;
1163 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1164 return -EINVAL;
1165
1166 slots = __kvm_memslots(kvm, as_id);
1167 memslot = id_to_memslot(slots, id);
1168 if (!memslot->dirty_bitmap)
1169 return -ENOENT;
1170
1171 n = kvm_dirty_bitmap_bytes(memslot);
1172
1173 for (i = 0; !any && i < n/sizeof(long); ++i)
1174 any = memslot->dirty_bitmap[i];
1175
1176 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1177 return -EFAULT;
1178
1179 if (any)
1180 *is_dirty = 1;
1181 return 0;
1182 }
1183 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1184
1185 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1186 /**
1187 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1188 * and reenable dirty page tracking for the corresponding pages.
1189 * @kvm: pointer to kvm instance
1190 * @log: slot id and address to which we copy the log
1191 * @flush: true if TLB flush is needed by caller
1192 *
1193 * We need to keep it in mind that VCPU threads can write to the bitmap
1194 * concurrently. So, to avoid losing track of dirty pages we keep the
1195 * following order:
1196 *
1197 * 1. Take a snapshot of the bit and clear it if needed.
1198 * 2. Write protect the corresponding page.
1199 * 3. Copy the snapshot to the userspace.
1200 * 4. Upon return caller flushes TLB's if needed.
1201 *
1202 * Between 2 and 4, the guest may write to the page using the remaining TLB
1203 * entry. This is not a problem because the page is reported dirty using
1204 * the snapshot taken before and step 4 ensures that writes done after
1205 * exiting to userspace will be logged for the next call.
1206 *
1207 */
1208 int kvm_get_dirty_log_protect(struct kvm *kvm,
1209 struct kvm_dirty_log *log, bool *flush)
1210 {
1211 struct kvm_memslots *slots;
1212 struct kvm_memory_slot *memslot;
1213 int i, as_id, id;
1214 unsigned long n;
1215 unsigned long *dirty_bitmap;
1216 unsigned long *dirty_bitmap_buffer;
1217
1218 as_id = log->slot >> 16;
1219 id = (u16)log->slot;
1220 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1221 return -EINVAL;
1222
1223 slots = __kvm_memslots(kvm, as_id);
1224 memslot = id_to_memslot(slots, id);
1225
1226 dirty_bitmap = memslot->dirty_bitmap;
1227 if (!dirty_bitmap)
1228 return -ENOENT;
1229
1230 n = kvm_dirty_bitmap_bytes(memslot);
1231 *flush = false;
1232 if (kvm->manual_dirty_log_protect) {
1233 /*
1234 * Unlike kvm_get_dirty_log, we always return false in *flush,
1235 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
1236 * is some code duplication between this function and
1237 * kvm_get_dirty_log, but hopefully all architecture
1238 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1239 * can be eliminated.
1240 */
1241 dirty_bitmap_buffer = dirty_bitmap;
1242 } else {
1243 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1244 memset(dirty_bitmap_buffer, 0, n);
1245
1246 spin_lock(&kvm->mmu_lock);
1247 for (i = 0; i < n / sizeof(long); i++) {
1248 unsigned long mask;
1249 gfn_t offset;
1250
1251 if (!dirty_bitmap[i])
1252 continue;
1253
1254 *flush = true;
1255 mask = xchg(&dirty_bitmap[i], 0);
1256 dirty_bitmap_buffer[i] = mask;
1257
1258 offset = i * BITS_PER_LONG;
1259 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1260 offset, mask);
1261 }
1262 spin_unlock(&kvm->mmu_lock);
1263 }
1264
1265 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1266 return -EFAULT;
1267 return 0;
1268 }
1269 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1270
1271 /**
1272 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1273 * and reenable dirty page tracking for the corresponding pages.
1274 * @kvm: pointer to kvm instance
1275 * @log: slot id and address from which to fetch the bitmap of dirty pages
1276 * @flush: true if TLB flush is needed by caller
1277 */
1278 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1279 struct kvm_clear_dirty_log *log, bool *flush)
1280 {
1281 struct kvm_memslots *slots;
1282 struct kvm_memory_slot *memslot;
1283 int as_id, id;
1284 gfn_t offset;
1285 unsigned long i, n;
1286 unsigned long *dirty_bitmap;
1287 unsigned long *dirty_bitmap_buffer;
1288
1289 as_id = log->slot >> 16;
1290 id = (u16)log->slot;
1291 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1292 return -EINVAL;
1293
1294 if (log->first_page & 63)
1295 return -EINVAL;
1296
1297 slots = __kvm_memslots(kvm, as_id);
1298 memslot = id_to_memslot(slots, id);
1299
1300 dirty_bitmap = memslot->dirty_bitmap;
1301 if (!dirty_bitmap)
1302 return -ENOENT;
1303
1304 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1305
1306 if (log->first_page > memslot->npages ||
1307 log->num_pages > memslot->npages - log->first_page ||
1308 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1309 return -EINVAL;
1310
1311 *flush = false;
1312 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1313 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1314 return -EFAULT;
1315
1316 spin_lock(&kvm->mmu_lock);
1317 for (offset = log->first_page, i = offset / BITS_PER_LONG,
1318 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1319 i++, offset += BITS_PER_LONG) {
1320 unsigned long mask = *dirty_bitmap_buffer++;
1321 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1322 if (!mask)
1323 continue;
1324
1325 mask &= atomic_long_fetch_andnot(mask, p);
1326
1327 /*
1328 * mask contains the bits that really have been cleared. This
1329 * never includes any bits beyond the length of the memslot (if
1330 * the length is not aligned to 64 pages), therefore it is not
1331 * a problem if userspace sets them in log->dirty_bitmap.
1332 */
1333 if (mask) {
1334 *flush = true;
1335 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1336 offset, mask);
1337 }
1338 }
1339 spin_unlock(&kvm->mmu_lock);
1340
1341 return 0;
1342 }
1343 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1344 #endif
1345
1346 bool kvm_largepages_enabled(void)
1347 {
1348 return largepages_enabled;
1349 }
1350
1351 void kvm_disable_largepages(void)
1352 {
1353 largepages_enabled = false;
1354 }
1355 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1356
1357 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1358 {
1359 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1360 }
1361 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1362
1363 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1364 {
1365 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1366 }
1367
1368 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1369 {
1370 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1371
1372 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1373 memslot->flags & KVM_MEMSLOT_INVALID)
1374 return false;
1375
1376 return true;
1377 }
1378 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1379
1380 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1381 {
1382 struct vm_area_struct *vma;
1383 unsigned long addr, size;
1384
1385 size = PAGE_SIZE;
1386
1387 addr = gfn_to_hva(kvm, gfn);
1388 if (kvm_is_error_hva(addr))
1389 return PAGE_SIZE;
1390
1391 down_read(&current->mm->mmap_sem);
1392 vma = find_vma(current->mm, addr);
1393 if (!vma)
1394 goto out;
1395
1396 size = vma_kernel_pagesize(vma);
1397
1398 out:
1399 up_read(&current->mm->mmap_sem);
1400
1401 return size;
1402 }
1403
1404 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1405 {
1406 return slot->flags & KVM_MEM_READONLY;
1407 }
1408
1409 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1410 gfn_t *nr_pages, bool write)
1411 {
1412 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1413 return KVM_HVA_ERR_BAD;
1414
1415 if (memslot_is_readonly(slot) && write)
1416 return KVM_HVA_ERR_RO_BAD;
1417
1418 if (nr_pages)
1419 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1420
1421 return __gfn_to_hva_memslot(slot, gfn);
1422 }
1423
1424 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1425 gfn_t *nr_pages)
1426 {
1427 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1428 }
1429
1430 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1431 gfn_t gfn)
1432 {
1433 return gfn_to_hva_many(slot, gfn, NULL);
1434 }
1435 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1436
1437 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1438 {
1439 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1440 }
1441 EXPORT_SYMBOL_GPL(gfn_to_hva);
1442
1443 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1444 {
1445 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1446 }
1447 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1448
1449 /*
1450 * Return the hva of a @gfn and the R/W attribute if possible.
1451 *
1452 * @slot: the kvm_memory_slot which contains @gfn
1453 * @gfn: the gfn to be translated
1454 * @writable: used to return the read/write attribute of the @slot if the hva
1455 * is valid and @writable is not NULL
1456 */
1457 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1458 gfn_t gfn, bool *writable)
1459 {
1460 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1461
1462 if (!kvm_is_error_hva(hva) && writable)
1463 *writable = !memslot_is_readonly(slot);
1464
1465 return hva;
1466 }
1467
1468 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1469 {
1470 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1471
1472 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1473 }
1474
1475 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1476 {
1477 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1478
1479 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1480 }
1481
1482 static inline int check_user_page_hwpoison(unsigned long addr)
1483 {
1484 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1485
1486 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1487 return rc == -EHWPOISON;
1488 }
1489
1490 /*
1491 * The fast path to get the writable pfn which will be stored in @pfn,
1492 * true indicates success, otherwise false is returned. It's also the
1493 * only part that runs if we can are in atomic context.
1494 */
1495 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1496 bool *writable, kvm_pfn_t *pfn)
1497 {
1498 struct page *page[1];
1499 int npages;
1500
1501 /*
1502 * Fast pin a writable pfn only if it is a write fault request
1503 * or the caller allows to map a writable pfn for a read fault
1504 * request.
1505 */
1506 if (!(write_fault || writable))
1507 return false;
1508
1509 npages = __get_user_pages_fast(addr, 1, 1, page);
1510 if (npages == 1) {
1511 *pfn = page_to_pfn(page[0]);
1512
1513 if (writable)
1514 *writable = true;
1515 return true;
1516 }
1517
1518 return false;
1519 }
1520
1521 /*
1522 * The slow path to get the pfn of the specified host virtual address,
1523 * 1 indicates success, -errno is returned if error is detected.
1524 */
1525 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1526 bool *writable, kvm_pfn_t *pfn)
1527 {
1528 unsigned int flags = FOLL_HWPOISON;
1529 struct page *page;
1530 int npages = 0;
1531
1532 might_sleep();
1533
1534 if (writable)
1535 *writable = write_fault;
1536
1537 if (write_fault)
1538 flags |= FOLL_WRITE;
1539 if (async)
1540 flags |= FOLL_NOWAIT;
1541
1542 npages = get_user_pages_unlocked(addr, 1, &page, flags);
1543 if (npages != 1)
1544 return npages;
1545
1546 /* map read fault as writable if possible */
1547 if (unlikely(!write_fault) && writable) {
1548 struct page *wpage;
1549
1550 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1551 *writable = true;
1552 put_page(page);
1553 page = wpage;
1554 }
1555 }
1556 *pfn = page_to_pfn(page);
1557 return npages;
1558 }
1559
1560 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1561 {
1562 if (unlikely(!(vma->vm_flags & VM_READ)))
1563 return false;
1564
1565 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1566 return false;
1567
1568 return true;
1569 }
1570
1571 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1572 unsigned long addr, bool *async,
1573 bool write_fault, bool *writable,
1574 kvm_pfn_t *p_pfn)
1575 {
1576 unsigned long pfn;
1577 int r;
1578
1579 r = follow_pfn(vma, addr, &pfn);
1580 if (r) {
1581 /*
1582 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1583 * not call the fault handler, so do it here.
1584 */
1585 bool unlocked = false;
1586 r = fixup_user_fault(current, current->mm, addr,
1587 (write_fault ? FAULT_FLAG_WRITE : 0),
1588 &unlocked);
1589 if (unlocked)
1590 return -EAGAIN;
1591 if (r)
1592 return r;
1593
1594 r = follow_pfn(vma, addr, &pfn);
1595 if (r)
1596 return r;
1597
1598 }
1599
1600 if (writable)
1601 *writable = true;
1602
1603 /*
1604 * Get a reference here because callers of *hva_to_pfn* and
1605 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1606 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1607 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1608 * simply do nothing for reserved pfns.
1609 *
1610 * Whoever called remap_pfn_range is also going to call e.g.
1611 * unmap_mapping_range before the underlying pages are freed,
1612 * causing a call to our MMU notifier.
1613 */
1614 kvm_get_pfn(pfn);
1615
1616 *p_pfn = pfn;
1617 return 0;
1618 }
1619
1620 /*
1621 * Pin guest page in memory and return its pfn.
1622 * @addr: host virtual address which maps memory to the guest
1623 * @atomic: whether this function can sleep
1624 * @async: whether this function need to wait IO complete if the
1625 * host page is not in the memory
1626 * @write_fault: whether we should get a writable host page
1627 * @writable: whether it allows to map a writable host page for !@write_fault
1628 *
1629 * The function will map a writable host page for these two cases:
1630 * 1): @write_fault = true
1631 * 2): @write_fault = false && @writable, @writable will tell the caller
1632 * whether the mapping is writable.
1633 */
1634 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1635 bool write_fault, bool *writable)
1636 {
1637 struct vm_area_struct *vma;
1638 kvm_pfn_t pfn = 0;
1639 int npages, r;
1640
1641 /* we can do it either atomically or asynchronously, not both */
1642 BUG_ON(atomic && async);
1643
1644 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1645 return pfn;
1646
1647 if (atomic)
1648 return KVM_PFN_ERR_FAULT;
1649
1650 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1651 if (npages == 1)
1652 return pfn;
1653
1654 down_read(&current->mm->mmap_sem);
1655 if (npages == -EHWPOISON ||
1656 (!async && check_user_page_hwpoison(addr))) {
1657 pfn = KVM_PFN_ERR_HWPOISON;
1658 goto exit;
1659 }
1660
1661 retry:
1662 vma = find_vma_intersection(current->mm, addr, addr + 1);
1663
1664 if (vma == NULL)
1665 pfn = KVM_PFN_ERR_FAULT;
1666 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1667 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1668 if (r == -EAGAIN)
1669 goto retry;
1670 if (r < 0)
1671 pfn = KVM_PFN_ERR_FAULT;
1672 } else {
1673 if (async && vma_is_valid(vma, write_fault))
1674 *async = true;
1675 pfn = KVM_PFN_ERR_FAULT;
1676 }
1677 exit:
1678 up_read(&current->mm->mmap_sem);
1679 return pfn;
1680 }
1681
1682 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1683 bool atomic, bool *async, bool write_fault,
1684 bool *writable)
1685 {
1686 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1687
1688 if (addr == KVM_HVA_ERR_RO_BAD) {
1689 if (writable)
1690 *writable = false;
1691 return KVM_PFN_ERR_RO_FAULT;
1692 }
1693
1694 if (kvm_is_error_hva(addr)) {
1695 if (writable)
1696 *writable = false;
1697 return KVM_PFN_NOSLOT;
1698 }
1699
1700 /* Do not map writable pfn in the readonly memslot. */
1701 if (writable && memslot_is_readonly(slot)) {
1702 *writable = false;
1703 writable = NULL;
1704 }
1705
1706 return hva_to_pfn(addr, atomic, async, write_fault,
1707 writable);
1708 }
1709 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1710
1711 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1712 bool *writable)
1713 {
1714 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1715 write_fault, writable);
1716 }
1717 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1718
1719 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1720 {
1721 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1722 }
1723 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1724
1725 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1726 {
1727 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1728 }
1729 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1730
1731 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1732 {
1733 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1734 }
1735 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1736
1737 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1738 {
1739 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1740 }
1741 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1742
1743 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1744 {
1745 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1746 }
1747 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1748
1749 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1750 {
1751 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1752 }
1753 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1754
1755 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1756 struct page **pages, int nr_pages)
1757 {
1758 unsigned long addr;
1759 gfn_t entry = 0;
1760
1761 addr = gfn_to_hva_many(slot, gfn, &entry);
1762 if (kvm_is_error_hva(addr))
1763 return -1;
1764
1765 if (entry < nr_pages)
1766 return 0;
1767
1768 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1769 }
1770 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1771
1772 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1773 {
1774 if (is_error_noslot_pfn(pfn))
1775 return KVM_ERR_PTR_BAD_PAGE;
1776
1777 if (kvm_is_reserved_pfn(pfn)) {
1778 WARN_ON(1);
1779 return KVM_ERR_PTR_BAD_PAGE;
1780 }
1781
1782 return pfn_to_page(pfn);
1783 }
1784
1785 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1786 {
1787 kvm_pfn_t pfn;
1788
1789 pfn = gfn_to_pfn(kvm, gfn);
1790
1791 return kvm_pfn_to_page(pfn);
1792 }
1793 EXPORT_SYMBOL_GPL(gfn_to_page);
1794
1795 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
1796 struct kvm_host_map *map)
1797 {
1798 kvm_pfn_t pfn;
1799 void *hva = NULL;
1800 struct page *page = KVM_UNMAPPED_PAGE;
1801 struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
1802
1803 if (!map)
1804 return -EINVAL;
1805
1806 pfn = gfn_to_pfn_memslot(slot, gfn);
1807 if (is_error_noslot_pfn(pfn))
1808 return -EINVAL;
1809
1810 if (pfn_valid(pfn)) {
1811 page = pfn_to_page(pfn);
1812 hva = kmap(page);
1813 #ifdef CONFIG_HAS_IOMEM
1814 } else {
1815 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
1816 #endif
1817 }
1818
1819 if (!hva)
1820 return -EFAULT;
1821
1822 map->page = page;
1823 map->hva = hva;
1824 map->pfn = pfn;
1825 map->gfn = gfn;
1826
1827 return 0;
1828 }
1829
1830 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1831 {
1832 return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map);
1833 }
1834 EXPORT_SYMBOL_GPL(kvm_map_gfn);
1835
1836 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1837 {
1838 return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map);
1839 }
1840 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1841
1842 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
1843 struct kvm_host_map *map, bool dirty)
1844 {
1845 if (!map)
1846 return;
1847
1848 if (!map->hva)
1849 return;
1850
1851 if (map->page != KVM_UNMAPPED_PAGE)
1852 kunmap(map->page);
1853 #ifdef CONFIG_HAS_IOMEM
1854 else
1855 memunmap(map->hva);
1856 #endif
1857
1858 if (dirty) {
1859 mark_page_dirty_in_slot(memslot, map->gfn);
1860 kvm_release_pfn_dirty(map->pfn);
1861 } else {
1862 kvm_release_pfn_clean(map->pfn);
1863 }
1864
1865 map->hva = NULL;
1866 map->page = NULL;
1867 }
1868
1869 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
1870 {
1871 __kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map, dirty);
1872 return 0;
1873 }
1874 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
1875
1876 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
1877 {
1878 __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, dirty);
1879 }
1880 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1881
1882 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1883 {
1884 kvm_pfn_t pfn;
1885
1886 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1887
1888 return kvm_pfn_to_page(pfn);
1889 }
1890 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1891
1892 void kvm_release_page_clean(struct page *page)
1893 {
1894 WARN_ON(is_error_page(page));
1895
1896 kvm_release_pfn_clean(page_to_pfn(page));
1897 }
1898 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1899
1900 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1901 {
1902 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1903 put_page(pfn_to_page(pfn));
1904 }
1905 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1906
1907 void kvm_release_page_dirty(struct page *page)
1908 {
1909 WARN_ON(is_error_page(page));
1910
1911 kvm_release_pfn_dirty(page_to_pfn(page));
1912 }
1913 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1914
1915 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1916 {
1917 kvm_set_pfn_dirty(pfn);
1918 kvm_release_pfn_clean(pfn);
1919 }
1920 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1921
1922 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1923 {
1924 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) {
1925 struct page *page = pfn_to_page(pfn);
1926
1927 SetPageDirty(page);
1928 }
1929 }
1930 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1931
1932 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1933 {
1934 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
1935 mark_page_accessed(pfn_to_page(pfn));
1936 }
1937 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1938
1939 void kvm_get_pfn(kvm_pfn_t pfn)
1940 {
1941 if (!kvm_is_reserved_pfn(pfn))
1942 get_page(pfn_to_page(pfn));
1943 }
1944 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1945
1946 static int next_segment(unsigned long len, int offset)
1947 {
1948 if (len > PAGE_SIZE - offset)
1949 return PAGE_SIZE - offset;
1950 else
1951 return len;
1952 }
1953
1954 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1955 void *data, int offset, int len)
1956 {
1957 int r;
1958 unsigned long addr;
1959
1960 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1961 if (kvm_is_error_hva(addr))
1962 return -EFAULT;
1963 r = __copy_from_user(data, (void __user *)addr + offset, len);
1964 if (r)
1965 return -EFAULT;
1966 return 0;
1967 }
1968
1969 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1970 int len)
1971 {
1972 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1973
1974 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1975 }
1976 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1977
1978 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1979 int offset, int len)
1980 {
1981 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1982
1983 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1984 }
1985 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1986
1987 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1988 {
1989 gfn_t gfn = gpa >> PAGE_SHIFT;
1990 int seg;
1991 int offset = offset_in_page(gpa);
1992 int ret;
1993
1994 while ((seg = next_segment(len, offset)) != 0) {
1995 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1996 if (ret < 0)
1997 return ret;
1998 offset = 0;
1999 len -= seg;
2000 data += seg;
2001 ++gfn;
2002 }
2003 return 0;
2004 }
2005 EXPORT_SYMBOL_GPL(kvm_read_guest);
2006
2007 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2008 {
2009 gfn_t gfn = gpa >> PAGE_SHIFT;
2010 int seg;
2011 int offset = offset_in_page(gpa);
2012 int ret;
2013
2014 while ((seg = next_segment(len, offset)) != 0) {
2015 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2016 if (ret < 0)
2017 return ret;
2018 offset = 0;
2019 len -= seg;
2020 data += seg;
2021 ++gfn;
2022 }
2023 return 0;
2024 }
2025 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2026
2027 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2028 void *data, int offset, unsigned long len)
2029 {
2030 int r;
2031 unsigned long addr;
2032
2033 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2034 if (kvm_is_error_hva(addr))
2035 return -EFAULT;
2036 pagefault_disable();
2037 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2038 pagefault_enable();
2039 if (r)
2040 return -EFAULT;
2041 return 0;
2042 }
2043
2044 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
2045 unsigned long len)
2046 {
2047 gfn_t gfn = gpa >> PAGE_SHIFT;
2048 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2049 int offset = offset_in_page(gpa);
2050
2051 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2052 }
2053 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
2054
2055 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2056 void *data, unsigned long len)
2057 {
2058 gfn_t gfn = gpa >> PAGE_SHIFT;
2059 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2060 int offset = offset_in_page(gpa);
2061
2062 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2063 }
2064 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2065
2066 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2067 const void *data, int offset, int len)
2068 {
2069 int r;
2070 unsigned long addr;
2071
2072 addr = gfn_to_hva_memslot(memslot, gfn);
2073 if (kvm_is_error_hva(addr))
2074 return -EFAULT;
2075 r = __copy_to_user((void __user *)addr + offset, data, len);
2076 if (r)
2077 return -EFAULT;
2078 mark_page_dirty_in_slot(memslot, gfn);
2079 return 0;
2080 }
2081
2082 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2083 const void *data, int offset, int len)
2084 {
2085 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2086
2087 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2088 }
2089 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2090
2091 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2092 const void *data, int offset, int len)
2093 {
2094 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2095
2096 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2097 }
2098 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2099
2100 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2101 unsigned long len)
2102 {
2103 gfn_t gfn = gpa >> PAGE_SHIFT;
2104 int seg;
2105 int offset = offset_in_page(gpa);
2106 int ret;
2107
2108 while ((seg = next_segment(len, offset)) != 0) {
2109 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2110 if (ret < 0)
2111 return ret;
2112 offset = 0;
2113 len -= seg;
2114 data += seg;
2115 ++gfn;
2116 }
2117 return 0;
2118 }
2119 EXPORT_SYMBOL_GPL(kvm_write_guest);
2120
2121 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2122 unsigned long len)
2123 {
2124 gfn_t gfn = gpa >> PAGE_SHIFT;
2125 int seg;
2126 int offset = offset_in_page(gpa);
2127 int ret;
2128
2129 while ((seg = next_segment(len, offset)) != 0) {
2130 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2131 if (ret < 0)
2132 return ret;
2133 offset = 0;
2134 len -= seg;
2135 data += seg;
2136 ++gfn;
2137 }
2138 return 0;
2139 }
2140 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2141
2142 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2143 struct gfn_to_hva_cache *ghc,
2144 gpa_t gpa, unsigned long len)
2145 {
2146 int offset = offset_in_page(gpa);
2147 gfn_t start_gfn = gpa >> PAGE_SHIFT;
2148 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2149 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2150 gfn_t nr_pages_avail;
2151 int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2152
2153 ghc->gpa = gpa;
2154 ghc->generation = slots->generation;
2155 ghc->len = len;
2156 ghc->hva = KVM_HVA_ERR_BAD;
2157
2158 /*
2159 * If the requested region crosses two memslots, we still
2160 * verify that the entire region is valid here.
2161 */
2162 while (!r && start_gfn <= end_gfn) {
2163 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2164 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2165 &nr_pages_avail);
2166 if (kvm_is_error_hva(ghc->hva))
2167 r = -EFAULT;
2168 start_gfn += nr_pages_avail;
2169 }
2170
2171 /* Use the slow path for cross page reads and writes. */
2172 if (!r && nr_pages_needed == 1)
2173 ghc->hva += offset;
2174 else
2175 ghc->memslot = NULL;
2176
2177 return r;
2178 }
2179
2180 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2181 gpa_t gpa, unsigned long len)
2182 {
2183 struct kvm_memslots *slots = kvm_memslots(kvm);
2184 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2185 }
2186 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2187
2188 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2189 void *data, unsigned int offset,
2190 unsigned long len)
2191 {
2192 struct kvm_memslots *slots = kvm_memslots(kvm);
2193 int r;
2194 gpa_t gpa = ghc->gpa + offset;
2195
2196 BUG_ON(len + offset > ghc->len);
2197
2198 if (slots->generation != ghc->generation)
2199 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2200
2201 if (unlikely(!ghc->memslot))
2202 return kvm_write_guest(kvm, gpa, data, len);
2203
2204 if (kvm_is_error_hva(ghc->hva))
2205 return -EFAULT;
2206
2207 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2208 if (r)
2209 return -EFAULT;
2210 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2211
2212 return 0;
2213 }
2214 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2215
2216 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2217 void *data, unsigned long len)
2218 {
2219 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2220 }
2221 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2222
2223 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2224 void *data, unsigned long len)
2225 {
2226 struct kvm_memslots *slots = kvm_memslots(kvm);
2227 int r;
2228
2229 BUG_ON(len > ghc->len);
2230
2231 if (slots->generation != ghc->generation)
2232 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2233
2234 if (unlikely(!ghc->memslot))
2235 return kvm_read_guest(kvm, ghc->gpa, data, len);
2236
2237 if (kvm_is_error_hva(ghc->hva))
2238 return -EFAULT;
2239
2240 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2241 if (r)
2242 return -EFAULT;
2243
2244 return 0;
2245 }
2246 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2247
2248 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2249 {
2250 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2251
2252 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2253 }
2254 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2255
2256 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2257 {
2258 gfn_t gfn = gpa >> PAGE_SHIFT;
2259 int seg;
2260 int offset = offset_in_page(gpa);
2261 int ret;
2262
2263 while ((seg = next_segment(len, offset)) != 0) {
2264 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2265 if (ret < 0)
2266 return ret;
2267 offset = 0;
2268 len -= seg;
2269 ++gfn;
2270 }
2271 return 0;
2272 }
2273 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2274
2275 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2276 gfn_t gfn)
2277 {
2278 if (memslot && memslot->dirty_bitmap) {
2279 unsigned long rel_gfn = gfn - memslot->base_gfn;
2280
2281 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2282 }
2283 }
2284
2285 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2286 {
2287 struct kvm_memory_slot *memslot;
2288
2289 memslot = gfn_to_memslot(kvm, gfn);
2290 mark_page_dirty_in_slot(memslot, gfn);
2291 }
2292 EXPORT_SYMBOL_GPL(mark_page_dirty);
2293
2294 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2295 {
2296 struct kvm_memory_slot *memslot;
2297
2298 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2299 mark_page_dirty_in_slot(memslot, gfn);
2300 }
2301 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2302
2303 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2304 {
2305 if (!vcpu->sigset_active)
2306 return;
2307
2308 /*
2309 * This does a lockless modification of ->real_blocked, which is fine
2310 * because, only current can change ->real_blocked and all readers of
2311 * ->real_blocked don't care as long ->real_blocked is always a subset
2312 * of ->blocked.
2313 */
2314 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2315 }
2316
2317 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2318 {
2319 if (!vcpu->sigset_active)
2320 return;
2321
2322 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2323 sigemptyset(&current->real_blocked);
2324 }
2325
2326 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2327 {
2328 unsigned int old, val, grow, grow_start;
2329
2330 old = val = vcpu->halt_poll_ns;
2331 grow_start = READ_ONCE(halt_poll_ns_grow_start);
2332 grow = READ_ONCE(halt_poll_ns_grow);
2333 if (!grow)
2334 goto out;
2335
2336 val *= grow;
2337 if (val < grow_start)
2338 val = grow_start;
2339
2340 if (val > halt_poll_ns)
2341 val = halt_poll_ns;
2342
2343 vcpu->halt_poll_ns = val;
2344 out:
2345 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2346 }
2347
2348 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2349 {
2350 unsigned int old, val, shrink;
2351
2352 old = val = vcpu->halt_poll_ns;
2353 shrink = READ_ONCE(halt_poll_ns_shrink);
2354 if (shrink == 0)
2355 val = 0;
2356 else
2357 val /= shrink;
2358
2359 vcpu->halt_poll_ns = val;
2360 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2361 }
2362
2363 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2364 {
2365 int ret = -EINTR;
2366 int idx = srcu_read_lock(&vcpu->kvm->srcu);
2367
2368 if (kvm_arch_vcpu_runnable(vcpu)) {
2369 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2370 goto out;
2371 }
2372 if (kvm_cpu_has_pending_timer(vcpu))
2373 goto out;
2374 if (signal_pending(current))
2375 goto out;
2376
2377 ret = 0;
2378 out:
2379 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2380 return ret;
2381 }
2382
2383 /*
2384 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2385 */
2386 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2387 {
2388 ktime_t start, cur;
2389 DECLARE_SWAITQUEUE(wait);
2390 bool waited = false;
2391 u64 block_ns;
2392
2393 start = cur = ktime_get();
2394 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2395 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2396
2397 ++vcpu->stat.halt_attempted_poll;
2398 do {
2399 /*
2400 * This sets KVM_REQ_UNHALT if an interrupt
2401 * arrives.
2402 */
2403 if (kvm_vcpu_check_block(vcpu) < 0) {
2404 ++vcpu->stat.halt_successful_poll;
2405 if (!vcpu_valid_wakeup(vcpu))
2406 ++vcpu->stat.halt_poll_invalid;
2407 goto out;
2408 }
2409 cur = ktime_get();
2410 } while (single_task_running() && ktime_before(cur, stop));
2411 }
2412
2413 kvm_arch_vcpu_blocking(vcpu);
2414
2415 for (;;) {
2416 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2417
2418 if (kvm_vcpu_check_block(vcpu) < 0)
2419 break;
2420
2421 waited = true;
2422 schedule();
2423 }
2424
2425 finish_swait(&vcpu->wq, &wait);
2426 cur = ktime_get();
2427
2428 kvm_arch_vcpu_unblocking(vcpu);
2429 out:
2430 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2431
2432 if (!vcpu_valid_wakeup(vcpu))
2433 shrink_halt_poll_ns(vcpu);
2434 else if (halt_poll_ns) {
2435 if (block_ns <= vcpu->halt_poll_ns)
2436 ;
2437 /* we had a long block, shrink polling */
2438 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2439 shrink_halt_poll_ns(vcpu);
2440 /* we had a short halt and our poll time is too small */
2441 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2442 block_ns < halt_poll_ns)
2443 grow_halt_poll_ns(vcpu);
2444 } else
2445 vcpu->halt_poll_ns = 0;
2446
2447 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2448 kvm_arch_vcpu_block_finish(vcpu);
2449 }
2450 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2451
2452 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2453 {
2454 struct swait_queue_head *wqp;
2455
2456 wqp = kvm_arch_vcpu_wq(vcpu);
2457 if (swq_has_sleeper(wqp)) {
2458 swake_up_one(wqp);
2459 WRITE_ONCE(vcpu->ready, true);
2460 ++vcpu->stat.halt_wakeup;
2461 return true;
2462 }
2463
2464 return false;
2465 }
2466 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2467
2468 #ifndef CONFIG_S390
2469 /*
2470 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2471 */
2472 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2473 {
2474 int me;
2475 int cpu = vcpu->cpu;
2476
2477 if (kvm_vcpu_wake_up(vcpu))
2478 return;
2479
2480 me = get_cpu();
2481 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2482 if (kvm_arch_vcpu_should_kick(vcpu))
2483 smp_send_reschedule(cpu);
2484 put_cpu();
2485 }
2486 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2487 #endif /* !CONFIG_S390 */
2488
2489 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2490 {
2491 struct pid *pid;
2492 struct task_struct *task = NULL;
2493 int ret = 0;
2494
2495 rcu_read_lock();
2496 pid = rcu_dereference(target->pid);
2497 if (pid)
2498 task = get_pid_task(pid, PIDTYPE_PID);
2499 rcu_read_unlock();
2500 if (!task)
2501 return ret;
2502 ret = yield_to(task, 1);
2503 put_task_struct(task);
2504
2505 return ret;
2506 }
2507 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2508
2509 /*
2510 * Helper that checks whether a VCPU is eligible for directed yield.
2511 * Most eligible candidate to yield is decided by following heuristics:
2512 *
2513 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2514 * (preempted lock holder), indicated by @in_spin_loop.
2515 * Set at the beiginning and cleared at the end of interception/PLE handler.
2516 *
2517 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2518 * chance last time (mostly it has become eligible now since we have probably
2519 * yielded to lockholder in last iteration. This is done by toggling
2520 * @dy_eligible each time a VCPU checked for eligibility.)
2521 *
2522 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2523 * to preempted lock-holder could result in wrong VCPU selection and CPU
2524 * burning. Giving priority for a potential lock-holder increases lock
2525 * progress.
2526 *
2527 * Since algorithm is based on heuristics, accessing another VCPU data without
2528 * locking does not harm. It may result in trying to yield to same VCPU, fail
2529 * and continue with next VCPU and so on.
2530 */
2531 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2532 {
2533 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2534 bool eligible;
2535
2536 eligible = !vcpu->spin_loop.in_spin_loop ||
2537 vcpu->spin_loop.dy_eligible;
2538
2539 if (vcpu->spin_loop.in_spin_loop)
2540 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2541
2542 return eligible;
2543 #else
2544 return true;
2545 #endif
2546 }
2547
2548 /*
2549 * Unlike kvm_arch_vcpu_runnable, this function is called outside
2550 * a vcpu_load/vcpu_put pair. However, for most architectures
2551 * kvm_arch_vcpu_runnable does not require vcpu_load.
2552 */
2553 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2554 {
2555 return kvm_arch_vcpu_runnable(vcpu);
2556 }
2557
2558 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2559 {
2560 if (kvm_arch_dy_runnable(vcpu))
2561 return true;
2562
2563 #ifdef CONFIG_KVM_ASYNC_PF
2564 if (!list_empty_careful(&vcpu->async_pf.done))
2565 return true;
2566 #endif
2567
2568 return false;
2569 }
2570
2571 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2572 {
2573 struct kvm *kvm = me->kvm;
2574 struct kvm_vcpu *vcpu;
2575 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2576 int yielded = 0;
2577 int try = 3;
2578 int pass;
2579 int i;
2580
2581 kvm_vcpu_set_in_spin_loop(me, true);
2582 /*
2583 * We boost the priority of a VCPU that is runnable but not
2584 * currently running, because it got preempted by something
2585 * else and called schedule in __vcpu_run. Hopefully that
2586 * VCPU is holding the lock that we need and will release it.
2587 * We approximate round-robin by starting at the last boosted VCPU.
2588 */
2589 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2590 kvm_for_each_vcpu(i, vcpu, kvm) {
2591 if (!pass && i <= last_boosted_vcpu) {
2592 i = last_boosted_vcpu;
2593 continue;
2594 } else if (pass && i > last_boosted_vcpu)
2595 break;
2596 if (!READ_ONCE(vcpu->ready))
2597 continue;
2598 if (vcpu == me)
2599 continue;
2600 if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2601 continue;
2602 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2603 !kvm_arch_vcpu_in_kernel(vcpu))
2604 continue;
2605 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2606 continue;
2607
2608 yielded = kvm_vcpu_yield_to(vcpu);
2609 if (yielded > 0) {
2610 kvm->last_boosted_vcpu = i;
2611 break;
2612 } else if (yielded < 0) {
2613 try--;
2614 if (!try)
2615 break;
2616 }
2617 }
2618 }
2619 kvm_vcpu_set_in_spin_loop(me, false);
2620
2621 /* Ensure vcpu is not eligible during next spinloop */
2622 kvm_vcpu_set_dy_eligible(me, false);
2623 }
2624 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2625
2626 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2627 {
2628 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2629 struct page *page;
2630
2631 if (vmf->pgoff == 0)
2632 page = virt_to_page(vcpu->run);
2633 #ifdef CONFIG_X86
2634 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2635 page = virt_to_page(vcpu->arch.pio_data);
2636 #endif
2637 #ifdef CONFIG_KVM_MMIO
2638 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2639 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2640 #endif
2641 else
2642 return kvm_arch_vcpu_fault(vcpu, vmf);
2643 get_page(page);
2644 vmf->page = page;
2645 return 0;
2646 }
2647
2648 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2649 .fault = kvm_vcpu_fault,
2650 };
2651
2652 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2653 {
2654 vma->vm_ops = &kvm_vcpu_vm_ops;
2655 return 0;
2656 }
2657
2658 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2659 {
2660 struct kvm_vcpu *vcpu = filp->private_data;
2661
2662 debugfs_remove_recursive(vcpu->debugfs_dentry);
2663 kvm_put_kvm(vcpu->kvm);
2664 return 0;
2665 }
2666
2667 static struct file_operations kvm_vcpu_fops = {
2668 .release = kvm_vcpu_release,
2669 .unlocked_ioctl = kvm_vcpu_ioctl,
2670 .mmap = kvm_vcpu_mmap,
2671 .llseek = noop_llseek,
2672 KVM_COMPAT(kvm_vcpu_compat_ioctl),
2673 };
2674
2675 /*
2676 * Allocates an inode for the vcpu.
2677 */
2678 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2679 {
2680 char name[8 + 1 + ITOA_MAX_LEN + 1];
2681
2682 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2683 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2684 }
2685
2686 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2687 {
2688 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
2689 char dir_name[ITOA_MAX_LEN * 2];
2690
2691 if (!debugfs_initialized())
2692 return;
2693
2694 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2695 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2696 vcpu->kvm->debugfs_dentry);
2697
2698 kvm_arch_create_vcpu_debugfs(vcpu);
2699 #endif
2700 }
2701
2702 /*
2703 * Creates some virtual cpus. Good luck creating more than one.
2704 */
2705 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2706 {
2707 int r;
2708 struct kvm_vcpu *vcpu;
2709
2710 if (id >= KVM_MAX_VCPU_ID)
2711 return -EINVAL;
2712
2713 mutex_lock(&kvm->lock);
2714 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2715 mutex_unlock(&kvm->lock);
2716 return -EINVAL;
2717 }
2718
2719 kvm->created_vcpus++;
2720 mutex_unlock(&kvm->lock);
2721
2722 vcpu = kvm_arch_vcpu_create(kvm, id);
2723 if (IS_ERR(vcpu)) {
2724 r = PTR_ERR(vcpu);
2725 goto vcpu_decrement;
2726 }
2727
2728 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2729
2730 r = kvm_arch_vcpu_setup(vcpu);
2731 if (r)
2732 goto vcpu_destroy;
2733
2734 kvm_create_vcpu_debugfs(vcpu);
2735
2736 mutex_lock(&kvm->lock);
2737 if (kvm_get_vcpu_by_id(kvm, id)) {
2738 r = -EEXIST;
2739 goto unlock_vcpu_destroy;
2740 }
2741
2742 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2743
2744 /* Now it's all set up, let userspace reach it */
2745 kvm_get_kvm(kvm);
2746 r = create_vcpu_fd(vcpu);
2747 if (r < 0) {
2748 kvm_put_kvm(kvm);
2749 goto unlock_vcpu_destroy;
2750 }
2751
2752 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2753
2754 /*
2755 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2756 * before kvm->online_vcpu's incremented value.
2757 */
2758 smp_wmb();
2759 atomic_inc(&kvm->online_vcpus);
2760
2761 mutex_unlock(&kvm->lock);
2762 kvm_arch_vcpu_postcreate(vcpu);
2763 return r;
2764
2765 unlock_vcpu_destroy:
2766 mutex_unlock(&kvm->lock);
2767 debugfs_remove_recursive(vcpu->debugfs_dentry);
2768 vcpu_destroy:
2769 kvm_arch_vcpu_destroy(vcpu);
2770 vcpu_decrement:
2771 mutex_lock(&kvm->lock);
2772 kvm->created_vcpus--;
2773 mutex_unlock(&kvm->lock);
2774 return r;
2775 }
2776
2777 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2778 {
2779 if (sigset) {
2780 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2781 vcpu->sigset_active = 1;
2782 vcpu->sigset = *sigset;
2783 } else
2784 vcpu->sigset_active = 0;
2785 return 0;
2786 }
2787
2788 static long kvm_vcpu_ioctl(struct file *filp,
2789 unsigned int ioctl, unsigned long arg)
2790 {
2791 struct kvm_vcpu *vcpu = filp->private_data;
2792 void __user *argp = (void __user *)arg;
2793 int r;
2794 struct kvm_fpu *fpu = NULL;
2795 struct kvm_sregs *kvm_sregs = NULL;
2796
2797 if (vcpu->kvm->mm != current->mm)
2798 return -EIO;
2799
2800 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2801 return -EINVAL;
2802
2803 /*
2804 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2805 * execution; mutex_lock() would break them.
2806 */
2807 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2808 if (r != -ENOIOCTLCMD)
2809 return r;
2810
2811 if (mutex_lock_killable(&vcpu->mutex))
2812 return -EINTR;
2813 switch (ioctl) {
2814 case KVM_RUN: {
2815 struct pid *oldpid;
2816 r = -EINVAL;
2817 if (arg)
2818 goto out;
2819 oldpid = rcu_access_pointer(vcpu->pid);
2820 if (unlikely(oldpid != task_pid(current))) {
2821 /* The thread running this VCPU changed. */
2822 struct pid *newpid;
2823
2824 r = kvm_arch_vcpu_run_pid_change(vcpu);
2825 if (r)
2826 break;
2827
2828 newpid = get_task_pid(current, PIDTYPE_PID);
2829 rcu_assign_pointer(vcpu->pid, newpid);
2830 if (oldpid)
2831 synchronize_rcu();
2832 put_pid(oldpid);
2833 }
2834 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2835 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2836 break;
2837 }
2838 case KVM_GET_REGS: {
2839 struct kvm_regs *kvm_regs;
2840
2841 r = -ENOMEM;
2842 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2843 if (!kvm_regs)
2844 goto out;
2845 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2846 if (r)
2847 goto out_free1;
2848 r = -EFAULT;
2849 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2850 goto out_free1;
2851 r = 0;
2852 out_free1:
2853 kfree(kvm_regs);
2854 break;
2855 }
2856 case KVM_SET_REGS: {
2857 struct kvm_regs *kvm_regs;
2858
2859 r = -ENOMEM;
2860 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2861 if (IS_ERR(kvm_regs)) {
2862 r = PTR_ERR(kvm_regs);
2863 goto out;
2864 }
2865 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2866 kfree(kvm_regs);
2867 break;
2868 }
2869 case KVM_GET_SREGS: {
2870 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2871 GFP_KERNEL_ACCOUNT);
2872 r = -ENOMEM;
2873 if (!kvm_sregs)
2874 goto out;
2875 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2876 if (r)
2877 goto out;
2878 r = -EFAULT;
2879 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2880 goto out;
2881 r = 0;
2882 break;
2883 }
2884 case KVM_SET_SREGS: {
2885 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2886 if (IS_ERR(kvm_sregs)) {
2887 r = PTR_ERR(kvm_sregs);
2888 kvm_sregs = NULL;
2889 goto out;
2890 }
2891 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2892 break;
2893 }
2894 case KVM_GET_MP_STATE: {
2895 struct kvm_mp_state mp_state;
2896
2897 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2898 if (r)
2899 goto out;
2900 r = -EFAULT;
2901 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2902 goto out;
2903 r = 0;
2904 break;
2905 }
2906 case KVM_SET_MP_STATE: {
2907 struct kvm_mp_state mp_state;
2908
2909 r = -EFAULT;
2910 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2911 goto out;
2912 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2913 break;
2914 }
2915 case KVM_TRANSLATE: {
2916 struct kvm_translation tr;
2917
2918 r = -EFAULT;
2919 if (copy_from_user(&tr, argp, sizeof(tr)))
2920 goto out;
2921 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2922 if (r)
2923 goto out;
2924 r = -EFAULT;
2925 if (copy_to_user(argp, &tr, sizeof(tr)))
2926 goto out;
2927 r = 0;
2928 break;
2929 }
2930 case KVM_SET_GUEST_DEBUG: {
2931 struct kvm_guest_debug dbg;
2932
2933 r = -EFAULT;
2934 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2935 goto out;
2936 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2937 break;
2938 }
2939 case KVM_SET_SIGNAL_MASK: {
2940 struct kvm_signal_mask __user *sigmask_arg = argp;
2941 struct kvm_signal_mask kvm_sigmask;
2942 sigset_t sigset, *p;
2943
2944 p = NULL;
2945 if (argp) {
2946 r = -EFAULT;
2947 if (copy_from_user(&kvm_sigmask, argp,
2948 sizeof(kvm_sigmask)))
2949 goto out;
2950 r = -EINVAL;
2951 if (kvm_sigmask.len != sizeof(sigset))
2952 goto out;
2953 r = -EFAULT;
2954 if (copy_from_user(&sigset, sigmask_arg->sigset,
2955 sizeof(sigset)))
2956 goto out;
2957 p = &sigset;
2958 }
2959 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2960 break;
2961 }
2962 case KVM_GET_FPU: {
2963 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
2964 r = -ENOMEM;
2965 if (!fpu)
2966 goto out;
2967 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2968 if (r)
2969 goto out;
2970 r = -EFAULT;
2971 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2972 goto out;
2973 r = 0;
2974 break;
2975 }
2976 case KVM_SET_FPU: {
2977 fpu = memdup_user(argp, sizeof(*fpu));
2978 if (IS_ERR(fpu)) {
2979 r = PTR_ERR(fpu);
2980 fpu = NULL;
2981 goto out;
2982 }
2983 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2984 break;
2985 }
2986 default:
2987 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2988 }
2989 out:
2990 mutex_unlock(&vcpu->mutex);
2991 kfree(fpu);
2992 kfree(kvm_sregs);
2993 return r;
2994 }
2995
2996 #ifdef CONFIG_KVM_COMPAT
2997 static long kvm_vcpu_compat_ioctl(struct file *filp,
2998 unsigned int ioctl, unsigned long arg)
2999 {
3000 struct kvm_vcpu *vcpu = filp->private_data;
3001 void __user *argp = compat_ptr(arg);
3002 int r;
3003
3004 if (vcpu->kvm->mm != current->mm)
3005 return -EIO;
3006
3007 switch (ioctl) {
3008 case KVM_SET_SIGNAL_MASK: {
3009 struct kvm_signal_mask __user *sigmask_arg = argp;
3010 struct kvm_signal_mask kvm_sigmask;
3011 sigset_t sigset;
3012
3013 if (argp) {
3014 r = -EFAULT;
3015 if (copy_from_user(&kvm_sigmask, argp,
3016 sizeof(kvm_sigmask)))
3017 goto out;
3018 r = -EINVAL;
3019 if (kvm_sigmask.len != sizeof(compat_sigset_t))
3020 goto out;
3021 r = -EFAULT;
3022 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
3023 goto out;
3024 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3025 } else
3026 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3027 break;
3028 }
3029 default:
3030 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3031 }
3032
3033 out:
3034 return r;
3035 }
3036 #endif
3037
3038 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3039 {
3040 struct kvm_device *dev = filp->private_data;
3041
3042 if (dev->ops->mmap)
3043 return dev->ops->mmap(dev, vma);
3044
3045 return -ENODEV;
3046 }
3047
3048 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3049 int (*accessor)(struct kvm_device *dev,
3050 struct kvm_device_attr *attr),
3051 unsigned long arg)
3052 {
3053 struct kvm_device_attr attr;
3054
3055 if (!accessor)
3056 return -EPERM;
3057
3058 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3059 return -EFAULT;
3060
3061 return accessor(dev, &attr);
3062 }
3063
3064 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3065 unsigned long arg)
3066 {
3067 struct kvm_device *dev = filp->private_data;
3068
3069 if (dev->kvm->mm != current->mm)
3070 return -EIO;
3071
3072 switch (ioctl) {
3073 case KVM_SET_DEVICE_ATTR:
3074 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3075 case KVM_GET_DEVICE_ATTR:
3076 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3077 case KVM_HAS_DEVICE_ATTR:
3078 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3079 default:
3080 if (dev->ops->ioctl)
3081 return dev->ops->ioctl(dev, ioctl, arg);
3082
3083 return -ENOTTY;
3084 }
3085 }
3086
3087 static int kvm_device_release(struct inode *inode, struct file *filp)
3088 {
3089 struct kvm_device *dev = filp->private_data;
3090 struct kvm *kvm = dev->kvm;
3091
3092 if (dev->ops->release) {
3093 mutex_lock(&kvm->lock);
3094 list_del(&dev->vm_node);
3095 dev->ops->release(dev);
3096 mutex_unlock(&kvm->lock);
3097 }
3098
3099 kvm_put_kvm(kvm);
3100 return 0;
3101 }
3102
3103 static const struct file_operations kvm_device_fops = {
3104 .unlocked_ioctl = kvm_device_ioctl,
3105 .release = kvm_device_release,
3106 KVM_COMPAT(kvm_device_ioctl),
3107 .mmap = kvm_device_mmap,
3108 };
3109
3110 struct kvm_device *kvm_device_from_filp(struct file *filp)
3111 {
3112 if (filp->f_op != &kvm_device_fops)
3113 return NULL;
3114
3115 return filp->private_data;
3116 }
3117
3118 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3119 #ifdef CONFIG_KVM_MPIC
3120 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
3121 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
3122 #endif
3123 };
3124
3125 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
3126 {
3127 if (type >= ARRAY_SIZE(kvm_device_ops_table))
3128 return -ENOSPC;
3129
3130 if (kvm_device_ops_table[type] != NULL)
3131 return -EEXIST;
3132
3133 kvm_device_ops_table[type] = ops;
3134 return 0;
3135 }
3136
3137 void kvm_unregister_device_ops(u32 type)
3138 {
3139 if (kvm_device_ops_table[type] != NULL)
3140 kvm_device_ops_table[type] = NULL;
3141 }
3142
3143 static int kvm_ioctl_create_device(struct kvm *kvm,
3144 struct kvm_create_device *cd)
3145 {
3146 struct kvm_device_ops *ops = NULL;
3147 struct kvm_device *dev;
3148 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3149 int type;
3150 int ret;
3151
3152 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3153 return -ENODEV;
3154
3155 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3156 ops = kvm_device_ops_table[type];
3157 if (ops == NULL)
3158 return -ENODEV;
3159
3160 if (test)
3161 return 0;
3162
3163 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3164 if (!dev)
3165 return -ENOMEM;
3166
3167 dev->ops = ops;
3168 dev->kvm = kvm;
3169
3170 mutex_lock(&kvm->lock);
3171 ret = ops->create(dev, type);
3172 if (ret < 0) {
3173 mutex_unlock(&kvm->lock);
3174 kfree(dev);
3175 return ret;
3176 }
3177 list_add(&dev->vm_node, &kvm->devices);
3178 mutex_unlock(&kvm->lock);
3179
3180 if (ops->init)
3181 ops->init(dev);
3182
3183 kvm_get_kvm(kvm);
3184 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3185 if (ret < 0) {
3186 kvm_put_kvm(kvm);
3187 mutex_lock(&kvm->lock);
3188 list_del(&dev->vm_node);
3189 mutex_unlock(&kvm->lock);
3190 ops->destroy(dev);
3191 return ret;
3192 }
3193
3194 cd->fd = ret;
3195 return 0;
3196 }
3197
3198 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3199 {
3200 switch (arg) {
3201 case KVM_CAP_USER_MEMORY:
3202 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3203 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3204 case KVM_CAP_INTERNAL_ERROR_DATA:
3205 #ifdef CONFIG_HAVE_KVM_MSI
3206 case KVM_CAP_SIGNAL_MSI:
3207 #endif
3208 #ifdef CONFIG_HAVE_KVM_IRQFD
3209 case KVM_CAP_IRQFD:
3210 case KVM_CAP_IRQFD_RESAMPLE:
3211 #endif
3212 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3213 case KVM_CAP_CHECK_EXTENSION_VM:
3214 case KVM_CAP_ENABLE_CAP_VM:
3215 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3216 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3217 #endif
3218 return 1;
3219 #ifdef CONFIG_KVM_MMIO
3220 case KVM_CAP_COALESCED_MMIO:
3221 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3222 case KVM_CAP_COALESCED_PIO:
3223 return 1;
3224 #endif
3225 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3226 case KVM_CAP_IRQ_ROUTING:
3227 return KVM_MAX_IRQ_ROUTES;
3228 #endif
3229 #if KVM_ADDRESS_SPACE_NUM > 1
3230 case KVM_CAP_MULTI_ADDRESS_SPACE:
3231 return KVM_ADDRESS_SPACE_NUM;
3232 #endif
3233 case KVM_CAP_NR_MEMSLOTS:
3234 return KVM_USER_MEM_SLOTS;
3235 default:
3236 break;
3237 }
3238 return kvm_vm_ioctl_check_extension(kvm, arg);
3239 }
3240
3241 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3242 struct kvm_enable_cap *cap)
3243 {
3244 return -EINVAL;
3245 }
3246
3247 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3248 struct kvm_enable_cap *cap)
3249 {
3250 switch (cap->cap) {
3251 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3252 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3253 if (cap->flags || (cap->args[0] & ~1))
3254 return -EINVAL;
3255 kvm->manual_dirty_log_protect = cap->args[0];
3256 return 0;
3257 #endif
3258 default:
3259 return kvm_vm_ioctl_enable_cap(kvm, cap);
3260 }
3261 }
3262
3263 static long kvm_vm_ioctl(struct file *filp,
3264 unsigned int ioctl, unsigned long arg)
3265 {
3266 struct kvm *kvm = filp->private_data;
3267 void __user *argp = (void __user *)arg;
3268 int r;
3269
3270 if (kvm->mm != current->mm)
3271 return -EIO;
3272 switch (ioctl) {
3273 case KVM_CREATE_VCPU:
3274 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3275 break;
3276 case KVM_ENABLE_CAP: {
3277 struct kvm_enable_cap cap;
3278
3279 r = -EFAULT;
3280 if (copy_from_user(&cap, argp, sizeof(cap)))
3281 goto out;
3282 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3283 break;
3284 }
3285 case KVM_SET_USER_MEMORY_REGION: {
3286 struct kvm_userspace_memory_region kvm_userspace_mem;
3287
3288 r = -EFAULT;
3289 if (copy_from_user(&kvm_userspace_mem, argp,
3290 sizeof(kvm_userspace_mem)))
3291 goto out;
3292
3293 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3294 break;
3295 }
3296 case KVM_GET_DIRTY_LOG: {
3297 struct kvm_dirty_log log;
3298
3299 r = -EFAULT;
3300 if (copy_from_user(&log, argp, sizeof(log)))
3301 goto out;
3302 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3303 break;
3304 }
3305 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3306 case KVM_CLEAR_DIRTY_LOG: {
3307 struct kvm_clear_dirty_log log;
3308
3309 r = -EFAULT;
3310 if (copy_from_user(&log, argp, sizeof(log)))
3311 goto out;
3312 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3313 break;
3314 }
3315 #endif
3316 #ifdef CONFIG_KVM_MMIO
3317 case KVM_REGISTER_COALESCED_MMIO: {
3318 struct kvm_coalesced_mmio_zone zone;
3319
3320 r = -EFAULT;
3321 if (copy_from_user(&zone, argp, sizeof(zone)))
3322 goto out;
3323 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3324 break;
3325 }
3326 case KVM_UNREGISTER_COALESCED_MMIO: {
3327 struct kvm_coalesced_mmio_zone zone;
3328
3329 r = -EFAULT;
3330 if (copy_from_user(&zone, argp, sizeof(zone)))
3331 goto out;
3332 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3333 break;
3334 }
3335 #endif
3336 case KVM_IRQFD: {
3337 struct kvm_irqfd data;
3338
3339 r = -EFAULT;
3340 if (copy_from_user(&data, argp, sizeof(data)))
3341 goto out;
3342 r = kvm_irqfd(kvm, &data);
3343 break;
3344 }
3345 case KVM_IOEVENTFD: {
3346 struct kvm_ioeventfd data;
3347
3348 r = -EFAULT;
3349 if (copy_from_user(&data, argp, sizeof(data)))
3350 goto out;
3351 r = kvm_ioeventfd(kvm, &data);
3352 break;
3353 }
3354 #ifdef CONFIG_HAVE_KVM_MSI
3355 case KVM_SIGNAL_MSI: {
3356 struct kvm_msi msi;
3357
3358 r = -EFAULT;
3359 if (copy_from_user(&msi, argp, sizeof(msi)))
3360 goto out;
3361 r = kvm_send_userspace_msi(kvm, &msi);
3362 break;
3363 }
3364 #endif
3365 #ifdef __KVM_HAVE_IRQ_LINE
3366 case KVM_IRQ_LINE_STATUS:
3367 case KVM_IRQ_LINE: {
3368 struct kvm_irq_level irq_event;
3369
3370 r = -EFAULT;
3371 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3372 goto out;
3373
3374 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3375 ioctl == KVM_IRQ_LINE_STATUS);
3376 if (r)
3377 goto out;
3378
3379 r = -EFAULT;
3380 if (ioctl == KVM_IRQ_LINE_STATUS) {
3381 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3382 goto out;
3383 }
3384
3385 r = 0;
3386 break;
3387 }
3388 #endif
3389 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3390 case KVM_SET_GSI_ROUTING: {
3391 struct kvm_irq_routing routing;
3392 struct kvm_irq_routing __user *urouting;
3393 struct kvm_irq_routing_entry *entries = NULL;
3394
3395 r = -EFAULT;
3396 if (copy_from_user(&routing, argp, sizeof(routing)))
3397 goto out;
3398 r = -EINVAL;
3399 if (!kvm_arch_can_set_irq_routing(kvm))
3400 goto out;
3401 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3402 goto out;
3403 if (routing.flags)
3404 goto out;
3405 if (routing.nr) {
3406 r = -ENOMEM;
3407 entries = vmalloc(array_size(sizeof(*entries),
3408 routing.nr));
3409 if (!entries)
3410 goto out;
3411 r = -EFAULT;
3412 urouting = argp;
3413 if (copy_from_user(entries, urouting->entries,
3414 routing.nr * sizeof(*entries)))
3415 goto out_free_irq_routing;
3416 }
3417 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3418 routing.flags);
3419 out_free_irq_routing:
3420 vfree(entries);
3421 break;
3422 }
3423 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3424 case KVM_CREATE_DEVICE: {
3425 struct kvm_create_device cd;
3426
3427 r = -EFAULT;
3428 if (copy_from_user(&cd, argp, sizeof(cd)))
3429 goto out;
3430
3431 r = kvm_ioctl_create_device(kvm, &cd);
3432 if (r)
3433 goto out;
3434
3435 r = -EFAULT;
3436 if (copy_to_user(argp, &cd, sizeof(cd)))
3437 goto out;
3438
3439 r = 0;
3440 break;
3441 }
3442 case KVM_CHECK_EXTENSION:
3443 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3444 break;
3445 default:
3446 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3447 }
3448 out:
3449 return r;
3450 }
3451
3452 #ifdef CONFIG_KVM_COMPAT
3453 struct compat_kvm_dirty_log {
3454 __u32 slot;
3455 __u32 padding1;
3456 union {
3457 compat_uptr_t dirty_bitmap; /* one bit per page */
3458 __u64 padding2;
3459 };
3460 };
3461
3462 static long kvm_vm_compat_ioctl(struct file *filp,
3463 unsigned int ioctl, unsigned long arg)
3464 {
3465 struct kvm *kvm = filp->private_data;
3466 int r;
3467
3468 if (kvm->mm != current->mm)
3469 return -EIO;
3470 switch (ioctl) {
3471 case KVM_GET_DIRTY_LOG: {
3472 struct compat_kvm_dirty_log compat_log;
3473 struct kvm_dirty_log log;
3474
3475 if (copy_from_user(&compat_log, (void __user *)arg,
3476 sizeof(compat_log)))
3477 return -EFAULT;
3478 log.slot = compat_log.slot;
3479 log.padding1 = compat_log.padding1;
3480 log.padding2 = compat_log.padding2;
3481 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3482
3483 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3484 break;
3485 }
3486 default:
3487 r = kvm_vm_ioctl(filp, ioctl, arg);
3488 }
3489 return r;
3490 }
3491 #endif
3492
3493 static struct file_operations kvm_vm_fops = {
3494 .release = kvm_vm_release,
3495 .unlocked_ioctl = kvm_vm_ioctl,
3496 .llseek = noop_llseek,
3497 KVM_COMPAT(kvm_vm_compat_ioctl),
3498 };
3499
3500 static int kvm_dev_ioctl_create_vm(unsigned long type)
3501 {
3502 int r;
3503 struct kvm *kvm;
3504 struct file *file;
3505
3506 kvm = kvm_create_vm(type);
3507 if (IS_ERR(kvm))
3508 return PTR_ERR(kvm);
3509 #ifdef CONFIG_KVM_MMIO
3510 r = kvm_coalesced_mmio_init(kvm);
3511 if (r < 0)
3512 goto put_kvm;
3513 #endif
3514 r = get_unused_fd_flags(O_CLOEXEC);
3515 if (r < 0)
3516 goto put_kvm;
3517
3518 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3519 if (IS_ERR(file)) {
3520 put_unused_fd(r);
3521 r = PTR_ERR(file);
3522 goto put_kvm;
3523 }
3524
3525 /*
3526 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3527 * already set, with ->release() being kvm_vm_release(). In error
3528 * cases it will be called by the final fput(file) and will take
3529 * care of doing kvm_put_kvm(kvm).
3530 */
3531 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3532 put_unused_fd(r);
3533 fput(file);
3534 return -ENOMEM;
3535 }
3536 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3537
3538 fd_install(r, file);
3539 return r;
3540
3541 put_kvm:
3542 kvm_put_kvm(kvm);
3543 return r;
3544 }
3545
3546 static long kvm_dev_ioctl(struct file *filp,
3547 unsigned int ioctl, unsigned long arg)
3548 {
3549 long r = -EINVAL;
3550
3551 switch (ioctl) {
3552 case KVM_GET_API_VERSION:
3553 if (arg)
3554 goto out;
3555 r = KVM_API_VERSION;
3556 break;
3557 case KVM_CREATE_VM:
3558 r = kvm_dev_ioctl_create_vm(arg);
3559 break;
3560 case KVM_CHECK_EXTENSION:
3561 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3562 break;
3563 case KVM_GET_VCPU_MMAP_SIZE:
3564 if (arg)
3565 goto out;
3566 r = PAGE_SIZE; /* struct kvm_run */
3567 #ifdef CONFIG_X86
3568 r += PAGE_SIZE; /* pio data page */
3569 #endif
3570 #ifdef CONFIG_KVM_MMIO
3571 r += PAGE_SIZE; /* coalesced mmio ring page */
3572 #endif
3573 break;
3574 case KVM_TRACE_ENABLE:
3575 case KVM_TRACE_PAUSE:
3576 case KVM_TRACE_DISABLE:
3577 r = -EOPNOTSUPP;
3578 break;
3579 default:
3580 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3581 }
3582 out:
3583 return r;
3584 }
3585
3586 static struct file_operations kvm_chardev_ops = {
3587 .unlocked_ioctl = kvm_dev_ioctl,
3588 .llseek = noop_llseek,
3589 KVM_COMPAT(kvm_dev_ioctl),
3590 };
3591
3592 static struct miscdevice kvm_dev = {
3593 KVM_MINOR,
3594 "kvm",
3595 &kvm_chardev_ops,
3596 };
3597
3598 static void hardware_enable_nolock(void *junk)
3599 {
3600 int cpu = raw_smp_processor_id();
3601 int r;
3602
3603 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3604 return;
3605
3606 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3607
3608 r = kvm_arch_hardware_enable();
3609
3610 if (r) {
3611 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3612 atomic_inc(&hardware_enable_failed);
3613 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3614 }
3615 }
3616
3617 static int kvm_starting_cpu(unsigned int cpu)
3618 {
3619 raw_spin_lock(&kvm_count_lock);
3620 if (kvm_usage_count)
3621 hardware_enable_nolock(NULL);
3622 raw_spin_unlock(&kvm_count_lock);
3623 return 0;
3624 }
3625
3626 static void hardware_disable_nolock(void *junk)
3627 {
3628 int cpu = raw_smp_processor_id();
3629
3630 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3631 return;
3632 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3633 kvm_arch_hardware_disable();
3634 }
3635
3636 static int kvm_dying_cpu(unsigned int cpu)
3637 {
3638 raw_spin_lock(&kvm_count_lock);
3639 if (kvm_usage_count)
3640 hardware_disable_nolock(NULL);
3641 raw_spin_unlock(&kvm_count_lock);
3642 return 0;
3643 }
3644
3645 static void hardware_disable_all_nolock(void)
3646 {
3647 BUG_ON(!kvm_usage_count);
3648
3649 kvm_usage_count--;
3650 if (!kvm_usage_count)
3651 on_each_cpu(hardware_disable_nolock, NULL, 1);
3652 }
3653
3654 static void hardware_disable_all(void)
3655 {
3656 raw_spin_lock(&kvm_count_lock);
3657 hardware_disable_all_nolock();
3658 raw_spin_unlock(&kvm_count_lock);
3659 }
3660
3661 static int hardware_enable_all(void)
3662 {
3663 int r = 0;
3664
3665 raw_spin_lock(&kvm_count_lock);
3666
3667 kvm_usage_count++;
3668 if (kvm_usage_count == 1) {
3669 atomic_set(&hardware_enable_failed, 0);
3670 on_each_cpu(hardware_enable_nolock, NULL, 1);
3671
3672 if (atomic_read(&hardware_enable_failed)) {
3673 hardware_disable_all_nolock();
3674 r = -EBUSY;
3675 }
3676 }
3677
3678 raw_spin_unlock(&kvm_count_lock);
3679
3680 return r;
3681 }
3682
3683 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3684 void *v)
3685 {
3686 /*
3687 * Some (well, at least mine) BIOSes hang on reboot if
3688 * in vmx root mode.
3689 *
3690 * And Intel TXT required VMX off for all cpu when system shutdown.
3691 */
3692 pr_info("kvm: exiting hardware virtualization\n");
3693 kvm_rebooting = true;
3694 on_each_cpu(hardware_disable_nolock, NULL, 1);
3695 return NOTIFY_OK;
3696 }
3697
3698 static struct notifier_block kvm_reboot_notifier = {
3699 .notifier_call = kvm_reboot,
3700 .priority = 0,
3701 };
3702
3703 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3704 {
3705 int i;
3706
3707 for (i = 0; i < bus->dev_count; i++) {
3708 struct kvm_io_device *pos = bus->range[i].dev;
3709
3710 kvm_iodevice_destructor(pos);
3711 }
3712 kfree(bus);
3713 }
3714
3715 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3716 const struct kvm_io_range *r2)
3717 {
3718 gpa_t addr1 = r1->addr;
3719 gpa_t addr2 = r2->addr;
3720
3721 if (addr1 < addr2)
3722 return -1;
3723
3724 /* If r2->len == 0, match the exact address. If r2->len != 0,
3725 * accept any overlapping write. Any order is acceptable for
3726 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3727 * we process all of them.
3728 */
3729 if (r2->len) {
3730 addr1 += r1->len;
3731 addr2 += r2->len;
3732 }
3733
3734 if (addr1 > addr2)
3735 return 1;
3736
3737 return 0;
3738 }
3739
3740 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3741 {
3742 return kvm_io_bus_cmp(p1, p2);
3743 }
3744
3745 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3746 gpa_t addr, int len)
3747 {
3748 struct kvm_io_range *range, key;
3749 int off;
3750
3751 key = (struct kvm_io_range) {
3752 .addr = addr,
3753 .len = len,
3754 };
3755
3756 range = bsearch(&key, bus->range, bus->dev_count,
3757 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3758 if (range == NULL)
3759 return -ENOENT;
3760
3761 off = range - bus->range;
3762
3763 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3764 off--;
3765
3766 return off;
3767 }
3768
3769 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3770 struct kvm_io_range *range, const void *val)
3771 {
3772 int idx;
3773
3774 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3775 if (idx < 0)
3776 return -EOPNOTSUPP;
3777
3778 while (idx < bus->dev_count &&
3779 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3780 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3781 range->len, val))
3782 return idx;
3783 idx++;
3784 }
3785
3786 return -EOPNOTSUPP;
3787 }
3788
3789 /* kvm_io_bus_write - called under kvm->slots_lock */
3790 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3791 int len, const void *val)
3792 {
3793 struct kvm_io_bus *bus;
3794 struct kvm_io_range range;
3795 int r;
3796
3797 range = (struct kvm_io_range) {
3798 .addr = addr,
3799 .len = len,
3800 };
3801
3802 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3803 if (!bus)
3804 return -ENOMEM;
3805 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3806 return r < 0 ? r : 0;
3807 }
3808 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3809
3810 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3811 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3812 gpa_t addr, int len, const void *val, long cookie)
3813 {
3814 struct kvm_io_bus *bus;
3815 struct kvm_io_range range;
3816
3817 range = (struct kvm_io_range) {
3818 .addr = addr,
3819 .len = len,
3820 };
3821
3822 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3823 if (!bus)
3824 return -ENOMEM;
3825
3826 /* First try the device referenced by cookie. */
3827 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3828 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3829 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3830 val))
3831 return cookie;
3832
3833 /*
3834 * cookie contained garbage; fall back to search and return the
3835 * correct cookie value.
3836 */
3837 return __kvm_io_bus_write(vcpu, bus, &range, val);
3838 }
3839
3840 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3841 struct kvm_io_range *range, void *val)
3842 {
3843 int idx;
3844
3845 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3846 if (idx < 0)
3847 return -EOPNOTSUPP;
3848
3849 while (idx < bus->dev_count &&
3850 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3851 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3852 range->len, val))
3853 return idx;
3854 idx++;
3855 }
3856
3857 return -EOPNOTSUPP;
3858 }
3859
3860 /* kvm_io_bus_read - called under kvm->slots_lock */
3861 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3862 int len, void *val)
3863 {
3864 struct kvm_io_bus *bus;
3865 struct kvm_io_range range;
3866 int r;
3867
3868 range = (struct kvm_io_range) {
3869 .addr = addr,
3870 .len = len,
3871 };
3872
3873 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3874 if (!bus)
3875 return -ENOMEM;
3876 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3877 return r < 0 ? r : 0;
3878 }
3879
3880 /* Caller must hold slots_lock. */
3881 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3882 int len, struct kvm_io_device *dev)
3883 {
3884 int i;
3885 struct kvm_io_bus *new_bus, *bus;
3886 struct kvm_io_range range;
3887
3888 bus = kvm_get_bus(kvm, bus_idx);
3889 if (!bus)
3890 return -ENOMEM;
3891
3892 /* exclude ioeventfd which is limited by maximum fd */
3893 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3894 return -ENOSPC;
3895
3896 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3897 GFP_KERNEL_ACCOUNT);
3898 if (!new_bus)
3899 return -ENOMEM;
3900
3901 range = (struct kvm_io_range) {
3902 .addr = addr,
3903 .len = len,
3904 .dev = dev,
3905 };
3906
3907 for (i = 0; i < bus->dev_count; i++)
3908 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3909 break;
3910
3911 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3912 new_bus->dev_count++;
3913 new_bus->range[i] = range;
3914 memcpy(new_bus->range + i + 1, bus->range + i,
3915 (bus->dev_count - i) * sizeof(struct kvm_io_range));
3916 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3917 synchronize_srcu_expedited(&kvm->srcu);
3918 kfree(bus);
3919
3920 return 0;
3921 }
3922
3923 /* Caller must hold slots_lock. */
3924 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3925 struct kvm_io_device *dev)
3926 {
3927 int i;
3928 struct kvm_io_bus *new_bus, *bus;
3929
3930 bus = kvm_get_bus(kvm, bus_idx);
3931 if (!bus)
3932 return;
3933
3934 for (i = 0; i < bus->dev_count; i++)
3935 if (bus->range[i].dev == dev) {
3936 break;
3937 }
3938
3939 if (i == bus->dev_count)
3940 return;
3941
3942 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
3943 GFP_KERNEL_ACCOUNT);
3944 if (!new_bus) {
3945 pr_err("kvm: failed to shrink bus, removing it completely\n");
3946 goto broken;
3947 }
3948
3949 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3950 new_bus->dev_count--;
3951 memcpy(new_bus->range + i, bus->range + i + 1,
3952 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3953
3954 broken:
3955 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3956 synchronize_srcu_expedited(&kvm->srcu);
3957 kfree(bus);
3958 return;
3959 }
3960
3961 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3962 gpa_t addr)
3963 {
3964 struct kvm_io_bus *bus;
3965 int dev_idx, srcu_idx;
3966 struct kvm_io_device *iodev = NULL;
3967
3968 srcu_idx = srcu_read_lock(&kvm->srcu);
3969
3970 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3971 if (!bus)
3972 goto out_unlock;
3973
3974 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3975 if (dev_idx < 0)
3976 goto out_unlock;
3977
3978 iodev = bus->range[dev_idx].dev;
3979
3980 out_unlock:
3981 srcu_read_unlock(&kvm->srcu, srcu_idx);
3982
3983 return iodev;
3984 }
3985 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3986
3987 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3988 int (*get)(void *, u64 *), int (*set)(void *, u64),
3989 const char *fmt)
3990 {
3991 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3992 inode->i_private;
3993
3994 /* The debugfs files are a reference to the kvm struct which
3995 * is still valid when kvm_destroy_vm is called.
3996 * To avoid the race between open and the removal of the debugfs
3997 * directory we test against the users count.
3998 */
3999 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4000 return -ENOENT;
4001
4002 if (simple_attr_open(inode, file, get,
4003 stat_data->mode & S_IWUGO ? set : NULL,
4004 fmt)) {
4005 kvm_put_kvm(stat_data->kvm);
4006 return -ENOMEM;
4007 }
4008
4009 return 0;
4010 }
4011
4012 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4013 {
4014 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4015 inode->i_private;
4016
4017 simple_attr_release(inode, file);
4018 kvm_put_kvm(stat_data->kvm);
4019
4020 return 0;
4021 }
4022
4023 static int vm_stat_get_per_vm(void *data, u64 *val)
4024 {
4025 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4026
4027 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
4028
4029 return 0;
4030 }
4031
4032 static int vm_stat_clear_per_vm(void *data, u64 val)
4033 {
4034 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4035
4036 if (val)
4037 return -EINVAL;
4038
4039 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
4040
4041 return 0;
4042 }
4043
4044 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
4045 {
4046 __simple_attr_check_format("%llu\n", 0ull);
4047 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
4048 vm_stat_clear_per_vm, "%llu\n");
4049 }
4050
4051 static const struct file_operations vm_stat_get_per_vm_fops = {
4052 .owner = THIS_MODULE,
4053 .open = vm_stat_get_per_vm_open,
4054 .release = kvm_debugfs_release,
4055 .read = simple_attr_read,
4056 .write = simple_attr_write,
4057 .llseek = no_llseek,
4058 };
4059
4060 static int vcpu_stat_get_per_vm(void *data, u64 *val)
4061 {
4062 int i;
4063 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4064 struct kvm_vcpu *vcpu;
4065
4066 *val = 0;
4067
4068 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4069 *val += *(u64 *)((void *)vcpu + stat_data->offset);
4070
4071 return 0;
4072 }
4073
4074 static int vcpu_stat_clear_per_vm(void *data, u64 val)
4075 {
4076 int i;
4077 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4078 struct kvm_vcpu *vcpu;
4079
4080 if (val)
4081 return -EINVAL;
4082
4083 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4084 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
4085
4086 return 0;
4087 }
4088
4089 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
4090 {
4091 __simple_attr_check_format("%llu\n", 0ull);
4092 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
4093 vcpu_stat_clear_per_vm, "%llu\n");
4094 }
4095
4096 static const struct file_operations vcpu_stat_get_per_vm_fops = {
4097 .owner = THIS_MODULE,
4098 .open = vcpu_stat_get_per_vm_open,
4099 .release = kvm_debugfs_release,
4100 .read = simple_attr_read,
4101 .write = simple_attr_write,
4102 .llseek = no_llseek,
4103 };
4104
4105 static const struct file_operations *stat_fops_per_vm[] = {
4106 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
4107 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
4108 };
4109
4110 static int vm_stat_get(void *_offset, u64 *val)
4111 {
4112 unsigned offset = (long)_offset;
4113 struct kvm *kvm;
4114 struct kvm_stat_data stat_tmp = {.offset = offset};
4115 u64 tmp_val;
4116
4117 *val = 0;
4118 mutex_lock(&kvm_lock);
4119 list_for_each_entry(kvm, &vm_list, vm_list) {
4120 stat_tmp.kvm = kvm;
4121 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4122 *val += tmp_val;
4123 }
4124 mutex_unlock(&kvm_lock);
4125 return 0;
4126 }
4127
4128 static int vm_stat_clear(void *_offset, u64 val)
4129 {
4130 unsigned offset = (long)_offset;
4131 struct kvm *kvm;
4132 struct kvm_stat_data stat_tmp = {.offset = offset};
4133
4134 if (val)
4135 return -EINVAL;
4136
4137 mutex_lock(&kvm_lock);
4138 list_for_each_entry(kvm, &vm_list, vm_list) {
4139 stat_tmp.kvm = kvm;
4140 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
4141 }
4142 mutex_unlock(&kvm_lock);
4143
4144 return 0;
4145 }
4146
4147 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4148
4149 static int vcpu_stat_get(void *_offset, u64 *val)
4150 {
4151 unsigned offset = (long)_offset;
4152 struct kvm *kvm;
4153 struct kvm_stat_data stat_tmp = {.offset = offset};
4154 u64 tmp_val;
4155
4156 *val = 0;
4157 mutex_lock(&kvm_lock);
4158 list_for_each_entry(kvm, &vm_list, vm_list) {
4159 stat_tmp.kvm = kvm;
4160 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4161 *val += tmp_val;
4162 }
4163 mutex_unlock(&kvm_lock);
4164 return 0;
4165 }
4166
4167 static int vcpu_stat_clear(void *_offset, u64 val)
4168 {
4169 unsigned offset = (long)_offset;
4170 struct kvm *kvm;
4171 struct kvm_stat_data stat_tmp = {.offset = offset};
4172
4173 if (val)
4174 return -EINVAL;
4175
4176 mutex_lock(&kvm_lock);
4177 list_for_each_entry(kvm, &vm_list, vm_list) {
4178 stat_tmp.kvm = kvm;
4179 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4180 }
4181 mutex_unlock(&kvm_lock);
4182
4183 return 0;
4184 }
4185
4186 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4187 "%llu\n");
4188
4189 static const struct file_operations *stat_fops[] = {
4190 [KVM_STAT_VCPU] = &vcpu_stat_fops,
4191 [KVM_STAT_VM] = &vm_stat_fops,
4192 };
4193
4194 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4195 {
4196 struct kobj_uevent_env *env;
4197 unsigned long long created, active;
4198
4199 if (!kvm_dev.this_device || !kvm)
4200 return;
4201
4202 mutex_lock(&kvm_lock);
4203 if (type == KVM_EVENT_CREATE_VM) {
4204 kvm_createvm_count++;
4205 kvm_active_vms++;
4206 } else if (type == KVM_EVENT_DESTROY_VM) {
4207 kvm_active_vms--;
4208 }
4209 created = kvm_createvm_count;
4210 active = kvm_active_vms;
4211 mutex_unlock(&kvm_lock);
4212
4213 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4214 if (!env)
4215 return;
4216
4217 add_uevent_var(env, "CREATED=%llu", created);
4218 add_uevent_var(env, "COUNT=%llu", active);
4219
4220 if (type == KVM_EVENT_CREATE_VM) {
4221 add_uevent_var(env, "EVENT=create");
4222 kvm->userspace_pid = task_pid_nr(current);
4223 } else if (type == KVM_EVENT_DESTROY_VM) {
4224 add_uevent_var(env, "EVENT=destroy");
4225 }
4226 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4227
4228 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4229 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4230
4231 if (p) {
4232 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4233 if (!IS_ERR(tmp))
4234 add_uevent_var(env, "STATS_PATH=%s", tmp);
4235 kfree(p);
4236 }
4237 }
4238 /* no need for checks, since we are adding at most only 5 keys */
4239 env->envp[env->envp_idx++] = NULL;
4240 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4241 kfree(env);
4242 }
4243
4244 static void kvm_init_debug(void)
4245 {
4246 struct kvm_stats_debugfs_item *p;
4247
4248 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4249
4250 kvm_debugfs_num_entries = 0;
4251 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4252 int mode = p->mode ? p->mode : 0644;
4253 debugfs_create_file(p->name, mode, kvm_debugfs_dir,
4254 (void *)(long)p->offset,
4255 stat_fops[p->kind]);
4256 }
4257 }
4258
4259 static int kvm_suspend(void)
4260 {
4261 if (kvm_usage_count)
4262 hardware_disable_nolock(NULL);
4263 return 0;
4264 }
4265
4266 static void kvm_resume(void)
4267 {
4268 if (kvm_usage_count) {
4269 #ifdef CONFIG_LOCKDEP
4270 WARN_ON(lockdep_is_held(&kvm_count_lock));
4271 #endif
4272 hardware_enable_nolock(NULL);
4273 }
4274 }
4275
4276 static struct syscore_ops kvm_syscore_ops = {
4277 .suspend = kvm_suspend,
4278 .resume = kvm_resume,
4279 };
4280
4281 static inline
4282 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4283 {
4284 return container_of(pn, struct kvm_vcpu, preempt_notifier);
4285 }
4286
4287 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4288 {
4289 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4290
4291 WRITE_ONCE(vcpu->preempted, false);
4292 WRITE_ONCE(vcpu->ready, false);
4293
4294 kvm_arch_sched_in(vcpu, cpu);
4295
4296 kvm_arch_vcpu_load(vcpu, cpu);
4297 }
4298
4299 static void kvm_sched_out(struct preempt_notifier *pn,
4300 struct task_struct *next)
4301 {
4302 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4303
4304 if (current->state == TASK_RUNNING) {
4305 WRITE_ONCE(vcpu->preempted, true);
4306 WRITE_ONCE(vcpu->ready, true);
4307 }
4308 kvm_arch_vcpu_put(vcpu);
4309 }
4310
4311 static void check_processor_compat(void *rtn)
4312 {
4313 *(int *)rtn = kvm_arch_check_processor_compat();
4314 }
4315
4316 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4317 struct module *module)
4318 {
4319 int r;
4320 int cpu;
4321
4322 r = kvm_arch_init(opaque);
4323 if (r)
4324 goto out_fail;
4325
4326 /*
4327 * kvm_arch_init makes sure there's at most one caller
4328 * for architectures that support multiple implementations,
4329 * like intel and amd on x86.
4330 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4331 * conflicts in case kvm is already setup for another implementation.
4332 */
4333 r = kvm_irqfd_init();
4334 if (r)
4335 goto out_irqfd;
4336
4337 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4338 r = -ENOMEM;
4339 goto out_free_0;
4340 }
4341
4342 r = kvm_arch_hardware_setup();
4343 if (r < 0)
4344 goto out_free_0a;
4345
4346 for_each_online_cpu(cpu) {
4347 smp_call_function_single(cpu, check_processor_compat, &r, 1);
4348 if (r < 0)
4349 goto out_free_1;
4350 }
4351
4352 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4353 kvm_starting_cpu, kvm_dying_cpu);
4354 if (r)
4355 goto out_free_2;
4356 register_reboot_notifier(&kvm_reboot_notifier);
4357
4358 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4359 if (!vcpu_align)
4360 vcpu_align = __alignof__(struct kvm_vcpu);
4361 kvm_vcpu_cache =
4362 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4363 SLAB_ACCOUNT,
4364 offsetof(struct kvm_vcpu, arch),
4365 sizeof_field(struct kvm_vcpu, arch),
4366 NULL);
4367 if (!kvm_vcpu_cache) {
4368 r = -ENOMEM;
4369 goto out_free_3;
4370 }
4371
4372 r = kvm_async_pf_init();
4373 if (r)
4374 goto out_free;
4375
4376 kvm_chardev_ops.owner = module;
4377 kvm_vm_fops.owner = module;
4378 kvm_vcpu_fops.owner = module;
4379
4380 r = misc_register(&kvm_dev);
4381 if (r) {
4382 pr_err("kvm: misc device register failed\n");
4383 goto out_unreg;
4384 }
4385
4386 register_syscore_ops(&kvm_syscore_ops);
4387
4388 kvm_preempt_ops.sched_in = kvm_sched_in;
4389 kvm_preempt_ops.sched_out = kvm_sched_out;
4390
4391 kvm_init_debug();
4392
4393 r = kvm_vfio_ops_init();
4394 WARN_ON(r);
4395
4396 return 0;
4397
4398 out_unreg:
4399 kvm_async_pf_deinit();
4400 out_free:
4401 kmem_cache_destroy(kvm_vcpu_cache);
4402 out_free_3:
4403 unregister_reboot_notifier(&kvm_reboot_notifier);
4404 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4405 out_free_2:
4406 out_free_1:
4407 kvm_arch_hardware_unsetup();
4408 out_free_0a:
4409 free_cpumask_var(cpus_hardware_enabled);
4410 out_free_0:
4411 kvm_irqfd_exit();
4412 out_irqfd:
4413 kvm_arch_exit();
4414 out_fail:
4415 return r;
4416 }
4417 EXPORT_SYMBOL_GPL(kvm_init);
4418
4419 void kvm_exit(void)
4420 {
4421 debugfs_remove_recursive(kvm_debugfs_dir);
4422 misc_deregister(&kvm_dev);
4423 kmem_cache_destroy(kvm_vcpu_cache);
4424 kvm_async_pf_deinit();
4425 unregister_syscore_ops(&kvm_syscore_ops);
4426 unregister_reboot_notifier(&kvm_reboot_notifier);
4427 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4428 on_each_cpu(hardware_disable_nolock, NULL, 1);
4429 kvm_arch_hardware_unsetup();
4430 kvm_arch_exit();
4431 kvm_irqfd_exit();
4432 free_cpumask_var(cpus_hardware_enabled);
4433 kvm_vfio_ops_exit();
4434 }
4435 EXPORT_SYMBOL_GPL(kvm_exit);
4436
4437 struct kvm_vm_worker_thread_context {
4438 struct kvm *kvm;
4439 struct task_struct *parent;
4440 struct completion init_done;
4441 kvm_vm_thread_fn_t thread_fn;
4442 uintptr_t data;
4443 int err;
4444 };
4445
4446 static int kvm_vm_worker_thread(void *context)
4447 {
4448 /*
4449 * The init_context is allocated on the stack of the parent thread, so
4450 * we have to locally copy anything that is needed beyond initialization
4451 */
4452 struct kvm_vm_worker_thread_context *init_context = context;
4453 struct kvm *kvm = init_context->kvm;
4454 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4455 uintptr_t data = init_context->data;
4456 int err;
4457
4458 err = kthread_park(current);
4459 /* kthread_park(current) is never supposed to return an error */
4460 WARN_ON(err != 0);
4461 if (err)
4462 goto init_complete;
4463
4464 err = cgroup_attach_task_all(init_context->parent, current);
4465 if (err) {
4466 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4467 __func__, err);
4468 goto init_complete;
4469 }
4470
4471 set_user_nice(current, task_nice(init_context->parent));
4472
4473 init_complete:
4474 init_context->err = err;
4475 complete(&init_context->init_done);
4476 init_context = NULL;
4477
4478 if (err)
4479 return err;
4480
4481 /* Wait to be woken up by the spawner before proceeding. */
4482 kthread_parkme();
4483
4484 if (!kthread_should_stop())
4485 err = thread_fn(kvm, data);
4486
4487 return err;
4488 }
4489
4490 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4491 uintptr_t data, const char *name,
4492 struct task_struct **thread_ptr)
4493 {
4494 struct kvm_vm_worker_thread_context init_context = {};
4495 struct task_struct *thread;
4496
4497 *thread_ptr = NULL;
4498 init_context.kvm = kvm;
4499 init_context.parent = current;
4500 init_context.thread_fn = thread_fn;
4501 init_context.data = data;
4502 init_completion(&init_context.init_done);
4503
4504 thread = kthread_run(kvm_vm_worker_thread, &init_context,
4505 "%s-%d", name, task_pid_nr(current));
4506 if (IS_ERR(thread))
4507 return PTR_ERR(thread);
4508
4509 /* kthread_run is never supposed to return NULL */
4510 WARN_ON(thread == NULL);
4511
4512 wait_for_completion(&init_context.init_done);
4513
4514 if (!init_context.err)
4515 *thread_ptr = thread;
4516
4517 return init_context.err;
4518 }