]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - virt/kvm/kvm_main.c
UBUNTU: SAUCE: kvm: Add helper function for creating VM worker threads
[mirror_ubuntu-bionic-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54 #include <linux/kthread.h>
55
56 #include <asm/processor.h>
57 #include <asm/io.h>
58 #include <asm/ioctl.h>
59 #include <linux/uaccess.h>
60 #include <asm/pgtable.h>
61
62 #include "coalesced_mmio.h"
63 #include "async_pf.h"
64 #include "vfio.h"
65
66 #define CREATE_TRACE_POINTS
67 #include <trace/events/kvm.h>
68
69 /* Worst case buffer size needed for holding an integer. */
70 #define ITOA_MAX_LEN 12
71
72 MODULE_AUTHOR("Qumranet");
73 MODULE_LICENSE("GPL");
74
75 /* Architectures should define their poll value according to the halt latency */
76 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
77 module_param(halt_poll_ns, uint, 0644);
78 EXPORT_SYMBOL_GPL(halt_poll_ns);
79
80 /* Default doubles per-vcpu halt_poll_ns. */
81 unsigned int halt_poll_ns_grow = 2;
82 module_param(halt_poll_ns_grow, uint, 0644);
83 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
84
85 /* Default resets per-vcpu halt_poll_ns . */
86 unsigned int halt_poll_ns_shrink;
87 module_param(halt_poll_ns_shrink, uint, 0644);
88 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
89
90 /*
91 * Ordering of locks:
92 *
93 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
94 */
95
96 DEFINE_MUTEX(kvm_lock);
97 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
98 LIST_HEAD(vm_list);
99
100 static cpumask_var_t cpus_hardware_enabled;
101 static int kvm_usage_count;
102 static atomic_t hardware_enable_failed;
103
104 struct kmem_cache *kvm_vcpu_cache;
105 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
106
107 static __read_mostly struct preempt_ops kvm_preempt_ops;
108
109 struct dentry *kvm_debugfs_dir;
110 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
111
112 static int kvm_debugfs_num_entries;
113 static const struct file_operations *stat_fops_per_vm[];
114
115 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
116 unsigned long arg);
117 #ifdef CONFIG_KVM_COMPAT
118 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
119 unsigned long arg);
120 #endif
121 static int hardware_enable_all(void);
122 static void hardware_disable_all(void);
123
124 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
125
126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
127
128 __visible bool kvm_rebooting;
129 EXPORT_SYMBOL_GPL(kvm_rebooting);
130
131 static bool largepages_enabled = true;
132
133 #define KVM_EVENT_CREATE_VM 0
134 #define KVM_EVENT_DESTROY_VM 1
135 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
136 static unsigned long long kvm_createvm_count;
137 static unsigned long long kvm_active_vms;
138
139 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
140 unsigned long start, unsigned long end)
141 {
142 }
143
144 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
145 {
146 if (pfn_valid(pfn))
147 return PageReserved(pfn_to_page(pfn));
148
149 return true;
150 }
151
152 /*
153 * Switches to specified vcpu, until a matching vcpu_put()
154 */
155 int vcpu_load(struct kvm_vcpu *vcpu)
156 {
157 int cpu;
158
159 if (mutex_lock_killable(&vcpu->mutex))
160 return -EINTR;
161 cpu = get_cpu();
162 preempt_notifier_register(&vcpu->preempt_notifier);
163 kvm_arch_vcpu_load(vcpu, cpu);
164 put_cpu();
165 return 0;
166 }
167 EXPORT_SYMBOL_GPL(vcpu_load);
168
169 void vcpu_put(struct kvm_vcpu *vcpu)
170 {
171 preempt_disable();
172 kvm_arch_vcpu_put(vcpu);
173 preempt_notifier_unregister(&vcpu->preempt_notifier);
174 preempt_enable();
175 mutex_unlock(&vcpu->mutex);
176 }
177 EXPORT_SYMBOL_GPL(vcpu_put);
178
179 /* TODO: merge with kvm_arch_vcpu_should_kick */
180 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
181 {
182 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
183
184 /*
185 * We need to wait for the VCPU to reenable interrupts and get out of
186 * READING_SHADOW_PAGE_TABLES mode.
187 */
188 if (req & KVM_REQUEST_WAIT)
189 return mode != OUTSIDE_GUEST_MODE;
190
191 /*
192 * Need to kick a running VCPU, but otherwise there is nothing to do.
193 */
194 return mode == IN_GUEST_MODE;
195 }
196
197 static void ack_flush(void *_completed)
198 {
199 }
200
201 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
202 {
203 if (unlikely(!cpus))
204 cpus = cpu_online_mask;
205
206 if (cpumask_empty(cpus))
207 return false;
208
209 smp_call_function_many(cpus, ack_flush, NULL, wait);
210 return true;
211 }
212
213 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
214 {
215 int i, cpu, me;
216 cpumask_var_t cpus;
217 bool called;
218 struct kvm_vcpu *vcpu;
219
220 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
221
222 me = get_cpu();
223 kvm_for_each_vcpu(i, vcpu, kvm) {
224 kvm_make_request(req, vcpu);
225 cpu = vcpu->cpu;
226
227 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
228 continue;
229
230 if (cpus != NULL && cpu != -1 && cpu != me &&
231 kvm_request_needs_ipi(vcpu, req))
232 __cpumask_set_cpu(cpu, cpus);
233 }
234 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
235 put_cpu();
236 free_cpumask_var(cpus);
237 return called;
238 }
239
240 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
241 void kvm_flush_remote_tlbs(struct kvm *kvm)
242 {
243 /*
244 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
245 * kvm_make_all_cpus_request.
246 */
247 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
248
249 /*
250 * We want to publish modifications to the page tables before reading
251 * mode. Pairs with a memory barrier in arch-specific code.
252 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
253 * and smp_mb in walk_shadow_page_lockless_begin/end.
254 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
255 *
256 * There is already an smp_mb__after_atomic() before
257 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
258 * barrier here.
259 */
260 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
261 ++kvm->stat.remote_tlb_flush;
262 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
263 }
264 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
265 #endif
266
267 void kvm_reload_remote_mmus(struct kvm *kvm)
268 {
269 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
270 }
271
272 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
273 {
274 struct page *page;
275 int r;
276
277 mutex_init(&vcpu->mutex);
278 vcpu->cpu = -1;
279 vcpu->kvm = kvm;
280 vcpu->vcpu_id = id;
281 vcpu->pid = NULL;
282 init_swait_queue_head(&vcpu->wq);
283 kvm_async_pf_vcpu_init(vcpu);
284
285 vcpu->pre_pcpu = -1;
286 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
287
288 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
289 if (!page) {
290 r = -ENOMEM;
291 goto fail;
292 }
293 vcpu->run = page_address(page);
294
295 kvm_vcpu_set_in_spin_loop(vcpu, false);
296 kvm_vcpu_set_dy_eligible(vcpu, false);
297 vcpu->preempted = false;
298
299 r = kvm_arch_vcpu_init(vcpu);
300 if (r < 0)
301 goto fail_free_run;
302 return 0;
303
304 fail_free_run:
305 free_page((unsigned long)vcpu->run);
306 fail:
307 return r;
308 }
309 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
310
311 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
312 {
313 /*
314 * no need for rcu_read_lock as VCPU_RUN is the only place that
315 * will change the vcpu->pid pointer and on uninit all file
316 * descriptors are already gone.
317 */
318 put_pid(rcu_dereference_protected(vcpu->pid, 1));
319 kvm_arch_vcpu_uninit(vcpu);
320 free_page((unsigned long)vcpu->run);
321 }
322 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
323
324 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
325 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
326 {
327 return container_of(mn, struct kvm, mmu_notifier);
328 }
329
330 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
331 struct mm_struct *mm,
332 unsigned long address,
333 pte_t pte)
334 {
335 struct kvm *kvm = mmu_notifier_to_kvm(mn);
336 int idx;
337
338 idx = srcu_read_lock(&kvm->srcu);
339 spin_lock(&kvm->mmu_lock);
340 kvm->mmu_notifier_seq++;
341 kvm_set_spte_hva(kvm, address, pte);
342 spin_unlock(&kvm->mmu_lock);
343 srcu_read_unlock(&kvm->srcu, idx);
344 }
345
346 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
347 struct mm_struct *mm,
348 unsigned long start,
349 unsigned long end)
350 {
351 struct kvm *kvm = mmu_notifier_to_kvm(mn);
352 int need_tlb_flush = 0, idx;
353
354 idx = srcu_read_lock(&kvm->srcu);
355 spin_lock(&kvm->mmu_lock);
356 /*
357 * The count increase must become visible at unlock time as no
358 * spte can be established without taking the mmu_lock and
359 * count is also read inside the mmu_lock critical section.
360 */
361 kvm->mmu_notifier_count++;
362 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
363 need_tlb_flush |= kvm->tlbs_dirty;
364 /* we've to flush the tlb before the pages can be freed */
365 if (need_tlb_flush)
366 kvm_flush_remote_tlbs(kvm);
367
368 spin_unlock(&kvm->mmu_lock);
369
370 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
371
372 srcu_read_unlock(&kvm->srcu, idx);
373 }
374
375 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
376 struct mm_struct *mm,
377 unsigned long start,
378 unsigned long end)
379 {
380 struct kvm *kvm = mmu_notifier_to_kvm(mn);
381
382 spin_lock(&kvm->mmu_lock);
383 /*
384 * This sequence increase will notify the kvm page fault that
385 * the page that is going to be mapped in the spte could have
386 * been freed.
387 */
388 kvm->mmu_notifier_seq++;
389 smp_wmb();
390 /*
391 * The above sequence increase must be visible before the
392 * below count decrease, which is ensured by the smp_wmb above
393 * in conjunction with the smp_rmb in mmu_notifier_retry().
394 */
395 kvm->mmu_notifier_count--;
396 spin_unlock(&kvm->mmu_lock);
397
398 BUG_ON(kvm->mmu_notifier_count < 0);
399 }
400
401 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
402 struct mm_struct *mm,
403 unsigned long start,
404 unsigned long end)
405 {
406 struct kvm *kvm = mmu_notifier_to_kvm(mn);
407 int young, idx;
408
409 idx = srcu_read_lock(&kvm->srcu);
410 spin_lock(&kvm->mmu_lock);
411
412 young = kvm_age_hva(kvm, start, end);
413 if (young)
414 kvm_flush_remote_tlbs(kvm);
415
416 spin_unlock(&kvm->mmu_lock);
417 srcu_read_unlock(&kvm->srcu, idx);
418
419 return young;
420 }
421
422 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
423 struct mm_struct *mm,
424 unsigned long start,
425 unsigned long end)
426 {
427 struct kvm *kvm = mmu_notifier_to_kvm(mn);
428 int young, idx;
429
430 idx = srcu_read_lock(&kvm->srcu);
431 spin_lock(&kvm->mmu_lock);
432 /*
433 * Even though we do not flush TLB, this will still adversely
434 * affect performance on pre-Haswell Intel EPT, where there is
435 * no EPT Access Bit to clear so that we have to tear down EPT
436 * tables instead. If we find this unacceptable, we can always
437 * add a parameter to kvm_age_hva so that it effectively doesn't
438 * do anything on clear_young.
439 *
440 * Also note that currently we never issue secondary TLB flushes
441 * from clear_young, leaving this job up to the regular system
442 * cadence. If we find this inaccurate, we might come up with a
443 * more sophisticated heuristic later.
444 */
445 young = kvm_age_hva(kvm, start, end);
446 spin_unlock(&kvm->mmu_lock);
447 srcu_read_unlock(&kvm->srcu, idx);
448
449 return young;
450 }
451
452 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
453 struct mm_struct *mm,
454 unsigned long address)
455 {
456 struct kvm *kvm = mmu_notifier_to_kvm(mn);
457 int young, idx;
458
459 idx = srcu_read_lock(&kvm->srcu);
460 spin_lock(&kvm->mmu_lock);
461 young = kvm_test_age_hva(kvm, address);
462 spin_unlock(&kvm->mmu_lock);
463 srcu_read_unlock(&kvm->srcu, idx);
464
465 return young;
466 }
467
468 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
469 struct mm_struct *mm)
470 {
471 struct kvm *kvm = mmu_notifier_to_kvm(mn);
472 int idx;
473
474 idx = srcu_read_lock(&kvm->srcu);
475 kvm_arch_flush_shadow_all(kvm);
476 srcu_read_unlock(&kvm->srcu, idx);
477 }
478
479 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
480 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
481 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
482 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
483 .clear_young = kvm_mmu_notifier_clear_young,
484 .test_young = kvm_mmu_notifier_test_young,
485 .change_pte = kvm_mmu_notifier_change_pte,
486 .release = kvm_mmu_notifier_release,
487 };
488
489 static int kvm_init_mmu_notifier(struct kvm *kvm)
490 {
491 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
492 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
493 }
494
495 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
496
497 static int kvm_init_mmu_notifier(struct kvm *kvm)
498 {
499 return 0;
500 }
501
502 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
503
504 static struct kvm_memslots *kvm_alloc_memslots(void)
505 {
506 int i;
507 struct kvm_memslots *slots;
508
509 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
510 if (!slots)
511 return NULL;
512
513 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
514 slots->id_to_index[i] = slots->memslots[i].id = i;
515
516 return slots;
517 }
518
519 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
520 {
521 if (!memslot->dirty_bitmap)
522 return;
523
524 kvfree(memslot->dirty_bitmap);
525 memslot->dirty_bitmap = NULL;
526 }
527
528 /*
529 * Free any memory in @free but not in @dont.
530 */
531 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
532 struct kvm_memory_slot *dont)
533 {
534 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
535 kvm_destroy_dirty_bitmap(free);
536
537 kvm_arch_free_memslot(kvm, free, dont);
538
539 free->npages = 0;
540 }
541
542 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
543 {
544 struct kvm_memory_slot *memslot;
545
546 if (!slots)
547 return;
548
549 kvm_for_each_memslot(memslot, slots)
550 kvm_free_memslot(kvm, memslot, NULL);
551
552 kvfree(slots);
553 }
554
555 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
556 {
557 int i;
558
559 if (!kvm->debugfs_dentry)
560 return;
561
562 debugfs_remove_recursive(kvm->debugfs_dentry);
563
564 if (kvm->debugfs_stat_data) {
565 for (i = 0; i < kvm_debugfs_num_entries; i++)
566 kfree(kvm->debugfs_stat_data[i]);
567 kfree(kvm->debugfs_stat_data);
568 }
569 }
570
571 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
572 {
573 char dir_name[ITOA_MAX_LEN * 2];
574 struct kvm_stat_data *stat_data;
575 struct kvm_stats_debugfs_item *p;
576
577 if (!debugfs_initialized())
578 return 0;
579
580 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
581 kvm->debugfs_dentry = debugfs_create_dir(dir_name,
582 kvm_debugfs_dir);
583 if (!kvm->debugfs_dentry)
584 return -ENOMEM;
585
586 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
587 sizeof(*kvm->debugfs_stat_data),
588 GFP_KERNEL);
589 if (!kvm->debugfs_stat_data)
590 return -ENOMEM;
591
592 for (p = debugfs_entries; p->name; p++) {
593 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
594 if (!stat_data)
595 return -ENOMEM;
596
597 stat_data->kvm = kvm;
598 stat_data->offset = p->offset;
599 stat_data->mode = p->mode ? p->mode : 0644;
600 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
601 if (!debugfs_create_file(p->name, stat_data->mode,
602 kvm->debugfs_dentry,
603 stat_data,
604 stat_fops_per_vm[p->kind]))
605 return -ENOMEM;
606 }
607 return 0;
608 }
609
610 static struct kvm *kvm_create_vm(unsigned long type)
611 {
612 int r, i;
613 struct kvm *kvm = kvm_arch_alloc_vm();
614
615 if (!kvm)
616 return ERR_PTR(-ENOMEM);
617
618 spin_lock_init(&kvm->mmu_lock);
619 mmgrab(current->mm);
620 kvm->mm = current->mm;
621 kvm_eventfd_init(kvm);
622 mutex_init(&kvm->lock);
623 mutex_init(&kvm->irq_lock);
624 mutex_init(&kvm->slots_lock);
625 refcount_set(&kvm->users_count, 1);
626 INIT_LIST_HEAD(&kvm->devices);
627
628 r = kvm_arch_init_vm(kvm, type);
629 if (r)
630 goto out_err_no_disable;
631
632 r = hardware_enable_all();
633 if (r)
634 goto out_err_no_disable;
635
636 #ifdef CONFIG_HAVE_KVM_IRQFD
637 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
638 #endif
639
640 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
641
642 r = -ENOMEM;
643 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
644 struct kvm_memslots *slots = kvm_alloc_memslots();
645 if (!slots)
646 goto out_err_no_srcu;
647 /*
648 * Generations must be different for each address space.
649 * Init kvm generation close to the maximum to easily test the
650 * code of handling generation number wrap-around.
651 */
652 slots->generation = i * 2 - 150;
653 rcu_assign_pointer(kvm->memslots[i], slots);
654 }
655
656 if (init_srcu_struct(&kvm->srcu))
657 goto out_err_no_srcu;
658 if (init_srcu_struct(&kvm->irq_srcu))
659 goto out_err_no_irq_srcu;
660 for (i = 0; i < KVM_NR_BUSES; i++) {
661 rcu_assign_pointer(kvm->buses[i],
662 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
663 if (!kvm->buses[i])
664 goto out_err;
665 }
666
667 r = kvm_init_mmu_notifier(kvm);
668 if (r)
669 goto out_err;
670
671 mutex_lock(&kvm_lock);
672 list_add(&kvm->vm_list, &vm_list);
673 mutex_unlock(&kvm_lock);
674
675 preempt_notifier_inc();
676
677 return kvm;
678
679 out_err:
680 cleanup_srcu_struct(&kvm->irq_srcu);
681 out_err_no_irq_srcu:
682 cleanup_srcu_struct(&kvm->srcu);
683 out_err_no_srcu:
684 hardware_disable_all();
685 out_err_no_disable:
686 refcount_set(&kvm->users_count, 0);
687 for (i = 0; i < KVM_NR_BUSES; i++)
688 kfree(kvm_get_bus(kvm, i));
689 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
690 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
691 kvm_arch_free_vm(kvm);
692 mmdrop(current->mm);
693 return ERR_PTR(r);
694 }
695
696 static void kvm_destroy_devices(struct kvm *kvm)
697 {
698 struct kvm_device *dev, *tmp;
699
700 /*
701 * We do not need to take the kvm->lock here, because nobody else
702 * has a reference to the struct kvm at this point and therefore
703 * cannot access the devices list anyhow.
704 */
705 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
706 list_del(&dev->vm_node);
707 dev->ops->destroy(dev);
708 }
709 }
710
711 static void kvm_destroy_vm(struct kvm *kvm)
712 {
713 int i;
714 struct mm_struct *mm = kvm->mm;
715
716 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
717 kvm_destroy_vm_debugfs(kvm);
718 kvm_arch_sync_events(kvm);
719 mutex_lock(&kvm_lock);
720 list_del(&kvm->vm_list);
721 mutex_unlock(&kvm_lock);
722 kvm_free_irq_routing(kvm);
723 for (i = 0; i < KVM_NR_BUSES; i++) {
724 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
725
726 if (bus)
727 kvm_io_bus_destroy(bus);
728 kvm->buses[i] = NULL;
729 }
730 kvm_coalesced_mmio_free(kvm);
731 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
732 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
733 #else
734 kvm_arch_flush_shadow_all(kvm);
735 #endif
736 kvm_arch_destroy_vm(kvm);
737 kvm_destroy_devices(kvm);
738 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
739 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
740 cleanup_srcu_struct(&kvm->irq_srcu);
741 cleanup_srcu_struct(&kvm->srcu);
742 kvm_arch_free_vm(kvm);
743 preempt_notifier_dec();
744 hardware_disable_all();
745 mmdrop(mm);
746 }
747
748 void kvm_get_kvm(struct kvm *kvm)
749 {
750 refcount_inc(&kvm->users_count);
751 }
752 EXPORT_SYMBOL_GPL(kvm_get_kvm);
753
754 void kvm_put_kvm(struct kvm *kvm)
755 {
756 if (refcount_dec_and_test(&kvm->users_count))
757 kvm_destroy_vm(kvm);
758 }
759 EXPORT_SYMBOL_GPL(kvm_put_kvm);
760
761
762 static int kvm_vm_release(struct inode *inode, struct file *filp)
763 {
764 struct kvm *kvm = filp->private_data;
765
766 kvm_irqfd_release(kvm);
767
768 kvm_put_kvm(kvm);
769 return 0;
770 }
771
772 /*
773 * Allocation size is twice as large as the actual dirty bitmap size.
774 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
775 */
776 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
777 {
778 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
779
780 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
781 if (!memslot->dirty_bitmap)
782 return -ENOMEM;
783
784 return 0;
785 }
786
787 /*
788 * Insert memslot and re-sort memslots based on their GFN,
789 * so binary search could be used to lookup GFN.
790 * Sorting algorithm takes advantage of having initially
791 * sorted array and known changed memslot position.
792 */
793 static void update_memslots(struct kvm_memslots *slots,
794 struct kvm_memory_slot *new)
795 {
796 int id = new->id;
797 int i = slots->id_to_index[id];
798 struct kvm_memory_slot *mslots = slots->memslots;
799
800 WARN_ON(mslots[i].id != id);
801 if (!new->npages) {
802 WARN_ON(!mslots[i].npages);
803 if (mslots[i].npages)
804 slots->used_slots--;
805 } else {
806 if (!mslots[i].npages)
807 slots->used_slots++;
808 }
809
810 while (i < KVM_MEM_SLOTS_NUM - 1 &&
811 new->base_gfn <= mslots[i + 1].base_gfn) {
812 if (!mslots[i + 1].npages)
813 break;
814 mslots[i] = mslots[i + 1];
815 slots->id_to_index[mslots[i].id] = i;
816 i++;
817 }
818
819 /*
820 * The ">=" is needed when creating a slot with base_gfn == 0,
821 * so that it moves before all those with base_gfn == npages == 0.
822 *
823 * On the other hand, if new->npages is zero, the above loop has
824 * already left i pointing to the beginning of the empty part of
825 * mslots, and the ">=" would move the hole backwards in this
826 * case---which is wrong. So skip the loop when deleting a slot.
827 */
828 if (new->npages) {
829 while (i > 0 &&
830 new->base_gfn >= mslots[i - 1].base_gfn) {
831 mslots[i] = mslots[i - 1];
832 slots->id_to_index[mslots[i].id] = i;
833 i--;
834 }
835 } else
836 WARN_ON_ONCE(i != slots->used_slots);
837
838 mslots[i] = *new;
839 slots->id_to_index[mslots[i].id] = i;
840 }
841
842 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
843 {
844 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
845
846 #ifdef __KVM_HAVE_READONLY_MEM
847 valid_flags |= KVM_MEM_READONLY;
848 #endif
849
850 if (mem->flags & ~valid_flags)
851 return -EINVAL;
852
853 return 0;
854 }
855
856 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
857 int as_id, struct kvm_memslots *slots)
858 {
859 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
860 u64 gen;
861
862 /*
863 * Set the low bit in the generation, which disables SPTE caching
864 * until the end of synchronize_srcu_expedited.
865 */
866 WARN_ON(old_memslots->generation & 1);
867 slots->generation = old_memslots->generation + 1;
868
869 rcu_assign_pointer(kvm->memslots[as_id], slots);
870 synchronize_srcu_expedited(&kvm->srcu);
871
872 /*
873 * Increment the new memslot generation a second time. This prevents
874 * vm exits that race with memslot updates from caching a memslot
875 * generation that will (potentially) be valid forever.
876 *
877 * Generations must be unique even across address spaces. We do not need
878 * a global counter for that, instead the generation space is evenly split
879 * across address spaces. For example, with two address spaces, address
880 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
881 * use generations 2, 6, 10, 14, ...
882 */
883 gen = slots->generation + KVM_ADDRESS_SPACE_NUM * 2 - 1;
884
885 kvm_arch_memslots_updated(kvm, gen);
886
887 slots->generation = gen;
888
889 return old_memslots;
890 }
891
892 /*
893 * Allocate some memory and give it an address in the guest physical address
894 * space.
895 *
896 * Discontiguous memory is allowed, mostly for framebuffers.
897 *
898 * Must be called holding kvm->slots_lock for write.
899 */
900 int __kvm_set_memory_region(struct kvm *kvm,
901 const struct kvm_userspace_memory_region *mem)
902 {
903 int r;
904 gfn_t base_gfn;
905 unsigned long npages;
906 struct kvm_memory_slot *slot;
907 struct kvm_memory_slot old, new;
908 struct kvm_memslots *slots = NULL, *old_memslots;
909 int as_id, id;
910 enum kvm_mr_change change;
911
912 r = check_memory_region_flags(mem);
913 if (r)
914 goto out;
915
916 r = -EINVAL;
917 as_id = mem->slot >> 16;
918 id = (u16)mem->slot;
919
920 /* General sanity checks */
921 if (mem->memory_size & (PAGE_SIZE - 1))
922 goto out;
923 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
924 goto out;
925 /* We can read the guest memory with __xxx_user() later on. */
926 if ((id < KVM_USER_MEM_SLOTS) &&
927 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
928 !access_ok(VERIFY_WRITE,
929 (void __user *)(unsigned long)mem->userspace_addr,
930 mem->memory_size)))
931 goto out;
932 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
933 goto out;
934 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
935 goto out;
936
937 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
938 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
939 npages = mem->memory_size >> PAGE_SHIFT;
940
941 if (npages > KVM_MEM_MAX_NR_PAGES)
942 goto out;
943
944 new = old = *slot;
945
946 new.id = id;
947 new.base_gfn = base_gfn;
948 new.npages = npages;
949 new.flags = mem->flags;
950
951 if (npages) {
952 if (!old.npages)
953 change = KVM_MR_CREATE;
954 else { /* Modify an existing slot. */
955 if ((mem->userspace_addr != old.userspace_addr) ||
956 (npages != old.npages) ||
957 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
958 goto out;
959
960 if (base_gfn != old.base_gfn)
961 change = KVM_MR_MOVE;
962 else if (new.flags != old.flags)
963 change = KVM_MR_FLAGS_ONLY;
964 else { /* Nothing to change. */
965 r = 0;
966 goto out;
967 }
968 }
969 } else {
970 if (!old.npages)
971 goto out;
972
973 change = KVM_MR_DELETE;
974 new.base_gfn = 0;
975 new.flags = 0;
976 }
977
978 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
979 /* Check for overlaps */
980 r = -EEXIST;
981 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
982 if (slot->id == id)
983 continue;
984 if (!((base_gfn + npages <= slot->base_gfn) ||
985 (base_gfn >= slot->base_gfn + slot->npages)))
986 goto out;
987 }
988 }
989
990 /* Free page dirty bitmap if unneeded */
991 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
992 new.dirty_bitmap = NULL;
993
994 r = -ENOMEM;
995 if (change == KVM_MR_CREATE) {
996 new.userspace_addr = mem->userspace_addr;
997
998 if (kvm_arch_create_memslot(kvm, &new, npages))
999 goto out_free;
1000 }
1001
1002 /* Allocate page dirty bitmap if needed */
1003 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1004 if (kvm_create_dirty_bitmap(&new) < 0)
1005 goto out_free;
1006 }
1007
1008 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1009 if (!slots)
1010 goto out_free;
1011 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1012
1013 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1014 slot = id_to_memslot(slots, id);
1015 slot->flags |= KVM_MEMSLOT_INVALID;
1016
1017 old_memslots = install_new_memslots(kvm, as_id, slots);
1018
1019 /* From this point no new shadow pages pointing to a deleted,
1020 * or moved, memslot will be created.
1021 *
1022 * validation of sp->gfn happens in:
1023 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1024 * - kvm_is_visible_gfn (mmu_check_roots)
1025 */
1026 kvm_arch_flush_shadow_memslot(kvm, slot);
1027
1028 /*
1029 * We can re-use the old_memslots from above, the only difference
1030 * from the currently installed memslots is the invalid flag. This
1031 * will get overwritten by update_memslots anyway.
1032 */
1033 slots = old_memslots;
1034 }
1035
1036 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1037 if (r)
1038 goto out_slots;
1039
1040 /* actual memory is freed via old in kvm_free_memslot below */
1041 if (change == KVM_MR_DELETE) {
1042 new.dirty_bitmap = NULL;
1043 memset(&new.arch, 0, sizeof(new.arch));
1044 }
1045
1046 update_memslots(slots, &new);
1047 old_memslots = install_new_memslots(kvm, as_id, slots);
1048
1049 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1050
1051 kvm_free_memslot(kvm, &old, &new);
1052 kvfree(old_memslots);
1053 return 0;
1054
1055 out_slots:
1056 kvfree(slots);
1057 out_free:
1058 kvm_free_memslot(kvm, &new, &old);
1059 out:
1060 return r;
1061 }
1062 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1063
1064 int kvm_set_memory_region(struct kvm *kvm,
1065 const struct kvm_userspace_memory_region *mem)
1066 {
1067 int r;
1068
1069 mutex_lock(&kvm->slots_lock);
1070 r = __kvm_set_memory_region(kvm, mem);
1071 mutex_unlock(&kvm->slots_lock);
1072 return r;
1073 }
1074 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1075
1076 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1077 struct kvm_userspace_memory_region *mem)
1078 {
1079 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1080 return -EINVAL;
1081
1082 return kvm_set_memory_region(kvm, mem);
1083 }
1084
1085 int kvm_get_dirty_log(struct kvm *kvm,
1086 struct kvm_dirty_log *log, int *is_dirty)
1087 {
1088 struct kvm_memslots *slots;
1089 struct kvm_memory_slot *memslot;
1090 int i, as_id, id;
1091 unsigned long n;
1092 unsigned long any = 0;
1093
1094 as_id = log->slot >> 16;
1095 id = (u16)log->slot;
1096 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1097 return -EINVAL;
1098
1099 slots = __kvm_memslots(kvm, as_id);
1100 memslot = id_to_memslot(slots, id);
1101 if (!memslot->dirty_bitmap)
1102 return -ENOENT;
1103
1104 n = kvm_dirty_bitmap_bytes(memslot);
1105
1106 for (i = 0; !any && i < n/sizeof(long); ++i)
1107 any = memslot->dirty_bitmap[i];
1108
1109 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1110 return -EFAULT;
1111
1112 if (any)
1113 *is_dirty = 1;
1114 return 0;
1115 }
1116 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1117
1118 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1119 /**
1120 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1121 * are dirty write protect them for next write.
1122 * @kvm: pointer to kvm instance
1123 * @log: slot id and address to which we copy the log
1124 * @is_dirty: flag set if any page is dirty
1125 *
1126 * We need to keep it in mind that VCPU threads can write to the bitmap
1127 * concurrently. So, to avoid losing track of dirty pages we keep the
1128 * following order:
1129 *
1130 * 1. Take a snapshot of the bit and clear it if needed.
1131 * 2. Write protect the corresponding page.
1132 * 3. Copy the snapshot to the userspace.
1133 * 4. Upon return caller flushes TLB's if needed.
1134 *
1135 * Between 2 and 4, the guest may write to the page using the remaining TLB
1136 * entry. This is not a problem because the page is reported dirty using
1137 * the snapshot taken before and step 4 ensures that writes done after
1138 * exiting to userspace will be logged for the next call.
1139 *
1140 */
1141 int kvm_get_dirty_log_protect(struct kvm *kvm,
1142 struct kvm_dirty_log *log, bool *is_dirty)
1143 {
1144 struct kvm_memslots *slots;
1145 struct kvm_memory_slot *memslot;
1146 int i, as_id, id;
1147 unsigned long n;
1148 unsigned long *dirty_bitmap;
1149 unsigned long *dirty_bitmap_buffer;
1150
1151 as_id = log->slot >> 16;
1152 id = (u16)log->slot;
1153 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1154 return -EINVAL;
1155
1156 slots = __kvm_memslots(kvm, as_id);
1157 memslot = id_to_memslot(slots, id);
1158
1159 dirty_bitmap = memslot->dirty_bitmap;
1160 if (!dirty_bitmap)
1161 return -ENOENT;
1162
1163 n = kvm_dirty_bitmap_bytes(memslot);
1164
1165 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1166 memset(dirty_bitmap_buffer, 0, n);
1167
1168 spin_lock(&kvm->mmu_lock);
1169 *is_dirty = false;
1170 for (i = 0; i < n / sizeof(long); i++) {
1171 unsigned long mask;
1172 gfn_t offset;
1173
1174 if (!dirty_bitmap[i])
1175 continue;
1176
1177 *is_dirty = true;
1178
1179 mask = xchg(&dirty_bitmap[i], 0);
1180 dirty_bitmap_buffer[i] = mask;
1181
1182 if (mask) {
1183 offset = i * BITS_PER_LONG;
1184 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1185 offset, mask);
1186 }
1187 }
1188
1189 spin_unlock(&kvm->mmu_lock);
1190 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1191 return -EFAULT;
1192 return 0;
1193 }
1194 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1195 #endif
1196
1197 bool kvm_largepages_enabled(void)
1198 {
1199 return largepages_enabled;
1200 }
1201
1202 void kvm_disable_largepages(void)
1203 {
1204 largepages_enabled = false;
1205 }
1206 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1207
1208 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1209 {
1210 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1211 }
1212 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1213
1214 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1215 {
1216 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1217 }
1218
1219 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1220 {
1221 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1222
1223 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1224 memslot->flags & KVM_MEMSLOT_INVALID)
1225 return false;
1226
1227 return true;
1228 }
1229 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1230
1231 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1232 {
1233 struct vm_area_struct *vma;
1234 unsigned long addr, size;
1235
1236 size = PAGE_SIZE;
1237
1238 addr = gfn_to_hva(kvm, gfn);
1239 if (kvm_is_error_hva(addr))
1240 return PAGE_SIZE;
1241
1242 down_read(&current->mm->mmap_sem);
1243 vma = find_vma(current->mm, addr);
1244 if (!vma)
1245 goto out;
1246
1247 size = vma_kernel_pagesize(vma);
1248
1249 out:
1250 up_read(&current->mm->mmap_sem);
1251
1252 return size;
1253 }
1254
1255 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1256 {
1257 return slot->flags & KVM_MEM_READONLY;
1258 }
1259
1260 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1261 gfn_t *nr_pages, bool write)
1262 {
1263 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1264 return KVM_HVA_ERR_BAD;
1265
1266 if (memslot_is_readonly(slot) && write)
1267 return KVM_HVA_ERR_RO_BAD;
1268
1269 if (nr_pages)
1270 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1271
1272 return __gfn_to_hva_memslot(slot, gfn);
1273 }
1274
1275 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1276 gfn_t *nr_pages)
1277 {
1278 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1279 }
1280
1281 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1282 gfn_t gfn)
1283 {
1284 return gfn_to_hva_many(slot, gfn, NULL);
1285 }
1286 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1287
1288 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1289 {
1290 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1291 }
1292 EXPORT_SYMBOL_GPL(gfn_to_hva);
1293
1294 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1295 {
1296 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1297 }
1298 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1299
1300 /*
1301 * If writable is set to false, the hva returned by this function is only
1302 * allowed to be read.
1303 */
1304 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1305 gfn_t gfn, bool *writable)
1306 {
1307 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1308
1309 if (!kvm_is_error_hva(hva) && writable)
1310 *writable = !memslot_is_readonly(slot);
1311
1312 return hva;
1313 }
1314
1315 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1316 {
1317 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1318
1319 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1320 }
1321
1322 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1323 {
1324 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1325
1326 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1327 }
1328
1329 static int get_user_page_nowait(unsigned long start, int write,
1330 struct page **page)
1331 {
1332 int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1333
1334 if (write)
1335 flags |= FOLL_WRITE;
1336
1337 return get_user_pages(start, 1, flags, page, NULL);
1338 }
1339
1340 static inline int check_user_page_hwpoison(unsigned long addr)
1341 {
1342 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1343
1344 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1345 return rc == -EHWPOISON;
1346 }
1347
1348 /*
1349 * The atomic path to get the writable pfn which will be stored in @pfn,
1350 * true indicates success, otherwise false is returned.
1351 */
1352 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1353 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1354 {
1355 struct page *page[1];
1356 int npages;
1357
1358 if (!(async || atomic))
1359 return false;
1360
1361 /*
1362 * Fast pin a writable pfn only if it is a write fault request
1363 * or the caller allows to map a writable pfn for a read fault
1364 * request.
1365 */
1366 if (!(write_fault || writable))
1367 return false;
1368
1369 npages = __get_user_pages_fast(addr, 1, 1, page);
1370 if (npages == 1) {
1371 *pfn = page_to_pfn(page[0]);
1372
1373 if (writable)
1374 *writable = true;
1375 return true;
1376 }
1377
1378 return false;
1379 }
1380
1381 /*
1382 * The slow path to get the pfn of the specified host virtual address,
1383 * 1 indicates success, -errno is returned if error is detected.
1384 */
1385 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1386 bool *writable, kvm_pfn_t *pfn)
1387 {
1388 struct page *page[1];
1389 int npages = 0;
1390
1391 might_sleep();
1392
1393 if (writable)
1394 *writable = write_fault;
1395
1396 if (async) {
1397 down_read(&current->mm->mmap_sem);
1398 npages = get_user_page_nowait(addr, write_fault, page);
1399 up_read(&current->mm->mmap_sem);
1400 } else {
1401 unsigned int flags = FOLL_HWPOISON;
1402
1403 if (write_fault)
1404 flags |= FOLL_WRITE;
1405
1406 npages = get_user_pages_unlocked(addr, 1, page, flags);
1407 }
1408 if (npages != 1)
1409 return npages;
1410
1411 /* map read fault as writable if possible */
1412 if (unlikely(!write_fault) && writable) {
1413 struct page *wpage[1];
1414
1415 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1416 if (npages == 1) {
1417 *writable = true;
1418 put_page(page[0]);
1419 page[0] = wpage[0];
1420 }
1421
1422 npages = 1;
1423 }
1424 *pfn = page_to_pfn(page[0]);
1425 return npages;
1426 }
1427
1428 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1429 {
1430 if (unlikely(!(vma->vm_flags & VM_READ)))
1431 return false;
1432
1433 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1434 return false;
1435
1436 return true;
1437 }
1438
1439 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1440 unsigned long addr, bool *async,
1441 bool write_fault, bool *writable,
1442 kvm_pfn_t *p_pfn)
1443 {
1444 unsigned long pfn;
1445 int r;
1446
1447 r = follow_pfn(vma, addr, &pfn);
1448 if (r) {
1449 /*
1450 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1451 * not call the fault handler, so do it here.
1452 */
1453 bool unlocked = false;
1454 r = fixup_user_fault(current, current->mm, addr,
1455 (write_fault ? FAULT_FLAG_WRITE : 0),
1456 &unlocked);
1457 if (unlocked)
1458 return -EAGAIN;
1459 if (r)
1460 return r;
1461
1462 r = follow_pfn(vma, addr, &pfn);
1463 if (r)
1464 return r;
1465
1466 }
1467
1468 if (writable)
1469 *writable = true;
1470
1471 /*
1472 * Get a reference here because callers of *hva_to_pfn* and
1473 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1474 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1475 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1476 * simply do nothing for reserved pfns.
1477 *
1478 * Whoever called remap_pfn_range is also going to call e.g.
1479 * unmap_mapping_range before the underlying pages are freed,
1480 * causing a call to our MMU notifier.
1481 */
1482 kvm_get_pfn(pfn);
1483
1484 *p_pfn = pfn;
1485 return 0;
1486 }
1487
1488 /*
1489 * Pin guest page in memory and return its pfn.
1490 * @addr: host virtual address which maps memory to the guest
1491 * @atomic: whether this function can sleep
1492 * @async: whether this function need to wait IO complete if the
1493 * host page is not in the memory
1494 * @write_fault: whether we should get a writable host page
1495 * @writable: whether it allows to map a writable host page for !@write_fault
1496 *
1497 * The function will map a writable host page for these two cases:
1498 * 1): @write_fault = true
1499 * 2): @write_fault = false && @writable, @writable will tell the caller
1500 * whether the mapping is writable.
1501 */
1502 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1503 bool write_fault, bool *writable)
1504 {
1505 struct vm_area_struct *vma;
1506 kvm_pfn_t pfn = 0;
1507 int npages, r;
1508
1509 /* we can do it either atomically or asynchronously, not both */
1510 BUG_ON(atomic && async);
1511
1512 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1513 return pfn;
1514
1515 if (atomic)
1516 return KVM_PFN_ERR_FAULT;
1517
1518 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1519 if (npages == 1)
1520 return pfn;
1521
1522 down_read(&current->mm->mmap_sem);
1523 if (npages == -EHWPOISON ||
1524 (!async && check_user_page_hwpoison(addr))) {
1525 pfn = KVM_PFN_ERR_HWPOISON;
1526 goto exit;
1527 }
1528
1529 retry:
1530 vma = find_vma_intersection(current->mm, addr, addr + 1);
1531
1532 if (vma == NULL)
1533 pfn = KVM_PFN_ERR_FAULT;
1534 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1535 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1536 if (r == -EAGAIN)
1537 goto retry;
1538 if (r < 0)
1539 pfn = KVM_PFN_ERR_FAULT;
1540 } else {
1541 if (async && vma_is_valid(vma, write_fault))
1542 *async = true;
1543 pfn = KVM_PFN_ERR_FAULT;
1544 }
1545 exit:
1546 up_read(&current->mm->mmap_sem);
1547 return pfn;
1548 }
1549
1550 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1551 bool atomic, bool *async, bool write_fault,
1552 bool *writable)
1553 {
1554 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1555
1556 if (addr == KVM_HVA_ERR_RO_BAD) {
1557 if (writable)
1558 *writable = false;
1559 return KVM_PFN_ERR_RO_FAULT;
1560 }
1561
1562 if (kvm_is_error_hva(addr)) {
1563 if (writable)
1564 *writable = false;
1565 return KVM_PFN_NOSLOT;
1566 }
1567
1568 /* Do not map writable pfn in the readonly memslot. */
1569 if (writable && memslot_is_readonly(slot)) {
1570 *writable = false;
1571 writable = NULL;
1572 }
1573
1574 return hva_to_pfn(addr, atomic, async, write_fault,
1575 writable);
1576 }
1577 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1578
1579 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1580 bool *writable)
1581 {
1582 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1583 write_fault, writable);
1584 }
1585 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1586
1587 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1588 {
1589 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1590 }
1591 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1592
1593 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1594 {
1595 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1596 }
1597 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1598
1599 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1600 {
1601 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1602 }
1603 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1604
1605 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1606 {
1607 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1608 }
1609 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1610
1611 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1612 {
1613 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1614 }
1615 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1616
1617 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1618 {
1619 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1620 }
1621 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1622
1623 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1624 struct page **pages, int nr_pages)
1625 {
1626 unsigned long addr;
1627 gfn_t entry = 0;
1628
1629 addr = gfn_to_hva_many(slot, gfn, &entry);
1630 if (kvm_is_error_hva(addr))
1631 return -1;
1632
1633 if (entry < nr_pages)
1634 return 0;
1635
1636 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1637 }
1638 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1639
1640 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1641 {
1642 if (is_error_noslot_pfn(pfn))
1643 return KVM_ERR_PTR_BAD_PAGE;
1644
1645 if (kvm_is_reserved_pfn(pfn)) {
1646 WARN_ON(1);
1647 return KVM_ERR_PTR_BAD_PAGE;
1648 }
1649
1650 return pfn_to_page(pfn);
1651 }
1652
1653 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1654 {
1655 kvm_pfn_t pfn;
1656
1657 pfn = gfn_to_pfn(kvm, gfn);
1658
1659 return kvm_pfn_to_page(pfn);
1660 }
1661 EXPORT_SYMBOL_GPL(gfn_to_page);
1662
1663 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1664 {
1665 kvm_pfn_t pfn;
1666
1667 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1668
1669 return kvm_pfn_to_page(pfn);
1670 }
1671 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1672
1673 void kvm_release_page_clean(struct page *page)
1674 {
1675 WARN_ON(is_error_page(page));
1676
1677 kvm_release_pfn_clean(page_to_pfn(page));
1678 }
1679 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1680
1681 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1682 {
1683 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1684 put_page(pfn_to_page(pfn));
1685 }
1686 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1687
1688 void kvm_release_page_dirty(struct page *page)
1689 {
1690 WARN_ON(is_error_page(page));
1691
1692 kvm_release_pfn_dirty(page_to_pfn(page));
1693 }
1694 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1695
1696 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1697 {
1698 kvm_set_pfn_dirty(pfn);
1699 kvm_release_pfn_clean(pfn);
1700 }
1701 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1702
1703 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1704 {
1705 if (!kvm_is_reserved_pfn(pfn)) {
1706 struct page *page = pfn_to_page(pfn);
1707
1708 if (!PageReserved(page))
1709 SetPageDirty(page);
1710 }
1711 }
1712 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1713
1714 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1715 {
1716 if (!kvm_is_reserved_pfn(pfn))
1717 mark_page_accessed(pfn_to_page(pfn));
1718 }
1719 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1720
1721 void kvm_get_pfn(kvm_pfn_t pfn)
1722 {
1723 if (!kvm_is_reserved_pfn(pfn))
1724 get_page(pfn_to_page(pfn));
1725 }
1726 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1727
1728 static int next_segment(unsigned long len, int offset)
1729 {
1730 if (len > PAGE_SIZE - offset)
1731 return PAGE_SIZE - offset;
1732 else
1733 return len;
1734 }
1735
1736 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1737 void *data, int offset, int len)
1738 {
1739 int r;
1740 unsigned long addr;
1741
1742 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1743 if (kvm_is_error_hva(addr))
1744 return -EFAULT;
1745 r = __copy_from_user(data, (void __user *)addr + offset, len);
1746 if (r)
1747 return -EFAULT;
1748 return 0;
1749 }
1750
1751 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1752 int len)
1753 {
1754 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1755
1756 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1757 }
1758 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1759
1760 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1761 int offset, int len)
1762 {
1763 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1764
1765 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1766 }
1767 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1768
1769 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1770 {
1771 gfn_t gfn = gpa >> PAGE_SHIFT;
1772 int seg;
1773 int offset = offset_in_page(gpa);
1774 int ret;
1775
1776 while ((seg = next_segment(len, offset)) != 0) {
1777 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1778 if (ret < 0)
1779 return ret;
1780 offset = 0;
1781 len -= seg;
1782 data += seg;
1783 ++gfn;
1784 }
1785 return 0;
1786 }
1787 EXPORT_SYMBOL_GPL(kvm_read_guest);
1788
1789 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1790 {
1791 gfn_t gfn = gpa >> PAGE_SHIFT;
1792 int seg;
1793 int offset = offset_in_page(gpa);
1794 int ret;
1795
1796 while ((seg = next_segment(len, offset)) != 0) {
1797 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1798 if (ret < 0)
1799 return ret;
1800 offset = 0;
1801 len -= seg;
1802 data += seg;
1803 ++gfn;
1804 }
1805 return 0;
1806 }
1807 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1808
1809 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1810 void *data, int offset, unsigned long len)
1811 {
1812 int r;
1813 unsigned long addr;
1814
1815 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1816 if (kvm_is_error_hva(addr))
1817 return -EFAULT;
1818 pagefault_disable();
1819 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1820 pagefault_enable();
1821 if (r)
1822 return -EFAULT;
1823 return 0;
1824 }
1825
1826 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1827 unsigned long len)
1828 {
1829 gfn_t gfn = gpa >> PAGE_SHIFT;
1830 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1831 int offset = offset_in_page(gpa);
1832
1833 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1834 }
1835 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1836
1837 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1838 void *data, unsigned long len)
1839 {
1840 gfn_t gfn = gpa >> PAGE_SHIFT;
1841 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1842 int offset = offset_in_page(gpa);
1843
1844 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1845 }
1846 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1847
1848 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1849 const void *data, int offset, int len)
1850 {
1851 int r;
1852 unsigned long addr;
1853
1854 addr = gfn_to_hva_memslot(memslot, gfn);
1855 if (kvm_is_error_hva(addr))
1856 return -EFAULT;
1857 r = __copy_to_user((void __user *)addr + offset, data, len);
1858 if (r)
1859 return -EFAULT;
1860 mark_page_dirty_in_slot(memslot, gfn);
1861 return 0;
1862 }
1863
1864 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1865 const void *data, int offset, int len)
1866 {
1867 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1868
1869 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1870 }
1871 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1872
1873 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1874 const void *data, int offset, int len)
1875 {
1876 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1877
1878 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1879 }
1880 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1881
1882 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1883 unsigned long len)
1884 {
1885 gfn_t gfn = gpa >> PAGE_SHIFT;
1886 int seg;
1887 int offset = offset_in_page(gpa);
1888 int ret;
1889
1890 while ((seg = next_segment(len, offset)) != 0) {
1891 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1892 if (ret < 0)
1893 return ret;
1894 offset = 0;
1895 len -= seg;
1896 data += seg;
1897 ++gfn;
1898 }
1899 return 0;
1900 }
1901 EXPORT_SYMBOL_GPL(kvm_write_guest);
1902
1903 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1904 unsigned long len)
1905 {
1906 gfn_t gfn = gpa >> PAGE_SHIFT;
1907 int seg;
1908 int offset = offset_in_page(gpa);
1909 int ret;
1910
1911 while ((seg = next_segment(len, offset)) != 0) {
1912 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1913 if (ret < 0)
1914 return ret;
1915 offset = 0;
1916 len -= seg;
1917 data += seg;
1918 ++gfn;
1919 }
1920 return 0;
1921 }
1922 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1923
1924 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1925 struct gfn_to_hva_cache *ghc,
1926 gpa_t gpa, unsigned long len)
1927 {
1928 int offset = offset_in_page(gpa);
1929 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1930 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1931 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1932 gfn_t nr_pages_avail;
1933
1934 ghc->gpa = gpa;
1935 ghc->generation = slots->generation;
1936 ghc->len = len;
1937 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1938 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1939 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1940 ghc->hva += offset;
1941 } else {
1942 /*
1943 * If the requested region crosses two memslots, we still
1944 * verify that the entire region is valid here.
1945 */
1946 while (start_gfn <= end_gfn) {
1947 nr_pages_avail = 0;
1948 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1949 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1950 &nr_pages_avail);
1951 if (kvm_is_error_hva(ghc->hva))
1952 return -EFAULT;
1953 start_gfn += nr_pages_avail;
1954 }
1955 /* Use the slow path for cross page reads and writes. */
1956 ghc->memslot = NULL;
1957 }
1958 return 0;
1959 }
1960
1961 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1962 gpa_t gpa, unsigned long len)
1963 {
1964 struct kvm_memslots *slots = kvm_memslots(kvm);
1965 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1966 }
1967 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1968
1969 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1970 void *data, unsigned int offset,
1971 unsigned long len)
1972 {
1973 struct kvm_memslots *slots = kvm_memslots(kvm);
1974 int r;
1975 gpa_t gpa = ghc->gpa + offset;
1976
1977 BUG_ON(len + offset > ghc->len);
1978
1979 if (slots->generation != ghc->generation)
1980 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1981
1982 if (unlikely(!ghc->memslot))
1983 return kvm_write_guest(kvm, gpa, data, len);
1984
1985 if (kvm_is_error_hva(ghc->hva))
1986 return -EFAULT;
1987
1988 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1989 if (r)
1990 return -EFAULT;
1991 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1992
1993 return 0;
1994 }
1995 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1996
1997 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1998 void *data, unsigned long len)
1999 {
2000 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2001 }
2002 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2003
2004 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2005 void *data, unsigned long len)
2006 {
2007 struct kvm_memslots *slots = kvm_memslots(kvm);
2008 int r;
2009
2010 BUG_ON(len > ghc->len);
2011
2012 if (slots->generation != ghc->generation)
2013 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2014
2015 if (unlikely(!ghc->memslot))
2016 return kvm_read_guest(kvm, ghc->gpa, data, len);
2017
2018 if (kvm_is_error_hva(ghc->hva))
2019 return -EFAULT;
2020
2021 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2022 if (r)
2023 return -EFAULT;
2024
2025 return 0;
2026 }
2027 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2028
2029 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2030 {
2031 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2032
2033 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2034 }
2035 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2036
2037 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2038 {
2039 gfn_t gfn = gpa >> PAGE_SHIFT;
2040 int seg;
2041 int offset = offset_in_page(gpa);
2042 int ret;
2043
2044 while ((seg = next_segment(len, offset)) != 0) {
2045 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2046 if (ret < 0)
2047 return ret;
2048 offset = 0;
2049 len -= seg;
2050 ++gfn;
2051 }
2052 return 0;
2053 }
2054 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2055
2056 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2057 gfn_t gfn)
2058 {
2059 if (memslot && memslot->dirty_bitmap) {
2060 unsigned long rel_gfn = gfn - memslot->base_gfn;
2061
2062 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2063 }
2064 }
2065
2066 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2067 {
2068 struct kvm_memory_slot *memslot;
2069
2070 memslot = gfn_to_memslot(kvm, gfn);
2071 mark_page_dirty_in_slot(memslot, gfn);
2072 }
2073 EXPORT_SYMBOL_GPL(mark_page_dirty);
2074
2075 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2076 {
2077 struct kvm_memory_slot *memslot;
2078
2079 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2080 mark_page_dirty_in_slot(memslot, gfn);
2081 }
2082 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2083
2084 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2085 {
2086 if (!vcpu->sigset_active)
2087 return;
2088
2089 /*
2090 * This does a lockless modification of ->real_blocked, which is fine
2091 * because, only current can change ->real_blocked and all readers of
2092 * ->real_blocked don't care as long ->real_blocked is always a subset
2093 * of ->blocked.
2094 */
2095 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2096 }
2097
2098 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2099 {
2100 if (!vcpu->sigset_active)
2101 return;
2102
2103 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2104 sigemptyset(&current->real_blocked);
2105 }
2106
2107 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2108 {
2109 unsigned int old, val, grow;
2110
2111 old = val = vcpu->halt_poll_ns;
2112 grow = READ_ONCE(halt_poll_ns_grow);
2113 /* 10us base */
2114 if (val == 0 && grow)
2115 val = 10000;
2116 else
2117 val *= grow;
2118
2119 if (val > halt_poll_ns)
2120 val = halt_poll_ns;
2121
2122 vcpu->halt_poll_ns = val;
2123 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2124 }
2125
2126 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2127 {
2128 unsigned int old, val, shrink;
2129
2130 old = val = vcpu->halt_poll_ns;
2131 shrink = READ_ONCE(halt_poll_ns_shrink);
2132 if (shrink == 0)
2133 val = 0;
2134 else
2135 val /= shrink;
2136
2137 vcpu->halt_poll_ns = val;
2138 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2139 }
2140
2141 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2142 {
2143 if (kvm_arch_vcpu_runnable(vcpu)) {
2144 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2145 return -EINTR;
2146 }
2147 if (kvm_cpu_has_pending_timer(vcpu))
2148 return -EINTR;
2149 if (signal_pending(current))
2150 return -EINTR;
2151
2152 return 0;
2153 }
2154
2155 /*
2156 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2157 */
2158 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2159 {
2160 ktime_t start, cur;
2161 DECLARE_SWAITQUEUE(wait);
2162 bool waited = false;
2163 u64 block_ns;
2164
2165 start = cur = ktime_get();
2166 if (vcpu->halt_poll_ns) {
2167 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2168
2169 ++vcpu->stat.halt_attempted_poll;
2170 do {
2171 /*
2172 * This sets KVM_REQ_UNHALT if an interrupt
2173 * arrives.
2174 */
2175 if (kvm_vcpu_check_block(vcpu) < 0) {
2176 ++vcpu->stat.halt_successful_poll;
2177 if (!vcpu_valid_wakeup(vcpu))
2178 ++vcpu->stat.halt_poll_invalid;
2179 goto out;
2180 }
2181 cur = ktime_get();
2182 } while (single_task_running() && ktime_before(cur, stop));
2183 }
2184
2185 kvm_arch_vcpu_blocking(vcpu);
2186
2187 for (;;) {
2188 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2189
2190 if (kvm_vcpu_check_block(vcpu) < 0)
2191 break;
2192
2193 waited = true;
2194 schedule();
2195 }
2196
2197 finish_swait(&vcpu->wq, &wait);
2198 cur = ktime_get();
2199
2200 kvm_arch_vcpu_unblocking(vcpu);
2201 out:
2202 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2203
2204 if (!vcpu_valid_wakeup(vcpu))
2205 shrink_halt_poll_ns(vcpu);
2206 else if (halt_poll_ns) {
2207 if (block_ns <= vcpu->halt_poll_ns)
2208 ;
2209 /* we had a long block, shrink polling */
2210 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2211 shrink_halt_poll_ns(vcpu);
2212 /* we had a short halt and our poll time is too small */
2213 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2214 block_ns < halt_poll_ns)
2215 grow_halt_poll_ns(vcpu);
2216 } else
2217 vcpu->halt_poll_ns = 0;
2218
2219 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2220 kvm_arch_vcpu_block_finish(vcpu);
2221 }
2222 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2223
2224 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2225 {
2226 struct swait_queue_head *wqp;
2227
2228 wqp = kvm_arch_vcpu_wq(vcpu);
2229 if (swq_has_sleeper(wqp)) {
2230 swake_up(wqp);
2231 ++vcpu->stat.halt_wakeup;
2232 return true;
2233 }
2234
2235 return false;
2236 }
2237 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2238
2239 #ifndef CONFIG_S390
2240 /*
2241 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2242 */
2243 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2244 {
2245 int me;
2246 int cpu = vcpu->cpu;
2247
2248 if (kvm_vcpu_wake_up(vcpu))
2249 return;
2250
2251 me = get_cpu();
2252 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2253 if (kvm_arch_vcpu_should_kick(vcpu))
2254 smp_send_reschedule(cpu);
2255 put_cpu();
2256 }
2257 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2258 #endif /* !CONFIG_S390 */
2259
2260 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2261 {
2262 struct pid *pid;
2263 struct task_struct *task = NULL;
2264 int ret = 0;
2265
2266 rcu_read_lock();
2267 pid = rcu_dereference(target->pid);
2268 if (pid)
2269 task = get_pid_task(pid, PIDTYPE_PID);
2270 rcu_read_unlock();
2271 if (!task)
2272 return ret;
2273 ret = yield_to(task, 1);
2274 put_task_struct(task);
2275
2276 return ret;
2277 }
2278 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2279
2280 /*
2281 * Helper that checks whether a VCPU is eligible for directed yield.
2282 * Most eligible candidate to yield is decided by following heuristics:
2283 *
2284 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2285 * (preempted lock holder), indicated by @in_spin_loop.
2286 * Set at the beiginning and cleared at the end of interception/PLE handler.
2287 *
2288 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2289 * chance last time (mostly it has become eligible now since we have probably
2290 * yielded to lockholder in last iteration. This is done by toggling
2291 * @dy_eligible each time a VCPU checked for eligibility.)
2292 *
2293 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2294 * to preempted lock-holder could result in wrong VCPU selection and CPU
2295 * burning. Giving priority for a potential lock-holder increases lock
2296 * progress.
2297 *
2298 * Since algorithm is based on heuristics, accessing another VCPU data without
2299 * locking does not harm. It may result in trying to yield to same VCPU, fail
2300 * and continue with next VCPU and so on.
2301 */
2302 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2303 {
2304 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2305 bool eligible;
2306
2307 eligible = !vcpu->spin_loop.in_spin_loop ||
2308 vcpu->spin_loop.dy_eligible;
2309
2310 if (vcpu->spin_loop.in_spin_loop)
2311 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2312
2313 return eligible;
2314 #else
2315 return true;
2316 #endif
2317 }
2318
2319 /*
2320 * Unlike kvm_arch_vcpu_runnable, this function is called outside
2321 * a vcpu_load/vcpu_put pair. However, for most architectures
2322 * kvm_arch_vcpu_runnable does not require vcpu_load.
2323 */
2324 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2325 {
2326 return kvm_arch_vcpu_runnable(vcpu);
2327 }
2328
2329 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2330 {
2331 if (kvm_arch_dy_runnable(vcpu))
2332 return true;
2333
2334 #ifdef CONFIG_KVM_ASYNC_PF
2335 if (!list_empty_careful(&vcpu->async_pf.done))
2336 return true;
2337 #endif
2338
2339 return false;
2340 }
2341
2342 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2343 {
2344 struct kvm *kvm = me->kvm;
2345 struct kvm_vcpu *vcpu;
2346 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2347 int yielded = 0;
2348 int try = 3;
2349 int pass;
2350 int i;
2351
2352 kvm_vcpu_set_in_spin_loop(me, true);
2353 /*
2354 * We boost the priority of a VCPU that is runnable but not
2355 * currently running, because it got preempted by something
2356 * else and called schedule in __vcpu_run. Hopefully that
2357 * VCPU is holding the lock that we need and will release it.
2358 * We approximate round-robin by starting at the last boosted VCPU.
2359 */
2360 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2361 kvm_for_each_vcpu(i, vcpu, kvm) {
2362 if (!pass && i <= last_boosted_vcpu) {
2363 i = last_boosted_vcpu;
2364 continue;
2365 } else if (pass && i > last_boosted_vcpu)
2366 break;
2367 if (!READ_ONCE(vcpu->preempted))
2368 continue;
2369 if (vcpu == me)
2370 continue;
2371 if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2372 continue;
2373 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2374 continue;
2375 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2376 continue;
2377
2378 yielded = kvm_vcpu_yield_to(vcpu);
2379 if (yielded > 0) {
2380 kvm->last_boosted_vcpu = i;
2381 break;
2382 } else if (yielded < 0) {
2383 try--;
2384 if (!try)
2385 break;
2386 }
2387 }
2388 }
2389 kvm_vcpu_set_in_spin_loop(me, false);
2390
2391 /* Ensure vcpu is not eligible during next spinloop */
2392 kvm_vcpu_set_dy_eligible(me, false);
2393 }
2394 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2395
2396 static int kvm_vcpu_fault(struct vm_fault *vmf)
2397 {
2398 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2399 struct page *page;
2400
2401 if (vmf->pgoff == 0)
2402 page = virt_to_page(vcpu->run);
2403 #ifdef CONFIG_X86
2404 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2405 page = virt_to_page(vcpu->arch.pio_data);
2406 #endif
2407 #ifdef CONFIG_KVM_MMIO
2408 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2409 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2410 #endif
2411 else
2412 return kvm_arch_vcpu_fault(vcpu, vmf);
2413 get_page(page);
2414 vmf->page = page;
2415 return 0;
2416 }
2417
2418 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2419 .fault = kvm_vcpu_fault,
2420 };
2421
2422 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2423 {
2424 vma->vm_ops = &kvm_vcpu_vm_ops;
2425 return 0;
2426 }
2427
2428 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2429 {
2430 struct kvm_vcpu *vcpu = filp->private_data;
2431
2432 debugfs_remove_recursive(vcpu->debugfs_dentry);
2433 kvm_put_kvm(vcpu->kvm);
2434 return 0;
2435 }
2436
2437 static struct file_operations kvm_vcpu_fops = {
2438 .release = kvm_vcpu_release,
2439 .unlocked_ioctl = kvm_vcpu_ioctl,
2440 #ifdef CONFIG_KVM_COMPAT
2441 .compat_ioctl = kvm_vcpu_compat_ioctl,
2442 #endif
2443 .mmap = kvm_vcpu_mmap,
2444 .llseek = noop_llseek,
2445 };
2446
2447 /*
2448 * Allocates an inode for the vcpu.
2449 */
2450 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2451 {
2452 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2453 }
2454
2455 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2456 {
2457 char dir_name[ITOA_MAX_LEN * 2];
2458 int ret;
2459
2460 if (!kvm_arch_has_vcpu_debugfs())
2461 return 0;
2462
2463 if (!debugfs_initialized())
2464 return 0;
2465
2466 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2467 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2468 vcpu->kvm->debugfs_dentry);
2469 if (!vcpu->debugfs_dentry)
2470 return -ENOMEM;
2471
2472 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2473 if (ret < 0) {
2474 debugfs_remove_recursive(vcpu->debugfs_dentry);
2475 return ret;
2476 }
2477
2478 return 0;
2479 }
2480
2481 /*
2482 * Creates some virtual cpus. Good luck creating more than one.
2483 */
2484 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2485 {
2486 int r;
2487 struct kvm_vcpu *vcpu;
2488
2489 if (id >= KVM_MAX_VCPU_ID)
2490 return -EINVAL;
2491
2492 mutex_lock(&kvm->lock);
2493 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2494 mutex_unlock(&kvm->lock);
2495 return -EINVAL;
2496 }
2497
2498 kvm->created_vcpus++;
2499 mutex_unlock(&kvm->lock);
2500
2501 vcpu = kvm_arch_vcpu_create(kvm, id);
2502 if (IS_ERR(vcpu)) {
2503 r = PTR_ERR(vcpu);
2504 goto vcpu_decrement;
2505 }
2506
2507 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2508
2509 r = kvm_arch_vcpu_setup(vcpu);
2510 if (r)
2511 goto vcpu_destroy;
2512
2513 r = kvm_create_vcpu_debugfs(vcpu);
2514 if (r)
2515 goto vcpu_destroy;
2516
2517 mutex_lock(&kvm->lock);
2518 if (kvm_get_vcpu_by_id(kvm, id)) {
2519 r = -EEXIST;
2520 goto unlock_vcpu_destroy;
2521 }
2522
2523 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2524
2525 /* Now it's all set up, let userspace reach it */
2526 kvm_get_kvm(kvm);
2527 r = create_vcpu_fd(vcpu);
2528 if (r < 0) {
2529 kvm_put_kvm(kvm);
2530 goto unlock_vcpu_destroy;
2531 }
2532
2533 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2534
2535 /*
2536 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2537 * before kvm->online_vcpu's incremented value.
2538 */
2539 smp_wmb();
2540 atomic_inc(&kvm->online_vcpus);
2541
2542 mutex_unlock(&kvm->lock);
2543 kvm_arch_vcpu_postcreate(vcpu);
2544 return r;
2545
2546 unlock_vcpu_destroy:
2547 mutex_unlock(&kvm->lock);
2548 debugfs_remove_recursive(vcpu->debugfs_dentry);
2549 vcpu_destroy:
2550 kvm_arch_vcpu_destroy(vcpu);
2551 vcpu_decrement:
2552 mutex_lock(&kvm->lock);
2553 kvm->created_vcpus--;
2554 mutex_unlock(&kvm->lock);
2555 return r;
2556 }
2557
2558 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2559 {
2560 if (sigset) {
2561 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2562 vcpu->sigset_active = 1;
2563 vcpu->sigset = *sigset;
2564 } else
2565 vcpu->sigset_active = 0;
2566 return 0;
2567 }
2568
2569 static long kvm_vcpu_ioctl(struct file *filp,
2570 unsigned int ioctl, unsigned long arg)
2571 {
2572 struct kvm_vcpu *vcpu = filp->private_data;
2573 void __user *argp = (void __user *)arg;
2574 int r;
2575 struct kvm_fpu *fpu = NULL;
2576 struct kvm_sregs *kvm_sregs = NULL;
2577
2578 if (vcpu->kvm->mm != current->mm)
2579 return -EIO;
2580
2581 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2582 return -EINVAL;
2583
2584 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2585 /*
2586 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2587 * so vcpu_load() would break it.
2588 */
2589 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2590 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2591 #endif
2592
2593
2594 r = vcpu_load(vcpu);
2595 if (r)
2596 return r;
2597 switch (ioctl) {
2598 case KVM_RUN: {
2599 struct pid *oldpid;
2600 r = -EINVAL;
2601 if (arg)
2602 goto out;
2603 oldpid = rcu_access_pointer(vcpu->pid);
2604 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2605 /* The thread running this VCPU changed. */
2606 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2607
2608 rcu_assign_pointer(vcpu->pid, newpid);
2609 if (oldpid)
2610 synchronize_rcu();
2611 put_pid(oldpid);
2612 }
2613 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2614 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2615 break;
2616 }
2617 case KVM_GET_REGS: {
2618 struct kvm_regs *kvm_regs;
2619
2620 r = -ENOMEM;
2621 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2622 if (!kvm_regs)
2623 goto out;
2624 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2625 if (r)
2626 goto out_free1;
2627 r = -EFAULT;
2628 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2629 goto out_free1;
2630 r = 0;
2631 out_free1:
2632 kfree(kvm_regs);
2633 break;
2634 }
2635 case KVM_SET_REGS: {
2636 struct kvm_regs *kvm_regs;
2637
2638 r = -ENOMEM;
2639 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2640 if (IS_ERR(kvm_regs)) {
2641 r = PTR_ERR(kvm_regs);
2642 goto out;
2643 }
2644 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2645 kfree(kvm_regs);
2646 break;
2647 }
2648 case KVM_GET_SREGS: {
2649 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2650 r = -ENOMEM;
2651 if (!kvm_sregs)
2652 goto out;
2653 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2654 if (r)
2655 goto out;
2656 r = -EFAULT;
2657 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2658 goto out;
2659 r = 0;
2660 break;
2661 }
2662 case KVM_SET_SREGS: {
2663 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2664 if (IS_ERR(kvm_sregs)) {
2665 r = PTR_ERR(kvm_sregs);
2666 kvm_sregs = NULL;
2667 goto out;
2668 }
2669 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2670 break;
2671 }
2672 case KVM_GET_MP_STATE: {
2673 struct kvm_mp_state mp_state;
2674
2675 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2676 if (r)
2677 goto out;
2678 r = -EFAULT;
2679 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2680 goto out;
2681 r = 0;
2682 break;
2683 }
2684 case KVM_SET_MP_STATE: {
2685 struct kvm_mp_state mp_state;
2686
2687 r = -EFAULT;
2688 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2689 goto out;
2690 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2691 break;
2692 }
2693 case KVM_TRANSLATE: {
2694 struct kvm_translation tr;
2695
2696 r = -EFAULT;
2697 if (copy_from_user(&tr, argp, sizeof(tr)))
2698 goto out;
2699 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2700 if (r)
2701 goto out;
2702 r = -EFAULT;
2703 if (copy_to_user(argp, &tr, sizeof(tr)))
2704 goto out;
2705 r = 0;
2706 break;
2707 }
2708 case KVM_SET_GUEST_DEBUG: {
2709 struct kvm_guest_debug dbg;
2710
2711 r = -EFAULT;
2712 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2713 goto out;
2714 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2715 break;
2716 }
2717 case KVM_SET_SIGNAL_MASK: {
2718 struct kvm_signal_mask __user *sigmask_arg = argp;
2719 struct kvm_signal_mask kvm_sigmask;
2720 sigset_t sigset, *p;
2721
2722 p = NULL;
2723 if (argp) {
2724 r = -EFAULT;
2725 if (copy_from_user(&kvm_sigmask, argp,
2726 sizeof(kvm_sigmask)))
2727 goto out;
2728 r = -EINVAL;
2729 if (kvm_sigmask.len != sizeof(sigset))
2730 goto out;
2731 r = -EFAULT;
2732 if (copy_from_user(&sigset, sigmask_arg->sigset,
2733 sizeof(sigset)))
2734 goto out;
2735 p = &sigset;
2736 }
2737 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2738 break;
2739 }
2740 case KVM_GET_FPU: {
2741 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2742 r = -ENOMEM;
2743 if (!fpu)
2744 goto out;
2745 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2746 if (r)
2747 goto out;
2748 r = -EFAULT;
2749 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2750 goto out;
2751 r = 0;
2752 break;
2753 }
2754 case KVM_SET_FPU: {
2755 fpu = memdup_user(argp, sizeof(*fpu));
2756 if (IS_ERR(fpu)) {
2757 r = PTR_ERR(fpu);
2758 fpu = NULL;
2759 goto out;
2760 }
2761 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2762 break;
2763 }
2764 default:
2765 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2766 }
2767 out:
2768 vcpu_put(vcpu);
2769 kfree(fpu);
2770 kfree(kvm_sregs);
2771 return r;
2772 }
2773
2774 #ifdef CONFIG_KVM_COMPAT
2775 static long kvm_vcpu_compat_ioctl(struct file *filp,
2776 unsigned int ioctl, unsigned long arg)
2777 {
2778 struct kvm_vcpu *vcpu = filp->private_data;
2779 void __user *argp = compat_ptr(arg);
2780 int r;
2781
2782 if (vcpu->kvm->mm != current->mm)
2783 return -EIO;
2784
2785 switch (ioctl) {
2786 case KVM_SET_SIGNAL_MASK: {
2787 struct kvm_signal_mask __user *sigmask_arg = argp;
2788 struct kvm_signal_mask kvm_sigmask;
2789 sigset_t sigset;
2790
2791 if (argp) {
2792 r = -EFAULT;
2793 if (copy_from_user(&kvm_sigmask, argp,
2794 sizeof(kvm_sigmask)))
2795 goto out;
2796 r = -EINVAL;
2797 if (kvm_sigmask.len != sizeof(compat_sigset_t))
2798 goto out;
2799 r = -EFAULT;
2800 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2801 goto out;
2802 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2803 } else
2804 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2805 break;
2806 }
2807 default:
2808 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2809 }
2810
2811 out:
2812 return r;
2813 }
2814 #endif
2815
2816 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2817 int (*accessor)(struct kvm_device *dev,
2818 struct kvm_device_attr *attr),
2819 unsigned long arg)
2820 {
2821 struct kvm_device_attr attr;
2822
2823 if (!accessor)
2824 return -EPERM;
2825
2826 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2827 return -EFAULT;
2828
2829 return accessor(dev, &attr);
2830 }
2831
2832 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2833 unsigned long arg)
2834 {
2835 struct kvm_device *dev = filp->private_data;
2836
2837 if (dev->kvm->mm != current->mm)
2838 return -EIO;
2839
2840 switch (ioctl) {
2841 case KVM_SET_DEVICE_ATTR:
2842 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2843 case KVM_GET_DEVICE_ATTR:
2844 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2845 case KVM_HAS_DEVICE_ATTR:
2846 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2847 default:
2848 if (dev->ops->ioctl)
2849 return dev->ops->ioctl(dev, ioctl, arg);
2850
2851 return -ENOTTY;
2852 }
2853 }
2854
2855 static int kvm_device_release(struct inode *inode, struct file *filp)
2856 {
2857 struct kvm_device *dev = filp->private_data;
2858 struct kvm *kvm = dev->kvm;
2859
2860 kvm_put_kvm(kvm);
2861 return 0;
2862 }
2863
2864 static const struct file_operations kvm_device_fops = {
2865 .unlocked_ioctl = kvm_device_ioctl,
2866 #ifdef CONFIG_KVM_COMPAT
2867 .compat_ioctl = kvm_device_ioctl,
2868 #endif
2869 .release = kvm_device_release,
2870 };
2871
2872 struct kvm_device *kvm_device_from_filp(struct file *filp)
2873 {
2874 if (filp->f_op != &kvm_device_fops)
2875 return NULL;
2876
2877 return filp->private_data;
2878 }
2879
2880 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2881 #ifdef CONFIG_KVM_MPIC
2882 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2883 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2884 #endif
2885 };
2886
2887 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2888 {
2889 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2890 return -ENOSPC;
2891
2892 if (kvm_device_ops_table[type] != NULL)
2893 return -EEXIST;
2894
2895 kvm_device_ops_table[type] = ops;
2896 return 0;
2897 }
2898
2899 void kvm_unregister_device_ops(u32 type)
2900 {
2901 if (kvm_device_ops_table[type] != NULL)
2902 kvm_device_ops_table[type] = NULL;
2903 }
2904
2905 static int kvm_ioctl_create_device(struct kvm *kvm,
2906 struct kvm_create_device *cd)
2907 {
2908 struct kvm_device_ops *ops = NULL;
2909 struct kvm_device *dev;
2910 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2911 int type;
2912 int ret;
2913
2914 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2915 return -ENODEV;
2916
2917 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
2918 ops = kvm_device_ops_table[type];
2919 if (ops == NULL)
2920 return -ENODEV;
2921
2922 if (test)
2923 return 0;
2924
2925 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2926 if (!dev)
2927 return -ENOMEM;
2928
2929 dev->ops = ops;
2930 dev->kvm = kvm;
2931
2932 mutex_lock(&kvm->lock);
2933 ret = ops->create(dev, type);
2934 if (ret < 0) {
2935 mutex_unlock(&kvm->lock);
2936 kfree(dev);
2937 return ret;
2938 }
2939 list_add(&dev->vm_node, &kvm->devices);
2940 mutex_unlock(&kvm->lock);
2941
2942 if (ops->init)
2943 ops->init(dev);
2944
2945 kvm_get_kvm(kvm);
2946 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2947 if (ret < 0) {
2948 kvm_put_kvm(kvm);
2949 mutex_lock(&kvm->lock);
2950 list_del(&dev->vm_node);
2951 mutex_unlock(&kvm->lock);
2952 ops->destroy(dev);
2953 return ret;
2954 }
2955
2956 cd->fd = ret;
2957 return 0;
2958 }
2959
2960 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2961 {
2962 switch (arg) {
2963 case KVM_CAP_USER_MEMORY:
2964 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2965 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2966 case KVM_CAP_INTERNAL_ERROR_DATA:
2967 #ifdef CONFIG_HAVE_KVM_MSI
2968 case KVM_CAP_SIGNAL_MSI:
2969 #endif
2970 #ifdef CONFIG_HAVE_KVM_IRQFD
2971 case KVM_CAP_IRQFD:
2972 case KVM_CAP_IRQFD_RESAMPLE:
2973 #endif
2974 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2975 case KVM_CAP_CHECK_EXTENSION_VM:
2976 return 1;
2977 #ifdef CONFIG_KVM_MMIO
2978 case KVM_CAP_COALESCED_MMIO:
2979 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2980 #endif
2981 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2982 case KVM_CAP_IRQ_ROUTING:
2983 return KVM_MAX_IRQ_ROUTES;
2984 #endif
2985 #if KVM_ADDRESS_SPACE_NUM > 1
2986 case KVM_CAP_MULTI_ADDRESS_SPACE:
2987 return KVM_ADDRESS_SPACE_NUM;
2988 #endif
2989 default:
2990 break;
2991 }
2992 return kvm_vm_ioctl_check_extension(kvm, arg);
2993 }
2994
2995 static long kvm_vm_ioctl(struct file *filp,
2996 unsigned int ioctl, unsigned long arg)
2997 {
2998 struct kvm *kvm = filp->private_data;
2999 void __user *argp = (void __user *)arg;
3000 int r;
3001
3002 if (kvm->mm != current->mm)
3003 return -EIO;
3004 switch (ioctl) {
3005 case KVM_CREATE_VCPU:
3006 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3007 break;
3008 case KVM_SET_USER_MEMORY_REGION: {
3009 struct kvm_userspace_memory_region kvm_userspace_mem;
3010
3011 r = -EFAULT;
3012 if (copy_from_user(&kvm_userspace_mem, argp,
3013 sizeof(kvm_userspace_mem)))
3014 goto out;
3015
3016 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3017 break;
3018 }
3019 case KVM_GET_DIRTY_LOG: {
3020 struct kvm_dirty_log log;
3021
3022 r = -EFAULT;
3023 if (copy_from_user(&log, argp, sizeof(log)))
3024 goto out;
3025 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3026 break;
3027 }
3028 #ifdef CONFIG_KVM_MMIO
3029 case KVM_REGISTER_COALESCED_MMIO: {
3030 struct kvm_coalesced_mmio_zone zone;
3031
3032 r = -EFAULT;
3033 if (copy_from_user(&zone, argp, sizeof(zone)))
3034 goto out;
3035 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3036 break;
3037 }
3038 case KVM_UNREGISTER_COALESCED_MMIO: {
3039 struct kvm_coalesced_mmio_zone zone;
3040
3041 r = -EFAULT;
3042 if (copy_from_user(&zone, argp, sizeof(zone)))
3043 goto out;
3044 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3045 break;
3046 }
3047 #endif
3048 case KVM_IRQFD: {
3049 struct kvm_irqfd data;
3050
3051 r = -EFAULT;
3052 if (copy_from_user(&data, argp, sizeof(data)))
3053 goto out;
3054 r = kvm_irqfd(kvm, &data);
3055 break;
3056 }
3057 case KVM_IOEVENTFD: {
3058 struct kvm_ioeventfd data;
3059
3060 r = -EFAULT;
3061 if (copy_from_user(&data, argp, sizeof(data)))
3062 goto out;
3063 r = kvm_ioeventfd(kvm, &data);
3064 break;
3065 }
3066 #ifdef CONFIG_HAVE_KVM_MSI
3067 case KVM_SIGNAL_MSI: {
3068 struct kvm_msi msi;
3069
3070 r = -EFAULT;
3071 if (copy_from_user(&msi, argp, sizeof(msi)))
3072 goto out;
3073 r = kvm_send_userspace_msi(kvm, &msi);
3074 break;
3075 }
3076 #endif
3077 #ifdef __KVM_HAVE_IRQ_LINE
3078 case KVM_IRQ_LINE_STATUS:
3079 case KVM_IRQ_LINE: {
3080 struct kvm_irq_level irq_event;
3081
3082 r = -EFAULT;
3083 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3084 goto out;
3085
3086 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3087 ioctl == KVM_IRQ_LINE_STATUS);
3088 if (r)
3089 goto out;
3090
3091 r = -EFAULT;
3092 if (ioctl == KVM_IRQ_LINE_STATUS) {
3093 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3094 goto out;
3095 }
3096
3097 r = 0;
3098 break;
3099 }
3100 #endif
3101 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3102 case KVM_SET_GSI_ROUTING: {
3103 struct kvm_irq_routing routing;
3104 struct kvm_irq_routing __user *urouting;
3105 struct kvm_irq_routing_entry *entries = NULL;
3106
3107 r = -EFAULT;
3108 if (copy_from_user(&routing, argp, sizeof(routing)))
3109 goto out;
3110 r = -EINVAL;
3111 if (!kvm_arch_can_set_irq_routing(kvm))
3112 goto out;
3113 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3114 goto out;
3115 if (routing.flags)
3116 goto out;
3117 if (routing.nr) {
3118 r = -ENOMEM;
3119 entries = vmalloc(routing.nr * sizeof(*entries));
3120 if (!entries)
3121 goto out;
3122 r = -EFAULT;
3123 urouting = argp;
3124 if (copy_from_user(entries, urouting->entries,
3125 routing.nr * sizeof(*entries)))
3126 goto out_free_irq_routing;
3127 }
3128 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3129 routing.flags);
3130 out_free_irq_routing:
3131 vfree(entries);
3132 break;
3133 }
3134 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3135 case KVM_CREATE_DEVICE: {
3136 struct kvm_create_device cd;
3137
3138 r = -EFAULT;
3139 if (copy_from_user(&cd, argp, sizeof(cd)))
3140 goto out;
3141
3142 r = kvm_ioctl_create_device(kvm, &cd);
3143 if (r)
3144 goto out;
3145
3146 r = -EFAULT;
3147 if (copy_to_user(argp, &cd, sizeof(cd)))
3148 goto out;
3149
3150 r = 0;
3151 break;
3152 }
3153 case KVM_CHECK_EXTENSION:
3154 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3155 break;
3156 default:
3157 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3158 }
3159 out:
3160 return r;
3161 }
3162
3163 #ifdef CONFIG_KVM_COMPAT
3164 struct compat_kvm_dirty_log {
3165 __u32 slot;
3166 __u32 padding1;
3167 union {
3168 compat_uptr_t dirty_bitmap; /* one bit per page */
3169 __u64 padding2;
3170 };
3171 };
3172
3173 static long kvm_vm_compat_ioctl(struct file *filp,
3174 unsigned int ioctl, unsigned long arg)
3175 {
3176 struct kvm *kvm = filp->private_data;
3177 int r;
3178
3179 if (kvm->mm != current->mm)
3180 return -EIO;
3181 switch (ioctl) {
3182 case KVM_GET_DIRTY_LOG: {
3183 struct compat_kvm_dirty_log compat_log;
3184 struct kvm_dirty_log log;
3185
3186 if (copy_from_user(&compat_log, (void __user *)arg,
3187 sizeof(compat_log)))
3188 return -EFAULT;
3189 log.slot = compat_log.slot;
3190 log.padding1 = compat_log.padding1;
3191 log.padding2 = compat_log.padding2;
3192 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3193
3194 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3195 break;
3196 }
3197 default:
3198 r = kvm_vm_ioctl(filp, ioctl, arg);
3199 }
3200 return r;
3201 }
3202 #endif
3203
3204 static struct file_operations kvm_vm_fops = {
3205 .release = kvm_vm_release,
3206 .unlocked_ioctl = kvm_vm_ioctl,
3207 #ifdef CONFIG_KVM_COMPAT
3208 .compat_ioctl = kvm_vm_compat_ioctl,
3209 #endif
3210 .llseek = noop_llseek,
3211 };
3212
3213 static int kvm_dev_ioctl_create_vm(unsigned long type)
3214 {
3215 int r;
3216 struct kvm *kvm;
3217 struct file *file;
3218
3219 kvm = kvm_create_vm(type);
3220 if (IS_ERR(kvm))
3221 return PTR_ERR(kvm);
3222 #ifdef CONFIG_KVM_MMIO
3223 r = kvm_coalesced_mmio_init(kvm);
3224 if (r < 0) {
3225 kvm_put_kvm(kvm);
3226 return r;
3227 }
3228 #endif
3229 r = get_unused_fd_flags(O_CLOEXEC);
3230 if (r < 0) {
3231 kvm_put_kvm(kvm);
3232 return r;
3233 }
3234 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3235 if (IS_ERR(file)) {
3236 put_unused_fd(r);
3237 kvm_put_kvm(kvm);
3238 return PTR_ERR(file);
3239 }
3240
3241 /*
3242 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3243 * already set, with ->release() being kvm_vm_release(). In error
3244 * cases it will be called by the final fput(file) and will take
3245 * care of doing kvm_put_kvm(kvm).
3246 */
3247 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3248 put_unused_fd(r);
3249 fput(file);
3250 return -ENOMEM;
3251 }
3252 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3253
3254 fd_install(r, file);
3255 return r;
3256 }
3257
3258 static long kvm_dev_ioctl(struct file *filp,
3259 unsigned int ioctl, unsigned long arg)
3260 {
3261 long r = -EINVAL;
3262
3263 switch (ioctl) {
3264 case KVM_GET_API_VERSION:
3265 if (arg)
3266 goto out;
3267 r = KVM_API_VERSION;
3268 break;
3269 case KVM_CREATE_VM:
3270 r = kvm_dev_ioctl_create_vm(arg);
3271 break;
3272 case KVM_CHECK_EXTENSION:
3273 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3274 break;
3275 case KVM_GET_VCPU_MMAP_SIZE:
3276 if (arg)
3277 goto out;
3278 r = PAGE_SIZE; /* struct kvm_run */
3279 #ifdef CONFIG_X86
3280 r += PAGE_SIZE; /* pio data page */
3281 #endif
3282 #ifdef CONFIG_KVM_MMIO
3283 r += PAGE_SIZE; /* coalesced mmio ring page */
3284 #endif
3285 break;
3286 case KVM_TRACE_ENABLE:
3287 case KVM_TRACE_PAUSE:
3288 case KVM_TRACE_DISABLE:
3289 r = -EOPNOTSUPP;
3290 break;
3291 default:
3292 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3293 }
3294 out:
3295 return r;
3296 }
3297
3298 static struct file_operations kvm_chardev_ops = {
3299 .unlocked_ioctl = kvm_dev_ioctl,
3300 .compat_ioctl = kvm_dev_ioctl,
3301 .llseek = noop_llseek,
3302 };
3303
3304 static struct miscdevice kvm_dev = {
3305 KVM_MINOR,
3306 "kvm",
3307 &kvm_chardev_ops,
3308 };
3309
3310 static void hardware_enable_nolock(void *junk)
3311 {
3312 int cpu = raw_smp_processor_id();
3313 int r;
3314
3315 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3316 return;
3317
3318 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3319
3320 r = kvm_arch_hardware_enable();
3321
3322 if (r) {
3323 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3324 atomic_inc(&hardware_enable_failed);
3325 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3326 }
3327 }
3328
3329 static int kvm_starting_cpu(unsigned int cpu)
3330 {
3331 raw_spin_lock(&kvm_count_lock);
3332 if (kvm_usage_count)
3333 hardware_enable_nolock(NULL);
3334 raw_spin_unlock(&kvm_count_lock);
3335 return 0;
3336 }
3337
3338 static void hardware_disable_nolock(void *junk)
3339 {
3340 int cpu = raw_smp_processor_id();
3341
3342 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3343 return;
3344 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3345 kvm_arch_hardware_disable();
3346 }
3347
3348 static int kvm_dying_cpu(unsigned int cpu)
3349 {
3350 raw_spin_lock(&kvm_count_lock);
3351 if (kvm_usage_count)
3352 hardware_disable_nolock(NULL);
3353 raw_spin_unlock(&kvm_count_lock);
3354 return 0;
3355 }
3356
3357 static void hardware_disable_all_nolock(void)
3358 {
3359 BUG_ON(!kvm_usage_count);
3360
3361 kvm_usage_count--;
3362 if (!kvm_usage_count)
3363 on_each_cpu(hardware_disable_nolock, NULL, 1);
3364 }
3365
3366 static void hardware_disable_all(void)
3367 {
3368 raw_spin_lock(&kvm_count_lock);
3369 hardware_disable_all_nolock();
3370 raw_spin_unlock(&kvm_count_lock);
3371 }
3372
3373 static int hardware_enable_all(void)
3374 {
3375 int r = 0;
3376
3377 raw_spin_lock(&kvm_count_lock);
3378
3379 kvm_usage_count++;
3380 if (kvm_usage_count == 1) {
3381 atomic_set(&hardware_enable_failed, 0);
3382 on_each_cpu(hardware_enable_nolock, NULL, 1);
3383
3384 if (atomic_read(&hardware_enable_failed)) {
3385 hardware_disable_all_nolock();
3386 r = -EBUSY;
3387 }
3388 }
3389
3390 raw_spin_unlock(&kvm_count_lock);
3391
3392 return r;
3393 }
3394
3395 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3396 void *v)
3397 {
3398 /*
3399 * Some (well, at least mine) BIOSes hang on reboot if
3400 * in vmx root mode.
3401 *
3402 * And Intel TXT required VMX off for all cpu when system shutdown.
3403 */
3404 pr_info("kvm: exiting hardware virtualization\n");
3405 kvm_rebooting = true;
3406 on_each_cpu(hardware_disable_nolock, NULL, 1);
3407 return NOTIFY_OK;
3408 }
3409
3410 static struct notifier_block kvm_reboot_notifier = {
3411 .notifier_call = kvm_reboot,
3412 .priority = 0,
3413 };
3414
3415 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3416 {
3417 int i;
3418
3419 for (i = 0; i < bus->dev_count; i++) {
3420 struct kvm_io_device *pos = bus->range[i].dev;
3421
3422 kvm_iodevice_destructor(pos);
3423 }
3424 kfree(bus);
3425 }
3426
3427 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3428 const struct kvm_io_range *r2)
3429 {
3430 gpa_t addr1 = r1->addr;
3431 gpa_t addr2 = r2->addr;
3432
3433 if (addr1 < addr2)
3434 return -1;
3435
3436 /* If r2->len == 0, match the exact address. If r2->len != 0,
3437 * accept any overlapping write. Any order is acceptable for
3438 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3439 * we process all of them.
3440 */
3441 if (r2->len) {
3442 addr1 += r1->len;
3443 addr2 += r2->len;
3444 }
3445
3446 if (addr1 > addr2)
3447 return 1;
3448
3449 return 0;
3450 }
3451
3452 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3453 {
3454 return kvm_io_bus_cmp(p1, p2);
3455 }
3456
3457 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3458 gpa_t addr, int len)
3459 {
3460 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3461 .addr = addr,
3462 .len = len,
3463 .dev = dev,
3464 };
3465
3466 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3467 kvm_io_bus_sort_cmp, NULL);
3468
3469 return 0;
3470 }
3471
3472 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3473 gpa_t addr, int len)
3474 {
3475 struct kvm_io_range *range, key;
3476 int off;
3477
3478 key = (struct kvm_io_range) {
3479 .addr = addr,
3480 .len = len,
3481 };
3482
3483 range = bsearch(&key, bus->range, bus->dev_count,
3484 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3485 if (range == NULL)
3486 return -ENOENT;
3487
3488 off = range - bus->range;
3489
3490 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3491 off--;
3492
3493 return off;
3494 }
3495
3496 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3497 struct kvm_io_range *range, const void *val)
3498 {
3499 int idx;
3500
3501 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3502 if (idx < 0)
3503 return -EOPNOTSUPP;
3504
3505 while (idx < bus->dev_count &&
3506 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3507 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3508 range->len, val))
3509 return idx;
3510 idx++;
3511 }
3512
3513 return -EOPNOTSUPP;
3514 }
3515
3516 /* kvm_io_bus_write - called under kvm->slots_lock */
3517 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3518 int len, const void *val)
3519 {
3520 struct kvm_io_bus *bus;
3521 struct kvm_io_range range;
3522 int r;
3523
3524 range = (struct kvm_io_range) {
3525 .addr = addr,
3526 .len = len,
3527 };
3528
3529 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3530 if (!bus)
3531 return -ENOMEM;
3532 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3533 return r < 0 ? r : 0;
3534 }
3535
3536 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3537 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3538 gpa_t addr, int len, const void *val, long cookie)
3539 {
3540 struct kvm_io_bus *bus;
3541 struct kvm_io_range range;
3542
3543 range = (struct kvm_io_range) {
3544 .addr = addr,
3545 .len = len,
3546 };
3547
3548 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3549 if (!bus)
3550 return -ENOMEM;
3551
3552 /* First try the device referenced by cookie. */
3553 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3554 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3555 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3556 val))
3557 return cookie;
3558
3559 /*
3560 * cookie contained garbage; fall back to search and return the
3561 * correct cookie value.
3562 */
3563 return __kvm_io_bus_write(vcpu, bus, &range, val);
3564 }
3565
3566 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3567 struct kvm_io_range *range, void *val)
3568 {
3569 int idx;
3570
3571 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3572 if (idx < 0)
3573 return -EOPNOTSUPP;
3574
3575 while (idx < bus->dev_count &&
3576 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3577 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3578 range->len, val))
3579 return idx;
3580 idx++;
3581 }
3582
3583 return -EOPNOTSUPP;
3584 }
3585 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3586
3587 /* kvm_io_bus_read - called under kvm->slots_lock */
3588 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3589 int len, void *val)
3590 {
3591 struct kvm_io_bus *bus;
3592 struct kvm_io_range range;
3593 int r;
3594
3595 range = (struct kvm_io_range) {
3596 .addr = addr,
3597 .len = len,
3598 };
3599
3600 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3601 if (!bus)
3602 return -ENOMEM;
3603 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3604 return r < 0 ? r : 0;
3605 }
3606
3607
3608 /* Caller must hold slots_lock. */
3609 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3610 int len, struct kvm_io_device *dev)
3611 {
3612 struct kvm_io_bus *new_bus, *bus;
3613
3614 bus = kvm_get_bus(kvm, bus_idx);
3615 if (!bus)
3616 return -ENOMEM;
3617
3618 /* exclude ioeventfd which is limited by maximum fd */
3619 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3620 return -ENOSPC;
3621
3622 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3623 sizeof(struct kvm_io_range)), GFP_KERNEL);
3624 if (!new_bus)
3625 return -ENOMEM;
3626 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3627 sizeof(struct kvm_io_range)));
3628 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3629 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3630 synchronize_srcu_expedited(&kvm->srcu);
3631 kfree(bus);
3632
3633 return 0;
3634 }
3635
3636 /* Caller must hold slots_lock. */
3637 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3638 struct kvm_io_device *dev)
3639 {
3640 int i;
3641 struct kvm_io_bus *new_bus, *bus;
3642
3643 bus = kvm_get_bus(kvm, bus_idx);
3644 if (!bus)
3645 return;
3646
3647 for (i = 0; i < bus->dev_count; i++)
3648 if (bus->range[i].dev == dev) {
3649 break;
3650 }
3651
3652 if (i == bus->dev_count)
3653 return;
3654
3655 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3656 sizeof(struct kvm_io_range)), GFP_KERNEL);
3657 if (!new_bus) {
3658 pr_err("kvm: failed to shrink bus, removing it completely\n");
3659 goto broken;
3660 }
3661
3662 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3663 new_bus->dev_count--;
3664 memcpy(new_bus->range + i, bus->range + i + 1,
3665 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3666
3667 broken:
3668 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3669 synchronize_srcu_expedited(&kvm->srcu);
3670 kfree(bus);
3671 return;
3672 }
3673
3674 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3675 gpa_t addr)
3676 {
3677 struct kvm_io_bus *bus;
3678 int dev_idx, srcu_idx;
3679 struct kvm_io_device *iodev = NULL;
3680
3681 srcu_idx = srcu_read_lock(&kvm->srcu);
3682
3683 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3684 if (!bus)
3685 goto out_unlock;
3686
3687 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3688 if (dev_idx < 0)
3689 goto out_unlock;
3690
3691 iodev = bus->range[dev_idx].dev;
3692
3693 out_unlock:
3694 srcu_read_unlock(&kvm->srcu, srcu_idx);
3695
3696 return iodev;
3697 }
3698 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3699
3700 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3701 int (*get)(void *, u64 *), int (*set)(void *, u64),
3702 const char *fmt)
3703 {
3704 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3705 inode->i_private;
3706
3707 /* The debugfs files are a reference to the kvm struct which
3708 * is still valid when kvm_destroy_vm is called.
3709 * To avoid the race between open and the removal of the debugfs
3710 * directory we test against the users count.
3711 */
3712 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3713 return -ENOENT;
3714
3715 if (simple_attr_open(inode, file, get,
3716 stat_data->mode & S_IWUGO ? set : NULL,
3717 fmt)) {
3718 kvm_put_kvm(stat_data->kvm);
3719 return -ENOMEM;
3720 }
3721
3722 return 0;
3723 }
3724
3725 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3726 {
3727 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3728 inode->i_private;
3729
3730 simple_attr_release(inode, file);
3731 kvm_put_kvm(stat_data->kvm);
3732
3733 return 0;
3734 }
3735
3736 static int vm_stat_get_per_vm(void *data, u64 *val)
3737 {
3738 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3739
3740 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3741
3742 return 0;
3743 }
3744
3745 static int vm_stat_clear_per_vm(void *data, u64 val)
3746 {
3747 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3748
3749 if (val)
3750 return -EINVAL;
3751
3752 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3753
3754 return 0;
3755 }
3756
3757 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3758 {
3759 __simple_attr_check_format("%llu\n", 0ull);
3760 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3761 vm_stat_clear_per_vm, "%llu\n");
3762 }
3763
3764 static const struct file_operations vm_stat_get_per_vm_fops = {
3765 .owner = THIS_MODULE,
3766 .open = vm_stat_get_per_vm_open,
3767 .release = kvm_debugfs_release,
3768 .read = simple_attr_read,
3769 .write = simple_attr_write,
3770 .llseek = no_llseek,
3771 };
3772
3773 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3774 {
3775 int i;
3776 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3777 struct kvm_vcpu *vcpu;
3778
3779 *val = 0;
3780
3781 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3782 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3783
3784 return 0;
3785 }
3786
3787 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3788 {
3789 int i;
3790 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3791 struct kvm_vcpu *vcpu;
3792
3793 if (val)
3794 return -EINVAL;
3795
3796 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3797 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3798
3799 return 0;
3800 }
3801
3802 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3803 {
3804 __simple_attr_check_format("%llu\n", 0ull);
3805 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3806 vcpu_stat_clear_per_vm, "%llu\n");
3807 }
3808
3809 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3810 .owner = THIS_MODULE,
3811 .open = vcpu_stat_get_per_vm_open,
3812 .release = kvm_debugfs_release,
3813 .read = simple_attr_read,
3814 .write = simple_attr_write,
3815 .llseek = no_llseek,
3816 };
3817
3818 static const struct file_operations *stat_fops_per_vm[] = {
3819 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3820 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3821 };
3822
3823 static int vm_stat_get(void *_offset, u64 *val)
3824 {
3825 unsigned offset = (long)_offset;
3826 struct kvm *kvm;
3827 struct kvm_stat_data stat_tmp = {.offset = offset};
3828 u64 tmp_val;
3829
3830 *val = 0;
3831 mutex_lock(&kvm_lock);
3832 list_for_each_entry(kvm, &vm_list, vm_list) {
3833 stat_tmp.kvm = kvm;
3834 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3835 *val += tmp_val;
3836 }
3837 mutex_unlock(&kvm_lock);
3838 return 0;
3839 }
3840
3841 static int vm_stat_clear(void *_offset, u64 val)
3842 {
3843 unsigned offset = (long)_offset;
3844 struct kvm *kvm;
3845 struct kvm_stat_data stat_tmp = {.offset = offset};
3846
3847 if (val)
3848 return -EINVAL;
3849
3850 mutex_lock(&kvm_lock);
3851 list_for_each_entry(kvm, &vm_list, vm_list) {
3852 stat_tmp.kvm = kvm;
3853 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3854 }
3855 mutex_unlock(&kvm_lock);
3856
3857 return 0;
3858 }
3859
3860 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3861
3862 static int vcpu_stat_get(void *_offset, u64 *val)
3863 {
3864 unsigned offset = (long)_offset;
3865 struct kvm *kvm;
3866 struct kvm_stat_data stat_tmp = {.offset = offset};
3867 u64 tmp_val;
3868
3869 *val = 0;
3870 mutex_lock(&kvm_lock);
3871 list_for_each_entry(kvm, &vm_list, vm_list) {
3872 stat_tmp.kvm = kvm;
3873 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3874 *val += tmp_val;
3875 }
3876 mutex_unlock(&kvm_lock);
3877 return 0;
3878 }
3879
3880 static int vcpu_stat_clear(void *_offset, u64 val)
3881 {
3882 unsigned offset = (long)_offset;
3883 struct kvm *kvm;
3884 struct kvm_stat_data stat_tmp = {.offset = offset};
3885
3886 if (val)
3887 return -EINVAL;
3888
3889 mutex_lock(&kvm_lock);
3890 list_for_each_entry(kvm, &vm_list, vm_list) {
3891 stat_tmp.kvm = kvm;
3892 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3893 }
3894 mutex_unlock(&kvm_lock);
3895
3896 return 0;
3897 }
3898
3899 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3900 "%llu\n");
3901
3902 static const struct file_operations *stat_fops[] = {
3903 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3904 [KVM_STAT_VM] = &vm_stat_fops,
3905 };
3906
3907 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3908 {
3909 struct kobj_uevent_env *env;
3910 unsigned long long created, active;
3911
3912 if (!kvm_dev.this_device || !kvm)
3913 return;
3914
3915 mutex_lock(&kvm_lock);
3916 if (type == KVM_EVENT_CREATE_VM) {
3917 kvm_createvm_count++;
3918 kvm_active_vms++;
3919 } else if (type == KVM_EVENT_DESTROY_VM) {
3920 kvm_active_vms--;
3921 }
3922 created = kvm_createvm_count;
3923 active = kvm_active_vms;
3924 mutex_unlock(&kvm_lock);
3925
3926 env = kzalloc(sizeof(*env), GFP_KERNEL);
3927 if (!env)
3928 return;
3929
3930 add_uevent_var(env, "CREATED=%llu", created);
3931 add_uevent_var(env, "COUNT=%llu", active);
3932
3933 if (type == KVM_EVENT_CREATE_VM) {
3934 add_uevent_var(env, "EVENT=create");
3935 kvm->userspace_pid = task_pid_nr(current);
3936 } else if (type == KVM_EVENT_DESTROY_VM) {
3937 add_uevent_var(env, "EVENT=destroy");
3938 }
3939 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3940
3941 if (kvm->debugfs_dentry) {
3942 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3943
3944 if (p) {
3945 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3946 if (!IS_ERR(tmp))
3947 add_uevent_var(env, "STATS_PATH=%s", tmp);
3948 kfree(p);
3949 }
3950 }
3951 /* no need for checks, since we are adding at most only 5 keys */
3952 env->envp[env->envp_idx++] = NULL;
3953 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3954 kfree(env);
3955 }
3956
3957 static int kvm_init_debug(void)
3958 {
3959 int r = -EEXIST;
3960 struct kvm_stats_debugfs_item *p;
3961
3962 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3963 if (kvm_debugfs_dir == NULL)
3964 goto out;
3965
3966 kvm_debugfs_num_entries = 0;
3967 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3968 int mode = p->mode ? p->mode : 0644;
3969 if (!debugfs_create_file(p->name, mode, kvm_debugfs_dir,
3970 (void *)(long)p->offset,
3971 stat_fops[p->kind]))
3972 goto out_dir;
3973 }
3974
3975 return 0;
3976
3977 out_dir:
3978 debugfs_remove_recursive(kvm_debugfs_dir);
3979 out:
3980 return r;
3981 }
3982
3983 static int kvm_suspend(void)
3984 {
3985 if (kvm_usage_count)
3986 hardware_disable_nolock(NULL);
3987 return 0;
3988 }
3989
3990 static void kvm_resume(void)
3991 {
3992 if (kvm_usage_count) {
3993 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3994 hardware_enable_nolock(NULL);
3995 }
3996 }
3997
3998 static struct syscore_ops kvm_syscore_ops = {
3999 .suspend = kvm_suspend,
4000 .resume = kvm_resume,
4001 };
4002
4003 static inline
4004 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4005 {
4006 return container_of(pn, struct kvm_vcpu, preempt_notifier);
4007 }
4008
4009 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4010 {
4011 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4012
4013 if (vcpu->preempted)
4014 vcpu->preempted = false;
4015
4016 kvm_arch_sched_in(vcpu, cpu);
4017
4018 kvm_arch_vcpu_load(vcpu, cpu);
4019 }
4020
4021 static void kvm_sched_out(struct preempt_notifier *pn,
4022 struct task_struct *next)
4023 {
4024 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4025
4026 if (current->state == TASK_RUNNING)
4027 vcpu->preempted = true;
4028 kvm_arch_vcpu_put(vcpu);
4029 }
4030
4031 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4032 struct module *module)
4033 {
4034 int r;
4035 int cpu;
4036
4037 r = kvm_arch_init(opaque);
4038 if (r)
4039 goto out_fail;
4040
4041 /*
4042 * kvm_arch_init makes sure there's at most one caller
4043 * for architectures that support multiple implementations,
4044 * like intel and amd on x86.
4045 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4046 * conflicts in case kvm is already setup for another implementation.
4047 */
4048 r = kvm_irqfd_init();
4049 if (r)
4050 goto out_irqfd;
4051
4052 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4053 r = -ENOMEM;
4054 goto out_free_0;
4055 }
4056
4057 r = kvm_arch_hardware_setup();
4058 if (r < 0)
4059 goto out_free_0a;
4060
4061 for_each_online_cpu(cpu) {
4062 smp_call_function_single(cpu,
4063 kvm_arch_check_processor_compat,
4064 &r, 1);
4065 if (r < 0)
4066 goto out_free_1;
4067 }
4068
4069 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4070 kvm_starting_cpu, kvm_dying_cpu);
4071 if (r)
4072 goto out_free_2;
4073 register_reboot_notifier(&kvm_reboot_notifier);
4074
4075 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4076 if (!vcpu_align)
4077 vcpu_align = __alignof__(struct kvm_vcpu);
4078 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
4079 SLAB_ACCOUNT, NULL);
4080 if (!kvm_vcpu_cache) {
4081 r = -ENOMEM;
4082 goto out_free_3;
4083 }
4084
4085 r = kvm_async_pf_init();
4086 if (r)
4087 goto out_free;
4088
4089 kvm_chardev_ops.owner = module;
4090 kvm_vm_fops.owner = module;
4091 kvm_vcpu_fops.owner = module;
4092
4093 r = misc_register(&kvm_dev);
4094 if (r) {
4095 pr_err("kvm: misc device register failed\n");
4096 goto out_unreg;
4097 }
4098
4099 register_syscore_ops(&kvm_syscore_ops);
4100
4101 kvm_preempt_ops.sched_in = kvm_sched_in;
4102 kvm_preempt_ops.sched_out = kvm_sched_out;
4103
4104 r = kvm_init_debug();
4105 if (r) {
4106 pr_err("kvm: create debugfs files failed\n");
4107 goto out_undebugfs;
4108 }
4109
4110 r = kvm_vfio_ops_init();
4111 WARN_ON(r);
4112
4113 return 0;
4114
4115 out_undebugfs:
4116 unregister_syscore_ops(&kvm_syscore_ops);
4117 misc_deregister(&kvm_dev);
4118 out_unreg:
4119 kvm_async_pf_deinit();
4120 out_free:
4121 kmem_cache_destroy(kvm_vcpu_cache);
4122 out_free_3:
4123 unregister_reboot_notifier(&kvm_reboot_notifier);
4124 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4125 out_free_2:
4126 out_free_1:
4127 kvm_arch_hardware_unsetup();
4128 out_free_0a:
4129 free_cpumask_var(cpus_hardware_enabled);
4130 out_free_0:
4131 kvm_irqfd_exit();
4132 out_irqfd:
4133 kvm_arch_exit();
4134 out_fail:
4135 return r;
4136 }
4137 EXPORT_SYMBOL_GPL(kvm_init);
4138
4139 void kvm_exit(void)
4140 {
4141 debugfs_remove_recursive(kvm_debugfs_dir);
4142 misc_deregister(&kvm_dev);
4143 kmem_cache_destroy(kvm_vcpu_cache);
4144 kvm_async_pf_deinit();
4145 unregister_syscore_ops(&kvm_syscore_ops);
4146 unregister_reboot_notifier(&kvm_reboot_notifier);
4147 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4148 on_each_cpu(hardware_disable_nolock, NULL, 1);
4149 kvm_arch_hardware_unsetup();
4150 kvm_arch_exit();
4151 kvm_irqfd_exit();
4152 free_cpumask_var(cpus_hardware_enabled);
4153 kvm_vfio_ops_exit();
4154 }
4155 EXPORT_SYMBOL_GPL(kvm_exit);
4156
4157 struct kvm_vm_worker_thread_context {
4158 struct kvm *kvm;
4159 struct task_struct *parent;
4160 struct completion init_done;
4161 kvm_vm_thread_fn_t thread_fn;
4162 uintptr_t data;
4163 int err;
4164 };
4165
4166 static int kvm_vm_worker_thread(void *context)
4167 {
4168 /*
4169 * The init_context is allocated on the stack of the parent thread, so
4170 * we have to locally copy anything that is needed beyond initialization
4171 */
4172 struct kvm_vm_worker_thread_context *init_context = context;
4173 struct kvm *kvm = init_context->kvm;
4174 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4175 uintptr_t data = init_context->data;
4176 int err;
4177
4178 err = kthread_park(current);
4179 /* kthread_park(current) is never supposed to return an error */
4180 WARN_ON(err != 0);
4181 if (err)
4182 goto init_complete;
4183
4184 err = cgroup_attach_task_all(init_context->parent, current);
4185 if (err) {
4186 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4187 __func__, err);
4188 goto init_complete;
4189 }
4190
4191 set_user_nice(current, task_nice(init_context->parent));
4192
4193 init_complete:
4194 init_context->err = err;
4195 complete(&init_context->init_done);
4196 init_context = NULL;
4197
4198 if (err)
4199 return err;
4200
4201 /* Wait to be woken up by the spawner before proceeding. */
4202 kthread_parkme();
4203
4204 if (!kthread_should_stop())
4205 err = thread_fn(kvm, data);
4206
4207 return err;
4208 }
4209
4210 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4211 uintptr_t data, const char *name,
4212 struct task_struct **thread_ptr)
4213 {
4214 struct kvm_vm_worker_thread_context init_context = {};
4215 struct task_struct *thread;
4216
4217 *thread_ptr = NULL;
4218 init_context.kvm = kvm;
4219 init_context.parent = current;
4220 init_context.thread_fn = thread_fn;
4221 init_context.data = data;
4222 init_completion(&init_context.init_done);
4223
4224 thread = kthread_run(kvm_vm_worker_thread, &init_context,
4225 "%s-%d", name, task_pid_nr(current));
4226 if (IS_ERR(thread))
4227 return PTR_ERR(thread);
4228
4229 /* kthread_run is never supposed to return NULL */
4230 WARN_ON(thread == NULL);
4231
4232 wait_for_completion(&init_context.init_done);
4233
4234 if (!init_context.err)
4235 *thread_ptr = thread;
4236
4237 return init_context.err;
4238 }