]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - virt/kvm/kvm_main.c
KVM: add missing compat KVM_CLEAR_DIRTY_LOG
[mirror_ubuntu-jammy-kernel.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "mmu_lock.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 #include <linux/kvm_dirty_ring.h>
69
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95
96 /*
97 * Ordering of locks:
98 *
99 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100 */
101
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109
110 static struct kmem_cache *kvm_vcpu_cache;
111
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117
118 static const struct file_operations stat_fops_per_vm;
119
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121 unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124 unsigned long arg);
125 #define KVM_COMPAT(c) .compat_ioctl = (c)
126 #else
127 /*
128 * For architectures that don't implement a compat infrastructure,
129 * adopt a double line of defense:
130 * - Prevent a compat task from opening /dev/kvm
131 * - If the open has been done by a 64bit task, and the KVM fd
132 * passed to a compat task, let the ioctls fail.
133 */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135 unsigned long arg) { return -EINVAL; }
136
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139 return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
142 .open = kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157
158 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
159 unsigned long start, unsigned long end)
160 {
161 }
162
163 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
164 {
165 /*
166 * The metadata used by is_zone_device_page() to determine whether or
167 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
168 * the device has been pinned, e.g. by get_user_pages(). WARN if the
169 * page_count() is zero to help detect bad usage of this helper.
170 */
171 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
172 return false;
173
174 return is_zone_device_page(pfn_to_page(pfn));
175 }
176
177 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
178 {
179 /*
180 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
181 * perspective they are "normal" pages, albeit with slightly different
182 * usage rules.
183 */
184 if (pfn_valid(pfn))
185 return PageReserved(pfn_to_page(pfn)) &&
186 !is_zero_pfn(pfn) &&
187 !kvm_is_zone_device_pfn(pfn);
188
189 return true;
190 }
191
192 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
193 {
194 struct page *page = pfn_to_page(pfn);
195
196 if (!PageTransCompoundMap(page))
197 return false;
198
199 return is_transparent_hugepage(compound_head(page));
200 }
201
202 /*
203 * Switches to specified vcpu, until a matching vcpu_put()
204 */
205 void vcpu_load(struct kvm_vcpu *vcpu)
206 {
207 int cpu = get_cpu();
208
209 __this_cpu_write(kvm_running_vcpu, vcpu);
210 preempt_notifier_register(&vcpu->preempt_notifier);
211 kvm_arch_vcpu_load(vcpu, cpu);
212 put_cpu();
213 }
214 EXPORT_SYMBOL_GPL(vcpu_load);
215
216 void vcpu_put(struct kvm_vcpu *vcpu)
217 {
218 preempt_disable();
219 kvm_arch_vcpu_put(vcpu);
220 preempt_notifier_unregister(&vcpu->preempt_notifier);
221 __this_cpu_write(kvm_running_vcpu, NULL);
222 preempt_enable();
223 }
224 EXPORT_SYMBOL_GPL(vcpu_put);
225
226 /* TODO: merge with kvm_arch_vcpu_should_kick */
227 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
228 {
229 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
230
231 /*
232 * We need to wait for the VCPU to reenable interrupts and get out of
233 * READING_SHADOW_PAGE_TABLES mode.
234 */
235 if (req & KVM_REQUEST_WAIT)
236 return mode != OUTSIDE_GUEST_MODE;
237
238 /*
239 * Need to kick a running VCPU, but otherwise there is nothing to do.
240 */
241 return mode == IN_GUEST_MODE;
242 }
243
244 static void ack_flush(void *_completed)
245 {
246 }
247
248 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
249 {
250 if (unlikely(!cpus))
251 cpus = cpu_online_mask;
252
253 if (cpumask_empty(cpus))
254 return false;
255
256 smp_call_function_many(cpus, ack_flush, NULL, wait);
257 return true;
258 }
259
260 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
261 struct kvm_vcpu *except,
262 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
263 {
264 int i, cpu, me;
265 struct kvm_vcpu *vcpu;
266 bool called;
267
268 me = get_cpu();
269
270 kvm_for_each_vcpu(i, vcpu, kvm) {
271 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
272 vcpu == except)
273 continue;
274
275 kvm_make_request(req, vcpu);
276 cpu = vcpu->cpu;
277
278 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
279 continue;
280
281 if (tmp != NULL && cpu != -1 && cpu != me &&
282 kvm_request_needs_ipi(vcpu, req))
283 __cpumask_set_cpu(cpu, tmp);
284 }
285
286 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
287 put_cpu();
288
289 return called;
290 }
291
292 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
293 struct kvm_vcpu *except)
294 {
295 cpumask_var_t cpus;
296 bool called;
297
298 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
299
300 called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
301
302 free_cpumask_var(cpus);
303 return called;
304 }
305
306 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
307 {
308 return kvm_make_all_cpus_request_except(kvm, req, NULL);
309 }
310 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
311
312 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
313 void kvm_flush_remote_tlbs(struct kvm *kvm)
314 {
315 /*
316 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
317 * kvm_make_all_cpus_request.
318 */
319 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
320
321 /*
322 * We want to publish modifications to the page tables before reading
323 * mode. Pairs with a memory barrier in arch-specific code.
324 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
325 * and smp_mb in walk_shadow_page_lockless_begin/end.
326 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
327 *
328 * There is already an smp_mb__after_atomic() before
329 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
330 * barrier here.
331 */
332 if (!kvm_arch_flush_remote_tlb(kvm)
333 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
334 ++kvm->stat.generic.remote_tlb_flush;
335 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
336 }
337 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
338 #endif
339
340 void kvm_reload_remote_mmus(struct kvm *kvm)
341 {
342 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
343 }
344
345 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
346 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
347 gfp_t gfp_flags)
348 {
349 gfp_flags |= mc->gfp_zero;
350
351 if (mc->kmem_cache)
352 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
353 else
354 return (void *)__get_free_page(gfp_flags);
355 }
356
357 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
358 {
359 void *obj;
360
361 if (mc->nobjs >= min)
362 return 0;
363 while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
364 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
365 if (!obj)
366 return mc->nobjs >= min ? 0 : -ENOMEM;
367 mc->objects[mc->nobjs++] = obj;
368 }
369 return 0;
370 }
371
372 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
373 {
374 return mc->nobjs;
375 }
376
377 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
378 {
379 while (mc->nobjs) {
380 if (mc->kmem_cache)
381 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
382 else
383 free_page((unsigned long)mc->objects[--mc->nobjs]);
384 }
385 }
386
387 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
388 {
389 void *p;
390
391 if (WARN_ON(!mc->nobjs))
392 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
393 else
394 p = mc->objects[--mc->nobjs];
395 BUG_ON(!p);
396 return p;
397 }
398 #endif
399
400 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
401 {
402 mutex_init(&vcpu->mutex);
403 vcpu->cpu = -1;
404 vcpu->kvm = kvm;
405 vcpu->vcpu_id = id;
406 vcpu->pid = NULL;
407 rcuwait_init(&vcpu->wait);
408 kvm_async_pf_vcpu_init(vcpu);
409
410 vcpu->pre_pcpu = -1;
411 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
412
413 kvm_vcpu_set_in_spin_loop(vcpu, false);
414 kvm_vcpu_set_dy_eligible(vcpu, false);
415 vcpu->preempted = false;
416 vcpu->ready = false;
417 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
418 }
419
420 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
421 {
422 kvm_dirty_ring_free(&vcpu->dirty_ring);
423 kvm_arch_vcpu_destroy(vcpu);
424
425 /*
426 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
427 * the vcpu->pid pointer, and at destruction time all file descriptors
428 * are already gone.
429 */
430 put_pid(rcu_dereference_protected(vcpu->pid, 1));
431
432 free_page((unsigned long)vcpu->run);
433 kmem_cache_free(kvm_vcpu_cache, vcpu);
434 }
435 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
436
437 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
438 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
439 {
440 return container_of(mn, struct kvm, mmu_notifier);
441 }
442
443 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
444 struct mm_struct *mm,
445 unsigned long start, unsigned long end)
446 {
447 struct kvm *kvm = mmu_notifier_to_kvm(mn);
448 int idx;
449
450 idx = srcu_read_lock(&kvm->srcu);
451 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
452 srcu_read_unlock(&kvm->srcu, idx);
453 }
454
455 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
456
457 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
458 unsigned long end);
459
460 struct kvm_hva_range {
461 unsigned long start;
462 unsigned long end;
463 pte_t pte;
464 hva_handler_t handler;
465 on_lock_fn_t on_lock;
466 bool flush_on_ret;
467 bool may_block;
468 };
469
470 /*
471 * Use a dedicated stub instead of NULL to indicate that there is no callback
472 * function/handler. The compiler technically can't guarantee that a real
473 * function will have a non-zero address, and so it will generate code to
474 * check for !NULL, whereas comparing against a stub will be elided at compile
475 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
476 */
477 static void kvm_null_fn(void)
478 {
479
480 }
481 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
482
483 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
484 const struct kvm_hva_range *range)
485 {
486 bool ret = false, locked = false;
487 struct kvm_gfn_range gfn_range;
488 struct kvm_memory_slot *slot;
489 struct kvm_memslots *slots;
490 int i, idx;
491
492 /* A null handler is allowed if and only if on_lock() is provided. */
493 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
494 IS_KVM_NULL_FN(range->handler)))
495 return 0;
496
497 idx = srcu_read_lock(&kvm->srcu);
498
499 /* The on_lock() path does not yet support lock elision. */
500 if (!IS_KVM_NULL_FN(range->on_lock)) {
501 locked = true;
502 KVM_MMU_LOCK(kvm);
503
504 range->on_lock(kvm, range->start, range->end);
505
506 if (IS_KVM_NULL_FN(range->handler))
507 goto out_unlock;
508 }
509
510 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
511 slots = __kvm_memslots(kvm, i);
512 kvm_for_each_memslot(slot, slots) {
513 unsigned long hva_start, hva_end;
514
515 hva_start = max(range->start, slot->userspace_addr);
516 hva_end = min(range->end, slot->userspace_addr +
517 (slot->npages << PAGE_SHIFT));
518 if (hva_start >= hva_end)
519 continue;
520
521 /*
522 * To optimize for the likely case where the address
523 * range is covered by zero or one memslots, don't
524 * bother making these conditional (to avoid writes on
525 * the second or later invocation of the handler).
526 */
527 gfn_range.pte = range->pte;
528 gfn_range.may_block = range->may_block;
529
530 /*
531 * {gfn(page) | page intersects with [hva_start, hva_end)} =
532 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
533 */
534 gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
535 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
536 gfn_range.slot = slot;
537
538 if (!locked) {
539 locked = true;
540 KVM_MMU_LOCK(kvm);
541 }
542 ret |= range->handler(kvm, &gfn_range);
543 }
544 }
545
546 if (range->flush_on_ret && (ret || kvm->tlbs_dirty))
547 kvm_flush_remote_tlbs(kvm);
548
549 out_unlock:
550 if (locked)
551 KVM_MMU_UNLOCK(kvm);
552
553 srcu_read_unlock(&kvm->srcu, idx);
554
555 /* The notifiers are averse to booleans. :-( */
556 return (int)ret;
557 }
558
559 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
560 unsigned long start,
561 unsigned long end,
562 pte_t pte,
563 hva_handler_t handler)
564 {
565 struct kvm *kvm = mmu_notifier_to_kvm(mn);
566 const struct kvm_hva_range range = {
567 .start = start,
568 .end = end,
569 .pte = pte,
570 .handler = handler,
571 .on_lock = (void *)kvm_null_fn,
572 .flush_on_ret = true,
573 .may_block = false,
574 };
575
576 return __kvm_handle_hva_range(kvm, &range);
577 }
578
579 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
580 unsigned long start,
581 unsigned long end,
582 hva_handler_t handler)
583 {
584 struct kvm *kvm = mmu_notifier_to_kvm(mn);
585 const struct kvm_hva_range range = {
586 .start = start,
587 .end = end,
588 .pte = __pte(0),
589 .handler = handler,
590 .on_lock = (void *)kvm_null_fn,
591 .flush_on_ret = false,
592 .may_block = false,
593 };
594
595 return __kvm_handle_hva_range(kvm, &range);
596 }
597 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
598 struct mm_struct *mm,
599 unsigned long address,
600 pte_t pte)
601 {
602 struct kvm *kvm = mmu_notifier_to_kvm(mn);
603
604 trace_kvm_set_spte_hva(address);
605
606 /*
607 * .change_pte() must be surrounded by .invalidate_range_{start,end}(),
608 * and so always runs with an elevated notifier count. This obviates
609 * the need to bump the sequence count.
610 */
611 WARN_ON_ONCE(!kvm->mmu_notifier_count);
612
613 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
614 }
615
616 static void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
617 unsigned long end)
618 {
619 /*
620 * The count increase must become visible at unlock time as no
621 * spte can be established without taking the mmu_lock and
622 * count is also read inside the mmu_lock critical section.
623 */
624 kvm->mmu_notifier_count++;
625 if (likely(kvm->mmu_notifier_count == 1)) {
626 kvm->mmu_notifier_range_start = start;
627 kvm->mmu_notifier_range_end = end;
628 } else {
629 /*
630 * Fully tracking multiple concurrent ranges has dimishing
631 * returns. Keep things simple and just find the minimal range
632 * which includes the current and new ranges. As there won't be
633 * enough information to subtract a range after its invalidate
634 * completes, any ranges invalidated concurrently will
635 * accumulate and persist until all outstanding invalidates
636 * complete.
637 */
638 kvm->mmu_notifier_range_start =
639 min(kvm->mmu_notifier_range_start, start);
640 kvm->mmu_notifier_range_end =
641 max(kvm->mmu_notifier_range_end, end);
642 }
643 }
644
645 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
646 const struct mmu_notifier_range *range)
647 {
648 struct kvm *kvm = mmu_notifier_to_kvm(mn);
649 const struct kvm_hva_range hva_range = {
650 .start = range->start,
651 .end = range->end,
652 .pte = __pte(0),
653 .handler = kvm_unmap_gfn_range,
654 .on_lock = kvm_inc_notifier_count,
655 .flush_on_ret = true,
656 .may_block = mmu_notifier_range_blockable(range),
657 };
658
659 trace_kvm_unmap_hva_range(range->start, range->end);
660
661 __kvm_handle_hva_range(kvm, &hva_range);
662
663 return 0;
664 }
665
666 static void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
667 unsigned long end)
668 {
669 /*
670 * This sequence increase will notify the kvm page fault that
671 * the page that is going to be mapped in the spte could have
672 * been freed.
673 */
674 kvm->mmu_notifier_seq++;
675 smp_wmb();
676 /*
677 * The above sequence increase must be visible before the
678 * below count decrease, which is ensured by the smp_wmb above
679 * in conjunction with the smp_rmb in mmu_notifier_retry().
680 */
681 kvm->mmu_notifier_count--;
682 }
683
684 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
685 const struct mmu_notifier_range *range)
686 {
687 struct kvm *kvm = mmu_notifier_to_kvm(mn);
688 const struct kvm_hva_range hva_range = {
689 .start = range->start,
690 .end = range->end,
691 .pte = __pte(0),
692 .handler = (void *)kvm_null_fn,
693 .on_lock = kvm_dec_notifier_count,
694 .flush_on_ret = false,
695 .may_block = mmu_notifier_range_blockable(range),
696 };
697
698 __kvm_handle_hva_range(kvm, &hva_range);
699
700 BUG_ON(kvm->mmu_notifier_count < 0);
701 }
702
703 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
704 struct mm_struct *mm,
705 unsigned long start,
706 unsigned long end)
707 {
708 trace_kvm_age_hva(start, end);
709
710 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
711 }
712
713 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
714 struct mm_struct *mm,
715 unsigned long start,
716 unsigned long end)
717 {
718 trace_kvm_age_hva(start, end);
719
720 /*
721 * Even though we do not flush TLB, this will still adversely
722 * affect performance on pre-Haswell Intel EPT, where there is
723 * no EPT Access Bit to clear so that we have to tear down EPT
724 * tables instead. If we find this unacceptable, we can always
725 * add a parameter to kvm_age_hva so that it effectively doesn't
726 * do anything on clear_young.
727 *
728 * Also note that currently we never issue secondary TLB flushes
729 * from clear_young, leaving this job up to the regular system
730 * cadence. If we find this inaccurate, we might come up with a
731 * more sophisticated heuristic later.
732 */
733 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
734 }
735
736 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
737 struct mm_struct *mm,
738 unsigned long address)
739 {
740 trace_kvm_test_age_hva(address);
741
742 return kvm_handle_hva_range_no_flush(mn, address, address + 1,
743 kvm_test_age_gfn);
744 }
745
746 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
747 struct mm_struct *mm)
748 {
749 struct kvm *kvm = mmu_notifier_to_kvm(mn);
750 int idx;
751
752 idx = srcu_read_lock(&kvm->srcu);
753 kvm_arch_flush_shadow_all(kvm);
754 srcu_read_unlock(&kvm->srcu, idx);
755 }
756
757 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
758 .invalidate_range = kvm_mmu_notifier_invalidate_range,
759 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
760 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
761 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
762 .clear_young = kvm_mmu_notifier_clear_young,
763 .test_young = kvm_mmu_notifier_test_young,
764 .change_pte = kvm_mmu_notifier_change_pte,
765 .release = kvm_mmu_notifier_release,
766 };
767
768 static int kvm_init_mmu_notifier(struct kvm *kvm)
769 {
770 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
771 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
772 }
773
774 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
775
776 static int kvm_init_mmu_notifier(struct kvm *kvm)
777 {
778 return 0;
779 }
780
781 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
782
783 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
784 static int kvm_pm_notifier_call(struct notifier_block *bl,
785 unsigned long state,
786 void *unused)
787 {
788 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
789
790 return kvm_arch_pm_notifier(kvm, state);
791 }
792
793 static void kvm_init_pm_notifier(struct kvm *kvm)
794 {
795 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
796 /* Suspend KVM before we suspend ftrace, RCU, etc. */
797 kvm->pm_notifier.priority = INT_MAX;
798 register_pm_notifier(&kvm->pm_notifier);
799 }
800
801 static void kvm_destroy_pm_notifier(struct kvm *kvm)
802 {
803 unregister_pm_notifier(&kvm->pm_notifier);
804 }
805 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
806 static void kvm_init_pm_notifier(struct kvm *kvm)
807 {
808 }
809
810 static void kvm_destroy_pm_notifier(struct kvm *kvm)
811 {
812 }
813 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
814
815 static struct kvm_memslots *kvm_alloc_memslots(void)
816 {
817 int i;
818 struct kvm_memslots *slots;
819
820 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
821 if (!slots)
822 return NULL;
823
824 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
825 slots->id_to_index[i] = -1;
826
827 return slots;
828 }
829
830 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
831 {
832 if (!memslot->dirty_bitmap)
833 return;
834
835 kvfree(memslot->dirty_bitmap);
836 memslot->dirty_bitmap = NULL;
837 }
838
839 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
840 {
841 kvm_destroy_dirty_bitmap(slot);
842
843 kvm_arch_free_memslot(kvm, slot);
844
845 slot->flags = 0;
846 slot->npages = 0;
847 }
848
849 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
850 {
851 struct kvm_memory_slot *memslot;
852
853 if (!slots)
854 return;
855
856 kvm_for_each_memslot(memslot, slots)
857 kvm_free_memslot(kvm, memslot);
858
859 kvfree(slots);
860 }
861
862 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
863 {
864 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
865 case KVM_STATS_TYPE_INSTANT:
866 return 0444;
867 case KVM_STATS_TYPE_CUMULATIVE:
868 case KVM_STATS_TYPE_PEAK:
869 default:
870 return 0644;
871 }
872 }
873
874
875 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
876 {
877 int i;
878 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
879 kvm_vcpu_stats_header.num_desc;
880
881 if (!kvm->debugfs_dentry)
882 return;
883
884 debugfs_remove_recursive(kvm->debugfs_dentry);
885
886 if (kvm->debugfs_stat_data) {
887 for (i = 0; i < kvm_debugfs_num_entries; i++)
888 kfree(kvm->debugfs_stat_data[i]);
889 kfree(kvm->debugfs_stat_data);
890 }
891 }
892
893 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
894 {
895 char dir_name[ITOA_MAX_LEN * 2];
896 struct kvm_stat_data *stat_data;
897 const struct _kvm_stats_desc *pdesc;
898 int i;
899 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
900 kvm_vcpu_stats_header.num_desc;
901
902 if (!debugfs_initialized())
903 return 0;
904
905 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
906 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
907
908 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
909 sizeof(*kvm->debugfs_stat_data),
910 GFP_KERNEL_ACCOUNT);
911 if (!kvm->debugfs_stat_data)
912 return -ENOMEM;
913
914 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
915 pdesc = &kvm_vm_stats_desc[i];
916 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
917 if (!stat_data)
918 return -ENOMEM;
919
920 stat_data->kvm = kvm;
921 stat_data->desc = pdesc;
922 stat_data->kind = KVM_STAT_VM;
923 kvm->debugfs_stat_data[i] = stat_data;
924 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
925 kvm->debugfs_dentry, stat_data,
926 &stat_fops_per_vm);
927 }
928
929 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
930 pdesc = &kvm_vcpu_stats_desc[i];
931 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
932 if (!stat_data)
933 return -ENOMEM;
934
935 stat_data->kvm = kvm;
936 stat_data->desc = pdesc;
937 stat_data->kind = KVM_STAT_VCPU;
938 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
939 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
940 kvm->debugfs_dentry, stat_data,
941 &stat_fops_per_vm);
942 }
943 return 0;
944 }
945
946 /*
947 * Called after the VM is otherwise initialized, but just before adding it to
948 * the vm_list.
949 */
950 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
951 {
952 return 0;
953 }
954
955 /*
956 * Called just after removing the VM from the vm_list, but before doing any
957 * other destruction.
958 */
959 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
960 {
961 }
962
963 static struct kvm *kvm_create_vm(unsigned long type)
964 {
965 struct kvm *kvm = kvm_arch_alloc_vm();
966 int r = -ENOMEM;
967 int i;
968
969 if (!kvm)
970 return ERR_PTR(-ENOMEM);
971
972 KVM_MMU_LOCK_INIT(kvm);
973 mmgrab(current->mm);
974 kvm->mm = current->mm;
975 kvm_eventfd_init(kvm);
976 mutex_init(&kvm->lock);
977 mutex_init(&kvm->irq_lock);
978 mutex_init(&kvm->slots_lock);
979 mutex_init(&kvm->slots_arch_lock);
980 INIT_LIST_HEAD(&kvm->devices);
981
982 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
983
984 if (init_srcu_struct(&kvm->srcu))
985 goto out_err_no_srcu;
986 if (init_srcu_struct(&kvm->irq_srcu))
987 goto out_err_no_irq_srcu;
988
989 refcount_set(&kvm->users_count, 1);
990 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
991 struct kvm_memslots *slots = kvm_alloc_memslots();
992
993 if (!slots)
994 goto out_err_no_arch_destroy_vm;
995 /* Generations must be different for each address space. */
996 slots->generation = i;
997 rcu_assign_pointer(kvm->memslots[i], slots);
998 }
999
1000 for (i = 0; i < KVM_NR_BUSES; i++) {
1001 rcu_assign_pointer(kvm->buses[i],
1002 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1003 if (!kvm->buses[i])
1004 goto out_err_no_arch_destroy_vm;
1005 }
1006
1007 kvm->max_halt_poll_ns = halt_poll_ns;
1008
1009 r = kvm_arch_init_vm(kvm, type);
1010 if (r)
1011 goto out_err_no_arch_destroy_vm;
1012
1013 r = hardware_enable_all();
1014 if (r)
1015 goto out_err_no_disable;
1016
1017 #ifdef CONFIG_HAVE_KVM_IRQFD
1018 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1019 #endif
1020
1021 r = kvm_init_mmu_notifier(kvm);
1022 if (r)
1023 goto out_err_no_mmu_notifier;
1024
1025 r = kvm_arch_post_init_vm(kvm);
1026 if (r)
1027 goto out_err;
1028
1029 mutex_lock(&kvm_lock);
1030 list_add(&kvm->vm_list, &vm_list);
1031 mutex_unlock(&kvm_lock);
1032
1033 preempt_notifier_inc();
1034 kvm_init_pm_notifier(kvm);
1035
1036 return kvm;
1037
1038 out_err:
1039 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1040 if (kvm->mmu_notifier.ops)
1041 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1042 #endif
1043 out_err_no_mmu_notifier:
1044 hardware_disable_all();
1045 out_err_no_disable:
1046 kvm_arch_destroy_vm(kvm);
1047 out_err_no_arch_destroy_vm:
1048 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1049 for (i = 0; i < KVM_NR_BUSES; i++)
1050 kfree(kvm_get_bus(kvm, i));
1051 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1052 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1053 cleanup_srcu_struct(&kvm->irq_srcu);
1054 out_err_no_irq_srcu:
1055 cleanup_srcu_struct(&kvm->srcu);
1056 out_err_no_srcu:
1057 kvm_arch_free_vm(kvm);
1058 mmdrop(current->mm);
1059 return ERR_PTR(r);
1060 }
1061
1062 static void kvm_destroy_devices(struct kvm *kvm)
1063 {
1064 struct kvm_device *dev, *tmp;
1065
1066 /*
1067 * We do not need to take the kvm->lock here, because nobody else
1068 * has a reference to the struct kvm at this point and therefore
1069 * cannot access the devices list anyhow.
1070 */
1071 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1072 list_del(&dev->vm_node);
1073 dev->ops->destroy(dev);
1074 }
1075 }
1076
1077 static void kvm_destroy_vm(struct kvm *kvm)
1078 {
1079 int i;
1080 struct mm_struct *mm = kvm->mm;
1081
1082 kvm_destroy_pm_notifier(kvm);
1083 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1084 kvm_destroy_vm_debugfs(kvm);
1085 kvm_arch_sync_events(kvm);
1086 mutex_lock(&kvm_lock);
1087 list_del(&kvm->vm_list);
1088 mutex_unlock(&kvm_lock);
1089 kvm_arch_pre_destroy_vm(kvm);
1090
1091 kvm_free_irq_routing(kvm);
1092 for (i = 0; i < KVM_NR_BUSES; i++) {
1093 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1094
1095 if (bus)
1096 kvm_io_bus_destroy(bus);
1097 kvm->buses[i] = NULL;
1098 }
1099 kvm_coalesced_mmio_free(kvm);
1100 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1101 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1102 #else
1103 kvm_arch_flush_shadow_all(kvm);
1104 #endif
1105 kvm_arch_destroy_vm(kvm);
1106 kvm_destroy_devices(kvm);
1107 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1108 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1109 cleanup_srcu_struct(&kvm->irq_srcu);
1110 cleanup_srcu_struct(&kvm->srcu);
1111 kvm_arch_free_vm(kvm);
1112 preempt_notifier_dec();
1113 hardware_disable_all();
1114 mmdrop(mm);
1115 }
1116
1117 void kvm_get_kvm(struct kvm *kvm)
1118 {
1119 refcount_inc(&kvm->users_count);
1120 }
1121 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1122
1123 void kvm_put_kvm(struct kvm *kvm)
1124 {
1125 if (refcount_dec_and_test(&kvm->users_count))
1126 kvm_destroy_vm(kvm);
1127 }
1128 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1129
1130 /*
1131 * Used to put a reference that was taken on behalf of an object associated
1132 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1133 * of the new file descriptor fails and the reference cannot be transferred to
1134 * its final owner. In such cases, the caller is still actively using @kvm and
1135 * will fail miserably if the refcount unexpectedly hits zero.
1136 */
1137 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1138 {
1139 WARN_ON(refcount_dec_and_test(&kvm->users_count));
1140 }
1141 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1142
1143 static int kvm_vm_release(struct inode *inode, struct file *filp)
1144 {
1145 struct kvm *kvm = filp->private_data;
1146
1147 kvm_irqfd_release(kvm);
1148
1149 kvm_put_kvm(kvm);
1150 return 0;
1151 }
1152
1153 /*
1154 * Allocation size is twice as large as the actual dirty bitmap size.
1155 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1156 */
1157 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1158 {
1159 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
1160
1161 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
1162 if (!memslot->dirty_bitmap)
1163 return -ENOMEM;
1164
1165 return 0;
1166 }
1167
1168 /*
1169 * Delete a memslot by decrementing the number of used slots and shifting all
1170 * other entries in the array forward one spot.
1171 */
1172 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
1173 struct kvm_memory_slot *memslot)
1174 {
1175 struct kvm_memory_slot *mslots = slots->memslots;
1176 int i;
1177
1178 if (WARN_ON(slots->id_to_index[memslot->id] == -1))
1179 return;
1180
1181 slots->used_slots--;
1182
1183 if (atomic_read(&slots->lru_slot) >= slots->used_slots)
1184 atomic_set(&slots->lru_slot, 0);
1185
1186 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
1187 mslots[i] = mslots[i + 1];
1188 slots->id_to_index[mslots[i].id] = i;
1189 }
1190 mslots[i] = *memslot;
1191 slots->id_to_index[memslot->id] = -1;
1192 }
1193
1194 /*
1195 * "Insert" a new memslot by incrementing the number of used slots. Returns
1196 * the new slot's initial index into the memslots array.
1197 */
1198 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
1199 {
1200 return slots->used_slots++;
1201 }
1202
1203 /*
1204 * Move a changed memslot backwards in the array by shifting existing slots
1205 * with a higher GFN toward the front of the array. Note, the changed memslot
1206 * itself is not preserved in the array, i.e. not swapped at this time, only
1207 * its new index into the array is tracked. Returns the changed memslot's
1208 * current index into the memslots array.
1209 */
1210 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
1211 struct kvm_memory_slot *memslot)
1212 {
1213 struct kvm_memory_slot *mslots = slots->memslots;
1214 int i;
1215
1216 if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
1217 WARN_ON_ONCE(!slots->used_slots))
1218 return -1;
1219
1220 /*
1221 * Move the target memslot backward in the array by shifting existing
1222 * memslots with a higher GFN (than the target memslot) towards the
1223 * front of the array.
1224 */
1225 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1226 if (memslot->base_gfn > mslots[i + 1].base_gfn)
1227 break;
1228
1229 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1230
1231 /* Shift the next memslot forward one and update its index. */
1232 mslots[i] = mslots[i + 1];
1233 slots->id_to_index[mslots[i].id] = i;
1234 }
1235 return i;
1236 }
1237
1238 /*
1239 * Move a changed memslot forwards in the array by shifting existing slots with
1240 * a lower GFN toward the back of the array. Note, the changed memslot itself
1241 * is not preserved in the array, i.e. not swapped at this time, only its new
1242 * index into the array is tracked. Returns the changed memslot's final index
1243 * into the memslots array.
1244 */
1245 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1246 struct kvm_memory_slot *memslot,
1247 int start)
1248 {
1249 struct kvm_memory_slot *mslots = slots->memslots;
1250 int i;
1251
1252 for (i = start; i > 0; i--) {
1253 if (memslot->base_gfn < mslots[i - 1].base_gfn)
1254 break;
1255
1256 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1257
1258 /* Shift the next memslot back one and update its index. */
1259 mslots[i] = mslots[i - 1];
1260 slots->id_to_index[mslots[i].id] = i;
1261 }
1262 return i;
1263 }
1264
1265 /*
1266 * Re-sort memslots based on their GFN to account for an added, deleted, or
1267 * moved memslot. Sorting memslots by GFN allows using a binary search during
1268 * memslot lookup.
1269 *
1270 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! I.e. the entry
1271 * at memslots[0] has the highest GFN.
1272 *
1273 * The sorting algorithm takes advantage of having initially sorted memslots
1274 * and knowing the position of the changed memslot. Sorting is also optimized
1275 * by not swapping the updated memslot and instead only shifting other memslots
1276 * and tracking the new index for the update memslot. Only once its final
1277 * index is known is the updated memslot copied into its position in the array.
1278 *
1279 * - When deleting a memslot, the deleted memslot simply needs to be moved to
1280 * the end of the array.
1281 *
1282 * - When creating a memslot, the algorithm "inserts" the new memslot at the
1283 * end of the array and then it forward to its correct location.
1284 *
1285 * - When moving a memslot, the algorithm first moves the updated memslot
1286 * backward to handle the scenario where the memslot's GFN was changed to a
1287 * lower value. update_memslots() then falls through and runs the same flow
1288 * as creating a memslot to move the memslot forward to handle the scenario
1289 * where its GFN was changed to a higher value.
1290 *
1291 * Note, slots are sorted from highest->lowest instead of lowest->highest for
1292 * historical reasons. Originally, invalid memslots where denoted by having
1293 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1294 * to the end of the array. The current algorithm uses dedicated logic to
1295 * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1296 *
1297 * The other historical motiviation for highest->lowest was to improve the
1298 * performance of memslot lookup. KVM originally used a linear search starting
1299 * at memslots[0]. On x86, the largest memslot usually has one of the highest,
1300 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1301 * single memslot above the 4gb boundary. As the largest memslot is also the
1302 * most likely to be referenced, sorting it to the front of the array was
1303 * advantageous. The current binary search starts from the middle of the array
1304 * and uses an LRU pointer to improve performance for all memslots and GFNs.
1305 */
1306 static void update_memslots(struct kvm_memslots *slots,
1307 struct kvm_memory_slot *memslot,
1308 enum kvm_mr_change change)
1309 {
1310 int i;
1311
1312 if (change == KVM_MR_DELETE) {
1313 kvm_memslot_delete(slots, memslot);
1314 } else {
1315 if (change == KVM_MR_CREATE)
1316 i = kvm_memslot_insert_back(slots);
1317 else
1318 i = kvm_memslot_move_backward(slots, memslot);
1319 i = kvm_memslot_move_forward(slots, memslot, i);
1320
1321 /*
1322 * Copy the memslot to its new position in memslots and update
1323 * its index accordingly.
1324 */
1325 slots->memslots[i] = *memslot;
1326 slots->id_to_index[memslot->id] = i;
1327 }
1328 }
1329
1330 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1331 {
1332 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1333
1334 #ifdef __KVM_HAVE_READONLY_MEM
1335 valid_flags |= KVM_MEM_READONLY;
1336 #endif
1337
1338 if (mem->flags & ~valid_flags)
1339 return -EINVAL;
1340
1341 return 0;
1342 }
1343
1344 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1345 int as_id, struct kvm_memslots *slots)
1346 {
1347 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1348 u64 gen = old_memslots->generation;
1349
1350 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1351 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1352
1353 rcu_assign_pointer(kvm->memslots[as_id], slots);
1354
1355 /*
1356 * Acquired in kvm_set_memslot. Must be released before synchronize
1357 * SRCU below in order to avoid deadlock with another thread
1358 * acquiring the slots_arch_lock in an srcu critical section.
1359 */
1360 mutex_unlock(&kvm->slots_arch_lock);
1361
1362 synchronize_srcu_expedited(&kvm->srcu);
1363
1364 /*
1365 * Increment the new memslot generation a second time, dropping the
1366 * update in-progress flag and incrementing the generation based on
1367 * the number of address spaces. This provides a unique and easily
1368 * identifiable generation number while the memslots are in flux.
1369 */
1370 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1371
1372 /*
1373 * Generations must be unique even across address spaces. We do not need
1374 * a global counter for that, instead the generation space is evenly split
1375 * across address spaces. For example, with two address spaces, address
1376 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1377 * use generations 1, 3, 5, ...
1378 */
1379 gen += KVM_ADDRESS_SPACE_NUM;
1380
1381 kvm_arch_memslots_updated(kvm, gen);
1382
1383 slots->generation = gen;
1384
1385 return old_memslots;
1386 }
1387
1388 static size_t kvm_memslots_size(int slots)
1389 {
1390 return sizeof(struct kvm_memslots) +
1391 (sizeof(struct kvm_memory_slot) * slots);
1392 }
1393
1394 static void kvm_copy_memslots(struct kvm_memslots *to,
1395 struct kvm_memslots *from)
1396 {
1397 memcpy(to, from, kvm_memslots_size(from->used_slots));
1398 }
1399
1400 /*
1401 * Note, at a minimum, the current number of used slots must be allocated, even
1402 * when deleting a memslot, as we need a complete duplicate of the memslots for
1403 * use when invalidating a memslot prior to deleting/moving the memslot.
1404 */
1405 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1406 enum kvm_mr_change change)
1407 {
1408 struct kvm_memslots *slots;
1409 size_t new_size;
1410
1411 if (change == KVM_MR_CREATE)
1412 new_size = kvm_memslots_size(old->used_slots + 1);
1413 else
1414 new_size = kvm_memslots_size(old->used_slots);
1415
1416 slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1417 if (likely(slots))
1418 kvm_copy_memslots(slots, old);
1419
1420 return slots;
1421 }
1422
1423 static int kvm_set_memslot(struct kvm *kvm,
1424 const struct kvm_userspace_memory_region *mem,
1425 struct kvm_memory_slot *old,
1426 struct kvm_memory_slot *new, int as_id,
1427 enum kvm_mr_change change)
1428 {
1429 struct kvm_memory_slot *slot;
1430 struct kvm_memslots *slots;
1431 int r;
1432
1433 /*
1434 * Released in install_new_memslots.
1435 *
1436 * Must be held from before the current memslots are copied until
1437 * after the new memslots are installed with rcu_assign_pointer,
1438 * then released before the synchronize srcu in install_new_memslots.
1439 *
1440 * When modifying memslots outside of the slots_lock, must be held
1441 * before reading the pointer to the current memslots until after all
1442 * changes to those memslots are complete.
1443 *
1444 * These rules ensure that installing new memslots does not lose
1445 * changes made to the previous memslots.
1446 */
1447 mutex_lock(&kvm->slots_arch_lock);
1448
1449 slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1450 if (!slots) {
1451 mutex_unlock(&kvm->slots_arch_lock);
1452 return -ENOMEM;
1453 }
1454
1455 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1456 /*
1457 * Note, the INVALID flag needs to be in the appropriate entry
1458 * in the freshly allocated memslots, not in @old or @new.
1459 */
1460 slot = id_to_memslot(slots, old->id);
1461 slot->flags |= KVM_MEMSLOT_INVALID;
1462
1463 /*
1464 * We can re-use the memory from the old memslots.
1465 * It will be overwritten with a copy of the new memslots
1466 * after reacquiring the slots_arch_lock below.
1467 */
1468 slots = install_new_memslots(kvm, as_id, slots);
1469
1470 /* From this point no new shadow pages pointing to a deleted,
1471 * or moved, memslot will be created.
1472 *
1473 * validation of sp->gfn happens in:
1474 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1475 * - kvm_is_visible_gfn (mmu_check_root)
1476 */
1477 kvm_arch_flush_shadow_memslot(kvm, slot);
1478
1479 /* Released in install_new_memslots. */
1480 mutex_lock(&kvm->slots_arch_lock);
1481
1482 /*
1483 * The arch-specific fields of the memslots could have changed
1484 * between releasing the slots_arch_lock in
1485 * install_new_memslots and here, so get a fresh copy of the
1486 * slots.
1487 */
1488 kvm_copy_memslots(slots, __kvm_memslots(kvm, as_id));
1489 }
1490
1491 r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1492 if (r)
1493 goto out_slots;
1494
1495 update_memslots(slots, new, change);
1496 slots = install_new_memslots(kvm, as_id, slots);
1497
1498 kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1499
1500 kvfree(slots);
1501 return 0;
1502
1503 out_slots:
1504 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1505 slot = id_to_memslot(slots, old->id);
1506 slot->flags &= ~KVM_MEMSLOT_INVALID;
1507 slots = install_new_memslots(kvm, as_id, slots);
1508 } else {
1509 mutex_unlock(&kvm->slots_arch_lock);
1510 }
1511 kvfree(slots);
1512 return r;
1513 }
1514
1515 static int kvm_delete_memslot(struct kvm *kvm,
1516 const struct kvm_userspace_memory_region *mem,
1517 struct kvm_memory_slot *old, int as_id)
1518 {
1519 struct kvm_memory_slot new;
1520 int r;
1521
1522 if (!old->npages)
1523 return -EINVAL;
1524
1525 memset(&new, 0, sizeof(new));
1526 new.id = old->id;
1527 /*
1528 * This is only for debugging purpose; it should never be referenced
1529 * for a removed memslot.
1530 */
1531 new.as_id = as_id;
1532
1533 r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1534 if (r)
1535 return r;
1536
1537 kvm_free_memslot(kvm, old);
1538 return 0;
1539 }
1540
1541 /*
1542 * Allocate some memory and give it an address in the guest physical address
1543 * space.
1544 *
1545 * Discontiguous memory is allowed, mostly for framebuffers.
1546 *
1547 * Must be called holding kvm->slots_lock for write.
1548 */
1549 int __kvm_set_memory_region(struct kvm *kvm,
1550 const struct kvm_userspace_memory_region *mem)
1551 {
1552 struct kvm_memory_slot old, new;
1553 struct kvm_memory_slot *tmp;
1554 enum kvm_mr_change change;
1555 int as_id, id;
1556 int r;
1557
1558 r = check_memory_region_flags(mem);
1559 if (r)
1560 return r;
1561
1562 as_id = mem->slot >> 16;
1563 id = (u16)mem->slot;
1564
1565 /* General sanity checks */
1566 if (mem->memory_size & (PAGE_SIZE - 1))
1567 return -EINVAL;
1568 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1569 return -EINVAL;
1570 /* We can read the guest memory with __xxx_user() later on. */
1571 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1572 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1573 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1574 mem->memory_size))
1575 return -EINVAL;
1576 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1577 return -EINVAL;
1578 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1579 return -EINVAL;
1580
1581 /*
1582 * Make a full copy of the old memslot, the pointer will become stale
1583 * when the memslots are re-sorted by update_memslots(), and the old
1584 * memslot needs to be referenced after calling update_memslots(), e.g.
1585 * to free its resources and for arch specific behavior.
1586 */
1587 tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1588 if (tmp) {
1589 old = *tmp;
1590 tmp = NULL;
1591 } else {
1592 memset(&old, 0, sizeof(old));
1593 old.id = id;
1594 }
1595
1596 if (!mem->memory_size)
1597 return kvm_delete_memslot(kvm, mem, &old, as_id);
1598
1599 new.as_id = as_id;
1600 new.id = id;
1601 new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1602 new.npages = mem->memory_size >> PAGE_SHIFT;
1603 new.flags = mem->flags;
1604 new.userspace_addr = mem->userspace_addr;
1605
1606 if (new.npages > KVM_MEM_MAX_NR_PAGES)
1607 return -EINVAL;
1608
1609 if (!old.npages) {
1610 change = KVM_MR_CREATE;
1611 new.dirty_bitmap = NULL;
1612 memset(&new.arch, 0, sizeof(new.arch));
1613 } else { /* Modify an existing slot. */
1614 if ((new.userspace_addr != old.userspace_addr) ||
1615 (new.npages != old.npages) ||
1616 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1617 return -EINVAL;
1618
1619 if (new.base_gfn != old.base_gfn)
1620 change = KVM_MR_MOVE;
1621 else if (new.flags != old.flags)
1622 change = KVM_MR_FLAGS_ONLY;
1623 else /* Nothing to change. */
1624 return 0;
1625
1626 /* Copy dirty_bitmap and arch from the current memslot. */
1627 new.dirty_bitmap = old.dirty_bitmap;
1628 memcpy(&new.arch, &old.arch, sizeof(new.arch));
1629 }
1630
1631 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1632 /* Check for overlaps */
1633 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1634 if (tmp->id == id)
1635 continue;
1636 if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1637 (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1638 return -EEXIST;
1639 }
1640 }
1641
1642 /* Allocate/free page dirty bitmap as needed */
1643 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1644 new.dirty_bitmap = NULL;
1645 else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
1646 r = kvm_alloc_dirty_bitmap(&new);
1647 if (r)
1648 return r;
1649
1650 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1651 bitmap_set(new.dirty_bitmap, 0, new.npages);
1652 }
1653
1654 r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1655 if (r)
1656 goto out_bitmap;
1657
1658 if (old.dirty_bitmap && !new.dirty_bitmap)
1659 kvm_destroy_dirty_bitmap(&old);
1660 return 0;
1661
1662 out_bitmap:
1663 if (new.dirty_bitmap && !old.dirty_bitmap)
1664 kvm_destroy_dirty_bitmap(&new);
1665 return r;
1666 }
1667 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1668
1669 int kvm_set_memory_region(struct kvm *kvm,
1670 const struct kvm_userspace_memory_region *mem)
1671 {
1672 int r;
1673
1674 mutex_lock(&kvm->slots_lock);
1675 r = __kvm_set_memory_region(kvm, mem);
1676 mutex_unlock(&kvm->slots_lock);
1677 return r;
1678 }
1679 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1680
1681 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1682 struct kvm_userspace_memory_region *mem)
1683 {
1684 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1685 return -EINVAL;
1686
1687 return kvm_set_memory_region(kvm, mem);
1688 }
1689
1690 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1691 /**
1692 * kvm_get_dirty_log - get a snapshot of dirty pages
1693 * @kvm: pointer to kvm instance
1694 * @log: slot id and address to which we copy the log
1695 * @is_dirty: set to '1' if any dirty pages were found
1696 * @memslot: set to the associated memslot, always valid on success
1697 */
1698 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1699 int *is_dirty, struct kvm_memory_slot **memslot)
1700 {
1701 struct kvm_memslots *slots;
1702 int i, as_id, id;
1703 unsigned long n;
1704 unsigned long any = 0;
1705
1706 /* Dirty ring tracking is exclusive to dirty log tracking */
1707 if (kvm->dirty_ring_size)
1708 return -ENXIO;
1709
1710 *memslot = NULL;
1711 *is_dirty = 0;
1712
1713 as_id = log->slot >> 16;
1714 id = (u16)log->slot;
1715 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1716 return -EINVAL;
1717
1718 slots = __kvm_memslots(kvm, as_id);
1719 *memslot = id_to_memslot(slots, id);
1720 if (!(*memslot) || !(*memslot)->dirty_bitmap)
1721 return -ENOENT;
1722
1723 kvm_arch_sync_dirty_log(kvm, *memslot);
1724
1725 n = kvm_dirty_bitmap_bytes(*memslot);
1726
1727 for (i = 0; !any && i < n/sizeof(long); ++i)
1728 any = (*memslot)->dirty_bitmap[i];
1729
1730 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1731 return -EFAULT;
1732
1733 if (any)
1734 *is_dirty = 1;
1735 return 0;
1736 }
1737 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1738
1739 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1740 /**
1741 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1742 * and reenable dirty page tracking for the corresponding pages.
1743 * @kvm: pointer to kvm instance
1744 * @log: slot id and address to which we copy the log
1745 *
1746 * We need to keep it in mind that VCPU threads can write to the bitmap
1747 * concurrently. So, to avoid losing track of dirty pages we keep the
1748 * following order:
1749 *
1750 * 1. Take a snapshot of the bit and clear it if needed.
1751 * 2. Write protect the corresponding page.
1752 * 3. Copy the snapshot to the userspace.
1753 * 4. Upon return caller flushes TLB's if needed.
1754 *
1755 * Between 2 and 4, the guest may write to the page using the remaining TLB
1756 * entry. This is not a problem because the page is reported dirty using
1757 * the snapshot taken before and step 4 ensures that writes done after
1758 * exiting to userspace will be logged for the next call.
1759 *
1760 */
1761 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1762 {
1763 struct kvm_memslots *slots;
1764 struct kvm_memory_slot *memslot;
1765 int i, as_id, id;
1766 unsigned long n;
1767 unsigned long *dirty_bitmap;
1768 unsigned long *dirty_bitmap_buffer;
1769 bool flush;
1770
1771 /* Dirty ring tracking is exclusive to dirty log tracking */
1772 if (kvm->dirty_ring_size)
1773 return -ENXIO;
1774
1775 as_id = log->slot >> 16;
1776 id = (u16)log->slot;
1777 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1778 return -EINVAL;
1779
1780 slots = __kvm_memslots(kvm, as_id);
1781 memslot = id_to_memslot(slots, id);
1782 if (!memslot || !memslot->dirty_bitmap)
1783 return -ENOENT;
1784
1785 dirty_bitmap = memslot->dirty_bitmap;
1786
1787 kvm_arch_sync_dirty_log(kvm, memslot);
1788
1789 n = kvm_dirty_bitmap_bytes(memslot);
1790 flush = false;
1791 if (kvm->manual_dirty_log_protect) {
1792 /*
1793 * Unlike kvm_get_dirty_log, we always return false in *flush,
1794 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
1795 * is some code duplication between this function and
1796 * kvm_get_dirty_log, but hopefully all architecture
1797 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1798 * can be eliminated.
1799 */
1800 dirty_bitmap_buffer = dirty_bitmap;
1801 } else {
1802 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1803 memset(dirty_bitmap_buffer, 0, n);
1804
1805 KVM_MMU_LOCK(kvm);
1806 for (i = 0; i < n / sizeof(long); i++) {
1807 unsigned long mask;
1808 gfn_t offset;
1809
1810 if (!dirty_bitmap[i])
1811 continue;
1812
1813 flush = true;
1814 mask = xchg(&dirty_bitmap[i], 0);
1815 dirty_bitmap_buffer[i] = mask;
1816
1817 offset = i * BITS_PER_LONG;
1818 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1819 offset, mask);
1820 }
1821 KVM_MMU_UNLOCK(kvm);
1822 }
1823
1824 if (flush)
1825 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1826
1827 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1828 return -EFAULT;
1829 return 0;
1830 }
1831
1832
1833 /**
1834 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1835 * @kvm: kvm instance
1836 * @log: slot id and address to which we copy the log
1837 *
1838 * Steps 1-4 below provide general overview of dirty page logging. See
1839 * kvm_get_dirty_log_protect() function description for additional details.
1840 *
1841 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1842 * always flush the TLB (step 4) even if previous step failed and the dirty
1843 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1844 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1845 * writes will be marked dirty for next log read.
1846 *
1847 * 1. Take a snapshot of the bit and clear it if needed.
1848 * 2. Write protect the corresponding page.
1849 * 3. Copy the snapshot to the userspace.
1850 * 4. Flush TLB's if needed.
1851 */
1852 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1853 struct kvm_dirty_log *log)
1854 {
1855 int r;
1856
1857 mutex_lock(&kvm->slots_lock);
1858
1859 r = kvm_get_dirty_log_protect(kvm, log);
1860
1861 mutex_unlock(&kvm->slots_lock);
1862 return r;
1863 }
1864
1865 /**
1866 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1867 * and reenable dirty page tracking for the corresponding pages.
1868 * @kvm: pointer to kvm instance
1869 * @log: slot id and address from which to fetch the bitmap of dirty pages
1870 */
1871 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1872 struct kvm_clear_dirty_log *log)
1873 {
1874 struct kvm_memslots *slots;
1875 struct kvm_memory_slot *memslot;
1876 int as_id, id;
1877 gfn_t offset;
1878 unsigned long i, n;
1879 unsigned long *dirty_bitmap;
1880 unsigned long *dirty_bitmap_buffer;
1881 bool flush;
1882
1883 /* Dirty ring tracking is exclusive to dirty log tracking */
1884 if (kvm->dirty_ring_size)
1885 return -ENXIO;
1886
1887 as_id = log->slot >> 16;
1888 id = (u16)log->slot;
1889 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1890 return -EINVAL;
1891
1892 if (log->first_page & 63)
1893 return -EINVAL;
1894
1895 slots = __kvm_memslots(kvm, as_id);
1896 memslot = id_to_memslot(slots, id);
1897 if (!memslot || !memslot->dirty_bitmap)
1898 return -ENOENT;
1899
1900 dirty_bitmap = memslot->dirty_bitmap;
1901
1902 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1903
1904 if (log->first_page > memslot->npages ||
1905 log->num_pages > memslot->npages - log->first_page ||
1906 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1907 return -EINVAL;
1908
1909 kvm_arch_sync_dirty_log(kvm, memslot);
1910
1911 flush = false;
1912 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1913 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1914 return -EFAULT;
1915
1916 KVM_MMU_LOCK(kvm);
1917 for (offset = log->first_page, i = offset / BITS_PER_LONG,
1918 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1919 i++, offset += BITS_PER_LONG) {
1920 unsigned long mask = *dirty_bitmap_buffer++;
1921 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1922 if (!mask)
1923 continue;
1924
1925 mask &= atomic_long_fetch_andnot(mask, p);
1926
1927 /*
1928 * mask contains the bits that really have been cleared. This
1929 * never includes any bits beyond the length of the memslot (if
1930 * the length is not aligned to 64 pages), therefore it is not
1931 * a problem if userspace sets them in log->dirty_bitmap.
1932 */
1933 if (mask) {
1934 flush = true;
1935 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1936 offset, mask);
1937 }
1938 }
1939 KVM_MMU_UNLOCK(kvm);
1940
1941 if (flush)
1942 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1943
1944 return 0;
1945 }
1946
1947 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1948 struct kvm_clear_dirty_log *log)
1949 {
1950 int r;
1951
1952 mutex_lock(&kvm->slots_lock);
1953
1954 r = kvm_clear_dirty_log_protect(kvm, log);
1955
1956 mutex_unlock(&kvm->slots_lock);
1957 return r;
1958 }
1959 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1960
1961 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1962 {
1963 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1964 }
1965 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1966
1967 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1968 {
1969 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1970 }
1971 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1972
1973 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1974 {
1975 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1976
1977 return kvm_is_visible_memslot(memslot);
1978 }
1979 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1980
1981 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1982 {
1983 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1984
1985 return kvm_is_visible_memslot(memslot);
1986 }
1987 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
1988
1989 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1990 {
1991 struct vm_area_struct *vma;
1992 unsigned long addr, size;
1993
1994 size = PAGE_SIZE;
1995
1996 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1997 if (kvm_is_error_hva(addr))
1998 return PAGE_SIZE;
1999
2000 mmap_read_lock(current->mm);
2001 vma = find_vma(current->mm, addr);
2002 if (!vma)
2003 goto out;
2004
2005 size = vma_kernel_pagesize(vma);
2006
2007 out:
2008 mmap_read_unlock(current->mm);
2009
2010 return size;
2011 }
2012
2013 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
2014 {
2015 return slot->flags & KVM_MEM_READONLY;
2016 }
2017
2018 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2019 gfn_t *nr_pages, bool write)
2020 {
2021 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2022 return KVM_HVA_ERR_BAD;
2023
2024 if (memslot_is_readonly(slot) && write)
2025 return KVM_HVA_ERR_RO_BAD;
2026
2027 if (nr_pages)
2028 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2029
2030 return __gfn_to_hva_memslot(slot, gfn);
2031 }
2032
2033 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2034 gfn_t *nr_pages)
2035 {
2036 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2037 }
2038
2039 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2040 gfn_t gfn)
2041 {
2042 return gfn_to_hva_many(slot, gfn, NULL);
2043 }
2044 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2045
2046 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2047 {
2048 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2049 }
2050 EXPORT_SYMBOL_GPL(gfn_to_hva);
2051
2052 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2053 {
2054 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2055 }
2056 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2057
2058 /*
2059 * Return the hva of a @gfn and the R/W attribute if possible.
2060 *
2061 * @slot: the kvm_memory_slot which contains @gfn
2062 * @gfn: the gfn to be translated
2063 * @writable: used to return the read/write attribute of the @slot if the hva
2064 * is valid and @writable is not NULL
2065 */
2066 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2067 gfn_t gfn, bool *writable)
2068 {
2069 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2070
2071 if (!kvm_is_error_hva(hva) && writable)
2072 *writable = !memslot_is_readonly(slot);
2073
2074 return hva;
2075 }
2076
2077 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2078 {
2079 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2080
2081 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2082 }
2083
2084 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2085 {
2086 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2087
2088 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2089 }
2090
2091 static inline int check_user_page_hwpoison(unsigned long addr)
2092 {
2093 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2094
2095 rc = get_user_pages(addr, 1, flags, NULL, NULL);
2096 return rc == -EHWPOISON;
2097 }
2098
2099 /*
2100 * The fast path to get the writable pfn which will be stored in @pfn,
2101 * true indicates success, otherwise false is returned. It's also the
2102 * only part that runs if we can in atomic context.
2103 */
2104 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2105 bool *writable, kvm_pfn_t *pfn)
2106 {
2107 struct page *page[1];
2108
2109 /*
2110 * Fast pin a writable pfn only if it is a write fault request
2111 * or the caller allows to map a writable pfn for a read fault
2112 * request.
2113 */
2114 if (!(write_fault || writable))
2115 return false;
2116
2117 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2118 *pfn = page_to_pfn(page[0]);
2119
2120 if (writable)
2121 *writable = true;
2122 return true;
2123 }
2124
2125 return false;
2126 }
2127
2128 /*
2129 * The slow path to get the pfn of the specified host virtual address,
2130 * 1 indicates success, -errno is returned if error is detected.
2131 */
2132 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2133 bool *writable, kvm_pfn_t *pfn)
2134 {
2135 unsigned int flags = FOLL_HWPOISON;
2136 struct page *page;
2137 int npages = 0;
2138
2139 might_sleep();
2140
2141 if (writable)
2142 *writable = write_fault;
2143
2144 if (write_fault)
2145 flags |= FOLL_WRITE;
2146 if (async)
2147 flags |= FOLL_NOWAIT;
2148
2149 npages = get_user_pages_unlocked(addr, 1, &page, flags);
2150 if (npages != 1)
2151 return npages;
2152
2153 /* map read fault as writable if possible */
2154 if (unlikely(!write_fault) && writable) {
2155 struct page *wpage;
2156
2157 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2158 *writable = true;
2159 put_page(page);
2160 page = wpage;
2161 }
2162 }
2163 *pfn = page_to_pfn(page);
2164 return npages;
2165 }
2166
2167 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2168 {
2169 if (unlikely(!(vma->vm_flags & VM_READ)))
2170 return false;
2171
2172 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2173 return false;
2174
2175 return true;
2176 }
2177
2178 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2179 {
2180 if (kvm_is_reserved_pfn(pfn))
2181 return 1;
2182 return get_page_unless_zero(pfn_to_page(pfn));
2183 }
2184
2185 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2186 unsigned long addr, bool *async,
2187 bool write_fault, bool *writable,
2188 kvm_pfn_t *p_pfn)
2189 {
2190 kvm_pfn_t pfn;
2191 pte_t *ptep;
2192 spinlock_t *ptl;
2193 int r;
2194
2195 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2196 if (r) {
2197 /*
2198 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2199 * not call the fault handler, so do it here.
2200 */
2201 bool unlocked = false;
2202 r = fixup_user_fault(current->mm, addr,
2203 (write_fault ? FAULT_FLAG_WRITE : 0),
2204 &unlocked);
2205 if (unlocked)
2206 return -EAGAIN;
2207 if (r)
2208 return r;
2209
2210 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2211 if (r)
2212 return r;
2213 }
2214
2215 if (write_fault && !pte_write(*ptep)) {
2216 pfn = KVM_PFN_ERR_RO_FAULT;
2217 goto out;
2218 }
2219
2220 if (writable)
2221 *writable = pte_write(*ptep);
2222 pfn = pte_pfn(*ptep);
2223
2224 /*
2225 * Get a reference here because callers of *hva_to_pfn* and
2226 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2227 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
2228 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
2229 * simply do nothing for reserved pfns.
2230 *
2231 * Whoever called remap_pfn_range is also going to call e.g.
2232 * unmap_mapping_range before the underlying pages are freed,
2233 * causing a call to our MMU notifier.
2234 *
2235 * Certain IO or PFNMAP mappings can be backed with valid
2236 * struct pages, but be allocated without refcounting e.g.,
2237 * tail pages of non-compound higher order allocations, which
2238 * would then underflow the refcount when the caller does the
2239 * required put_page. Don't allow those pages here.
2240 */
2241 if (!kvm_try_get_pfn(pfn))
2242 r = -EFAULT;
2243
2244 out:
2245 pte_unmap_unlock(ptep, ptl);
2246 *p_pfn = pfn;
2247
2248 return r;
2249 }
2250
2251 /*
2252 * Pin guest page in memory and return its pfn.
2253 * @addr: host virtual address which maps memory to the guest
2254 * @atomic: whether this function can sleep
2255 * @async: whether this function need to wait IO complete if the
2256 * host page is not in the memory
2257 * @write_fault: whether we should get a writable host page
2258 * @writable: whether it allows to map a writable host page for !@write_fault
2259 *
2260 * The function will map a writable host page for these two cases:
2261 * 1): @write_fault = true
2262 * 2): @write_fault = false && @writable, @writable will tell the caller
2263 * whether the mapping is writable.
2264 */
2265 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2266 bool write_fault, bool *writable)
2267 {
2268 struct vm_area_struct *vma;
2269 kvm_pfn_t pfn = 0;
2270 int npages, r;
2271
2272 /* we can do it either atomically or asynchronously, not both */
2273 BUG_ON(atomic && async);
2274
2275 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2276 return pfn;
2277
2278 if (atomic)
2279 return KVM_PFN_ERR_FAULT;
2280
2281 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2282 if (npages == 1)
2283 return pfn;
2284
2285 mmap_read_lock(current->mm);
2286 if (npages == -EHWPOISON ||
2287 (!async && check_user_page_hwpoison(addr))) {
2288 pfn = KVM_PFN_ERR_HWPOISON;
2289 goto exit;
2290 }
2291
2292 retry:
2293 vma = vma_lookup(current->mm, addr);
2294
2295 if (vma == NULL)
2296 pfn = KVM_PFN_ERR_FAULT;
2297 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2298 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2299 if (r == -EAGAIN)
2300 goto retry;
2301 if (r < 0)
2302 pfn = KVM_PFN_ERR_FAULT;
2303 } else {
2304 if (async && vma_is_valid(vma, write_fault))
2305 *async = true;
2306 pfn = KVM_PFN_ERR_FAULT;
2307 }
2308 exit:
2309 mmap_read_unlock(current->mm);
2310 return pfn;
2311 }
2312
2313 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2314 bool atomic, bool *async, bool write_fault,
2315 bool *writable, hva_t *hva)
2316 {
2317 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2318
2319 if (hva)
2320 *hva = addr;
2321
2322 if (addr == KVM_HVA_ERR_RO_BAD) {
2323 if (writable)
2324 *writable = false;
2325 return KVM_PFN_ERR_RO_FAULT;
2326 }
2327
2328 if (kvm_is_error_hva(addr)) {
2329 if (writable)
2330 *writable = false;
2331 return KVM_PFN_NOSLOT;
2332 }
2333
2334 /* Do not map writable pfn in the readonly memslot. */
2335 if (writable && memslot_is_readonly(slot)) {
2336 *writable = false;
2337 writable = NULL;
2338 }
2339
2340 return hva_to_pfn(addr, atomic, async, write_fault,
2341 writable);
2342 }
2343 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2344
2345 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2346 bool *writable)
2347 {
2348 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2349 write_fault, writable, NULL);
2350 }
2351 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2352
2353 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2354 {
2355 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2356 }
2357 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2358
2359 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2360 {
2361 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2362 }
2363 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2364
2365 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2366 {
2367 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2368 }
2369 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2370
2371 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2372 {
2373 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2374 }
2375 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2376
2377 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2378 {
2379 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2380 }
2381 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2382
2383 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2384 struct page **pages, int nr_pages)
2385 {
2386 unsigned long addr;
2387 gfn_t entry = 0;
2388
2389 addr = gfn_to_hva_many(slot, gfn, &entry);
2390 if (kvm_is_error_hva(addr))
2391 return -1;
2392
2393 if (entry < nr_pages)
2394 return 0;
2395
2396 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2397 }
2398 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2399
2400 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2401 {
2402 if (is_error_noslot_pfn(pfn))
2403 return KVM_ERR_PTR_BAD_PAGE;
2404
2405 if (kvm_is_reserved_pfn(pfn)) {
2406 WARN_ON(1);
2407 return KVM_ERR_PTR_BAD_PAGE;
2408 }
2409
2410 return pfn_to_page(pfn);
2411 }
2412
2413 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2414 {
2415 kvm_pfn_t pfn;
2416
2417 pfn = gfn_to_pfn(kvm, gfn);
2418
2419 return kvm_pfn_to_page(pfn);
2420 }
2421 EXPORT_SYMBOL_GPL(gfn_to_page);
2422
2423 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2424 {
2425 if (pfn == 0)
2426 return;
2427
2428 if (cache)
2429 cache->pfn = cache->gfn = 0;
2430
2431 if (dirty)
2432 kvm_release_pfn_dirty(pfn);
2433 else
2434 kvm_release_pfn_clean(pfn);
2435 }
2436
2437 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2438 struct gfn_to_pfn_cache *cache, u64 gen)
2439 {
2440 kvm_release_pfn(cache->pfn, cache->dirty, cache);
2441
2442 cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2443 cache->gfn = gfn;
2444 cache->dirty = false;
2445 cache->generation = gen;
2446 }
2447
2448 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2449 struct kvm_host_map *map,
2450 struct gfn_to_pfn_cache *cache,
2451 bool atomic)
2452 {
2453 kvm_pfn_t pfn;
2454 void *hva = NULL;
2455 struct page *page = KVM_UNMAPPED_PAGE;
2456 struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2457 u64 gen = slots->generation;
2458
2459 if (!map)
2460 return -EINVAL;
2461
2462 if (cache) {
2463 if (!cache->pfn || cache->gfn != gfn ||
2464 cache->generation != gen) {
2465 if (atomic)
2466 return -EAGAIN;
2467 kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2468 }
2469 pfn = cache->pfn;
2470 } else {
2471 if (atomic)
2472 return -EAGAIN;
2473 pfn = gfn_to_pfn_memslot(slot, gfn);
2474 }
2475 if (is_error_noslot_pfn(pfn))
2476 return -EINVAL;
2477
2478 if (pfn_valid(pfn)) {
2479 page = pfn_to_page(pfn);
2480 if (atomic)
2481 hva = kmap_atomic(page);
2482 else
2483 hva = kmap(page);
2484 #ifdef CONFIG_HAS_IOMEM
2485 } else if (!atomic) {
2486 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2487 } else {
2488 return -EINVAL;
2489 #endif
2490 }
2491
2492 if (!hva)
2493 return -EFAULT;
2494
2495 map->page = page;
2496 map->hva = hva;
2497 map->pfn = pfn;
2498 map->gfn = gfn;
2499
2500 return 0;
2501 }
2502
2503 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2504 struct gfn_to_pfn_cache *cache, bool atomic)
2505 {
2506 return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2507 cache, atomic);
2508 }
2509 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2510
2511 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2512 {
2513 return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2514 NULL, false);
2515 }
2516 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2517
2518 static void __kvm_unmap_gfn(struct kvm *kvm,
2519 struct kvm_memory_slot *memslot,
2520 struct kvm_host_map *map,
2521 struct gfn_to_pfn_cache *cache,
2522 bool dirty, bool atomic)
2523 {
2524 if (!map)
2525 return;
2526
2527 if (!map->hva)
2528 return;
2529
2530 if (map->page != KVM_UNMAPPED_PAGE) {
2531 if (atomic)
2532 kunmap_atomic(map->hva);
2533 else
2534 kunmap(map->page);
2535 }
2536 #ifdef CONFIG_HAS_IOMEM
2537 else if (!atomic)
2538 memunmap(map->hva);
2539 else
2540 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2541 #endif
2542
2543 if (dirty)
2544 mark_page_dirty_in_slot(kvm, memslot, map->gfn);
2545
2546 if (cache)
2547 cache->dirty |= dirty;
2548 else
2549 kvm_release_pfn(map->pfn, dirty, NULL);
2550
2551 map->hva = NULL;
2552 map->page = NULL;
2553 }
2554
2555 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2556 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2557 {
2558 __kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map,
2559 cache, dirty, atomic);
2560 return 0;
2561 }
2562 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2563
2564 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2565 {
2566 __kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn),
2567 map, NULL, dirty, false);
2568 }
2569 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2570
2571 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2572 {
2573 kvm_pfn_t pfn;
2574
2575 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2576
2577 return kvm_pfn_to_page(pfn);
2578 }
2579 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2580
2581 void kvm_release_page_clean(struct page *page)
2582 {
2583 WARN_ON(is_error_page(page));
2584
2585 kvm_release_pfn_clean(page_to_pfn(page));
2586 }
2587 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2588
2589 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2590 {
2591 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2592 put_page(pfn_to_page(pfn));
2593 }
2594 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2595
2596 void kvm_release_page_dirty(struct page *page)
2597 {
2598 WARN_ON(is_error_page(page));
2599
2600 kvm_release_pfn_dirty(page_to_pfn(page));
2601 }
2602 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2603
2604 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2605 {
2606 kvm_set_pfn_dirty(pfn);
2607 kvm_release_pfn_clean(pfn);
2608 }
2609 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2610
2611 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2612 {
2613 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2614 SetPageDirty(pfn_to_page(pfn));
2615 }
2616 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2617
2618 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2619 {
2620 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2621 mark_page_accessed(pfn_to_page(pfn));
2622 }
2623 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2624
2625 void kvm_get_pfn(kvm_pfn_t pfn)
2626 {
2627 if (!kvm_is_reserved_pfn(pfn))
2628 get_page(pfn_to_page(pfn));
2629 }
2630 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2631
2632 static int next_segment(unsigned long len, int offset)
2633 {
2634 if (len > PAGE_SIZE - offset)
2635 return PAGE_SIZE - offset;
2636 else
2637 return len;
2638 }
2639
2640 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2641 void *data, int offset, int len)
2642 {
2643 int r;
2644 unsigned long addr;
2645
2646 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2647 if (kvm_is_error_hva(addr))
2648 return -EFAULT;
2649 r = __copy_from_user(data, (void __user *)addr + offset, len);
2650 if (r)
2651 return -EFAULT;
2652 return 0;
2653 }
2654
2655 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2656 int len)
2657 {
2658 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2659
2660 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2661 }
2662 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2663
2664 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2665 int offset, int len)
2666 {
2667 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2668
2669 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2670 }
2671 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2672
2673 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2674 {
2675 gfn_t gfn = gpa >> PAGE_SHIFT;
2676 int seg;
2677 int offset = offset_in_page(gpa);
2678 int ret;
2679
2680 while ((seg = next_segment(len, offset)) != 0) {
2681 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2682 if (ret < 0)
2683 return ret;
2684 offset = 0;
2685 len -= seg;
2686 data += seg;
2687 ++gfn;
2688 }
2689 return 0;
2690 }
2691 EXPORT_SYMBOL_GPL(kvm_read_guest);
2692
2693 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2694 {
2695 gfn_t gfn = gpa >> PAGE_SHIFT;
2696 int seg;
2697 int offset = offset_in_page(gpa);
2698 int ret;
2699
2700 while ((seg = next_segment(len, offset)) != 0) {
2701 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2702 if (ret < 0)
2703 return ret;
2704 offset = 0;
2705 len -= seg;
2706 data += seg;
2707 ++gfn;
2708 }
2709 return 0;
2710 }
2711 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2712
2713 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2714 void *data, int offset, unsigned long len)
2715 {
2716 int r;
2717 unsigned long addr;
2718
2719 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2720 if (kvm_is_error_hva(addr))
2721 return -EFAULT;
2722 pagefault_disable();
2723 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2724 pagefault_enable();
2725 if (r)
2726 return -EFAULT;
2727 return 0;
2728 }
2729
2730 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2731 void *data, unsigned long len)
2732 {
2733 gfn_t gfn = gpa >> PAGE_SHIFT;
2734 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2735 int offset = offset_in_page(gpa);
2736
2737 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2738 }
2739 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2740
2741 static int __kvm_write_guest_page(struct kvm *kvm,
2742 struct kvm_memory_slot *memslot, gfn_t gfn,
2743 const void *data, int offset, int len)
2744 {
2745 int r;
2746 unsigned long addr;
2747
2748 addr = gfn_to_hva_memslot(memslot, gfn);
2749 if (kvm_is_error_hva(addr))
2750 return -EFAULT;
2751 r = __copy_to_user((void __user *)addr + offset, data, len);
2752 if (r)
2753 return -EFAULT;
2754 mark_page_dirty_in_slot(kvm, memslot, gfn);
2755 return 0;
2756 }
2757
2758 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2759 const void *data, int offset, int len)
2760 {
2761 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2762
2763 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2764 }
2765 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2766
2767 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2768 const void *data, int offset, int len)
2769 {
2770 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2771
2772 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2773 }
2774 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2775
2776 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2777 unsigned long len)
2778 {
2779 gfn_t gfn = gpa >> PAGE_SHIFT;
2780 int seg;
2781 int offset = offset_in_page(gpa);
2782 int ret;
2783
2784 while ((seg = next_segment(len, offset)) != 0) {
2785 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2786 if (ret < 0)
2787 return ret;
2788 offset = 0;
2789 len -= seg;
2790 data += seg;
2791 ++gfn;
2792 }
2793 return 0;
2794 }
2795 EXPORT_SYMBOL_GPL(kvm_write_guest);
2796
2797 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2798 unsigned long len)
2799 {
2800 gfn_t gfn = gpa >> PAGE_SHIFT;
2801 int seg;
2802 int offset = offset_in_page(gpa);
2803 int ret;
2804
2805 while ((seg = next_segment(len, offset)) != 0) {
2806 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2807 if (ret < 0)
2808 return ret;
2809 offset = 0;
2810 len -= seg;
2811 data += seg;
2812 ++gfn;
2813 }
2814 return 0;
2815 }
2816 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2817
2818 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2819 struct gfn_to_hva_cache *ghc,
2820 gpa_t gpa, unsigned long len)
2821 {
2822 int offset = offset_in_page(gpa);
2823 gfn_t start_gfn = gpa >> PAGE_SHIFT;
2824 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2825 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2826 gfn_t nr_pages_avail;
2827
2828 /* Update ghc->generation before performing any error checks. */
2829 ghc->generation = slots->generation;
2830
2831 if (start_gfn > end_gfn) {
2832 ghc->hva = KVM_HVA_ERR_BAD;
2833 return -EINVAL;
2834 }
2835
2836 /*
2837 * If the requested region crosses two memslots, we still
2838 * verify that the entire region is valid here.
2839 */
2840 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2841 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2842 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2843 &nr_pages_avail);
2844 if (kvm_is_error_hva(ghc->hva))
2845 return -EFAULT;
2846 }
2847
2848 /* Use the slow path for cross page reads and writes. */
2849 if (nr_pages_needed == 1)
2850 ghc->hva += offset;
2851 else
2852 ghc->memslot = NULL;
2853
2854 ghc->gpa = gpa;
2855 ghc->len = len;
2856 return 0;
2857 }
2858
2859 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2860 gpa_t gpa, unsigned long len)
2861 {
2862 struct kvm_memslots *slots = kvm_memslots(kvm);
2863 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2864 }
2865 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2866
2867 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2868 void *data, unsigned int offset,
2869 unsigned long len)
2870 {
2871 struct kvm_memslots *slots = kvm_memslots(kvm);
2872 int r;
2873 gpa_t gpa = ghc->gpa + offset;
2874
2875 BUG_ON(len + offset > ghc->len);
2876
2877 if (slots->generation != ghc->generation) {
2878 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2879 return -EFAULT;
2880 }
2881
2882 if (kvm_is_error_hva(ghc->hva))
2883 return -EFAULT;
2884
2885 if (unlikely(!ghc->memslot))
2886 return kvm_write_guest(kvm, gpa, data, len);
2887
2888 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2889 if (r)
2890 return -EFAULT;
2891 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
2892
2893 return 0;
2894 }
2895 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2896
2897 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2898 void *data, unsigned long len)
2899 {
2900 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2901 }
2902 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2903
2904 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2905 void *data, unsigned int offset,
2906 unsigned long len)
2907 {
2908 struct kvm_memslots *slots = kvm_memslots(kvm);
2909 int r;
2910 gpa_t gpa = ghc->gpa + offset;
2911
2912 BUG_ON(len + offset > ghc->len);
2913
2914 if (slots->generation != ghc->generation) {
2915 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2916 return -EFAULT;
2917 }
2918
2919 if (kvm_is_error_hva(ghc->hva))
2920 return -EFAULT;
2921
2922 if (unlikely(!ghc->memslot))
2923 return kvm_read_guest(kvm, gpa, data, len);
2924
2925 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2926 if (r)
2927 return -EFAULT;
2928
2929 return 0;
2930 }
2931 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2932
2933 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2934 void *data, unsigned long len)
2935 {
2936 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2937 }
2938 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2939
2940 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2941 {
2942 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2943 gfn_t gfn = gpa >> PAGE_SHIFT;
2944 int seg;
2945 int offset = offset_in_page(gpa);
2946 int ret;
2947
2948 while ((seg = next_segment(len, offset)) != 0) {
2949 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2950 if (ret < 0)
2951 return ret;
2952 offset = 0;
2953 len -= seg;
2954 ++gfn;
2955 }
2956 return 0;
2957 }
2958 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2959
2960 void mark_page_dirty_in_slot(struct kvm *kvm,
2961 struct kvm_memory_slot *memslot,
2962 gfn_t gfn)
2963 {
2964 if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
2965 unsigned long rel_gfn = gfn - memslot->base_gfn;
2966 u32 slot = (memslot->as_id << 16) | memslot->id;
2967
2968 if (kvm->dirty_ring_size)
2969 kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
2970 slot, rel_gfn);
2971 else
2972 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2973 }
2974 }
2975 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
2976
2977 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2978 {
2979 struct kvm_memory_slot *memslot;
2980
2981 memslot = gfn_to_memslot(kvm, gfn);
2982 mark_page_dirty_in_slot(kvm, memslot, gfn);
2983 }
2984 EXPORT_SYMBOL_GPL(mark_page_dirty);
2985
2986 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2987 {
2988 struct kvm_memory_slot *memslot;
2989
2990 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2991 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
2992 }
2993 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2994
2995 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2996 {
2997 if (!vcpu->sigset_active)
2998 return;
2999
3000 /*
3001 * This does a lockless modification of ->real_blocked, which is fine
3002 * because, only current can change ->real_blocked and all readers of
3003 * ->real_blocked don't care as long ->real_blocked is always a subset
3004 * of ->blocked.
3005 */
3006 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3007 }
3008
3009 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3010 {
3011 if (!vcpu->sigset_active)
3012 return;
3013
3014 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3015 sigemptyset(&current->real_blocked);
3016 }
3017
3018 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3019 {
3020 unsigned int old, val, grow, grow_start;
3021
3022 old = val = vcpu->halt_poll_ns;
3023 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3024 grow = READ_ONCE(halt_poll_ns_grow);
3025 if (!grow)
3026 goto out;
3027
3028 val *= grow;
3029 if (val < grow_start)
3030 val = grow_start;
3031
3032 if (val > vcpu->kvm->max_halt_poll_ns)
3033 val = vcpu->kvm->max_halt_poll_ns;
3034
3035 vcpu->halt_poll_ns = val;
3036 out:
3037 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3038 }
3039
3040 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3041 {
3042 unsigned int old, val, shrink;
3043
3044 old = val = vcpu->halt_poll_ns;
3045 shrink = READ_ONCE(halt_poll_ns_shrink);
3046 if (shrink == 0)
3047 val = 0;
3048 else
3049 val /= shrink;
3050
3051 vcpu->halt_poll_ns = val;
3052 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3053 }
3054
3055 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3056 {
3057 int ret = -EINTR;
3058 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3059
3060 if (kvm_arch_vcpu_runnable(vcpu)) {
3061 kvm_make_request(KVM_REQ_UNHALT, vcpu);
3062 goto out;
3063 }
3064 if (kvm_cpu_has_pending_timer(vcpu))
3065 goto out;
3066 if (signal_pending(current))
3067 goto out;
3068 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3069 goto out;
3070
3071 ret = 0;
3072 out:
3073 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3074 return ret;
3075 }
3076
3077 static inline void
3078 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
3079 {
3080 if (waited)
3081 vcpu->stat.generic.halt_poll_fail_ns += poll_ns;
3082 else
3083 vcpu->stat.generic.halt_poll_success_ns += poll_ns;
3084 }
3085
3086 /*
3087 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
3088 */
3089 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
3090 {
3091 ktime_t start, cur, poll_end;
3092 bool waited = false;
3093 u64 block_ns;
3094
3095 kvm_arch_vcpu_blocking(vcpu);
3096
3097 start = cur = poll_end = ktime_get();
3098 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
3099 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
3100
3101 ++vcpu->stat.generic.halt_attempted_poll;
3102 do {
3103 /*
3104 * This sets KVM_REQ_UNHALT if an interrupt
3105 * arrives.
3106 */
3107 if (kvm_vcpu_check_block(vcpu) < 0) {
3108 ++vcpu->stat.generic.halt_successful_poll;
3109 if (!vcpu_valid_wakeup(vcpu))
3110 ++vcpu->stat.generic.halt_poll_invalid;
3111 goto out;
3112 }
3113 cpu_relax();
3114 poll_end = cur = ktime_get();
3115 } while (kvm_vcpu_can_poll(cur, stop));
3116 }
3117
3118 prepare_to_rcuwait(&vcpu->wait);
3119 for (;;) {
3120 set_current_state(TASK_INTERRUPTIBLE);
3121
3122 if (kvm_vcpu_check_block(vcpu) < 0)
3123 break;
3124
3125 waited = true;
3126 schedule();
3127 }
3128 finish_rcuwait(&vcpu->wait);
3129 cur = ktime_get();
3130 out:
3131 kvm_arch_vcpu_unblocking(vcpu);
3132 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3133
3134 update_halt_poll_stats(
3135 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
3136
3137 if (!kvm_arch_no_poll(vcpu)) {
3138 if (!vcpu_valid_wakeup(vcpu)) {
3139 shrink_halt_poll_ns(vcpu);
3140 } else if (vcpu->kvm->max_halt_poll_ns) {
3141 if (block_ns <= vcpu->halt_poll_ns)
3142 ;
3143 /* we had a long block, shrink polling */
3144 else if (vcpu->halt_poll_ns &&
3145 block_ns > vcpu->kvm->max_halt_poll_ns)
3146 shrink_halt_poll_ns(vcpu);
3147 /* we had a short halt and our poll time is too small */
3148 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3149 block_ns < vcpu->kvm->max_halt_poll_ns)
3150 grow_halt_poll_ns(vcpu);
3151 } else {
3152 vcpu->halt_poll_ns = 0;
3153 }
3154 }
3155
3156 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
3157 kvm_arch_vcpu_block_finish(vcpu);
3158 }
3159 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
3160
3161 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3162 {
3163 struct rcuwait *waitp;
3164
3165 waitp = kvm_arch_vcpu_get_wait(vcpu);
3166 if (rcuwait_wake_up(waitp)) {
3167 WRITE_ONCE(vcpu->ready, true);
3168 ++vcpu->stat.generic.halt_wakeup;
3169 return true;
3170 }
3171
3172 return false;
3173 }
3174 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3175
3176 #ifndef CONFIG_S390
3177 /*
3178 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3179 */
3180 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3181 {
3182 int me;
3183 int cpu = vcpu->cpu;
3184
3185 if (kvm_vcpu_wake_up(vcpu))
3186 return;
3187
3188 me = get_cpu();
3189 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3190 if (kvm_arch_vcpu_should_kick(vcpu))
3191 smp_send_reschedule(cpu);
3192 put_cpu();
3193 }
3194 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3195 #endif /* !CONFIG_S390 */
3196
3197 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3198 {
3199 struct pid *pid;
3200 struct task_struct *task = NULL;
3201 int ret = 0;
3202
3203 rcu_read_lock();
3204 pid = rcu_dereference(target->pid);
3205 if (pid)
3206 task = get_pid_task(pid, PIDTYPE_PID);
3207 rcu_read_unlock();
3208 if (!task)
3209 return ret;
3210 ret = yield_to(task, 1);
3211 put_task_struct(task);
3212
3213 return ret;
3214 }
3215 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3216
3217 /*
3218 * Helper that checks whether a VCPU is eligible for directed yield.
3219 * Most eligible candidate to yield is decided by following heuristics:
3220 *
3221 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3222 * (preempted lock holder), indicated by @in_spin_loop.
3223 * Set at the beginning and cleared at the end of interception/PLE handler.
3224 *
3225 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3226 * chance last time (mostly it has become eligible now since we have probably
3227 * yielded to lockholder in last iteration. This is done by toggling
3228 * @dy_eligible each time a VCPU checked for eligibility.)
3229 *
3230 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3231 * to preempted lock-holder could result in wrong VCPU selection and CPU
3232 * burning. Giving priority for a potential lock-holder increases lock
3233 * progress.
3234 *
3235 * Since algorithm is based on heuristics, accessing another VCPU data without
3236 * locking does not harm. It may result in trying to yield to same VCPU, fail
3237 * and continue with next VCPU and so on.
3238 */
3239 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3240 {
3241 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3242 bool eligible;
3243
3244 eligible = !vcpu->spin_loop.in_spin_loop ||
3245 vcpu->spin_loop.dy_eligible;
3246
3247 if (vcpu->spin_loop.in_spin_loop)
3248 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3249
3250 return eligible;
3251 #else
3252 return true;
3253 #endif
3254 }
3255
3256 /*
3257 * Unlike kvm_arch_vcpu_runnable, this function is called outside
3258 * a vcpu_load/vcpu_put pair. However, for most architectures
3259 * kvm_arch_vcpu_runnable does not require vcpu_load.
3260 */
3261 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3262 {
3263 return kvm_arch_vcpu_runnable(vcpu);
3264 }
3265
3266 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3267 {
3268 if (kvm_arch_dy_runnable(vcpu))
3269 return true;
3270
3271 #ifdef CONFIG_KVM_ASYNC_PF
3272 if (!list_empty_careful(&vcpu->async_pf.done))
3273 return true;
3274 #endif
3275
3276 return false;
3277 }
3278
3279 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3280 {
3281 return false;
3282 }
3283
3284 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3285 {
3286 struct kvm *kvm = me->kvm;
3287 struct kvm_vcpu *vcpu;
3288 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3289 int yielded = 0;
3290 int try = 3;
3291 int pass;
3292 int i;
3293
3294 kvm_vcpu_set_in_spin_loop(me, true);
3295 /*
3296 * We boost the priority of a VCPU that is runnable but not
3297 * currently running, because it got preempted by something
3298 * else and called schedule in __vcpu_run. Hopefully that
3299 * VCPU is holding the lock that we need and will release it.
3300 * We approximate round-robin by starting at the last boosted VCPU.
3301 */
3302 for (pass = 0; pass < 2 && !yielded && try; pass++) {
3303 kvm_for_each_vcpu(i, vcpu, kvm) {
3304 if (!pass && i <= last_boosted_vcpu) {
3305 i = last_boosted_vcpu;
3306 continue;
3307 } else if (pass && i > last_boosted_vcpu)
3308 break;
3309 if (!READ_ONCE(vcpu->ready))
3310 continue;
3311 if (vcpu == me)
3312 continue;
3313 if (rcuwait_active(&vcpu->wait) &&
3314 !vcpu_dy_runnable(vcpu))
3315 continue;
3316 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3317 !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3318 !kvm_arch_vcpu_in_kernel(vcpu))
3319 continue;
3320 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3321 continue;
3322
3323 yielded = kvm_vcpu_yield_to(vcpu);
3324 if (yielded > 0) {
3325 kvm->last_boosted_vcpu = i;
3326 break;
3327 } else if (yielded < 0) {
3328 try--;
3329 if (!try)
3330 break;
3331 }
3332 }
3333 }
3334 kvm_vcpu_set_in_spin_loop(me, false);
3335
3336 /* Ensure vcpu is not eligible during next spinloop */
3337 kvm_vcpu_set_dy_eligible(me, false);
3338 }
3339 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3340
3341 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3342 {
3343 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3344 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3345 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3346 kvm->dirty_ring_size / PAGE_SIZE);
3347 #else
3348 return false;
3349 #endif
3350 }
3351
3352 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3353 {
3354 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3355 struct page *page;
3356
3357 if (vmf->pgoff == 0)
3358 page = virt_to_page(vcpu->run);
3359 #ifdef CONFIG_X86
3360 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3361 page = virt_to_page(vcpu->arch.pio_data);
3362 #endif
3363 #ifdef CONFIG_KVM_MMIO
3364 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3365 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3366 #endif
3367 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3368 page = kvm_dirty_ring_get_page(
3369 &vcpu->dirty_ring,
3370 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3371 else
3372 return kvm_arch_vcpu_fault(vcpu, vmf);
3373 get_page(page);
3374 vmf->page = page;
3375 return 0;
3376 }
3377
3378 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3379 .fault = kvm_vcpu_fault,
3380 };
3381
3382 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3383 {
3384 struct kvm_vcpu *vcpu = file->private_data;
3385 unsigned long pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3386
3387 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3388 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3389 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3390 return -EINVAL;
3391
3392 vma->vm_ops = &kvm_vcpu_vm_ops;
3393 return 0;
3394 }
3395
3396 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3397 {
3398 struct kvm_vcpu *vcpu = filp->private_data;
3399
3400 kvm_put_kvm(vcpu->kvm);
3401 return 0;
3402 }
3403
3404 static struct file_operations kvm_vcpu_fops = {
3405 .release = kvm_vcpu_release,
3406 .unlocked_ioctl = kvm_vcpu_ioctl,
3407 .mmap = kvm_vcpu_mmap,
3408 .llseek = noop_llseek,
3409 KVM_COMPAT(kvm_vcpu_compat_ioctl),
3410 };
3411
3412 /*
3413 * Allocates an inode for the vcpu.
3414 */
3415 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3416 {
3417 char name[8 + 1 + ITOA_MAX_LEN + 1];
3418
3419 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3420 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3421 }
3422
3423 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3424 {
3425 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3426 struct dentry *debugfs_dentry;
3427 char dir_name[ITOA_MAX_LEN * 2];
3428
3429 if (!debugfs_initialized())
3430 return;
3431
3432 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3433 debugfs_dentry = debugfs_create_dir(dir_name,
3434 vcpu->kvm->debugfs_dentry);
3435
3436 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3437 #endif
3438 }
3439
3440 /*
3441 * Creates some virtual cpus. Good luck creating more than one.
3442 */
3443 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3444 {
3445 int r;
3446 struct kvm_vcpu *vcpu;
3447 struct page *page;
3448
3449 if (id >= KVM_MAX_VCPU_ID)
3450 return -EINVAL;
3451
3452 mutex_lock(&kvm->lock);
3453 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3454 mutex_unlock(&kvm->lock);
3455 return -EINVAL;
3456 }
3457
3458 kvm->created_vcpus++;
3459 mutex_unlock(&kvm->lock);
3460
3461 r = kvm_arch_vcpu_precreate(kvm, id);
3462 if (r)
3463 goto vcpu_decrement;
3464
3465 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3466 if (!vcpu) {
3467 r = -ENOMEM;
3468 goto vcpu_decrement;
3469 }
3470
3471 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3472 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3473 if (!page) {
3474 r = -ENOMEM;
3475 goto vcpu_free;
3476 }
3477 vcpu->run = page_address(page);
3478
3479 kvm_vcpu_init(vcpu, kvm, id);
3480
3481 r = kvm_arch_vcpu_create(vcpu);
3482 if (r)
3483 goto vcpu_free_run_page;
3484
3485 if (kvm->dirty_ring_size) {
3486 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3487 id, kvm->dirty_ring_size);
3488 if (r)
3489 goto arch_vcpu_destroy;
3490 }
3491
3492 mutex_lock(&kvm->lock);
3493 if (kvm_get_vcpu_by_id(kvm, id)) {
3494 r = -EEXIST;
3495 goto unlock_vcpu_destroy;
3496 }
3497
3498 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3499 BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3500
3501 /* Fill the stats id string for the vcpu */
3502 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3503 task_pid_nr(current), id);
3504
3505 /* Now it's all set up, let userspace reach it */
3506 kvm_get_kvm(kvm);
3507 r = create_vcpu_fd(vcpu);
3508 if (r < 0) {
3509 kvm_put_kvm_no_destroy(kvm);
3510 goto unlock_vcpu_destroy;
3511 }
3512
3513 kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3514
3515 /*
3516 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
3517 * before kvm->online_vcpu's incremented value.
3518 */
3519 smp_wmb();
3520 atomic_inc(&kvm->online_vcpus);
3521
3522 mutex_unlock(&kvm->lock);
3523 kvm_arch_vcpu_postcreate(vcpu);
3524 kvm_create_vcpu_debugfs(vcpu);
3525 return r;
3526
3527 unlock_vcpu_destroy:
3528 mutex_unlock(&kvm->lock);
3529 kvm_dirty_ring_free(&vcpu->dirty_ring);
3530 arch_vcpu_destroy:
3531 kvm_arch_vcpu_destroy(vcpu);
3532 vcpu_free_run_page:
3533 free_page((unsigned long)vcpu->run);
3534 vcpu_free:
3535 kmem_cache_free(kvm_vcpu_cache, vcpu);
3536 vcpu_decrement:
3537 mutex_lock(&kvm->lock);
3538 kvm->created_vcpus--;
3539 mutex_unlock(&kvm->lock);
3540 return r;
3541 }
3542
3543 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3544 {
3545 if (sigset) {
3546 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3547 vcpu->sigset_active = 1;
3548 vcpu->sigset = *sigset;
3549 } else
3550 vcpu->sigset_active = 0;
3551 return 0;
3552 }
3553
3554 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3555 size_t size, loff_t *offset)
3556 {
3557 struct kvm_vcpu *vcpu = file->private_data;
3558
3559 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3560 &kvm_vcpu_stats_desc[0], &vcpu->stat,
3561 sizeof(vcpu->stat), user_buffer, size, offset);
3562 }
3563
3564 static const struct file_operations kvm_vcpu_stats_fops = {
3565 .read = kvm_vcpu_stats_read,
3566 .llseek = noop_llseek,
3567 };
3568
3569 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3570 {
3571 int fd;
3572 struct file *file;
3573 char name[15 + ITOA_MAX_LEN + 1];
3574
3575 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3576
3577 fd = get_unused_fd_flags(O_CLOEXEC);
3578 if (fd < 0)
3579 return fd;
3580
3581 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3582 if (IS_ERR(file)) {
3583 put_unused_fd(fd);
3584 return PTR_ERR(file);
3585 }
3586 file->f_mode |= FMODE_PREAD;
3587 fd_install(fd, file);
3588
3589 return fd;
3590 }
3591
3592 static long kvm_vcpu_ioctl(struct file *filp,
3593 unsigned int ioctl, unsigned long arg)
3594 {
3595 struct kvm_vcpu *vcpu = filp->private_data;
3596 void __user *argp = (void __user *)arg;
3597 int r;
3598 struct kvm_fpu *fpu = NULL;
3599 struct kvm_sregs *kvm_sregs = NULL;
3600
3601 if (vcpu->kvm->mm != current->mm)
3602 return -EIO;
3603
3604 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3605 return -EINVAL;
3606
3607 /*
3608 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3609 * execution; mutex_lock() would break them.
3610 */
3611 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3612 if (r != -ENOIOCTLCMD)
3613 return r;
3614
3615 if (mutex_lock_killable(&vcpu->mutex))
3616 return -EINTR;
3617 switch (ioctl) {
3618 case KVM_RUN: {
3619 struct pid *oldpid;
3620 r = -EINVAL;
3621 if (arg)
3622 goto out;
3623 oldpid = rcu_access_pointer(vcpu->pid);
3624 if (unlikely(oldpid != task_pid(current))) {
3625 /* The thread running this VCPU changed. */
3626 struct pid *newpid;
3627
3628 r = kvm_arch_vcpu_run_pid_change(vcpu);
3629 if (r)
3630 break;
3631
3632 newpid = get_task_pid(current, PIDTYPE_PID);
3633 rcu_assign_pointer(vcpu->pid, newpid);
3634 if (oldpid)
3635 synchronize_rcu();
3636 put_pid(oldpid);
3637 }
3638 r = kvm_arch_vcpu_ioctl_run(vcpu);
3639 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3640 break;
3641 }
3642 case KVM_GET_REGS: {
3643 struct kvm_regs *kvm_regs;
3644
3645 r = -ENOMEM;
3646 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3647 if (!kvm_regs)
3648 goto out;
3649 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3650 if (r)
3651 goto out_free1;
3652 r = -EFAULT;
3653 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3654 goto out_free1;
3655 r = 0;
3656 out_free1:
3657 kfree(kvm_regs);
3658 break;
3659 }
3660 case KVM_SET_REGS: {
3661 struct kvm_regs *kvm_regs;
3662
3663 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3664 if (IS_ERR(kvm_regs)) {
3665 r = PTR_ERR(kvm_regs);
3666 goto out;
3667 }
3668 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3669 kfree(kvm_regs);
3670 break;
3671 }
3672 case KVM_GET_SREGS: {
3673 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3674 GFP_KERNEL_ACCOUNT);
3675 r = -ENOMEM;
3676 if (!kvm_sregs)
3677 goto out;
3678 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3679 if (r)
3680 goto out;
3681 r = -EFAULT;
3682 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3683 goto out;
3684 r = 0;
3685 break;
3686 }
3687 case KVM_SET_SREGS: {
3688 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3689 if (IS_ERR(kvm_sregs)) {
3690 r = PTR_ERR(kvm_sregs);
3691 kvm_sregs = NULL;
3692 goto out;
3693 }
3694 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3695 break;
3696 }
3697 case KVM_GET_MP_STATE: {
3698 struct kvm_mp_state mp_state;
3699
3700 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3701 if (r)
3702 goto out;
3703 r = -EFAULT;
3704 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3705 goto out;
3706 r = 0;
3707 break;
3708 }
3709 case KVM_SET_MP_STATE: {
3710 struct kvm_mp_state mp_state;
3711
3712 r = -EFAULT;
3713 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3714 goto out;
3715 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3716 break;
3717 }
3718 case KVM_TRANSLATE: {
3719 struct kvm_translation tr;
3720
3721 r = -EFAULT;
3722 if (copy_from_user(&tr, argp, sizeof(tr)))
3723 goto out;
3724 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3725 if (r)
3726 goto out;
3727 r = -EFAULT;
3728 if (copy_to_user(argp, &tr, sizeof(tr)))
3729 goto out;
3730 r = 0;
3731 break;
3732 }
3733 case KVM_SET_GUEST_DEBUG: {
3734 struct kvm_guest_debug dbg;
3735
3736 r = -EFAULT;
3737 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3738 goto out;
3739 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3740 break;
3741 }
3742 case KVM_SET_SIGNAL_MASK: {
3743 struct kvm_signal_mask __user *sigmask_arg = argp;
3744 struct kvm_signal_mask kvm_sigmask;
3745 sigset_t sigset, *p;
3746
3747 p = NULL;
3748 if (argp) {
3749 r = -EFAULT;
3750 if (copy_from_user(&kvm_sigmask, argp,
3751 sizeof(kvm_sigmask)))
3752 goto out;
3753 r = -EINVAL;
3754 if (kvm_sigmask.len != sizeof(sigset))
3755 goto out;
3756 r = -EFAULT;
3757 if (copy_from_user(&sigset, sigmask_arg->sigset,
3758 sizeof(sigset)))
3759 goto out;
3760 p = &sigset;
3761 }
3762 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3763 break;
3764 }
3765 case KVM_GET_FPU: {
3766 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3767 r = -ENOMEM;
3768 if (!fpu)
3769 goto out;
3770 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3771 if (r)
3772 goto out;
3773 r = -EFAULT;
3774 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3775 goto out;
3776 r = 0;
3777 break;
3778 }
3779 case KVM_SET_FPU: {
3780 fpu = memdup_user(argp, sizeof(*fpu));
3781 if (IS_ERR(fpu)) {
3782 r = PTR_ERR(fpu);
3783 fpu = NULL;
3784 goto out;
3785 }
3786 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3787 break;
3788 }
3789 case KVM_GET_STATS_FD: {
3790 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
3791 break;
3792 }
3793 default:
3794 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3795 }
3796 out:
3797 mutex_unlock(&vcpu->mutex);
3798 kfree(fpu);
3799 kfree(kvm_sregs);
3800 return r;
3801 }
3802
3803 #ifdef CONFIG_KVM_COMPAT
3804 static long kvm_vcpu_compat_ioctl(struct file *filp,
3805 unsigned int ioctl, unsigned long arg)
3806 {
3807 struct kvm_vcpu *vcpu = filp->private_data;
3808 void __user *argp = compat_ptr(arg);
3809 int r;
3810
3811 if (vcpu->kvm->mm != current->mm)
3812 return -EIO;
3813
3814 switch (ioctl) {
3815 case KVM_SET_SIGNAL_MASK: {
3816 struct kvm_signal_mask __user *sigmask_arg = argp;
3817 struct kvm_signal_mask kvm_sigmask;
3818 sigset_t sigset;
3819
3820 if (argp) {
3821 r = -EFAULT;
3822 if (copy_from_user(&kvm_sigmask, argp,
3823 sizeof(kvm_sigmask)))
3824 goto out;
3825 r = -EINVAL;
3826 if (kvm_sigmask.len != sizeof(compat_sigset_t))
3827 goto out;
3828 r = -EFAULT;
3829 if (get_compat_sigset(&sigset,
3830 (compat_sigset_t __user *)sigmask_arg->sigset))
3831 goto out;
3832 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3833 } else
3834 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3835 break;
3836 }
3837 default:
3838 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3839 }
3840
3841 out:
3842 return r;
3843 }
3844 #endif
3845
3846 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3847 {
3848 struct kvm_device *dev = filp->private_data;
3849
3850 if (dev->ops->mmap)
3851 return dev->ops->mmap(dev, vma);
3852
3853 return -ENODEV;
3854 }
3855
3856 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3857 int (*accessor)(struct kvm_device *dev,
3858 struct kvm_device_attr *attr),
3859 unsigned long arg)
3860 {
3861 struct kvm_device_attr attr;
3862
3863 if (!accessor)
3864 return -EPERM;
3865
3866 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3867 return -EFAULT;
3868
3869 return accessor(dev, &attr);
3870 }
3871
3872 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3873 unsigned long arg)
3874 {
3875 struct kvm_device *dev = filp->private_data;
3876
3877 if (dev->kvm->mm != current->mm)
3878 return -EIO;
3879
3880 switch (ioctl) {
3881 case KVM_SET_DEVICE_ATTR:
3882 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3883 case KVM_GET_DEVICE_ATTR:
3884 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3885 case KVM_HAS_DEVICE_ATTR:
3886 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3887 default:
3888 if (dev->ops->ioctl)
3889 return dev->ops->ioctl(dev, ioctl, arg);
3890
3891 return -ENOTTY;
3892 }
3893 }
3894
3895 static int kvm_device_release(struct inode *inode, struct file *filp)
3896 {
3897 struct kvm_device *dev = filp->private_data;
3898 struct kvm *kvm = dev->kvm;
3899
3900 if (dev->ops->release) {
3901 mutex_lock(&kvm->lock);
3902 list_del(&dev->vm_node);
3903 dev->ops->release(dev);
3904 mutex_unlock(&kvm->lock);
3905 }
3906
3907 kvm_put_kvm(kvm);
3908 return 0;
3909 }
3910
3911 static const struct file_operations kvm_device_fops = {
3912 .unlocked_ioctl = kvm_device_ioctl,
3913 .release = kvm_device_release,
3914 KVM_COMPAT(kvm_device_ioctl),
3915 .mmap = kvm_device_mmap,
3916 };
3917
3918 struct kvm_device *kvm_device_from_filp(struct file *filp)
3919 {
3920 if (filp->f_op != &kvm_device_fops)
3921 return NULL;
3922
3923 return filp->private_data;
3924 }
3925
3926 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3927 #ifdef CONFIG_KVM_MPIC
3928 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
3929 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
3930 #endif
3931 };
3932
3933 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3934 {
3935 if (type >= ARRAY_SIZE(kvm_device_ops_table))
3936 return -ENOSPC;
3937
3938 if (kvm_device_ops_table[type] != NULL)
3939 return -EEXIST;
3940
3941 kvm_device_ops_table[type] = ops;
3942 return 0;
3943 }
3944
3945 void kvm_unregister_device_ops(u32 type)
3946 {
3947 if (kvm_device_ops_table[type] != NULL)
3948 kvm_device_ops_table[type] = NULL;
3949 }
3950
3951 static int kvm_ioctl_create_device(struct kvm *kvm,
3952 struct kvm_create_device *cd)
3953 {
3954 const struct kvm_device_ops *ops = NULL;
3955 struct kvm_device *dev;
3956 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3957 int type;
3958 int ret;
3959
3960 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3961 return -ENODEV;
3962
3963 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3964 ops = kvm_device_ops_table[type];
3965 if (ops == NULL)
3966 return -ENODEV;
3967
3968 if (test)
3969 return 0;
3970
3971 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3972 if (!dev)
3973 return -ENOMEM;
3974
3975 dev->ops = ops;
3976 dev->kvm = kvm;
3977
3978 mutex_lock(&kvm->lock);
3979 ret = ops->create(dev, type);
3980 if (ret < 0) {
3981 mutex_unlock(&kvm->lock);
3982 kfree(dev);
3983 return ret;
3984 }
3985 list_add(&dev->vm_node, &kvm->devices);
3986 mutex_unlock(&kvm->lock);
3987
3988 if (ops->init)
3989 ops->init(dev);
3990
3991 kvm_get_kvm(kvm);
3992 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3993 if (ret < 0) {
3994 kvm_put_kvm_no_destroy(kvm);
3995 mutex_lock(&kvm->lock);
3996 list_del(&dev->vm_node);
3997 mutex_unlock(&kvm->lock);
3998 ops->destroy(dev);
3999 return ret;
4000 }
4001
4002 cd->fd = ret;
4003 return 0;
4004 }
4005
4006 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4007 {
4008 switch (arg) {
4009 case KVM_CAP_USER_MEMORY:
4010 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4011 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4012 case KVM_CAP_INTERNAL_ERROR_DATA:
4013 #ifdef CONFIG_HAVE_KVM_MSI
4014 case KVM_CAP_SIGNAL_MSI:
4015 #endif
4016 #ifdef CONFIG_HAVE_KVM_IRQFD
4017 case KVM_CAP_IRQFD:
4018 case KVM_CAP_IRQFD_RESAMPLE:
4019 #endif
4020 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4021 case KVM_CAP_CHECK_EXTENSION_VM:
4022 case KVM_CAP_ENABLE_CAP_VM:
4023 case KVM_CAP_HALT_POLL:
4024 return 1;
4025 #ifdef CONFIG_KVM_MMIO
4026 case KVM_CAP_COALESCED_MMIO:
4027 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4028 case KVM_CAP_COALESCED_PIO:
4029 return 1;
4030 #endif
4031 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4032 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4033 return KVM_DIRTY_LOG_MANUAL_CAPS;
4034 #endif
4035 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4036 case KVM_CAP_IRQ_ROUTING:
4037 return KVM_MAX_IRQ_ROUTES;
4038 #endif
4039 #if KVM_ADDRESS_SPACE_NUM > 1
4040 case KVM_CAP_MULTI_ADDRESS_SPACE:
4041 return KVM_ADDRESS_SPACE_NUM;
4042 #endif
4043 case KVM_CAP_NR_MEMSLOTS:
4044 return KVM_USER_MEM_SLOTS;
4045 case KVM_CAP_DIRTY_LOG_RING:
4046 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
4047 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4048 #else
4049 return 0;
4050 #endif
4051 case KVM_CAP_BINARY_STATS_FD:
4052 return 1;
4053 default:
4054 break;
4055 }
4056 return kvm_vm_ioctl_check_extension(kvm, arg);
4057 }
4058
4059 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4060 {
4061 int r;
4062
4063 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4064 return -EINVAL;
4065
4066 /* the size should be power of 2 */
4067 if (!size || (size & (size - 1)))
4068 return -EINVAL;
4069
4070 /* Should be bigger to keep the reserved entries, or a page */
4071 if (size < kvm_dirty_ring_get_rsvd_entries() *
4072 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4073 return -EINVAL;
4074
4075 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4076 sizeof(struct kvm_dirty_gfn))
4077 return -E2BIG;
4078
4079 /* We only allow it to set once */
4080 if (kvm->dirty_ring_size)
4081 return -EINVAL;
4082
4083 mutex_lock(&kvm->lock);
4084
4085 if (kvm->created_vcpus) {
4086 /* We don't allow to change this value after vcpu created */
4087 r = -EINVAL;
4088 } else {
4089 kvm->dirty_ring_size = size;
4090 r = 0;
4091 }
4092
4093 mutex_unlock(&kvm->lock);
4094 return r;
4095 }
4096
4097 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4098 {
4099 int i;
4100 struct kvm_vcpu *vcpu;
4101 int cleared = 0;
4102
4103 if (!kvm->dirty_ring_size)
4104 return -EINVAL;
4105
4106 mutex_lock(&kvm->slots_lock);
4107
4108 kvm_for_each_vcpu(i, vcpu, kvm)
4109 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4110
4111 mutex_unlock(&kvm->slots_lock);
4112
4113 if (cleared)
4114 kvm_flush_remote_tlbs(kvm);
4115
4116 return cleared;
4117 }
4118
4119 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4120 struct kvm_enable_cap *cap)
4121 {
4122 return -EINVAL;
4123 }
4124
4125 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4126 struct kvm_enable_cap *cap)
4127 {
4128 switch (cap->cap) {
4129 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4130 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4131 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4132
4133 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4134 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4135
4136 if (cap->flags || (cap->args[0] & ~allowed_options))
4137 return -EINVAL;
4138 kvm->manual_dirty_log_protect = cap->args[0];
4139 return 0;
4140 }
4141 #endif
4142 case KVM_CAP_HALT_POLL: {
4143 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4144 return -EINVAL;
4145
4146 kvm->max_halt_poll_ns = cap->args[0];
4147 return 0;
4148 }
4149 case KVM_CAP_DIRTY_LOG_RING:
4150 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4151 default:
4152 return kvm_vm_ioctl_enable_cap(kvm, cap);
4153 }
4154 }
4155
4156 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4157 size_t size, loff_t *offset)
4158 {
4159 struct kvm *kvm = file->private_data;
4160
4161 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4162 &kvm_vm_stats_desc[0], &kvm->stat,
4163 sizeof(kvm->stat), user_buffer, size, offset);
4164 }
4165
4166 static const struct file_operations kvm_vm_stats_fops = {
4167 .read = kvm_vm_stats_read,
4168 .llseek = noop_llseek,
4169 };
4170
4171 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4172 {
4173 int fd;
4174 struct file *file;
4175
4176 fd = get_unused_fd_flags(O_CLOEXEC);
4177 if (fd < 0)
4178 return fd;
4179
4180 file = anon_inode_getfile("kvm-vm-stats",
4181 &kvm_vm_stats_fops, kvm, O_RDONLY);
4182 if (IS_ERR(file)) {
4183 put_unused_fd(fd);
4184 return PTR_ERR(file);
4185 }
4186 file->f_mode |= FMODE_PREAD;
4187 fd_install(fd, file);
4188
4189 return fd;
4190 }
4191
4192 static long kvm_vm_ioctl(struct file *filp,
4193 unsigned int ioctl, unsigned long arg)
4194 {
4195 struct kvm *kvm = filp->private_data;
4196 void __user *argp = (void __user *)arg;
4197 int r;
4198
4199 if (kvm->mm != current->mm)
4200 return -EIO;
4201 switch (ioctl) {
4202 case KVM_CREATE_VCPU:
4203 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4204 break;
4205 case KVM_ENABLE_CAP: {
4206 struct kvm_enable_cap cap;
4207
4208 r = -EFAULT;
4209 if (copy_from_user(&cap, argp, sizeof(cap)))
4210 goto out;
4211 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4212 break;
4213 }
4214 case KVM_SET_USER_MEMORY_REGION: {
4215 struct kvm_userspace_memory_region kvm_userspace_mem;
4216
4217 r = -EFAULT;
4218 if (copy_from_user(&kvm_userspace_mem, argp,
4219 sizeof(kvm_userspace_mem)))
4220 goto out;
4221
4222 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4223 break;
4224 }
4225 case KVM_GET_DIRTY_LOG: {
4226 struct kvm_dirty_log log;
4227
4228 r = -EFAULT;
4229 if (copy_from_user(&log, argp, sizeof(log)))
4230 goto out;
4231 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4232 break;
4233 }
4234 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4235 case KVM_CLEAR_DIRTY_LOG: {
4236 struct kvm_clear_dirty_log log;
4237
4238 r = -EFAULT;
4239 if (copy_from_user(&log, argp, sizeof(log)))
4240 goto out;
4241 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4242 break;
4243 }
4244 #endif
4245 #ifdef CONFIG_KVM_MMIO
4246 case KVM_REGISTER_COALESCED_MMIO: {
4247 struct kvm_coalesced_mmio_zone zone;
4248
4249 r = -EFAULT;
4250 if (copy_from_user(&zone, argp, sizeof(zone)))
4251 goto out;
4252 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4253 break;
4254 }
4255 case KVM_UNREGISTER_COALESCED_MMIO: {
4256 struct kvm_coalesced_mmio_zone zone;
4257
4258 r = -EFAULT;
4259 if (copy_from_user(&zone, argp, sizeof(zone)))
4260 goto out;
4261 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4262 break;
4263 }
4264 #endif
4265 case KVM_IRQFD: {
4266 struct kvm_irqfd data;
4267
4268 r = -EFAULT;
4269 if (copy_from_user(&data, argp, sizeof(data)))
4270 goto out;
4271 r = kvm_irqfd(kvm, &data);
4272 break;
4273 }
4274 case KVM_IOEVENTFD: {
4275 struct kvm_ioeventfd data;
4276
4277 r = -EFAULT;
4278 if (copy_from_user(&data, argp, sizeof(data)))
4279 goto out;
4280 r = kvm_ioeventfd(kvm, &data);
4281 break;
4282 }
4283 #ifdef CONFIG_HAVE_KVM_MSI
4284 case KVM_SIGNAL_MSI: {
4285 struct kvm_msi msi;
4286
4287 r = -EFAULT;
4288 if (copy_from_user(&msi, argp, sizeof(msi)))
4289 goto out;
4290 r = kvm_send_userspace_msi(kvm, &msi);
4291 break;
4292 }
4293 #endif
4294 #ifdef __KVM_HAVE_IRQ_LINE
4295 case KVM_IRQ_LINE_STATUS:
4296 case KVM_IRQ_LINE: {
4297 struct kvm_irq_level irq_event;
4298
4299 r = -EFAULT;
4300 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4301 goto out;
4302
4303 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4304 ioctl == KVM_IRQ_LINE_STATUS);
4305 if (r)
4306 goto out;
4307
4308 r = -EFAULT;
4309 if (ioctl == KVM_IRQ_LINE_STATUS) {
4310 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4311 goto out;
4312 }
4313
4314 r = 0;
4315 break;
4316 }
4317 #endif
4318 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4319 case KVM_SET_GSI_ROUTING: {
4320 struct kvm_irq_routing routing;
4321 struct kvm_irq_routing __user *urouting;
4322 struct kvm_irq_routing_entry *entries = NULL;
4323
4324 r = -EFAULT;
4325 if (copy_from_user(&routing, argp, sizeof(routing)))
4326 goto out;
4327 r = -EINVAL;
4328 if (!kvm_arch_can_set_irq_routing(kvm))
4329 goto out;
4330 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4331 goto out;
4332 if (routing.flags)
4333 goto out;
4334 if (routing.nr) {
4335 urouting = argp;
4336 entries = vmemdup_user(urouting->entries,
4337 array_size(sizeof(*entries),
4338 routing.nr));
4339 if (IS_ERR(entries)) {
4340 r = PTR_ERR(entries);
4341 goto out;
4342 }
4343 }
4344 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4345 routing.flags);
4346 kvfree(entries);
4347 break;
4348 }
4349 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4350 case KVM_CREATE_DEVICE: {
4351 struct kvm_create_device cd;
4352
4353 r = -EFAULT;
4354 if (copy_from_user(&cd, argp, sizeof(cd)))
4355 goto out;
4356
4357 r = kvm_ioctl_create_device(kvm, &cd);
4358 if (r)
4359 goto out;
4360
4361 r = -EFAULT;
4362 if (copy_to_user(argp, &cd, sizeof(cd)))
4363 goto out;
4364
4365 r = 0;
4366 break;
4367 }
4368 case KVM_CHECK_EXTENSION:
4369 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4370 break;
4371 case KVM_RESET_DIRTY_RINGS:
4372 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4373 break;
4374 case KVM_GET_STATS_FD:
4375 r = kvm_vm_ioctl_get_stats_fd(kvm);
4376 break;
4377 default:
4378 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4379 }
4380 out:
4381 return r;
4382 }
4383
4384 #ifdef CONFIG_KVM_COMPAT
4385 struct compat_kvm_dirty_log {
4386 __u32 slot;
4387 __u32 padding1;
4388 union {
4389 compat_uptr_t dirty_bitmap; /* one bit per page */
4390 __u64 padding2;
4391 };
4392 };
4393
4394 struct compat_kvm_clear_dirty_log {
4395 __u32 slot;
4396 __u32 num_pages;
4397 __u64 first_page;
4398 union {
4399 compat_uptr_t dirty_bitmap; /* one bit per page */
4400 __u64 padding2;
4401 };
4402 };
4403
4404 static long kvm_vm_compat_ioctl(struct file *filp,
4405 unsigned int ioctl, unsigned long arg)
4406 {
4407 struct kvm *kvm = filp->private_data;
4408 int r;
4409
4410 if (kvm->mm != current->mm)
4411 return -EIO;
4412 switch (ioctl) {
4413 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4414 case KVM_CLEAR_DIRTY_LOG: {
4415 struct compat_kvm_clear_dirty_log compat_log;
4416 struct kvm_clear_dirty_log log;
4417
4418 if (copy_from_user(&compat_log, (void __user *)arg,
4419 sizeof(compat_log)))
4420 return -EFAULT;
4421 log.slot = compat_log.slot;
4422 log.num_pages = compat_log.num_pages;
4423 log.first_page = compat_log.first_page;
4424 log.padding2 = compat_log.padding2;
4425 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4426
4427 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4428 break;
4429 }
4430 #endif
4431 case KVM_GET_DIRTY_LOG: {
4432 struct compat_kvm_dirty_log compat_log;
4433 struct kvm_dirty_log log;
4434
4435 if (copy_from_user(&compat_log, (void __user *)arg,
4436 sizeof(compat_log)))
4437 return -EFAULT;
4438 log.slot = compat_log.slot;
4439 log.padding1 = compat_log.padding1;
4440 log.padding2 = compat_log.padding2;
4441 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4442
4443 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4444 break;
4445 }
4446 default:
4447 r = kvm_vm_ioctl(filp, ioctl, arg);
4448 }
4449 return r;
4450 }
4451 #endif
4452
4453 static struct file_operations kvm_vm_fops = {
4454 .release = kvm_vm_release,
4455 .unlocked_ioctl = kvm_vm_ioctl,
4456 .llseek = noop_llseek,
4457 KVM_COMPAT(kvm_vm_compat_ioctl),
4458 };
4459
4460 bool file_is_kvm(struct file *file)
4461 {
4462 return file && file->f_op == &kvm_vm_fops;
4463 }
4464 EXPORT_SYMBOL_GPL(file_is_kvm);
4465
4466 static int kvm_dev_ioctl_create_vm(unsigned long type)
4467 {
4468 int r;
4469 struct kvm *kvm;
4470 struct file *file;
4471
4472 kvm = kvm_create_vm(type);
4473 if (IS_ERR(kvm))
4474 return PTR_ERR(kvm);
4475 #ifdef CONFIG_KVM_MMIO
4476 r = kvm_coalesced_mmio_init(kvm);
4477 if (r < 0)
4478 goto put_kvm;
4479 #endif
4480 r = get_unused_fd_flags(O_CLOEXEC);
4481 if (r < 0)
4482 goto put_kvm;
4483
4484 snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4485 "kvm-%d", task_pid_nr(current));
4486
4487 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4488 if (IS_ERR(file)) {
4489 put_unused_fd(r);
4490 r = PTR_ERR(file);
4491 goto put_kvm;
4492 }
4493
4494 /*
4495 * Don't call kvm_put_kvm anymore at this point; file->f_op is
4496 * already set, with ->release() being kvm_vm_release(). In error
4497 * cases it will be called by the final fput(file) and will take
4498 * care of doing kvm_put_kvm(kvm).
4499 */
4500 if (kvm_create_vm_debugfs(kvm, r) < 0) {
4501 put_unused_fd(r);
4502 fput(file);
4503 return -ENOMEM;
4504 }
4505 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4506
4507 fd_install(r, file);
4508 return r;
4509
4510 put_kvm:
4511 kvm_put_kvm(kvm);
4512 return r;
4513 }
4514
4515 static long kvm_dev_ioctl(struct file *filp,
4516 unsigned int ioctl, unsigned long arg)
4517 {
4518 long r = -EINVAL;
4519
4520 switch (ioctl) {
4521 case KVM_GET_API_VERSION:
4522 if (arg)
4523 goto out;
4524 r = KVM_API_VERSION;
4525 break;
4526 case KVM_CREATE_VM:
4527 r = kvm_dev_ioctl_create_vm(arg);
4528 break;
4529 case KVM_CHECK_EXTENSION:
4530 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4531 break;
4532 case KVM_GET_VCPU_MMAP_SIZE:
4533 if (arg)
4534 goto out;
4535 r = PAGE_SIZE; /* struct kvm_run */
4536 #ifdef CONFIG_X86
4537 r += PAGE_SIZE; /* pio data page */
4538 #endif
4539 #ifdef CONFIG_KVM_MMIO
4540 r += PAGE_SIZE; /* coalesced mmio ring page */
4541 #endif
4542 break;
4543 case KVM_TRACE_ENABLE:
4544 case KVM_TRACE_PAUSE:
4545 case KVM_TRACE_DISABLE:
4546 r = -EOPNOTSUPP;
4547 break;
4548 default:
4549 return kvm_arch_dev_ioctl(filp, ioctl, arg);
4550 }
4551 out:
4552 return r;
4553 }
4554
4555 static struct file_operations kvm_chardev_ops = {
4556 .unlocked_ioctl = kvm_dev_ioctl,
4557 .llseek = noop_llseek,
4558 KVM_COMPAT(kvm_dev_ioctl),
4559 };
4560
4561 static struct miscdevice kvm_dev = {
4562 KVM_MINOR,
4563 "kvm",
4564 &kvm_chardev_ops,
4565 };
4566
4567 static void hardware_enable_nolock(void *junk)
4568 {
4569 int cpu = raw_smp_processor_id();
4570 int r;
4571
4572 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4573 return;
4574
4575 cpumask_set_cpu(cpu, cpus_hardware_enabled);
4576
4577 r = kvm_arch_hardware_enable();
4578
4579 if (r) {
4580 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4581 atomic_inc(&hardware_enable_failed);
4582 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4583 }
4584 }
4585
4586 static int kvm_starting_cpu(unsigned int cpu)
4587 {
4588 raw_spin_lock(&kvm_count_lock);
4589 if (kvm_usage_count)
4590 hardware_enable_nolock(NULL);
4591 raw_spin_unlock(&kvm_count_lock);
4592 return 0;
4593 }
4594
4595 static void hardware_disable_nolock(void *junk)
4596 {
4597 int cpu = raw_smp_processor_id();
4598
4599 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4600 return;
4601 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4602 kvm_arch_hardware_disable();
4603 }
4604
4605 static int kvm_dying_cpu(unsigned int cpu)
4606 {
4607 raw_spin_lock(&kvm_count_lock);
4608 if (kvm_usage_count)
4609 hardware_disable_nolock(NULL);
4610 raw_spin_unlock(&kvm_count_lock);
4611 return 0;
4612 }
4613
4614 static void hardware_disable_all_nolock(void)
4615 {
4616 BUG_ON(!kvm_usage_count);
4617
4618 kvm_usage_count--;
4619 if (!kvm_usage_count)
4620 on_each_cpu(hardware_disable_nolock, NULL, 1);
4621 }
4622
4623 static void hardware_disable_all(void)
4624 {
4625 raw_spin_lock(&kvm_count_lock);
4626 hardware_disable_all_nolock();
4627 raw_spin_unlock(&kvm_count_lock);
4628 }
4629
4630 static int hardware_enable_all(void)
4631 {
4632 int r = 0;
4633
4634 raw_spin_lock(&kvm_count_lock);
4635
4636 kvm_usage_count++;
4637 if (kvm_usage_count == 1) {
4638 atomic_set(&hardware_enable_failed, 0);
4639 on_each_cpu(hardware_enable_nolock, NULL, 1);
4640
4641 if (atomic_read(&hardware_enable_failed)) {
4642 hardware_disable_all_nolock();
4643 r = -EBUSY;
4644 }
4645 }
4646
4647 raw_spin_unlock(&kvm_count_lock);
4648
4649 return r;
4650 }
4651
4652 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4653 void *v)
4654 {
4655 /*
4656 * Some (well, at least mine) BIOSes hang on reboot if
4657 * in vmx root mode.
4658 *
4659 * And Intel TXT required VMX off for all cpu when system shutdown.
4660 */
4661 pr_info("kvm: exiting hardware virtualization\n");
4662 kvm_rebooting = true;
4663 on_each_cpu(hardware_disable_nolock, NULL, 1);
4664 return NOTIFY_OK;
4665 }
4666
4667 static struct notifier_block kvm_reboot_notifier = {
4668 .notifier_call = kvm_reboot,
4669 .priority = 0,
4670 };
4671
4672 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4673 {
4674 int i;
4675
4676 for (i = 0; i < bus->dev_count; i++) {
4677 struct kvm_io_device *pos = bus->range[i].dev;
4678
4679 kvm_iodevice_destructor(pos);
4680 }
4681 kfree(bus);
4682 }
4683
4684 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4685 const struct kvm_io_range *r2)
4686 {
4687 gpa_t addr1 = r1->addr;
4688 gpa_t addr2 = r2->addr;
4689
4690 if (addr1 < addr2)
4691 return -1;
4692
4693 /* If r2->len == 0, match the exact address. If r2->len != 0,
4694 * accept any overlapping write. Any order is acceptable for
4695 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4696 * we process all of them.
4697 */
4698 if (r2->len) {
4699 addr1 += r1->len;
4700 addr2 += r2->len;
4701 }
4702
4703 if (addr1 > addr2)
4704 return 1;
4705
4706 return 0;
4707 }
4708
4709 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4710 {
4711 return kvm_io_bus_cmp(p1, p2);
4712 }
4713
4714 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4715 gpa_t addr, int len)
4716 {
4717 struct kvm_io_range *range, key;
4718 int off;
4719
4720 key = (struct kvm_io_range) {
4721 .addr = addr,
4722 .len = len,
4723 };
4724
4725 range = bsearch(&key, bus->range, bus->dev_count,
4726 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4727 if (range == NULL)
4728 return -ENOENT;
4729
4730 off = range - bus->range;
4731
4732 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4733 off--;
4734
4735 return off;
4736 }
4737
4738 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4739 struct kvm_io_range *range, const void *val)
4740 {
4741 int idx;
4742
4743 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4744 if (idx < 0)
4745 return -EOPNOTSUPP;
4746
4747 while (idx < bus->dev_count &&
4748 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4749 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4750 range->len, val))
4751 return idx;
4752 idx++;
4753 }
4754
4755 return -EOPNOTSUPP;
4756 }
4757
4758 /* kvm_io_bus_write - called under kvm->slots_lock */
4759 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4760 int len, const void *val)
4761 {
4762 struct kvm_io_bus *bus;
4763 struct kvm_io_range range;
4764 int r;
4765
4766 range = (struct kvm_io_range) {
4767 .addr = addr,
4768 .len = len,
4769 };
4770
4771 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4772 if (!bus)
4773 return -ENOMEM;
4774 r = __kvm_io_bus_write(vcpu, bus, &range, val);
4775 return r < 0 ? r : 0;
4776 }
4777 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4778
4779 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4780 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4781 gpa_t addr, int len, const void *val, long cookie)
4782 {
4783 struct kvm_io_bus *bus;
4784 struct kvm_io_range range;
4785
4786 range = (struct kvm_io_range) {
4787 .addr = addr,
4788 .len = len,
4789 };
4790
4791 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4792 if (!bus)
4793 return -ENOMEM;
4794
4795 /* First try the device referenced by cookie. */
4796 if ((cookie >= 0) && (cookie < bus->dev_count) &&
4797 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4798 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4799 val))
4800 return cookie;
4801
4802 /*
4803 * cookie contained garbage; fall back to search and return the
4804 * correct cookie value.
4805 */
4806 return __kvm_io_bus_write(vcpu, bus, &range, val);
4807 }
4808
4809 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4810 struct kvm_io_range *range, void *val)
4811 {
4812 int idx;
4813
4814 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4815 if (idx < 0)
4816 return -EOPNOTSUPP;
4817
4818 while (idx < bus->dev_count &&
4819 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4820 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4821 range->len, val))
4822 return idx;
4823 idx++;
4824 }
4825
4826 return -EOPNOTSUPP;
4827 }
4828
4829 /* kvm_io_bus_read - called under kvm->slots_lock */
4830 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4831 int len, void *val)
4832 {
4833 struct kvm_io_bus *bus;
4834 struct kvm_io_range range;
4835 int r;
4836
4837 range = (struct kvm_io_range) {
4838 .addr = addr,
4839 .len = len,
4840 };
4841
4842 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4843 if (!bus)
4844 return -ENOMEM;
4845 r = __kvm_io_bus_read(vcpu, bus, &range, val);
4846 return r < 0 ? r : 0;
4847 }
4848
4849 /* Caller must hold slots_lock. */
4850 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4851 int len, struct kvm_io_device *dev)
4852 {
4853 int i;
4854 struct kvm_io_bus *new_bus, *bus;
4855 struct kvm_io_range range;
4856
4857 bus = kvm_get_bus(kvm, bus_idx);
4858 if (!bus)
4859 return -ENOMEM;
4860
4861 /* exclude ioeventfd which is limited by maximum fd */
4862 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4863 return -ENOSPC;
4864
4865 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4866 GFP_KERNEL_ACCOUNT);
4867 if (!new_bus)
4868 return -ENOMEM;
4869
4870 range = (struct kvm_io_range) {
4871 .addr = addr,
4872 .len = len,
4873 .dev = dev,
4874 };
4875
4876 for (i = 0; i < bus->dev_count; i++)
4877 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4878 break;
4879
4880 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4881 new_bus->dev_count++;
4882 new_bus->range[i] = range;
4883 memcpy(new_bus->range + i + 1, bus->range + i,
4884 (bus->dev_count - i) * sizeof(struct kvm_io_range));
4885 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4886 synchronize_srcu_expedited(&kvm->srcu);
4887 kfree(bus);
4888
4889 return 0;
4890 }
4891
4892 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4893 struct kvm_io_device *dev)
4894 {
4895 int i, j;
4896 struct kvm_io_bus *new_bus, *bus;
4897
4898 lockdep_assert_held(&kvm->slots_lock);
4899
4900 bus = kvm_get_bus(kvm, bus_idx);
4901 if (!bus)
4902 return 0;
4903
4904 for (i = 0; i < bus->dev_count; i++) {
4905 if (bus->range[i].dev == dev) {
4906 break;
4907 }
4908 }
4909
4910 if (i == bus->dev_count)
4911 return 0;
4912
4913 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4914 GFP_KERNEL_ACCOUNT);
4915 if (new_bus) {
4916 memcpy(new_bus, bus, struct_size(bus, range, i));
4917 new_bus->dev_count--;
4918 memcpy(new_bus->range + i, bus->range + i + 1,
4919 flex_array_size(new_bus, range, new_bus->dev_count - i));
4920 }
4921
4922 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4923 synchronize_srcu_expedited(&kvm->srcu);
4924
4925 /* Destroy the old bus _after_ installing the (null) bus. */
4926 if (!new_bus) {
4927 pr_err("kvm: failed to shrink bus, removing it completely\n");
4928 for (j = 0; j < bus->dev_count; j++) {
4929 if (j == i)
4930 continue;
4931 kvm_iodevice_destructor(bus->range[j].dev);
4932 }
4933 }
4934
4935 kfree(bus);
4936 return new_bus ? 0 : -ENOMEM;
4937 }
4938
4939 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4940 gpa_t addr)
4941 {
4942 struct kvm_io_bus *bus;
4943 int dev_idx, srcu_idx;
4944 struct kvm_io_device *iodev = NULL;
4945
4946 srcu_idx = srcu_read_lock(&kvm->srcu);
4947
4948 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4949 if (!bus)
4950 goto out_unlock;
4951
4952 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4953 if (dev_idx < 0)
4954 goto out_unlock;
4955
4956 iodev = bus->range[dev_idx].dev;
4957
4958 out_unlock:
4959 srcu_read_unlock(&kvm->srcu, srcu_idx);
4960
4961 return iodev;
4962 }
4963 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4964
4965 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4966 int (*get)(void *, u64 *), int (*set)(void *, u64),
4967 const char *fmt)
4968 {
4969 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4970 inode->i_private;
4971
4972 /* The debugfs files are a reference to the kvm struct which
4973 * is still valid when kvm_destroy_vm is called.
4974 * To avoid the race between open and the removal of the debugfs
4975 * directory we test against the users count.
4976 */
4977 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4978 return -ENOENT;
4979
4980 if (simple_attr_open(inode, file, get,
4981 kvm_stats_debugfs_mode(stat_data->desc) & 0222
4982 ? set : NULL,
4983 fmt)) {
4984 kvm_put_kvm(stat_data->kvm);
4985 return -ENOMEM;
4986 }
4987
4988 return 0;
4989 }
4990
4991 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4992 {
4993 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4994 inode->i_private;
4995
4996 simple_attr_release(inode, file);
4997 kvm_put_kvm(stat_data->kvm);
4998
4999 return 0;
5000 }
5001
5002 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5003 {
5004 *val = *(u64 *)((void *)(&kvm->stat) + offset);
5005
5006 return 0;
5007 }
5008
5009 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5010 {
5011 *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5012
5013 return 0;
5014 }
5015
5016 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5017 {
5018 int i;
5019 struct kvm_vcpu *vcpu;
5020
5021 *val = 0;
5022
5023 kvm_for_each_vcpu(i, vcpu, kvm)
5024 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5025
5026 return 0;
5027 }
5028
5029 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5030 {
5031 int i;
5032 struct kvm_vcpu *vcpu;
5033
5034 kvm_for_each_vcpu(i, vcpu, kvm)
5035 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5036
5037 return 0;
5038 }
5039
5040 static int kvm_stat_data_get(void *data, u64 *val)
5041 {
5042 int r = -EFAULT;
5043 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5044
5045 switch (stat_data->kind) {
5046 case KVM_STAT_VM:
5047 r = kvm_get_stat_per_vm(stat_data->kvm,
5048 stat_data->desc->desc.offset, val);
5049 break;
5050 case KVM_STAT_VCPU:
5051 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5052 stat_data->desc->desc.offset, val);
5053 break;
5054 }
5055
5056 return r;
5057 }
5058
5059 static int kvm_stat_data_clear(void *data, u64 val)
5060 {
5061 int r = -EFAULT;
5062 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5063
5064 if (val)
5065 return -EINVAL;
5066
5067 switch (stat_data->kind) {
5068 case KVM_STAT_VM:
5069 r = kvm_clear_stat_per_vm(stat_data->kvm,
5070 stat_data->desc->desc.offset);
5071 break;
5072 case KVM_STAT_VCPU:
5073 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5074 stat_data->desc->desc.offset);
5075 break;
5076 }
5077
5078 return r;
5079 }
5080
5081 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5082 {
5083 __simple_attr_check_format("%llu\n", 0ull);
5084 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5085 kvm_stat_data_clear, "%llu\n");
5086 }
5087
5088 static const struct file_operations stat_fops_per_vm = {
5089 .owner = THIS_MODULE,
5090 .open = kvm_stat_data_open,
5091 .release = kvm_debugfs_release,
5092 .read = simple_attr_read,
5093 .write = simple_attr_write,
5094 .llseek = no_llseek,
5095 };
5096
5097 static int vm_stat_get(void *_offset, u64 *val)
5098 {
5099 unsigned offset = (long)_offset;
5100 struct kvm *kvm;
5101 u64 tmp_val;
5102
5103 *val = 0;
5104 mutex_lock(&kvm_lock);
5105 list_for_each_entry(kvm, &vm_list, vm_list) {
5106 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5107 *val += tmp_val;
5108 }
5109 mutex_unlock(&kvm_lock);
5110 return 0;
5111 }
5112
5113 static int vm_stat_clear(void *_offset, u64 val)
5114 {
5115 unsigned offset = (long)_offset;
5116 struct kvm *kvm;
5117
5118 if (val)
5119 return -EINVAL;
5120
5121 mutex_lock(&kvm_lock);
5122 list_for_each_entry(kvm, &vm_list, vm_list) {
5123 kvm_clear_stat_per_vm(kvm, offset);
5124 }
5125 mutex_unlock(&kvm_lock);
5126
5127 return 0;
5128 }
5129
5130 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5131 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5132
5133 static int vcpu_stat_get(void *_offset, u64 *val)
5134 {
5135 unsigned offset = (long)_offset;
5136 struct kvm *kvm;
5137 u64 tmp_val;
5138
5139 *val = 0;
5140 mutex_lock(&kvm_lock);
5141 list_for_each_entry(kvm, &vm_list, vm_list) {
5142 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5143 *val += tmp_val;
5144 }
5145 mutex_unlock(&kvm_lock);
5146 return 0;
5147 }
5148
5149 static int vcpu_stat_clear(void *_offset, u64 val)
5150 {
5151 unsigned offset = (long)_offset;
5152 struct kvm *kvm;
5153
5154 if (val)
5155 return -EINVAL;
5156
5157 mutex_lock(&kvm_lock);
5158 list_for_each_entry(kvm, &vm_list, vm_list) {
5159 kvm_clear_stat_per_vcpu(kvm, offset);
5160 }
5161 mutex_unlock(&kvm_lock);
5162
5163 return 0;
5164 }
5165
5166 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5167 "%llu\n");
5168 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5169
5170 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5171 {
5172 struct kobj_uevent_env *env;
5173 unsigned long long created, active;
5174
5175 if (!kvm_dev.this_device || !kvm)
5176 return;
5177
5178 mutex_lock(&kvm_lock);
5179 if (type == KVM_EVENT_CREATE_VM) {
5180 kvm_createvm_count++;
5181 kvm_active_vms++;
5182 } else if (type == KVM_EVENT_DESTROY_VM) {
5183 kvm_active_vms--;
5184 }
5185 created = kvm_createvm_count;
5186 active = kvm_active_vms;
5187 mutex_unlock(&kvm_lock);
5188
5189 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5190 if (!env)
5191 return;
5192
5193 add_uevent_var(env, "CREATED=%llu", created);
5194 add_uevent_var(env, "COUNT=%llu", active);
5195
5196 if (type == KVM_EVENT_CREATE_VM) {
5197 add_uevent_var(env, "EVENT=create");
5198 kvm->userspace_pid = task_pid_nr(current);
5199 } else if (type == KVM_EVENT_DESTROY_VM) {
5200 add_uevent_var(env, "EVENT=destroy");
5201 }
5202 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5203
5204 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
5205 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5206
5207 if (p) {
5208 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5209 if (!IS_ERR(tmp))
5210 add_uevent_var(env, "STATS_PATH=%s", tmp);
5211 kfree(p);
5212 }
5213 }
5214 /* no need for checks, since we are adding at most only 5 keys */
5215 env->envp[env->envp_idx++] = NULL;
5216 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5217 kfree(env);
5218 }
5219
5220 static void kvm_init_debug(void)
5221 {
5222 const struct file_operations *fops;
5223 const struct _kvm_stats_desc *pdesc;
5224 int i;
5225
5226 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5227
5228 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5229 pdesc = &kvm_vm_stats_desc[i];
5230 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5231 fops = &vm_stat_fops;
5232 else
5233 fops = &vm_stat_readonly_fops;
5234 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5235 kvm_debugfs_dir,
5236 (void *)(long)pdesc->desc.offset, fops);
5237 }
5238
5239 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5240 pdesc = &kvm_vcpu_stats_desc[i];
5241 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5242 fops = &vcpu_stat_fops;
5243 else
5244 fops = &vcpu_stat_readonly_fops;
5245 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5246 kvm_debugfs_dir,
5247 (void *)(long)pdesc->desc.offset, fops);
5248 }
5249 }
5250
5251 static int kvm_suspend(void)
5252 {
5253 if (kvm_usage_count)
5254 hardware_disable_nolock(NULL);
5255 return 0;
5256 }
5257
5258 static void kvm_resume(void)
5259 {
5260 if (kvm_usage_count) {
5261 #ifdef CONFIG_LOCKDEP
5262 WARN_ON(lockdep_is_held(&kvm_count_lock));
5263 #endif
5264 hardware_enable_nolock(NULL);
5265 }
5266 }
5267
5268 static struct syscore_ops kvm_syscore_ops = {
5269 .suspend = kvm_suspend,
5270 .resume = kvm_resume,
5271 };
5272
5273 static inline
5274 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5275 {
5276 return container_of(pn, struct kvm_vcpu, preempt_notifier);
5277 }
5278
5279 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5280 {
5281 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5282
5283 WRITE_ONCE(vcpu->preempted, false);
5284 WRITE_ONCE(vcpu->ready, false);
5285
5286 __this_cpu_write(kvm_running_vcpu, vcpu);
5287 kvm_arch_sched_in(vcpu, cpu);
5288 kvm_arch_vcpu_load(vcpu, cpu);
5289 }
5290
5291 static void kvm_sched_out(struct preempt_notifier *pn,
5292 struct task_struct *next)
5293 {
5294 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5295
5296 if (current->on_rq) {
5297 WRITE_ONCE(vcpu->preempted, true);
5298 WRITE_ONCE(vcpu->ready, true);
5299 }
5300 kvm_arch_vcpu_put(vcpu);
5301 __this_cpu_write(kvm_running_vcpu, NULL);
5302 }
5303
5304 /**
5305 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5306 *
5307 * We can disable preemption locally around accessing the per-CPU variable,
5308 * and use the resolved vcpu pointer after enabling preemption again,
5309 * because even if the current thread is migrated to another CPU, reading
5310 * the per-CPU value later will give us the same value as we update the
5311 * per-CPU variable in the preempt notifier handlers.
5312 */
5313 struct kvm_vcpu *kvm_get_running_vcpu(void)
5314 {
5315 struct kvm_vcpu *vcpu;
5316
5317 preempt_disable();
5318 vcpu = __this_cpu_read(kvm_running_vcpu);
5319 preempt_enable();
5320
5321 return vcpu;
5322 }
5323 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5324
5325 /**
5326 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5327 */
5328 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5329 {
5330 return &kvm_running_vcpu;
5331 }
5332
5333 struct kvm_cpu_compat_check {
5334 void *opaque;
5335 int *ret;
5336 };
5337
5338 static void check_processor_compat(void *data)
5339 {
5340 struct kvm_cpu_compat_check *c = data;
5341
5342 *c->ret = kvm_arch_check_processor_compat(c->opaque);
5343 }
5344
5345 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5346 struct module *module)
5347 {
5348 struct kvm_cpu_compat_check c;
5349 int r;
5350 int cpu;
5351
5352 r = kvm_arch_init(opaque);
5353 if (r)
5354 goto out_fail;
5355
5356 /*
5357 * kvm_arch_init makes sure there's at most one caller
5358 * for architectures that support multiple implementations,
5359 * like intel and amd on x86.
5360 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5361 * conflicts in case kvm is already setup for another implementation.
5362 */
5363 r = kvm_irqfd_init();
5364 if (r)
5365 goto out_irqfd;
5366
5367 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5368 r = -ENOMEM;
5369 goto out_free_0;
5370 }
5371
5372 r = kvm_arch_hardware_setup(opaque);
5373 if (r < 0)
5374 goto out_free_1;
5375
5376 c.ret = &r;
5377 c.opaque = opaque;
5378 for_each_online_cpu(cpu) {
5379 smp_call_function_single(cpu, check_processor_compat, &c, 1);
5380 if (r < 0)
5381 goto out_free_2;
5382 }
5383
5384 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5385 kvm_starting_cpu, kvm_dying_cpu);
5386 if (r)
5387 goto out_free_2;
5388 register_reboot_notifier(&kvm_reboot_notifier);
5389
5390 /* A kmem cache lets us meet the alignment requirements of fx_save. */
5391 if (!vcpu_align)
5392 vcpu_align = __alignof__(struct kvm_vcpu);
5393 kvm_vcpu_cache =
5394 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5395 SLAB_ACCOUNT,
5396 offsetof(struct kvm_vcpu, arch),
5397 offsetofend(struct kvm_vcpu, stats_id)
5398 - offsetof(struct kvm_vcpu, arch),
5399 NULL);
5400 if (!kvm_vcpu_cache) {
5401 r = -ENOMEM;
5402 goto out_free_3;
5403 }
5404
5405 r = kvm_async_pf_init();
5406 if (r)
5407 goto out_free;
5408
5409 kvm_chardev_ops.owner = module;
5410 kvm_vm_fops.owner = module;
5411 kvm_vcpu_fops.owner = module;
5412
5413 r = misc_register(&kvm_dev);
5414 if (r) {
5415 pr_err("kvm: misc device register failed\n");
5416 goto out_unreg;
5417 }
5418
5419 register_syscore_ops(&kvm_syscore_ops);
5420
5421 kvm_preempt_ops.sched_in = kvm_sched_in;
5422 kvm_preempt_ops.sched_out = kvm_sched_out;
5423
5424 kvm_init_debug();
5425
5426 r = kvm_vfio_ops_init();
5427 WARN_ON(r);
5428
5429 return 0;
5430
5431 out_unreg:
5432 kvm_async_pf_deinit();
5433 out_free:
5434 kmem_cache_destroy(kvm_vcpu_cache);
5435 out_free_3:
5436 unregister_reboot_notifier(&kvm_reboot_notifier);
5437 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5438 out_free_2:
5439 kvm_arch_hardware_unsetup();
5440 out_free_1:
5441 free_cpumask_var(cpus_hardware_enabled);
5442 out_free_0:
5443 kvm_irqfd_exit();
5444 out_irqfd:
5445 kvm_arch_exit();
5446 out_fail:
5447 return r;
5448 }
5449 EXPORT_SYMBOL_GPL(kvm_init);
5450
5451 void kvm_exit(void)
5452 {
5453 debugfs_remove_recursive(kvm_debugfs_dir);
5454 misc_deregister(&kvm_dev);
5455 kmem_cache_destroy(kvm_vcpu_cache);
5456 kvm_async_pf_deinit();
5457 unregister_syscore_ops(&kvm_syscore_ops);
5458 unregister_reboot_notifier(&kvm_reboot_notifier);
5459 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5460 on_each_cpu(hardware_disable_nolock, NULL, 1);
5461 kvm_arch_hardware_unsetup();
5462 kvm_arch_exit();
5463 kvm_irqfd_exit();
5464 free_cpumask_var(cpus_hardware_enabled);
5465 kvm_vfio_ops_exit();
5466 }
5467 EXPORT_SYMBOL_GPL(kvm_exit);
5468
5469 struct kvm_vm_worker_thread_context {
5470 struct kvm *kvm;
5471 struct task_struct *parent;
5472 struct completion init_done;
5473 kvm_vm_thread_fn_t thread_fn;
5474 uintptr_t data;
5475 int err;
5476 };
5477
5478 static int kvm_vm_worker_thread(void *context)
5479 {
5480 /*
5481 * The init_context is allocated on the stack of the parent thread, so
5482 * we have to locally copy anything that is needed beyond initialization
5483 */
5484 struct kvm_vm_worker_thread_context *init_context = context;
5485 struct kvm *kvm = init_context->kvm;
5486 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5487 uintptr_t data = init_context->data;
5488 int err;
5489
5490 err = kthread_park(current);
5491 /* kthread_park(current) is never supposed to return an error */
5492 WARN_ON(err != 0);
5493 if (err)
5494 goto init_complete;
5495
5496 err = cgroup_attach_task_all(init_context->parent, current);
5497 if (err) {
5498 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5499 __func__, err);
5500 goto init_complete;
5501 }
5502
5503 set_user_nice(current, task_nice(init_context->parent));
5504
5505 init_complete:
5506 init_context->err = err;
5507 complete(&init_context->init_done);
5508 init_context = NULL;
5509
5510 if (err)
5511 return err;
5512
5513 /* Wait to be woken up by the spawner before proceeding. */
5514 kthread_parkme();
5515
5516 if (!kthread_should_stop())
5517 err = thread_fn(kvm, data);
5518
5519 return err;
5520 }
5521
5522 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5523 uintptr_t data, const char *name,
5524 struct task_struct **thread_ptr)
5525 {
5526 struct kvm_vm_worker_thread_context init_context = {};
5527 struct task_struct *thread;
5528
5529 *thread_ptr = NULL;
5530 init_context.kvm = kvm;
5531 init_context.parent = current;
5532 init_context.thread_fn = thread_fn;
5533 init_context.data = data;
5534 init_completion(&init_context.init_done);
5535
5536 thread = kthread_run(kvm_vm_worker_thread, &init_context,
5537 "%s-%d", name, task_pid_nr(current));
5538 if (IS_ERR(thread))
5539 return PTR_ERR(thread);
5540
5541 /* kthread_run is never supposed to return NULL */
5542 WARN_ON(thread == NULL);
5543
5544 wait_for_completion(&init_context.init_done);
5545
5546 if (!init_context.err)
5547 *thread_ptr = thread;
5548
5549 return init_context.err;
5550 }