]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - virt/kvm/kvm_main.c
locking/atomics: COCCINELLE/treewide: Convert trivial ACCESS_ONCE() patterns to READ_...
[mirror_ubuntu-bionic-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90 * Ordering of locks:
91 *
92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93 */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124
125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
127
128 __visible bool kvm_rebooting;
129 EXPORT_SYMBOL_GPL(kvm_rebooting);
130
131 static bool largepages_enabled = true;
132
133 #define KVM_EVENT_CREATE_VM 0
134 #define KVM_EVENT_DESTROY_VM 1
135 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
136 static unsigned long long kvm_createvm_count;
137 static unsigned long long kvm_active_vms;
138
139 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
140 {
141 if (pfn_valid(pfn))
142 return PageReserved(pfn_to_page(pfn));
143
144 return true;
145 }
146
147 /*
148 * Switches to specified vcpu, until a matching vcpu_put()
149 */
150 int vcpu_load(struct kvm_vcpu *vcpu)
151 {
152 int cpu;
153
154 if (mutex_lock_killable(&vcpu->mutex))
155 return -EINTR;
156 cpu = get_cpu();
157 preempt_notifier_register(&vcpu->preempt_notifier);
158 kvm_arch_vcpu_load(vcpu, cpu);
159 put_cpu();
160 return 0;
161 }
162 EXPORT_SYMBOL_GPL(vcpu_load);
163
164 void vcpu_put(struct kvm_vcpu *vcpu)
165 {
166 preempt_disable();
167 kvm_arch_vcpu_put(vcpu);
168 preempt_notifier_unregister(&vcpu->preempt_notifier);
169 preempt_enable();
170 mutex_unlock(&vcpu->mutex);
171 }
172 EXPORT_SYMBOL_GPL(vcpu_put);
173
174 /* TODO: merge with kvm_arch_vcpu_should_kick */
175 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
176 {
177 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
178
179 /*
180 * We need to wait for the VCPU to reenable interrupts and get out of
181 * READING_SHADOW_PAGE_TABLES mode.
182 */
183 if (req & KVM_REQUEST_WAIT)
184 return mode != OUTSIDE_GUEST_MODE;
185
186 /*
187 * Need to kick a running VCPU, but otherwise there is nothing to do.
188 */
189 return mode == IN_GUEST_MODE;
190 }
191
192 static void ack_flush(void *_completed)
193 {
194 }
195
196 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
197 {
198 if (unlikely(!cpus))
199 cpus = cpu_online_mask;
200
201 if (cpumask_empty(cpus))
202 return false;
203
204 smp_call_function_many(cpus, ack_flush, NULL, wait);
205 return true;
206 }
207
208 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
209 {
210 int i, cpu, me;
211 cpumask_var_t cpus;
212 bool called;
213 struct kvm_vcpu *vcpu;
214
215 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
216
217 me = get_cpu();
218 kvm_for_each_vcpu(i, vcpu, kvm) {
219 kvm_make_request(req, vcpu);
220 cpu = vcpu->cpu;
221
222 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
223 continue;
224
225 if (cpus != NULL && cpu != -1 && cpu != me &&
226 kvm_request_needs_ipi(vcpu, req))
227 __cpumask_set_cpu(cpu, cpus);
228 }
229 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
230 put_cpu();
231 free_cpumask_var(cpus);
232 return called;
233 }
234
235 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
236 void kvm_flush_remote_tlbs(struct kvm *kvm)
237 {
238 /*
239 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
240 * kvm_make_all_cpus_request.
241 */
242 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
243
244 /*
245 * We want to publish modifications to the page tables before reading
246 * mode. Pairs with a memory barrier in arch-specific code.
247 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
248 * and smp_mb in walk_shadow_page_lockless_begin/end.
249 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
250 *
251 * There is already an smp_mb__after_atomic() before
252 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
253 * barrier here.
254 */
255 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
256 ++kvm->stat.remote_tlb_flush;
257 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
258 }
259 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
260 #endif
261
262 void kvm_reload_remote_mmus(struct kvm *kvm)
263 {
264 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
265 }
266
267 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
268 {
269 struct page *page;
270 int r;
271
272 mutex_init(&vcpu->mutex);
273 vcpu->cpu = -1;
274 vcpu->kvm = kvm;
275 vcpu->vcpu_id = id;
276 vcpu->pid = NULL;
277 init_swait_queue_head(&vcpu->wq);
278 kvm_async_pf_vcpu_init(vcpu);
279
280 vcpu->pre_pcpu = -1;
281 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
282
283 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
284 if (!page) {
285 r = -ENOMEM;
286 goto fail;
287 }
288 vcpu->run = page_address(page);
289
290 kvm_vcpu_set_in_spin_loop(vcpu, false);
291 kvm_vcpu_set_dy_eligible(vcpu, false);
292 vcpu->preempted = false;
293
294 r = kvm_arch_vcpu_init(vcpu);
295 if (r < 0)
296 goto fail_free_run;
297 return 0;
298
299 fail_free_run:
300 free_page((unsigned long)vcpu->run);
301 fail:
302 return r;
303 }
304 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
305
306 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
307 {
308 /*
309 * no need for rcu_read_lock as VCPU_RUN is the only place that
310 * will change the vcpu->pid pointer and on uninit all file
311 * descriptors are already gone.
312 */
313 put_pid(rcu_dereference_protected(vcpu->pid, 1));
314 kvm_arch_vcpu_uninit(vcpu);
315 free_page((unsigned long)vcpu->run);
316 }
317 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
318
319 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
320 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
321 {
322 return container_of(mn, struct kvm, mmu_notifier);
323 }
324
325 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
326 struct mm_struct *mm,
327 unsigned long address,
328 pte_t pte)
329 {
330 struct kvm *kvm = mmu_notifier_to_kvm(mn);
331 int idx;
332
333 idx = srcu_read_lock(&kvm->srcu);
334 spin_lock(&kvm->mmu_lock);
335 kvm->mmu_notifier_seq++;
336 kvm_set_spte_hva(kvm, address, pte);
337 spin_unlock(&kvm->mmu_lock);
338 srcu_read_unlock(&kvm->srcu, idx);
339 }
340
341 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
342 struct mm_struct *mm,
343 unsigned long start,
344 unsigned long end)
345 {
346 struct kvm *kvm = mmu_notifier_to_kvm(mn);
347 int need_tlb_flush = 0, idx;
348
349 idx = srcu_read_lock(&kvm->srcu);
350 spin_lock(&kvm->mmu_lock);
351 /*
352 * The count increase must become visible at unlock time as no
353 * spte can be established without taking the mmu_lock and
354 * count is also read inside the mmu_lock critical section.
355 */
356 kvm->mmu_notifier_count++;
357 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
358 need_tlb_flush |= kvm->tlbs_dirty;
359 /* we've to flush the tlb before the pages can be freed */
360 if (need_tlb_flush)
361 kvm_flush_remote_tlbs(kvm);
362
363 spin_unlock(&kvm->mmu_lock);
364 srcu_read_unlock(&kvm->srcu, idx);
365 }
366
367 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
368 struct mm_struct *mm,
369 unsigned long start,
370 unsigned long end)
371 {
372 struct kvm *kvm = mmu_notifier_to_kvm(mn);
373
374 spin_lock(&kvm->mmu_lock);
375 /*
376 * This sequence increase will notify the kvm page fault that
377 * the page that is going to be mapped in the spte could have
378 * been freed.
379 */
380 kvm->mmu_notifier_seq++;
381 smp_wmb();
382 /*
383 * The above sequence increase must be visible before the
384 * below count decrease, which is ensured by the smp_wmb above
385 * in conjunction with the smp_rmb in mmu_notifier_retry().
386 */
387 kvm->mmu_notifier_count--;
388 spin_unlock(&kvm->mmu_lock);
389
390 BUG_ON(kvm->mmu_notifier_count < 0);
391 }
392
393 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
394 struct mm_struct *mm,
395 unsigned long start,
396 unsigned long end)
397 {
398 struct kvm *kvm = mmu_notifier_to_kvm(mn);
399 int young, idx;
400
401 idx = srcu_read_lock(&kvm->srcu);
402 spin_lock(&kvm->mmu_lock);
403
404 young = kvm_age_hva(kvm, start, end);
405 if (young)
406 kvm_flush_remote_tlbs(kvm);
407
408 spin_unlock(&kvm->mmu_lock);
409 srcu_read_unlock(&kvm->srcu, idx);
410
411 return young;
412 }
413
414 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
415 struct mm_struct *mm,
416 unsigned long start,
417 unsigned long end)
418 {
419 struct kvm *kvm = mmu_notifier_to_kvm(mn);
420 int young, idx;
421
422 idx = srcu_read_lock(&kvm->srcu);
423 spin_lock(&kvm->mmu_lock);
424 /*
425 * Even though we do not flush TLB, this will still adversely
426 * affect performance on pre-Haswell Intel EPT, where there is
427 * no EPT Access Bit to clear so that we have to tear down EPT
428 * tables instead. If we find this unacceptable, we can always
429 * add a parameter to kvm_age_hva so that it effectively doesn't
430 * do anything on clear_young.
431 *
432 * Also note that currently we never issue secondary TLB flushes
433 * from clear_young, leaving this job up to the regular system
434 * cadence. If we find this inaccurate, we might come up with a
435 * more sophisticated heuristic later.
436 */
437 young = kvm_age_hva(kvm, start, end);
438 spin_unlock(&kvm->mmu_lock);
439 srcu_read_unlock(&kvm->srcu, idx);
440
441 return young;
442 }
443
444 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
445 struct mm_struct *mm,
446 unsigned long address)
447 {
448 struct kvm *kvm = mmu_notifier_to_kvm(mn);
449 int young, idx;
450
451 idx = srcu_read_lock(&kvm->srcu);
452 spin_lock(&kvm->mmu_lock);
453 young = kvm_test_age_hva(kvm, address);
454 spin_unlock(&kvm->mmu_lock);
455 srcu_read_unlock(&kvm->srcu, idx);
456
457 return young;
458 }
459
460 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
461 struct mm_struct *mm)
462 {
463 struct kvm *kvm = mmu_notifier_to_kvm(mn);
464 int idx;
465
466 idx = srcu_read_lock(&kvm->srcu);
467 kvm_arch_flush_shadow_all(kvm);
468 srcu_read_unlock(&kvm->srcu, idx);
469 }
470
471 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
472 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
473 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
474 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
475 .clear_young = kvm_mmu_notifier_clear_young,
476 .test_young = kvm_mmu_notifier_test_young,
477 .change_pte = kvm_mmu_notifier_change_pte,
478 .release = kvm_mmu_notifier_release,
479 };
480
481 static int kvm_init_mmu_notifier(struct kvm *kvm)
482 {
483 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
484 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
485 }
486
487 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
488
489 static int kvm_init_mmu_notifier(struct kvm *kvm)
490 {
491 return 0;
492 }
493
494 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
495
496 static struct kvm_memslots *kvm_alloc_memslots(void)
497 {
498 int i;
499 struct kvm_memslots *slots;
500
501 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
502 if (!slots)
503 return NULL;
504
505 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
506 slots->id_to_index[i] = slots->memslots[i].id = i;
507
508 return slots;
509 }
510
511 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
512 {
513 if (!memslot->dirty_bitmap)
514 return;
515
516 kvfree(memslot->dirty_bitmap);
517 memslot->dirty_bitmap = NULL;
518 }
519
520 /*
521 * Free any memory in @free but not in @dont.
522 */
523 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
524 struct kvm_memory_slot *dont)
525 {
526 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
527 kvm_destroy_dirty_bitmap(free);
528
529 kvm_arch_free_memslot(kvm, free, dont);
530
531 free->npages = 0;
532 }
533
534 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
535 {
536 struct kvm_memory_slot *memslot;
537
538 if (!slots)
539 return;
540
541 kvm_for_each_memslot(memslot, slots)
542 kvm_free_memslot(kvm, memslot, NULL);
543
544 kvfree(slots);
545 }
546
547 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
548 {
549 int i;
550
551 if (!kvm->debugfs_dentry)
552 return;
553
554 debugfs_remove_recursive(kvm->debugfs_dentry);
555
556 if (kvm->debugfs_stat_data) {
557 for (i = 0; i < kvm_debugfs_num_entries; i++)
558 kfree(kvm->debugfs_stat_data[i]);
559 kfree(kvm->debugfs_stat_data);
560 }
561 }
562
563 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
564 {
565 char dir_name[ITOA_MAX_LEN * 2];
566 struct kvm_stat_data *stat_data;
567 struct kvm_stats_debugfs_item *p;
568
569 if (!debugfs_initialized())
570 return 0;
571
572 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
573 kvm->debugfs_dentry = debugfs_create_dir(dir_name,
574 kvm_debugfs_dir);
575 if (!kvm->debugfs_dentry)
576 return -ENOMEM;
577
578 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
579 sizeof(*kvm->debugfs_stat_data),
580 GFP_KERNEL);
581 if (!kvm->debugfs_stat_data)
582 return -ENOMEM;
583
584 for (p = debugfs_entries; p->name; p++) {
585 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
586 if (!stat_data)
587 return -ENOMEM;
588
589 stat_data->kvm = kvm;
590 stat_data->offset = p->offset;
591 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
592 if (!debugfs_create_file(p->name, 0644,
593 kvm->debugfs_dentry,
594 stat_data,
595 stat_fops_per_vm[p->kind]))
596 return -ENOMEM;
597 }
598 return 0;
599 }
600
601 static struct kvm *kvm_create_vm(unsigned long type)
602 {
603 int r, i;
604 struct kvm *kvm = kvm_arch_alloc_vm();
605
606 if (!kvm)
607 return ERR_PTR(-ENOMEM);
608
609 spin_lock_init(&kvm->mmu_lock);
610 mmgrab(current->mm);
611 kvm->mm = current->mm;
612 kvm_eventfd_init(kvm);
613 mutex_init(&kvm->lock);
614 mutex_init(&kvm->irq_lock);
615 mutex_init(&kvm->slots_lock);
616 refcount_set(&kvm->users_count, 1);
617 INIT_LIST_HEAD(&kvm->devices);
618
619 r = kvm_arch_init_vm(kvm, type);
620 if (r)
621 goto out_err_no_disable;
622
623 r = hardware_enable_all();
624 if (r)
625 goto out_err_no_disable;
626
627 #ifdef CONFIG_HAVE_KVM_IRQFD
628 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
629 #endif
630
631 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
632
633 r = -ENOMEM;
634 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
635 struct kvm_memslots *slots = kvm_alloc_memslots();
636 if (!slots)
637 goto out_err_no_srcu;
638 /*
639 * Generations must be different for each address space.
640 * Init kvm generation close to the maximum to easily test the
641 * code of handling generation number wrap-around.
642 */
643 slots->generation = i * 2 - 150;
644 rcu_assign_pointer(kvm->memslots[i], slots);
645 }
646
647 if (init_srcu_struct(&kvm->srcu))
648 goto out_err_no_srcu;
649 if (init_srcu_struct(&kvm->irq_srcu))
650 goto out_err_no_irq_srcu;
651 for (i = 0; i < KVM_NR_BUSES; i++) {
652 rcu_assign_pointer(kvm->buses[i],
653 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
654 if (!kvm->buses[i])
655 goto out_err;
656 }
657
658 r = kvm_init_mmu_notifier(kvm);
659 if (r)
660 goto out_err;
661
662 spin_lock(&kvm_lock);
663 list_add(&kvm->vm_list, &vm_list);
664 spin_unlock(&kvm_lock);
665
666 preempt_notifier_inc();
667
668 return kvm;
669
670 out_err:
671 cleanup_srcu_struct(&kvm->irq_srcu);
672 out_err_no_irq_srcu:
673 cleanup_srcu_struct(&kvm->srcu);
674 out_err_no_srcu:
675 hardware_disable_all();
676 out_err_no_disable:
677 refcount_set(&kvm->users_count, 0);
678 for (i = 0; i < KVM_NR_BUSES; i++)
679 kfree(kvm_get_bus(kvm, i));
680 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
681 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
682 kvm_arch_free_vm(kvm);
683 mmdrop(current->mm);
684 return ERR_PTR(r);
685 }
686
687 static void kvm_destroy_devices(struct kvm *kvm)
688 {
689 struct kvm_device *dev, *tmp;
690
691 /*
692 * We do not need to take the kvm->lock here, because nobody else
693 * has a reference to the struct kvm at this point and therefore
694 * cannot access the devices list anyhow.
695 */
696 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
697 list_del(&dev->vm_node);
698 dev->ops->destroy(dev);
699 }
700 }
701
702 static void kvm_destroy_vm(struct kvm *kvm)
703 {
704 int i;
705 struct mm_struct *mm = kvm->mm;
706
707 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
708 kvm_destroy_vm_debugfs(kvm);
709 kvm_arch_sync_events(kvm);
710 spin_lock(&kvm_lock);
711 list_del(&kvm->vm_list);
712 spin_unlock(&kvm_lock);
713 kvm_free_irq_routing(kvm);
714 for (i = 0; i < KVM_NR_BUSES; i++) {
715 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
716
717 if (bus)
718 kvm_io_bus_destroy(bus);
719 kvm->buses[i] = NULL;
720 }
721 kvm_coalesced_mmio_free(kvm);
722 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
723 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
724 #else
725 kvm_arch_flush_shadow_all(kvm);
726 #endif
727 kvm_arch_destroy_vm(kvm);
728 kvm_destroy_devices(kvm);
729 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
730 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
731 cleanup_srcu_struct(&kvm->irq_srcu);
732 cleanup_srcu_struct(&kvm->srcu);
733 kvm_arch_free_vm(kvm);
734 preempt_notifier_dec();
735 hardware_disable_all();
736 mmdrop(mm);
737 }
738
739 void kvm_get_kvm(struct kvm *kvm)
740 {
741 refcount_inc(&kvm->users_count);
742 }
743 EXPORT_SYMBOL_GPL(kvm_get_kvm);
744
745 void kvm_put_kvm(struct kvm *kvm)
746 {
747 if (refcount_dec_and_test(&kvm->users_count))
748 kvm_destroy_vm(kvm);
749 }
750 EXPORT_SYMBOL_GPL(kvm_put_kvm);
751
752
753 static int kvm_vm_release(struct inode *inode, struct file *filp)
754 {
755 struct kvm *kvm = filp->private_data;
756
757 kvm_irqfd_release(kvm);
758
759 kvm_put_kvm(kvm);
760 return 0;
761 }
762
763 /*
764 * Allocation size is twice as large as the actual dirty bitmap size.
765 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
766 */
767 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
768 {
769 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
770
771 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
772 if (!memslot->dirty_bitmap)
773 return -ENOMEM;
774
775 return 0;
776 }
777
778 /*
779 * Insert memslot and re-sort memslots based on their GFN,
780 * so binary search could be used to lookup GFN.
781 * Sorting algorithm takes advantage of having initially
782 * sorted array and known changed memslot position.
783 */
784 static void update_memslots(struct kvm_memslots *slots,
785 struct kvm_memory_slot *new)
786 {
787 int id = new->id;
788 int i = slots->id_to_index[id];
789 struct kvm_memory_slot *mslots = slots->memslots;
790
791 WARN_ON(mslots[i].id != id);
792 if (!new->npages) {
793 WARN_ON(!mslots[i].npages);
794 if (mslots[i].npages)
795 slots->used_slots--;
796 } else {
797 if (!mslots[i].npages)
798 slots->used_slots++;
799 }
800
801 while (i < KVM_MEM_SLOTS_NUM - 1 &&
802 new->base_gfn <= mslots[i + 1].base_gfn) {
803 if (!mslots[i + 1].npages)
804 break;
805 mslots[i] = mslots[i + 1];
806 slots->id_to_index[mslots[i].id] = i;
807 i++;
808 }
809
810 /*
811 * The ">=" is needed when creating a slot with base_gfn == 0,
812 * so that it moves before all those with base_gfn == npages == 0.
813 *
814 * On the other hand, if new->npages is zero, the above loop has
815 * already left i pointing to the beginning of the empty part of
816 * mslots, and the ">=" would move the hole backwards in this
817 * case---which is wrong. So skip the loop when deleting a slot.
818 */
819 if (new->npages) {
820 while (i > 0 &&
821 new->base_gfn >= mslots[i - 1].base_gfn) {
822 mslots[i] = mslots[i - 1];
823 slots->id_to_index[mslots[i].id] = i;
824 i--;
825 }
826 } else
827 WARN_ON_ONCE(i != slots->used_slots);
828
829 mslots[i] = *new;
830 slots->id_to_index[mslots[i].id] = i;
831 }
832
833 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
834 {
835 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
836
837 #ifdef __KVM_HAVE_READONLY_MEM
838 valid_flags |= KVM_MEM_READONLY;
839 #endif
840
841 if (mem->flags & ~valid_flags)
842 return -EINVAL;
843
844 return 0;
845 }
846
847 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
848 int as_id, struct kvm_memslots *slots)
849 {
850 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
851
852 /*
853 * Set the low bit in the generation, which disables SPTE caching
854 * until the end of synchronize_srcu_expedited.
855 */
856 WARN_ON(old_memslots->generation & 1);
857 slots->generation = old_memslots->generation + 1;
858
859 rcu_assign_pointer(kvm->memslots[as_id], slots);
860 synchronize_srcu_expedited(&kvm->srcu);
861
862 /*
863 * Increment the new memslot generation a second time. This prevents
864 * vm exits that race with memslot updates from caching a memslot
865 * generation that will (potentially) be valid forever.
866 *
867 * Generations must be unique even across address spaces. We do not need
868 * a global counter for that, instead the generation space is evenly split
869 * across address spaces. For example, with two address spaces, address
870 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
871 * use generations 2, 6, 10, 14, ...
872 */
873 slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
874
875 kvm_arch_memslots_updated(kvm, slots);
876
877 return old_memslots;
878 }
879
880 /*
881 * Allocate some memory and give it an address in the guest physical address
882 * space.
883 *
884 * Discontiguous memory is allowed, mostly for framebuffers.
885 *
886 * Must be called holding kvm->slots_lock for write.
887 */
888 int __kvm_set_memory_region(struct kvm *kvm,
889 const struct kvm_userspace_memory_region *mem)
890 {
891 int r;
892 gfn_t base_gfn;
893 unsigned long npages;
894 struct kvm_memory_slot *slot;
895 struct kvm_memory_slot old, new;
896 struct kvm_memslots *slots = NULL, *old_memslots;
897 int as_id, id;
898 enum kvm_mr_change change;
899
900 r = check_memory_region_flags(mem);
901 if (r)
902 goto out;
903
904 r = -EINVAL;
905 as_id = mem->slot >> 16;
906 id = (u16)mem->slot;
907
908 /* General sanity checks */
909 if (mem->memory_size & (PAGE_SIZE - 1))
910 goto out;
911 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
912 goto out;
913 /* We can read the guest memory with __xxx_user() later on. */
914 if ((id < KVM_USER_MEM_SLOTS) &&
915 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
916 !access_ok(VERIFY_WRITE,
917 (void __user *)(unsigned long)mem->userspace_addr,
918 mem->memory_size)))
919 goto out;
920 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
921 goto out;
922 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
923 goto out;
924
925 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
926 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
927 npages = mem->memory_size >> PAGE_SHIFT;
928
929 if (npages > KVM_MEM_MAX_NR_PAGES)
930 goto out;
931
932 new = old = *slot;
933
934 new.id = id;
935 new.base_gfn = base_gfn;
936 new.npages = npages;
937 new.flags = mem->flags;
938
939 if (npages) {
940 if (!old.npages)
941 change = KVM_MR_CREATE;
942 else { /* Modify an existing slot. */
943 if ((mem->userspace_addr != old.userspace_addr) ||
944 (npages != old.npages) ||
945 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
946 goto out;
947
948 if (base_gfn != old.base_gfn)
949 change = KVM_MR_MOVE;
950 else if (new.flags != old.flags)
951 change = KVM_MR_FLAGS_ONLY;
952 else { /* Nothing to change. */
953 r = 0;
954 goto out;
955 }
956 }
957 } else {
958 if (!old.npages)
959 goto out;
960
961 change = KVM_MR_DELETE;
962 new.base_gfn = 0;
963 new.flags = 0;
964 }
965
966 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
967 /* Check for overlaps */
968 r = -EEXIST;
969 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
970 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
971 (slot->id == id))
972 continue;
973 if (!((base_gfn + npages <= slot->base_gfn) ||
974 (base_gfn >= slot->base_gfn + slot->npages)))
975 goto out;
976 }
977 }
978
979 /* Free page dirty bitmap if unneeded */
980 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
981 new.dirty_bitmap = NULL;
982
983 r = -ENOMEM;
984 if (change == KVM_MR_CREATE) {
985 new.userspace_addr = mem->userspace_addr;
986
987 if (kvm_arch_create_memslot(kvm, &new, npages))
988 goto out_free;
989 }
990
991 /* Allocate page dirty bitmap if needed */
992 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
993 if (kvm_create_dirty_bitmap(&new) < 0)
994 goto out_free;
995 }
996
997 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
998 if (!slots)
999 goto out_free;
1000 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1001
1002 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1003 slot = id_to_memslot(slots, id);
1004 slot->flags |= KVM_MEMSLOT_INVALID;
1005
1006 old_memslots = install_new_memslots(kvm, as_id, slots);
1007
1008 /* From this point no new shadow pages pointing to a deleted,
1009 * or moved, memslot will be created.
1010 *
1011 * validation of sp->gfn happens in:
1012 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1013 * - kvm_is_visible_gfn (mmu_check_roots)
1014 */
1015 kvm_arch_flush_shadow_memslot(kvm, slot);
1016
1017 /*
1018 * We can re-use the old_memslots from above, the only difference
1019 * from the currently installed memslots is the invalid flag. This
1020 * will get overwritten by update_memslots anyway.
1021 */
1022 slots = old_memslots;
1023 }
1024
1025 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1026 if (r)
1027 goto out_slots;
1028
1029 /* actual memory is freed via old in kvm_free_memslot below */
1030 if (change == KVM_MR_DELETE) {
1031 new.dirty_bitmap = NULL;
1032 memset(&new.arch, 0, sizeof(new.arch));
1033 }
1034
1035 update_memslots(slots, &new);
1036 old_memslots = install_new_memslots(kvm, as_id, slots);
1037
1038 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1039
1040 kvm_free_memslot(kvm, &old, &new);
1041 kvfree(old_memslots);
1042 return 0;
1043
1044 out_slots:
1045 kvfree(slots);
1046 out_free:
1047 kvm_free_memslot(kvm, &new, &old);
1048 out:
1049 return r;
1050 }
1051 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1052
1053 int kvm_set_memory_region(struct kvm *kvm,
1054 const struct kvm_userspace_memory_region *mem)
1055 {
1056 int r;
1057
1058 mutex_lock(&kvm->slots_lock);
1059 r = __kvm_set_memory_region(kvm, mem);
1060 mutex_unlock(&kvm->slots_lock);
1061 return r;
1062 }
1063 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1064
1065 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1066 struct kvm_userspace_memory_region *mem)
1067 {
1068 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1069 return -EINVAL;
1070
1071 return kvm_set_memory_region(kvm, mem);
1072 }
1073
1074 int kvm_get_dirty_log(struct kvm *kvm,
1075 struct kvm_dirty_log *log, int *is_dirty)
1076 {
1077 struct kvm_memslots *slots;
1078 struct kvm_memory_slot *memslot;
1079 int i, as_id, id;
1080 unsigned long n;
1081 unsigned long any = 0;
1082
1083 as_id = log->slot >> 16;
1084 id = (u16)log->slot;
1085 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1086 return -EINVAL;
1087
1088 slots = __kvm_memslots(kvm, as_id);
1089 memslot = id_to_memslot(slots, id);
1090 if (!memslot->dirty_bitmap)
1091 return -ENOENT;
1092
1093 n = kvm_dirty_bitmap_bytes(memslot);
1094
1095 for (i = 0; !any && i < n/sizeof(long); ++i)
1096 any = memslot->dirty_bitmap[i];
1097
1098 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1099 return -EFAULT;
1100
1101 if (any)
1102 *is_dirty = 1;
1103 return 0;
1104 }
1105 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1106
1107 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1108 /**
1109 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1110 * are dirty write protect them for next write.
1111 * @kvm: pointer to kvm instance
1112 * @log: slot id and address to which we copy the log
1113 * @is_dirty: flag set if any page is dirty
1114 *
1115 * We need to keep it in mind that VCPU threads can write to the bitmap
1116 * concurrently. So, to avoid losing track of dirty pages we keep the
1117 * following order:
1118 *
1119 * 1. Take a snapshot of the bit and clear it if needed.
1120 * 2. Write protect the corresponding page.
1121 * 3. Copy the snapshot to the userspace.
1122 * 4. Upon return caller flushes TLB's if needed.
1123 *
1124 * Between 2 and 4, the guest may write to the page using the remaining TLB
1125 * entry. This is not a problem because the page is reported dirty using
1126 * the snapshot taken before and step 4 ensures that writes done after
1127 * exiting to userspace will be logged for the next call.
1128 *
1129 */
1130 int kvm_get_dirty_log_protect(struct kvm *kvm,
1131 struct kvm_dirty_log *log, bool *is_dirty)
1132 {
1133 struct kvm_memslots *slots;
1134 struct kvm_memory_slot *memslot;
1135 int i, as_id, id;
1136 unsigned long n;
1137 unsigned long *dirty_bitmap;
1138 unsigned long *dirty_bitmap_buffer;
1139
1140 as_id = log->slot >> 16;
1141 id = (u16)log->slot;
1142 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1143 return -EINVAL;
1144
1145 slots = __kvm_memslots(kvm, as_id);
1146 memslot = id_to_memslot(slots, id);
1147
1148 dirty_bitmap = memslot->dirty_bitmap;
1149 if (!dirty_bitmap)
1150 return -ENOENT;
1151
1152 n = kvm_dirty_bitmap_bytes(memslot);
1153
1154 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1155 memset(dirty_bitmap_buffer, 0, n);
1156
1157 spin_lock(&kvm->mmu_lock);
1158 *is_dirty = false;
1159 for (i = 0; i < n / sizeof(long); i++) {
1160 unsigned long mask;
1161 gfn_t offset;
1162
1163 if (!dirty_bitmap[i])
1164 continue;
1165
1166 *is_dirty = true;
1167
1168 mask = xchg(&dirty_bitmap[i], 0);
1169 dirty_bitmap_buffer[i] = mask;
1170
1171 if (mask) {
1172 offset = i * BITS_PER_LONG;
1173 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1174 offset, mask);
1175 }
1176 }
1177
1178 spin_unlock(&kvm->mmu_lock);
1179 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1180 return -EFAULT;
1181 return 0;
1182 }
1183 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1184 #endif
1185
1186 bool kvm_largepages_enabled(void)
1187 {
1188 return largepages_enabled;
1189 }
1190
1191 void kvm_disable_largepages(void)
1192 {
1193 largepages_enabled = false;
1194 }
1195 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1196
1197 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1198 {
1199 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1200 }
1201 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1202
1203 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1204 {
1205 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1206 }
1207
1208 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1209 {
1210 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1211
1212 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1213 memslot->flags & KVM_MEMSLOT_INVALID)
1214 return false;
1215
1216 return true;
1217 }
1218 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1219
1220 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1221 {
1222 struct vm_area_struct *vma;
1223 unsigned long addr, size;
1224
1225 size = PAGE_SIZE;
1226
1227 addr = gfn_to_hva(kvm, gfn);
1228 if (kvm_is_error_hva(addr))
1229 return PAGE_SIZE;
1230
1231 down_read(&current->mm->mmap_sem);
1232 vma = find_vma(current->mm, addr);
1233 if (!vma)
1234 goto out;
1235
1236 size = vma_kernel_pagesize(vma);
1237
1238 out:
1239 up_read(&current->mm->mmap_sem);
1240
1241 return size;
1242 }
1243
1244 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1245 {
1246 return slot->flags & KVM_MEM_READONLY;
1247 }
1248
1249 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1250 gfn_t *nr_pages, bool write)
1251 {
1252 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1253 return KVM_HVA_ERR_BAD;
1254
1255 if (memslot_is_readonly(slot) && write)
1256 return KVM_HVA_ERR_RO_BAD;
1257
1258 if (nr_pages)
1259 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1260
1261 return __gfn_to_hva_memslot(slot, gfn);
1262 }
1263
1264 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1265 gfn_t *nr_pages)
1266 {
1267 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1268 }
1269
1270 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1271 gfn_t gfn)
1272 {
1273 return gfn_to_hva_many(slot, gfn, NULL);
1274 }
1275 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1276
1277 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1278 {
1279 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1280 }
1281 EXPORT_SYMBOL_GPL(gfn_to_hva);
1282
1283 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1284 {
1285 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1286 }
1287 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1288
1289 /*
1290 * If writable is set to false, the hva returned by this function is only
1291 * allowed to be read.
1292 */
1293 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1294 gfn_t gfn, bool *writable)
1295 {
1296 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1297
1298 if (!kvm_is_error_hva(hva) && writable)
1299 *writable = !memslot_is_readonly(slot);
1300
1301 return hva;
1302 }
1303
1304 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1305 {
1306 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1307
1308 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1309 }
1310
1311 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1312 {
1313 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1314
1315 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1316 }
1317
1318 static int get_user_page_nowait(unsigned long start, int write,
1319 struct page **page)
1320 {
1321 int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1322
1323 if (write)
1324 flags |= FOLL_WRITE;
1325
1326 return get_user_pages(start, 1, flags, page, NULL);
1327 }
1328
1329 static inline int check_user_page_hwpoison(unsigned long addr)
1330 {
1331 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1332
1333 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1334 return rc == -EHWPOISON;
1335 }
1336
1337 /*
1338 * The atomic path to get the writable pfn which will be stored in @pfn,
1339 * true indicates success, otherwise false is returned.
1340 */
1341 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1342 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1343 {
1344 struct page *page[1];
1345 int npages;
1346
1347 if (!(async || atomic))
1348 return false;
1349
1350 /*
1351 * Fast pin a writable pfn only if it is a write fault request
1352 * or the caller allows to map a writable pfn for a read fault
1353 * request.
1354 */
1355 if (!(write_fault || writable))
1356 return false;
1357
1358 npages = __get_user_pages_fast(addr, 1, 1, page);
1359 if (npages == 1) {
1360 *pfn = page_to_pfn(page[0]);
1361
1362 if (writable)
1363 *writable = true;
1364 return true;
1365 }
1366
1367 return false;
1368 }
1369
1370 /*
1371 * The slow path to get the pfn of the specified host virtual address,
1372 * 1 indicates success, -errno is returned if error is detected.
1373 */
1374 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1375 bool *writable, kvm_pfn_t *pfn)
1376 {
1377 struct page *page[1];
1378 int npages = 0;
1379
1380 might_sleep();
1381
1382 if (writable)
1383 *writable = write_fault;
1384
1385 if (async) {
1386 down_read(&current->mm->mmap_sem);
1387 npages = get_user_page_nowait(addr, write_fault, page);
1388 up_read(&current->mm->mmap_sem);
1389 } else {
1390 unsigned int flags = FOLL_HWPOISON;
1391
1392 if (write_fault)
1393 flags |= FOLL_WRITE;
1394
1395 npages = get_user_pages_unlocked(addr, 1, page, flags);
1396 }
1397 if (npages != 1)
1398 return npages;
1399
1400 /* map read fault as writable if possible */
1401 if (unlikely(!write_fault) && writable) {
1402 struct page *wpage[1];
1403
1404 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1405 if (npages == 1) {
1406 *writable = true;
1407 put_page(page[0]);
1408 page[0] = wpage[0];
1409 }
1410
1411 npages = 1;
1412 }
1413 *pfn = page_to_pfn(page[0]);
1414 return npages;
1415 }
1416
1417 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1418 {
1419 if (unlikely(!(vma->vm_flags & VM_READ)))
1420 return false;
1421
1422 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1423 return false;
1424
1425 return true;
1426 }
1427
1428 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1429 unsigned long addr, bool *async,
1430 bool write_fault, kvm_pfn_t *p_pfn)
1431 {
1432 unsigned long pfn;
1433 int r;
1434
1435 r = follow_pfn(vma, addr, &pfn);
1436 if (r) {
1437 /*
1438 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1439 * not call the fault handler, so do it here.
1440 */
1441 bool unlocked = false;
1442 r = fixup_user_fault(current, current->mm, addr,
1443 (write_fault ? FAULT_FLAG_WRITE : 0),
1444 &unlocked);
1445 if (unlocked)
1446 return -EAGAIN;
1447 if (r)
1448 return r;
1449
1450 r = follow_pfn(vma, addr, &pfn);
1451 if (r)
1452 return r;
1453
1454 }
1455
1456
1457 /*
1458 * Get a reference here because callers of *hva_to_pfn* and
1459 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1460 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1461 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1462 * simply do nothing for reserved pfns.
1463 *
1464 * Whoever called remap_pfn_range is also going to call e.g.
1465 * unmap_mapping_range before the underlying pages are freed,
1466 * causing a call to our MMU notifier.
1467 */
1468 kvm_get_pfn(pfn);
1469
1470 *p_pfn = pfn;
1471 return 0;
1472 }
1473
1474 /*
1475 * Pin guest page in memory and return its pfn.
1476 * @addr: host virtual address which maps memory to the guest
1477 * @atomic: whether this function can sleep
1478 * @async: whether this function need to wait IO complete if the
1479 * host page is not in the memory
1480 * @write_fault: whether we should get a writable host page
1481 * @writable: whether it allows to map a writable host page for !@write_fault
1482 *
1483 * The function will map a writable host page for these two cases:
1484 * 1): @write_fault = true
1485 * 2): @write_fault = false && @writable, @writable will tell the caller
1486 * whether the mapping is writable.
1487 */
1488 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1489 bool write_fault, bool *writable)
1490 {
1491 struct vm_area_struct *vma;
1492 kvm_pfn_t pfn = 0;
1493 int npages, r;
1494
1495 /* we can do it either atomically or asynchronously, not both */
1496 BUG_ON(atomic && async);
1497
1498 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1499 return pfn;
1500
1501 if (atomic)
1502 return KVM_PFN_ERR_FAULT;
1503
1504 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1505 if (npages == 1)
1506 return pfn;
1507
1508 down_read(&current->mm->mmap_sem);
1509 if (npages == -EHWPOISON ||
1510 (!async && check_user_page_hwpoison(addr))) {
1511 pfn = KVM_PFN_ERR_HWPOISON;
1512 goto exit;
1513 }
1514
1515 retry:
1516 vma = find_vma_intersection(current->mm, addr, addr + 1);
1517
1518 if (vma == NULL)
1519 pfn = KVM_PFN_ERR_FAULT;
1520 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1521 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1522 if (r == -EAGAIN)
1523 goto retry;
1524 if (r < 0)
1525 pfn = KVM_PFN_ERR_FAULT;
1526 } else {
1527 if (async && vma_is_valid(vma, write_fault))
1528 *async = true;
1529 pfn = KVM_PFN_ERR_FAULT;
1530 }
1531 exit:
1532 up_read(&current->mm->mmap_sem);
1533 return pfn;
1534 }
1535
1536 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1537 bool atomic, bool *async, bool write_fault,
1538 bool *writable)
1539 {
1540 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1541
1542 if (addr == KVM_HVA_ERR_RO_BAD) {
1543 if (writable)
1544 *writable = false;
1545 return KVM_PFN_ERR_RO_FAULT;
1546 }
1547
1548 if (kvm_is_error_hva(addr)) {
1549 if (writable)
1550 *writable = false;
1551 return KVM_PFN_NOSLOT;
1552 }
1553
1554 /* Do not map writable pfn in the readonly memslot. */
1555 if (writable && memslot_is_readonly(slot)) {
1556 *writable = false;
1557 writable = NULL;
1558 }
1559
1560 return hva_to_pfn(addr, atomic, async, write_fault,
1561 writable);
1562 }
1563 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1564
1565 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1566 bool *writable)
1567 {
1568 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1569 write_fault, writable);
1570 }
1571 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1572
1573 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1574 {
1575 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1576 }
1577 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1578
1579 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1580 {
1581 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1582 }
1583 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1584
1585 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1586 {
1587 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1588 }
1589 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1590
1591 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1592 {
1593 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1594 }
1595 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1596
1597 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1598 {
1599 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1600 }
1601 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1602
1603 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1604 {
1605 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1606 }
1607 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1608
1609 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1610 struct page **pages, int nr_pages)
1611 {
1612 unsigned long addr;
1613 gfn_t entry = 0;
1614
1615 addr = gfn_to_hva_many(slot, gfn, &entry);
1616 if (kvm_is_error_hva(addr))
1617 return -1;
1618
1619 if (entry < nr_pages)
1620 return 0;
1621
1622 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1623 }
1624 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1625
1626 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1627 {
1628 if (is_error_noslot_pfn(pfn))
1629 return KVM_ERR_PTR_BAD_PAGE;
1630
1631 if (kvm_is_reserved_pfn(pfn)) {
1632 WARN_ON(1);
1633 return KVM_ERR_PTR_BAD_PAGE;
1634 }
1635
1636 return pfn_to_page(pfn);
1637 }
1638
1639 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1640 {
1641 kvm_pfn_t pfn;
1642
1643 pfn = gfn_to_pfn(kvm, gfn);
1644
1645 return kvm_pfn_to_page(pfn);
1646 }
1647 EXPORT_SYMBOL_GPL(gfn_to_page);
1648
1649 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1650 {
1651 kvm_pfn_t pfn;
1652
1653 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1654
1655 return kvm_pfn_to_page(pfn);
1656 }
1657 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1658
1659 void kvm_release_page_clean(struct page *page)
1660 {
1661 WARN_ON(is_error_page(page));
1662
1663 kvm_release_pfn_clean(page_to_pfn(page));
1664 }
1665 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1666
1667 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1668 {
1669 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1670 put_page(pfn_to_page(pfn));
1671 }
1672 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1673
1674 void kvm_release_page_dirty(struct page *page)
1675 {
1676 WARN_ON(is_error_page(page));
1677
1678 kvm_release_pfn_dirty(page_to_pfn(page));
1679 }
1680 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1681
1682 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1683 {
1684 kvm_set_pfn_dirty(pfn);
1685 kvm_release_pfn_clean(pfn);
1686 }
1687
1688 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1689 {
1690 if (!kvm_is_reserved_pfn(pfn)) {
1691 struct page *page = pfn_to_page(pfn);
1692
1693 if (!PageReserved(page))
1694 SetPageDirty(page);
1695 }
1696 }
1697 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1698
1699 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1700 {
1701 if (!kvm_is_reserved_pfn(pfn))
1702 mark_page_accessed(pfn_to_page(pfn));
1703 }
1704 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1705
1706 void kvm_get_pfn(kvm_pfn_t pfn)
1707 {
1708 if (!kvm_is_reserved_pfn(pfn))
1709 get_page(pfn_to_page(pfn));
1710 }
1711 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1712
1713 static int next_segment(unsigned long len, int offset)
1714 {
1715 if (len > PAGE_SIZE - offset)
1716 return PAGE_SIZE - offset;
1717 else
1718 return len;
1719 }
1720
1721 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1722 void *data, int offset, int len)
1723 {
1724 int r;
1725 unsigned long addr;
1726
1727 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1728 if (kvm_is_error_hva(addr))
1729 return -EFAULT;
1730 r = __copy_from_user(data, (void __user *)addr + offset, len);
1731 if (r)
1732 return -EFAULT;
1733 return 0;
1734 }
1735
1736 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1737 int len)
1738 {
1739 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1740
1741 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1742 }
1743 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1744
1745 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1746 int offset, int len)
1747 {
1748 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1749
1750 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1751 }
1752 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1753
1754 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1755 {
1756 gfn_t gfn = gpa >> PAGE_SHIFT;
1757 int seg;
1758 int offset = offset_in_page(gpa);
1759 int ret;
1760
1761 while ((seg = next_segment(len, offset)) != 0) {
1762 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1763 if (ret < 0)
1764 return ret;
1765 offset = 0;
1766 len -= seg;
1767 data += seg;
1768 ++gfn;
1769 }
1770 return 0;
1771 }
1772 EXPORT_SYMBOL_GPL(kvm_read_guest);
1773
1774 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1775 {
1776 gfn_t gfn = gpa >> PAGE_SHIFT;
1777 int seg;
1778 int offset = offset_in_page(gpa);
1779 int ret;
1780
1781 while ((seg = next_segment(len, offset)) != 0) {
1782 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1783 if (ret < 0)
1784 return ret;
1785 offset = 0;
1786 len -= seg;
1787 data += seg;
1788 ++gfn;
1789 }
1790 return 0;
1791 }
1792 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1793
1794 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1795 void *data, int offset, unsigned long len)
1796 {
1797 int r;
1798 unsigned long addr;
1799
1800 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1801 if (kvm_is_error_hva(addr))
1802 return -EFAULT;
1803 pagefault_disable();
1804 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1805 pagefault_enable();
1806 if (r)
1807 return -EFAULT;
1808 return 0;
1809 }
1810
1811 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1812 unsigned long len)
1813 {
1814 gfn_t gfn = gpa >> PAGE_SHIFT;
1815 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1816 int offset = offset_in_page(gpa);
1817
1818 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1819 }
1820 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1821
1822 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1823 void *data, unsigned long len)
1824 {
1825 gfn_t gfn = gpa >> PAGE_SHIFT;
1826 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1827 int offset = offset_in_page(gpa);
1828
1829 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1830 }
1831 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1832
1833 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1834 const void *data, int offset, int len)
1835 {
1836 int r;
1837 unsigned long addr;
1838
1839 addr = gfn_to_hva_memslot(memslot, gfn);
1840 if (kvm_is_error_hva(addr))
1841 return -EFAULT;
1842 r = __copy_to_user((void __user *)addr + offset, data, len);
1843 if (r)
1844 return -EFAULT;
1845 mark_page_dirty_in_slot(memslot, gfn);
1846 return 0;
1847 }
1848
1849 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1850 const void *data, int offset, int len)
1851 {
1852 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1853
1854 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1855 }
1856 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1857
1858 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1859 const void *data, int offset, int len)
1860 {
1861 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1862
1863 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1864 }
1865 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1866
1867 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1868 unsigned long len)
1869 {
1870 gfn_t gfn = gpa >> PAGE_SHIFT;
1871 int seg;
1872 int offset = offset_in_page(gpa);
1873 int ret;
1874
1875 while ((seg = next_segment(len, offset)) != 0) {
1876 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1877 if (ret < 0)
1878 return ret;
1879 offset = 0;
1880 len -= seg;
1881 data += seg;
1882 ++gfn;
1883 }
1884 return 0;
1885 }
1886 EXPORT_SYMBOL_GPL(kvm_write_guest);
1887
1888 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1889 unsigned long len)
1890 {
1891 gfn_t gfn = gpa >> PAGE_SHIFT;
1892 int seg;
1893 int offset = offset_in_page(gpa);
1894 int ret;
1895
1896 while ((seg = next_segment(len, offset)) != 0) {
1897 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1898 if (ret < 0)
1899 return ret;
1900 offset = 0;
1901 len -= seg;
1902 data += seg;
1903 ++gfn;
1904 }
1905 return 0;
1906 }
1907 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1908
1909 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1910 struct gfn_to_hva_cache *ghc,
1911 gpa_t gpa, unsigned long len)
1912 {
1913 int offset = offset_in_page(gpa);
1914 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1915 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1916 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1917 gfn_t nr_pages_avail;
1918
1919 ghc->gpa = gpa;
1920 ghc->generation = slots->generation;
1921 ghc->len = len;
1922 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1923 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1924 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1925 ghc->hva += offset;
1926 } else {
1927 /*
1928 * If the requested region crosses two memslots, we still
1929 * verify that the entire region is valid here.
1930 */
1931 while (start_gfn <= end_gfn) {
1932 nr_pages_avail = 0;
1933 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1934 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1935 &nr_pages_avail);
1936 if (kvm_is_error_hva(ghc->hva))
1937 return -EFAULT;
1938 start_gfn += nr_pages_avail;
1939 }
1940 /* Use the slow path for cross page reads and writes. */
1941 ghc->memslot = NULL;
1942 }
1943 return 0;
1944 }
1945
1946 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1947 gpa_t gpa, unsigned long len)
1948 {
1949 struct kvm_memslots *slots = kvm_memslots(kvm);
1950 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1951 }
1952 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1953
1954 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1955 void *data, int offset, unsigned long len)
1956 {
1957 struct kvm_memslots *slots = kvm_memslots(kvm);
1958 int r;
1959 gpa_t gpa = ghc->gpa + offset;
1960
1961 BUG_ON(len + offset > ghc->len);
1962
1963 if (slots->generation != ghc->generation)
1964 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1965
1966 if (unlikely(!ghc->memslot))
1967 return kvm_write_guest(kvm, gpa, data, len);
1968
1969 if (kvm_is_error_hva(ghc->hva))
1970 return -EFAULT;
1971
1972 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1973 if (r)
1974 return -EFAULT;
1975 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1976
1977 return 0;
1978 }
1979 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1980
1981 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1982 void *data, unsigned long len)
1983 {
1984 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1985 }
1986 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1987
1988 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1989 void *data, unsigned long len)
1990 {
1991 struct kvm_memslots *slots = kvm_memslots(kvm);
1992 int r;
1993
1994 BUG_ON(len > ghc->len);
1995
1996 if (slots->generation != ghc->generation)
1997 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1998
1999 if (unlikely(!ghc->memslot))
2000 return kvm_read_guest(kvm, ghc->gpa, data, len);
2001
2002 if (kvm_is_error_hva(ghc->hva))
2003 return -EFAULT;
2004
2005 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2006 if (r)
2007 return -EFAULT;
2008
2009 return 0;
2010 }
2011 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2012
2013 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2014 {
2015 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2016
2017 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2018 }
2019 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2020
2021 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2022 {
2023 gfn_t gfn = gpa >> PAGE_SHIFT;
2024 int seg;
2025 int offset = offset_in_page(gpa);
2026 int ret;
2027
2028 while ((seg = next_segment(len, offset)) != 0) {
2029 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2030 if (ret < 0)
2031 return ret;
2032 offset = 0;
2033 len -= seg;
2034 ++gfn;
2035 }
2036 return 0;
2037 }
2038 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2039
2040 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2041 gfn_t gfn)
2042 {
2043 if (memslot && memslot->dirty_bitmap) {
2044 unsigned long rel_gfn = gfn - memslot->base_gfn;
2045
2046 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2047 }
2048 }
2049
2050 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2051 {
2052 struct kvm_memory_slot *memslot;
2053
2054 memslot = gfn_to_memslot(kvm, gfn);
2055 mark_page_dirty_in_slot(memslot, gfn);
2056 }
2057 EXPORT_SYMBOL_GPL(mark_page_dirty);
2058
2059 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2060 {
2061 struct kvm_memory_slot *memslot;
2062
2063 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2064 mark_page_dirty_in_slot(memslot, gfn);
2065 }
2066 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2067
2068 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2069 {
2070 unsigned int old, val, grow;
2071
2072 old = val = vcpu->halt_poll_ns;
2073 grow = READ_ONCE(halt_poll_ns_grow);
2074 /* 10us base */
2075 if (val == 0 && grow)
2076 val = 10000;
2077 else
2078 val *= grow;
2079
2080 if (val > halt_poll_ns)
2081 val = halt_poll_ns;
2082
2083 vcpu->halt_poll_ns = val;
2084 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2085 }
2086
2087 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2088 {
2089 unsigned int old, val, shrink;
2090
2091 old = val = vcpu->halt_poll_ns;
2092 shrink = READ_ONCE(halt_poll_ns_shrink);
2093 if (shrink == 0)
2094 val = 0;
2095 else
2096 val /= shrink;
2097
2098 vcpu->halt_poll_ns = val;
2099 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2100 }
2101
2102 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2103 {
2104 if (kvm_arch_vcpu_runnable(vcpu)) {
2105 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2106 return -EINTR;
2107 }
2108 if (kvm_cpu_has_pending_timer(vcpu))
2109 return -EINTR;
2110 if (signal_pending(current))
2111 return -EINTR;
2112
2113 return 0;
2114 }
2115
2116 /*
2117 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2118 */
2119 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2120 {
2121 ktime_t start, cur;
2122 DECLARE_SWAITQUEUE(wait);
2123 bool waited = false;
2124 u64 block_ns;
2125
2126 start = cur = ktime_get();
2127 if (vcpu->halt_poll_ns) {
2128 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2129
2130 ++vcpu->stat.halt_attempted_poll;
2131 do {
2132 /*
2133 * This sets KVM_REQ_UNHALT if an interrupt
2134 * arrives.
2135 */
2136 if (kvm_vcpu_check_block(vcpu) < 0) {
2137 ++vcpu->stat.halt_successful_poll;
2138 if (!vcpu_valid_wakeup(vcpu))
2139 ++vcpu->stat.halt_poll_invalid;
2140 goto out;
2141 }
2142 cur = ktime_get();
2143 } while (single_task_running() && ktime_before(cur, stop));
2144 }
2145
2146 kvm_arch_vcpu_blocking(vcpu);
2147
2148 for (;;) {
2149 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2150
2151 if (kvm_vcpu_check_block(vcpu) < 0)
2152 break;
2153
2154 waited = true;
2155 schedule();
2156 }
2157
2158 finish_swait(&vcpu->wq, &wait);
2159 cur = ktime_get();
2160
2161 kvm_arch_vcpu_unblocking(vcpu);
2162 out:
2163 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2164
2165 if (!vcpu_valid_wakeup(vcpu))
2166 shrink_halt_poll_ns(vcpu);
2167 else if (halt_poll_ns) {
2168 if (block_ns <= vcpu->halt_poll_ns)
2169 ;
2170 /* we had a long block, shrink polling */
2171 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2172 shrink_halt_poll_ns(vcpu);
2173 /* we had a short halt and our poll time is too small */
2174 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2175 block_ns < halt_poll_ns)
2176 grow_halt_poll_ns(vcpu);
2177 } else
2178 vcpu->halt_poll_ns = 0;
2179
2180 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2181 kvm_arch_vcpu_block_finish(vcpu);
2182 }
2183 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2184
2185 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2186 {
2187 struct swait_queue_head *wqp;
2188
2189 wqp = kvm_arch_vcpu_wq(vcpu);
2190 if (swq_has_sleeper(wqp)) {
2191 swake_up(wqp);
2192 ++vcpu->stat.halt_wakeup;
2193 return true;
2194 }
2195
2196 return false;
2197 }
2198 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2199
2200 #ifndef CONFIG_S390
2201 /*
2202 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2203 */
2204 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2205 {
2206 int me;
2207 int cpu = vcpu->cpu;
2208
2209 if (kvm_vcpu_wake_up(vcpu))
2210 return;
2211
2212 me = get_cpu();
2213 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2214 if (kvm_arch_vcpu_should_kick(vcpu))
2215 smp_send_reschedule(cpu);
2216 put_cpu();
2217 }
2218 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2219 #endif /* !CONFIG_S390 */
2220
2221 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2222 {
2223 struct pid *pid;
2224 struct task_struct *task = NULL;
2225 int ret = 0;
2226
2227 rcu_read_lock();
2228 pid = rcu_dereference(target->pid);
2229 if (pid)
2230 task = get_pid_task(pid, PIDTYPE_PID);
2231 rcu_read_unlock();
2232 if (!task)
2233 return ret;
2234 ret = yield_to(task, 1);
2235 put_task_struct(task);
2236
2237 return ret;
2238 }
2239 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2240
2241 /*
2242 * Helper that checks whether a VCPU is eligible for directed yield.
2243 * Most eligible candidate to yield is decided by following heuristics:
2244 *
2245 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2246 * (preempted lock holder), indicated by @in_spin_loop.
2247 * Set at the beiginning and cleared at the end of interception/PLE handler.
2248 *
2249 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2250 * chance last time (mostly it has become eligible now since we have probably
2251 * yielded to lockholder in last iteration. This is done by toggling
2252 * @dy_eligible each time a VCPU checked for eligibility.)
2253 *
2254 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2255 * to preempted lock-holder could result in wrong VCPU selection and CPU
2256 * burning. Giving priority for a potential lock-holder increases lock
2257 * progress.
2258 *
2259 * Since algorithm is based on heuristics, accessing another VCPU data without
2260 * locking does not harm. It may result in trying to yield to same VCPU, fail
2261 * and continue with next VCPU and so on.
2262 */
2263 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2264 {
2265 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2266 bool eligible;
2267
2268 eligible = !vcpu->spin_loop.in_spin_loop ||
2269 vcpu->spin_loop.dy_eligible;
2270
2271 if (vcpu->spin_loop.in_spin_loop)
2272 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2273
2274 return eligible;
2275 #else
2276 return true;
2277 #endif
2278 }
2279
2280 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2281 {
2282 struct kvm *kvm = me->kvm;
2283 struct kvm_vcpu *vcpu;
2284 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2285 int yielded = 0;
2286 int try = 3;
2287 int pass;
2288 int i;
2289
2290 kvm_vcpu_set_in_spin_loop(me, true);
2291 /*
2292 * We boost the priority of a VCPU that is runnable but not
2293 * currently running, because it got preempted by something
2294 * else and called schedule in __vcpu_run. Hopefully that
2295 * VCPU is holding the lock that we need and will release it.
2296 * We approximate round-robin by starting at the last boosted VCPU.
2297 */
2298 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2299 kvm_for_each_vcpu(i, vcpu, kvm) {
2300 if (!pass && i <= last_boosted_vcpu) {
2301 i = last_boosted_vcpu;
2302 continue;
2303 } else if (pass && i > last_boosted_vcpu)
2304 break;
2305 if (!READ_ONCE(vcpu->preempted))
2306 continue;
2307 if (vcpu == me)
2308 continue;
2309 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2310 continue;
2311 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2312 continue;
2313 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2314 continue;
2315
2316 yielded = kvm_vcpu_yield_to(vcpu);
2317 if (yielded > 0) {
2318 kvm->last_boosted_vcpu = i;
2319 break;
2320 } else if (yielded < 0) {
2321 try--;
2322 if (!try)
2323 break;
2324 }
2325 }
2326 }
2327 kvm_vcpu_set_in_spin_loop(me, false);
2328
2329 /* Ensure vcpu is not eligible during next spinloop */
2330 kvm_vcpu_set_dy_eligible(me, false);
2331 }
2332 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2333
2334 static int kvm_vcpu_fault(struct vm_fault *vmf)
2335 {
2336 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2337 struct page *page;
2338
2339 if (vmf->pgoff == 0)
2340 page = virt_to_page(vcpu->run);
2341 #ifdef CONFIG_X86
2342 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2343 page = virt_to_page(vcpu->arch.pio_data);
2344 #endif
2345 #ifdef CONFIG_KVM_MMIO
2346 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2347 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2348 #endif
2349 else
2350 return kvm_arch_vcpu_fault(vcpu, vmf);
2351 get_page(page);
2352 vmf->page = page;
2353 return 0;
2354 }
2355
2356 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2357 .fault = kvm_vcpu_fault,
2358 };
2359
2360 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2361 {
2362 vma->vm_ops = &kvm_vcpu_vm_ops;
2363 return 0;
2364 }
2365
2366 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2367 {
2368 struct kvm_vcpu *vcpu = filp->private_data;
2369
2370 debugfs_remove_recursive(vcpu->debugfs_dentry);
2371 kvm_put_kvm(vcpu->kvm);
2372 return 0;
2373 }
2374
2375 static struct file_operations kvm_vcpu_fops = {
2376 .release = kvm_vcpu_release,
2377 .unlocked_ioctl = kvm_vcpu_ioctl,
2378 #ifdef CONFIG_KVM_COMPAT
2379 .compat_ioctl = kvm_vcpu_compat_ioctl,
2380 #endif
2381 .mmap = kvm_vcpu_mmap,
2382 .llseek = noop_llseek,
2383 };
2384
2385 /*
2386 * Allocates an inode for the vcpu.
2387 */
2388 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2389 {
2390 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2391 }
2392
2393 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2394 {
2395 char dir_name[ITOA_MAX_LEN * 2];
2396 int ret;
2397
2398 if (!kvm_arch_has_vcpu_debugfs())
2399 return 0;
2400
2401 if (!debugfs_initialized())
2402 return 0;
2403
2404 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2405 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2406 vcpu->kvm->debugfs_dentry);
2407 if (!vcpu->debugfs_dentry)
2408 return -ENOMEM;
2409
2410 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2411 if (ret < 0) {
2412 debugfs_remove_recursive(vcpu->debugfs_dentry);
2413 return ret;
2414 }
2415
2416 return 0;
2417 }
2418
2419 /*
2420 * Creates some virtual cpus. Good luck creating more than one.
2421 */
2422 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2423 {
2424 int r;
2425 struct kvm_vcpu *vcpu;
2426
2427 if (id >= KVM_MAX_VCPU_ID)
2428 return -EINVAL;
2429
2430 mutex_lock(&kvm->lock);
2431 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2432 mutex_unlock(&kvm->lock);
2433 return -EINVAL;
2434 }
2435
2436 kvm->created_vcpus++;
2437 mutex_unlock(&kvm->lock);
2438
2439 vcpu = kvm_arch_vcpu_create(kvm, id);
2440 if (IS_ERR(vcpu)) {
2441 r = PTR_ERR(vcpu);
2442 goto vcpu_decrement;
2443 }
2444
2445 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2446
2447 r = kvm_arch_vcpu_setup(vcpu);
2448 if (r)
2449 goto vcpu_destroy;
2450
2451 r = kvm_create_vcpu_debugfs(vcpu);
2452 if (r)
2453 goto vcpu_destroy;
2454
2455 mutex_lock(&kvm->lock);
2456 if (kvm_get_vcpu_by_id(kvm, id)) {
2457 r = -EEXIST;
2458 goto unlock_vcpu_destroy;
2459 }
2460
2461 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2462
2463 /* Now it's all set up, let userspace reach it */
2464 kvm_get_kvm(kvm);
2465 r = create_vcpu_fd(vcpu);
2466 if (r < 0) {
2467 kvm_put_kvm(kvm);
2468 goto unlock_vcpu_destroy;
2469 }
2470
2471 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2472
2473 /*
2474 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2475 * before kvm->online_vcpu's incremented value.
2476 */
2477 smp_wmb();
2478 atomic_inc(&kvm->online_vcpus);
2479
2480 mutex_unlock(&kvm->lock);
2481 kvm_arch_vcpu_postcreate(vcpu);
2482 return r;
2483
2484 unlock_vcpu_destroy:
2485 mutex_unlock(&kvm->lock);
2486 debugfs_remove_recursive(vcpu->debugfs_dentry);
2487 vcpu_destroy:
2488 kvm_arch_vcpu_destroy(vcpu);
2489 vcpu_decrement:
2490 mutex_lock(&kvm->lock);
2491 kvm->created_vcpus--;
2492 mutex_unlock(&kvm->lock);
2493 return r;
2494 }
2495
2496 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2497 {
2498 if (sigset) {
2499 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2500 vcpu->sigset_active = 1;
2501 vcpu->sigset = *sigset;
2502 } else
2503 vcpu->sigset_active = 0;
2504 return 0;
2505 }
2506
2507 static long kvm_vcpu_ioctl(struct file *filp,
2508 unsigned int ioctl, unsigned long arg)
2509 {
2510 struct kvm_vcpu *vcpu = filp->private_data;
2511 void __user *argp = (void __user *)arg;
2512 int r;
2513 struct kvm_fpu *fpu = NULL;
2514 struct kvm_sregs *kvm_sregs = NULL;
2515
2516 if (vcpu->kvm->mm != current->mm)
2517 return -EIO;
2518
2519 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2520 return -EINVAL;
2521
2522 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2523 /*
2524 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2525 * so vcpu_load() would break it.
2526 */
2527 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2528 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2529 #endif
2530
2531
2532 r = vcpu_load(vcpu);
2533 if (r)
2534 return r;
2535 switch (ioctl) {
2536 case KVM_RUN: {
2537 struct pid *oldpid;
2538 r = -EINVAL;
2539 if (arg)
2540 goto out;
2541 oldpid = rcu_access_pointer(vcpu->pid);
2542 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2543 /* The thread running this VCPU changed. */
2544 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2545
2546 rcu_assign_pointer(vcpu->pid, newpid);
2547 if (oldpid)
2548 synchronize_rcu();
2549 put_pid(oldpid);
2550 }
2551 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2552 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2553 break;
2554 }
2555 case KVM_GET_REGS: {
2556 struct kvm_regs *kvm_regs;
2557
2558 r = -ENOMEM;
2559 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2560 if (!kvm_regs)
2561 goto out;
2562 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2563 if (r)
2564 goto out_free1;
2565 r = -EFAULT;
2566 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2567 goto out_free1;
2568 r = 0;
2569 out_free1:
2570 kfree(kvm_regs);
2571 break;
2572 }
2573 case KVM_SET_REGS: {
2574 struct kvm_regs *kvm_regs;
2575
2576 r = -ENOMEM;
2577 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2578 if (IS_ERR(kvm_regs)) {
2579 r = PTR_ERR(kvm_regs);
2580 goto out;
2581 }
2582 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2583 kfree(kvm_regs);
2584 break;
2585 }
2586 case KVM_GET_SREGS: {
2587 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2588 r = -ENOMEM;
2589 if (!kvm_sregs)
2590 goto out;
2591 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2592 if (r)
2593 goto out;
2594 r = -EFAULT;
2595 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2596 goto out;
2597 r = 0;
2598 break;
2599 }
2600 case KVM_SET_SREGS: {
2601 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2602 if (IS_ERR(kvm_sregs)) {
2603 r = PTR_ERR(kvm_sregs);
2604 kvm_sregs = NULL;
2605 goto out;
2606 }
2607 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2608 break;
2609 }
2610 case KVM_GET_MP_STATE: {
2611 struct kvm_mp_state mp_state;
2612
2613 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2614 if (r)
2615 goto out;
2616 r = -EFAULT;
2617 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2618 goto out;
2619 r = 0;
2620 break;
2621 }
2622 case KVM_SET_MP_STATE: {
2623 struct kvm_mp_state mp_state;
2624
2625 r = -EFAULT;
2626 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2627 goto out;
2628 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2629 break;
2630 }
2631 case KVM_TRANSLATE: {
2632 struct kvm_translation tr;
2633
2634 r = -EFAULT;
2635 if (copy_from_user(&tr, argp, sizeof(tr)))
2636 goto out;
2637 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2638 if (r)
2639 goto out;
2640 r = -EFAULT;
2641 if (copy_to_user(argp, &tr, sizeof(tr)))
2642 goto out;
2643 r = 0;
2644 break;
2645 }
2646 case KVM_SET_GUEST_DEBUG: {
2647 struct kvm_guest_debug dbg;
2648
2649 r = -EFAULT;
2650 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2651 goto out;
2652 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2653 break;
2654 }
2655 case KVM_SET_SIGNAL_MASK: {
2656 struct kvm_signal_mask __user *sigmask_arg = argp;
2657 struct kvm_signal_mask kvm_sigmask;
2658 sigset_t sigset, *p;
2659
2660 p = NULL;
2661 if (argp) {
2662 r = -EFAULT;
2663 if (copy_from_user(&kvm_sigmask, argp,
2664 sizeof(kvm_sigmask)))
2665 goto out;
2666 r = -EINVAL;
2667 if (kvm_sigmask.len != sizeof(sigset))
2668 goto out;
2669 r = -EFAULT;
2670 if (copy_from_user(&sigset, sigmask_arg->sigset,
2671 sizeof(sigset)))
2672 goto out;
2673 p = &sigset;
2674 }
2675 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2676 break;
2677 }
2678 case KVM_GET_FPU: {
2679 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2680 r = -ENOMEM;
2681 if (!fpu)
2682 goto out;
2683 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2684 if (r)
2685 goto out;
2686 r = -EFAULT;
2687 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2688 goto out;
2689 r = 0;
2690 break;
2691 }
2692 case KVM_SET_FPU: {
2693 fpu = memdup_user(argp, sizeof(*fpu));
2694 if (IS_ERR(fpu)) {
2695 r = PTR_ERR(fpu);
2696 fpu = NULL;
2697 goto out;
2698 }
2699 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2700 break;
2701 }
2702 default:
2703 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2704 }
2705 out:
2706 vcpu_put(vcpu);
2707 kfree(fpu);
2708 kfree(kvm_sregs);
2709 return r;
2710 }
2711
2712 #ifdef CONFIG_KVM_COMPAT
2713 static long kvm_vcpu_compat_ioctl(struct file *filp,
2714 unsigned int ioctl, unsigned long arg)
2715 {
2716 struct kvm_vcpu *vcpu = filp->private_data;
2717 void __user *argp = compat_ptr(arg);
2718 int r;
2719
2720 if (vcpu->kvm->mm != current->mm)
2721 return -EIO;
2722
2723 switch (ioctl) {
2724 case KVM_SET_SIGNAL_MASK: {
2725 struct kvm_signal_mask __user *sigmask_arg = argp;
2726 struct kvm_signal_mask kvm_sigmask;
2727 compat_sigset_t csigset;
2728 sigset_t sigset;
2729
2730 if (argp) {
2731 r = -EFAULT;
2732 if (copy_from_user(&kvm_sigmask, argp,
2733 sizeof(kvm_sigmask)))
2734 goto out;
2735 r = -EINVAL;
2736 if (kvm_sigmask.len != sizeof(csigset))
2737 goto out;
2738 r = -EFAULT;
2739 if (copy_from_user(&csigset, sigmask_arg->sigset,
2740 sizeof(csigset)))
2741 goto out;
2742 sigset_from_compat(&sigset, &csigset);
2743 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2744 } else
2745 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2746 break;
2747 }
2748 default:
2749 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2750 }
2751
2752 out:
2753 return r;
2754 }
2755 #endif
2756
2757 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2758 int (*accessor)(struct kvm_device *dev,
2759 struct kvm_device_attr *attr),
2760 unsigned long arg)
2761 {
2762 struct kvm_device_attr attr;
2763
2764 if (!accessor)
2765 return -EPERM;
2766
2767 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2768 return -EFAULT;
2769
2770 return accessor(dev, &attr);
2771 }
2772
2773 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2774 unsigned long arg)
2775 {
2776 struct kvm_device *dev = filp->private_data;
2777
2778 switch (ioctl) {
2779 case KVM_SET_DEVICE_ATTR:
2780 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2781 case KVM_GET_DEVICE_ATTR:
2782 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2783 case KVM_HAS_DEVICE_ATTR:
2784 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2785 default:
2786 if (dev->ops->ioctl)
2787 return dev->ops->ioctl(dev, ioctl, arg);
2788
2789 return -ENOTTY;
2790 }
2791 }
2792
2793 static int kvm_device_release(struct inode *inode, struct file *filp)
2794 {
2795 struct kvm_device *dev = filp->private_data;
2796 struct kvm *kvm = dev->kvm;
2797
2798 kvm_put_kvm(kvm);
2799 return 0;
2800 }
2801
2802 static const struct file_operations kvm_device_fops = {
2803 .unlocked_ioctl = kvm_device_ioctl,
2804 #ifdef CONFIG_KVM_COMPAT
2805 .compat_ioctl = kvm_device_ioctl,
2806 #endif
2807 .release = kvm_device_release,
2808 };
2809
2810 struct kvm_device *kvm_device_from_filp(struct file *filp)
2811 {
2812 if (filp->f_op != &kvm_device_fops)
2813 return NULL;
2814
2815 return filp->private_data;
2816 }
2817
2818 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2819 #ifdef CONFIG_KVM_MPIC
2820 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2821 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2822 #endif
2823 };
2824
2825 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2826 {
2827 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2828 return -ENOSPC;
2829
2830 if (kvm_device_ops_table[type] != NULL)
2831 return -EEXIST;
2832
2833 kvm_device_ops_table[type] = ops;
2834 return 0;
2835 }
2836
2837 void kvm_unregister_device_ops(u32 type)
2838 {
2839 if (kvm_device_ops_table[type] != NULL)
2840 kvm_device_ops_table[type] = NULL;
2841 }
2842
2843 static int kvm_ioctl_create_device(struct kvm *kvm,
2844 struct kvm_create_device *cd)
2845 {
2846 struct kvm_device_ops *ops = NULL;
2847 struct kvm_device *dev;
2848 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2849 int ret;
2850
2851 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2852 return -ENODEV;
2853
2854 ops = kvm_device_ops_table[cd->type];
2855 if (ops == NULL)
2856 return -ENODEV;
2857
2858 if (test)
2859 return 0;
2860
2861 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2862 if (!dev)
2863 return -ENOMEM;
2864
2865 dev->ops = ops;
2866 dev->kvm = kvm;
2867
2868 mutex_lock(&kvm->lock);
2869 ret = ops->create(dev, cd->type);
2870 if (ret < 0) {
2871 mutex_unlock(&kvm->lock);
2872 kfree(dev);
2873 return ret;
2874 }
2875 list_add(&dev->vm_node, &kvm->devices);
2876 mutex_unlock(&kvm->lock);
2877
2878 if (ops->init)
2879 ops->init(dev);
2880
2881 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2882 if (ret < 0) {
2883 mutex_lock(&kvm->lock);
2884 list_del(&dev->vm_node);
2885 mutex_unlock(&kvm->lock);
2886 ops->destroy(dev);
2887 return ret;
2888 }
2889
2890 kvm_get_kvm(kvm);
2891 cd->fd = ret;
2892 return 0;
2893 }
2894
2895 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2896 {
2897 switch (arg) {
2898 case KVM_CAP_USER_MEMORY:
2899 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2900 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2901 case KVM_CAP_INTERNAL_ERROR_DATA:
2902 #ifdef CONFIG_HAVE_KVM_MSI
2903 case KVM_CAP_SIGNAL_MSI:
2904 #endif
2905 #ifdef CONFIG_HAVE_KVM_IRQFD
2906 case KVM_CAP_IRQFD:
2907 case KVM_CAP_IRQFD_RESAMPLE:
2908 #endif
2909 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2910 case KVM_CAP_CHECK_EXTENSION_VM:
2911 return 1;
2912 #ifdef CONFIG_KVM_MMIO
2913 case KVM_CAP_COALESCED_MMIO:
2914 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2915 #endif
2916 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2917 case KVM_CAP_IRQ_ROUTING:
2918 return KVM_MAX_IRQ_ROUTES;
2919 #endif
2920 #if KVM_ADDRESS_SPACE_NUM > 1
2921 case KVM_CAP_MULTI_ADDRESS_SPACE:
2922 return KVM_ADDRESS_SPACE_NUM;
2923 #endif
2924 case KVM_CAP_MAX_VCPU_ID:
2925 return KVM_MAX_VCPU_ID;
2926 default:
2927 break;
2928 }
2929 return kvm_vm_ioctl_check_extension(kvm, arg);
2930 }
2931
2932 static long kvm_vm_ioctl(struct file *filp,
2933 unsigned int ioctl, unsigned long arg)
2934 {
2935 struct kvm *kvm = filp->private_data;
2936 void __user *argp = (void __user *)arg;
2937 int r;
2938
2939 if (kvm->mm != current->mm)
2940 return -EIO;
2941 switch (ioctl) {
2942 case KVM_CREATE_VCPU:
2943 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2944 break;
2945 case KVM_SET_USER_MEMORY_REGION: {
2946 struct kvm_userspace_memory_region kvm_userspace_mem;
2947
2948 r = -EFAULT;
2949 if (copy_from_user(&kvm_userspace_mem, argp,
2950 sizeof(kvm_userspace_mem)))
2951 goto out;
2952
2953 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2954 break;
2955 }
2956 case KVM_GET_DIRTY_LOG: {
2957 struct kvm_dirty_log log;
2958
2959 r = -EFAULT;
2960 if (copy_from_user(&log, argp, sizeof(log)))
2961 goto out;
2962 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2963 break;
2964 }
2965 #ifdef CONFIG_KVM_MMIO
2966 case KVM_REGISTER_COALESCED_MMIO: {
2967 struct kvm_coalesced_mmio_zone zone;
2968
2969 r = -EFAULT;
2970 if (copy_from_user(&zone, argp, sizeof(zone)))
2971 goto out;
2972 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2973 break;
2974 }
2975 case KVM_UNREGISTER_COALESCED_MMIO: {
2976 struct kvm_coalesced_mmio_zone zone;
2977
2978 r = -EFAULT;
2979 if (copy_from_user(&zone, argp, sizeof(zone)))
2980 goto out;
2981 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2982 break;
2983 }
2984 #endif
2985 case KVM_IRQFD: {
2986 struct kvm_irqfd data;
2987
2988 r = -EFAULT;
2989 if (copy_from_user(&data, argp, sizeof(data)))
2990 goto out;
2991 r = kvm_irqfd(kvm, &data);
2992 break;
2993 }
2994 case KVM_IOEVENTFD: {
2995 struct kvm_ioeventfd data;
2996
2997 r = -EFAULT;
2998 if (copy_from_user(&data, argp, sizeof(data)))
2999 goto out;
3000 r = kvm_ioeventfd(kvm, &data);
3001 break;
3002 }
3003 #ifdef CONFIG_HAVE_KVM_MSI
3004 case KVM_SIGNAL_MSI: {
3005 struct kvm_msi msi;
3006
3007 r = -EFAULT;
3008 if (copy_from_user(&msi, argp, sizeof(msi)))
3009 goto out;
3010 r = kvm_send_userspace_msi(kvm, &msi);
3011 break;
3012 }
3013 #endif
3014 #ifdef __KVM_HAVE_IRQ_LINE
3015 case KVM_IRQ_LINE_STATUS:
3016 case KVM_IRQ_LINE: {
3017 struct kvm_irq_level irq_event;
3018
3019 r = -EFAULT;
3020 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3021 goto out;
3022
3023 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3024 ioctl == KVM_IRQ_LINE_STATUS);
3025 if (r)
3026 goto out;
3027
3028 r = -EFAULT;
3029 if (ioctl == KVM_IRQ_LINE_STATUS) {
3030 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3031 goto out;
3032 }
3033
3034 r = 0;
3035 break;
3036 }
3037 #endif
3038 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3039 case KVM_SET_GSI_ROUTING: {
3040 struct kvm_irq_routing routing;
3041 struct kvm_irq_routing __user *urouting;
3042 struct kvm_irq_routing_entry *entries = NULL;
3043
3044 r = -EFAULT;
3045 if (copy_from_user(&routing, argp, sizeof(routing)))
3046 goto out;
3047 r = -EINVAL;
3048 if (!kvm_arch_can_set_irq_routing(kvm))
3049 goto out;
3050 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3051 goto out;
3052 if (routing.flags)
3053 goto out;
3054 if (routing.nr) {
3055 r = -ENOMEM;
3056 entries = vmalloc(routing.nr * sizeof(*entries));
3057 if (!entries)
3058 goto out;
3059 r = -EFAULT;
3060 urouting = argp;
3061 if (copy_from_user(entries, urouting->entries,
3062 routing.nr * sizeof(*entries)))
3063 goto out_free_irq_routing;
3064 }
3065 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3066 routing.flags);
3067 out_free_irq_routing:
3068 vfree(entries);
3069 break;
3070 }
3071 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3072 case KVM_CREATE_DEVICE: {
3073 struct kvm_create_device cd;
3074
3075 r = -EFAULT;
3076 if (copy_from_user(&cd, argp, sizeof(cd)))
3077 goto out;
3078
3079 r = kvm_ioctl_create_device(kvm, &cd);
3080 if (r)
3081 goto out;
3082
3083 r = -EFAULT;
3084 if (copy_to_user(argp, &cd, sizeof(cd)))
3085 goto out;
3086
3087 r = 0;
3088 break;
3089 }
3090 case KVM_CHECK_EXTENSION:
3091 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3092 break;
3093 default:
3094 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3095 }
3096 out:
3097 return r;
3098 }
3099
3100 #ifdef CONFIG_KVM_COMPAT
3101 struct compat_kvm_dirty_log {
3102 __u32 slot;
3103 __u32 padding1;
3104 union {
3105 compat_uptr_t dirty_bitmap; /* one bit per page */
3106 __u64 padding2;
3107 };
3108 };
3109
3110 static long kvm_vm_compat_ioctl(struct file *filp,
3111 unsigned int ioctl, unsigned long arg)
3112 {
3113 struct kvm *kvm = filp->private_data;
3114 int r;
3115
3116 if (kvm->mm != current->mm)
3117 return -EIO;
3118 switch (ioctl) {
3119 case KVM_GET_DIRTY_LOG: {
3120 struct compat_kvm_dirty_log compat_log;
3121 struct kvm_dirty_log log;
3122
3123 if (copy_from_user(&compat_log, (void __user *)arg,
3124 sizeof(compat_log)))
3125 return -EFAULT;
3126 log.slot = compat_log.slot;
3127 log.padding1 = compat_log.padding1;
3128 log.padding2 = compat_log.padding2;
3129 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3130
3131 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3132 break;
3133 }
3134 default:
3135 r = kvm_vm_ioctl(filp, ioctl, arg);
3136 }
3137 return r;
3138 }
3139 #endif
3140
3141 static struct file_operations kvm_vm_fops = {
3142 .release = kvm_vm_release,
3143 .unlocked_ioctl = kvm_vm_ioctl,
3144 #ifdef CONFIG_KVM_COMPAT
3145 .compat_ioctl = kvm_vm_compat_ioctl,
3146 #endif
3147 .llseek = noop_llseek,
3148 };
3149
3150 static int kvm_dev_ioctl_create_vm(unsigned long type)
3151 {
3152 int r;
3153 struct kvm *kvm;
3154 struct file *file;
3155
3156 kvm = kvm_create_vm(type);
3157 if (IS_ERR(kvm))
3158 return PTR_ERR(kvm);
3159 #ifdef CONFIG_KVM_MMIO
3160 r = kvm_coalesced_mmio_init(kvm);
3161 if (r < 0) {
3162 kvm_put_kvm(kvm);
3163 return r;
3164 }
3165 #endif
3166 r = get_unused_fd_flags(O_CLOEXEC);
3167 if (r < 0) {
3168 kvm_put_kvm(kvm);
3169 return r;
3170 }
3171 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3172 if (IS_ERR(file)) {
3173 put_unused_fd(r);
3174 kvm_put_kvm(kvm);
3175 return PTR_ERR(file);
3176 }
3177
3178 /*
3179 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3180 * already set, with ->release() being kvm_vm_release(). In error
3181 * cases it will be called by the final fput(file) and will take
3182 * care of doing kvm_put_kvm(kvm).
3183 */
3184 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3185 put_unused_fd(r);
3186 fput(file);
3187 return -ENOMEM;
3188 }
3189 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3190
3191 fd_install(r, file);
3192 return r;
3193 }
3194
3195 static long kvm_dev_ioctl(struct file *filp,
3196 unsigned int ioctl, unsigned long arg)
3197 {
3198 long r = -EINVAL;
3199
3200 switch (ioctl) {
3201 case KVM_GET_API_VERSION:
3202 if (arg)
3203 goto out;
3204 r = KVM_API_VERSION;
3205 break;
3206 case KVM_CREATE_VM:
3207 r = kvm_dev_ioctl_create_vm(arg);
3208 break;
3209 case KVM_CHECK_EXTENSION:
3210 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3211 break;
3212 case KVM_GET_VCPU_MMAP_SIZE:
3213 if (arg)
3214 goto out;
3215 r = PAGE_SIZE; /* struct kvm_run */
3216 #ifdef CONFIG_X86
3217 r += PAGE_SIZE; /* pio data page */
3218 #endif
3219 #ifdef CONFIG_KVM_MMIO
3220 r += PAGE_SIZE; /* coalesced mmio ring page */
3221 #endif
3222 break;
3223 case KVM_TRACE_ENABLE:
3224 case KVM_TRACE_PAUSE:
3225 case KVM_TRACE_DISABLE:
3226 r = -EOPNOTSUPP;
3227 break;
3228 default:
3229 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3230 }
3231 out:
3232 return r;
3233 }
3234
3235 static struct file_operations kvm_chardev_ops = {
3236 .unlocked_ioctl = kvm_dev_ioctl,
3237 .compat_ioctl = kvm_dev_ioctl,
3238 .llseek = noop_llseek,
3239 };
3240
3241 static struct miscdevice kvm_dev = {
3242 KVM_MINOR,
3243 "kvm",
3244 &kvm_chardev_ops,
3245 };
3246
3247 static void hardware_enable_nolock(void *junk)
3248 {
3249 int cpu = raw_smp_processor_id();
3250 int r;
3251
3252 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3253 return;
3254
3255 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3256
3257 r = kvm_arch_hardware_enable();
3258
3259 if (r) {
3260 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3261 atomic_inc(&hardware_enable_failed);
3262 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3263 }
3264 }
3265
3266 static int kvm_starting_cpu(unsigned int cpu)
3267 {
3268 raw_spin_lock(&kvm_count_lock);
3269 if (kvm_usage_count)
3270 hardware_enable_nolock(NULL);
3271 raw_spin_unlock(&kvm_count_lock);
3272 return 0;
3273 }
3274
3275 static void hardware_disable_nolock(void *junk)
3276 {
3277 int cpu = raw_smp_processor_id();
3278
3279 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3280 return;
3281 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3282 kvm_arch_hardware_disable();
3283 }
3284
3285 static int kvm_dying_cpu(unsigned int cpu)
3286 {
3287 raw_spin_lock(&kvm_count_lock);
3288 if (kvm_usage_count)
3289 hardware_disable_nolock(NULL);
3290 raw_spin_unlock(&kvm_count_lock);
3291 return 0;
3292 }
3293
3294 static void hardware_disable_all_nolock(void)
3295 {
3296 BUG_ON(!kvm_usage_count);
3297
3298 kvm_usage_count--;
3299 if (!kvm_usage_count)
3300 on_each_cpu(hardware_disable_nolock, NULL, 1);
3301 }
3302
3303 static void hardware_disable_all(void)
3304 {
3305 raw_spin_lock(&kvm_count_lock);
3306 hardware_disable_all_nolock();
3307 raw_spin_unlock(&kvm_count_lock);
3308 }
3309
3310 static int hardware_enable_all(void)
3311 {
3312 int r = 0;
3313
3314 raw_spin_lock(&kvm_count_lock);
3315
3316 kvm_usage_count++;
3317 if (kvm_usage_count == 1) {
3318 atomic_set(&hardware_enable_failed, 0);
3319 on_each_cpu(hardware_enable_nolock, NULL, 1);
3320
3321 if (atomic_read(&hardware_enable_failed)) {
3322 hardware_disable_all_nolock();
3323 r = -EBUSY;
3324 }
3325 }
3326
3327 raw_spin_unlock(&kvm_count_lock);
3328
3329 return r;
3330 }
3331
3332 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3333 void *v)
3334 {
3335 /*
3336 * Some (well, at least mine) BIOSes hang on reboot if
3337 * in vmx root mode.
3338 *
3339 * And Intel TXT required VMX off for all cpu when system shutdown.
3340 */
3341 pr_info("kvm: exiting hardware virtualization\n");
3342 kvm_rebooting = true;
3343 on_each_cpu(hardware_disable_nolock, NULL, 1);
3344 return NOTIFY_OK;
3345 }
3346
3347 static struct notifier_block kvm_reboot_notifier = {
3348 .notifier_call = kvm_reboot,
3349 .priority = 0,
3350 };
3351
3352 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3353 {
3354 int i;
3355
3356 for (i = 0; i < bus->dev_count; i++) {
3357 struct kvm_io_device *pos = bus->range[i].dev;
3358
3359 kvm_iodevice_destructor(pos);
3360 }
3361 kfree(bus);
3362 }
3363
3364 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3365 const struct kvm_io_range *r2)
3366 {
3367 gpa_t addr1 = r1->addr;
3368 gpa_t addr2 = r2->addr;
3369
3370 if (addr1 < addr2)
3371 return -1;
3372
3373 /* If r2->len == 0, match the exact address. If r2->len != 0,
3374 * accept any overlapping write. Any order is acceptable for
3375 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3376 * we process all of them.
3377 */
3378 if (r2->len) {
3379 addr1 += r1->len;
3380 addr2 += r2->len;
3381 }
3382
3383 if (addr1 > addr2)
3384 return 1;
3385
3386 return 0;
3387 }
3388
3389 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3390 {
3391 return kvm_io_bus_cmp(p1, p2);
3392 }
3393
3394 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3395 gpa_t addr, int len)
3396 {
3397 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3398 .addr = addr,
3399 .len = len,
3400 .dev = dev,
3401 };
3402
3403 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3404 kvm_io_bus_sort_cmp, NULL);
3405
3406 return 0;
3407 }
3408
3409 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3410 gpa_t addr, int len)
3411 {
3412 struct kvm_io_range *range, key;
3413 int off;
3414
3415 key = (struct kvm_io_range) {
3416 .addr = addr,
3417 .len = len,
3418 };
3419
3420 range = bsearch(&key, bus->range, bus->dev_count,
3421 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3422 if (range == NULL)
3423 return -ENOENT;
3424
3425 off = range - bus->range;
3426
3427 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3428 off--;
3429
3430 return off;
3431 }
3432
3433 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3434 struct kvm_io_range *range, const void *val)
3435 {
3436 int idx;
3437
3438 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3439 if (idx < 0)
3440 return -EOPNOTSUPP;
3441
3442 while (idx < bus->dev_count &&
3443 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3444 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3445 range->len, val))
3446 return idx;
3447 idx++;
3448 }
3449
3450 return -EOPNOTSUPP;
3451 }
3452
3453 /* kvm_io_bus_write - called under kvm->slots_lock */
3454 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3455 int len, const void *val)
3456 {
3457 struct kvm_io_bus *bus;
3458 struct kvm_io_range range;
3459 int r;
3460
3461 range = (struct kvm_io_range) {
3462 .addr = addr,
3463 .len = len,
3464 };
3465
3466 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3467 if (!bus)
3468 return -ENOMEM;
3469 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3470 return r < 0 ? r : 0;
3471 }
3472
3473 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3474 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3475 gpa_t addr, int len, const void *val, long cookie)
3476 {
3477 struct kvm_io_bus *bus;
3478 struct kvm_io_range range;
3479
3480 range = (struct kvm_io_range) {
3481 .addr = addr,
3482 .len = len,
3483 };
3484
3485 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3486 if (!bus)
3487 return -ENOMEM;
3488
3489 /* First try the device referenced by cookie. */
3490 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3491 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3492 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3493 val))
3494 return cookie;
3495
3496 /*
3497 * cookie contained garbage; fall back to search and return the
3498 * correct cookie value.
3499 */
3500 return __kvm_io_bus_write(vcpu, bus, &range, val);
3501 }
3502
3503 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3504 struct kvm_io_range *range, void *val)
3505 {
3506 int idx;
3507
3508 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3509 if (idx < 0)
3510 return -EOPNOTSUPP;
3511
3512 while (idx < bus->dev_count &&
3513 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3514 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3515 range->len, val))
3516 return idx;
3517 idx++;
3518 }
3519
3520 return -EOPNOTSUPP;
3521 }
3522 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3523
3524 /* kvm_io_bus_read - called under kvm->slots_lock */
3525 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3526 int len, void *val)
3527 {
3528 struct kvm_io_bus *bus;
3529 struct kvm_io_range range;
3530 int r;
3531
3532 range = (struct kvm_io_range) {
3533 .addr = addr,
3534 .len = len,
3535 };
3536
3537 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3538 if (!bus)
3539 return -ENOMEM;
3540 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3541 return r < 0 ? r : 0;
3542 }
3543
3544
3545 /* Caller must hold slots_lock. */
3546 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3547 int len, struct kvm_io_device *dev)
3548 {
3549 struct kvm_io_bus *new_bus, *bus;
3550
3551 bus = kvm_get_bus(kvm, bus_idx);
3552 if (!bus)
3553 return -ENOMEM;
3554
3555 /* exclude ioeventfd which is limited by maximum fd */
3556 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3557 return -ENOSPC;
3558
3559 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3560 sizeof(struct kvm_io_range)), GFP_KERNEL);
3561 if (!new_bus)
3562 return -ENOMEM;
3563 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3564 sizeof(struct kvm_io_range)));
3565 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3566 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3567 synchronize_srcu_expedited(&kvm->srcu);
3568 kfree(bus);
3569
3570 return 0;
3571 }
3572
3573 /* Caller must hold slots_lock. */
3574 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3575 struct kvm_io_device *dev)
3576 {
3577 int i;
3578 struct kvm_io_bus *new_bus, *bus;
3579
3580 bus = kvm_get_bus(kvm, bus_idx);
3581 if (!bus)
3582 return;
3583
3584 for (i = 0; i < bus->dev_count; i++)
3585 if (bus->range[i].dev == dev) {
3586 break;
3587 }
3588
3589 if (i == bus->dev_count)
3590 return;
3591
3592 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3593 sizeof(struct kvm_io_range)), GFP_KERNEL);
3594 if (!new_bus) {
3595 pr_err("kvm: failed to shrink bus, removing it completely\n");
3596 goto broken;
3597 }
3598
3599 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3600 new_bus->dev_count--;
3601 memcpy(new_bus->range + i, bus->range + i + 1,
3602 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3603
3604 broken:
3605 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3606 synchronize_srcu_expedited(&kvm->srcu);
3607 kfree(bus);
3608 return;
3609 }
3610
3611 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3612 gpa_t addr)
3613 {
3614 struct kvm_io_bus *bus;
3615 int dev_idx, srcu_idx;
3616 struct kvm_io_device *iodev = NULL;
3617
3618 srcu_idx = srcu_read_lock(&kvm->srcu);
3619
3620 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3621 if (!bus)
3622 goto out_unlock;
3623
3624 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3625 if (dev_idx < 0)
3626 goto out_unlock;
3627
3628 iodev = bus->range[dev_idx].dev;
3629
3630 out_unlock:
3631 srcu_read_unlock(&kvm->srcu, srcu_idx);
3632
3633 return iodev;
3634 }
3635 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3636
3637 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3638 int (*get)(void *, u64 *), int (*set)(void *, u64),
3639 const char *fmt)
3640 {
3641 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3642 inode->i_private;
3643
3644 /* The debugfs files are a reference to the kvm struct which
3645 * is still valid when kvm_destroy_vm is called.
3646 * To avoid the race between open and the removal of the debugfs
3647 * directory we test against the users count.
3648 */
3649 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3650 return -ENOENT;
3651
3652 if (simple_attr_open(inode, file, get, set, fmt)) {
3653 kvm_put_kvm(stat_data->kvm);
3654 return -ENOMEM;
3655 }
3656
3657 return 0;
3658 }
3659
3660 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3661 {
3662 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3663 inode->i_private;
3664
3665 simple_attr_release(inode, file);
3666 kvm_put_kvm(stat_data->kvm);
3667
3668 return 0;
3669 }
3670
3671 static int vm_stat_get_per_vm(void *data, u64 *val)
3672 {
3673 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3674
3675 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3676
3677 return 0;
3678 }
3679
3680 static int vm_stat_clear_per_vm(void *data, u64 val)
3681 {
3682 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3683
3684 if (val)
3685 return -EINVAL;
3686
3687 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3688
3689 return 0;
3690 }
3691
3692 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3693 {
3694 __simple_attr_check_format("%llu\n", 0ull);
3695 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3696 vm_stat_clear_per_vm, "%llu\n");
3697 }
3698
3699 static const struct file_operations vm_stat_get_per_vm_fops = {
3700 .owner = THIS_MODULE,
3701 .open = vm_stat_get_per_vm_open,
3702 .release = kvm_debugfs_release,
3703 .read = simple_attr_read,
3704 .write = simple_attr_write,
3705 .llseek = no_llseek,
3706 };
3707
3708 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3709 {
3710 int i;
3711 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3712 struct kvm_vcpu *vcpu;
3713
3714 *val = 0;
3715
3716 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3717 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3718
3719 return 0;
3720 }
3721
3722 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3723 {
3724 int i;
3725 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3726 struct kvm_vcpu *vcpu;
3727
3728 if (val)
3729 return -EINVAL;
3730
3731 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3732 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3733
3734 return 0;
3735 }
3736
3737 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3738 {
3739 __simple_attr_check_format("%llu\n", 0ull);
3740 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3741 vcpu_stat_clear_per_vm, "%llu\n");
3742 }
3743
3744 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3745 .owner = THIS_MODULE,
3746 .open = vcpu_stat_get_per_vm_open,
3747 .release = kvm_debugfs_release,
3748 .read = simple_attr_read,
3749 .write = simple_attr_write,
3750 .llseek = no_llseek,
3751 };
3752
3753 static const struct file_operations *stat_fops_per_vm[] = {
3754 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3755 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3756 };
3757
3758 static int vm_stat_get(void *_offset, u64 *val)
3759 {
3760 unsigned offset = (long)_offset;
3761 struct kvm *kvm;
3762 struct kvm_stat_data stat_tmp = {.offset = offset};
3763 u64 tmp_val;
3764
3765 *val = 0;
3766 spin_lock(&kvm_lock);
3767 list_for_each_entry(kvm, &vm_list, vm_list) {
3768 stat_tmp.kvm = kvm;
3769 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3770 *val += tmp_val;
3771 }
3772 spin_unlock(&kvm_lock);
3773 return 0;
3774 }
3775
3776 static int vm_stat_clear(void *_offset, u64 val)
3777 {
3778 unsigned offset = (long)_offset;
3779 struct kvm *kvm;
3780 struct kvm_stat_data stat_tmp = {.offset = offset};
3781
3782 if (val)
3783 return -EINVAL;
3784
3785 spin_lock(&kvm_lock);
3786 list_for_each_entry(kvm, &vm_list, vm_list) {
3787 stat_tmp.kvm = kvm;
3788 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3789 }
3790 spin_unlock(&kvm_lock);
3791
3792 return 0;
3793 }
3794
3795 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3796
3797 static int vcpu_stat_get(void *_offset, u64 *val)
3798 {
3799 unsigned offset = (long)_offset;
3800 struct kvm *kvm;
3801 struct kvm_stat_data stat_tmp = {.offset = offset};
3802 u64 tmp_val;
3803
3804 *val = 0;
3805 spin_lock(&kvm_lock);
3806 list_for_each_entry(kvm, &vm_list, vm_list) {
3807 stat_tmp.kvm = kvm;
3808 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3809 *val += tmp_val;
3810 }
3811 spin_unlock(&kvm_lock);
3812 return 0;
3813 }
3814
3815 static int vcpu_stat_clear(void *_offset, u64 val)
3816 {
3817 unsigned offset = (long)_offset;
3818 struct kvm *kvm;
3819 struct kvm_stat_data stat_tmp = {.offset = offset};
3820
3821 if (val)
3822 return -EINVAL;
3823
3824 spin_lock(&kvm_lock);
3825 list_for_each_entry(kvm, &vm_list, vm_list) {
3826 stat_tmp.kvm = kvm;
3827 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3828 }
3829 spin_unlock(&kvm_lock);
3830
3831 return 0;
3832 }
3833
3834 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3835 "%llu\n");
3836
3837 static const struct file_operations *stat_fops[] = {
3838 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3839 [KVM_STAT_VM] = &vm_stat_fops,
3840 };
3841
3842 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3843 {
3844 struct kobj_uevent_env *env;
3845 unsigned long long created, active;
3846
3847 if (!kvm_dev.this_device || !kvm)
3848 return;
3849
3850 spin_lock(&kvm_lock);
3851 if (type == KVM_EVENT_CREATE_VM) {
3852 kvm_createvm_count++;
3853 kvm_active_vms++;
3854 } else if (type == KVM_EVENT_DESTROY_VM) {
3855 kvm_active_vms--;
3856 }
3857 created = kvm_createvm_count;
3858 active = kvm_active_vms;
3859 spin_unlock(&kvm_lock);
3860
3861 env = kzalloc(sizeof(*env), GFP_KERNEL);
3862 if (!env)
3863 return;
3864
3865 add_uevent_var(env, "CREATED=%llu", created);
3866 add_uevent_var(env, "COUNT=%llu", active);
3867
3868 if (type == KVM_EVENT_CREATE_VM) {
3869 add_uevent_var(env, "EVENT=create");
3870 kvm->userspace_pid = task_pid_nr(current);
3871 } else if (type == KVM_EVENT_DESTROY_VM) {
3872 add_uevent_var(env, "EVENT=destroy");
3873 }
3874 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3875
3876 if (kvm->debugfs_dentry) {
3877 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3878
3879 if (p) {
3880 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3881 if (!IS_ERR(tmp))
3882 add_uevent_var(env, "STATS_PATH=%s", tmp);
3883 kfree(p);
3884 }
3885 }
3886 /* no need for checks, since we are adding at most only 5 keys */
3887 env->envp[env->envp_idx++] = NULL;
3888 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3889 kfree(env);
3890 }
3891
3892 static int kvm_init_debug(void)
3893 {
3894 int r = -EEXIST;
3895 struct kvm_stats_debugfs_item *p;
3896
3897 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3898 if (kvm_debugfs_dir == NULL)
3899 goto out;
3900
3901 kvm_debugfs_num_entries = 0;
3902 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3903 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3904 (void *)(long)p->offset,
3905 stat_fops[p->kind]))
3906 goto out_dir;
3907 }
3908
3909 return 0;
3910
3911 out_dir:
3912 debugfs_remove_recursive(kvm_debugfs_dir);
3913 out:
3914 return r;
3915 }
3916
3917 static int kvm_suspend(void)
3918 {
3919 if (kvm_usage_count)
3920 hardware_disable_nolock(NULL);
3921 return 0;
3922 }
3923
3924 static void kvm_resume(void)
3925 {
3926 if (kvm_usage_count) {
3927 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3928 hardware_enable_nolock(NULL);
3929 }
3930 }
3931
3932 static struct syscore_ops kvm_syscore_ops = {
3933 .suspend = kvm_suspend,
3934 .resume = kvm_resume,
3935 };
3936
3937 static inline
3938 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3939 {
3940 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3941 }
3942
3943 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3944 {
3945 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3946
3947 if (vcpu->preempted)
3948 vcpu->preempted = false;
3949
3950 kvm_arch_sched_in(vcpu, cpu);
3951
3952 kvm_arch_vcpu_load(vcpu, cpu);
3953 }
3954
3955 static void kvm_sched_out(struct preempt_notifier *pn,
3956 struct task_struct *next)
3957 {
3958 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3959
3960 if (current->state == TASK_RUNNING)
3961 vcpu->preempted = true;
3962 kvm_arch_vcpu_put(vcpu);
3963 }
3964
3965 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3966 struct module *module)
3967 {
3968 int r;
3969 int cpu;
3970
3971 r = kvm_arch_init(opaque);
3972 if (r)
3973 goto out_fail;
3974
3975 /*
3976 * kvm_arch_init makes sure there's at most one caller
3977 * for architectures that support multiple implementations,
3978 * like intel and amd on x86.
3979 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3980 * conflicts in case kvm is already setup for another implementation.
3981 */
3982 r = kvm_irqfd_init();
3983 if (r)
3984 goto out_irqfd;
3985
3986 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3987 r = -ENOMEM;
3988 goto out_free_0;
3989 }
3990
3991 r = kvm_arch_hardware_setup();
3992 if (r < 0)
3993 goto out_free_0a;
3994
3995 for_each_online_cpu(cpu) {
3996 smp_call_function_single(cpu,
3997 kvm_arch_check_processor_compat,
3998 &r, 1);
3999 if (r < 0)
4000 goto out_free_1;
4001 }
4002
4003 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4004 kvm_starting_cpu, kvm_dying_cpu);
4005 if (r)
4006 goto out_free_2;
4007 register_reboot_notifier(&kvm_reboot_notifier);
4008
4009 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4010 if (!vcpu_align)
4011 vcpu_align = __alignof__(struct kvm_vcpu);
4012 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
4013 0, NULL);
4014 if (!kvm_vcpu_cache) {
4015 r = -ENOMEM;
4016 goto out_free_3;
4017 }
4018
4019 r = kvm_async_pf_init();
4020 if (r)
4021 goto out_free;
4022
4023 kvm_chardev_ops.owner = module;
4024 kvm_vm_fops.owner = module;
4025 kvm_vcpu_fops.owner = module;
4026
4027 r = misc_register(&kvm_dev);
4028 if (r) {
4029 pr_err("kvm: misc device register failed\n");
4030 goto out_unreg;
4031 }
4032
4033 register_syscore_ops(&kvm_syscore_ops);
4034
4035 kvm_preempt_ops.sched_in = kvm_sched_in;
4036 kvm_preempt_ops.sched_out = kvm_sched_out;
4037
4038 r = kvm_init_debug();
4039 if (r) {
4040 pr_err("kvm: create debugfs files failed\n");
4041 goto out_undebugfs;
4042 }
4043
4044 r = kvm_vfio_ops_init();
4045 WARN_ON(r);
4046
4047 return 0;
4048
4049 out_undebugfs:
4050 unregister_syscore_ops(&kvm_syscore_ops);
4051 misc_deregister(&kvm_dev);
4052 out_unreg:
4053 kvm_async_pf_deinit();
4054 out_free:
4055 kmem_cache_destroy(kvm_vcpu_cache);
4056 out_free_3:
4057 unregister_reboot_notifier(&kvm_reboot_notifier);
4058 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4059 out_free_2:
4060 out_free_1:
4061 kvm_arch_hardware_unsetup();
4062 out_free_0a:
4063 free_cpumask_var(cpus_hardware_enabled);
4064 out_free_0:
4065 kvm_irqfd_exit();
4066 out_irqfd:
4067 kvm_arch_exit();
4068 out_fail:
4069 return r;
4070 }
4071 EXPORT_SYMBOL_GPL(kvm_init);
4072
4073 void kvm_exit(void)
4074 {
4075 debugfs_remove_recursive(kvm_debugfs_dir);
4076 misc_deregister(&kvm_dev);
4077 kmem_cache_destroy(kvm_vcpu_cache);
4078 kvm_async_pf_deinit();
4079 unregister_syscore_ops(&kvm_syscore_ops);
4080 unregister_reboot_notifier(&kvm_reboot_notifier);
4081 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4082 on_each_cpu(hardware_disable_nolock, NULL, 1);
4083 kvm_arch_hardware_unsetup();
4084 kvm_arch_exit();
4085 kvm_irqfd_exit();
4086 free_cpumask_var(cpus_hardware_enabled);
4087 kvm_vfio_ops_exit();
4088 }
4089 EXPORT_SYMBOL_GPL(kvm_exit);