]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - virt/kvm/kvm_main.c
UBUNTU: Ubuntu-4.10.0-35.39
[mirror_ubuntu-zesty-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <linux/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71
72 /* Architectures should define their poll value according to the halt latency */
73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
75 EXPORT_SYMBOL_GPL(halt_poll_ns);
76
77 /* Default doubles per-vcpu halt_poll_ns. */
78 unsigned int halt_poll_ns_grow = 2;
79 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
81
82 /* Default resets per-vcpu halt_poll_ns . */
83 unsigned int halt_poll_ns_shrink;
84 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
86
87 /*
88 * Ordering of locks:
89 *
90 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
91 */
92
93 DEFINE_SPINLOCK(kvm_lock);
94 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
95 LIST_HEAD(vm_list);
96
97 static cpumask_var_t cpus_hardware_enabled;
98 static int kvm_usage_count;
99 static atomic_t hardware_enable_failed;
100
101 struct kmem_cache *kvm_vcpu_cache;
102 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
103
104 static __read_mostly struct preempt_ops kvm_preempt_ops;
105
106 struct dentry *kvm_debugfs_dir;
107 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
108
109 static int kvm_debugfs_num_entries;
110 static const struct file_operations *stat_fops_per_vm[];
111
112 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
113 unsigned long arg);
114 #ifdef CONFIG_KVM_COMPAT
115 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
116 unsigned long arg);
117 #endif
118 static int hardware_enable_all(void);
119 static void hardware_disable_all(void);
120
121 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
122
123 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
124 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
125
126 __visible bool kvm_rebooting;
127 EXPORT_SYMBOL_GPL(kvm_rebooting);
128
129 static bool largepages_enabled = true;
130
131 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
132 {
133 if (pfn_valid(pfn))
134 return PageReserved(pfn_to_page(pfn));
135
136 return true;
137 }
138
139 /*
140 * Switches to specified vcpu, until a matching vcpu_put()
141 */
142 int vcpu_load(struct kvm_vcpu *vcpu)
143 {
144 int cpu;
145
146 if (mutex_lock_killable(&vcpu->mutex))
147 return -EINTR;
148 cpu = get_cpu();
149 preempt_notifier_register(&vcpu->preempt_notifier);
150 kvm_arch_vcpu_load(vcpu, cpu);
151 put_cpu();
152 return 0;
153 }
154 EXPORT_SYMBOL_GPL(vcpu_load);
155
156 void vcpu_put(struct kvm_vcpu *vcpu)
157 {
158 preempt_disable();
159 kvm_arch_vcpu_put(vcpu);
160 preempt_notifier_unregister(&vcpu->preempt_notifier);
161 preempt_enable();
162 mutex_unlock(&vcpu->mutex);
163 }
164 EXPORT_SYMBOL_GPL(vcpu_put);
165
166 static void ack_flush(void *_completed)
167 {
168 }
169
170 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
171 {
172 int i, cpu, me;
173 cpumask_var_t cpus;
174 bool called = true;
175 struct kvm_vcpu *vcpu;
176
177 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
178
179 me = get_cpu();
180 kvm_for_each_vcpu(i, vcpu, kvm) {
181 kvm_make_request(req, vcpu);
182 cpu = vcpu->cpu;
183
184 /* Set ->requests bit before we read ->mode. */
185 smp_mb__after_atomic();
186
187 if (cpus != NULL && cpu != -1 && cpu != me &&
188 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
189 cpumask_set_cpu(cpu, cpus);
190 }
191 if (unlikely(cpus == NULL))
192 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
193 else if (!cpumask_empty(cpus))
194 smp_call_function_many(cpus, ack_flush, NULL, 1);
195 else
196 called = false;
197 put_cpu();
198 free_cpumask_var(cpus);
199 return called;
200 }
201
202 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
203 void kvm_flush_remote_tlbs(struct kvm *kvm)
204 {
205 /*
206 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
207 * kvm_make_all_cpus_request.
208 */
209 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
210
211 /*
212 * We want to publish modifications to the page tables before reading
213 * mode. Pairs with a memory barrier in arch-specific code.
214 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
215 * and smp_mb in walk_shadow_page_lockless_begin/end.
216 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
217 *
218 * There is already an smp_mb__after_atomic() before
219 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
220 * barrier here.
221 */
222 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
223 ++kvm->stat.remote_tlb_flush;
224 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
225 }
226 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
227 #endif
228
229 void kvm_reload_remote_mmus(struct kvm *kvm)
230 {
231 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
232 }
233
234 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
235 {
236 struct page *page;
237 int r;
238
239 mutex_init(&vcpu->mutex);
240 vcpu->cpu = -1;
241 vcpu->kvm = kvm;
242 vcpu->vcpu_id = id;
243 vcpu->pid = NULL;
244 init_swait_queue_head(&vcpu->wq);
245 kvm_async_pf_vcpu_init(vcpu);
246
247 vcpu->pre_pcpu = -1;
248 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
249
250 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
251 if (!page) {
252 r = -ENOMEM;
253 goto fail;
254 }
255 vcpu->run = page_address(page);
256
257 kvm_vcpu_set_in_spin_loop(vcpu, false);
258 kvm_vcpu_set_dy_eligible(vcpu, false);
259 vcpu->preempted = false;
260
261 r = kvm_arch_vcpu_init(vcpu);
262 if (r < 0)
263 goto fail_free_run;
264 return 0;
265
266 fail_free_run:
267 free_page((unsigned long)vcpu->run);
268 fail:
269 return r;
270 }
271 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
272
273 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
274 {
275 put_pid(vcpu->pid);
276 kvm_arch_vcpu_uninit(vcpu);
277 free_page((unsigned long)vcpu->run);
278 }
279 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
280
281 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
282 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
283 {
284 return container_of(mn, struct kvm, mmu_notifier);
285 }
286
287 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
288 struct mm_struct *mm,
289 unsigned long address)
290 {
291 struct kvm *kvm = mmu_notifier_to_kvm(mn);
292 int need_tlb_flush, idx;
293
294 /*
295 * When ->invalidate_page runs, the linux pte has been zapped
296 * already but the page is still allocated until
297 * ->invalidate_page returns. So if we increase the sequence
298 * here the kvm page fault will notice if the spte can't be
299 * established because the page is going to be freed. If
300 * instead the kvm page fault establishes the spte before
301 * ->invalidate_page runs, kvm_unmap_hva will release it
302 * before returning.
303 *
304 * The sequence increase only need to be seen at spin_unlock
305 * time, and not at spin_lock time.
306 *
307 * Increasing the sequence after the spin_unlock would be
308 * unsafe because the kvm page fault could then establish the
309 * pte after kvm_unmap_hva returned, without noticing the page
310 * is going to be freed.
311 */
312 idx = srcu_read_lock(&kvm->srcu);
313 spin_lock(&kvm->mmu_lock);
314
315 kvm->mmu_notifier_seq++;
316 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
317 /* we've to flush the tlb before the pages can be freed */
318 if (need_tlb_flush)
319 kvm_flush_remote_tlbs(kvm);
320
321 spin_unlock(&kvm->mmu_lock);
322
323 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
324
325 srcu_read_unlock(&kvm->srcu, idx);
326 }
327
328 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
329 struct mm_struct *mm,
330 unsigned long address,
331 pte_t pte)
332 {
333 struct kvm *kvm = mmu_notifier_to_kvm(mn);
334 int idx;
335
336 idx = srcu_read_lock(&kvm->srcu);
337 spin_lock(&kvm->mmu_lock);
338 kvm->mmu_notifier_seq++;
339 kvm_set_spte_hva(kvm, address, pte);
340 spin_unlock(&kvm->mmu_lock);
341 srcu_read_unlock(&kvm->srcu, idx);
342 }
343
344 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
345 struct mm_struct *mm,
346 unsigned long start,
347 unsigned long end)
348 {
349 struct kvm *kvm = mmu_notifier_to_kvm(mn);
350 int need_tlb_flush = 0, idx;
351
352 idx = srcu_read_lock(&kvm->srcu);
353 spin_lock(&kvm->mmu_lock);
354 /*
355 * The count increase must become visible at unlock time as no
356 * spte can be established without taking the mmu_lock and
357 * count is also read inside the mmu_lock critical section.
358 */
359 kvm->mmu_notifier_count++;
360 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
361 need_tlb_flush |= kvm->tlbs_dirty;
362 /* we've to flush the tlb before the pages can be freed */
363 if (need_tlb_flush)
364 kvm_flush_remote_tlbs(kvm);
365
366 spin_unlock(&kvm->mmu_lock);
367 srcu_read_unlock(&kvm->srcu, idx);
368 }
369
370 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
371 struct mm_struct *mm,
372 unsigned long start,
373 unsigned long end)
374 {
375 struct kvm *kvm = mmu_notifier_to_kvm(mn);
376
377 spin_lock(&kvm->mmu_lock);
378 /*
379 * This sequence increase will notify the kvm page fault that
380 * the page that is going to be mapped in the spte could have
381 * been freed.
382 */
383 kvm->mmu_notifier_seq++;
384 smp_wmb();
385 /*
386 * The above sequence increase must be visible before the
387 * below count decrease, which is ensured by the smp_wmb above
388 * in conjunction with the smp_rmb in mmu_notifier_retry().
389 */
390 kvm->mmu_notifier_count--;
391 spin_unlock(&kvm->mmu_lock);
392
393 BUG_ON(kvm->mmu_notifier_count < 0);
394 }
395
396 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
397 struct mm_struct *mm,
398 unsigned long start,
399 unsigned long end)
400 {
401 struct kvm *kvm = mmu_notifier_to_kvm(mn);
402 int young, idx;
403
404 idx = srcu_read_lock(&kvm->srcu);
405 spin_lock(&kvm->mmu_lock);
406
407 young = kvm_age_hva(kvm, start, end);
408 if (young)
409 kvm_flush_remote_tlbs(kvm);
410
411 spin_unlock(&kvm->mmu_lock);
412 srcu_read_unlock(&kvm->srcu, idx);
413
414 return young;
415 }
416
417 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
418 struct mm_struct *mm,
419 unsigned long start,
420 unsigned long end)
421 {
422 struct kvm *kvm = mmu_notifier_to_kvm(mn);
423 int young, idx;
424
425 idx = srcu_read_lock(&kvm->srcu);
426 spin_lock(&kvm->mmu_lock);
427 /*
428 * Even though we do not flush TLB, this will still adversely
429 * affect performance on pre-Haswell Intel EPT, where there is
430 * no EPT Access Bit to clear so that we have to tear down EPT
431 * tables instead. If we find this unacceptable, we can always
432 * add a parameter to kvm_age_hva so that it effectively doesn't
433 * do anything on clear_young.
434 *
435 * Also note that currently we never issue secondary TLB flushes
436 * from clear_young, leaving this job up to the regular system
437 * cadence. If we find this inaccurate, we might come up with a
438 * more sophisticated heuristic later.
439 */
440 young = kvm_age_hva(kvm, start, end);
441 spin_unlock(&kvm->mmu_lock);
442 srcu_read_unlock(&kvm->srcu, idx);
443
444 return young;
445 }
446
447 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
448 struct mm_struct *mm,
449 unsigned long address)
450 {
451 struct kvm *kvm = mmu_notifier_to_kvm(mn);
452 int young, idx;
453
454 idx = srcu_read_lock(&kvm->srcu);
455 spin_lock(&kvm->mmu_lock);
456 young = kvm_test_age_hva(kvm, address);
457 spin_unlock(&kvm->mmu_lock);
458 srcu_read_unlock(&kvm->srcu, idx);
459
460 return young;
461 }
462
463 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
464 struct mm_struct *mm)
465 {
466 struct kvm *kvm = mmu_notifier_to_kvm(mn);
467 int idx;
468
469 idx = srcu_read_lock(&kvm->srcu);
470 kvm_arch_flush_shadow_all(kvm);
471 srcu_read_unlock(&kvm->srcu, idx);
472 }
473
474 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
475 .invalidate_page = kvm_mmu_notifier_invalidate_page,
476 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
477 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
478 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
479 .clear_young = kvm_mmu_notifier_clear_young,
480 .test_young = kvm_mmu_notifier_test_young,
481 .change_pte = kvm_mmu_notifier_change_pte,
482 .release = kvm_mmu_notifier_release,
483 };
484
485 static int kvm_init_mmu_notifier(struct kvm *kvm)
486 {
487 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
488 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
489 }
490
491 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
492
493 static int kvm_init_mmu_notifier(struct kvm *kvm)
494 {
495 return 0;
496 }
497
498 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
499
500 static struct kvm_memslots *kvm_alloc_memslots(void)
501 {
502 int i;
503 struct kvm_memslots *slots;
504
505 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
506 if (!slots)
507 return NULL;
508
509 /*
510 * Init kvm generation close to the maximum to easily test the
511 * code of handling generation number wrap-around.
512 */
513 slots->generation = -150;
514 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
515 slots->id_to_index[i] = slots->memslots[i].id = i;
516
517 return slots;
518 }
519
520 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
521 {
522 if (!memslot->dirty_bitmap)
523 return;
524
525 kvfree(memslot->dirty_bitmap);
526 memslot->dirty_bitmap = NULL;
527 }
528
529 /*
530 * Free any memory in @free but not in @dont.
531 */
532 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
533 struct kvm_memory_slot *dont)
534 {
535 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
536 kvm_destroy_dirty_bitmap(free);
537
538 kvm_arch_free_memslot(kvm, free, dont);
539
540 free->npages = 0;
541 }
542
543 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
544 {
545 struct kvm_memory_slot *memslot;
546
547 if (!slots)
548 return;
549
550 kvm_for_each_memslot(memslot, slots)
551 kvm_free_memslot(kvm, memslot, NULL);
552
553 kvfree(slots);
554 }
555
556 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
557 {
558 int i;
559
560 if (!kvm->debugfs_dentry)
561 return;
562
563 debugfs_remove_recursive(kvm->debugfs_dentry);
564
565 if (kvm->debugfs_stat_data) {
566 for (i = 0; i < kvm_debugfs_num_entries; i++)
567 kfree(kvm->debugfs_stat_data[i]);
568 kfree(kvm->debugfs_stat_data);
569 }
570 }
571
572 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
573 {
574 char dir_name[ITOA_MAX_LEN * 2];
575 struct kvm_stat_data *stat_data;
576 struct kvm_stats_debugfs_item *p;
577
578 if (!debugfs_initialized())
579 return 0;
580
581 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
582 kvm->debugfs_dentry = debugfs_create_dir(dir_name,
583 kvm_debugfs_dir);
584 if (!kvm->debugfs_dentry)
585 return -ENOMEM;
586
587 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
588 sizeof(*kvm->debugfs_stat_data),
589 GFP_KERNEL);
590 if (!kvm->debugfs_stat_data)
591 return -ENOMEM;
592
593 for (p = debugfs_entries; p->name; p++) {
594 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
595 if (!stat_data)
596 return -ENOMEM;
597
598 stat_data->kvm = kvm;
599 stat_data->offset = p->offset;
600 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
601 if (!debugfs_create_file(p->name, 0644,
602 kvm->debugfs_dentry,
603 stat_data,
604 stat_fops_per_vm[p->kind]))
605 return -ENOMEM;
606 }
607 return 0;
608 }
609
610 static struct kvm *kvm_create_vm(unsigned long type)
611 {
612 int r, i;
613 struct kvm *kvm = kvm_arch_alloc_vm();
614
615 if (!kvm)
616 return ERR_PTR(-ENOMEM);
617
618 spin_lock_init(&kvm->mmu_lock);
619 atomic_inc(&current->mm->mm_count);
620 kvm->mm = current->mm;
621 kvm_eventfd_init(kvm);
622 mutex_init(&kvm->lock);
623 mutex_init(&kvm->irq_lock);
624 mutex_init(&kvm->slots_lock);
625 atomic_set(&kvm->users_count, 1);
626 INIT_LIST_HEAD(&kvm->devices);
627
628 r = kvm_arch_init_vm(kvm, type);
629 if (r)
630 goto out_err_no_disable;
631
632 r = hardware_enable_all();
633 if (r)
634 goto out_err_no_disable;
635
636 #ifdef CONFIG_HAVE_KVM_IRQFD
637 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
638 #endif
639
640 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
641
642 r = -ENOMEM;
643 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
644 kvm->memslots[i] = kvm_alloc_memslots();
645 if (!kvm->memslots[i])
646 goto out_err_no_srcu;
647 }
648
649 if (init_srcu_struct(&kvm->srcu))
650 goto out_err_no_srcu;
651 if (init_srcu_struct(&kvm->irq_srcu))
652 goto out_err_no_irq_srcu;
653 for (i = 0; i < KVM_NR_BUSES; i++) {
654 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
655 GFP_KERNEL);
656 if (!kvm->buses[i])
657 goto out_err;
658 }
659
660 r = kvm_init_mmu_notifier(kvm);
661 if (r)
662 goto out_err;
663
664 spin_lock(&kvm_lock);
665 list_add(&kvm->vm_list, &vm_list);
666 spin_unlock(&kvm_lock);
667
668 preempt_notifier_inc();
669
670 return kvm;
671
672 out_err:
673 cleanup_srcu_struct(&kvm->irq_srcu);
674 out_err_no_irq_srcu:
675 cleanup_srcu_struct(&kvm->srcu);
676 out_err_no_srcu:
677 hardware_disable_all();
678 out_err_no_disable:
679 for (i = 0; i < KVM_NR_BUSES; i++)
680 kfree(kvm->buses[i]);
681 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
682 kvm_free_memslots(kvm, kvm->memslots[i]);
683 kvm_arch_free_vm(kvm);
684 mmdrop(current->mm);
685 return ERR_PTR(r);
686 }
687
688 /*
689 * Avoid using vmalloc for a small buffer.
690 * Should not be used when the size is statically known.
691 */
692 void *kvm_kvzalloc(unsigned long size)
693 {
694 if (size > PAGE_SIZE)
695 return vzalloc(size);
696 else
697 return kzalloc(size, GFP_KERNEL);
698 }
699
700 static void kvm_destroy_devices(struct kvm *kvm)
701 {
702 struct kvm_device *dev, *tmp;
703
704 /*
705 * We do not need to take the kvm->lock here, because nobody else
706 * has a reference to the struct kvm at this point and therefore
707 * cannot access the devices list anyhow.
708 */
709 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
710 list_del(&dev->vm_node);
711 dev->ops->destroy(dev);
712 }
713 }
714
715 static void kvm_destroy_vm(struct kvm *kvm)
716 {
717 int i;
718 struct mm_struct *mm = kvm->mm;
719
720 kvm_destroy_vm_debugfs(kvm);
721 kvm_arch_sync_events(kvm);
722 spin_lock(&kvm_lock);
723 list_del(&kvm->vm_list);
724 spin_unlock(&kvm_lock);
725 kvm_free_irq_routing(kvm);
726 for (i = 0; i < KVM_NR_BUSES; i++) {
727 if (kvm->buses[i])
728 kvm_io_bus_destroy(kvm->buses[i]);
729 kvm->buses[i] = NULL;
730 }
731 kvm_coalesced_mmio_free(kvm);
732 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
733 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
734 #else
735 kvm_arch_flush_shadow_all(kvm);
736 #endif
737 kvm_arch_destroy_vm(kvm);
738 kvm_destroy_devices(kvm);
739 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
740 kvm_free_memslots(kvm, kvm->memslots[i]);
741 cleanup_srcu_struct(&kvm->irq_srcu);
742 cleanup_srcu_struct(&kvm->srcu);
743 kvm_arch_free_vm(kvm);
744 preempt_notifier_dec();
745 hardware_disable_all();
746 mmdrop(mm);
747 }
748
749 void kvm_get_kvm(struct kvm *kvm)
750 {
751 atomic_inc(&kvm->users_count);
752 }
753 EXPORT_SYMBOL_GPL(kvm_get_kvm);
754
755 void kvm_put_kvm(struct kvm *kvm)
756 {
757 if (atomic_dec_and_test(&kvm->users_count))
758 kvm_destroy_vm(kvm);
759 }
760 EXPORT_SYMBOL_GPL(kvm_put_kvm);
761
762
763 static int kvm_vm_release(struct inode *inode, struct file *filp)
764 {
765 struct kvm *kvm = filp->private_data;
766
767 kvm_irqfd_release(kvm);
768
769 kvm_put_kvm(kvm);
770 return 0;
771 }
772
773 /*
774 * Allocation size is twice as large as the actual dirty bitmap size.
775 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
776 */
777 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
778 {
779 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
780
781 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
782 if (!memslot->dirty_bitmap)
783 return -ENOMEM;
784
785 return 0;
786 }
787
788 /*
789 * Insert memslot and re-sort memslots based on their GFN,
790 * so binary search could be used to lookup GFN.
791 * Sorting algorithm takes advantage of having initially
792 * sorted array and known changed memslot position.
793 */
794 static void update_memslots(struct kvm_memslots *slots,
795 struct kvm_memory_slot *new)
796 {
797 int id = new->id;
798 int i = slots->id_to_index[id];
799 struct kvm_memory_slot *mslots = slots->memslots;
800
801 WARN_ON(mslots[i].id != id);
802 if (!new->npages) {
803 WARN_ON(!mslots[i].npages);
804 if (mslots[i].npages)
805 slots->used_slots--;
806 } else {
807 if (!mslots[i].npages)
808 slots->used_slots++;
809 }
810
811 while (i < KVM_MEM_SLOTS_NUM - 1 &&
812 new->base_gfn <= mslots[i + 1].base_gfn) {
813 if (!mslots[i + 1].npages)
814 break;
815 mslots[i] = mslots[i + 1];
816 slots->id_to_index[mslots[i].id] = i;
817 i++;
818 }
819
820 /*
821 * The ">=" is needed when creating a slot with base_gfn == 0,
822 * so that it moves before all those with base_gfn == npages == 0.
823 *
824 * On the other hand, if new->npages is zero, the above loop has
825 * already left i pointing to the beginning of the empty part of
826 * mslots, and the ">=" would move the hole backwards in this
827 * case---which is wrong. So skip the loop when deleting a slot.
828 */
829 if (new->npages) {
830 while (i > 0 &&
831 new->base_gfn >= mslots[i - 1].base_gfn) {
832 mslots[i] = mslots[i - 1];
833 slots->id_to_index[mslots[i].id] = i;
834 i--;
835 }
836 } else
837 WARN_ON_ONCE(i != slots->used_slots);
838
839 mslots[i] = *new;
840 slots->id_to_index[mslots[i].id] = i;
841 }
842
843 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
844 {
845 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
846
847 #ifdef __KVM_HAVE_READONLY_MEM
848 valid_flags |= KVM_MEM_READONLY;
849 #endif
850
851 if (mem->flags & ~valid_flags)
852 return -EINVAL;
853
854 return 0;
855 }
856
857 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
858 int as_id, struct kvm_memslots *slots)
859 {
860 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
861
862 /*
863 * Set the low bit in the generation, which disables SPTE caching
864 * until the end of synchronize_srcu_expedited.
865 */
866 WARN_ON(old_memslots->generation & 1);
867 slots->generation = old_memslots->generation + 1;
868
869 rcu_assign_pointer(kvm->memslots[as_id], slots);
870 synchronize_srcu_expedited(&kvm->srcu);
871
872 /*
873 * Increment the new memslot generation a second time. This prevents
874 * vm exits that race with memslot updates from caching a memslot
875 * generation that will (potentially) be valid forever.
876 */
877 slots->generation++;
878
879 kvm_arch_memslots_updated(kvm, slots);
880
881 return old_memslots;
882 }
883
884 /*
885 * Allocate some memory and give it an address in the guest physical address
886 * space.
887 *
888 * Discontiguous memory is allowed, mostly for framebuffers.
889 *
890 * Must be called holding kvm->slots_lock for write.
891 */
892 int __kvm_set_memory_region(struct kvm *kvm,
893 const struct kvm_userspace_memory_region *mem)
894 {
895 int r;
896 gfn_t base_gfn;
897 unsigned long npages;
898 struct kvm_memory_slot *slot;
899 struct kvm_memory_slot old, new;
900 struct kvm_memslots *slots = NULL, *old_memslots;
901 int as_id, id;
902 enum kvm_mr_change change;
903
904 r = check_memory_region_flags(mem);
905 if (r)
906 goto out;
907
908 r = -EINVAL;
909 as_id = mem->slot >> 16;
910 id = (u16)mem->slot;
911
912 /* General sanity checks */
913 if (mem->memory_size & (PAGE_SIZE - 1))
914 goto out;
915 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
916 goto out;
917 /* We can read the guest memory with __xxx_user() later on. */
918 if ((id < KVM_USER_MEM_SLOTS) &&
919 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
920 !access_ok(VERIFY_WRITE,
921 (void __user *)(unsigned long)mem->userspace_addr,
922 mem->memory_size)))
923 goto out;
924 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
925 goto out;
926 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
927 goto out;
928
929 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
930 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
931 npages = mem->memory_size >> PAGE_SHIFT;
932
933 if (npages > KVM_MEM_MAX_NR_PAGES)
934 goto out;
935
936 new = old = *slot;
937
938 new.id = id;
939 new.base_gfn = base_gfn;
940 new.npages = npages;
941 new.flags = mem->flags;
942
943 if (npages) {
944 if (!old.npages)
945 change = KVM_MR_CREATE;
946 else { /* Modify an existing slot. */
947 if ((mem->userspace_addr != old.userspace_addr) ||
948 (npages != old.npages) ||
949 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
950 goto out;
951
952 if (base_gfn != old.base_gfn)
953 change = KVM_MR_MOVE;
954 else if (new.flags != old.flags)
955 change = KVM_MR_FLAGS_ONLY;
956 else { /* Nothing to change. */
957 r = 0;
958 goto out;
959 }
960 }
961 } else {
962 if (!old.npages)
963 goto out;
964
965 change = KVM_MR_DELETE;
966 new.base_gfn = 0;
967 new.flags = 0;
968 }
969
970 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
971 /* Check for overlaps */
972 r = -EEXIST;
973 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
974 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
975 (slot->id == id))
976 continue;
977 if (!((base_gfn + npages <= slot->base_gfn) ||
978 (base_gfn >= slot->base_gfn + slot->npages)))
979 goto out;
980 }
981 }
982
983 /* Free page dirty bitmap if unneeded */
984 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
985 new.dirty_bitmap = NULL;
986
987 r = -ENOMEM;
988 if (change == KVM_MR_CREATE) {
989 new.userspace_addr = mem->userspace_addr;
990
991 if (kvm_arch_create_memslot(kvm, &new, npages))
992 goto out_free;
993 }
994
995 /* Allocate page dirty bitmap if needed */
996 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
997 if (kvm_create_dirty_bitmap(&new) < 0)
998 goto out_free;
999 }
1000
1001 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
1002 if (!slots)
1003 goto out_free;
1004 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1005
1006 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1007 slot = id_to_memslot(slots, id);
1008 slot->flags |= KVM_MEMSLOT_INVALID;
1009
1010 old_memslots = install_new_memslots(kvm, as_id, slots);
1011
1012 /* slot was deleted or moved, clear iommu mapping */
1013 kvm_iommu_unmap_pages(kvm, &old);
1014 /* From this point no new shadow pages pointing to a deleted,
1015 * or moved, memslot will be created.
1016 *
1017 * validation of sp->gfn happens in:
1018 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1019 * - kvm_is_visible_gfn (mmu_check_roots)
1020 */
1021 kvm_arch_flush_shadow_memslot(kvm, slot);
1022
1023 /*
1024 * We can re-use the old_memslots from above, the only difference
1025 * from the currently installed memslots is the invalid flag. This
1026 * will get overwritten by update_memslots anyway.
1027 */
1028 slots = old_memslots;
1029 }
1030
1031 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1032 if (r)
1033 goto out_slots;
1034
1035 /* actual memory is freed via old in kvm_free_memslot below */
1036 if (change == KVM_MR_DELETE) {
1037 new.dirty_bitmap = NULL;
1038 memset(&new.arch, 0, sizeof(new.arch));
1039 }
1040
1041 update_memslots(slots, &new);
1042 old_memslots = install_new_memslots(kvm, as_id, slots);
1043
1044 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1045
1046 kvm_free_memslot(kvm, &old, &new);
1047 kvfree(old_memslots);
1048
1049 /*
1050 * IOMMU mapping: New slots need to be mapped. Old slots need to be
1051 * un-mapped and re-mapped if their base changes. Since base change
1052 * unmapping is handled above with slot deletion, mapping alone is
1053 * needed here. Anything else the iommu might care about for existing
1054 * slots (size changes, userspace addr changes and read-only flag
1055 * changes) is disallowed above, so any other attribute changes getting
1056 * here can be skipped.
1057 */
1058 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1059 r = kvm_iommu_map_pages(kvm, &new);
1060 return r;
1061 }
1062
1063 return 0;
1064
1065 out_slots:
1066 kvfree(slots);
1067 out_free:
1068 kvm_free_memslot(kvm, &new, &old);
1069 out:
1070 return r;
1071 }
1072 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1073
1074 int kvm_set_memory_region(struct kvm *kvm,
1075 const struct kvm_userspace_memory_region *mem)
1076 {
1077 int r;
1078
1079 mutex_lock(&kvm->slots_lock);
1080 r = __kvm_set_memory_region(kvm, mem);
1081 mutex_unlock(&kvm->slots_lock);
1082 return r;
1083 }
1084 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1085
1086 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1087 struct kvm_userspace_memory_region *mem)
1088 {
1089 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1090 return -EINVAL;
1091
1092 return kvm_set_memory_region(kvm, mem);
1093 }
1094
1095 int kvm_get_dirty_log(struct kvm *kvm,
1096 struct kvm_dirty_log *log, int *is_dirty)
1097 {
1098 struct kvm_memslots *slots;
1099 struct kvm_memory_slot *memslot;
1100 int r, i, as_id, id;
1101 unsigned long n;
1102 unsigned long any = 0;
1103
1104 r = -EINVAL;
1105 as_id = log->slot >> 16;
1106 id = (u16)log->slot;
1107 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1108 goto out;
1109
1110 slots = __kvm_memslots(kvm, as_id);
1111 memslot = id_to_memslot(slots, id);
1112 r = -ENOENT;
1113 if (!memslot->dirty_bitmap)
1114 goto out;
1115
1116 n = kvm_dirty_bitmap_bytes(memslot);
1117
1118 for (i = 0; !any && i < n/sizeof(long); ++i)
1119 any = memslot->dirty_bitmap[i];
1120
1121 r = -EFAULT;
1122 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1123 goto out;
1124
1125 if (any)
1126 *is_dirty = 1;
1127
1128 r = 0;
1129 out:
1130 return r;
1131 }
1132 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1133
1134 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1135 /**
1136 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1137 * are dirty write protect them for next write.
1138 * @kvm: pointer to kvm instance
1139 * @log: slot id and address to which we copy the log
1140 * @is_dirty: flag set if any page is dirty
1141 *
1142 * We need to keep it in mind that VCPU threads can write to the bitmap
1143 * concurrently. So, to avoid losing track of dirty pages we keep the
1144 * following order:
1145 *
1146 * 1. Take a snapshot of the bit and clear it if needed.
1147 * 2. Write protect the corresponding page.
1148 * 3. Copy the snapshot to the userspace.
1149 * 4. Upon return caller flushes TLB's if needed.
1150 *
1151 * Between 2 and 4, the guest may write to the page using the remaining TLB
1152 * entry. This is not a problem because the page is reported dirty using
1153 * the snapshot taken before and step 4 ensures that writes done after
1154 * exiting to userspace will be logged for the next call.
1155 *
1156 */
1157 int kvm_get_dirty_log_protect(struct kvm *kvm,
1158 struct kvm_dirty_log *log, bool *is_dirty)
1159 {
1160 struct kvm_memslots *slots;
1161 struct kvm_memory_slot *memslot;
1162 int r, i, as_id, id;
1163 unsigned long n;
1164 unsigned long *dirty_bitmap;
1165 unsigned long *dirty_bitmap_buffer;
1166
1167 r = -EINVAL;
1168 as_id = log->slot >> 16;
1169 id = (u16)log->slot;
1170 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1171 goto out;
1172
1173 slots = __kvm_memslots(kvm, as_id);
1174 memslot = id_to_memslot(slots, id);
1175
1176 dirty_bitmap = memslot->dirty_bitmap;
1177 r = -ENOENT;
1178 if (!dirty_bitmap)
1179 goto out;
1180
1181 n = kvm_dirty_bitmap_bytes(memslot);
1182
1183 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1184 memset(dirty_bitmap_buffer, 0, n);
1185
1186 spin_lock(&kvm->mmu_lock);
1187 *is_dirty = false;
1188 for (i = 0; i < n / sizeof(long); i++) {
1189 unsigned long mask;
1190 gfn_t offset;
1191
1192 if (!dirty_bitmap[i])
1193 continue;
1194
1195 *is_dirty = true;
1196
1197 mask = xchg(&dirty_bitmap[i], 0);
1198 dirty_bitmap_buffer[i] = mask;
1199
1200 if (mask) {
1201 offset = i * BITS_PER_LONG;
1202 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1203 offset, mask);
1204 }
1205 }
1206
1207 spin_unlock(&kvm->mmu_lock);
1208
1209 r = -EFAULT;
1210 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1211 goto out;
1212
1213 r = 0;
1214 out:
1215 return r;
1216 }
1217 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1218 #endif
1219
1220 bool kvm_largepages_enabled(void)
1221 {
1222 return largepages_enabled;
1223 }
1224
1225 void kvm_disable_largepages(void)
1226 {
1227 largepages_enabled = false;
1228 }
1229 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1230
1231 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1232 {
1233 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1234 }
1235 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1236
1237 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1238 {
1239 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1240 }
1241
1242 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1243 {
1244 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1245
1246 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1247 memslot->flags & KVM_MEMSLOT_INVALID)
1248 return false;
1249
1250 return true;
1251 }
1252 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1253
1254 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1255 {
1256 struct vm_area_struct *vma;
1257 unsigned long addr, size;
1258
1259 size = PAGE_SIZE;
1260
1261 addr = gfn_to_hva(kvm, gfn);
1262 if (kvm_is_error_hva(addr))
1263 return PAGE_SIZE;
1264
1265 down_read(&current->mm->mmap_sem);
1266 vma = find_vma(current->mm, addr);
1267 if (!vma)
1268 goto out;
1269
1270 size = vma_kernel_pagesize(vma);
1271
1272 out:
1273 up_read(&current->mm->mmap_sem);
1274
1275 return size;
1276 }
1277
1278 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1279 {
1280 return slot->flags & KVM_MEM_READONLY;
1281 }
1282
1283 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1284 gfn_t *nr_pages, bool write)
1285 {
1286 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1287 return KVM_HVA_ERR_BAD;
1288
1289 if (memslot_is_readonly(slot) && write)
1290 return KVM_HVA_ERR_RO_BAD;
1291
1292 if (nr_pages)
1293 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1294
1295 return __gfn_to_hva_memslot(slot, gfn);
1296 }
1297
1298 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1299 gfn_t *nr_pages)
1300 {
1301 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1302 }
1303
1304 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1305 gfn_t gfn)
1306 {
1307 return gfn_to_hva_many(slot, gfn, NULL);
1308 }
1309 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1310
1311 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1312 {
1313 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1314 }
1315 EXPORT_SYMBOL_GPL(gfn_to_hva);
1316
1317 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1318 {
1319 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1320 }
1321 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1322
1323 /*
1324 * If writable is set to false, the hva returned by this function is only
1325 * allowed to be read.
1326 */
1327 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1328 gfn_t gfn, bool *writable)
1329 {
1330 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1331
1332 if (!kvm_is_error_hva(hva) && writable)
1333 *writable = !memslot_is_readonly(slot);
1334
1335 return hva;
1336 }
1337
1338 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1339 {
1340 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1341
1342 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1343 }
1344
1345 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1346 {
1347 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1348
1349 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1350 }
1351
1352 static int get_user_page_nowait(unsigned long start, int write,
1353 struct page **page)
1354 {
1355 int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1356
1357 if (write)
1358 flags |= FOLL_WRITE;
1359
1360 return get_user_pages(start, 1, flags, page, NULL);
1361 }
1362
1363 static inline int check_user_page_hwpoison(unsigned long addr)
1364 {
1365 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1366
1367 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1368 return rc == -EHWPOISON;
1369 }
1370
1371 /*
1372 * The atomic path to get the writable pfn which will be stored in @pfn,
1373 * true indicates success, otherwise false is returned.
1374 */
1375 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1376 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1377 {
1378 struct page *page[1];
1379 int npages;
1380
1381 if (!(async || atomic))
1382 return false;
1383
1384 /*
1385 * Fast pin a writable pfn only if it is a write fault request
1386 * or the caller allows to map a writable pfn for a read fault
1387 * request.
1388 */
1389 if (!(write_fault || writable))
1390 return false;
1391
1392 npages = __get_user_pages_fast(addr, 1, 1, page);
1393 if (npages == 1) {
1394 *pfn = page_to_pfn(page[0]);
1395
1396 if (writable)
1397 *writable = true;
1398 return true;
1399 }
1400
1401 return false;
1402 }
1403
1404 /*
1405 * The slow path to get the pfn of the specified host virtual address,
1406 * 1 indicates success, -errno is returned if error is detected.
1407 */
1408 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1409 bool *writable, kvm_pfn_t *pfn)
1410 {
1411 struct page *page[1];
1412 int npages = 0;
1413
1414 might_sleep();
1415
1416 if (writable)
1417 *writable = write_fault;
1418
1419 if (async) {
1420 down_read(&current->mm->mmap_sem);
1421 npages = get_user_page_nowait(addr, write_fault, page);
1422 up_read(&current->mm->mmap_sem);
1423 } else {
1424 unsigned int flags = FOLL_HWPOISON;
1425
1426 if (write_fault)
1427 flags |= FOLL_WRITE;
1428
1429 npages = get_user_pages_unlocked(addr, 1, page, flags);
1430 }
1431 if (npages != 1)
1432 return npages;
1433
1434 /* map read fault as writable if possible */
1435 if (unlikely(!write_fault) && writable) {
1436 struct page *wpage[1];
1437
1438 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1439 if (npages == 1) {
1440 *writable = true;
1441 put_page(page[0]);
1442 page[0] = wpage[0];
1443 }
1444
1445 npages = 1;
1446 }
1447 *pfn = page_to_pfn(page[0]);
1448 return npages;
1449 }
1450
1451 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1452 {
1453 if (unlikely(!(vma->vm_flags & VM_READ)))
1454 return false;
1455
1456 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1457 return false;
1458
1459 return true;
1460 }
1461
1462 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1463 unsigned long addr, bool *async,
1464 bool write_fault, kvm_pfn_t *p_pfn)
1465 {
1466 unsigned long pfn;
1467 int r;
1468
1469 r = follow_pfn(vma, addr, &pfn);
1470 if (r) {
1471 /*
1472 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1473 * not call the fault handler, so do it here.
1474 */
1475 bool unlocked = false;
1476 r = fixup_user_fault(current, current->mm, addr,
1477 (write_fault ? FAULT_FLAG_WRITE : 0),
1478 &unlocked);
1479 if (unlocked)
1480 return -EAGAIN;
1481 if (r)
1482 return r;
1483
1484 r = follow_pfn(vma, addr, &pfn);
1485 if (r)
1486 return r;
1487
1488 }
1489
1490
1491 /*
1492 * Get a reference here because callers of *hva_to_pfn* and
1493 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1494 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1495 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1496 * simply do nothing for reserved pfns.
1497 *
1498 * Whoever called remap_pfn_range is also going to call e.g.
1499 * unmap_mapping_range before the underlying pages are freed,
1500 * causing a call to our MMU notifier.
1501 */
1502 kvm_get_pfn(pfn);
1503
1504 *p_pfn = pfn;
1505 return 0;
1506 }
1507
1508 /*
1509 * Pin guest page in memory and return its pfn.
1510 * @addr: host virtual address which maps memory to the guest
1511 * @atomic: whether this function can sleep
1512 * @async: whether this function need to wait IO complete if the
1513 * host page is not in the memory
1514 * @write_fault: whether we should get a writable host page
1515 * @writable: whether it allows to map a writable host page for !@write_fault
1516 *
1517 * The function will map a writable host page for these two cases:
1518 * 1): @write_fault = true
1519 * 2): @write_fault = false && @writable, @writable will tell the caller
1520 * whether the mapping is writable.
1521 */
1522 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1523 bool write_fault, bool *writable)
1524 {
1525 struct vm_area_struct *vma;
1526 kvm_pfn_t pfn = 0;
1527 int npages, r;
1528
1529 /* we can do it either atomically or asynchronously, not both */
1530 BUG_ON(atomic && async);
1531
1532 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1533 return pfn;
1534
1535 if (atomic)
1536 return KVM_PFN_ERR_FAULT;
1537
1538 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1539 if (npages == 1)
1540 return pfn;
1541
1542 down_read(&current->mm->mmap_sem);
1543 if (npages == -EHWPOISON ||
1544 (!async && check_user_page_hwpoison(addr))) {
1545 pfn = KVM_PFN_ERR_HWPOISON;
1546 goto exit;
1547 }
1548
1549 retry:
1550 vma = find_vma_intersection(current->mm, addr, addr + 1);
1551
1552 if (vma == NULL)
1553 pfn = KVM_PFN_ERR_FAULT;
1554 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1555 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1556 if (r == -EAGAIN)
1557 goto retry;
1558 if (r < 0)
1559 pfn = KVM_PFN_ERR_FAULT;
1560 } else {
1561 if (async && vma_is_valid(vma, write_fault))
1562 *async = true;
1563 pfn = KVM_PFN_ERR_FAULT;
1564 }
1565 exit:
1566 up_read(&current->mm->mmap_sem);
1567 return pfn;
1568 }
1569
1570 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1571 bool atomic, bool *async, bool write_fault,
1572 bool *writable)
1573 {
1574 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1575
1576 if (addr == KVM_HVA_ERR_RO_BAD) {
1577 if (writable)
1578 *writable = false;
1579 return KVM_PFN_ERR_RO_FAULT;
1580 }
1581
1582 if (kvm_is_error_hva(addr)) {
1583 if (writable)
1584 *writable = false;
1585 return KVM_PFN_NOSLOT;
1586 }
1587
1588 /* Do not map writable pfn in the readonly memslot. */
1589 if (writable && memslot_is_readonly(slot)) {
1590 *writable = false;
1591 writable = NULL;
1592 }
1593
1594 return hva_to_pfn(addr, atomic, async, write_fault,
1595 writable);
1596 }
1597 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1598
1599 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1600 bool *writable)
1601 {
1602 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1603 write_fault, writable);
1604 }
1605 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1606
1607 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1608 {
1609 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1610 }
1611 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1612
1613 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1614 {
1615 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1616 }
1617 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1618
1619 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1620 {
1621 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1622 }
1623 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1624
1625 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1626 {
1627 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1628 }
1629 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1630
1631 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1632 {
1633 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1634 }
1635 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1636
1637 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1638 {
1639 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1640 }
1641 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1642
1643 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1644 struct page **pages, int nr_pages)
1645 {
1646 unsigned long addr;
1647 gfn_t entry;
1648
1649 addr = gfn_to_hva_many(slot, gfn, &entry);
1650 if (kvm_is_error_hva(addr))
1651 return -1;
1652
1653 if (entry < nr_pages)
1654 return 0;
1655
1656 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1657 }
1658 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1659
1660 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1661 {
1662 if (is_error_noslot_pfn(pfn))
1663 return KVM_ERR_PTR_BAD_PAGE;
1664
1665 if (kvm_is_reserved_pfn(pfn)) {
1666 WARN_ON(1);
1667 return KVM_ERR_PTR_BAD_PAGE;
1668 }
1669
1670 return pfn_to_page(pfn);
1671 }
1672
1673 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1674 {
1675 kvm_pfn_t pfn;
1676
1677 pfn = gfn_to_pfn(kvm, gfn);
1678
1679 return kvm_pfn_to_page(pfn);
1680 }
1681 EXPORT_SYMBOL_GPL(gfn_to_page);
1682
1683 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1684 {
1685 kvm_pfn_t pfn;
1686
1687 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1688
1689 return kvm_pfn_to_page(pfn);
1690 }
1691 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1692
1693 void kvm_release_page_clean(struct page *page)
1694 {
1695 WARN_ON(is_error_page(page));
1696
1697 kvm_release_pfn_clean(page_to_pfn(page));
1698 }
1699 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1700
1701 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1702 {
1703 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1704 put_page(pfn_to_page(pfn));
1705 }
1706 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1707
1708 void kvm_release_page_dirty(struct page *page)
1709 {
1710 WARN_ON(is_error_page(page));
1711
1712 kvm_release_pfn_dirty(page_to_pfn(page));
1713 }
1714 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1715
1716 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1717 {
1718 kvm_set_pfn_dirty(pfn);
1719 kvm_release_pfn_clean(pfn);
1720 }
1721
1722 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1723 {
1724 if (!kvm_is_reserved_pfn(pfn)) {
1725 struct page *page = pfn_to_page(pfn);
1726
1727 if (!PageReserved(page))
1728 SetPageDirty(page);
1729 }
1730 }
1731 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1732
1733 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1734 {
1735 if (!kvm_is_reserved_pfn(pfn))
1736 mark_page_accessed(pfn_to_page(pfn));
1737 }
1738 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1739
1740 void kvm_get_pfn(kvm_pfn_t pfn)
1741 {
1742 if (!kvm_is_reserved_pfn(pfn))
1743 get_page(pfn_to_page(pfn));
1744 }
1745 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1746
1747 static int next_segment(unsigned long len, int offset)
1748 {
1749 if (len > PAGE_SIZE - offset)
1750 return PAGE_SIZE - offset;
1751 else
1752 return len;
1753 }
1754
1755 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1756 void *data, int offset, int len)
1757 {
1758 int r;
1759 unsigned long addr;
1760
1761 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1762 if (kvm_is_error_hva(addr))
1763 return -EFAULT;
1764 r = __copy_from_user(data, (void __user *)addr + offset, len);
1765 if (r)
1766 return -EFAULT;
1767 return 0;
1768 }
1769
1770 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1771 int len)
1772 {
1773 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1774
1775 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1776 }
1777 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1778
1779 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1780 int offset, int len)
1781 {
1782 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1783
1784 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1785 }
1786 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1787
1788 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1789 {
1790 gfn_t gfn = gpa >> PAGE_SHIFT;
1791 int seg;
1792 int offset = offset_in_page(gpa);
1793 int ret;
1794
1795 while ((seg = next_segment(len, offset)) != 0) {
1796 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1797 if (ret < 0)
1798 return ret;
1799 offset = 0;
1800 len -= seg;
1801 data += seg;
1802 ++gfn;
1803 }
1804 return 0;
1805 }
1806 EXPORT_SYMBOL_GPL(kvm_read_guest);
1807
1808 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1809 {
1810 gfn_t gfn = gpa >> PAGE_SHIFT;
1811 int seg;
1812 int offset = offset_in_page(gpa);
1813 int ret;
1814
1815 while ((seg = next_segment(len, offset)) != 0) {
1816 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1817 if (ret < 0)
1818 return ret;
1819 offset = 0;
1820 len -= seg;
1821 data += seg;
1822 ++gfn;
1823 }
1824 return 0;
1825 }
1826 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1827
1828 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1829 void *data, int offset, unsigned long len)
1830 {
1831 int r;
1832 unsigned long addr;
1833
1834 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1835 if (kvm_is_error_hva(addr))
1836 return -EFAULT;
1837 pagefault_disable();
1838 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1839 pagefault_enable();
1840 if (r)
1841 return -EFAULT;
1842 return 0;
1843 }
1844
1845 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1846 unsigned long len)
1847 {
1848 gfn_t gfn = gpa >> PAGE_SHIFT;
1849 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1850 int offset = offset_in_page(gpa);
1851
1852 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1853 }
1854 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1855
1856 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1857 void *data, unsigned long len)
1858 {
1859 gfn_t gfn = gpa >> PAGE_SHIFT;
1860 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1861 int offset = offset_in_page(gpa);
1862
1863 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1864 }
1865 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1866
1867 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1868 const void *data, int offset, int len)
1869 {
1870 int r;
1871 unsigned long addr;
1872
1873 addr = gfn_to_hva_memslot(memslot, gfn);
1874 if (kvm_is_error_hva(addr))
1875 return -EFAULT;
1876 r = __copy_to_user((void __user *)addr + offset, data, len);
1877 if (r)
1878 return -EFAULT;
1879 mark_page_dirty_in_slot(memslot, gfn);
1880 return 0;
1881 }
1882
1883 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1884 const void *data, int offset, int len)
1885 {
1886 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1887
1888 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1889 }
1890 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1891
1892 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1893 const void *data, int offset, int len)
1894 {
1895 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1896
1897 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1898 }
1899 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1900
1901 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1902 unsigned long len)
1903 {
1904 gfn_t gfn = gpa >> PAGE_SHIFT;
1905 int seg;
1906 int offset = offset_in_page(gpa);
1907 int ret;
1908
1909 while ((seg = next_segment(len, offset)) != 0) {
1910 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1911 if (ret < 0)
1912 return ret;
1913 offset = 0;
1914 len -= seg;
1915 data += seg;
1916 ++gfn;
1917 }
1918 return 0;
1919 }
1920 EXPORT_SYMBOL_GPL(kvm_write_guest);
1921
1922 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1923 unsigned long len)
1924 {
1925 gfn_t gfn = gpa >> PAGE_SHIFT;
1926 int seg;
1927 int offset = offset_in_page(gpa);
1928 int ret;
1929
1930 while ((seg = next_segment(len, offset)) != 0) {
1931 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1932 if (ret < 0)
1933 return ret;
1934 offset = 0;
1935 len -= seg;
1936 data += seg;
1937 ++gfn;
1938 }
1939 return 0;
1940 }
1941 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1942
1943 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1944 gpa_t gpa, unsigned long len)
1945 {
1946 struct kvm_memslots *slots = kvm_memslots(kvm);
1947 int offset = offset_in_page(gpa);
1948 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1949 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1950 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1951 gfn_t nr_pages_avail;
1952
1953 ghc->gpa = gpa;
1954 ghc->generation = slots->generation;
1955 ghc->len = len;
1956 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1957 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1958 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1959 ghc->hva += offset;
1960 } else {
1961 /*
1962 * If the requested region crosses two memslots, we still
1963 * verify that the entire region is valid here.
1964 */
1965 while (start_gfn <= end_gfn) {
1966 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1967 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1968 &nr_pages_avail);
1969 if (kvm_is_error_hva(ghc->hva))
1970 return -EFAULT;
1971 start_gfn += nr_pages_avail;
1972 }
1973 /* Use the slow path for cross page reads and writes. */
1974 ghc->memslot = NULL;
1975 }
1976 return 0;
1977 }
1978 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1979
1980 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1981 void *data, int offset, unsigned long len)
1982 {
1983 struct kvm_memslots *slots = kvm_memslots(kvm);
1984 int r;
1985 gpa_t gpa = ghc->gpa + offset;
1986
1987 BUG_ON(len + offset > ghc->len);
1988
1989 if (slots->generation != ghc->generation)
1990 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1991
1992 if (unlikely(!ghc->memslot))
1993 return kvm_write_guest(kvm, gpa, data, len);
1994
1995 if (kvm_is_error_hva(ghc->hva))
1996 return -EFAULT;
1997
1998 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1999 if (r)
2000 return -EFAULT;
2001 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2002
2003 return 0;
2004 }
2005 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2006
2007 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2008 void *data, unsigned long len)
2009 {
2010 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2011 }
2012 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2013
2014 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2015 void *data, unsigned long len)
2016 {
2017 struct kvm_memslots *slots = kvm_memslots(kvm);
2018 int r;
2019
2020 BUG_ON(len > ghc->len);
2021
2022 if (slots->generation != ghc->generation)
2023 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
2024
2025 if (unlikely(!ghc->memslot))
2026 return kvm_read_guest(kvm, ghc->gpa, data, len);
2027
2028 if (kvm_is_error_hva(ghc->hva))
2029 return -EFAULT;
2030
2031 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2032 if (r)
2033 return -EFAULT;
2034
2035 return 0;
2036 }
2037 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2038
2039 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2040 {
2041 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2042
2043 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2044 }
2045 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2046
2047 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2048 {
2049 gfn_t gfn = gpa >> PAGE_SHIFT;
2050 int seg;
2051 int offset = offset_in_page(gpa);
2052 int ret;
2053
2054 while ((seg = next_segment(len, offset)) != 0) {
2055 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2056 if (ret < 0)
2057 return ret;
2058 offset = 0;
2059 len -= seg;
2060 ++gfn;
2061 }
2062 return 0;
2063 }
2064 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2065
2066 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2067 gfn_t gfn)
2068 {
2069 if (memslot && memslot->dirty_bitmap) {
2070 unsigned long rel_gfn = gfn - memslot->base_gfn;
2071
2072 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2073 }
2074 }
2075
2076 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2077 {
2078 struct kvm_memory_slot *memslot;
2079
2080 memslot = gfn_to_memslot(kvm, gfn);
2081 mark_page_dirty_in_slot(memslot, gfn);
2082 }
2083 EXPORT_SYMBOL_GPL(mark_page_dirty);
2084
2085 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2086 {
2087 struct kvm_memory_slot *memslot;
2088
2089 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2090 mark_page_dirty_in_slot(memslot, gfn);
2091 }
2092 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2093
2094 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2095 {
2096 unsigned int old, val, grow;
2097
2098 old = val = vcpu->halt_poll_ns;
2099 grow = READ_ONCE(halt_poll_ns_grow);
2100 /* 10us base */
2101 if (val == 0 && grow)
2102 val = 10000;
2103 else
2104 val *= grow;
2105
2106 if (val > halt_poll_ns)
2107 val = halt_poll_ns;
2108
2109 vcpu->halt_poll_ns = val;
2110 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2111 }
2112
2113 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2114 {
2115 unsigned int old, val, shrink;
2116
2117 old = val = vcpu->halt_poll_ns;
2118 shrink = READ_ONCE(halt_poll_ns_shrink);
2119 if (shrink == 0)
2120 val = 0;
2121 else
2122 val /= shrink;
2123
2124 vcpu->halt_poll_ns = val;
2125 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2126 }
2127
2128 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2129 {
2130 if (kvm_arch_vcpu_runnable(vcpu)) {
2131 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2132 return -EINTR;
2133 }
2134 if (kvm_cpu_has_pending_timer(vcpu))
2135 return -EINTR;
2136 if (signal_pending(current))
2137 return -EINTR;
2138
2139 return 0;
2140 }
2141
2142 /*
2143 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2144 */
2145 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2146 {
2147 ktime_t start, cur;
2148 DECLARE_SWAITQUEUE(wait);
2149 bool waited = false;
2150 u64 block_ns;
2151
2152 start = cur = ktime_get();
2153 if (vcpu->halt_poll_ns) {
2154 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2155
2156 ++vcpu->stat.halt_attempted_poll;
2157 do {
2158 /*
2159 * This sets KVM_REQ_UNHALT if an interrupt
2160 * arrives.
2161 */
2162 if (kvm_vcpu_check_block(vcpu) < 0) {
2163 ++vcpu->stat.halt_successful_poll;
2164 if (!vcpu_valid_wakeup(vcpu))
2165 ++vcpu->stat.halt_poll_invalid;
2166 goto out;
2167 }
2168 cur = ktime_get();
2169 } while (single_task_running() && ktime_before(cur, stop));
2170 }
2171
2172 kvm_arch_vcpu_blocking(vcpu);
2173
2174 for (;;) {
2175 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2176
2177 if (kvm_vcpu_check_block(vcpu) < 0)
2178 break;
2179
2180 waited = true;
2181 schedule();
2182 }
2183
2184 finish_swait(&vcpu->wq, &wait);
2185 cur = ktime_get();
2186
2187 kvm_arch_vcpu_unblocking(vcpu);
2188 out:
2189 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2190
2191 if (!vcpu_valid_wakeup(vcpu))
2192 shrink_halt_poll_ns(vcpu);
2193 else if (halt_poll_ns) {
2194 if (block_ns <= vcpu->halt_poll_ns)
2195 ;
2196 /* we had a long block, shrink polling */
2197 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2198 shrink_halt_poll_ns(vcpu);
2199 /* we had a short halt and our poll time is too small */
2200 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2201 block_ns < halt_poll_ns)
2202 grow_halt_poll_ns(vcpu);
2203 } else
2204 vcpu->halt_poll_ns = 0;
2205
2206 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2207 kvm_arch_vcpu_block_finish(vcpu);
2208 }
2209 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2210
2211 #ifndef CONFIG_S390
2212 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2213 {
2214 struct swait_queue_head *wqp;
2215
2216 wqp = kvm_arch_vcpu_wq(vcpu);
2217 if (swait_active(wqp)) {
2218 swake_up(wqp);
2219 ++vcpu->stat.halt_wakeup;
2220 }
2221
2222 }
2223 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2224
2225 /*
2226 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2227 */
2228 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2229 {
2230 int me;
2231 int cpu = vcpu->cpu;
2232
2233 kvm_vcpu_wake_up(vcpu);
2234 me = get_cpu();
2235 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2236 if (kvm_arch_vcpu_should_kick(vcpu))
2237 smp_send_reschedule(cpu);
2238 put_cpu();
2239 }
2240 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2241 #endif /* !CONFIG_S390 */
2242
2243 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2244 {
2245 struct pid *pid;
2246 struct task_struct *task = NULL;
2247 int ret = 0;
2248
2249 rcu_read_lock();
2250 pid = rcu_dereference(target->pid);
2251 if (pid)
2252 task = get_pid_task(pid, PIDTYPE_PID);
2253 rcu_read_unlock();
2254 if (!task)
2255 return ret;
2256 ret = yield_to(task, 1);
2257 put_task_struct(task);
2258
2259 return ret;
2260 }
2261 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2262
2263 /*
2264 * Helper that checks whether a VCPU is eligible for directed yield.
2265 * Most eligible candidate to yield is decided by following heuristics:
2266 *
2267 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2268 * (preempted lock holder), indicated by @in_spin_loop.
2269 * Set at the beiginning and cleared at the end of interception/PLE handler.
2270 *
2271 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2272 * chance last time (mostly it has become eligible now since we have probably
2273 * yielded to lockholder in last iteration. This is done by toggling
2274 * @dy_eligible each time a VCPU checked for eligibility.)
2275 *
2276 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2277 * to preempted lock-holder could result in wrong VCPU selection and CPU
2278 * burning. Giving priority for a potential lock-holder increases lock
2279 * progress.
2280 *
2281 * Since algorithm is based on heuristics, accessing another VCPU data without
2282 * locking does not harm. It may result in trying to yield to same VCPU, fail
2283 * and continue with next VCPU and so on.
2284 */
2285 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2286 {
2287 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2288 bool eligible;
2289
2290 eligible = !vcpu->spin_loop.in_spin_loop ||
2291 vcpu->spin_loop.dy_eligible;
2292
2293 if (vcpu->spin_loop.in_spin_loop)
2294 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2295
2296 return eligible;
2297 #else
2298 return true;
2299 #endif
2300 }
2301
2302 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2303 {
2304 struct kvm *kvm = me->kvm;
2305 struct kvm_vcpu *vcpu;
2306 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2307 int yielded = 0;
2308 int try = 3;
2309 int pass;
2310 int i;
2311
2312 kvm_vcpu_set_in_spin_loop(me, true);
2313 /*
2314 * We boost the priority of a VCPU that is runnable but not
2315 * currently running, because it got preempted by something
2316 * else and called schedule in __vcpu_run. Hopefully that
2317 * VCPU is holding the lock that we need and will release it.
2318 * We approximate round-robin by starting at the last boosted VCPU.
2319 */
2320 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2321 kvm_for_each_vcpu(i, vcpu, kvm) {
2322 if (!pass && i <= last_boosted_vcpu) {
2323 i = last_boosted_vcpu;
2324 continue;
2325 } else if (pass && i > last_boosted_vcpu)
2326 break;
2327 if (!ACCESS_ONCE(vcpu->preempted))
2328 continue;
2329 if (vcpu == me)
2330 continue;
2331 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2332 continue;
2333 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2334 continue;
2335
2336 yielded = kvm_vcpu_yield_to(vcpu);
2337 if (yielded > 0) {
2338 kvm->last_boosted_vcpu = i;
2339 break;
2340 } else if (yielded < 0) {
2341 try--;
2342 if (!try)
2343 break;
2344 }
2345 }
2346 }
2347 kvm_vcpu_set_in_spin_loop(me, false);
2348
2349 /* Ensure vcpu is not eligible during next spinloop */
2350 kvm_vcpu_set_dy_eligible(me, false);
2351 }
2352 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2353
2354 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2355 {
2356 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2357 struct page *page;
2358
2359 if (vmf->pgoff == 0)
2360 page = virt_to_page(vcpu->run);
2361 #ifdef CONFIG_X86
2362 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2363 page = virt_to_page(vcpu->arch.pio_data);
2364 #endif
2365 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2366 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2367 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2368 #endif
2369 else
2370 return kvm_arch_vcpu_fault(vcpu, vmf);
2371 get_page(page);
2372 vmf->page = page;
2373 return 0;
2374 }
2375
2376 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2377 .fault = kvm_vcpu_fault,
2378 };
2379
2380 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2381 {
2382 vma->vm_ops = &kvm_vcpu_vm_ops;
2383 return 0;
2384 }
2385
2386 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2387 {
2388 struct kvm_vcpu *vcpu = filp->private_data;
2389
2390 debugfs_remove_recursive(vcpu->debugfs_dentry);
2391 kvm_put_kvm(vcpu->kvm);
2392 return 0;
2393 }
2394
2395 static struct file_operations kvm_vcpu_fops = {
2396 .release = kvm_vcpu_release,
2397 .unlocked_ioctl = kvm_vcpu_ioctl,
2398 #ifdef CONFIG_KVM_COMPAT
2399 .compat_ioctl = kvm_vcpu_compat_ioctl,
2400 #endif
2401 .mmap = kvm_vcpu_mmap,
2402 .llseek = noop_llseek,
2403 };
2404
2405 /*
2406 * Allocates an inode for the vcpu.
2407 */
2408 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2409 {
2410 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2411 }
2412
2413 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2414 {
2415 char dir_name[ITOA_MAX_LEN * 2];
2416 int ret;
2417
2418 if (!kvm_arch_has_vcpu_debugfs())
2419 return 0;
2420
2421 if (!debugfs_initialized())
2422 return 0;
2423
2424 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2425 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2426 vcpu->kvm->debugfs_dentry);
2427 if (!vcpu->debugfs_dentry)
2428 return -ENOMEM;
2429
2430 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2431 if (ret < 0) {
2432 debugfs_remove_recursive(vcpu->debugfs_dentry);
2433 return ret;
2434 }
2435
2436 return 0;
2437 }
2438
2439 /*
2440 * Creates some virtual cpus. Good luck creating more than one.
2441 */
2442 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2443 {
2444 int r;
2445 struct kvm_vcpu *vcpu;
2446
2447 if (id >= KVM_MAX_VCPU_ID)
2448 return -EINVAL;
2449
2450 mutex_lock(&kvm->lock);
2451 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2452 mutex_unlock(&kvm->lock);
2453 return -EINVAL;
2454 }
2455
2456 kvm->created_vcpus++;
2457 mutex_unlock(&kvm->lock);
2458
2459 vcpu = kvm_arch_vcpu_create(kvm, id);
2460 if (IS_ERR(vcpu)) {
2461 r = PTR_ERR(vcpu);
2462 goto vcpu_decrement;
2463 }
2464
2465 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2466
2467 r = kvm_arch_vcpu_setup(vcpu);
2468 if (r)
2469 goto vcpu_destroy;
2470
2471 r = kvm_create_vcpu_debugfs(vcpu);
2472 if (r)
2473 goto vcpu_destroy;
2474
2475 mutex_lock(&kvm->lock);
2476 if (kvm_get_vcpu_by_id(kvm, id)) {
2477 r = -EEXIST;
2478 goto unlock_vcpu_destroy;
2479 }
2480
2481 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2482
2483 /* Now it's all set up, let userspace reach it */
2484 kvm_get_kvm(kvm);
2485 r = create_vcpu_fd(vcpu);
2486 if (r < 0) {
2487 kvm_put_kvm(kvm);
2488 goto unlock_vcpu_destroy;
2489 }
2490
2491 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2492
2493 /*
2494 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2495 * before kvm->online_vcpu's incremented value.
2496 */
2497 smp_wmb();
2498 atomic_inc(&kvm->online_vcpus);
2499
2500 mutex_unlock(&kvm->lock);
2501 kvm_arch_vcpu_postcreate(vcpu);
2502 return r;
2503
2504 unlock_vcpu_destroy:
2505 mutex_unlock(&kvm->lock);
2506 debugfs_remove_recursive(vcpu->debugfs_dentry);
2507 vcpu_destroy:
2508 kvm_arch_vcpu_destroy(vcpu);
2509 vcpu_decrement:
2510 mutex_lock(&kvm->lock);
2511 kvm->created_vcpus--;
2512 mutex_unlock(&kvm->lock);
2513 return r;
2514 }
2515
2516 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2517 {
2518 if (sigset) {
2519 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2520 vcpu->sigset_active = 1;
2521 vcpu->sigset = *sigset;
2522 } else
2523 vcpu->sigset_active = 0;
2524 return 0;
2525 }
2526
2527 static long kvm_vcpu_ioctl(struct file *filp,
2528 unsigned int ioctl, unsigned long arg)
2529 {
2530 struct kvm_vcpu *vcpu = filp->private_data;
2531 void __user *argp = (void __user *)arg;
2532 int r;
2533 struct kvm_fpu *fpu = NULL;
2534 struct kvm_sregs *kvm_sregs = NULL;
2535
2536 if (vcpu->kvm->mm != current->mm)
2537 return -EIO;
2538
2539 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2540 return -EINVAL;
2541
2542 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2543 /*
2544 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2545 * so vcpu_load() would break it.
2546 */
2547 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2548 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2549 #endif
2550
2551
2552 r = vcpu_load(vcpu);
2553 if (r)
2554 return r;
2555 switch (ioctl) {
2556 case KVM_RUN:
2557 r = -EINVAL;
2558 if (arg)
2559 goto out;
2560 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2561 /* The thread running this VCPU changed. */
2562 struct pid *oldpid = vcpu->pid;
2563 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2564
2565 rcu_assign_pointer(vcpu->pid, newpid);
2566 if (oldpid)
2567 synchronize_rcu();
2568 put_pid(oldpid);
2569 }
2570 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2571 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2572 break;
2573 case KVM_GET_REGS: {
2574 struct kvm_regs *kvm_regs;
2575
2576 r = -ENOMEM;
2577 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2578 if (!kvm_regs)
2579 goto out;
2580 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2581 if (r)
2582 goto out_free1;
2583 r = -EFAULT;
2584 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2585 goto out_free1;
2586 r = 0;
2587 out_free1:
2588 kfree(kvm_regs);
2589 break;
2590 }
2591 case KVM_SET_REGS: {
2592 struct kvm_regs *kvm_regs;
2593
2594 r = -ENOMEM;
2595 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2596 if (IS_ERR(kvm_regs)) {
2597 r = PTR_ERR(kvm_regs);
2598 goto out;
2599 }
2600 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2601 kfree(kvm_regs);
2602 break;
2603 }
2604 case KVM_GET_SREGS: {
2605 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2606 r = -ENOMEM;
2607 if (!kvm_sregs)
2608 goto out;
2609 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2610 if (r)
2611 goto out;
2612 r = -EFAULT;
2613 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2614 goto out;
2615 r = 0;
2616 break;
2617 }
2618 case KVM_SET_SREGS: {
2619 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2620 if (IS_ERR(kvm_sregs)) {
2621 r = PTR_ERR(kvm_sregs);
2622 kvm_sregs = NULL;
2623 goto out;
2624 }
2625 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2626 break;
2627 }
2628 case KVM_GET_MP_STATE: {
2629 struct kvm_mp_state mp_state;
2630
2631 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2632 if (r)
2633 goto out;
2634 r = -EFAULT;
2635 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2636 goto out;
2637 r = 0;
2638 break;
2639 }
2640 case KVM_SET_MP_STATE: {
2641 struct kvm_mp_state mp_state;
2642
2643 r = -EFAULT;
2644 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2645 goto out;
2646 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2647 break;
2648 }
2649 case KVM_TRANSLATE: {
2650 struct kvm_translation tr;
2651
2652 r = -EFAULT;
2653 if (copy_from_user(&tr, argp, sizeof(tr)))
2654 goto out;
2655 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2656 if (r)
2657 goto out;
2658 r = -EFAULT;
2659 if (copy_to_user(argp, &tr, sizeof(tr)))
2660 goto out;
2661 r = 0;
2662 break;
2663 }
2664 case KVM_SET_GUEST_DEBUG: {
2665 struct kvm_guest_debug dbg;
2666
2667 r = -EFAULT;
2668 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2669 goto out;
2670 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2671 break;
2672 }
2673 case KVM_SET_SIGNAL_MASK: {
2674 struct kvm_signal_mask __user *sigmask_arg = argp;
2675 struct kvm_signal_mask kvm_sigmask;
2676 sigset_t sigset, *p;
2677
2678 p = NULL;
2679 if (argp) {
2680 r = -EFAULT;
2681 if (copy_from_user(&kvm_sigmask, argp,
2682 sizeof(kvm_sigmask)))
2683 goto out;
2684 r = -EINVAL;
2685 if (kvm_sigmask.len != sizeof(sigset))
2686 goto out;
2687 r = -EFAULT;
2688 if (copy_from_user(&sigset, sigmask_arg->sigset,
2689 sizeof(sigset)))
2690 goto out;
2691 p = &sigset;
2692 }
2693 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2694 break;
2695 }
2696 case KVM_GET_FPU: {
2697 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2698 r = -ENOMEM;
2699 if (!fpu)
2700 goto out;
2701 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2702 if (r)
2703 goto out;
2704 r = -EFAULT;
2705 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2706 goto out;
2707 r = 0;
2708 break;
2709 }
2710 case KVM_SET_FPU: {
2711 fpu = memdup_user(argp, sizeof(*fpu));
2712 if (IS_ERR(fpu)) {
2713 r = PTR_ERR(fpu);
2714 fpu = NULL;
2715 goto out;
2716 }
2717 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2718 break;
2719 }
2720 default:
2721 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2722 }
2723 out:
2724 vcpu_put(vcpu);
2725 kfree(fpu);
2726 kfree(kvm_sregs);
2727 return r;
2728 }
2729
2730 #ifdef CONFIG_KVM_COMPAT
2731 static long kvm_vcpu_compat_ioctl(struct file *filp,
2732 unsigned int ioctl, unsigned long arg)
2733 {
2734 struct kvm_vcpu *vcpu = filp->private_data;
2735 void __user *argp = compat_ptr(arg);
2736 int r;
2737
2738 if (vcpu->kvm->mm != current->mm)
2739 return -EIO;
2740
2741 switch (ioctl) {
2742 case KVM_SET_SIGNAL_MASK: {
2743 struct kvm_signal_mask __user *sigmask_arg = argp;
2744 struct kvm_signal_mask kvm_sigmask;
2745 compat_sigset_t csigset;
2746 sigset_t sigset;
2747
2748 if (argp) {
2749 r = -EFAULT;
2750 if (copy_from_user(&kvm_sigmask, argp,
2751 sizeof(kvm_sigmask)))
2752 goto out;
2753 r = -EINVAL;
2754 if (kvm_sigmask.len != sizeof(csigset))
2755 goto out;
2756 r = -EFAULT;
2757 if (copy_from_user(&csigset, sigmask_arg->sigset,
2758 sizeof(csigset)))
2759 goto out;
2760 sigset_from_compat(&sigset, &csigset);
2761 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2762 } else
2763 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2764 break;
2765 }
2766 default:
2767 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2768 }
2769
2770 out:
2771 return r;
2772 }
2773 #endif
2774
2775 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2776 int (*accessor)(struct kvm_device *dev,
2777 struct kvm_device_attr *attr),
2778 unsigned long arg)
2779 {
2780 struct kvm_device_attr attr;
2781
2782 if (!accessor)
2783 return -EPERM;
2784
2785 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2786 return -EFAULT;
2787
2788 return accessor(dev, &attr);
2789 }
2790
2791 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2792 unsigned long arg)
2793 {
2794 struct kvm_device *dev = filp->private_data;
2795
2796 switch (ioctl) {
2797 case KVM_SET_DEVICE_ATTR:
2798 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2799 case KVM_GET_DEVICE_ATTR:
2800 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2801 case KVM_HAS_DEVICE_ATTR:
2802 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2803 default:
2804 if (dev->ops->ioctl)
2805 return dev->ops->ioctl(dev, ioctl, arg);
2806
2807 return -ENOTTY;
2808 }
2809 }
2810
2811 static int kvm_device_release(struct inode *inode, struct file *filp)
2812 {
2813 struct kvm_device *dev = filp->private_data;
2814 struct kvm *kvm = dev->kvm;
2815
2816 kvm_put_kvm(kvm);
2817 return 0;
2818 }
2819
2820 static const struct file_operations kvm_device_fops = {
2821 .unlocked_ioctl = kvm_device_ioctl,
2822 #ifdef CONFIG_KVM_COMPAT
2823 .compat_ioctl = kvm_device_ioctl,
2824 #endif
2825 .release = kvm_device_release,
2826 };
2827
2828 struct kvm_device *kvm_device_from_filp(struct file *filp)
2829 {
2830 if (filp->f_op != &kvm_device_fops)
2831 return NULL;
2832
2833 return filp->private_data;
2834 }
2835
2836 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2837 #ifdef CONFIG_KVM_MPIC
2838 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2839 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2840 #endif
2841
2842 #ifdef CONFIG_KVM_XICS
2843 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2844 #endif
2845 };
2846
2847 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2848 {
2849 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2850 return -ENOSPC;
2851
2852 if (kvm_device_ops_table[type] != NULL)
2853 return -EEXIST;
2854
2855 kvm_device_ops_table[type] = ops;
2856 return 0;
2857 }
2858
2859 void kvm_unregister_device_ops(u32 type)
2860 {
2861 if (kvm_device_ops_table[type] != NULL)
2862 kvm_device_ops_table[type] = NULL;
2863 }
2864
2865 static int kvm_ioctl_create_device(struct kvm *kvm,
2866 struct kvm_create_device *cd)
2867 {
2868 struct kvm_device_ops *ops = NULL;
2869 struct kvm_device *dev;
2870 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2871 int ret;
2872
2873 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2874 return -ENODEV;
2875
2876 ops = kvm_device_ops_table[cd->type];
2877 if (ops == NULL)
2878 return -ENODEV;
2879
2880 if (test)
2881 return 0;
2882
2883 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2884 if (!dev)
2885 return -ENOMEM;
2886
2887 dev->ops = ops;
2888 dev->kvm = kvm;
2889
2890 mutex_lock(&kvm->lock);
2891 ret = ops->create(dev, cd->type);
2892 if (ret < 0) {
2893 mutex_unlock(&kvm->lock);
2894 kfree(dev);
2895 return ret;
2896 }
2897 list_add(&dev->vm_node, &kvm->devices);
2898 mutex_unlock(&kvm->lock);
2899
2900 if (ops->init)
2901 ops->init(dev);
2902
2903 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2904 if (ret < 0) {
2905 mutex_lock(&kvm->lock);
2906 list_del(&dev->vm_node);
2907 mutex_unlock(&kvm->lock);
2908 ops->destroy(dev);
2909 return ret;
2910 }
2911
2912 kvm_get_kvm(kvm);
2913 cd->fd = ret;
2914 return 0;
2915 }
2916
2917 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2918 {
2919 switch (arg) {
2920 case KVM_CAP_USER_MEMORY:
2921 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2922 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2923 case KVM_CAP_INTERNAL_ERROR_DATA:
2924 #ifdef CONFIG_HAVE_KVM_MSI
2925 case KVM_CAP_SIGNAL_MSI:
2926 #endif
2927 #ifdef CONFIG_HAVE_KVM_IRQFD
2928 case KVM_CAP_IRQFD:
2929 case KVM_CAP_IRQFD_RESAMPLE:
2930 #endif
2931 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2932 case KVM_CAP_CHECK_EXTENSION_VM:
2933 return 1;
2934 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2935 case KVM_CAP_IRQ_ROUTING:
2936 return KVM_MAX_IRQ_ROUTES;
2937 #endif
2938 #if KVM_ADDRESS_SPACE_NUM > 1
2939 case KVM_CAP_MULTI_ADDRESS_SPACE:
2940 return KVM_ADDRESS_SPACE_NUM;
2941 #endif
2942 case KVM_CAP_MAX_VCPU_ID:
2943 return KVM_MAX_VCPU_ID;
2944 default:
2945 break;
2946 }
2947 return kvm_vm_ioctl_check_extension(kvm, arg);
2948 }
2949
2950 static long kvm_vm_ioctl(struct file *filp,
2951 unsigned int ioctl, unsigned long arg)
2952 {
2953 struct kvm *kvm = filp->private_data;
2954 void __user *argp = (void __user *)arg;
2955 int r;
2956
2957 if (kvm->mm != current->mm)
2958 return -EIO;
2959 switch (ioctl) {
2960 case KVM_CREATE_VCPU:
2961 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2962 break;
2963 case KVM_SET_USER_MEMORY_REGION: {
2964 struct kvm_userspace_memory_region kvm_userspace_mem;
2965
2966 r = -EFAULT;
2967 if (copy_from_user(&kvm_userspace_mem, argp,
2968 sizeof(kvm_userspace_mem)))
2969 goto out;
2970
2971 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2972 break;
2973 }
2974 case KVM_GET_DIRTY_LOG: {
2975 struct kvm_dirty_log log;
2976
2977 r = -EFAULT;
2978 if (copy_from_user(&log, argp, sizeof(log)))
2979 goto out;
2980 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2981 break;
2982 }
2983 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2984 case KVM_REGISTER_COALESCED_MMIO: {
2985 struct kvm_coalesced_mmio_zone zone;
2986
2987 r = -EFAULT;
2988 if (copy_from_user(&zone, argp, sizeof(zone)))
2989 goto out;
2990 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2991 break;
2992 }
2993 case KVM_UNREGISTER_COALESCED_MMIO: {
2994 struct kvm_coalesced_mmio_zone zone;
2995
2996 r = -EFAULT;
2997 if (copy_from_user(&zone, argp, sizeof(zone)))
2998 goto out;
2999 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3000 break;
3001 }
3002 #endif
3003 case KVM_IRQFD: {
3004 struct kvm_irqfd data;
3005
3006 r = -EFAULT;
3007 if (copy_from_user(&data, argp, sizeof(data)))
3008 goto out;
3009 r = kvm_irqfd(kvm, &data);
3010 break;
3011 }
3012 case KVM_IOEVENTFD: {
3013 struct kvm_ioeventfd data;
3014
3015 r = -EFAULT;
3016 if (copy_from_user(&data, argp, sizeof(data)))
3017 goto out;
3018 r = kvm_ioeventfd(kvm, &data);
3019 break;
3020 }
3021 #ifdef CONFIG_HAVE_KVM_MSI
3022 case KVM_SIGNAL_MSI: {
3023 struct kvm_msi msi;
3024
3025 r = -EFAULT;
3026 if (copy_from_user(&msi, argp, sizeof(msi)))
3027 goto out;
3028 r = kvm_send_userspace_msi(kvm, &msi);
3029 break;
3030 }
3031 #endif
3032 #ifdef __KVM_HAVE_IRQ_LINE
3033 case KVM_IRQ_LINE_STATUS:
3034 case KVM_IRQ_LINE: {
3035 struct kvm_irq_level irq_event;
3036
3037 r = -EFAULT;
3038 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3039 goto out;
3040
3041 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3042 ioctl == KVM_IRQ_LINE_STATUS);
3043 if (r)
3044 goto out;
3045
3046 r = -EFAULT;
3047 if (ioctl == KVM_IRQ_LINE_STATUS) {
3048 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3049 goto out;
3050 }
3051
3052 r = 0;
3053 break;
3054 }
3055 #endif
3056 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3057 case KVM_SET_GSI_ROUTING: {
3058 struct kvm_irq_routing routing;
3059 struct kvm_irq_routing __user *urouting;
3060 struct kvm_irq_routing_entry *entries = NULL;
3061
3062 r = -EFAULT;
3063 if (copy_from_user(&routing, argp, sizeof(routing)))
3064 goto out;
3065 r = -EINVAL;
3066 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3067 goto out;
3068 if (routing.flags)
3069 goto out;
3070 if (routing.nr) {
3071 r = -ENOMEM;
3072 entries = vmalloc(routing.nr * sizeof(*entries));
3073 if (!entries)
3074 goto out;
3075 r = -EFAULT;
3076 urouting = argp;
3077 if (copy_from_user(entries, urouting->entries,
3078 routing.nr * sizeof(*entries)))
3079 goto out_free_irq_routing;
3080 }
3081 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3082 routing.flags);
3083 out_free_irq_routing:
3084 vfree(entries);
3085 break;
3086 }
3087 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3088 case KVM_CREATE_DEVICE: {
3089 struct kvm_create_device cd;
3090
3091 r = -EFAULT;
3092 if (copy_from_user(&cd, argp, sizeof(cd)))
3093 goto out;
3094
3095 r = kvm_ioctl_create_device(kvm, &cd);
3096 if (r)
3097 goto out;
3098
3099 r = -EFAULT;
3100 if (copy_to_user(argp, &cd, sizeof(cd)))
3101 goto out;
3102
3103 r = 0;
3104 break;
3105 }
3106 case KVM_CHECK_EXTENSION:
3107 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3108 break;
3109 default:
3110 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3111 }
3112 out:
3113 return r;
3114 }
3115
3116 #ifdef CONFIG_KVM_COMPAT
3117 struct compat_kvm_dirty_log {
3118 __u32 slot;
3119 __u32 padding1;
3120 union {
3121 compat_uptr_t dirty_bitmap; /* one bit per page */
3122 __u64 padding2;
3123 };
3124 };
3125
3126 static long kvm_vm_compat_ioctl(struct file *filp,
3127 unsigned int ioctl, unsigned long arg)
3128 {
3129 struct kvm *kvm = filp->private_data;
3130 int r;
3131
3132 if (kvm->mm != current->mm)
3133 return -EIO;
3134 switch (ioctl) {
3135 case KVM_GET_DIRTY_LOG: {
3136 struct compat_kvm_dirty_log compat_log;
3137 struct kvm_dirty_log log;
3138
3139 r = -EFAULT;
3140 if (copy_from_user(&compat_log, (void __user *)arg,
3141 sizeof(compat_log)))
3142 goto out;
3143 log.slot = compat_log.slot;
3144 log.padding1 = compat_log.padding1;
3145 log.padding2 = compat_log.padding2;
3146 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3147
3148 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3149 break;
3150 }
3151 default:
3152 r = kvm_vm_ioctl(filp, ioctl, arg);
3153 }
3154
3155 out:
3156 return r;
3157 }
3158 #endif
3159
3160 static struct file_operations kvm_vm_fops = {
3161 .release = kvm_vm_release,
3162 .unlocked_ioctl = kvm_vm_ioctl,
3163 #ifdef CONFIG_KVM_COMPAT
3164 .compat_ioctl = kvm_vm_compat_ioctl,
3165 #endif
3166 .llseek = noop_llseek,
3167 };
3168
3169 static int kvm_dev_ioctl_create_vm(unsigned long type)
3170 {
3171 int r;
3172 struct kvm *kvm;
3173 struct file *file;
3174
3175 kvm = kvm_create_vm(type);
3176 if (IS_ERR(kvm))
3177 return PTR_ERR(kvm);
3178 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3179 r = kvm_coalesced_mmio_init(kvm);
3180 if (r < 0) {
3181 kvm_put_kvm(kvm);
3182 return r;
3183 }
3184 #endif
3185 r = get_unused_fd_flags(O_CLOEXEC);
3186 if (r < 0) {
3187 kvm_put_kvm(kvm);
3188 return r;
3189 }
3190 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3191 if (IS_ERR(file)) {
3192 put_unused_fd(r);
3193 kvm_put_kvm(kvm);
3194 return PTR_ERR(file);
3195 }
3196
3197 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3198 put_unused_fd(r);
3199 fput(file);
3200 return -ENOMEM;
3201 }
3202
3203 fd_install(r, file);
3204 return r;
3205 }
3206
3207 static long kvm_dev_ioctl(struct file *filp,
3208 unsigned int ioctl, unsigned long arg)
3209 {
3210 long r = -EINVAL;
3211
3212 switch (ioctl) {
3213 case KVM_GET_API_VERSION:
3214 if (arg)
3215 goto out;
3216 r = KVM_API_VERSION;
3217 break;
3218 case KVM_CREATE_VM:
3219 r = kvm_dev_ioctl_create_vm(arg);
3220 break;
3221 case KVM_CHECK_EXTENSION:
3222 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3223 break;
3224 case KVM_GET_VCPU_MMAP_SIZE:
3225 if (arg)
3226 goto out;
3227 r = PAGE_SIZE; /* struct kvm_run */
3228 #ifdef CONFIG_X86
3229 r += PAGE_SIZE; /* pio data page */
3230 #endif
3231 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3232 r += PAGE_SIZE; /* coalesced mmio ring page */
3233 #endif
3234 break;
3235 case KVM_TRACE_ENABLE:
3236 case KVM_TRACE_PAUSE:
3237 case KVM_TRACE_DISABLE:
3238 r = -EOPNOTSUPP;
3239 break;
3240 default:
3241 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3242 }
3243 out:
3244 return r;
3245 }
3246
3247 static struct file_operations kvm_chardev_ops = {
3248 .unlocked_ioctl = kvm_dev_ioctl,
3249 .compat_ioctl = kvm_dev_ioctl,
3250 .llseek = noop_llseek,
3251 };
3252
3253 static struct miscdevice kvm_dev = {
3254 KVM_MINOR,
3255 "kvm",
3256 &kvm_chardev_ops,
3257 };
3258
3259 static void hardware_enable_nolock(void *junk)
3260 {
3261 int cpu = raw_smp_processor_id();
3262 int r;
3263
3264 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3265 return;
3266
3267 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3268
3269 r = kvm_arch_hardware_enable();
3270
3271 if (r) {
3272 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3273 atomic_inc(&hardware_enable_failed);
3274 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3275 }
3276 }
3277
3278 static int kvm_starting_cpu(unsigned int cpu)
3279 {
3280 raw_spin_lock(&kvm_count_lock);
3281 if (kvm_usage_count)
3282 hardware_enable_nolock(NULL);
3283 raw_spin_unlock(&kvm_count_lock);
3284 return 0;
3285 }
3286
3287 static void hardware_disable_nolock(void *junk)
3288 {
3289 int cpu = raw_smp_processor_id();
3290
3291 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3292 return;
3293 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3294 kvm_arch_hardware_disable();
3295 }
3296
3297 static int kvm_dying_cpu(unsigned int cpu)
3298 {
3299 raw_spin_lock(&kvm_count_lock);
3300 if (kvm_usage_count)
3301 hardware_disable_nolock(NULL);
3302 raw_spin_unlock(&kvm_count_lock);
3303 return 0;
3304 }
3305
3306 static void hardware_disable_all_nolock(void)
3307 {
3308 BUG_ON(!kvm_usage_count);
3309
3310 kvm_usage_count--;
3311 if (!kvm_usage_count)
3312 on_each_cpu(hardware_disable_nolock, NULL, 1);
3313 }
3314
3315 static void hardware_disable_all(void)
3316 {
3317 raw_spin_lock(&kvm_count_lock);
3318 hardware_disable_all_nolock();
3319 raw_spin_unlock(&kvm_count_lock);
3320 }
3321
3322 static int hardware_enable_all(void)
3323 {
3324 int r = 0;
3325
3326 raw_spin_lock(&kvm_count_lock);
3327
3328 kvm_usage_count++;
3329 if (kvm_usage_count == 1) {
3330 atomic_set(&hardware_enable_failed, 0);
3331 on_each_cpu(hardware_enable_nolock, NULL, 1);
3332
3333 if (atomic_read(&hardware_enable_failed)) {
3334 hardware_disable_all_nolock();
3335 r = -EBUSY;
3336 }
3337 }
3338
3339 raw_spin_unlock(&kvm_count_lock);
3340
3341 return r;
3342 }
3343
3344 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3345 void *v)
3346 {
3347 /*
3348 * Some (well, at least mine) BIOSes hang on reboot if
3349 * in vmx root mode.
3350 *
3351 * And Intel TXT required VMX off for all cpu when system shutdown.
3352 */
3353 pr_info("kvm: exiting hardware virtualization\n");
3354 kvm_rebooting = true;
3355 on_each_cpu(hardware_disable_nolock, NULL, 1);
3356 return NOTIFY_OK;
3357 }
3358
3359 static struct notifier_block kvm_reboot_notifier = {
3360 .notifier_call = kvm_reboot,
3361 .priority = 0,
3362 };
3363
3364 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3365 {
3366 int i;
3367
3368 for (i = 0; i < bus->dev_count; i++) {
3369 struct kvm_io_device *pos = bus->range[i].dev;
3370
3371 kvm_iodevice_destructor(pos);
3372 }
3373 kfree(bus);
3374 }
3375
3376 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3377 const struct kvm_io_range *r2)
3378 {
3379 gpa_t addr1 = r1->addr;
3380 gpa_t addr2 = r2->addr;
3381
3382 if (addr1 < addr2)
3383 return -1;
3384
3385 /* If r2->len == 0, match the exact address. If r2->len != 0,
3386 * accept any overlapping write. Any order is acceptable for
3387 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3388 * we process all of them.
3389 */
3390 if (r2->len) {
3391 addr1 += r1->len;
3392 addr2 += r2->len;
3393 }
3394
3395 if (addr1 > addr2)
3396 return 1;
3397
3398 return 0;
3399 }
3400
3401 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3402 {
3403 return kvm_io_bus_cmp(p1, p2);
3404 }
3405
3406 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3407 gpa_t addr, int len)
3408 {
3409 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3410 .addr = addr,
3411 .len = len,
3412 .dev = dev,
3413 };
3414
3415 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3416 kvm_io_bus_sort_cmp, NULL);
3417
3418 return 0;
3419 }
3420
3421 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3422 gpa_t addr, int len)
3423 {
3424 struct kvm_io_range *range, key;
3425 int off;
3426
3427 key = (struct kvm_io_range) {
3428 .addr = addr,
3429 .len = len,
3430 };
3431
3432 range = bsearch(&key, bus->range, bus->dev_count,
3433 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3434 if (range == NULL)
3435 return -ENOENT;
3436
3437 off = range - bus->range;
3438
3439 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3440 off--;
3441
3442 return off;
3443 }
3444
3445 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3446 struct kvm_io_range *range, const void *val)
3447 {
3448 int idx;
3449
3450 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3451 if (idx < 0)
3452 return -EOPNOTSUPP;
3453
3454 while (idx < bus->dev_count &&
3455 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3456 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3457 range->len, val))
3458 return idx;
3459 idx++;
3460 }
3461
3462 return -EOPNOTSUPP;
3463 }
3464
3465 /* kvm_io_bus_write - called under kvm->slots_lock */
3466 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3467 int len, const void *val)
3468 {
3469 struct kvm_io_bus *bus;
3470 struct kvm_io_range range;
3471 int r;
3472
3473 range = (struct kvm_io_range) {
3474 .addr = addr,
3475 .len = len,
3476 };
3477
3478 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3479 if (!bus)
3480 return -ENOMEM;
3481 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3482 return r < 0 ? r : 0;
3483 }
3484
3485 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3486 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3487 gpa_t addr, int len, const void *val, long cookie)
3488 {
3489 struct kvm_io_bus *bus;
3490 struct kvm_io_range range;
3491
3492 range = (struct kvm_io_range) {
3493 .addr = addr,
3494 .len = len,
3495 };
3496
3497 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3498 if (!bus)
3499 return -ENOMEM;
3500
3501 /* First try the device referenced by cookie. */
3502 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3503 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3504 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3505 val))
3506 return cookie;
3507
3508 /*
3509 * cookie contained garbage; fall back to search and return the
3510 * correct cookie value.
3511 */
3512 return __kvm_io_bus_write(vcpu, bus, &range, val);
3513 }
3514
3515 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3516 struct kvm_io_range *range, void *val)
3517 {
3518 int idx;
3519
3520 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3521 if (idx < 0)
3522 return -EOPNOTSUPP;
3523
3524 while (idx < bus->dev_count &&
3525 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3526 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3527 range->len, val))
3528 return idx;
3529 idx++;
3530 }
3531
3532 return -EOPNOTSUPP;
3533 }
3534 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3535
3536 /* kvm_io_bus_read - called under kvm->slots_lock */
3537 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3538 int len, void *val)
3539 {
3540 struct kvm_io_bus *bus;
3541 struct kvm_io_range range;
3542 int r;
3543
3544 range = (struct kvm_io_range) {
3545 .addr = addr,
3546 .len = len,
3547 };
3548
3549 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3550 if (!bus)
3551 return -ENOMEM;
3552 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3553 return r < 0 ? r : 0;
3554 }
3555
3556
3557 /* Caller must hold slots_lock. */
3558 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3559 int len, struct kvm_io_device *dev)
3560 {
3561 struct kvm_io_bus *new_bus, *bus;
3562
3563 bus = kvm->buses[bus_idx];
3564 if (!bus)
3565 return -ENOMEM;
3566
3567 /* exclude ioeventfd which is limited by maximum fd */
3568 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3569 return -ENOSPC;
3570
3571 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3572 sizeof(struct kvm_io_range)), GFP_KERNEL);
3573 if (!new_bus)
3574 return -ENOMEM;
3575 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3576 sizeof(struct kvm_io_range)));
3577 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3578 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3579 synchronize_srcu_expedited(&kvm->srcu);
3580 kfree(bus);
3581
3582 return 0;
3583 }
3584
3585 /* Caller must hold slots_lock. */
3586 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3587 struct kvm_io_device *dev)
3588 {
3589 int i;
3590 struct kvm_io_bus *new_bus, *bus;
3591
3592 bus = kvm->buses[bus_idx];
3593 if (!bus)
3594 return;
3595
3596 for (i = 0; i < bus->dev_count; i++)
3597 if (bus->range[i].dev == dev) {
3598 break;
3599 }
3600
3601 if (i == bus->dev_count)
3602 return;
3603
3604 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3605 sizeof(struct kvm_io_range)), GFP_KERNEL);
3606 if (!new_bus) {
3607 pr_err("kvm: failed to shrink bus, removing it completely\n");
3608 goto broken;
3609 }
3610
3611 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3612 new_bus->dev_count--;
3613 memcpy(new_bus->range + i, bus->range + i + 1,
3614 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3615
3616 broken:
3617 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3618 synchronize_srcu_expedited(&kvm->srcu);
3619 kfree(bus);
3620 return;
3621 }
3622
3623 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3624 gpa_t addr)
3625 {
3626 struct kvm_io_bus *bus;
3627 int dev_idx, srcu_idx;
3628 struct kvm_io_device *iodev = NULL;
3629
3630 srcu_idx = srcu_read_lock(&kvm->srcu);
3631
3632 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3633 if (!bus)
3634 goto out_unlock;
3635
3636 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3637 if (dev_idx < 0)
3638 goto out_unlock;
3639
3640 iodev = bus->range[dev_idx].dev;
3641
3642 out_unlock:
3643 srcu_read_unlock(&kvm->srcu, srcu_idx);
3644
3645 return iodev;
3646 }
3647 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3648
3649 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3650 int (*get)(void *, u64 *), int (*set)(void *, u64),
3651 const char *fmt)
3652 {
3653 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3654 inode->i_private;
3655
3656 /* The debugfs files are a reference to the kvm struct which
3657 * is still valid when kvm_destroy_vm is called.
3658 * To avoid the race between open and the removal of the debugfs
3659 * directory we test against the users count.
3660 */
3661 if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0))
3662 return -ENOENT;
3663
3664 if (simple_attr_open(inode, file, get, set, fmt)) {
3665 kvm_put_kvm(stat_data->kvm);
3666 return -ENOMEM;
3667 }
3668
3669 return 0;
3670 }
3671
3672 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3673 {
3674 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3675 inode->i_private;
3676
3677 simple_attr_release(inode, file);
3678 kvm_put_kvm(stat_data->kvm);
3679
3680 return 0;
3681 }
3682
3683 static int vm_stat_get_per_vm(void *data, u64 *val)
3684 {
3685 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3686
3687 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3688
3689 return 0;
3690 }
3691
3692 static int vm_stat_clear_per_vm(void *data, u64 val)
3693 {
3694 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3695
3696 if (val)
3697 return -EINVAL;
3698
3699 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3700
3701 return 0;
3702 }
3703
3704 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3705 {
3706 __simple_attr_check_format("%llu\n", 0ull);
3707 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3708 vm_stat_clear_per_vm, "%llu\n");
3709 }
3710
3711 static const struct file_operations vm_stat_get_per_vm_fops = {
3712 .owner = THIS_MODULE,
3713 .open = vm_stat_get_per_vm_open,
3714 .release = kvm_debugfs_release,
3715 .read = simple_attr_read,
3716 .write = simple_attr_write,
3717 .llseek = generic_file_llseek,
3718 };
3719
3720 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3721 {
3722 int i;
3723 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3724 struct kvm_vcpu *vcpu;
3725
3726 *val = 0;
3727
3728 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3729 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3730
3731 return 0;
3732 }
3733
3734 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3735 {
3736 int i;
3737 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3738 struct kvm_vcpu *vcpu;
3739
3740 if (val)
3741 return -EINVAL;
3742
3743 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3744 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3745
3746 return 0;
3747 }
3748
3749 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3750 {
3751 __simple_attr_check_format("%llu\n", 0ull);
3752 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3753 vcpu_stat_clear_per_vm, "%llu\n");
3754 }
3755
3756 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3757 .owner = THIS_MODULE,
3758 .open = vcpu_stat_get_per_vm_open,
3759 .release = kvm_debugfs_release,
3760 .read = simple_attr_read,
3761 .write = simple_attr_write,
3762 .llseek = generic_file_llseek,
3763 };
3764
3765 static const struct file_operations *stat_fops_per_vm[] = {
3766 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3767 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3768 };
3769
3770 static int vm_stat_get(void *_offset, u64 *val)
3771 {
3772 unsigned offset = (long)_offset;
3773 struct kvm *kvm;
3774 struct kvm_stat_data stat_tmp = {.offset = offset};
3775 u64 tmp_val;
3776
3777 *val = 0;
3778 spin_lock(&kvm_lock);
3779 list_for_each_entry(kvm, &vm_list, vm_list) {
3780 stat_tmp.kvm = kvm;
3781 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3782 *val += tmp_val;
3783 }
3784 spin_unlock(&kvm_lock);
3785 return 0;
3786 }
3787
3788 static int vm_stat_clear(void *_offset, u64 val)
3789 {
3790 unsigned offset = (long)_offset;
3791 struct kvm *kvm;
3792 struct kvm_stat_data stat_tmp = {.offset = offset};
3793
3794 if (val)
3795 return -EINVAL;
3796
3797 spin_lock(&kvm_lock);
3798 list_for_each_entry(kvm, &vm_list, vm_list) {
3799 stat_tmp.kvm = kvm;
3800 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3801 }
3802 spin_unlock(&kvm_lock);
3803
3804 return 0;
3805 }
3806
3807 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3808
3809 static int vcpu_stat_get(void *_offset, u64 *val)
3810 {
3811 unsigned offset = (long)_offset;
3812 struct kvm *kvm;
3813 struct kvm_stat_data stat_tmp = {.offset = offset};
3814 u64 tmp_val;
3815
3816 *val = 0;
3817 spin_lock(&kvm_lock);
3818 list_for_each_entry(kvm, &vm_list, vm_list) {
3819 stat_tmp.kvm = kvm;
3820 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3821 *val += tmp_val;
3822 }
3823 spin_unlock(&kvm_lock);
3824 return 0;
3825 }
3826
3827 static int vcpu_stat_clear(void *_offset, u64 val)
3828 {
3829 unsigned offset = (long)_offset;
3830 struct kvm *kvm;
3831 struct kvm_stat_data stat_tmp = {.offset = offset};
3832
3833 if (val)
3834 return -EINVAL;
3835
3836 spin_lock(&kvm_lock);
3837 list_for_each_entry(kvm, &vm_list, vm_list) {
3838 stat_tmp.kvm = kvm;
3839 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3840 }
3841 spin_unlock(&kvm_lock);
3842
3843 return 0;
3844 }
3845
3846 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3847 "%llu\n");
3848
3849 static const struct file_operations *stat_fops[] = {
3850 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3851 [KVM_STAT_VM] = &vm_stat_fops,
3852 };
3853
3854 static int kvm_init_debug(void)
3855 {
3856 int r = -EEXIST;
3857 struct kvm_stats_debugfs_item *p;
3858
3859 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3860 if (kvm_debugfs_dir == NULL)
3861 goto out;
3862
3863 kvm_debugfs_num_entries = 0;
3864 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3865 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3866 (void *)(long)p->offset,
3867 stat_fops[p->kind]))
3868 goto out_dir;
3869 }
3870
3871 return 0;
3872
3873 out_dir:
3874 debugfs_remove_recursive(kvm_debugfs_dir);
3875 out:
3876 return r;
3877 }
3878
3879 static int kvm_suspend(void)
3880 {
3881 if (kvm_usage_count)
3882 hardware_disable_nolock(NULL);
3883 return 0;
3884 }
3885
3886 static void kvm_resume(void)
3887 {
3888 if (kvm_usage_count) {
3889 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3890 hardware_enable_nolock(NULL);
3891 }
3892 }
3893
3894 static struct syscore_ops kvm_syscore_ops = {
3895 .suspend = kvm_suspend,
3896 .resume = kvm_resume,
3897 };
3898
3899 static inline
3900 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3901 {
3902 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3903 }
3904
3905 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3906 {
3907 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3908
3909 if (vcpu->preempted)
3910 vcpu->preempted = false;
3911
3912 kvm_arch_sched_in(vcpu, cpu);
3913
3914 kvm_arch_vcpu_load(vcpu, cpu);
3915 }
3916
3917 static void kvm_sched_out(struct preempt_notifier *pn,
3918 struct task_struct *next)
3919 {
3920 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3921
3922 if (current->state == TASK_RUNNING)
3923 vcpu->preempted = true;
3924 kvm_arch_vcpu_put(vcpu);
3925 }
3926
3927 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3928 struct module *module)
3929 {
3930 int r;
3931 int cpu;
3932
3933 r = kvm_arch_init(opaque);
3934 if (r)
3935 goto out_fail;
3936
3937 /*
3938 * kvm_arch_init makes sure there's at most one caller
3939 * for architectures that support multiple implementations,
3940 * like intel and amd on x86.
3941 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3942 * conflicts in case kvm is already setup for another implementation.
3943 */
3944 r = kvm_irqfd_init();
3945 if (r)
3946 goto out_irqfd;
3947
3948 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3949 r = -ENOMEM;
3950 goto out_free_0;
3951 }
3952
3953 r = kvm_arch_hardware_setup();
3954 if (r < 0)
3955 goto out_free_0a;
3956
3957 for_each_online_cpu(cpu) {
3958 smp_call_function_single(cpu,
3959 kvm_arch_check_processor_compat,
3960 &r, 1);
3961 if (r < 0)
3962 goto out_free_1;
3963 }
3964
3965 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
3966 kvm_starting_cpu, kvm_dying_cpu);
3967 if (r)
3968 goto out_free_2;
3969 register_reboot_notifier(&kvm_reboot_notifier);
3970
3971 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3972 if (!vcpu_align)
3973 vcpu_align = __alignof__(struct kvm_vcpu);
3974 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3975 0, NULL);
3976 if (!kvm_vcpu_cache) {
3977 r = -ENOMEM;
3978 goto out_free_3;
3979 }
3980
3981 r = kvm_async_pf_init();
3982 if (r)
3983 goto out_free;
3984
3985 kvm_chardev_ops.owner = module;
3986 kvm_vm_fops.owner = module;
3987 kvm_vcpu_fops.owner = module;
3988
3989 r = misc_register(&kvm_dev);
3990 if (r) {
3991 pr_err("kvm: misc device register failed\n");
3992 goto out_unreg;
3993 }
3994
3995 register_syscore_ops(&kvm_syscore_ops);
3996
3997 kvm_preempt_ops.sched_in = kvm_sched_in;
3998 kvm_preempt_ops.sched_out = kvm_sched_out;
3999
4000 r = kvm_init_debug();
4001 if (r) {
4002 pr_err("kvm: create debugfs files failed\n");
4003 goto out_undebugfs;
4004 }
4005
4006 r = kvm_vfio_ops_init();
4007 WARN_ON(r);
4008
4009 return 0;
4010
4011 out_undebugfs:
4012 unregister_syscore_ops(&kvm_syscore_ops);
4013 misc_deregister(&kvm_dev);
4014 out_unreg:
4015 kvm_async_pf_deinit();
4016 out_free:
4017 kmem_cache_destroy(kvm_vcpu_cache);
4018 out_free_3:
4019 unregister_reboot_notifier(&kvm_reboot_notifier);
4020 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4021 out_free_2:
4022 out_free_1:
4023 kvm_arch_hardware_unsetup();
4024 out_free_0a:
4025 free_cpumask_var(cpus_hardware_enabled);
4026 out_free_0:
4027 kvm_irqfd_exit();
4028 out_irqfd:
4029 kvm_arch_exit();
4030 out_fail:
4031 return r;
4032 }
4033 EXPORT_SYMBOL_GPL(kvm_init);
4034
4035 void kvm_exit(void)
4036 {
4037 debugfs_remove_recursive(kvm_debugfs_dir);
4038 misc_deregister(&kvm_dev);
4039 kmem_cache_destroy(kvm_vcpu_cache);
4040 kvm_async_pf_deinit();
4041 unregister_syscore_ops(&kvm_syscore_ops);
4042 unregister_reboot_notifier(&kvm_reboot_notifier);
4043 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4044 on_each_cpu(hardware_disable_nolock, NULL, 1);
4045 kvm_arch_hardware_unsetup();
4046 kvm_arch_exit();
4047 kvm_irqfd_exit();
4048 free_cpumask_var(cpus_hardware_enabled);
4049 kvm_vfio_ops_exit();
4050 }
4051 EXPORT_SYMBOL_GPL(kvm_exit);