]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - virt/kvm/kvm_main.c
KVM: split kvm_vcpu_wake_up from kvm_vcpu_kick
[mirror_ubuntu-artful-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 /* Architectures should define their poll value according to the halt latency */
70 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
71 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
72
73 /* Default doubles per-vcpu halt_poll_ns. */
74 static unsigned int halt_poll_ns_grow = 2;
75 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
76
77 /* Default resets per-vcpu halt_poll_ns . */
78 static unsigned int halt_poll_ns_shrink;
79 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
80
81 /*
82 * Ordering of locks:
83 *
84 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
85 */
86
87 DEFINE_SPINLOCK(kvm_lock);
88 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
89 LIST_HEAD(vm_list);
90
91 static cpumask_var_t cpus_hardware_enabled;
92 static int kvm_usage_count;
93 static atomic_t hardware_enable_failed;
94
95 struct kmem_cache *kvm_vcpu_cache;
96 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
97
98 static __read_mostly struct preempt_ops kvm_preempt_ops;
99
100 struct dentry *kvm_debugfs_dir;
101 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
102
103 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
104 unsigned long arg);
105 #ifdef CONFIG_KVM_COMPAT
106 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
107 unsigned long arg);
108 #endif
109 static int hardware_enable_all(void);
110 static void hardware_disable_all(void);
111
112 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
113
114 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
115 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
116
117 __visible bool kvm_rebooting;
118 EXPORT_SYMBOL_GPL(kvm_rebooting);
119
120 static bool largepages_enabled = true;
121
122 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
123 {
124 if (pfn_valid(pfn))
125 return PageReserved(pfn_to_page(pfn));
126
127 return true;
128 }
129
130 /*
131 * Switches to specified vcpu, until a matching vcpu_put()
132 */
133 int vcpu_load(struct kvm_vcpu *vcpu)
134 {
135 int cpu;
136
137 if (mutex_lock_killable(&vcpu->mutex))
138 return -EINTR;
139 cpu = get_cpu();
140 preempt_notifier_register(&vcpu->preempt_notifier);
141 kvm_arch_vcpu_load(vcpu, cpu);
142 put_cpu();
143 return 0;
144 }
145
146 void vcpu_put(struct kvm_vcpu *vcpu)
147 {
148 preempt_disable();
149 kvm_arch_vcpu_put(vcpu);
150 preempt_notifier_unregister(&vcpu->preempt_notifier);
151 preempt_enable();
152 mutex_unlock(&vcpu->mutex);
153 }
154
155 static void ack_flush(void *_completed)
156 {
157 }
158
159 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
160 {
161 int i, cpu, me;
162 cpumask_var_t cpus;
163 bool called = true;
164 struct kvm_vcpu *vcpu;
165
166 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
167
168 me = get_cpu();
169 kvm_for_each_vcpu(i, vcpu, kvm) {
170 kvm_make_request(req, vcpu);
171 cpu = vcpu->cpu;
172
173 /* Set ->requests bit before we read ->mode. */
174 smp_mb__after_atomic();
175
176 if (cpus != NULL && cpu != -1 && cpu != me &&
177 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
178 cpumask_set_cpu(cpu, cpus);
179 }
180 if (unlikely(cpus == NULL))
181 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
182 else if (!cpumask_empty(cpus))
183 smp_call_function_many(cpus, ack_flush, NULL, 1);
184 else
185 called = false;
186 put_cpu();
187 free_cpumask_var(cpus);
188 return called;
189 }
190
191 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
192 void kvm_flush_remote_tlbs(struct kvm *kvm)
193 {
194 /*
195 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
196 * kvm_make_all_cpus_request.
197 */
198 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
199
200 /*
201 * We want to publish modifications to the page tables before reading
202 * mode. Pairs with a memory barrier in arch-specific code.
203 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
204 * and smp_mb in walk_shadow_page_lockless_begin/end.
205 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
206 *
207 * There is already an smp_mb__after_atomic() before
208 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
209 * barrier here.
210 */
211 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
212 ++kvm->stat.remote_tlb_flush;
213 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
214 }
215 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
216 #endif
217
218 void kvm_reload_remote_mmus(struct kvm *kvm)
219 {
220 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
221 }
222
223 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
224 {
225 struct page *page;
226 int r;
227
228 mutex_init(&vcpu->mutex);
229 vcpu->cpu = -1;
230 vcpu->kvm = kvm;
231 vcpu->vcpu_id = id;
232 vcpu->pid = NULL;
233 init_swait_queue_head(&vcpu->wq);
234 kvm_async_pf_vcpu_init(vcpu);
235
236 vcpu->pre_pcpu = -1;
237 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
238
239 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
240 if (!page) {
241 r = -ENOMEM;
242 goto fail;
243 }
244 vcpu->run = page_address(page);
245
246 kvm_vcpu_set_in_spin_loop(vcpu, false);
247 kvm_vcpu_set_dy_eligible(vcpu, false);
248 vcpu->preempted = false;
249
250 r = kvm_arch_vcpu_init(vcpu);
251 if (r < 0)
252 goto fail_free_run;
253 return 0;
254
255 fail_free_run:
256 free_page((unsigned long)vcpu->run);
257 fail:
258 return r;
259 }
260 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
261
262 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
263 {
264 put_pid(vcpu->pid);
265 kvm_arch_vcpu_uninit(vcpu);
266 free_page((unsigned long)vcpu->run);
267 }
268 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
269
270 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
271 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
272 {
273 return container_of(mn, struct kvm, mmu_notifier);
274 }
275
276 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
277 struct mm_struct *mm,
278 unsigned long address)
279 {
280 struct kvm *kvm = mmu_notifier_to_kvm(mn);
281 int need_tlb_flush, idx;
282
283 /*
284 * When ->invalidate_page runs, the linux pte has been zapped
285 * already but the page is still allocated until
286 * ->invalidate_page returns. So if we increase the sequence
287 * here the kvm page fault will notice if the spte can't be
288 * established because the page is going to be freed. If
289 * instead the kvm page fault establishes the spte before
290 * ->invalidate_page runs, kvm_unmap_hva will release it
291 * before returning.
292 *
293 * The sequence increase only need to be seen at spin_unlock
294 * time, and not at spin_lock time.
295 *
296 * Increasing the sequence after the spin_unlock would be
297 * unsafe because the kvm page fault could then establish the
298 * pte after kvm_unmap_hva returned, without noticing the page
299 * is going to be freed.
300 */
301 idx = srcu_read_lock(&kvm->srcu);
302 spin_lock(&kvm->mmu_lock);
303
304 kvm->mmu_notifier_seq++;
305 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
306 /* we've to flush the tlb before the pages can be freed */
307 if (need_tlb_flush)
308 kvm_flush_remote_tlbs(kvm);
309
310 spin_unlock(&kvm->mmu_lock);
311
312 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
313
314 srcu_read_unlock(&kvm->srcu, idx);
315 }
316
317 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
318 struct mm_struct *mm,
319 unsigned long address,
320 pte_t pte)
321 {
322 struct kvm *kvm = mmu_notifier_to_kvm(mn);
323 int idx;
324
325 idx = srcu_read_lock(&kvm->srcu);
326 spin_lock(&kvm->mmu_lock);
327 kvm->mmu_notifier_seq++;
328 kvm_set_spte_hva(kvm, address, pte);
329 spin_unlock(&kvm->mmu_lock);
330 srcu_read_unlock(&kvm->srcu, idx);
331 }
332
333 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
334 struct mm_struct *mm,
335 unsigned long start,
336 unsigned long end)
337 {
338 struct kvm *kvm = mmu_notifier_to_kvm(mn);
339 int need_tlb_flush = 0, idx;
340
341 idx = srcu_read_lock(&kvm->srcu);
342 spin_lock(&kvm->mmu_lock);
343 /*
344 * The count increase must become visible at unlock time as no
345 * spte can be established without taking the mmu_lock and
346 * count is also read inside the mmu_lock critical section.
347 */
348 kvm->mmu_notifier_count++;
349 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
350 need_tlb_flush |= kvm->tlbs_dirty;
351 /* we've to flush the tlb before the pages can be freed */
352 if (need_tlb_flush)
353 kvm_flush_remote_tlbs(kvm);
354
355 spin_unlock(&kvm->mmu_lock);
356 srcu_read_unlock(&kvm->srcu, idx);
357 }
358
359 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
360 struct mm_struct *mm,
361 unsigned long start,
362 unsigned long end)
363 {
364 struct kvm *kvm = mmu_notifier_to_kvm(mn);
365
366 spin_lock(&kvm->mmu_lock);
367 /*
368 * This sequence increase will notify the kvm page fault that
369 * the page that is going to be mapped in the spte could have
370 * been freed.
371 */
372 kvm->mmu_notifier_seq++;
373 smp_wmb();
374 /*
375 * The above sequence increase must be visible before the
376 * below count decrease, which is ensured by the smp_wmb above
377 * in conjunction with the smp_rmb in mmu_notifier_retry().
378 */
379 kvm->mmu_notifier_count--;
380 spin_unlock(&kvm->mmu_lock);
381
382 BUG_ON(kvm->mmu_notifier_count < 0);
383 }
384
385 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
386 struct mm_struct *mm,
387 unsigned long start,
388 unsigned long end)
389 {
390 struct kvm *kvm = mmu_notifier_to_kvm(mn);
391 int young, idx;
392
393 idx = srcu_read_lock(&kvm->srcu);
394 spin_lock(&kvm->mmu_lock);
395
396 young = kvm_age_hva(kvm, start, end);
397 if (young)
398 kvm_flush_remote_tlbs(kvm);
399
400 spin_unlock(&kvm->mmu_lock);
401 srcu_read_unlock(&kvm->srcu, idx);
402
403 return young;
404 }
405
406 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
407 struct mm_struct *mm,
408 unsigned long start,
409 unsigned long end)
410 {
411 struct kvm *kvm = mmu_notifier_to_kvm(mn);
412 int young, idx;
413
414 idx = srcu_read_lock(&kvm->srcu);
415 spin_lock(&kvm->mmu_lock);
416 /*
417 * Even though we do not flush TLB, this will still adversely
418 * affect performance on pre-Haswell Intel EPT, where there is
419 * no EPT Access Bit to clear so that we have to tear down EPT
420 * tables instead. If we find this unacceptable, we can always
421 * add a parameter to kvm_age_hva so that it effectively doesn't
422 * do anything on clear_young.
423 *
424 * Also note that currently we never issue secondary TLB flushes
425 * from clear_young, leaving this job up to the regular system
426 * cadence. If we find this inaccurate, we might come up with a
427 * more sophisticated heuristic later.
428 */
429 young = kvm_age_hva(kvm, start, end);
430 spin_unlock(&kvm->mmu_lock);
431 srcu_read_unlock(&kvm->srcu, idx);
432
433 return young;
434 }
435
436 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
437 struct mm_struct *mm,
438 unsigned long address)
439 {
440 struct kvm *kvm = mmu_notifier_to_kvm(mn);
441 int young, idx;
442
443 idx = srcu_read_lock(&kvm->srcu);
444 spin_lock(&kvm->mmu_lock);
445 young = kvm_test_age_hva(kvm, address);
446 spin_unlock(&kvm->mmu_lock);
447 srcu_read_unlock(&kvm->srcu, idx);
448
449 return young;
450 }
451
452 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
453 struct mm_struct *mm)
454 {
455 struct kvm *kvm = mmu_notifier_to_kvm(mn);
456 int idx;
457
458 idx = srcu_read_lock(&kvm->srcu);
459 kvm_arch_flush_shadow_all(kvm);
460 srcu_read_unlock(&kvm->srcu, idx);
461 }
462
463 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
464 .invalidate_page = kvm_mmu_notifier_invalidate_page,
465 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
466 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
467 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
468 .clear_young = kvm_mmu_notifier_clear_young,
469 .test_young = kvm_mmu_notifier_test_young,
470 .change_pte = kvm_mmu_notifier_change_pte,
471 .release = kvm_mmu_notifier_release,
472 };
473
474 static int kvm_init_mmu_notifier(struct kvm *kvm)
475 {
476 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
477 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
478 }
479
480 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
481
482 static int kvm_init_mmu_notifier(struct kvm *kvm)
483 {
484 return 0;
485 }
486
487 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
488
489 static struct kvm_memslots *kvm_alloc_memslots(void)
490 {
491 int i;
492 struct kvm_memslots *slots;
493
494 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
495 if (!slots)
496 return NULL;
497
498 /*
499 * Init kvm generation close to the maximum to easily test the
500 * code of handling generation number wrap-around.
501 */
502 slots->generation = -150;
503 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
504 slots->id_to_index[i] = slots->memslots[i].id = i;
505
506 return slots;
507 }
508
509 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
510 {
511 if (!memslot->dirty_bitmap)
512 return;
513
514 kvfree(memslot->dirty_bitmap);
515 memslot->dirty_bitmap = NULL;
516 }
517
518 /*
519 * Free any memory in @free but not in @dont.
520 */
521 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
522 struct kvm_memory_slot *dont)
523 {
524 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
525 kvm_destroy_dirty_bitmap(free);
526
527 kvm_arch_free_memslot(kvm, free, dont);
528
529 free->npages = 0;
530 }
531
532 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
533 {
534 struct kvm_memory_slot *memslot;
535
536 if (!slots)
537 return;
538
539 kvm_for_each_memslot(memslot, slots)
540 kvm_free_memslot(kvm, memslot, NULL);
541
542 kvfree(slots);
543 }
544
545 static struct kvm *kvm_create_vm(unsigned long type)
546 {
547 int r, i;
548 struct kvm *kvm = kvm_arch_alloc_vm();
549
550 if (!kvm)
551 return ERR_PTR(-ENOMEM);
552
553 spin_lock_init(&kvm->mmu_lock);
554 atomic_inc(&current->mm->mm_count);
555 kvm->mm = current->mm;
556 kvm_eventfd_init(kvm);
557 mutex_init(&kvm->lock);
558 mutex_init(&kvm->irq_lock);
559 mutex_init(&kvm->slots_lock);
560 atomic_set(&kvm->users_count, 1);
561 INIT_LIST_HEAD(&kvm->devices);
562
563 r = kvm_arch_init_vm(kvm, type);
564 if (r)
565 goto out_err_no_disable;
566
567 r = hardware_enable_all();
568 if (r)
569 goto out_err_no_disable;
570
571 #ifdef CONFIG_HAVE_KVM_IRQFD
572 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
573 #endif
574
575 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
576
577 r = -ENOMEM;
578 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
579 kvm->memslots[i] = kvm_alloc_memslots();
580 if (!kvm->memslots[i])
581 goto out_err_no_srcu;
582 }
583
584 if (init_srcu_struct(&kvm->srcu))
585 goto out_err_no_srcu;
586 if (init_srcu_struct(&kvm->irq_srcu))
587 goto out_err_no_irq_srcu;
588 for (i = 0; i < KVM_NR_BUSES; i++) {
589 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
590 GFP_KERNEL);
591 if (!kvm->buses[i])
592 goto out_err;
593 }
594
595 r = kvm_init_mmu_notifier(kvm);
596 if (r)
597 goto out_err;
598
599 spin_lock(&kvm_lock);
600 list_add(&kvm->vm_list, &vm_list);
601 spin_unlock(&kvm_lock);
602
603 preempt_notifier_inc();
604
605 return kvm;
606
607 out_err:
608 cleanup_srcu_struct(&kvm->irq_srcu);
609 out_err_no_irq_srcu:
610 cleanup_srcu_struct(&kvm->srcu);
611 out_err_no_srcu:
612 hardware_disable_all();
613 out_err_no_disable:
614 for (i = 0; i < KVM_NR_BUSES; i++)
615 kfree(kvm->buses[i]);
616 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
617 kvm_free_memslots(kvm, kvm->memslots[i]);
618 kvm_arch_free_vm(kvm);
619 mmdrop(current->mm);
620 return ERR_PTR(r);
621 }
622
623 /*
624 * Avoid using vmalloc for a small buffer.
625 * Should not be used when the size is statically known.
626 */
627 void *kvm_kvzalloc(unsigned long size)
628 {
629 if (size > PAGE_SIZE)
630 return vzalloc(size);
631 else
632 return kzalloc(size, GFP_KERNEL);
633 }
634
635 static void kvm_destroy_devices(struct kvm *kvm)
636 {
637 struct kvm_device *dev, *tmp;
638
639 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
640 list_del(&dev->vm_node);
641 dev->ops->destroy(dev);
642 }
643 }
644
645 static void kvm_destroy_vm(struct kvm *kvm)
646 {
647 int i;
648 struct mm_struct *mm = kvm->mm;
649
650 kvm_arch_sync_events(kvm);
651 spin_lock(&kvm_lock);
652 list_del(&kvm->vm_list);
653 spin_unlock(&kvm_lock);
654 kvm_free_irq_routing(kvm);
655 for (i = 0; i < KVM_NR_BUSES; i++)
656 kvm_io_bus_destroy(kvm->buses[i]);
657 kvm_coalesced_mmio_free(kvm);
658 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
659 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
660 #else
661 kvm_arch_flush_shadow_all(kvm);
662 #endif
663 kvm_arch_destroy_vm(kvm);
664 kvm_destroy_devices(kvm);
665 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
666 kvm_free_memslots(kvm, kvm->memslots[i]);
667 cleanup_srcu_struct(&kvm->irq_srcu);
668 cleanup_srcu_struct(&kvm->srcu);
669 kvm_arch_free_vm(kvm);
670 preempt_notifier_dec();
671 hardware_disable_all();
672 mmdrop(mm);
673 }
674
675 void kvm_get_kvm(struct kvm *kvm)
676 {
677 atomic_inc(&kvm->users_count);
678 }
679 EXPORT_SYMBOL_GPL(kvm_get_kvm);
680
681 void kvm_put_kvm(struct kvm *kvm)
682 {
683 if (atomic_dec_and_test(&kvm->users_count))
684 kvm_destroy_vm(kvm);
685 }
686 EXPORT_SYMBOL_GPL(kvm_put_kvm);
687
688
689 static int kvm_vm_release(struct inode *inode, struct file *filp)
690 {
691 struct kvm *kvm = filp->private_data;
692
693 kvm_irqfd_release(kvm);
694
695 kvm_put_kvm(kvm);
696 return 0;
697 }
698
699 /*
700 * Allocation size is twice as large as the actual dirty bitmap size.
701 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
702 */
703 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
704 {
705 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
706
707 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
708 if (!memslot->dirty_bitmap)
709 return -ENOMEM;
710
711 return 0;
712 }
713
714 /*
715 * Insert memslot and re-sort memslots based on their GFN,
716 * so binary search could be used to lookup GFN.
717 * Sorting algorithm takes advantage of having initially
718 * sorted array and known changed memslot position.
719 */
720 static void update_memslots(struct kvm_memslots *slots,
721 struct kvm_memory_slot *new)
722 {
723 int id = new->id;
724 int i = slots->id_to_index[id];
725 struct kvm_memory_slot *mslots = slots->memslots;
726
727 WARN_ON(mslots[i].id != id);
728 if (!new->npages) {
729 WARN_ON(!mslots[i].npages);
730 if (mslots[i].npages)
731 slots->used_slots--;
732 } else {
733 if (!mslots[i].npages)
734 slots->used_slots++;
735 }
736
737 while (i < KVM_MEM_SLOTS_NUM - 1 &&
738 new->base_gfn <= mslots[i + 1].base_gfn) {
739 if (!mslots[i + 1].npages)
740 break;
741 mslots[i] = mslots[i + 1];
742 slots->id_to_index[mslots[i].id] = i;
743 i++;
744 }
745
746 /*
747 * The ">=" is needed when creating a slot with base_gfn == 0,
748 * so that it moves before all those with base_gfn == npages == 0.
749 *
750 * On the other hand, if new->npages is zero, the above loop has
751 * already left i pointing to the beginning of the empty part of
752 * mslots, and the ">=" would move the hole backwards in this
753 * case---which is wrong. So skip the loop when deleting a slot.
754 */
755 if (new->npages) {
756 while (i > 0 &&
757 new->base_gfn >= mslots[i - 1].base_gfn) {
758 mslots[i] = mslots[i - 1];
759 slots->id_to_index[mslots[i].id] = i;
760 i--;
761 }
762 } else
763 WARN_ON_ONCE(i != slots->used_slots);
764
765 mslots[i] = *new;
766 slots->id_to_index[mslots[i].id] = i;
767 }
768
769 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
770 {
771 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
772
773 #ifdef __KVM_HAVE_READONLY_MEM
774 valid_flags |= KVM_MEM_READONLY;
775 #endif
776
777 if (mem->flags & ~valid_flags)
778 return -EINVAL;
779
780 return 0;
781 }
782
783 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
784 int as_id, struct kvm_memslots *slots)
785 {
786 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
787
788 /*
789 * Set the low bit in the generation, which disables SPTE caching
790 * until the end of synchronize_srcu_expedited.
791 */
792 WARN_ON(old_memslots->generation & 1);
793 slots->generation = old_memslots->generation + 1;
794
795 rcu_assign_pointer(kvm->memslots[as_id], slots);
796 synchronize_srcu_expedited(&kvm->srcu);
797
798 /*
799 * Increment the new memslot generation a second time. This prevents
800 * vm exits that race with memslot updates from caching a memslot
801 * generation that will (potentially) be valid forever.
802 */
803 slots->generation++;
804
805 kvm_arch_memslots_updated(kvm, slots);
806
807 return old_memslots;
808 }
809
810 /*
811 * Allocate some memory and give it an address in the guest physical address
812 * space.
813 *
814 * Discontiguous memory is allowed, mostly for framebuffers.
815 *
816 * Must be called holding kvm->slots_lock for write.
817 */
818 int __kvm_set_memory_region(struct kvm *kvm,
819 const struct kvm_userspace_memory_region *mem)
820 {
821 int r;
822 gfn_t base_gfn;
823 unsigned long npages;
824 struct kvm_memory_slot *slot;
825 struct kvm_memory_slot old, new;
826 struct kvm_memslots *slots = NULL, *old_memslots;
827 int as_id, id;
828 enum kvm_mr_change change;
829
830 r = check_memory_region_flags(mem);
831 if (r)
832 goto out;
833
834 r = -EINVAL;
835 as_id = mem->slot >> 16;
836 id = (u16)mem->slot;
837
838 /* General sanity checks */
839 if (mem->memory_size & (PAGE_SIZE - 1))
840 goto out;
841 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
842 goto out;
843 /* We can read the guest memory with __xxx_user() later on. */
844 if ((id < KVM_USER_MEM_SLOTS) &&
845 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
846 !access_ok(VERIFY_WRITE,
847 (void __user *)(unsigned long)mem->userspace_addr,
848 mem->memory_size)))
849 goto out;
850 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
851 goto out;
852 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
853 goto out;
854
855 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
856 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
857 npages = mem->memory_size >> PAGE_SHIFT;
858
859 if (npages > KVM_MEM_MAX_NR_PAGES)
860 goto out;
861
862 new = old = *slot;
863
864 new.id = id;
865 new.base_gfn = base_gfn;
866 new.npages = npages;
867 new.flags = mem->flags;
868
869 if (npages) {
870 if (!old.npages)
871 change = KVM_MR_CREATE;
872 else { /* Modify an existing slot. */
873 if ((mem->userspace_addr != old.userspace_addr) ||
874 (npages != old.npages) ||
875 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
876 goto out;
877
878 if (base_gfn != old.base_gfn)
879 change = KVM_MR_MOVE;
880 else if (new.flags != old.flags)
881 change = KVM_MR_FLAGS_ONLY;
882 else { /* Nothing to change. */
883 r = 0;
884 goto out;
885 }
886 }
887 } else {
888 if (!old.npages)
889 goto out;
890
891 change = KVM_MR_DELETE;
892 new.base_gfn = 0;
893 new.flags = 0;
894 }
895
896 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
897 /* Check for overlaps */
898 r = -EEXIST;
899 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
900 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
901 (slot->id == id))
902 continue;
903 if (!((base_gfn + npages <= slot->base_gfn) ||
904 (base_gfn >= slot->base_gfn + slot->npages)))
905 goto out;
906 }
907 }
908
909 /* Free page dirty bitmap if unneeded */
910 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
911 new.dirty_bitmap = NULL;
912
913 r = -ENOMEM;
914 if (change == KVM_MR_CREATE) {
915 new.userspace_addr = mem->userspace_addr;
916
917 if (kvm_arch_create_memslot(kvm, &new, npages))
918 goto out_free;
919 }
920
921 /* Allocate page dirty bitmap if needed */
922 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
923 if (kvm_create_dirty_bitmap(&new) < 0)
924 goto out_free;
925 }
926
927 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
928 if (!slots)
929 goto out_free;
930 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
931
932 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
933 slot = id_to_memslot(slots, id);
934 slot->flags |= KVM_MEMSLOT_INVALID;
935
936 old_memslots = install_new_memslots(kvm, as_id, slots);
937
938 /* slot was deleted or moved, clear iommu mapping */
939 kvm_iommu_unmap_pages(kvm, &old);
940 /* From this point no new shadow pages pointing to a deleted,
941 * or moved, memslot will be created.
942 *
943 * validation of sp->gfn happens in:
944 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
945 * - kvm_is_visible_gfn (mmu_check_roots)
946 */
947 kvm_arch_flush_shadow_memslot(kvm, slot);
948
949 /*
950 * We can re-use the old_memslots from above, the only difference
951 * from the currently installed memslots is the invalid flag. This
952 * will get overwritten by update_memslots anyway.
953 */
954 slots = old_memslots;
955 }
956
957 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
958 if (r)
959 goto out_slots;
960
961 /* actual memory is freed via old in kvm_free_memslot below */
962 if (change == KVM_MR_DELETE) {
963 new.dirty_bitmap = NULL;
964 memset(&new.arch, 0, sizeof(new.arch));
965 }
966
967 update_memslots(slots, &new);
968 old_memslots = install_new_memslots(kvm, as_id, slots);
969
970 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
971
972 kvm_free_memslot(kvm, &old, &new);
973 kvfree(old_memslots);
974
975 /*
976 * IOMMU mapping: New slots need to be mapped. Old slots need to be
977 * un-mapped and re-mapped if their base changes. Since base change
978 * unmapping is handled above with slot deletion, mapping alone is
979 * needed here. Anything else the iommu might care about for existing
980 * slots (size changes, userspace addr changes and read-only flag
981 * changes) is disallowed above, so any other attribute changes getting
982 * here can be skipped.
983 */
984 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
985 r = kvm_iommu_map_pages(kvm, &new);
986 return r;
987 }
988
989 return 0;
990
991 out_slots:
992 kvfree(slots);
993 out_free:
994 kvm_free_memslot(kvm, &new, &old);
995 out:
996 return r;
997 }
998 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
999
1000 int kvm_set_memory_region(struct kvm *kvm,
1001 const struct kvm_userspace_memory_region *mem)
1002 {
1003 int r;
1004
1005 mutex_lock(&kvm->slots_lock);
1006 r = __kvm_set_memory_region(kvm, mem);
1007 mutex_unlock(&kvm->slots_lock);
1008 return r;
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1011
1012 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1013 struct kvm_userspace_memory_region *mem)
1014 {
1015 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1016 return -EINVAL;
1017
1018 return kvm_set_memory_region(kvm, mem);
1019 }
1020
1021 int kvm_get_dirty_log(struct kvm *kvm,
1022 struct kvm_dirty_log *log, int *is_dirty)
1023 {
1024 struct kvm_memslots *slots;
1025 struct kvm_memory_slot *memslot;
1026 int r, i, as_id, id;
1027 unsigned long n;
1028 unsigned long any = 0;
1029
1030 r = -EINVAL;
1031 as_id = log->slot >> 16;
1032 id = (u16)log->slot;
1033 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1034 goto out;
1035
1036 slots = __kvm_memslots(kvm, as_id);
1037 memslot = id_to_memslot(slots, id);
1038 r = -ENOENT;
1039 if (!memslot->dirty_bitmap)
1040 goto out;
1041
1042 n = kvm_dirty_bitmap_bytes(memslot);
1043
1044 for (i = 0; !any && i < n/sizeof(long); ++i)
1045 any = memslot->dirty_bitmap[i];
1046
1047 r = -EFAULT;
1048 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1049 goto out;
1050
1051 if (any)
1052 *is_dirty = 1;
1053
1054 r = 0;
1055 out:
1056 return r;
1057 }
1058 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1059
1060 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1061 /**
1062 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1063 * are dirty write protect them for next write.
1064 * @kvm: pointer to kvm instance
1065 * @log: slot id and address to which we copy the log
1066 * @is_dirty: flag set if any page is dirty
1067 *
1068 * We need to keep it in mind that VCPU threads can write to the bitmap
1069 * concurrently. So, to avoid losing track of dirty pages we keep the
1070 * following order:
1071 *
1072 * 1. Take a snapshot of the bit and clear it if needed.
1073 * 2. Write protect the corresponding page.
1074 * 3. Copy the snapshot to the userspace.
1075 * 4. Upon return caller flushes TLB's if needed.
1076 *
1077 * Between 2 and 4, the guest may write to the page using the remaining TLB
1078 * entry. This is not a problem because the page is reported dirty using
1079 * the snapshot taken before and step 4 ensures that writes done after
1080 * exiting to userspace will be logged for the next call.
1081 *
1082 */
1083 int kvm_get_dirty_log_protect(struct kvm *kvm,
1084 struct kvm_dirty_log *log, bool *is_dirty)
1085 {
1086 struct kvm_memslots *slots;
1087 struct kvm_memory_slot *memslot;
1088 int r, i, as_id, id;
1089 unsigned long n;
1090 unsigned long *dirty_bitmap;
1091 unsigned long *dirty_bitmap_buffer;
1092
1093 r = -EINVAL;
1094 as_id = log->slot >> 16;
1095 id = (u16)log->slot;
1096 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1097 goto out;
1098
1099 slots = __kvm_memslots(kvm, as_id);
1100 memslot = id_to_memslot(slots, id);
1101
1102 dirty_bitmap = memslot->dirty_bitmap;
1103 r = -ENOENT;
1104 if (!dirty_bitmap)
1105 goto out;
1106
1107 n = kvm_dirty_bitmap_bytes(memslot);
1108
1109 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1110 memset(dirty_bitmap_buffer, 0, n);
1111
1112 spin_lock(&kvm->mmu_lock);
1113 *is_dirty = false;
1114 for (i = 0; i < n / sizeof(long); i++) {
1115 unsigned long mask;
1116 gfn_t offset;
1117
1118 if (!dirty_bitmap[i])
1119 continue;
1120
1121 *is_dirty = true;
1122
1123 mask = xchg(&dirty_bitmap[i], 0);
1124 dirty_bitmap_buffer[i] = mask;
1125
1126 if (mask) {
1127 offset = i * BITS_PER_LONG;
1128 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1129 offset, mask);
1130 }
1131 }
1132
1133 spin_unlock(&kvm->mmu_lock);
1134
1135 r = -EFAULT;
1136 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1137 goto out;
1138
1139 r = 0;
1140 out:
1141 return r;
1142 }
1143 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1144 #endif
1145
1146 bool kvm_largepages_enabled(void)
1147 {
1148 return largepages_enabled;
1149 }
1150
1151 void kvm_disable_largepages(void)
1152 {
1153 largepages_enabled = false;
1154 }
1155 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1156
1157 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1158 {
1159 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1160 }
1161 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1162
1163 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1164 {
1165 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1166 }
1167
1168 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1169 {
1170 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1171
1172 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1173 memslot->flags & KVM_MEMSLOT_INVALID)
1174 return false;
1175
1176 return true;
1177 }
1178 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1179
1180 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1181 {
1182 struct vm_area_struct *vma;
1183 unsigned long addr, size;
1184
1185 size = PAGE_SIZE;
1186
1187 addr = gfn_to_hva(kvm, gfn);
1188 if (kvm_is_error_hva(addr))
1189 return PAGE_SIZE;
1190
1191 down_read(&current->mm->mmap_sem);
1192 vma = find_vma(current->mm, addr);
1193 if (!vma)
1194 goto out;
1195
1196 size = vma_kernel_pagesize(vma);
1197
1198 out:
1199 up_read(&current->mm->mmap_sem);
1200
1201 return size;
1202 }
1203
1204 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1205 {
1206 return slot->flags & KVM_MEM_READONLY;
1207 }
1208
1209 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1210 gfn_t *nr_pages, bool write)
1211 {
1212 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1213 return KVM_HVA_ERR_BAD;
1214
1215 if (memslot_is_readonly(slot) && write)
1216 return KVM_HVA_ERR_RO_BAD;
1217
1218 if (nr_pages)
1219 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1220
1221 return __gfn_to_hva_memslot(slot, gfn);
1222 }
1223
1224 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1225 gfn_t *nr_pages)
1226 {
1227 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1228 }
1229
1230 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1231 gfn_t gfn)
1232 {
1233 return gfn_to_hva_many(slot, gfn, NULL);
1234 }
1235 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1236
1237 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1238 {
1239 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1240 }
1241 EXPORT_SYMBOL_GPL(gfn_to_hva);
1242
1243 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1244 {
1245 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1246 }
1247 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1248
1249 /*
1250 * If writable is set to false, the hva returned by this function is only
1251 * allowed to be read.
1252 */
1253 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1254 gfn_t gfn, bool *writable)
1255 {
1256 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1257
1258 if (!kvm_is_error_hva(hva) && writable)
1259 *writable = !memslot_is_readonly(slot);
1260
1261 return hva;
1262 }
1263
1264 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1265 {
1266 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1267
1268 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1269 }
1270
1271 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1272 {
1273 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1274
1275 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1276 }
1277
1278 static int get_user_page_nowait(unsigned long start, int write,
1279 struct page **page)
1280 {
1281 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1282
1283 if (write)
1284 flags |= FOLL_WRITE;
1285
1286 return __get_user_pages(current, current->mm, start, 1, flags, page,
1287 NULL, NULL);
1288 }
1289
1290 static inline int check_user_page_hwpoison(unsigned long addr)
1291 {
1292 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1293
1294 rc = __get_user_pages(current, current->mm, addr, 1,
1295 flags, NULL, NULL, NULL);
1296 return rc == -EHWPOISON;
1297 }
1298
1299 /*
1300 * The atomic path to get the writable pfn which will be stored in @pfn,
1301 * true indicates success, otherwise false is returned.
1302 */
1303 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1304 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1305 {
1306 struct page *page[1];
1307 int npages;
1308
1309 if (!(async || atomic))
1310 return false;
1311
1312 /*
1313 * Fast pin a writable pfn only if it is a write fault request
1314 * or the caller allows to map a writable pfn for a read fault
1315 * request.
1316 */
1317 if (!(write_fault || writable))
1318 return false;
1319
1320 npages = __get_user_pages_fast(addr, 1, 1, page);
1321 if (npages == 1) {
1322 *pfn = page_to_pfn(page[0]);
1323
1324 if (writable)
1325 *writable = true;
1326 return true;
1327 }
1328
1329 return false;
1330 }
1331
1332 /*
1333 * The slow path to get the pfn of the specified host virtual address,
1334 * 1 indicates success, -errno is returned if error is detected.
1335 */
1336 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1337 bool *writable, kvm_pfn_t *pfn)
1338 {
1339 struct page *page[1];
1340 int npages = 0;
1341
1342 might_sleep();
1343
1344 if (writable)
1345 *writable = write_fault;
1346
1347 if (async) {
1348 down_read(&current->mm->mmap_sem);
1349 npages = get_user_page_nowait(addr, write_fault, page);
1350 up_read(&current->mm->mmap_sem);
1351 } else
1352 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1353 write_fault, 0, page,
1354 FOLL_TOUCH|FOLL_HWPOISON);
1355 if (npages != 1)
1356 return npages;
1357
1358 /* map read fault as writable if possible */
1359 if (unlikely(!write_fault) && writable) {
1360 struct page *wpage[1];
1361
1362 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1363 if (npages == 1) {
1364 *writable = true;
1365 put_page(page[0]);
1366 page[0] = wpage[0];
1367 }
1368
1369 npages = 1;
1370 }
1371 *pfn = page_to_pfn(page[0]);
1372 return npages;
1373 }
1374
1375 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1376 {
1377 if (unlikely(!(vma->vm_flags & VM_READ)))
1378 return false;
1379
1380 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1381 return false;
1382
1383 return true;
1384 }
1385
1386 /*
1387 * Pin guest page in memory and return its pfn.
1388 * @addr: host virtual address which maps memory to the guest
1389 * @atomic: whether this function can sleep
1390 * @async: whether this function need to wait IO complete if the
1391 * host page is not in the memory
1392 * @write_fault: whether we should get a writable host page
1393 * @writable: whether it allows to map a writable host page for !@write_fault
1394 *
1395 * The function will map a writable host page for these two cases:
1396 * 1): @write_fault = true
1397 * 2): @write_fault = false && @writable, @writable will tell the caller
1398 * whether the mapping is writable.
1399 */
1400 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1401 bool write_fault, bool *writable)
1402 {
1403 struct vm_area_struct *vma;
1404 kvm_pfn_t pfn = 0;
1405 int npages;
1406
1407 /* we can do it either atomically or asynchronously, not both */
1408 BUG_ON(atomic && async);
1409
1410 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1411 return pfn;
1412
1413 if (atomic)
1414 return KVM_PFN_ERR_FAULT;
1415
1416 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1417 if (npages == 1)
1418 return pfn;
1419
1420 down_read(&current->mm->mmap_sem);
1421 if (npages == -EHWPOISON ||
1422 (!async && check_user_page_hwpoison(addr))) {
1423 pfn = KVM_PFN_ERR_HWPOISON;
1424 goto exit;
1425 }
1426
1427 vma = find_vma_intersection(current->mm, addr, addr + 1);
1428
1429 if (vma == NULL)
1430 pfn = KVM_PFN_ERR_FAULT;
1431 else if ((vma->vm_flags & VM_PFNMAP)) {
1432 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1433 vma->vm_pgoff;
1434 BUG_ON(!kvm_is_reserved_pfn(pfn));
1435 } else {
1436 if (async && vma_is_valid(vma, write_fault))
1437 *async = true;
1438 pfn = KVM_PFN_ERR_FAULT;
1439 }
1440 exit:
1441 up_read(&current->mm->mmap_sem);
1442 return pfn;
1443 }
1444
1445 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1446 bool atomic, bool *async, bool write_fault,
1447 bool *writable)
1448 {
1449 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1450
1451 if (addr == KVM_HVA_ERR_RO_BAD) {
1452 if (writable)
1453 *writable = false;
1454 return KVM_PFN_ERR_RO_FAULT;
1455 }
1456
1457 if (kvm_is_error_hva(addr)) {
1458 if (writable)
1459 *writable = false;
1460 return KVM_PFN_NOSLOT;
1461 }
1462
1463 /* Do not map writable pfn in the readonly memslot. */
1464 if (writable && memslot_is_readonly(slot)) {
1465 *writable = false;
1466 writable = NULL;
1467 }
1468
1469 return hva_to_pfn(addr, atomic, async, write_fault,
1470 writable);
1471 }
1472 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1473
1474 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1475 bool *writable)
1476 {
1477 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1478 write_fault, writable);
1479 }
1480 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1481
1482 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1483 {
1484 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1485 }
1486 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1487
1488 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1489 {
1490 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1491 }
1492 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1493
1494 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1495 {
1496 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1497 }
1498 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1499
1500 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1501 {
1502 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1503 }
1504 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1505
1506 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1507 {
1508 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1509 }
1510 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1511
1512 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1513 {
1514 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1515 }
1516 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1517
1518 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1519 struct page **pages, int nr_pages)
1520 {
1521 unsigned long addr;
1522 gfn_t entry;
1523
1524 addr = gfn_to_hva_many(slot, gfn, &entry);
1525 if (kvm_is_error_hva(addr))
1526 return -1;
1527
1528 if (entry < nr_pages)
1529 return 0;
1530
1531 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1532 }
1533 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1534
1535 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1536 {
1537 if (is_error_noslot_pfn(pfn))
1538 return KVM_ERR_PTR_BAD_PAGE;
1539
1540 if (kvm_is_reserved_pfn(pfn)) {
1541 WARN_ON(1);
1542 return KVM_ERR_PTR_BAD_PAGE;
1543 }
1544
1545 return pfn_to_page(pfn);
1546 }
1547
1548 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1549 {
1550 kvm_pfn_t pfn;
1551
1552 pfn = gfn_to_pfn(kvm, gfn);
1553
1554 return kvm_pfn_to_page(pfn);
1555 }
1556 EXPORT_SYMBOL_GPL(gfn_to_page);
1557
1558 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1559 {
1560 kvm_pfn_t pfn;
1561
1562 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1563
1564 return kvm_pfn_to_page(pfn);
1565 }
1566 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1567
1568 void kvm_release_page_clean(struct page *page)
1569 {
1570 WARN_ON(is_error_page(page));
1571
1572 kvm_release_pfn_clean(page_to_pfn(page));
1573 }
1574 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1575
1576 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1577 {
1578 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1579 put_page(pfn_to_page(pfn));
1580 }
1581 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1582
1583 void kvm_release_page_dirty(struct page *page)
1584 {
1585 WARN_ON(is_error_page(page));
1586
1587 kvm_release_pfn_dirty(page_to_pfn(page));
1588 }
1589 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1590
1591 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1592 {
1593 kvm_set_pfn_dirty(pfn);
1594 kvm_release_pfn_clean(pfn);
1595 }
1596
1597 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1598 {
1599 if (!kvm_is_reserved_pfn(pfn)) {
1600 struct page *page = pfn_to_page(pfn);
1601
1602 if (!PageReserved(page))
1603 SetPageDirty(page);
1604 }
1605 }
1606 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1607
1608 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1609 {
1610 if (!kvm_is_reserved_pfn(pfn))
1611 mark_page_accessed(pfn_to_page(pfn));
1612 }
1613 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1614
1615 void kvm_get_pfn(kvm_pfn_t pfn)
1616 {
1617 if (!kvm_is_reserved_pfn(pfn))
1618 get_page(pfn_to_page(pfn));
1619 }
1620 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1621
1622 static int next_segment(unsigned long len, int offset)
1623 {
1624 if (len > PAGE_SIZE - offset)
1625 return PAGE_SIZE - offset;
1626 else
1627 return len;
1628 }
1629
1630 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1631 void *data, int offset, int len)
1632 {
1633 int r;
1634 unsigned long addr;
1635
1636 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1637 if (kvm_is_error_hva(addr))
1638 return -EFAULT;
1639 r = __copy_from_user(data, (void __user *)addr + offset, len);
1640 if (r)
1641 return -EFAULT;
1642 return 0;
1643 }
1644
1645 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1646 int len)
1647 {
1648 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1649
1650 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1651 }
1652 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1653
1654 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1655 int offset, int len)
1656 {
1657 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1658
1659 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1660 }
1661 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1662
1663 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1664 {
1665 gfn_t gfn = gpa >> PAGE_SHIFT;
1666 int seg;
1667 int offset = offset_in_page(gpa);
1668 int ret;
1669
1670 while ((seg = next_segment(len, offset)) != 0) {
1671 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1672 if (ret < 0)
1673 return ret;
1674 offset = 0;
1675 len -= seg;
1676 data += seg;
1677 ++gfn;
1678 }
1679 return 0;
1680 }
1681 EXPORT_SYMBOL_GPL(kvm_read_guest);
1682
1683 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1684 {
1685 gfn_t gfn = gpa >> PAGE_SHIFT;
1686 int seg;
1687 int offset = offset_in_page(gpa);
1688 int ret;
1689
1690 while ((seg = next_segment(len, offset)) != 0) {
1691 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1692 if (ret < 0)
1693 return ret;
1694 offset = 0;
1695 len -= seg;
1696 data += seg;
1697 ++gfn;
1698 }
1699 return 0;
1700 }
1701 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1702
1703 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1704 void *data, int offset, unsigned long len)
1705 {
1706 int r;
1707 unsigned long addr;
1708
1709 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1710 if (kvm_is_error_hva(addr))
1711 return -EFAULT;
1712 pagefault_disable();
1713 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1714 pagefault_enable();
1715 if (r)
1716 return -EFAULT;
1717 return 0;
1718 }
1719
1720 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1721 unsigned long len)
1722 {
1723 gfn_t gfn = gpa >> PAGE_SHIFT;
1724 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1725 int offset = offset_in_page(gpa);
1726
1727 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1728 }
1729 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1730
1731 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1732 void *data, unsigned long len)
1733 {
1734 gfn_t gfn = gpa >> PAGE_SHIFT;
1735 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1736 int offset = offset_in_page(gpa);
1737
1738 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1739 }
1740 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1741
1742 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1743 const void *data, int offset, int len)
1744 {
1745 int r;
1746 unsigned long addr;
1747
1748 addr = gfn_to_hva_memslot(memslot, gfn);
1749 if (kvm_is_error_hva(addr))
1750 return -EFAULT;
1751 r = __copy_to_user((void __user *)addr + offset, data, len);
1752 if (r)
1753 return -EFAULT;
1754 mark_page_dirty_in_slot(memslot, gfn);
1755 return 0;
1756 }
1757
1758 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1759 const void *data, int offset, int len)
1760 {
1761 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1762
1763 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1764 }
1765 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1766
1767 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1768 const void *data, int offset, int len)
1769 {
1770 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1771
1772 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1773 }
1774 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1775
1776 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1777 unsigned long len)
1778 {
1779 gfn_t gfn = gpa >> PAGE_SHIFT;
1780 int seg;
1781 int offset = offset_in_page(gpa);
1782 int ret;
1783
1784 while ((seg = next_segment(len, offset)) != 0) {
1785 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1786 if (ret < 0)
1787 return ret;
1788 offset = 0;
1789 len -= seg;
1790 data += seg;
1791 ++gfn;
1792 }
1793 return 0;
1794 }
1795 EXPORT_SYMBOL_GPL(kvm_write_guest);
1796
1797 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1798 unsigned long len)
1799 {
1800 gfn_t gfn = gpa >> PAGE_SHIFT;
1801 int seg;
1802 int offset = offset_in_page(gpa);
1803 int ret;
1804
1805 while ((seg = next_segment(len, offset)) != 0) {
1806 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1807 if (ret < 0)
1808 return ret;
1809 offset = 0;
1810 len -= seg;
1811 data += seg;
1812 ++gfn;
1813 }
1814 return 0;
1815 }
1816 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1817
1818 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1819 gpa_t gpa, unsigned long len)
1820 {
1821 struct kvm_memslots *slots = kvm_memslots(kvm);
1822 int offset = offset_in_page(gpa);
1823 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1824 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1825 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1826 gfn_t nr_pages_avail;
1827
1828 ghc->gpa = gpa;
1829 ghc->generation = slots->generation;
1830 ghc->len = len;
1831 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1832 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1833 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1834 ghc->hva += offset;
1835 } else {
1836 /*
1837 * If the requested region crosses two memslots, we still
1838 * verify that the entire region is valid here.
1839 */
1840 while (start_gfn <= end_gfn) {
1841 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1842 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1843 &nr_pages_avail);
1844 if (kvm_is_error_hva(ghc->hva))
1845 return -EFAULT;
1846 start_gfn += nr_pages_avail;
1847 }
1848 /* Use the slow path for cross page reads and writes. */
1849 ghc->memslot = NULL;
1850 }
1851 return 0;
1852 }
1853 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1854
1855 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1856 void *data, unsigned long len)
1857 {
1858 struct kvm_memslots *slots = kvm_memslots(kvm);
1859 int r;
1860
1861 BUG_ON(len > ghc->len);
1862
1863 if (slots->generation != ghc->generation)
1864 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1865
1866 if (unlikely(!ghc->memslot))
1867 return kvm_write_guest(kvm, ghc->gpa, data, len);
1868
1869 if (kvm_is_error_hva(ghc->hva))
1870 return -EFAULT;
1871
1872 r = __copy_to_user((void __user *)ghc->hva, data, len);
1873 if (r)
1874 return -EFAULT;
1875 mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1876
1877 return 0;
1878 }
1879 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1880
1881 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1882 void *data, unsigned long len)
1883 {
1884 struct kvm_memslots *slots = kvm_memslots(kvm);
1885 int r;
1886
1887 BUG_ON(len > ghc->len);
1888
1889 if (slots->generation != ghc->generation)
1890 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1891
1892 if (unlikely(!ghc->memslot))
1893 return kvm_read_guest(kvm, ghc->gpa, data, len);
1894
1895 if (kvm_is_error_hva(ghc->hva))
1896 return -EFAULT;
1897
1898 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1899 if (r)
1900 return -EFAULT;
1901
1902 return 0;
1903 }
1904 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1905
1906 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1907 {
1908 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1909
1910 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1911 }
1912 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1913
1914 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1915 {
1916 gfn_t gfn = gpa >> PAGE_SHIFT;
1917 int seg;
1918 int offset = offset_in_page(gpa);
1919 int ret;
1920
1921 while ((seg = next_segment(len, offset)) != 0) {
1922 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1923 if (ret < 0)
1924 return ret;
1925 offset = 0;
1926 len -= seg;
1927 ++gfn;
1928 }
1929 return 0;
1930 }
1931 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1932
1933 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1934 gfn_t gfn)
1935 {
1936 if (memslot && memslot->dirty_bitmap) {
1937 unsigned long rel_gfn = gfn - memslot->base_gfn;
1938
1939 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1940 }
1941 }
1942
1943 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1944 {
1945 struct kvm_memory_slot *memslot;
1946
1947 memslot = gfn_to_memslot(kvm, gfn);
1948 mark_page_dirty_in_slot(memslot, gfn);
1949 }
1950 EXPORT_SYMBOL_GPL(mark_page_dirty);
1951
1952 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
1953 {
1954 struct kvm_memory_slot *memslot;
1955
1956 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1957 mark_page_dirty_in_slot(memslot, gfn);
1958 }
1959 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
1960
1961 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
1962 {
1963 unsigned int old, val, grow;
1964
1965 old = val = vcpu->halt_poll_ns;
1966 grow = READ_ONCE(halt_poll_ns_grow);
1967 /* 10us base */
1968 if (val == 0 && grow)
1969 val = 10000;
1970 else
1971 val *= grow;
1972
1973 if (val > halt_poll_ns)
1974 val = halt_poll_ns;
1975
1976 vcpu->halt_poll_ns = val;
1977 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
1978 }
1979
1980 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
1981 {
1982 unsigned int old, val, shrink;
1983
1984 old = val = vcpu->halt_poll_ns;
1985 shrink = READ_ONCE(halt_poll_ns_shrink);
1986 if (shrink == 0)
1987 val = 0;
1988 else
1989 val /= shrink;
1990
1991 vcpu->halt_poll_ns = val;
1992 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
1993 }
1994
1995 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1996 {
1997 if (kvm_arch_vcpu_runnable(vcpu)) {
1998 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1999 return -EINTR;
2000 }
2001 if (kvm_cpu_has_pending_timer(vcpu))
2002 return -EINTR;
2003 if (signal_pending(current))
2004 return -EINTR;
2005
2006 return 0;
2007 }
2008
2009 /*
2010 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2011 */
2012 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2013 {
2014 ktime_t start, cur;
2015 DECLARE_SWAITQUEUE(wait);
2016 bool waited = false;
2017 u64 block_ns;
2018
2019 start = cur = ktime_get();
2020 if (vcpu->halt_poll_ns) {
2021 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2022
2023 ++vcpu->stat.halt_attempted_poll;
2024 do {
2025 /*
2026 * This sets KVM_REQ_UNHALT if an interrupt
2027 * arrives.
2028 */
2029 if (kvm_vcpu_check_block(vcpu) < 0) {
2030 ++vcpu->stat.halt_successful_poll;
2031 if (!vcpu_valid_wakeup(vcpu))
2032 ++vcpu->stat.halt_poll_invalid;
2033 goto out;
2034 }
2035 cur = ktime_get();
2036 } while (single_task_running() && ktime_before(cur, stop));
2037 }
2038
2039 kvm_arch_vcpu_blocking(vcpu);
2040
2041 for (;;) {
2042 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2043
2044 if (kvm_vcpu_check_block(vcpu) < 0)
2045 break;
2046
2047 waited = true;
2048 schedule();
2049 }
2050
2051 finish_swait(&vcpu->wq, &wait);
2052 cur = ktime_get();
2053
2054 kvm_arch_vcpu_unblocking(vcpu);
2055 out:
2056 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2057
2058 if (!vcpu_valid_wakeup(vcpu))
2059 shrink_halt_poll_ns(vcpu);
2060 else if (halt_poll_ns) {
2061 if (block_ns <= vcpu->halt_poll_ns)
2062 ;
2063 /* we had a long block, shrink polling */
2064 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2065 shrink_halt_poll_ns(vcpu);
2066 /* we had a short halt and our poll time is too small */
2067 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2068 block_ns < halt_poll_ns)
2069 grow_halt_poll_ns(vcpu);
2070 } else
2071 vcpu->halt_poll_ns = 0;
2072
2073 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2074 kvm_arch_vcpu_block_finish(vcpu);
2075 }
2076 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2077
2078 #ifndef CONFIG_S390
2079 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2080 {
2081 struct swait_queue_head *wqp;
2082
2083 wqp = kvm_arch_vcpu_wq(vcpu);
2084 if (swait_active(wqp)) {
2085 swake_up(wqp);
2086 ++vcpu->stat.halt_wakeup;
2087 }
2088
2089 }
2090 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2091
2092 /*
2093 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2094 */
2095 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2096 {
2097 int me;
2098 int cpu = vcpu->cpu;
2099
2100 kvm_vcpu_wake_up(vcpu);
2101 me = get_cpu();
2102 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2103 if (kvm_arch_vcpu_should_kick(vcpu))
2104 smp_send_reschedule(cpu);
2105 put_cpu();
2106 }
2107 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2108 #endif /* !CONFIG_S390 */
2109
2110 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2111 {
2112 struct pid *pid;
2113 struct task_struct *task = NULL;
2114 int ret = 0;
2115
2116 rcu_read_lock();
2117 pid = rcu_dereference(target->pid);
2118 if (pid)
2119 task = get_pid_task(pid, PIDTYPE_PID);
2120 rcu_read_unlock();
2121 if (!task)
2122 return ret;
2123 ret = yield_to(task, 1);
2124 put_task_struct(task);
2125
2126 return ret;
2127 }
2128 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2129
2130 /*
2131 * Helper that checks whether a VCPU is eligible for directed yield.
2132 * Most eligible candidate to yield is decided by following heuristics:
2133 *
2134 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2135 * (preempted lock holder), indicated by @in_spin_loop.
2136 * Set at the beiginning and cleared at the end of interception/PLE handler.
2137 *
2138 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2139 * chance last time (mostly it has become eligible now since we have probably
2140 * yielded to lockholder in last iteration. This is done by toggling
2141 * @dy_eligible each time a VCPU checked for eligibility.)
2142 *
2143 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2144 * to preempted lock-holder could result in wrong VCPU selection and CPU
2145 * burning. Giving priority for a potential lock-holder increases lock
2146 * progress.
2147 *
2148 * Since algorithm is based on heuristics, accessing another VCPU data without
2149 * locking does not harm. It may result in trying to yield to same VCPU, fail
2150 * and continue with next VCPU and so on.
2151 */
2152 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2153 {
2154 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2155 bool eligible;
2156
2157 eligible = !vcpu->spin_loop.in_spin_loop ||
2158 vcpu->spin_loop.dy_eligible;
2159
2160 if (vcpu->spin_loop.in_spin_loop)
2161 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2162
2163 return eligible;
2164 #else
2165 return true;
2166 #endif
2167 }
2168
2169 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2170 {
2171 struct kvm *kvm = me->kvm;
2172 struct kvm_vcpu *vcpu;
2173 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2174 int yielded = 0;
2175 int try = 3;
2176 int pass;
2177 int i;
2178
2179 kvm_vcpu_set_in_spin_loop(me, true);
2180 /*
2181 * We boost the priority of a VCPU that is runnable but not
2182 * currently running, because it got preempted by something
2183 * else and called schedule in __vcpu_run. Hopefully that
2184 * VCPU is holding the lock that we need and will release it.
2185 * We approximate round-robin by starting at the last boosted VCPU.
2186 */
2187 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2188 kvm_for_each_vcpu(i, vcpu, kvm) {
2189 if (!pass && i <= last_boosted_vcpu) {
2190 i = last_boosted_vcpu;
2191 continue;
2192 } else if (pass && i > last_boosted_vcpu)
2193 break;
2194 if (!ACCESS_ONCE(vcpu->preempted))
2195 continue;
2196 if (vcpu == me)
2197 continue;
2198 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2199 continue;
2200 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2201 continue;
2202
2203 yielded = kvm_vcpu_yield_to(vcpu);
2204 if (yielded > 0) {
2205 kvm->last_boosted_vcpu = i;
2206 break;
2207 } else if (yielded < 0) {
2208 try--;
2209 if (!try)
2210 break;
2211 }
2212 }
2213 }
2214 kvm_vcpu_set_in_spin_loop(me, false);
2215
2216 /* Ensure vcpu is not eligible during next spinloop */
2217 kvm_vcpu_set_dy_eligible(me, false);
2218 }
2219 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2220
2221 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2222 {
2223 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2224 struct page *page;
2225
2226 if (vmf->pgoff == 0)
2227 page = virt_to_page(vcpu->run);
2228 #ifdef CONFIG_X86
2229 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2230 page = virt_to_page(vcpu->arch.pio_data);
2231 #endif
2232 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2233 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2234 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2235 #endif
2236 else
2237 return kvm_arch_vcpu_fault(vcpu, vmf);
2238 get_page(page);
2239 vmf->page = page;
2240 return 0;
2241 }
2242
2243 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2244 .fault = kvm_vcpu_fault,
2245 };
2246
2247 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2248 {
2249 vma->vm_ops = &kvm_vcpu_vm_ops;
2250 return 0;
2251 }
2252
2253 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2254 {
2255 struct kvm_vcpu *vcpu = filp->private_data;
2256
2257 kvm_put_kvm(vcpu->kvm);
2258 return 0;
2259 }
2260
2261 static struct file_operations kvm_vcpu_fops = {
2262 .release = kvm_vcpu_release,
2263 .unlocked_ioctl = kvm_vcpu_ioctl,
2264 #ifdef CONFIG_KVM_COMPAT
2265 .compat_ioctl = kvm_vcpu_compat_ioctl,
2266 #endif
2267 .mmap = kvm_vcpu_mmap,
2268 .llseek = noop_llseek,
2269 };
2270
2271 /*
2272 * Allocates an inode for the vcpu.
2273 */
2274 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2275 {
2276 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2277 }
2278
2279 /*
2280 * Creates some virtual cpus. Good luck creating more than one.
2281 */
2282 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2283 {
2284 int r;
2285 struct kvm_vcpu *vcpu;
2286
2287 if (id >= KVM_MAX_VCPU_ID)
2288 return -EINVAL;
2289
2290 vcpu = kvm_arch_vcpu_create(kvm, id);
2291 if (IS_ERR(vcpu))
2292 return PTR_ERR(vcpu);
2293
2294 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2295
2296 r = kvm_arch_vcpu_setup(vcpu);
2297 if (r)
2298 goto vcpu_destroy;
2299
2300 mutex_lock(&kvm->lock);
2301 if (!kvm_vcpu_compatible(vcpu)) {
2302 r = -EINVAL;
2303 goto unlock_vcpu_destroy;
2304 }
2305 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2306 r = -EINVAL;
2307 goto unlock_vcpu_destroy;
2308 }
2309 if (kvm_get_vcpu_by_id(kvm, id)) {
2310 r = -EEXIST;
2311 goto unlock_vcpu_destroy;
2312 }
2313
2314 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2315
2316 /* Now it's all set up, let userspace reach it */
2317 kvm_get_kvm(kvm);
2318 r = create_vcpu_fd(vcpu);
2319 if (r < 0) {
2320 kvm_put_kvm(kvm);
2321 goto unlock_vcpu_destroy;
2322 }
2323
2324 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2325
2326 /*
2327 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2328 * before kvm->online_vcpu's incremented value.
2329 */
2330 smp_wmb();
2331 atomic_inc(&kvm->online_vcpus);
2332
2333 mutex_unlock(&kvm->lock);
2334 kvm_arch_vcpu_postcreate(vcpu);
2335 return r;
2336
2337 unlock_vcpu_destroy:
2338 mutex_unlock(&kvm->lock);
2339 vcpu_destroy:
2340 kvm_arch_vcpu_destroy(vcpu);
2341 return r;
2342 }
2343
2344 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2345 {
2346 if (sigset) {
2347 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2348 vcpu->sigset_active = 1;
2349 vcpu->sigset = *sigset;
2350 } else
2351 vcpu->sigset_active = 0;
2352 return 0;
2353 }
2354
2355 static long kvm_vcpu_ioctl(struct file *filp,
2356 unsigned int ioctl, unsigned long arg)
2357 {
2358 struct kvm_vcpu *vcpu = filp->private_data;
2359 void __user *argp = (void __user *)arg;
2360 int r;
2361 struct kvm_fpu *fpu = NULL;
2362 struct kvm_sregs *kvm_sregs = NULL;
2363
2364 if (vcpu->kvm->mm != current->mm)
2365 return -EIO;
2366
2367 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2368 return -EINVAL;
2369
2370 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2371 /*
2372 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2373 * so vcpu_load() would break it.
2374 */
2375 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2376 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2377 #endif
2378
2379
2380 r = vcpu_load(vcpu);
2381 if (r)
2382 return r;
2383 switch (ioctl) {
2384 case KVM_RUN:
2385 r = -EINVAL;
2386 if (arg)
2387 goto out;
2388 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2389 /* The thread running this VCPU changed. */
2390 struct pid *oldpid = vcpu->pid;
2391 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2392
2393 rcu_assign_pointer(vcpu->pid, newpid);
2394 if (oldpid)
2395 synchronize_rcu();
2396 put_pid(oldpid);
2397 }
2398 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2399 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2400 break;
2401 case KVM_GET_REGS: {
2402 struct kvm_regs *kvm_regs;
2403
2404 r = -ENOMEM;
2405 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2406 if (!kvm_regs)
2407 goto out;
2408 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2409 if (r)
2410 goto out_free1;
2411 r = -EFAULT;
2412 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2413 goto out_free1;
2414 r = 0;
2415 out_free1:
2416 kfree(kvm_regs);
2417 break;
2418 }
2419 case KVM_SET_REGS: {
2420 struct kvm_regs *kvm_regs;
2421
2422 r = -ENOMEM;
2423 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2424 if (IS_ERR(kvm_regs)) {
2425 r = PTR_ERR(kvm_regs);
2426 goto out;
2427 }
2428 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2429 kfree(kvm_regs);
2430 break;
2431 }
2432 case KVM_GET_SREGS: {
2433 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2434 r = -ENOMEM;
2435 if (!kvm_sregs)
2436 goto out;
2437 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2438 if (r)
2439 goto out;
2440 r = -EFAULT;
2441 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2442 goto out;
2443 r = 0;
2444 break;
2445 }
2446 case KVM_SET_SREGS: {
2447 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2448 if (IS_ERR(kvm_sregs)) {
2449 r = PTR_ERR(kvm_sregs);
2450 kvm_sregs = NULL;
2451 goto out;
2452 }
2453 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2454 break;
2455 }
2456 case KVM_GET_MP_STATE: {
2457 struct kvm_mp_state mp_state;
2458
2459 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2460 if (r)
2461 goto out;
2462 r = -EFAULT;
2463 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2464 goto out;
2465 r = 0;
2466 break;
2467 }
2468 case KVM_SET_MP_STATE: {
2469 struct kvm_mp_state mp_state;
2470
2471 r = -EFAULT;
2472 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2473 goto out;
2474 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2475 break;
2476 }
2477 case KVM_TRANSLATE: {
2478 struct kvm_translation tr;
2479
2480 r = -EFAULT;
2481 if (copy_from_user(&tr, argp, sizeof(tr)))
2482 goto out;
2483 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2484 if (r)
2485 goto out;
2486 r = -EFAULT;
2487 if (copy_to_user(argp, &tr, sizeof(tr)))
2488 goto out;
2489 r = 0;
2490 break;
2491 }
2492 case KVM_SET_GUEST_DEBUG: {
2493 struct kvm_guest_debug dbg;
2494
2495 r = -EFAULT;
2496 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2497 goto out;
2498 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2499 break;
2500 }
2501 case KVM_SET_SIGNAL_MASK: {
2502 struct kvm_signal_mask __user *sigmask_arg = argp;
2503 struct kvm_signal_mask kvm_sigmask;
2504 sigset_t sigset, *p;
2505
2506 p = NULL;
2507 if (argp) {
2508 r = -EFAULT;
2509 if (copy_from_user(&kvm_sigmask, argp,
2510 sizeof(kvm_sigmask)))
2511 goto out;
2512 r = -EINVAL;
2513 if (kvm_sigmask.len != sizeof(sigset))
2514 goto out;
2515 r = -EFAULT;
2516 if (copy_from_user(&sigset, sigmask_arg->sigset,
2517 sizeof(sigset)))
2518 goto out;
2519 p = &sigset;
2520 }
2521 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2522 break;
2523 }
2524 case KVM_GET_FPU: {
2525 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2526 r = -ENOMEM;
2527 if (!fpu)
2528 goto out;
2529 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2530 if (r)
2531 goto out;
2532 r = -EFAULT;
2533 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2534 goto out;
2535 r = 0;
2536 break;
2537 }
2538 case KVM_SET_FPU: {
2539 fpu = memdup_user(argp, sizeof(*fpu));
2540 if (IS_ERR(fpu)) {
2541 r = PTR_ERR(fpu);
2542 fpu = NULL;
2543 goto out;
2544 }
2545 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2546 break;
2547 }
2548 default:
2549 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2550 }
2551 out:
2552 vcpu_put(vcpu);
2553 kfree(fpu);
2554 kfree(kvm_sregs);
2555 return r;
2556 }
2557
2558 #ifdef CONFIG_KVM_COMPAT
2559 static long kvm_vcpu_compat_ioctl(struct file *filp,
2560 unsigned int ioctl, unsigned long arg)
2561 {
2562 struct kvm_vcpu *vcpu = filp->private_data;
2563 void __user *argp = compat_ptr(arg);
2564 int r;
2565
2566 if (vcpu->kvm->mm != current->mm)
2567 return -EIO;
2568
2569 switch (ioctl) {
2570 case KVM_SET_SIGNAL_MASK: {
2571 struct kvm_signal_mask __user *sigmask_arg = argp;
2572 struct kvm_signal_mask kvm_sigmask;
2573 compat_sigset_t csigset;
2574 sigset_t sigset;
2575
2576 if (argp) {
2577 r = -EFAULT;
2578 if (copy_from_user(&kvm_sigmask, argp,
2579 sizeof(kvm_sigmask)))
2580 goto out;
2581 r = -EINVAL;
2582 if (kvm_sigmask.len != sizeof(csigset))
2583 goto out;
2584 r = -EFAULT;
2585 if (copy_from_user(&csigset, sigmask_arg->sigset,
2586 sizeof(csigset)))
2587 goto out;
2588 sigset_from_compat(&sigset, &csigset);
2589 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2590 } else
2591 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2592 break;
2593 }
2594 default:
2595 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2596 }
2597
2598 out:
2599 return r;
2600 }
2601 #endif
2602
2603 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2604 int (*accessor)(struct kvm_device *dev,
2605 struct kvm_device_attr *attr),
2606 unsigned long arg)
2607 {
2608 struct kvm_device_attr attr;
2609
2610 if (!accessor)
2611 return -EPERM;
2612
2613 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2614 return -EFAULT;
2615
2616 return accessor(dev, &attr);
2617 }
2618
2619 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2620 unsigned long arg)
2621 {
2622 struct kvm_device *dev = filp->private_data;
2623
2624 switch (ioctl) {
2625 case KVM_SET_DEVICE_ATTR:
2626 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2627 case KVM_GET_DEVICE_ATTR:
2628 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2629 case KVM_HAS_DEVICE_ATTR:
2630 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2631 default:
2632 if (dev->ops->ioctl)
2633 return dev->ops->ioctl(dev, ioctl, arg);
2634
2635 return -ENOTTY;
2636 }
2637 }
2638
2639 static int kvm_device_release(struct inode *inode, struct file *filp)
2640 {
2641 struct kvm_device *dev = filp->private_data;
2642 struct kvm *kvm = dev->kvm;
2643
2644 kvm_put_kvm(kvm);
2645 return 0;
2646 }
2647
2648 static const struct file_operations kvm_device_fops = {
2649 .unlocked_ioctl = kvm_device_ioctl,
2650 #ifdef CONFIG_KVM_COMPAT
2651 .compat_ioctl = kvm_device_ioctl,
2652 #endif
2653 .release = kvm_device_release,
2654 };
2655
2656 struct kvm_device *kvm_device_from_filp(struct file *filp)
2657 {
2658 if (filp->f_op != &kvm_device_fops)
2659 return NULL;
2660
2661 return filp->private_data;
2662 }
2663
2664 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2665 #ifdef CONFIG_KVM_MPIC
2666 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2667 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2668 #endif
2669
2670 #ifdef CONFIG_KVM_XICS
2671 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2672 #endif
2673 };
2674
2675 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2676 {
2677 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2678 return -ENOSPC;
2679
2680 if (kvm_device_ops_table[type] != NULL)
2681 return -EEXIST;
2682
2683 kvm_device_ops_table[type] = ops;
2684 return 0;
2685 }
2686
2687 void kvm_unregister_device_ops(u32 type)
2688 {
2689 if (kvm_device_ops_table[type] != NULL)
2690 kvm_device_ops_table[type] = NULL;
2691 }
2692
2693 static int kvm_ioctl_create_device(struct kvm *kvm,
2694 struct kvm_create_device *cd)
2695 {
2696 struct kvm_device_ops *ops = NULL;
2697 struct kvm_device *dev;
2698 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2699 int ret;
2700
2701 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2702 return -ENODEV;
2703
2704 ops = kvm_device_ops_table[cd->type];
2705 if (ops == NULL)
2706 return -ENODEV;
2707
2708 if (test)
2709 return 0;
2710
2711 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2712 if (!dev)
2713 return -ENOMEM;
2714
2715 dev->ops = ops;
2716 dev->kvm = kvm;
2717
2718 ret = ops->create(dev, cd->type);
2719 if (ret < 0) {
2720 kfree(dev);
2721 return ret;
2722 }
2723
2724 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2725 if (ret < 0) {
2726 ops->destroy(dev);
2727 return ret;
2728 }
2729
2730 list_add(&dev->vm_node, &kvm->devices);
2731 kvm_get_kvm(kvm);
2732 cd->fd = ret;
2733 return 0;
2734 }
2735
2736 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2737 {
2738 switch (arg) {
2739 case KVM_CAP_USER_MEMORY:
2740 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2741 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2742 case KVM_CAP_INTERNAL_ERROR_DATA:
2743 #ifdef CONFIG_HAVE_KVM_MSI
2744 case KVM_CAP_SIGNAL_MSI:
2745 #endif
2746 #ifdef CONFIG_HAVE_KVM_IRQFD
2747 case KVM_CAP_IRQFD:
2748 case KVM_CAP_IRQFD_RESAMPLE:
2749 #endif
2750 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2751 case KVM_CAP_CHECK_EXTENSION_VM:
2752 return 1;
2753 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2754 case KVM_CAP_IRQ_ROUTING:
2755 return KVM_MAX_IRQ_ROUTES;
2756 #endif
2757 #if KVM_ADDRESS_SPACE_NUM > 1
2758 case KVM_CAP_MULTI_ADDRESS_SPACE:
2759 return KVM_ADDRESS_SPACE_NUM;
2760 #endif
2761 case KVM_CAP_MAX_VCPU_ID:
2762 return KVM_MAX_VCPU_ID;
2763 default:
2764 break;
2765 }
2766 return kvm_vm_ioctl_check_extension(kvm, arg);
2767 }
2768
2769 static long kvm_vm_ioctl(struct file *filp,
2770 unsigned int ioctl, unsigned long arg)
2771 {
2772 struct kvm *kvm = filp->private_data;
2773 void __user *argp = (void __user *)arg;
2774 int r;
2775
2776 if (kvm->mm != current->mm)
2777 return -EIO;
2778 switch (ioctl) {
2779 case KVM_CREATE_VCPU:
2780 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2781 break;
2782 case KVM_SET_USER_MEMORY_REGION: {
2783 struct kvm_userspace_memory_region kvm_userspace_mem;
2784
2785 r = -EFAULT;
2786 if (copy_from_user(&kvm_userspace_mem, argp,
2787 sizeof(kvm_userspace_mem)))
2788 goto out;
2789
2790 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2791 break;
2792 }
2793 case KVM_GET_DIRTY_LOG: {
2794 struct kvm_dirty_log log;
2795
2796 r = -EFAULT;
2797 if (copy_from_user(&log, argp, sizeof(log)))
2798 goto out;
2799 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2800 break;
2801 }
2802 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2803 case KVM_REGISTER_COALESCED_MMIO: {
2804 struct kvm_coalesced_mmio_zone zone;
2805
2806 r = -EFAULT;
2807 if (copy_from_user(&zone, argp, sizeof(zone)))
2808 goto out;
2809 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2810 break;
2811 }
2812 case KVM_UNREGISTER_COALESCED_MMIO: {
2813 struct kvm_coalesced_mmio_zone zone;
2814
2815 r = -EFAULT;
2816 if (copy_from_user(&zone, argp, sizeof(zone)))
2817 goto out;
2818 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2819 break;
2820 }
2821 #endif
2822 case KVM_IRQFD: {
2823 struct kvm_irqfd data;
2824
2825 r = -EFAULT;
2826 if (copy_from_user(&data, argp, sizeof(data)))
2827 goto out;
2828 r = kvm_irqfd(kvm, &data);
2829 break;
2830 }
2831 case KVM_IOEVENTFD: {
2832 struct kvm_ioeventfd data;
2833
2834 r = -EFAULT;
2835 if (copy_from_user(&data, argp, sizeof(data)))
2836 goto out;
2837 r = kvm_ioeventfd(kvm, &data);
2838 break;
2839 }
2840 #ifdef CONFIG_HAVE_KVM_MSI
2841 case KVM_SIGNAL_MSI: {
2842 struct kvm_msi msi;
2843
2844 r = -EFAULT;
2845 if (copy_from_user(&msi, argp, sizeof(msi)))
2846 goto out;
2847 r = kvm_send_userspace_msi(kvm, &msi);
2848 break;
2849 }
2850 #endif
2851 #ifdef __KVM_HAVE_IRQ_LINE
2852 case KVM_IRQ_LINE_STATUS:
2853 case KVM_IRQ_LINE: {
2854 struct kvm_irq_level irq_event;
2855
2856 r = -EFAULT;
2857 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2858 goto out;
2859
2860 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2861 ioctl == KVM_IRQ_LINE_STATUS);
2862 if (r)
2863 goto out;
2864
2865 r = -EFAULT;
2866 if (ioctl == KVM_IRQ_LINE_STATUS) {
2867 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2868 goto out;
2869 }
2870
2871 r = 0;
2872 break;
2873 }
2874 #endif
2875 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2876 case KVM_SET_GSI_ROUTING: {
2877 struct kvm_irq_routing routing;
2878 struct kvm_irq_routing __user *urouting;
2879 struct kvm_irq_routing_entry *entries;
2880
2881 r = -EFAULT;
2882 if (copy_from_user(&routing, argp, sizeof(routing)))
2883 goto out;
2884 r = -EINVAL;
2885 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2886 goto out;
2887 if (routing.flags)
2888 goto out;
2889 r = -ENOMEM;
2890 entries = vmalloc(routing.nr * sizeof(*entries));
2891 if (!entries)
2892 goto out;
2893 r = -EFAULT;
2894 urouting = argp;
2895 if (copy_from_user(entries, urouting->entries,
2896 routing.nr * sizeof(*entries)))
2897 goto out_free_irq_routing;
2898 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2899 routing.flags);
2900 out_free_irq_routing:
2901 vfree(entries);
2902 break;
2903 }
2904 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2905 case KVM_CREATE_DEVICE: {
2906 struct kvm_create_device cd;
2907
2908 r = -EFAULT;
2909 if (copy_from_user(&cd, argp, sizeof(cd)))
2910 goto out;
2911
2912 r = kvm_ioctl_create_device(kvm, &cd);
2913 if (r)
2914 goto out;
2915
2916 r = -EFAULT;
2917 if (copy_to_user(argp, &cd, sizeof(cd)))
2918 goto out;
2919
2920 r = 0;
2921 break;
2922 }
2923 case KVM_CHECK_EXTENSION:
2924 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2925 break;
2926 default:
2927 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2928 }
2929 out:
2930 return r;
2931 }
2932
2933 #ifdef CONFIG_KVM_COMPAT
2934 struct compat_kvm_dirty_log {
2935 __u32 slot;
2936 __u32 padding1;
2937 union {
2938 compat_uptr_t dirty_bitmap; /* one bit per page */
2939 __u64 padding2;
2940 };
2941 };
2942
2943 static long kvm_vm_compat_ioctl(struct file *filp,
2944 unsigned int ioctl, unsigned long arg)
2945 {
2946 struct kvm *kvm = filp->private_data;
2947 int r;
2948
2949 if (kvm->mm != current->mm)
2950 return -EIO;
2951 switch (ioctl) {
2952 case KVM_GET_DIRTY_LOG: {
2953 struct compat_kvm_dirty_log compat_log;
2954 struct kvm_dirty_log log;
2955
2956 r = -EFAULT;
2957 if (copy_from_user(&compat_log, (void __user *)arg,
2958 sizeof(compat_log)))
2959 goto out;
2960 log.slot = compat_log.slot;
2961 log.padding1 = compat_log.padding1;
2962 log.padding2 = compat_log.padding2;
2963 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2964
2965 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2966 break;
2967 }
2968 default:
2969 r = kvm_vm_ioctl(filp, ioctl, arg);
2970 }
2971
2972 out:
2973 return r;
2974 }
2975 #endif
2976
2977 static struct file_operations kvm_vm_fops = {
2978 .release = kvm_vm_release,
2979 .unlocked_ioctl = kvm_vm_ioctl,
2980 #ifdef CONFIG_KVM_COMPAT
2981 .compat_ioctl = kvm_vm_compat_ioctl,
2982 #endif
2983 .llseek = noop_llseek,
2984 };
2985
2986 static int kvm_dev_ioctl_create_vm(unsigned long type)
2987 {
2988 int r;
2989 struct kvm *kvm;
2990
2991 kvm = kvm_create_vm(type);
2992 if (IS_ERR(kvm))
2993 return PTR_ERR(kvm);
2994 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2995 r = kvm_coalesced_mmio_init(kvm);
2996 if (r < 0) {
2997 kvm_put_kvm(kvm);
2998 return r;
2999 }
3000 #endif
3001 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
3002 if (r < 0)
3003 kvm_put_kvm(kvm);
3004
3005 return r;
3006 }
3007
3008 static long kvm_dev_ioctl(struct file *filp,
3009 unsigned int ioctl, unsigned long arg)
3010 {
3011 long r = -EINVAL;
3012
3013 switch (ioctl) {
3014 case KVM_GET_API_VERSION:
3015 if (arg)
3016 goto out;
3017 r = KVM_API_VERSION;
3018 break;
3019 case KVM_CREATE_VM:
3020 r = kvm_dev_ioctl_create_vm(arg);
3021 break;
3022 case KVM_CHECK_EXTENSION:
3023 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3024 break;
3025 case KVM_GET_VCPU_MMAP_SIZE:
3026 if (arg)
3027 goto out;
3028 r = PAGE_SIZE; /* struct kvm_run */
3029 #ifdef CONFIG_X86
3030 r += PAGE_SIZE; /* pio data page */
3031 #endif
3032 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3033 r += PAGE_SIZE; /* coalesced mmio ring page */
3034 #endif
3035 break;
3036 case KVM_TRACE_ENABLE:
3037 case KVM_TRACE_PAUSE:
3038 case KVM_TRACE_DISABLE:
3039 r = -EOPNOTSUPP;
3040 break;
3041 default:
3042 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3043 }
3044 out:
3045 return r;
3046 }
3047
3048 static struct file_operations kvm_chardev_ops = {
3049 .unlocked_ioctl = kvm_dev_ioctl,
3050 .compat_ioctl = kvm_dev_ioctl,
3051 .llseek = noop_llseek,
3052 };
3053
3054 static struct miscdevice kvm_dev = {
3055 KVM_MINOR,
3056 "kvm",
3057 &kvm_chardev_ops,
3058 };
3059
3060 static void hardware_enable_nolock(void *junk)
3061 {
3062 int cpu = raw_smp_processor_id();
3063 int r;
3064
3065 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3066 return;
3067
3068 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3069
3070 r = kvm_arch_hardware_enable();
3071
3072 if (r) {
3073 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3074 atomic_inc(&hardware_enable_failed);
3075 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3076 }
3077 }
3078
3079 static void hardware_enable(void)
3080 {
3081 raw_spin_lock(&kvm_count_lock);
3082 if (kvm_usage_count)
3083 hardware_enable_nolock(NULL);
3084 raw_spin_unlock(&kvm_count_lock);
3085 }
3086
3087 static void hardware_disable_nolock(void *junk)
3088 {
3089 int cpu = raw_smp_processor_id();
3090
3091 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3092 return;
3093 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3094 kvm_arch_hardware_disable();
3095 }
3096
3097 static void hardware_disable(void)
3098 {
3099 raw_spin_lock(&kvm_count_lock);
3100 if (kvm_usage_count)
3101 hardware_disable_nolock(NULL);
3102 raw_spin_unlock(&kvm_count_lock);
3103 }
3104
3105 static void hardware_disable_all_nolock(void)
3106 {
3107 BUG_ON(!kvm_usage_count);
3108
3109 kvm_usage_count--;
3110 if (!kvm_usage_count)
3111 on_each_cpu(hardware_disable_nolock, NULL, 1);
3112 }
3113
3114 static void hardware_disable_all(void)
3115 {
3116 raw_spin_lock(&kvm_count_lock);
3117 hardware_disable_all_nolock();
3118 raw_spin_unlock(&kvm_count_lock);
3119 }
3120
3121 static int hardware_enable_all(void)
3122 {
3123 int r = 0;
3124
3125 raw_spin_lock(&kvm_count_lock);
3126
3127 kvm_usage_count++;
3128 if (kvm_usage_count == 1) {
3129 atomic_set(&hardware_enable_failed, 0);
3130 on_each_cpu(hardware_enable_nolock, NULL, 1);
3131
3132 if (atomic_read(&hardware_enable_failed)) {
3133 hardware_disable_all_nolock();
3134 r = -EBUSY;
3135 }
3136 }
3137
3138 raw_spin_unlock(&kvm_count_lock);
3139
3140 return r;
3141 }
3142
3143 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3144 void *v)
3145 {
3146 val &= ~CPU_TASKS_FROZEN;
3147 switch (val) {
3148 case CPU_DYING:
3149 hardware_disable();
3150 break;
3151 case CPU_STARTING:
3152 hardware_enable();
3153 break;
3154 }
3155 return NOTIFY_OK;
3156 }
3157
3158 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3159 void *v)
3160 {
3161 /*
3162 * Some (well, at least mine) BIOSes hang on reboot if
3163 * in vmx root mode.
3164 *
3165 * And Intel TXT required VMX off for all cpu when system shutdown.
3166 */
3167 pr_info("kvm: exiting hardware virtualization\n");
3168 kvm_rebooting = true;
3169 on_each_cpu(hardware_disable_nolock, NULL, 1);
3170 return NOTIFY_OK;
3171 }
3172
3173 static struct notifier_block kvm_reboot_notifier = {
3174 .notifier_call = kvm_reboot,
3175 .priority = 0,
3176 };
3177
3178 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3179 {
3180 int i;
3181
3182 for (i = 0; i < bus->dev_count; i++) {
3183 struct kvm_io_device *pos = bus->range[i].dev;
3184
3185 kvm_iodevice_destructor(pos);
3186 }
3187 kfree(bus);
3188 }
3189
3190 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3191 const struct kvm_io_range *r2)
3192 {
3193 gpa_t addr1 = r1->addr;
3194 gpa_t addr2 = r2->addr;
3195
3196 if (addr1 < addr2)
3197 return -1;
3198
3199 /* If r2->len == 0, match the exact address. If r2->len != 0,
3200 * accept any overlapping write. Any order is acceptable for
3201 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3202 * we process all of them.
3203 */
3204 if (r2->len) {
3205 addr1 += r1->len;
3206 addr2 += r2->len;
3207 }
3208
3209 if (addr1 > addr2)
3210 return 1;
3211
3212 return 0;
3213 }
3214
3215 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3216 {
3217 return kvm_io_bus_cmp(p1, p2);
3218 }
3219
3220 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3221 gpa_t addr, int len)
3222 {
3223 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3224 .addr = addr,
3225 .len = len,
3226 .dev = dev,
3227 };
3228
3229 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3230 kvm_io_bus_sort_cmp, NULL);
3231
3232 return 0;
3233 }
3234
3235 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3236 gpa_t addr, int len)
3237 {
3238 struct kvm_io_range *range, key;
3239 int off;
3240
3241 key = (struct kvm_io_range) {
3242 .addr = addr,
3243 .len = len,
3244 };
3245
3246 range = bsearch(&key, bus->range, bus->dev_count,
3247 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3248 if (range == NULL)
3249 return -ENOENT;
3250
3251 off = range - bus->range;
3252
3253 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3254 off--;
3255
3256 return off;
3257 }
3258
3259 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3260 struct kvm_io_range *range, const void *val)
3261 {
3262 int idx;
3263
3264 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3265 if (idx < 0)
3266 return -EOPNOTSUPP;
3267
3268 while (idx < bus->dev_count &&
3269 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3270 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3271 range->len, val))
3272 return idx;
3273 idx++;
3274 }
3275
3276 return -EOPNOTSUPP;
3277 }
3278
3279 /* kvm_io_bus_write - called under kvm->slots_lock */
3280 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3281 int len, const void *val)
3282 {
3283 struct kvm_io_bus *bus;
3284 struct kvm_io_range range;
3285 int r;
3286
3287 range = (struct kvm_io_range) {
3288 .addr = addr,
3289 .len = len,
3290 };
3291
3292 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3293 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3294 return r < 0 ? r : 0;
3295 }
3296
3297 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3298 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3299 gpa_t addr, int len, const void *val, long cookie)
3300 {
3301 struct kvm_io_bus *bus;
3302 struct kvm_io_range range;
3303
3304 range = (struct kvm_io_range) {
3305 .addr = addr,
3306 .len = len,
3307 };
3308
3309 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3310
3311 /* First try the device referenced by cookie. */
3312 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3313 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3314 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3315 val))
3316 return cookie;
3317
3318 /*
3319 * cookie contained garbage; fall back to search and return the
3320 * correct cookie value.
3321 */
3322 return __kvm_io_bus_write(vcpu, bus, &range, val);
3323 }
3324
3325 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3326 struct kvm_io_range *range, void *val)
3327 {
3328 int idx;
3329
3330 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3331 if (idx < 0)
3332 return -EOPNOTSUPP;
3333
3334 while (idx < bus->dev_count &&
3335 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3336 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3337 range->len, val))
3338 return idx;
3339 idx++;
3340 }
3341
3342 return -EOPNOTSUPP;
3343 }
3344 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3345
3346 /* kvm_io_bus_read - called under kvm->slots_lock */
3347 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3348 int len, void *val)
3349 {
3350 struct kvm_io_bus *bus;
3351 struct kvm_io_range range;
3352 int r;
3353
3354 range = (struct kvm_io_range) {
3355 .addr = addr,
3356 .len = len,
3357 };
3358
3359 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3360 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3361 return r < 0 ? r : 0;
3362 }
3363
3364
3365 /* Caller must hold slots_lock. */
3366 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3367 int len, struct kvm_io_device *dev)
3368 {
3369 struct kvm_io_bus *new_bus, *bus;
3370
3371 bus = kvm->buses[bus_idx];
3372 /* exclude ioeventfd which is limited by maximum fd */
3373 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3374 return -ENOSPC;
3375
3376 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3377 sizeof(struct kvm_io_range)), GFP_KERNEL);
3378 if (!new_bus)
3379 return -ENOMEM;
3380 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3381 sizeof(struct kvm_io_range)));
3382 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3383 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3384 synchronize_srcu_expedited(&kvm->srcu);
3385 kfree(bus);
3386
3387 return 0;
3388 }
3389
3390 /* Caller must hold slots_lock. */
3391 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3392 struct kvm_io_device *dev)
3393 {
3394 int i, r;
3395 struct kvm_io_bus *new_bus, *bus;
3396
3397 bus = kvm->buses[bus_idx];
3398 r = -ENOENT;
3399 for (i = 0; i < bus->dev_count; i++)
3400 if (bus->range[i].dev == dev) {
3401 r = 0;
3402 break;
3403 }
3404
3405 if (r)
3406 return r;
3407
3408 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3409 sizeof(struct kvm_io_range)), GFP_KERNEL);
3410 if (!new_bus)
3411 return -ENOMEM;
3412
3413 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3414 new_bus->dev_count--;
3415 memcpy(new_bus->range + i, bus->range + i + 1,
3416 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3417
3418 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3419 synchronize_srcu_expedited(&kvm->srcu);
3420 kfree(bus);
3421 return r;
3422 }
3423
3424 static struct notifier_block kvm_cpu_notifier = {
3425 .notifier_call = kvm_cpu_hotplug,
3426 };
3427
3428 static int vm_stat_get(void *_offset, u64 *val)
3429 {
3430 unsigned offset = (long)_offset;
3431 struct kvm *kvm;
3432
3433 *val = 0;
3434 spin_lock(&kvm_lock);
3435 list_for_each_entry(kvm, &vm_list, vm_list)
3436 *val += *(u32 *)((void *)kvm + offset);
3437 spin_unlock(&kvm_lock);
3438 return 0;
3439 }
3440
3441 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3442
3443 static int vcpu_stat_get(void *_offset, u64 *val)
3444 {
3445 unsigned offset = (long)_offset;
3446 struct kvm *kvm;
3447 struct kvm_vcpu *vcpu;
3448 int i;
3449
3450 *val = 0;
3451 spin_lock(&kvm_lock);
3452 list_for_each_entry(kvm, &vm_list, vm_list)
3453 kvm_for_each_vcpu(i, vcpu, kvm)
3454 *val += *(u32 *)((void *)vcpu + offset);
3455
3456 spin_unlock(&kvm_lock);
3457 return 0;
3458 }
3459
3460 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3461
3462 static const struct file_operations *stat_fops[] = {
3463 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3464 [KVM_STAT_VM] = &vm_stat_fops,
3465 };
3466
3467 static int kvm_init_debug(void)
3468 {
3469 int r = -EEXIST;
3470 struct kvm_stats_debugfs_item *p;
3471
3472 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3473 if (kvm_debugfs_dir == NULL)
3474 goto out;
3475
3476 for (p = debugfs_entries; p->name; ++p) {
3477 if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3478 (void *)(long)p->offset,
3479 stat_fops[p->kind]))
3480 goto out_dir;
3481 }
3482
3483 return 0;
3484
3485 out_dir:
3486 debugfs_remove_recursive(kvm_debugfs_dir);
3487 out:
3488 return r;
3489 }
3490
3491 static int kvm_suspend(void)
3492 {
3493 if (kvm_usage_count)
3494 hardware_disable_nolock(NULL);
3495 return 0;
3496 }
3497
3498 static void kvm_resume(void)
3499 {
3500 if (kvm_usage_count) {
3501 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3502 hardware_enable_nolock(NULL);
3503 }
3504 }
3505
3506 static struct syscore_ops kvm_syscore_ops = {
3507 .suspend = kvm_suspend,
3508 .resume = kvm_resume,
3509 };
3510
3511 static inline
3512 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3513 {
3514 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3515 }
3516
3517 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3518 {
3519 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3520
3521 if (vcpu->preempted)
3522 vcpu->preempted = false;
3523
3524 kvm_arch_sched_in(vcpu, cpu);
3525
3526 kvm_arch_vcpu_load(vcpu, cpu);
3527 }
3528
3529 static void kvm_sched_out(struct preempt_notifier *pn,
3530 struct task_struct *next)
3531 {
3532 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3533
3534 if (current->state == TASK_RUNNING)
3535 vcpu->preempted = true;
3536 kvm_arch_vcpu_put(vcpu);
3537 }
3538
3539 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3540 struct module *module)
3541 {
3542 int r;
3543 int cpu;
3544
3545 r = kvm_arch_init(opaque);
3546 if (r)
3547 goto out_fail;
3548
3549 /*
3550 * kvm_arch_init makes sure there's at most one caller
3551 * for architectures that support multiple implementations,
3552 * like intel and amd on x86.
3553 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3554 * conflicts in case kvm is already setup for another implementation.
3555 */
3556 r = kvm_irqfd_init();
3557 if (r)
3558 goto out_irqfd;
3559
3560 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3561 r = -ENOMEM;
3562 goto out_free_0;
3563 }
3564
3565 r = kvm_arch_hardware_setup();
3566 if (r < 0)
3567 goto out_free_0a;
3568
3569 for_each_online_cpu(cpu) {
3570 smp_call_function_single(cpu,
3571 kvm_arch_check_processor_compat,
3572 &r, 1);
3573 if (r < 0)
3574 goto out_free_1;
3575 }
3576
3577 r = register_cpu_notifier(&kvm_cpu_notifier);
3578 if (r)
3579 goto out_free_2;
3580 register_reboot_notifier(&kvm_reboot_notifier);
3581
3582 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3583 if (!vcpu_align)
3584 vcpu_align = __alignof__(struct kvm_vcpu);
3585 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3586 0, NULL);
3587 if (!kvm_vcpu_cache) {
3588 r = -ENOMEM;
3589 goto out_free_3;
3590 }
3591
3592 r = kvm_async_pf_init();
3593 if (r)
3594 goto out_free;
3595
3596 kvm_chardev_ops.owner = module;
3597 kvm_vm_fops.owner = module;
3598 kvm_vcpu_fops.owner = module;
3599
3600 r = misc_register(&kvm_dev);
3601 if (r) {
3602 pr_err("kvm: misc device register failed\n");
3603 goto out_unreg;
3604 }
3605
3606 register_syscore_ops(&kvm_syscore_ops);
3607
3608 kvm_preempt_ops.sched_in = kvm_sched_in;
3609 kvm_preempt_ops.sched_out = kvm_sched_out;
3610
3611 r = kvm_init_debug();
3612 if (r) {
3613 pr_err("kvm: create debugfs files failed\n");
3614 goto out_undebugfs;
3615 }
3616
3617 r = kvm_vfio_ops_init();
3618 WARN_ON(r);
3619
3620 return 0;
3621
3622 out_undebugfs:
3623 unregister_syscore_ops(&kvm_syscore_ops);
3624 misc_deregister(&kvm_dev);
3625 out_unreg:
3626 kvm_async_pf_deinit();
3627 out_free:
3628 kmem_cache_destroy(kvm_vcpu_cache);
3629 out_free_3:
3630 unregister_reboot_notifier(&kvm_reboot_notifier);
3631 unregister_cpu_notifier(&kvm_cpu_notifier);
3632 out_free_2:
3633 out_free_1:
3634 kvm_arch_hardware_unsetup();
3635 out_free_0a:
3636 free_cpumask_var(cpus_hardware_enabled);
3637 out_free_0:
3638 kvm_irqfd_exit();
3639 out_irqfd:
3640 kvm_arch_exit();
3641 out_fail:
3642 return r;
3643 }
3644 EXPORT_SYMBOL_GPL(kvm_init);
3645
3646 void kvm_exit(void)
3647 {
3648 debugfs_remove_recursive(kvm_debugfs_dir);
3649 misc_deregister(&kvm_dev);
3650 kmem_cache_destroy(kvm_vcpu_cache);
3651 kvm_async_pf_deinit();
3652 unregister_syscore_ops(&kvm_syscore_ops);
3653 unregister_reboot_notifier(&kvm_reboot_notifier);
3654 unregister_cpu_notifier(&kvm_cpu_notifier);
3655 on_each_cpu(hardware_disable_nolock, NULL, 1);
3656 kvm_arch_hardware_unsetup();
3657 kvm_arch_exit();
3658 kvm_irqfd_exit();
3659 free_cpumask_var(cpus_hardware_enabled);
3660 kvm_vfio_ops_exit();
3661 }
3662 EXPORT_SYMBOL_GPL(kvm_exit);