]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - virt/kvm/kvm_main.c
mmc: core: prepend 0x to OCR entry in sysfs
[mirror_ubuntu-bionic-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90 * Ordering of locks:
91 *
92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93 */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124
125 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
126
127 __visible bool kvm_rebooting;
128 EXPORT_SYMBOL_GPL(kvm_rebooting);
129
130 static bool largepages_enabled = true;
131
132 #define KVM_EVENT_CREATE_VM 0
133 #define KVM_EVENT_DESTROY_VM 1
134 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
135 static unsigned long long kvm_createvm_count;
136 static unsigned long long kvm_active_vms;
137
138 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
139 {
140 if (pfn_valid(pfn))
141 return PageReserved(pfn_to_page(pfn));
142
143 return true;
144 }
145
146 /*
147 * Switches to specified vcpu, until a matching vcpu_put()
148 */
149 int vcpu_load(struct kvm_vcpu *vcpu)
150 {
151 int cpu;
152
153 if (mutex_lock_killable(&vcpu->mutex))
154 return -EINTR;
155 cpu = get_cpu();
156 preempt_notifier_register(&vcpu->preempt_notifier);
157 kvm_arch_vcpu_load(vcpu, cpu);
158 put_cpu();
159 return 0;
160 }
161 EXPORT_SYMBOL_GPL(vcpu_load);
162
163 void vcpu_put(struct kvm_vcpu *vcpu)
164 {
165 preempt_disable();
166 kvm_arch_vcpu_put(vcpu);
167 preempt_notifier_unregister(&vcpu->preempt_notifier);
168 preempt_enable();
169 mutex_unlock(&vcpu->mutex);
170 }
171 EXPORT_SYMBOL_GPL(vcpu_put);
172
173 /* TODO: merge with kvm_arch_vcpu_should_kick */
174 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
175 {
176 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
177
178 /*
179 * We need to wait for the VCPU to reenable interrupts and get out of
180 * READING_SHADOW_PAGE_TABLES mode.
181 */
182 if (req & KVM_REQUEST_WAIT)
183 return mode != OUTSIDE_GUEST_MODE;
184
185 /*
186 * Need to kick a running VCPU, but otherwise there is nothing to do.
187 */
188 return mode == IN_GUEST_MODE;
189 }
190
191 static void ack_flush(void *_completed)
192 {
193 }
194
195 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
196 {
197 if (unlikely(!cpus))
198 cpus = cpu_online_mask;
199
200 if (cpumask_empty(cpus))
201 return false;
202
203 smp_call_function_many(cpus, ack_flush, NULL, wait);
204 return true;
205 }
206
207 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
208 {
209 int i, cpu, me;
210 cpumask_var_t cpus;
211 bool called;
212 struct kvm_vcpu *vcpu;
213
214 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
215
216 me = get_cpu();
217 kvm_for_each_vcpu(i, vcpu, kvm) {
218 kvm_make_request(req, vcpu);
219 cpu = vcpu->cpu;
220
221 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
222 continue;
223
224 if (cpus != NULL && cpu != -1 && cpu != me &&
225 kvm_request_needs_ipi(vcpu, req))
226 __cpumask_set_cpu(cpu, cpus);
227 }
228 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
229 put_cpu();
230 free_cpumask_var(cpus);
231 return called;
232 }
233
234 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
235 void kvm_flush_remote_tlbs(struct kvm *kvm)
236 {
237 /*
238 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
239 * kvm_make_all_cpus_request.
240 */
241 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
242
243 /*
244 * We want to publish modifications to the page tables before reading
245 * mode. Pairs with a memory barrier in arch-specific code.
246 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
247 * and smp_mb in walk_shadow_page_lockless_begin/end.
248 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
249 *
250 * There is already an smp_mb__after_atomic() before
251 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
252 * barrier here.
253 */
254 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
255 ++kvm->stat.remote_tlb_flush;
256 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
257 }
258 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
259 #endif
260
261 void kvm_reload_remote_mmus(struct kvm *kvm)
262 {
263 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
264 }
265
266 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
267 {
268 struct page *page;
269 int r;
270
271 mutex_init(&vcpu->mutex);
272 vcpu->cpu = -1;
273 vcpu->kvm = kvm;
274 vcpu->vcpu_id = id;
275 vcpu->pid = NULL;
276 init_swait_queue_head(&vcpu->wq);
277 kvm_async_pf_vcpu_init(vcpu);
278
279 vcpu->pre_pcpu = -1;
280 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
281
282 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
283 if (!page) {
284 r = -ENOMEM;
285 goto fail;
286 }
287 vcpu->run = page_address(page);
288
289 kvm_vcpu_set_in_spin_loop(vcpu, false);
290 kvm_vcpu_set_dy_eligible(vcpu, false);
291 vcpu->preempted = false;
292
293 r = kvm_arch_vcpu_init(vcpu);
294 if (r < 0)
295 goto fail_free_run;
296 return 0;
297
298 fail_free_run:
299 free_page((unsigned long)vcpu->run);
300 fail:
301 return r;
302 }
303 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
304
305 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
306 {
307 /*
308 * no need for rcu_read_lock as VCPU_RUN is the only place that
309 * will change the vcpu->pid pointer and on uninit all file
310 * descriptors are already gone.
311 */
312 put_pid(rcu_dereference_protected(vcpu->pid, 1));
313 kvm_arch_vcpu_uninit(vcpu);
314 free_page((unsigned long)vcpu->run);
315 }
316 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
317
318 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
319 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
320 {
321 return container_of(mn, struct kvm, mmu_notifier);
322 }
323
324 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
325 struct mm_struct *mm,
326 unsigned long address,
327 pte_t pte)
328 {
329 struct kvm *kvm = mmu_notifier_to_kvm(mn);
330 int idx;
331
332 idx = srcu_read_lock(&kvm->srcu);
333 spin_lock(&kvm->mmu_lock);
334 kvm->mmu_notifier_seq++;
335 kvm_set_spte_hva(kvm, address, pte);
336 spin_unlock(&kvm->mmu_lock);
337 srcu_read_unlock(&kvm->srcu, idx);
338 }
339
340 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
341 struct mm_struct *mm,
342 unsigned long start,
343 unsigned long end)
344 {
345 struct kvm *kvm = mmu_notifier_to_kvm(mn);
346 int need_tlb_flush = 0, idx;
347
348 idx = srcu_read_lock(&kvm->srcu);
349 spin_lock(&kvm->mmu_lock);
350 /*
351 * The count increase must become visible at unlock time as no
352 * spte can be established without taking the mmu_lock and
353 * count is also read inside the mmu_lock critical section.
354 */
355 kvm->mmu_notifier_count++;
356 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
357 need_tlb_flush |= kvm->tlbs_dirty;
358 /* we've to flush the tlb before the pages can be freed */
359 if (need_tlb_flush)
360 kvm_flush_remote_tlbs(kvm);
361
362 spin_unlock(&kvm->mmu_lock);
363 srcu_read_unlock(&kvm->srcu, idx);
364 }
365
366 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
367 struct mm_struct *mm,
368 unsigned long start,
369 unsigned long end)
370 {
371 struct kvm *kvm = mmu_notifier_to_kvm(mn);
372
373 spin_lock(&kvm->mmu_lock);
374 /*
375 * This sequence increase will notify the kvm page fault that
376 * the page that is going to be mapped in the spte could have
377 * been freed.
378 */
379 kvm->mmu_notifier_seq++;
380 smp_wmb();
381 /*
382 * The above sequence increase must be visible before the
383 * below count decrease, which is ensured by the smp_wmb above
384 * in conjunction with the smp_rmb in mmu_notifier_retry().
385 */
386 kvm->mmu_notifier_count--;
387 spin_unlock(&kvm->mmu_lock);
388
389 BUG_ON(kvm->mmu_notifier_count < 0);
390 }
391
392 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
393 struct mm_struct *mm,
394 unsigned long start,
395 unsigned long end)
396 {
397 struct kvm *kvm = mmu_notifier_to_kvm(mn);
398 int young, idx;
399
400 idx = srcu_read_lock(&kvm->srcu);
401 spin_lock(&kvm->mmu_lock);
402
403 young = kvm_age_hva(kvm, start, end);
404 if (young)
405 kvm_flush_remote_tlbs(kvm);
406
407 spin_unlock(&kvm->mmu_lock);
408 srcu_read_unlock(&kvm->srcu, idx);
409
410 return young;
411 }
412
413 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
414 struct mm_struct *mm,
415 unsigned long start,
416 unsigned long end)
417 {
418 struct kvm *kvm = mmu_notifier_to_kvm(mn);
419 int young, idx;
420
421 idx = srcu_read_lock(&kvm->srcu);
422 spin_lock(&kvm->mmu_lock);
423 /*
424 * Even though we do not flush TLB, this will still adversely
425 * affect performance on pre-Haswell Intel EPT, where there is
426 * no EPT Access Bit to clear so that we have to tear down EPT
427 * tables instead. If we find this unacceptable, we can always
428 * add a parameter to kvm_age_hva so that it effectively doesn't
429 * do anything on clear_young.
430 *
431 * Also note that currently we never issue secondary TLB flushes
432 * from clear_young, leaving this job up to the regular system
433 * cadence. If we find this inaccurate, we might come up with a
434 * more sophisticated heuristic later.
435 */
436 young = kvm_age_hva(kvm, start, end);
437 spin_unlock(&kvm->mmu_lock);
438 srcu_read_unlock(&kvm->srcu, idx);
439
440 return young;
441 }
442
443 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
444 struct mm_struct *mm,
445 unsigned long address)
446 {
447 struct kvm *kvm = mmu_notifier_to_kvm(mn);
448 int young, idx;
449
450 idx = srcu_read_lock(&kvm->srcu);
451 spin_lock(&kvm->mmu_lock);
452 young = kvm_test_age_hva(kvm, address);
453 spin_unlock(&kvm->mmu_lock);
454 srcu_read_unlock(&kvm->srcu, idx);
455
456 return young;
457 }
458
459 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
460 struct mm_struct *mm)
461 {
462 struct kvm *kvm = mmu_notifier_to_kvm(mn);
463 int idx;
464
465 idx = srcu_read_lock(&kvm->srcu);
466 kvm_arch_flush_shadow_all(kvm);
467 srcu_read_unlock(&kvm->srcu, idx);
468 }
469
470 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
471 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
472 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
473 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
474 .clear_young = kvm_mmu_notifier_clear_young,
475 .test_young = kvm_mmu_notifier_test_young,
476 .change_pte = kvm_mmu_notifier_change_pte,
477 .release = kvm_mmu_notifier_release,
478 };
479
480 static int kvm_init_mmu_notifier(struct kvm *kvm)
481 {
482 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
483 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
484 }
485
486 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
487
488 static int kvm_init_mmu_notifier(struct kvm *kvm)
489 {
490 return 0;
491 }
492
493 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
494
495 static struct kvm_memslots *kvm_alloc_memslots(void)
496 {
497 int i;
498 struct kvm_memslots *slots;
499
500 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
501 if (!slots)
502 return NULL;
503
504 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
505 slots->id_to_index[i] = slots->memslots[i].id = i;
506
507 return slots;
508 }
509
510 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
511 {
512 if (!memslot->dirty_bitmap)
513 return;
514
515 kvfree(memslot->dirty_bitmap);
516 memslot->dirty_bitmap = NULL;
517 }
518
519 /*
520 * Free any memory in @free but not in @dont.
521 */
522 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
523 struct kvm_memory_slot *dont)
524 {
525 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
526 kvm_destroy_dirty_bitmap(free);
527
528 kvm_arch_free_memslot(kvm, free, dont);
529
530 free->npages = 0;
531 }
532
533 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
534 {
535 struct kvm_memory_slot *memslot;
536
537 if (!slots)
538 return;
539
540 kvm_for_each_memslot(memslot, slots)
541 kvm_free_memslot(kvm, memslot, NULL);
542
543 kvfree(slots);
544 }
545
546 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
547 {
548 int i;
549
550 if (!kvm->debugfs_dentry)
551 return;
552
553 debugfs_remove_recursive(kvm->debugfs_dentry);
554
555 if (kvm->debugfs_stat_data) {
556 for (i = 0; i < kvm_debugfs_num_entries; i++)
557 kfree(kvm->debugfs_stat_data[i]);
558 kfree(kvm->debugfs_stat_data);
559 }
560 }
561
562 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
563 {
564 char dir_name[ITOA_MAX_LEN * 2];
565 struct kvm_stat_data *stat_data;
566 struct kvm_stats_debugfs_item *p;
567
568 if (!debugfs_initialized())
569 return 0;
570
571 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
572 kvm->debugfs_dentry = debugfs_create_dir(dir_name,
573 kvm_debugfs_dir);
574 if (!kvm->debugfs_dentry)
575 return -ENOMEM;
576
577 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
578 sizeof(*kvm->debugfs_stat_data),
579 GFP_KERNEL);
580 if (!kvm->debugfs_stat_data)
581 return -ENOMEM;
582
583 for (p = debugfs_entries; p->name; p++) {
584 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
585 if (!stat_data)
586 return -ENOMEM;
587
588 stat_data->kvm = kvm;
589 stat_data->offset = p->offset;
590 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
591 if (!debugfs_create_file(p->name, 0644,
592 kvm->debugfs_dentry,
593 stat_data,
594 stat_fops_per_vm[p->kind]))
595 return -ENOMEM;
596 }
597 return 0;
598 }
599
600 static struct kvm *kvm_create_vm(unsigned long type)
601 {
602 int r, i;
603 struct kvm *kvm = kvm_arch_alloc_vm();
604
605 if (!kvm)
606 return ERR_PTR(-ENOMEM);
607
608 spin_lock_init(&kvm->mmu_lock);
609 mmgrab(current->mm);
610 kvm->mm = current->mm;
611 kvm_eventfd_init(kvm);
612 mutex_init(&kvm->lock);
613 mutex_init(&kvm->irq_lock);
614 mutex_init(&kvm->slots_lock);
615 refcount_set(&kvm->users_count, 1);
616 INIT_LIST_HEAD(&kvm->devices);
617
618 r = kvm_arch_init_vm(kvm, type);
619 if (r)
620 goto out_err_no_disable;
621
622 r = hardware_enable_all();
623 if (r)
624 goto out_err_no_disable;
625
626 #ifdef CONFIG_HAVE_KVM_IRQFD
627 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
628 #endif
629
630 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
631
632 r = -ENOMEM;
633 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
634 struct kvm_memslots *slots = kvm_alloc_memslots();
635 if (!slots)
636 goto out_err_no_srcu;
637 /*
638 * Generations must be different for each address space.
639 * Init kvm generation close to the maximum to easily test the
640 * code of handling generation number wrap-around.
641 */
642 slots->generation = i * 2 - 150;
643 rcu_assign_pointer(kvm->memslots[i], slots);
644 }
645
646 if (init_srcu_struct(&kvm->srcu))
647 goto out_err_no_srcu;
648 if (init_srcu_struct(&kvm->irq_srcu))
649 goto out_err_no_irq_srcu;
650 for (i = 0; i < KVM_NR_BUSES; i++) {
651 rcu_assign_pointer(kvm->buses[i],
652 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
653 if (!kvm->buses[i])
654 goto out_err;
655 }
656
657 r = kvm_init_mmu_notifier(kvm);
658 if (r)
659 goto out_err;
660
661 spin_lock(&kvm_lock);
662 list_add(&kvm->vm_list, &vm_list);
663 spin_unlock(&kvm_lock);
664
665 preempt_notifier_inc();
666
667 return kvm;
668
669 out_err:
670 cleanup_srcu_struct(&kvm->irq_srcu);
671 out_err_no_irq_srcu:
672 cleanup_srcu_struct(&kvm->srcu);
673 out_err_no_srcu:
674 hardware_disable_all();
675 out_err_no_disable:
676 refcount_set(&kvm->users_count, 0);
677 for (i = 0; i < KVM_NR_BUSES; i++)
678 kfree(kvm_get_bus(kvm, i));
679 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
680 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
681 kvm_arch_free_vm(kvm);
682 mmdrop(current->mm);
683 return ERR_PTR(r);
684 }
685
686 static void kvm_destroy_devices(struct kvm *kvm)
687 {
688 struct kvm_device *dev, *tmp;
689
690 /*
691 * We do not need to take the kvm->lock here, because nobody else
692 * has a reference to the struct kvm at this point and therefore
693 * cannot access the devices list anyhow.
694 */
695 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
696 list_del(&dev->vm_node);
697 dev->ops->destroy(dev);
698 }
699 }
700
701 static void kvm_destroy_vm(struct kvm *kvm)
702 {
703 int i;
704 struct mm_struct *mm = kvm->mm;
705
706 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
707 kvm_destroy_vm_debugfs(kvm);
708 kvm_arch_sync_events(kvm);
709 spin_lock(&kvm_lock);
710 list_del(&kvm->vm_list);
711 spin_unlock(&kvm_lock);
712 kvm_free_irq_routing(kvm);
713 for (i = 0; i < KVM_NR_BUSES; i++) {
714 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
715
716 if (bus)
717 kvm_io_bus_destroy(bus);
718 kvm->buses[i] = NULL;
719 }
720 kvm_coalesced_mmio_free(kvm);
721 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
722 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
723 #else
724 kvm_arch_flush_shadow_all(kvm);
725 #endif
726 kvm_arch_destroy_vm(kvm);
727 kvm_destroy_devices(kvm);
728 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
729 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
730 cleanup_srcu_struct(&kvm->irq_srcu);
731 cleanup_srcu_struct(&kvm->srcu);
732 kvm_arch_free_vm(kvm);
733 preempt_notifier_dec();
734 hardware_disable_all();
735 mmdrop(mm);
736 }
737
738 void kvm_get_kvm(struct kvm *kvm)
739 {
740 refcount_inc(&kvm->users_count);
741 }
742 EXPORT_SYMBOL_GPL(kvm_get_kvm);
743
744 void kvm_put_kvm(struct kvm *kvm)
745 {
746 if (refcount_dec_and_test(&kvm->users_count))
747 kvm_destroy_vm(kvm);
748 }
749 EXPORT_SYMBOL_GPL(kvm_put_kvm);
750
751
752 static int kvm_vm_release(struct inode *inode, struct file *filp)
753 {
754 struct kvm *kvm = filp->private_data;
755
756 kvm_irqfd_release(kvm);
757
758 kvm_put_kvm(kvm);
759 return 0;
760 }
761
762 /*
763 * Allocation size is twice as large as the actual dirty bitmap size.
764 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
765 */
766 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
767 {
768 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
769
770 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
771 if (!memslot->dirty_bitmap)
772 return -ENOMEM;
773
774 return 0;
775 }
776
777 /*
778 * Insert memslot and re-sort memslots based on their GFN,
779 * so binary search could be used to lookup GFN.
780 * Sorting algorithm takes advantage of having initially
781 * sorted array and known changed memslot position.
782 */
783 static void update_memslots(struct kvm_memslots *slots,
784 struct kvm_memory_slot *new)
785 {
786 int id = new->id;
787 int i = slots->id_to_index[id];
788 struct kvm_memory_slot *mslots = slots->memslots;
789
790 WARN_ON(mslots[i].id != id);
791 if (!new->npages) {
792 WARN_ON(!mslots[i].npages);
793 if (mslots[i].npages)
794 slots->used_slots--;
795 } else {
796 if (!mslots[i].npages)
797 slots->used_slots++;
798 }
799
800 while (i < KVM_MEM_SLOTS_NUM - 1 &&
801 new->base_gfn <= mslots[i + 1].base_gfn) {
802 if (!mslots[i + 1].npages)
803 break;
804 mslots[i] = mslots[i + 1];
805 slots->id_to_index[mslots[i].id] = i;
806 i++;
807 }
808
809 /*
810 * The ">=" is needed when creating a slot with base_gfn == 0,
811 * so that it moves before all those with base_gfn == npages == 0.
812 *
813 * On the other hand, if new->npages is zero, the above loop has
814 * already left i pointing to the beginning of the empty part of
815 * mslots, and the ">=" would move the hole backwards in this
816 * case---which is wrong. So skip the loop when deleting a slot.
817 */
818 if (new->npages) {
819 while (i > 0 &&
820 new->base_gfn >= mslots[i - 1].base_gfn) {
821 mslots[i] = mslots[i - 1];
822 slots->id_to_index[mslots[i].id] = i;
823 i--;
824 }
825 } else
826 WARN_ON_ONCE(i != slots->used_slots);
827
828 mslots[i] = *new;
829 slots->id_to_index[mslots[i].id] = i;
830 }
831
832 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
833 {
834 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
835
836 #ifdef __KVM_HAVE_READONLY_MEM
837 valid_flags |= KVM_MEM_READONLY;
838 #endif
839
840 if (mem->flags & ~valid_flags)
841 return -EINVAL;
842
843 return 0;
844 }
845
846 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
847 int as_id, struct kvm_memslots *slots)
848 {
849 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
850
851 /*
852 * Set the low bit in the generation, which disables SPTE caching
853 * until the end of synchronize_srcu_expedited.
854 */
855 WARN_ON(old_memslots->generation & 1);
856 slots->generation = old_memslots->generation + 1;
857
858 rcu_assign_pointer(kvm->memslots[as_id], slots);
859 synchronize_srcu_expedited(&kvm->srcu);
860
861 /*
862 * Increment the new memslot generation a second time. This prevents
863 * vm exits that race with memslot updates from caching a memslot
864 * generation that will (potentially) be valid forever.
865 *
866 * Generations must be unique even across address spaces. We do not need
867 * a global counter for that, instead the generation space is evenly split
868 * across address spaces. For example, with two address spaces, address
869 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
870 * use generations 2, 6, 10, 14, ...
871 */
872 slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
873
874 kvm_arch_memslots_updated(kvm, slots);
875
876 return old_memslots;
877 }
878
879 /*
880 * Allocate some memory and give it an address in the guest physical address
881 * space.
882 *
883 * Discontiguous memory is allowed, mostly for framebuffers.
884 *
885 * Must be called holding kvm->slots_lock for write.
886 */
887 int __kvm_set_memory_region(struct kvm *kvm,
888 const struct kvm_userspace_memory_region *mem)
889 {
890 int r;
891 gfn_t base_gfn;
892 unsigned long npages;
893 struct kvm_memory_slot *slot;
894 struct kvm_memory_slot old, new;
895 struct kvm_memslots *slots = NULL, *old_memslots;
896 int as_id, id;
897 enum kvm_mr_change change;
898
899 r = check_memory_region_flags(mem);
900 if (r)
901 goto out;
902
903 r = -EINVAL;
904 as_id = mem->slot >> 16;
905 id = (u16)mem->slot;
906
907 /* General sanity checks */
908 if (mem->memory_size & (PAGE_SIZE - 1))
909 goto out;
910 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
911 goto out;
912 /* We can read the guest memory with __xxx_user() later on. */
913 if ((id < KVM_USER_MEM_SLOTS) &&
914 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
915 !access_ok(VERIFY_WRITE,
916 (void __user *)(unsigned long)mem->userspace_addr,
917 mem->memory_size)))
918 goto out;
919 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
920 goto out;
921 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
922 goto out;
923
924 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
925 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
926 npages = mem->memory_size >> PAGE_SHIFT;
927
928 if (npages > KVM_MEM_MAX_NR_PAGES)
929 goto out;
930
931 new = old = *slot;
932
933 new.id = id;
934 new.base_gfn = base_gfn;
935 new.npages = npages;
936 new.flags = mem->flags;
937
938 if (npages) {
939 if (!old.npages)
940 change = KVM_MR_CREATE;
941 else { /* Modify an existing slot. */
942 if ((mem->userspace_addr != old.userspace_addr) ||
943 (npages != old.npages) ||
944 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
945 goto out;
946
947 if (base_gfn != old.base_gfn)
948 change = KVM_MR_MOVE;
949 else if (new.flags != old.flags)
950 change = KVM_MR_FLAGS_ONLY;
951 else { /* Nothing to change. */
952 r = 0;
953 goto out;
954 }
955 }
956 } else {
957 if (!old.npages)
958 goto out;
959
960 change = KVM_MR_DELETE;
961 new.base_gfn = 0;
962 new.flags = 0;
963 }
964
965 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
966 /* Check for overlaps */
967 r = -EEXIST;
968 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
969 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
970 (slot->id == id))
971 continue;
972 if (!((base_gfn + npages <= slot->base_gfn) ||
973 (base_gfn >= slot->base_gfn + slot->npages)))
974 goto out;
975 }
976 }
977
978 /* Free page dirty bitmap if unneeded */
979 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
980 new.dirty_bitmap = NULL;
981
982 r = -ENOMEM;
983 if (change == KVM_MR_CREATE) {
984 new.userspace_addr = mem->userspace_addr;
985
986 if (kvm_arch_create_memslot(kvm, &new, npages))
987 goto out_free;
988 }
989
990 /* Allocate page dirty bitmap if needed */
991 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
992 if (kvm_create_dirty_bitmap(&new) < 0)
993 goto out_free;
994 }
995
996 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
997 if (!slots)
998 goto out_free;
999 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1000
1001 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1002 slot = id_to_memslot(slots, id);
1003 slot->flags |= KVM_MEMSLOT_INVALID;
1004
1005 old_memslots = install_new_memslots(kvm, as_id, slots);
1006
1007 /* From this point no new shadow pages pointing to a deleted,
1008 * or moved, memslot will be created.
1009 *
1010 * validation of sp->gfn happens in:
1011 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1012 * - kvm_is_visible_gfn (mmu_check_roots)
1013 */
1014 kvm_arch_flush_shadow_memslot(kvm, slot);
1015
1016 /*
1017 * We can re-use the old_memslots from above, the only difference
1018 * from the currently installed memslots is the invalid flag. This
1019 * will get overwritten by update_memslots anyway.
1020 */
1021 slots = old_memslots;
1022 }
1023
1024 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1025 if (r)
1026 goto out_slots;
1027
1028 /* actual memory is freed via old in kvm_free_memslot below */
1029 if (change == KVM_MR_DELETE) {
1030 new.dirty_bitmap = NULL;
1031 memset(&new.arch, 0, sizeof(new.arch));
1032 }
1033
1034 update_memslots(slots, &new);
1035 old_memslots = install_new_memslots(kvm, as_id, slots);
1036
1037 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1038
1039 kvm_free_memslot(kvm, &old, &new);
1040 kvfree(old_memslots);
1041 return 0;
1042
1043 out_slots:
1044 kvfree(slots);
1045 out_free:
1046 kvm_free_memslot(kvm, &new, &old);
1047 out:
1048 return r;
1049 }
1050 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1051
1052 int kvm_set_memory_region(struct kvm *kvm,
1053 const struct kvm_userspace_memory_region *mem)
1054 {
1055 int r;
1056
1057 mutex_lock(&kvm->slots_lock);
1058 r = __kvm_set_memory_region(kvm, mem);
1059 mutex_unlock(&kvm->slots_lock);
1060 return r;
1061 }
1062 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1063
1064 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1065 struct kvm_userspace_memory_region *mem)
1066 {
1067 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1068 return -EINVAL;
1069
1070 return kvm_set_memory_region(kvm, mem);
1071 }
1072
1073 int kvm_get_dirty_log(struct kvm *kvm,
1074 struct kvm_dirty_log *log, int *is_dirty)
1075 {
1076 struct kvm_memslots *slots;
1077 struct kvm_memory_slot *memslot;
1078 int i, as_id, id;
1079 unsigned long n;
1080 unsigned long any = 0;
1081
1082 as_id = log->slot >> 16;
1083 id = (u16)log->slot;
1084 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1085 return -EINVAL;
1086
1087 slots = __kvm_memslots(kvm, as_id);
1088 memslot = id_to_memslot(slots, id);
1089 if (!memslot->dirty_bitmap)
1090 return -ENOENT;
1091
1092 n = kvm_dirty_bitmap_bytes(memslot);
1093
1094 for (i = 0; !any && i < n/sizeof(long); ++i)
1095 any = memslot->dirty_bitmap[i];
1096
1097 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1098 return -EFAULT;
1099
1100 if (any)
1101 *is_dirty = 1;
1102 return 0;
1103 }
1104 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1105
1106 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1107 /**
1108 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1109 * are dirty write protect them for next write.
1110 * @kvm: pointer to kvm instance
1111 * @log: slot id and address to which we copy the log
1112 * @is_dirty: flag set if any page is dirty
1113 *
1114 * We need to keep it in mind that VCPU threads can write to the bitmap
1115 * concurrently. So, to avoid losing track of dirty pages we keep the
1116 * following order:
1117 *
1118 * 1. Take a snapshot of the bit and clear it if needed.
1119 * 2. Write protect the corresponding page.
1120 * 3. Copy the snapshot to the userspace.
1121 * 4. Upon return caller flushes TLB's if needed.
1122 *
1123 * Between 2 and 4, the guest may write to the page using the remaining TLB
1124 * entry. This is not a problem because the page is reported dirty using
1125 * the snapshot taken before and step 4 ensures that writes done after
1126 * exiting to userspace will be logged for the next call.
1127 *
1128 */
1129 int kvm_get_dirty_log_protect(struct kvm *kvm,
1130 struct kvm_dirty_log *log, bool *is_dirty)
1131 {
1132 struct kvm_memslots *slots;
1133 struct kvm_memory_slot *memslot;
1134 int i, as_id, id;
1135 unsigned long n;
1136 unsigned long *dirty_bitmap;
1137 unsigned long *dirty_bitmap_buffer;
1138
1139 as_id = log->slot >> 16;
1140 id = (u16)log->slot;
1141 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1142 return -EINVAL;
1143
1144 slots = __kvm_memslots(kvm, as_id);
1145 memslot = id_to_memslot(slots, id);
1146
1147 dirty_bitmap = memslot->dirty_bitmap;
1148 if (!dirty_bitmap)
1149 return -ENOENT;
1150
1151 n = kvm_dirty_bitmap_bytes(memslot);
1152
1153 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1154 memset(dirty_bitmap_buffer, 0, n);
1155
1156 spin_lock(&kvm->mmu_lock);
1157 *is_dirty = false;
1158 for (i = 0; i < n / sizeof(long); i++) {
1159 unsigned long mask;
1160 gfn_t offset;
1161
1162 if (!dirty_bitmap[i])
1163 continue;
1164
1165 *is_dirty = true;
1166
1167 mask = xchg(&dirty_bitmap[i], 0);
1168 dirty_bitmap_buffer[i] = mask;
1169
1170 if (mask) {
1171 offset = i * BITS_PER_LONG;
1172 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1173 offset, mask);
1174 }
1175 }
1176
1177 spin_unlock(&kvm->mmu_lock);
1178 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1179 return -EFAULT;
1180 return 0;
1181 }
1182 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1183 #endif
1184
1185 bool kvm_largepages_enabled(void)
1186 {
1187 return largepages_enabled;
1188 }
1189
1190 void kvm_disable_largepages(void)
1191 {
1192 largepages_enabled = false;
1193 }
1194 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1195
1196 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1197 {
1198 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1199 }
1200 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1201
1202 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1203 {
1204 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1205 }
1206
1207 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1208 {
1209 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1210
1211 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1212 memslot->flags & KVM_MEMSLOT_INVALID)
1213 return false;
1214
1215 return true;
1216 }
1217 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1218
1219 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1220 {
1221 struct vm_area_struct *vma;
1222 unsigned long addr, size;
1223
1224 size = PAGE_SIZE;
1225
1226 addr = gfn_to_hva(kvm, gfn);
1227 if (kvm_is_error_hva(addr))
1228 return PAGE_SIZE;
1229
1230 down_read(&current->mm->mmap_sem);
1231 vma = find_vma(current->mm, addr);
1232 if (!vma)
1233 goto out;
1234
1235 size = vma_kernel_pagesize(vma);
1236
1237 out:
1238 up_read(&current->mm->mmap_sem);
1239
1240 return size;
1241 }
1242
1243 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1244 {
1245 return slot->flags & KVM_MEM_READONLY;
1246 }
1247
1248 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1249 gfn_t *nr_pages, bool write)
1250 {
1251 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1252 return KVM_HVA_ERR_BAD;
1253
1254 if (memslot_is_readonly(slot) && write)
1255 return KVM_HVA_ERR_RO_BAD;
1256
1257 if (nr_pages)
1258 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1259
1260 return __gfn_to_hva_memslot(slot, gfn);
1261 }
1262
1263 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1264 gfn_t *nr_pages)
1265 {
1266 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1267 }
1268
1269 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1270 gfn_t gfn)
1271 {
1272 return gfn_to_hva_many(slot, gfn, NULL);
1273 }
1274 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1275
1276 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1277 {
1278 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1279 }
1280 EXPORT_SYMBOL_GPL(gfn_to_hva);
1281
1282 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1283 {
1284 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1285 }
1286 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1287
1288 /*
1289 * If writable is set to false, the hva returned by this function is only
1290 * allowed to be read.
1291 */
1292 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1293 gfn_t gfn, bool *writable)
1294 {
1295 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1296
1297 if (!kvm_is_error_hva(hva) && writable)
1298 *writable = !memslot_is_readonly(slot);
1299
1300 return hva;
1301 }
1302
1303 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1304 {
1305 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1306
1307 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1308 }
1309
1310 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1311 {
1312 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1313
1314 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1315 }
1316
1317 static int get_user_page_nowait(unsigned long start, int write,
1318 struct page **page)
1319 {
1320 int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1321
1322 if (write)
1323 flags |= FOLL_WRITE;
1324
1325 return get_user_pages(start, 1, flags, page, NULL);
1326 }
1327
1328 static inline int check_user_page_hwpoison(unsigned long addr)
1329 {
1330 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1331
1332 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1333 return rc == -EHWPOISON;
1334 }
1335
1336 /*
1337 * The atomic path to get the writable pfn which will be stored in @pfn,
1338 * true indicates success, otherwise false is returned.
1339 */
1340 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1341 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1342 {
1343 struct page *page[1];
1344 int npages;
1345
1346 if (!(async || atomic))
1347 return false;
1348
1349 /*
1350 * Fast pin a writable pfn only if it is a write fault request
1351 * or the caller allows to map a writable pfn for a read fault
1352 * request.
1353 */
1354 if (!(write_fault || writable))
1355 return false;
1356
1357 npages = __get_user_pages_fast(addr, 1, 1, page);
1358 if (npages == 1) {
1359 *pfn = page_to_pfn(page[0]);
1360
1361 if (writable)
1362 *writable = true;
1363 return true;
1364 }
1365
1366 return false;
1367 }
1368
1369 /*
1370 * The slow path to get the pfn of the specified host virtual address,
1371 * 1 indicates success, -errno is returned if error is detected.
1372 */
1373 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1374 bool *writable, kvm_pfn_t *pfn)
1375 {
1376 struct page *page[1];
1377 int npages = 0;
1378
1379 might_sleep();
1380
1381 if (writable)
1382 *writable = write_fault;
1383
1384 if (async) {
1385 down_read(&current->mm->mmap_sem);
1386 npages = get_user_page_nowait(addr, write_fault, page);
1387 up_read(&current->mm->mmap_sem);
1388 } else {
1389 unsigned int flags = FOLL_HWPOISON;
1390
1391 if (write_fault)
1392 flags |= FOLL_WRITE;
1393
1394 npages = get_user_pages_unlocked(addr, 1, page, flags);
1395 }
1396 if (npages != 1)
1397 return npages;
1398
1399 /* map read fault as writable if possible */
1400 if (unlikely(!write_fault) && writable) {
1401 struct page *wpage[1];
1402
1403 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1404 if (npages == 1) {
1405 *writable = true;
1406 put_page(page[0]);
1407 page[0] = wpage[0];
1408 }
1409
1410 npages = 1;
1411 }
1412 *pfn = page_to_pfn(page[0]);
1413 return npages;
1414 }
1415
1416 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1417 {
1418 if (unlikely(!(vma->vm_flags & VM_READ)))
1419 return false;
1420
1421 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1422 return false;
1423
1424 return true;
1425 }
1426
1427 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1428 unsigned long addr, bool *async,
1429 bool write_fault, kvm_pfn_t *p_pfn)
1430 {
1431 unsigned long pfn;
1432 int r;
1433
1434 r = follow_pfn(vma, addr, &pfn);
1435 if (r) {
1436 /*
1437 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1438 * not call the fault handler, so do it here.
1439 */
1440 bool unlocked = false;
1441 r = fixup_user_fault(current, current->mm, addr,
1442 (write_fault ? FAULT_FLAG_WRITE : 0),
1443 &unlocked);
1444 if (unlocked)
1445 return -EAGAIN;
1446 if (r)
1447 return r;
1448
1449 r = follow_pfn(vma, addr, &pfn);
1450 if (r)
1451 return r;
1452
1453 }
1454
1455
1456 /*
1457 * Get a reference here because callers of *hva_to_pfn* and
1458 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1459 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1460 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1461 * simply do nothing for reserved pfns.
1462 *
1463 * Whoever called remap_pfn_range is also going to call e.g.
1464 * unmap_mapping_range before the underlying pages are freed,
1465 * causing a call to our MMU notifier.
1466 */
1467 kvm_get_pfn(pfn);
1468
1469 *p_pfn = pfn;
1470 return 0;
1471 }
1472
1473 /*
1474 * Pin guest page in memory and return its pfn.
1475 * @addr: host virtual address which maps memory to the guest
1476 * @atomic: whether this function can sleep
1477 * @async: whether this function need to wait IO complete if the
1478 * host page is not in the memory
1479 * @write_fault: whether we should get a writable host page
1480 * @writable: whether it allows to map a writable host page for !@write_fault
1481 *
1482 * The function will map a writable host page for these two cases:
1483 * 1): @write_fault = true
1484 * 2): @write_fault = false && @writable, @writable will tell the caller
1485 * whether the mapping is writable.
1486 */
1487 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1488 bool write_fault, bool *writable)
1489 {
1490 struct vm_area_struct *vma;
1491 kvm_pfn_t pfn = 0;
1492 int npages, r;
1493
1494 /* we can do it either atomically or asynchronously, not both */
1495 BUG_ON(atomic && async);
1496
1497 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1498 return pfn;
1499
1500 if (atomic)
1501 return KVM_PFN_ERR_FAULT;
1502
1503 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1504 if (npages == 1)
1505 return pfn;
1506
1507 down_read(&current->mm->mmap_sem);
1508 if (npages == -EHWPOISON ||
1509 (!async && check_user_page_hwpoison(addr))) {
1510 pfn = KVM_PFN_ERR_HWPOISON;
1511 goto exit;
1512 }
1513
1514 retry:
1515 vma = find_vma_intersection(current->mm, addr, addr + 1);
1516
1517 if (vma == NULL)
1518 pfn = KVM_PFN_ERR_FAULT;
1519 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1520 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1521 if (r == -EAGAIN)
1522 goto retry;
1523 if (r < 0)
1524 pfn = KVM_PFN_ERR_FAULT;
1525 } else {
1526 if (async && vma_is_valid(vma, write_fault))
1527 *async = true;
1528 pfn = KVM_PFN_ERR_FAULT;
1529 }
1530 exit:
1531 up_read(&current->mm->mmap_sem);
1532 return pfn;
1533 }
1534
1535 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1536 bool atomic, bool *async, bool write_fault,
1537 bool *writable)
1538 {
1539 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1540
1541 if (addr == KVM_HVA_ERR_RO_BAD) {
1542 if (writable)
1543 *writable = false;
1544 return KVM_PFN_ERR_RO_FAULT;
1545 }
1546
1547 if (kvm_is_error_hva(addr)) {
1548 if (writable)
1549 *writable = false;
1550 return KVM_PFN_NOSLOT;
1551 }
1552
1553 /* Do not map writable pfn in the readonly memslot. */
1554 if (writable && memslot_is_readonly(slot)) {
1555 *writable = false;
1556 writable = NULL;
1557 }
1558
1559 return hva_to_pfn(addr, atomic, async, write_fault,
1560 writable);
1561 }
1562 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1563
1564 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1565 bool *writable)
1566 {
1567 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1568 write_fault, writable);
1569 }
1570 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1571
1572 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1573 {
1574 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1575 }
1576 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1577
1578 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1579 {
1580 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1581 }
1582 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1583
1584 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1585 {
1586 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1587 }
1588 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1589
1590 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1591 {
1592 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1593 }
1594 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1595
1596 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1597 {
1598 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1599 }
1600 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1601
1602 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1603 {
1604 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1605 }
1606 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1607
1608 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1609 struct page **pages, int nr_pages)
1610 {
1611 unsigned long addr;
1612 gfn_t entry = 0;
1613
1614 addr = gfn_to_hva_many(slot, gfn, &entry);
1615 if (kvm_is_error_hva(addr))
1616 return -1;
1617
1618 if (entry < nr_pages)
1619 return 0;
1620
1621 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1622 }
1623 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1624
1625 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1626 {
1627 if (is_error_noslot_pfn(pfn))
1628 return KVM_ERR_PTR_BAD_PAGE;
1629
1630 if (kvm_is_reserved_pfn(pfn)) {
1631 WARN_ON(1);
1632 return KVM_ERR_PTR_BAD_PAGE;
1633 }
1634
1635 return pfn_to_page(pfn);
1636 }
1637
1638 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1639 {
1640 kvm_pfn_t pfn;
1641
1642 pfn = gfn_to_pfn(kvm, gfn);
1643
1644 return kvm_pfn_to_page(pfn);
1645 }
1646 EXPORT_SYMBOL_GPL(gfn_to_page);
1647
1648 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1649 {
1650 kvm_pfn_t pfn;
1651
1652 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1653
1654 return kvm_pfn_to_page(pfn);
1655 }
1656 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1657
1658 void kvm_release_page_clean(struct page *page)
1659 {
1660 WARN_ON(is_error_page(page));
1661
1662 kvm_release_pfn_clean(page_to_pfn(page));
1663 }
1664 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1665
1666 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1667 {
1668 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1669 put_page(pfn_to_page(pfn));
1670 }
1671 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1672
1673 void kvm_release_page_dirty(struct page *page)
1674 {
1675 WARN_ON(is_error_page(page));
1676
1677 kvm_release_pfn_dirty(page_to_pfn(page));
1678 }
1679 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1680
1681 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1682 {
1683 kvm_set_pfn_dirty(pfn);
1684 kvm_release_pfn_clean(pfn);
1685 }
1686 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1687
1688 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1689 {
1690 if (!kvm_is_reserved_pfn(pfn)) {
1691 struct page *page = pfn_to_page(pfn);
1692
1693 if (!PageReserved(page))
1694 SetPageDirty(page);
1695 }
1696 }
1697 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1698
1699 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1700 {
1701 if (!kvm_is_reserved_pfn(pfn))
1702 mark_page_accessed(pfn_to_page(pfn));
1703 }
1704 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1705
1706 void kvm_get_pfn(kvm_pfn_t pfn)
1707 {
1708 if (!kvm_is_reserved_pfn(pfn))
1709 get_page(pfn_to_page(pfn));
1710 }
1711 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1712
1713 static int next_segment(unsigned long len, int offset)
1714 {
1715 if (len > PAGE_SIZE - offset)
1716 return PAGE_SIZE - offset;
1717 else
1718 return len;
1719 }
1720
1721 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1722 void *data, int offset, int len)
1723 {
1724 int r;
1725 unsigned long addr;
1726
1727 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1728 if (kvm_is_error_hva(addr))
1729 return -EFAULT;
1730 r = __copy_from_user(data, (void __user *)addr + offset, len);
1731 if (r)
1732 return -EFAULT;
1733 return 0;
1734 }
1735
1736 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1737 int len)
1738 {
1739 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1740
1741 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1742 }
1743 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1744
1745 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1746 int offset, int len)
1747 {
1748 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1749
1750 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1751 }
1752 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1753
1754 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1755 {
1756 gfn_t gfn = gpa >> PAGE_SHIFT;
1757 int seg;
1758 int offset = offset_in_page(gpa);
1759 int ret;
1760
1761 while ((seg = next_segment(len, offset)) != 0) {
1762 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1763 if (ret < 0)
1764 return ret;
1765 offset = 0;
1766 len -= seg;
1767 data += seg;
1768 ++gfn;
1769 }
1770 return 0;
1771 }
1772 EXPORT_SYMBOL_GPL(kvm_read_guest);
1773
1774 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1775 {
1776 gfn_t gfn = gpa >> PAGE_SHIFT;
1777 int seg;
1778 int offset = offset_in_page(gpa);
1779 int ret;
1780
1781 while ((seg = next_segment(len, offset)) != 0) {
1782 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1783 if (ret < 0)
1784 return ret;
1785 offset = 0;
1786 len -= seg;
1787 data += seg;
1788 ++gfn;
1789 }
1790 return 0;
1791 }
1792 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1793
1794 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1795 void *data, int offset, unsigned long len)
1796 {
1797 int r;
1798 unsigned long addr;
1799
1800 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1801 if (kvm_is_error_hva(addr))
1802 return -EFAULT;
1803 pagefault_disable();
1804 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1805 pagefault_enable();
1806 if (r)
1807 return -EFAULT;
1808 return 0;
1809 }
1810
1811 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1812 unsigned long len)
1813 {
1814 gfn_t gfn = gpa >> PAGE_SHIFT;
1815 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1816 int offset = offset_in_page(gpa);
1817
1818 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1819 }
1820 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1821
1822 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1823 void *data, unsigned long len)
1824 {
1825 gfn_t gfn = gpa >> PAGE_SHIFT;
1826 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1827 int offset = offset_in_page(gpa);
1828
1829 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1830 }
1831 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1832
1833 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1834 const void *data, int offset, int len)
1835 {
1836 int r;
1837 unsigned long addr;
1838
1839 addr = gfn_to_hva_memslot(memslot, gfn);
1840 if (kvm_is_error_hva(addr))
1841 return -EFAULT;
1842 r = __copy_to_user((void __user *)addr + offset, data, len);
1843 if (r)
1844 return -EFAULT;
1845 mark_page_dirty_in_slot(memslot, gfn);
1846 return 0;
1847 }
1848
1849 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1850 const void *data, int offset, int len)
1851 {
1852 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1853
1854 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1855 }
1856 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1857
1858 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1859 const void *data, int offset, int len)
1860 {
1861 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1862
1863 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1864 }
1865 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1866
1867 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1868 unsigned long len)
1869 {
1870 gfn_t gfn = gpa >> PAGE_SHIFT;
1871 int seg;
1872 int offset = offset_in_page(gpa);
1873 int ret;
1874
1875 while ((seg = next_segment(len, offset)) != 0) {
1876 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1877 if (ret < 0)
1878 return ret;
1879 offset = 0;
1880 len -= seg;
1881 data += seg;
1882 ++gfn;
1883 }
1884 return 0;
1885 }
1886 EXPORT_SYMBOL_GPL(kvm_write_guest);
1887
1888 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1889 unsigned long len)
1890 {
1891 gfn_t gfn = gpa >> PAGE_SHIFT;
1892 int seg;
1893 int offset = offset_in_page(gpa);
1894 int ret;
1895
1896 while ((seg = next_segment(len, offset)) != 0) {
1897 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1898 if (ret < 0)
1899 return ret;
1900 offset = 0;
1901 len -= seg;
1902 data += seg;
1903 ++gfn;
1904 }
1905 return 0;
1906 }
1907 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1908
1909 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1910 struct gfn_to_hva_cache *ghc,
1911 gpa_t gpa, unsigned long len)
1912 {
1913 int offset = offset_in_page(gpa);
1914 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1915 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1916 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1917 gfn_t nr_pages_avail;
1918
1919 ghc->gpa = gpa;
1920 ghc->generation = slots->generation;
1921 ghc->len = len;
1922 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1923 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1924 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1925 ghc->hva += offset;
1926 } else {
1927 /*
1928 * If the requested region crosses two memslots, we still
1929 * verify that the entire region is valid here.
1930 */
1931 while (start_gfn <= end_gfn) {
1932 nr_pages_avail = 0;
1933 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1934 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1935 &nr_pages_avail);
1936 if (kvm_is_error_hva(ghc->hva))
1937 return -EFAULT;
1938 start_gfn += nr_pages_avail;
1939 }
1940 /* Use the slow path for cross page reads and writes. */
1941 ghc->memslot = NULL;
1942 }
1943 return 0;
1944 }
1945
1946 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1947 gpa_t gpa, unsigned long len)
1948 {
1949 struct kvm_memslots *slots = kvm_memslots(kvm);
1950 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1951 }
1952 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1953
1954 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1955 void *data, int offset, unsigned long len)
1956 {
1957 struct kvm_memslots *slots = kvm_memslots(kvm);
1958 int r;
1959 gpa_t gpa = ghc->gpa + offset;
1960
1961 BUG_ON(len + offset > ghc->len);
1962
1963 if (slots->generation != ghc->generation)
1964 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1965
1966 if (unlikely(!ghc->memslot))
1967 return kvm_write_guest(kvm, gpa, data, len);
1968
1969 if (kvm_is_error_hva(ghc->hva))
1970 return -EFAULT;
1971
1972 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1973 if (r)
1974 return -EFAULT;
1975 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1976
1977 return 0;
1978 }
1979 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1980
1981 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1982 void *data, unsigned long len)
1983 {
1984 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1985 }
1986 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1987
1988 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1989 void *data, unsigned long len)
1990 {
1991 struct kvm_memslots *slots = kvm_memslots(kvm);
1992 int r;
1993
1994 BUG_ON(len > ghc->len);
1995
1996 if (slots->generation != ghc->generation)
1997 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1998
1999 if (unlikely(!ghc->memslot))
2000 return kvm_read_guest(kvm, ghc->gpa, data, len);
2001
2002 if (kvm_is_error_hva(ghc->hva))
2003 return -EFAULT;
2004
2005 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2006 if (r)
2007 return -EFAULT;
2008
2009 return 0;
2010 }
2011 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2012
2013 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2014 {
2015 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2016
2017 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2018 }
2019 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2020
2021 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2022 {
2023 gfn_t gfn = gpa >> PAGE_SHIFT;
2024 int seg;
2025 int offset = offset_in_page(gpa);
2026 int ret;
2027
2028 while ((seg = next_segment(len, offset)) != 0) {
2029 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2030 if (ret < 0)
2031 return ret;
2032 offset = 0;
2033 len -= seg;
2034 ++gfn;
2035 }
2036 return 0;
2037 }
2038 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2039
2040 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2041 gfn_t gfn)
2042 {
2043 if (memslot && memslot->dirty_bitmap) {
2044 unsigned long rel_gfn = gfn - memslot->base_gfn;
2045
2046 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2047 }
2048 }
2049
2050 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2051 {
2052 struct kvm_memory_slot *memslot;
2053
2054 memslot = gfn_to_memslot(kvm, gfn);
2055 mark_page_dirty_in_slot(memslot, gfn);
2056 }
2057 EXPORT_SYMBOL_GPL(mark_page_dirty);
2058
2059 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2060 {
2061 struct kvm_memory_slot *memslot;
2062
2063 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2064 mark_page_dirty_in_slot(memslot, gfn);
2065 }
2066 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2067
2068 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2069 {
2070 unsigned int old, val, grow;
2071
2072 old = val = vcpu->halt_poll_ns;
2073 grow = READ_ONCE(halt_poll_ns_grow);
2074 /* 10us base */
2075 if (val == 0 && grow)
2076 val = 10000;
2077 else
2078 val *= grow;
2079
2080 if (val > halt_poll_ns)
2081 val = halt_poll_ns;
2082
2083 vcpu->halt_poll_ns = val;
2084 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2085 }
2086
2087 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2088 {
2089 unsigned int old, val, shrink;
2090
2091 old = val = vcpu->halt_poll_ns;
2092 shrink = READ_ONCE(halt_poll_ns_shrink);
2093 if (shrink == 0)
2094 val = 0;
2095 else
2096 val /= shrink;
2097
2098 vcpu->halt_poll_ns = val;
2099 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2100 }
2101
2102 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2103 {
2104 if (kvm_arch_vcpu_runnable(vcpu)) {
2105 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2106 return -EINTR;
2107 }
2108 if (kvm_cpu_has_pending_timer(vcpu))
2109 return -EINTR;
2110 if (signal_pending(current))
2111 return -EINTR;
2112
2113 return 0;
2114 }
2115
2116 /*
2117 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2118 */
2119 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2120 {
2121 ktime_t start, cur;
2122 DECLARE_SWAITQUEUE(wait);
2123 bool waited = false;
2124 u64 block_ns;
2125
2126 start = cur = ktime_get();
2127 if (vcpu->halt_poll_ns) {
2128 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2129
2130 ++vcpu->stat.halt_attempted_poll;
2131 do {
2132 /*
2133 * This sets KVM_REQ_UNHALT if an interrupt
2134 * arrives.
2135 */
2136 if (kvm_vcpu_check_block(vcpu) < 0) {
2137 ++vcpu->stat.halt_successful_poll;
2138 if (!vcpu_valid_wakeup(vcpu))
2139 ++vcpu->stat.halt_poll_invalid;
2140 goto out;
2141 }
2142 cur = ktime_get();
2143 } while (single_task_running() && ktime_before(cur, stop));
2144 }
2145
2146 kvm_arch_vcpu_blocking(vcpu);
2147
2148 for (;;) {
2149 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2150
2151 if (kvm_vcpu_check_block(vcpu) < 0)
2152 break;
2153
2154 waited = true;
2155 schedule();
2156 }
2157
2158 finish_swait(&vcpu->wq, &wait);
2159 cur = ktime_get();
2160
2161 kvm_arch_vcpu_unblocking(vcpu);
2162 out:
2163 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2164
2165 if (!vcpu_valid_wakeup(vcpu))
2166 shrink_halt_poll_ns(vcpu);
2167 else if (halt_poll_ns) {
2168 if (block_ns <= vcpu->halt_poll_ns)
2169 ;
2170 /* we had a long block, shrink polling */
2171 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2172 shrink_halt_poll_ns(vcpu);
2173 /* we had a short halt and our poll time is too small */
2174 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2175 block_ns < halt_poll_ns)
2176 grow_halt_poll_ns(vcpu);
2177 } else
2178 vcpu->halt_poll_ns = 0;
2179
2180 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2181 kvm_arch_vcpu_block_finish(vcpu);
2182 }
2183 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2184
2185 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2186 {
2187 struct swait_queue_head *wqp;
2188
2189 wqp = kvm_arch_vcpu_wq(vcpu);
2190 if (swq_has_sleeper(wqp)) {
2191 swake_up(wqp);
2192 ++vcpu->stat.halt_wakeup;
2193 return true;
2194 }
2195
2196 return false;
2197 }
2198 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2199
2200 #ifndef CONFIG_S390
2201 /*
2202 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2203 */
2204 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2205 {
2206 int me;
2207 int cpu = vcpu->cpu;
2208
2209 if (kvm_vcpu_wake_up(vcpu))
2210 return;
2211
2212 me = get_cpu();
2213 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2214 if (kvm_arch_vcpu_should_kick(vcpu))
2215 smp_send_reschedule(cpu);
2216 put_cpu();
2217 }
2218 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2219 #endif /* !CONFIG_S390 */
2220
2221 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2222 {
2223 struct pid *pid;
2224 struct task_struct *task = NULL;
2225 int ret = 0;
2226
2227 rcu_read_lock();
2228 pid = rcu_dereference(target->pid);
2229 if (pid)
2230 task = get_pid_task(pid, PIDTYPE_PID);
2231 rcu_read_unlock();
2232 if (!task)
2233 return ret;
2234 ret = yield_to(task, 1);
2235 put_task_struct(task);
2236
2237 return ret;
2238 }
2239 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2240
2241 /*
2242 * Helper that checks whether a VCPU is eligible for directed yield.
2243 * Most eligible candidate to yield is decided by following heuristics:
2244 *
2245 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2246 * (preempted lock holder), indicated by @in_spin_loop.
2247 * Set at the beiginning and cleared at the end of interception/PLE handler.
2248 *
2249 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2250 * chance last time (mostly it has become eligible now since we have probably
2251 * yielded to lockholder in last iteration. This is done by toggling
2252 * @dy_eligible each time a VCPU checked for eligibility.)
2253 *
2254 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2255 * to preempted lock-holder could result in wrong VCPU selection and CPU
2256 * burning. Giving priority for a potential lock-holder increases lock
2257 * progress.
2258 *
2259 * Since algorithm is based on heuristics, accessing another VCPU data without
2260 * locking does not harm. It may result in trying to yield to same VCPU, fail
2261 * and continue with next VCPU and so on.
2262 */
2263 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2264 {
2265 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2266 bool eligible;
2267
2268 eligible = !vcpu->spin_loop.in_spin_loop ||
2269 vcpu->spin_loop.dy_eligible;
2270
2271 if (vcpu->spin_loop.in_spin_loop)
2272 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2273
2274 return eligible;
2275 #else
2276 return true;
2277 #endif
2278 }
2279
2280 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2281 {
2282 struct kvm *kvm = me->kvm;
2283 struct kvm_vcpu *vcpu;
2284 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2285 int yielded = 0;
2286 int try = 3;
2287 int pass;
2288 int i;
2289
2290 kvm_vcpu_set_in_spin_loop(me, true);
2291 /*
2292 * We boost the priority of a VCPU that is runnable but not
2293 * currently running, because it got preempted by something
2294 * else and called schedule in __vcpu_run. Hopefully that
2295 * VCPU is holding the lock that we need and will release it.
2296 * We approximate round-robin by starting at the last boosted VCPU.
2297 */
2298 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2299 kvm_for_each_vcpu(i, vcpu, kvm) {
2300 if (!pass && i <= last_boosted_vcpu) {
2301 i = last_boosted_vcpu;
2302 continue;
2303 } else if (pass && i > last_boosted_vcpu)
2304 break;
2305 if (!READ_ONCE(vcpu->preempted))
2306 continue;
2307 if (vcpu == me)
2308 continue;
2309 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2310 continue;
2311 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2312 continue;
2313 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2314 continue;
2315
2316 yielded = kvm_vcpu_yield_to(vcpu);
2317 if (yielded > 0) {
2318 kvm->last_boosted_vcpu = i;
2319 break;
2320 } else if (yielded < 0) {
2321 try--;
2322 if (!try)
2323 break;
2324 }
2325 }
2326 }
2327 kvm_vcpu_set_in_spin_loop(me, false);
2328
2329 /* Ensure vcpu is not eligible during next spinloop */
2330 kvm_vcpu_set_dy_eligible(me, false);
2331 }
2332 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2333
2334 static int kvm_vcpu_fault(struct vm_fault *vmf)
2335 {
2336 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2337 struct page *page;
2338
2339 if (vmf->pgoff == 0)
2340 page = virt_to_page(vcpu->run);
2341 #ifdef CONFIG_X86
2342 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2343 page = virt_to_page(vcpu->arch.pio_data);
2344 #endif
2345 #ifdef CONFIG_KVM_MMIO
2346 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2347 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2348 #endif
2349 else
2350 return kvm_arch_vcpu_fault(vcpu, vmf);
2351 get_page(page);
2352 vmf->page = page;
2353 return 0;
2354 }
2355
2356 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2357 .fault = kvm_vcpu_fault,
2358 };
2359
2360 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2361 {
2362 vma->vm_ops = &kvm_vcpu_vm_ops;
2363 return 0;
2364 }
2365
2366 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2367 {
2368 struct kvm_vcpu *vcpu = filp->private_data;
2369
2370 debugfs_remove_recursive(vcpu->debugfs_dentry);
2371 kvm_put_kvm(vcpu->kvm);
2372 return 0;
2373 }
2374
2375 static struct file_operations kvm_vcpu_fops = {
2376 .release = kvm_vcpu_release,
2377 .unlocked_ioctl = kvm_vcpu_ioctl,
2378 #ifdef CONFIG_KVM_COMPAT
2379 .compat_ioctl = kvm_vcpu_compat_ioctl,
2380 #endif
2381 .mmap = kvm_vcpu_mmap,
2382 .llseek = noop_llseek,
2383 };
2384
2385 /*
2386 * Allocates an inode for the vcpu.
2387 */
2388 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2389 {
2390 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2391 }
2392
2393 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2394 {
2395 char dir_name[ITOA_MAX_LEN * 2];
2396 int ret;
2397
2398 if (!kvm_arch_has_vcpu_debugfs())
2399 return 0;
2400
2401 if (!debugfs_initialized())
2402 return 0;
2403
2404 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2405 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2406 vcpu->kvm->debugfs_dentry);
2407 if (!vcpu->debugfs_dentry)
2408 return -ENOMEM;
2409
2410 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2411 if (ret < 0) {
2412 debugfs_remove_recursive(vcpu->debugfs_dentry);
2413 return ret;
2414 }
2415
2416 return 0;
2417 }
2418
2419 /*
2420 * Creates some virtual cpus. Good luck creating more than one.
2421 */
2422 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2423 {
2424 int r;
2425 struct kvm_vcpu *vcpu;
2426
2427 if (id >= KVM_MAX_VCPU_ID)
2428 return -EINVAL;
2429
2430 mutex_lock(&kvm->lock);
2431 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2432 mutex_unlock(&kvm->lock);
2433 return -EINVAL;
2434 }
2435
2436 kvm->created_vcpus++;
2437 mutex_unlock(&kvm->lock);
2438
2439 vcpu = kvm_arch_vcpu_create(kvm, id);
2440 if (IS_ERR(vcpu)) {
2441 r = PTR_ERR(vcpu);
2442 goto vcpu_decrement;
2443 }
2444
2445 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2446
2447 r = kvm_arch_vcpu_setup(vcpu);
2448 if (r)
2449 goto vcpu_destroy;
2450
2451 r = kvm_create_vcpu_debugfs(vcpu);
2452 if (r)
2453 goto vcpu_destroy;
2454
2455 mutex_lock(&kvm->lock);
2456 if (kvm_get_vcpu_by_id(kvm, id)) {
2457 r = -EEXIST;
2458 goto unlock_vcpu_destroy;
2459 }
2460
2461 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2462
2463 /* Now it's all set up, let userspace reach it */
2464 kvm_get_kvm(kvm);
2465 r = create_vcpu_fd(vcpu);
2466 if (r < 0) {
2467 kvm_put_kvm(kvm);
2468 goto unlock_vcpu_destroy;
2469 }
2470
2471 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2472
2473 /*
2474 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2475 * before kvm->online_vcpu's incremented value.
2476 */
2477 smp_wmb();
2478 atomic_inc(&kvm->online_vcpus);
2479
2480 mutex_unlock(&kvm->lock);
2481 kvm_arch_vcpu_postcreate(vcpu);
2482 return r;
2483
2484 unlock_vcpu_destroy:
2485 mutex_unlock(&kvm->lock);
2486 debugfs_remove_recursive(vcpu->debugfs_dentry);
2487 vcpu_destroy:
2488 kvm_arch_vcpu_destroy(vcpu);
2489 vcpu_decrement:
2490 mutex_lock(&kvm->lock);
2491 kvm->created_vcpus--;
2492 mutex_unlock(&kvm->lock);
2493 return r;
2494 }
2495
2496 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2497 {
2498 if (sigset) {
2499 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2500 vcpu->sigset_active = 1;
2501 vcpu->sigset = *sigset;
2502 } else
2503 vcpu->sigset_active = 0;
2504 return 0;
2505 }
2506
2507 static long kvm_vcpu_ioctl(struct file *filp,
2508 unsigned int ioctl, unsigned long arg)
2509 {
2510 struct kvm_vcpu *vcpu = filp->private_data;
2511 void __user *argp = (void __user *)arg;
2512 int r;
2513 struct kvm_fpu *fpu = NULL;
2514 struct kvm_sregs *kvm_sregs = NULL;
2515
2516 if (vcpu->kvm->mm != current->mm)
2517 return -EIO;
2518
2519 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2520 return -EINVAL;
2521
2522 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2523 /*
2524 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2525 * so vcpu_load() would break it.
2526 */
2527 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2528 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2529 #endif
2530
2531
2532 r = vcpu_load(vcpu);
2533 if (r)
2534 return r;
2535 switch (ioctl) {
2536 case KVM_RUN: {
2537 struct pid *oldpid;
2538 r = -EINVAL;
2539 if (arg)
2540 goto out;
2541 oldpid = rcu_access_pointer(vcpu->pid);
2542 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2543 /* The thread running this VCPU changed. */
2544 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2545
2546 rcu_assign_pointer(vcpu->pid, newpid);
2547 if (oldpid)
2548 synchronize_rcu();
2549 put_pid(oldpid);
2550 }
2551 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2552 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2553 break;
2554 }
2555 case KVM_GET_REGS: {
2556 struct kvm_regs *kvm_regs;
2557
2558 r = -ENOMEM;
2559 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2560 if (!kvm_regs)
2561 goto out;
2562 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2563 if (r)
2564 goto out_free1;
2565 r = -EFAULT;
2566 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2567 goto out_free1;
2568 r = 0;
2569 out_free1:
2570 kfree(kvm_regs);
2571 break;
2572 }
2573 case KVM_SET_REGS: {
2574 struct kvm_regs *kvm_regs;
2575
2576 r = -ENOMEM;
2577 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2578 if (IS_ERR(kvm_regs)) {
2579 r = PTR_ERR(kvm_regs);
2580 goto out;
2581 }
2582 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2583 kfree(kvm_regs);
2584 break;
2585 }
2586 case KVM_GET_SREGS: {
2587 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2588 r = -ENOMEM;
2589 if (!kvm_sregs)
2590 goto out;
2591 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2592 if (r)
2593 goto out;
2594 r = -EFAULT;
2595 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2596 goto out;
2597 r = 0;
2598 break;
2599 }
2600 case KVM_SET_SREGS: {
2601 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2602 if (IS_ERR(kvm_sregs)) {
2603 r = PTR_ERR(kvm_sregs);
2604 kvm_sregs = NULL;
2605 goto out;
2606 }
2607 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2608 break;
2609 }
2610 case KVM_GET_MP_STATE: {
2611 struct kvm_mp_state mp_state;
2612
2613 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2614 if (r)
2615 goto out;
2616 r = -EFAULT;
2617 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2618 goto out;
2619 r = 0;
2620 break;
2621 }
2622 case KVM_SET_MP_STATE: {
2623 struct kvm_mp_state mp_state;
2624
2625 r = -EFAULT;
2626 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2627 goto out;
2628 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2629 break;
2630 }
2631 case KVM_TRANSLATE: {
2632 struct kvm_translation tr;
2633
2634 r = -EFAULT;
2635 if (copy_from_user(&tr, argp, sizeof(tr)))
2636 goto out;
2637 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2638 if (r)
2639 goto out;
2640 r = -EFAULT;
2641 if (copy_to_user(argp, &tr, sizeof(tr)))
2642 goto out;
2643 r = 0;
2644 break;
2645 }
2646 case KVM_SET_GUEST_DEBUG: {
2647 struct kvm_guest_debug dbg;
2648
2649 r = -EFAULT;
2650 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2651 goto out;
2652 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2653 break;
2654 }
2655 case KVM_SET_SIGNAL_MASK: {
2656 struct kvm_signal_mask __user *sigmask_arg = argp;
2657 struct kvm_signal_mask kvm_sigmask;
2658 sigset_t sigset, *p;
2659
2660 p = NULL;
2661 if (argp) {
2662 r = -EFAULT;
2663 if (copy_from_user(&kvm_sigmask, argp,
2664 sizeof(kvm_sigmask)))
2665 goto out;
2666 r = -EINVAL;
2667 if (kvm_sigmask.len != sizeof(sigset))
2668 goto out;
2669 r = -EFAULT;
2670 if (copy_from_user(&sigset, sigmask_arg->sigset,
2671 sizeof(sigset)))
2672 goto out;
2673 p = &sigset;
2674 }
2675 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2676 break;
2677 }
2678 case KVM_GET_FPU: {
2679 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2680 r = -ENOMEM;
2681 if (!fpu)
2682 goto out;
2683 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2684 if (r)
2685 goto out;
2686 r = -EFAULT;
2687 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2688 goto out;
2689 r = 0;
2690 break;
2691 }
2692 case KVM_SET_FPU: {
2693 fpu = memdup_user(argp, sizeof(*fpu));
2694 if (IS_ERR(fpu)) {
2695 r = PTR_ERR(fpu);
2696 fpu = NULL;
2697 goto out;
2698 }
2699 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2700 break;
2701 }
2702 default:
2703 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2704 }
2705 out:
2706 vcpu_put(vcpu);
2707 kfree(fpu);
2708 kfree(kvm_sregs);
2709 return r;
2710 }
2711
2712 #ifdef CONFIG_KVM_COMPAT
2713 static long kvm_vcpu_compat_ioctl(struct file *filp,
2714 unsigned int ioctl, unsigned long arg)
2715 {
2716 struct kvm_vcpu *vcpu = filp->private_data;
2717 void __user *argp = compat_ptr(arg);
2718 int r;
2719
2720 if (vcpu->kvm->mm != current->mm)
2721 return -EIO;
2722
2723 switch (ioctl) {
2724 case KVM_SET_SIGNAL_MASK: {
2725 struct kvm_signal_mask __user *sigmask_arg = argp;
2726 struct kvm_signal_mask kvm_sigmask;
2727 sigset_t sigset;
2728
2729 if (argp) {
2730 r = -EFAULT;
2731 if (copy_from_user(&kvm_sigmask, argp,
2732 sizeof(kvm_sigmask)))
2733 goto out;
2734 r = -EINVAL;
2735 if (kvm_sigmask.len != sizeof(compat_sigset_t))
2736 goto out;
2737 r = -EFAULT;
2738 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2739 goto out;
2740 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2741 } else
2742 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2743 break;
2744 }
2745 default:
2746 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2747 }
2748
2749 out:
2750 return r;
2751 }
2752 #endif
2753
2754 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2755 int (*accessor)(struct kvm_device *dev,
2756 struct kvm_device_attr *attr),
2757 unsigned long arg)
2758 {
2759 struct kvm_device_attr attr;
2760
2761 if (!accessor)
2762 return -EPERM;
2763
2764 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2765 return -EFAULT;
2766
2767 return accessor(dev, &attr);
2768 }
2769
2770 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2771 unsigned long arg)
2772 {
2773 struct kvm_device *dev = filp->private_data;
2774
2775 switch (ioctl) {
2776 case KVM_SET_DEVICE_ATTR:
2777 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2778 case KVM_GET_DEVICE_ATTR:
2779 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2780 case KVM_HAS_DEVICE_ATTR:
2781 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2782 default:
2783 if (dev->ops->ioctl)
2784 return dev->ops->ioctl(dev, ioctl, arg);
2785
2786 return -ENOTTY;
2787 }
2788 }
2789
2790 static int kvm_device_release(struct inode *inode, struct file *filp)
2791 {
2792 struct kvm_device *dev = filp->private_data;
2793 struct kvm *kvm = dev->kvm;
2794
2795 kvm_put_kvm(kvm);
2796 return 0;
2797 }
2798
2799 static const struct file_operations kvm_device_fops = {
2800 .unlocked_ioctl = kvm_device_ioctl,
2801 #ifdef CONFIG_KVM_COMPAT
2802 .compat_ioctl = kvm_device_ioctl,
2803 #endif
2804 .release = kvm_device_release,
2805 };
2806
2807 struct kvm_device *kvm_device_from_filp(struct file *filp)
2808 {
2809 if (filp->f_op != &kvm_device_fops)
2810 return NULL;
2811
2812 return filp->private_data;
2813 }
2814
2815 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2816 #ifdef CONFIG_KVM_MPIC
2817 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2818 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2819 #endif
2820 };
2821
2822 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2823 {
2824 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2825 return -ENOSPC;
2826
2827 if (kvm_device_ops_table[type] != NULL)
2828 return -EEXIST;
2829
2830 kvm_device_ops_table[type] = ops;
2831 return 0;
2832 }
2833
2834 void kvm_unregister_device_ops(u32 type)
2835 {
2836 if (kvm_device_ops_table[type] != NULL)
2837 kvm_device_ops_table[type] = NULL;
2838 }
2839
2840 static int kvm_ioctl_create_device(struct kvm *kvm,
2841 struct kvm_create_device *cd)
2842 {
2843 struct kvm_device_ops *ops = NULL;
2844 struct kvm_device *dev;
2845 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2846 int ret;
2847
2848 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2849 return -ENODEV;
2850
2851 ops = kvm_device_ops_table[cd->type];
2852 if (ops == NULL)
2853 return -ENODEV;
2854
2855 if (test)
2856 return 0;
2857
2858 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2859 if (!dev)
2860 return -ENOMEM;
2861
2862 dev->ops = ops;
2863 dev->kvm = kvm;
2864
2865 mutex_lock(&kvm->lock);
2866 ret = ops->create(dev, cd->type);
2867 if (ret < 0) {
2868 mutex_unlock(&kvm->lock);
2869 kfree(dev);
2870 return ret;
2871 }
2872 list_add(&dev->vm_node, &kvm->devices);
2873 mutex_unlock(&kvm->lock);
2874
2875 if (ops->init)
2876 ops->init(dev);
2877
2878 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2879 if (ret < 0) {
2880 mutex_lock(&kvm->lock);
2881 list_del(&dev->vm_node);
2882 mutex_unlock(&kvm->lock);
2883 ops->destroy(dev);
2884 return ret;
2885 }
2886
2887 kvm_get_kvm(kvm);
2888 cd->fd = ret;
2889 return 0;
2890 }
2891
2892 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2893 {
2894 switch (arg) {
2895 case KVM_CAP_USER_MEMORY:
2896 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2897 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2898 case KVM_CAP_INTERNAL_ERROR_DATA:
2899 #ifdef CONFIG_HAVE_KVM_MSI
2900 case KVM_CAP_SIGNAL_MSI:
2901 #endif
2902 #ifdef CONFIG_HAVE_KVM_IRQFD
2903 case KVM_CAP_IRQFD:
2904 case KVM_CAP_IRQFD_RESAMPLE:
2905 #endif
2906 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2907 case KVM_CAP_CHECK_EXTENSION_VM:
2908 return 1;
2909 #ifdef CONFIG_KVM_MMIO
2910 case KVM_CAP_COALESCED_MMIO:
2911 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2912 #endif
2913 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2914 case KVM_CAP_IRQ_ROUTING:
2915 return KVM_MAX_IRQ_ROUTES;
2916 #endif
2917 #if KVM_ADDRESS_SPACE_NUM > 1
2918 case KVM_CAP_MULTI_ADDRESS_SPACE:
2919 return KVM_ADDRESS_SPACE_NUM;
2920 #endif
2921 case KVM_CAP_MAX_VCPU_ID:
2922 return KVM_MAX_VCPU_ID;
2923 default:
2924 break;
2925 }
2926 return kvm_vm_ioctl_check_extension(kvm, arg);
2927 }
2928
2929 static long kvm_vm_ioctl(struct file *filp,
2930 unsigned int ioctl, unsigned long arg)
2931 {
2932 struct kvm *kvm = filp->private_data;
2933 void __user *argp = (void __user *)arg;
2934 int r;
2935
2936 if (kvm->mm != current->mm)
2937 return -EIO;
2938 switch (ioctl) {
2939 case KVM_CREATE_VCPU:
2940 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2941 break;
2942 case KVM_SET_USER_MEMORY_REGION: {
2943 struct kvm_userspace_memory_region kvm_userspace_mem;
2944
2945 r = -EFAULT;
2946 if (copy_from_user(&kvm_userspace_mem, argp,
2947 sizeof(kvm_userspace_mem)))
2948 goto out;
2949
2950 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2951 break;
2952 }
2953 case KVM_GET_DIRTY_LOG: {
2954 struct kvm_dirty_log log;
2955
2956 r = -EFAULT;
2957 if (copy_from_user(&log, argp, sizeof(log)))
2958 goto out;
2959 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2960 break;
2961 }
2962 #ifdef CONFIG_KVM_MMIO
2963 case KVM_REGISTER_COALESCED_MMIO: {
2964 struct kvm_coalesced_mmio_zone zone;
2965
2966 r = -EFAULT;
2967 if (copy_from_user(&zone, argp, sizeof(zone)))
2968 goto out;
2969 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2970 break;
2971 }
2972 case KVM_UNREGISTER_COALESCED_MMIO: {
2973 struct kvm_coalesced_mmio_zone zone;
2974
2975 r = -EFAULT;
2976 if (copy_from_user(&zone, argp, sizeof(zone)))
2977 goto out;
2978 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2979 break;
2980 }
2981 #endif
2982 case KVM_IRQFD: {
2983 struct kvm_irqfd data;
2984
2985 r = -EFAULT;
2986 if (copy_from_user(&data, argp, sizeof(data)))
2987 goto out;
2988 r = kvm_irqfd(kvm, &data);
2989 break;
2990 }
2991 case KVM_IOEVENTFD: {
2992 struct kvm_ioeventfd data;
2993
2994 r = -EFAULT;
2995 if (copy_from_user(&data, argp, sizeof(data)))
2996 goto out;
2997 r = kvm_ioeventfd(kvm, &data);
2998 break;
2999 }
3000 #ifdef CONFIG_HAVE_KVM_MSI
3001 case KVM_SIGNAL_MSI: {
3002 struct kvm_msi msi;
3003
3004 r = -EFAULT;
3005 if (copy_from_user(&msi, argp, sizeof(msi)))
3006 goto out;
3007 r = kvm_send_userspace_msi(kvm, &msi);
3008 break;
3009 }
3010 #endif
3011 #ifdef __KVM_HAVE_IRQ_LINE
3012 case KVM_IRQ_LINE_STATUS:
3013 case KVM_IRQ_LINE: {
3014 struct kvm_irq_level irq_event;
3015
3016 r = -EFAULT;
3017 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3018 goto out;
3019
3020 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3021 ioctl == KVM_IRQ_LINE_STATUS);
3022 if (r)
3023 goto out;
3024
3025 r = -EFAULT;
3026 if (ioctl == KVM_IRQ_LINE_STATUS) {
3027 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3028 goto out;
3029 }
3030
3031 r = 0;
3032 break;
3033 }
3034 #endif
3035 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3036 case KVM_SET_GSI_ROUTING: {
3037 struct kvm_irq_routing routing;
3038 struct kvm_irq_routing __user *urouting;
3039 struct kvm_irq_routing_entry *entries = NULL;
3040
3041 r = -EFAULT;
3042 if (copy_from_user(&routing, argp, sizeof(routing)))
3043 goto out;
3044 r = -EINVAL;
3045 if (!kvm_arch_can_set_irq_routing(kvm))
3046 goto out;
3047 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3048 goto out;
3049 if (routing.flags)
3050 goto out;
3051 if (routing.nr) {
3052 r = -ENOMEM;
3053 entries = vmalloc(routing.nr * sizeof(*entries));
3054 if (!entries)
3055 goto out;
3056 r = -EFAULT;
3057 urouting = argp;
3058 if (copy_from_user(entries, urouting->entries,
3059 routing.nr * sizeof(*entries)))
3060 goto out_free_irq_routing;
3061 }
3062 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3063 routing.flags);
3064 out_free_irq_routing:
3065 vfree(entries);
3066 break;
3067 }
3068 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3069 case KVM_CREATE_DEVICE: {
3070 struct kvm_create_device cd;
3071
3072 r = -EFAULT;
3073 if (copy_from_user(&cd, argp, sizeof(cd)))
3074 goto out;
3075
3076 r = kvm_ioctl_create_device(kvm, &cd);
3077 if (r)
3078 goto out;
3079
3080 r = -EFAULT;
3081 if (copy_to_user(argp, &cd, sizeof(cd)))
3082 goto out;
3083
3084 r = 0;
3085 break;
3086 }
3087 case KVM_CHECK_EXTENSION:
3088 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3089 break;
3090 default:
3091 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3092 }
3093 out:
3094 return r;
3095 }
3096
3097 #ifdef CONFIG_KVM_COMPAT
3098 struct compat_kvm_dirty_log {
3099 __u32 slot;
3100 __u32 padding1;
3101 union {
3102 compat_uptr_t dirty_bitmap; /* one bit per page */
3103 __u64 padding2;
3104 };
3105 };
3106
3107 static long kvm_vm_compat_ioctl(struct file *filp,
3108 unsigned int ioctl, unsigned long arg)
3109 {
3110 struct kvm *kvm = filp->private_data;
3111 int r;
3112
3113 if (kvm->mm != current->mm)
3114 return -EIO;
3115 switch (ioctl) {
3116 case KVM_GET_DIRTY_LOG: {
3117 struct compat_kvm_dirty_log compat_log;
3118 struct kvm_dirty_log log;
3119
3120 if (copy_from_user(&compat_log, (void __user *)arg,
3121 sizeof(compat_log)))
3122 return -EFAULT;
3123 log.slot = compat_log.slot;
3124 log.padding1 = compat_log.padding1;
3125 log.padding2 = compat_log.padding2;
3126 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3127
3128 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3129 break;
3130 }
3131 default:
3132 r = kvm_vm_ioctl(filp, ioctl, arg);
3133 }
3134 return r;
3135 }
3136 #endif
3137
3138 static struct file_operations kvm_vm_fops = {
3139 .release = kvm_vm_release,
3140 .unlocked_ioctl = kvm_vm_ioctl,
3141 #ifdef CONFIG_KVM_COMPAT
3142 .compat_ioctl = kvm_vm_compat_ioctl,
3143 #endif
3144 .llseek = noop_llseek,
3145 };
3146
3147 static int kvm_dev_ioctl_create_vm(unsigned long type)
3148 {
3149 int r;
3150 struct kvm *kvm;
3151 struct file *file;
3152
3153 kvm = kvm_create_vm(type);
3154 if (IS_ERR(kvm))
3155 return PTR_ERR(kvm);
3156 #ifdef CONFIG_KVM_MMIO
3157 r = kvm_coalesced_mmio_init(kvm);
3158 if (r < 0) {
3159 kvm_put_kvm(kvm);
3160 return r;
3161 }
3162 #endif
3163 r = get_unused_fd_flags(O_CLOEXEC);
3164 if (r < 0) {
3165 kvm_put_kvm(kvm);
3166 return r;
3167 }
3168 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3169 if (IS_ERR(file)) {
3170 put_unused_fd(r);
3171 kvm_put_kvm(kvm);
3172 return PTR_ERR(file);
3173 }
3174
3175 /*
3176 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3177 * already set, with ->release() being kvm_vm_release(). In error
3178 * cases it will be called by the final fput(file) and will take
3179 * care of doing kvm_put_kvm(kvm).
3180 */
3181 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3182 put_unused_fd(r);
3183 fput(file);
3184 return -ENOMEM;
3185 }
3186 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3187
3188 fd_install(r, file);
3189 return r;
3190 }
3191
3192 static long kvm_dev_ioctl(struct file *filp,
3193 unsigned int ioctl, unsigned long arg)
3194 {
3195 long r = -EINVAL;
3196
3197 switch (ioctl) {
3198 case KVM_GET_API_VERSION:
3199 if (arg)
3200 goto out;
3201 r = KVM_API_VERSION;
3202 break;
3203 case KVM_CREATE_VM:
3204 r = kvm_dev_ioctl_create_vm(arg);
3205 break;
3206 case KVM_CHECK_EXTENSION:
3207 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3208 break;
3209 case KVM_GET_VCPU_MMAP_SIZE:
3210 if (arg)
3211 goto out;
3212 r = PAGE_SIZE; /* struct kvm_run */
3213 #ifdef CONFIG_X86
3214 r += PAGE_SIZE; /* pio data page */
3215 #endif
3216 #ifdef CONFIG_KVM_MMIO
3217 r += PAGE_SIZE; /* coalesced mmio ring page */
3218 #endif
3219 break;
3220 case KVM_TRACE_ENABLE:
3221 case KVM_TRACE_PAUSE:
3222 case KVM_TRACE_DISABLE:
3223 r = -EOPNOTSUPP;
3224 break;
3225 default:
3226 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3227 }
3228 out:
3229 return r;
3230 }
3231
3232 static struct file_operations kvm_chardev_ops = {
3233 .unlocked_ioctl = kvm_dev_ioctl,
3234 .compat_ioctl = kvm_dev_ioctl,
3235 .llseek = noop_llseek,
3236 };
3237
3238 static struct miscdevice kvm_dev = {
3239 KVM_MINOR,
3240 "kvm",
3241 &kvm_chardev_ops,
3242 };
3243
3244 static void hardware_enable_nolock(void *junk)
3245 {
3246 int cpu = raw_smp_processor_id();
3247 int r;
3248
3249 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3250 return;
3251
3252 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3253
3254 r = kvm_arch_hardware_enable();
3255
3256 if (r) {
3257 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3258 atomic_inc(&hardware_enable_failed);
3259 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3260 }
3261 }
3262
3263 static int kvm_starting_cpu(unsigned int cpu)
3264 {
3265 raw_spin_lock(&kvm_count_lock);
3266 if (kvm_usage_count)
3267 hardware_enable_nolock(NULL);
3268 raw_spin_unlock(&kvm_count_lock);
3269 return 0;
3270 }
3271
3272 static void hardware_disable_nolock(void *junk)
3273 {
3274 int cpu = raw_smp_processor_id();
3275
3276 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3277 return;
3278 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3279 kvm_arch_hardware_disable();
3280 }
3281
3282 static int kvm_dying_cpu(unsigned int cpu)
3283 {
3284 raw_spin_lock(&kvm_count_lock);
3285 if (kvm_usage_count)
3286 hardware_disable_nolock(NULL);
3287 raw_spin_unlock(&kvm_count_lock);
3288 return 0;
3289 }
3290
3291 static void hardware_disable_all_nolock(void)
3292 {
3293 BUG_ON(!kvm_usage_count);
3294
3295 kvm_usage_count--;
3296 if (!kvm_usage_count)
3297 on_each_cpu(hardware_disable_nolock, NULL, 1);
3298 }
3299
3300 static void hardware_disable_all(void)
3301 {
3302 raw_spin_lock(&kvm_count_lock);
3303 hardware_disable_all_nolock();
3304 raw_spin_unlock(&kvm_count_lock);
3305 }
3306
3307 static int hardware_enable_all(void)
3308 {
3309 int r = 0;
3310
3311 raw_spin_lock(&kvm_count_lock);
3312
3313 kvm_usage_count++;
3314 if (kvm_usage_count == 1) {
3315 atomic_set(&hardware_enable_failed, 0);
3316 on_each_cpu(hardware_enable_nolock, NULL, 1);
3317
3318 if (atomic_read(&hardware_enable_failed)) {
3319 hardware_disable_all_nolock();
3320 r = -EBUSY;
3321 }
3322 }
3323
3324 raw_spin_unlock(&kvm_count_lock);
3325
3326 return r;
3327 }
3328
3329 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3330 void *v)
3331 {
3332 /*
3333 * Some (well, at least mine) BIOSes hang on reboot if
3334 * in vmx root mode.
3335 *
3336 * And Intel TXT required VMX off for all cpu when system shutdown.
3337 */
3338 pr_info("kvm: exiting hardware virtualization\n");
3339 kvm_rebooting = true;
3340 on_each_cpu(hardware_disable_nolock, NULL, 1);
3341 return NOTIFY_OK;
3342 }
3343
3344 static struct notifier_block kvm_reboot_notifier = {
3345 .notifier_call = kvm_reboot,
3346 .priority = 0,
3347 };
3348
3349 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3350 {
3351 int i;
3352
3353 for (i = 0; i < bus->dev_count; i++) {
3354 struct kvm_io_device *pos = bus->range[i].dev;
3355
3356 kvm_iodevice_destructor(pos);
3357 }
3358 kfree(bus);
3359 }
3360
3361 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3362 const struct kvm_io_range *r2)
3363 {
3364 gpa_t addr1 = r1->addr;
3365 gpa_t addr2 = r2->addr;
3366
3367 if (addr1 < addr2)
3368 return -1;
3369
3370 /* If r2->len == 0, match the exact address. If r2->len != 0,
3371 * accept any overlapping write. Any order is acceptable for
3372 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3373 * we process all of them.
3374 */
3375 if (r2->len) {
3376 addr1 += r1->len;
3377 addr2 += r2->len;
3378 }
3379
3380 if (addr1 > addr2)
3381 return 1;
3382
3383 return 0;
3384 }
3385
3386 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3387 {
3388 return kvm_io_bus_cmp(p1, p2);
3389 }
3390
3391 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3392 gpa_t addr, int len)
3393 {
3394 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3395 .addr = addr,
3396 .len = len,
3397 .dev = dev,
3398 };
3399
3400 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3401 kvm_io_bus_sort_cmp, NULL);
3402
3403 return 0;
3404 }
3405
3406 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3407 gpa_t addr, int len)
3408 {
3409 struct kvm_io_range *range, key;
3410 int off;
3411
3412 key = (struct kvm_io_range) {
3413 .addr = addr,
3414 .len = len,
3415 };
3416
3417 range = bsearch(&key, bus->range, bus->dev_count,
3418 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3419 if (range == NULL)
3420 return -ENOENT;
3421
3422 off = range - bus->range;
3423
3424 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3425 off--;
3426
3427 return off;
3428 }
3429
3430 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3431 struct kvm_io_range *range, const void *val)
3432 {
3433 int idx;
3434
3435 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3436 if (idx < 0)
3437 return -EOPNOTSUPP;
3438
3439 while (idx < bus->dev_count &&
3440 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3441 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3442 range->len, val))
3443 return idx;
3444 idx++;
3445 }
3446
3447 return -EOPNOTSUPP;
3448 }
3449
3450 /* kvm_io_bus_write - called under kvm->slots_lock */
3451 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3452 int len, const void *val)
3453 {
3454 struct kvm_io_bus *bus;
3455 struct kvm_io_range range;
3456 int r;
3457
3458 range = (struct kvm_io_range) {
3459 .addr = addr,
3460 .len = len,
3461 };
3462
3463 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3464 if (!bus)
3465 return -ENOMEM;
3466 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3467 return r < 0 ? r : 0;
3468 }
3469
3470 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3471 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3472 gpa_t addr, int len, const void *val, long cookie)
3473 {
3474 struct kvm_io_bus *bus;
3475 struct kvm_io_range range;
3476
3477 range = (struct kvm_io_range) {
3478 .addr = addr,
3479 .len = len,
3480 };
3481
3482 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3483 if (!bus)
3484 return -ENOMEM;
3485
3486 /* First try the device referenced by cookie. */
3487 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3488 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3489 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3490 val))
3491 return cookie;
3492
3493 /*
3494 * cookie contained garbage; fall back to search and return the
3495 * correct cookie value.
3496 */
3497 return __kvm_io_bus_write(vcpu, bus, &range, val);
3498 }
3499
3500 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3501 struct kvm_io_range *range, void *val)
3502 {
3503 int idx;
3504
3505 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3506 if (idx < 0)
3507 return -EOPNOTSUPP;
3508
3509 while (idx < bus->dev_count &&
3510 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3511 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3512 range->len, val))
3513 return idx;
3514 idx++;
3515 }
3516
3517 return -EOPNOTSUPP;
3518 }
3519 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3520
3521 /* kvm_io_bus_read - called under kvm->slots_lock */
3522 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3523 int len, void *val)
3524 {
3525 struct kvm_io_bus *bus;
3526 struct kvm_io_range range;
3527 int r;
3528
3529 range = (struct kvm_io_range) {
3530 .addr = addr,
3531 .len = len,
3532 };
3533
3534 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3535 if (!bus)
3536 return -ENOMEM;
3537 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3538 return r < 0 ? r : 0;
3539 }
3540
3541
3542 /* Caller must hold slots_lock. */
3543 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3544 int len, struct kvm_io_device *dev)
3545 {
3546 struct kvm_io_bus *new_bus, *bus;
3547
3548 bus = kvm_get_bus(kvm, bus_idx);
3549 if (!bus)
3550 return -ENOMEM;
3551
3552 /* exclude ioeventfd which is limited by maximum fd */
3553 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3554 return -ENOSPC;
3555
3556 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3557 sizeof(struct kvm_io_range)), GFP_KERNEL);
3558 if (!new_bus)
3559 return -ENOMEM;
3560 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3561 sizeof(struct kvm_io_range)));
3562 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3563 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3564 synchronize_srcu_expedited(&kvm->srcu);
3565 kfree(bus);
3566
3567 return 0;
3568 }
3569
3570 /* Caller must hold slots_lock. */
3571 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3572 struct kvm_io_device *dev)
3573 {
3574 int i;
3575 struct kvm_io_bus *new_bus, *bus;
3576
3577 bus = kvm_get_bus(kvm, bus_idx);
3578 if (!bus)
3579 return;
3580
3581 for (i = 0; i < bus->dev_count; i++)
3582 if (bus->range[i].dev == dev) {
3583 break;
3584 }
3585
3586 if (i == bus->dev_count)
3587 return;
3588
3589 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3590 sizeof(struct kvm_io_range)), GFP_KERNEL);
3591 if (!new_bus) {
3592 pr_err("kvm: failed to shrink bus, removing it completely\n");
3593 goto broken;
3594 }
3595
3596 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3597 new_bus->dev_count--;
3598 memcpy(new_bus->range + i, bus->range + i + 1,
3599 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3600
3601 broken:
3602 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3603 synchronize_srcu_expedited(&kvm->srcu);
3604 kfree(bus);
3605 return;
3606 }
3607
3608 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3609 gpa_t addr)
3610 {
3611 struct kvm_io_bus *bus;
3612 int dev_idx, srcu_idx;
3613 struct kvm_io_device *iodev = NULL;
3614
3615 srcu_idx = srcu_read_lock(&kvm->srcu);
3616
3617 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3618 if (!bus)
3619 goto out_unlock;
3620
3621 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3622 if (dev_idx < 0)
3623 goto out_unlock;
3624
3625 iodev = bus->range[dev_idx].dev;
3626
3627 out_unlock:
3628 srcu_read_unlock(&kvm->srcu, srcu_idx);
3629
3630 return iodev;
3631 }
3632 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3633
3634 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3635 int (*get)(void *, u64 *), int (*set)(void *, u64),
3636 const char *fmt)
3637 {
3638 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3639 inode->i_private;
3640
3641 /* The debugfs files are a reference to the kvm struct which
3642 * is still valid when kvm_destroy_vm is called.
3643 * To avoid the race between open and the removal of the debugfs
3644 * directory we test against the users count.
3645 */
3646 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3647 return -ENOENT;
3648
3649 if (simple_attr_open(inode, file, get, set, fmt)) {
3650 kvm_put_kvm(stat_data->kvm);
3651 return -ENOMEM;
3652 }
3653
3654 return 0;
3655 }
3656
3657 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3658 {
3659 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3660 inode->i_private;
3661
3662 simple_attr_release(inode, file);
3663 kvm_put_kvm(stat_data->kvm);
3664
3665 return 0;
3666 }
3667
3668 static int vm_stat_get_per_vm(void *data, u64 *val)
3669 {
3670 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3671
3672 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3673
3674 return 0;
3675 }
3676
3677 static int vm_stat_clear_per_vm(void *data, u64 val)
3678 {
3679 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3680
3681 if (val)
3682 return -EINVAL;
3683
3684 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3685
3686 return 0;
3687 }
3688
3689 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3690 {
3691 __simple_attr_check_format("%llu\n", 0ull);
3692 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3693 vm_stat_clear_per_vm, "%llu\n");
3694 }
3695
3696 static const struct file_operations vm_stat_get_per_vm_fops = {
3697 .owner = THIS_MODULE,
3698 .open = vm_stat_get_per_vm_open,
3699 .release = kvm_debugfs_release,
3700 .read = simple_attr_read,
3701 .write = simple_attr_write,
3702 .llseek = no_llseek,
3703 };
3704
3705 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3706 {
3707 int i;
3708 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3709 struct kvm_vcpu *vcpu;
3710
3711 *val = 0;
3712
3713 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3714 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3715
3716 return 0;
3717 }
3718
3719 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3720 {
3721 int i;
3722 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3723 struct kvm_vcpu *vcpu;
3724
3725 if (val)
3726 return -EINVAL;
3727
3728 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3729 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3730
3731 return 0;
3732 }
3733
3734 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3735 {
3736 __simple_attr_check_format("%llu\n", 0ull);
3737 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3738 vcpu_stat_clear_per_vm, "%llu\n");
3739 }
3740
3741 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3742 .owner = THIS_MODULE,
3743 .open = vcpu_stat_get_per_vm_open,
3744 .release = kvm_debugfs_release,
3745 .read = simple_attr_read,
3746 .write = simple_attr_write,
3747 .llseek = no_llseek,
3748 };
3749
3750 static const struct file_operations *stat_fops_per_vm[] = {
3751 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3752 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3753 };
3754
3755 static int vm_stat_get(void *_offset, u64 *val)
3756 {
3757 unsigned offset = (long)_offset;
3758 struct kvm *kvm;
3759 struct kvm_stat_data stat_tmp = {.offset = offset};
3760 u64 tmp_val;
3761
3762 *val = 0;
3763 spin_lock(&kvm_lock);
3764 list_for_each_entry(kvm, &vm_list, vm_list) {
3765 stat_tmp.kvm = kvm;
3766 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3767 *val += tmp_val;
3768 }
3769 spin_unlock(&kvm_lock);
3770 return 0;
3771 }
3772
3773 static int vm_stat_clear(void *_offset, u64 val)
3774 {
3775 unsigned offset = (long)_offset;
3776 struct kvm *kvm;
3777 struct kvm_stat_data stat_tmp = {.offset = offset};
3778
3779 if (val)
3780 return -EINVAL;
3781
3782 spin_lock(&kvm_lock);
3783 list_for_each_entry(kvm, &vm_list, vm_list) {
3784 stat_tmp.kvm = kvm;
3785 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3786 }
3787 spin_unlock(&kvm_lock);
3788
3789 return 0;
3790 }
3791
3792 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3793
3794 static int vcpu_stat_get(void *_offset, u64 *val)
3795 {
3796 unsigned offset = (long)_offset;
3797 struct kvm *kvm;
3798 struct kvm_stat_data stat_tmp = {.offset = offset};
3799 u64 tmp_val;
3800
3801 *val = 0;
3802 spin_lock(&kvm_lock);
3803 list_for_each_entry(kvm, &vm_list, vm_list) {
3804 stat_tmp.kvm = kvm;
3805 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3806 *val += tmp_val;
3807 }
3808 spin_unlock(&kvm_lock);
3809 return 0;
3810 }
3811
3812 static int vcpu_stat_clear(void *_offset, u64 val)
3813 {
3814 unsigned offset = (long)_offset;
3815 struct kvm *kvm;
3816 struct kvm_stat_data stat_tmp = {.offset = offset};
3817
3818 if (val)
3819 return -EINVAL;
3820
3821 spin_lock(&kvm_lock);
3822 list_for_each_entry(kvm, &vm_list, vm_list) {
3823 stat_tmp.kvm = kvm;
3824 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3825 }
3826 spin_unlock(&kvm_lock);
3827
3828 return 0;
3829 }
3830
3831 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3832 "%llu\n");
3833
3834 static const struct file_operations *stat_fops[] = {
3835 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3836 [KVM_STAT_VM] = &vm_stat_fops,
3837 };
3838
3839 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3840 {
3841 struct kobj_uevent_env *env;
3842 unsigned long long created, active;
3843
3844 if (!kvm_dev.this_device || !kvm)
3845 return;
3846
3847 spin_lock(&kvm_lock);
3848 if (type == KVM_EVENT_CREATE_VM) {
3849 kvm_createvm_count++;
3850 kvm_active_vms++;
3851 } else if (type == KVM_EVENT_DESTROY_VM) {
3852 kvm_active_vms--;
3853 }
3854 created = kvm_createvm_count;
3855 active = kvm_active_vms;
3856 spin_unlock(&kvm_lock);
3857
3858 env = kzalloc(sizeof(*env), GFP_KERNEL);
3859 if (!env)
3860 return;
3861
3862 add_uevent_var(env, "CREATED=%llu", created);
3863 add_uevent_var(env, "COUNT=%llu", active);
3864
3865 if (type == KVM_EVENT_CREATE_VM) {
3866 add_uevent_var(env, "EVENT=create");
3867 kvm->userspace_pid = task_pid_nr(current);
3868 } else if (type == KVM_EVENT_DESTROY_VM) {
3869 add_uevent_var(env, "EVENT=destroy");
3870 }
3871 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3872
3873 if (kvm->debugfs_dentry) {
3874 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3875
3876 if (p) {
3877 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3878 if (!IS_ERR(tmp))
3879 add_uevent_var(env, "STATS_PATH=%s", tmp);
3880 kfree(p);
3881 }
3882 }
3883 /* no need for checks, since we are adding at most only 5 keys */
3884 env->envp[env->envp_idx++] = NULL;
3885 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3886 kfree(env);
3887 }
3888
3889 static int kvm_init_debug(void)
3890 {
3891 int r = -EEXIST;
3892 struct kvm_stats_debugfs_item *p;
3893
3894 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3895 if (kvm_debugfs_dir == NULL)
3896 goto out;
3897
3898 kvm_debugfs_num_entries = 0;
3899 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3900 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3901 (void *)(long)p->offset,
3902 stat_fops[p->kind]))
3903 goto out_dir;
3904 }
3905
3906 return 0;
3907
3908 out_dir:
3909 debugfs_remove_recursive(kvm_debugfs_dir);
3910 out:
3911 return r;
3912 }
3913
3914 static int kvm_suspend(void)
3915 {
3916 if (kvm_usage_count)
3917 hardware_disable_nolock(NULL);
3918 return 0;
3919 }
3920
3921 static void kvm_resume(void)
3922 {
3923 if (kvm_usage_count) {
3924 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3925 hardware_enable_nolock(NULL);
3926 }
3927 }
3928
3929 static struct syscore_ops kvm_syscore_ops = {
3930 .suspend = kvm_suspend,
3931 .resume = kvm_resume,
3932 };
3933
3934 static inline
3935 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3936 {
3937 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3938 }
3939
3940 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3941 {
3942 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3943
3944 if (vcpu->preempted)
3945 vcpu->preempted = false;
3946
3947 kvm_arch_sched_in(vcpu, cpu);
3948
3949 kvm_arch_vcpu_load(vcpu, cpu);
3950 }
3951
3952 static void kvm_sched_out(struct preempt_notifier *pn,
3953 struct task_struct *next)
3954 {
3955 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3956
3957 if (current->state == TASK_RUNNING)
3958 vcpu->preempted = true;
3959 kvm_arch_vcpu_put(vcpu);
3960 }
3961
3962 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3963 struct module *module)
3964 {
3965 int r;
3966 int cpu;
3967
3968 r = kvm_arch_init(opaque);
3969 if (r)
3970 goto out_fail;
3971
3972 /*
3973 * kvm_arch_init makes sure there's at most one caller
3974 * for architectures that support multiple implementations,
3975 * like intel and amd on x86.
3976 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3977 * conflicts in case kvm is already setup for another implementation.
3978 */
3979 r = kvm_irqfd_init();
3980 if (r)
3981 goto out_irqfd;
3982
3983 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3984 r = -ENOMEM;
3985 goto out_free_0;
3986 }
3987
3988 r = kvm_arch_hardware_setup();
3989 if (r < 0)
3990 goto out_free_0a;
3991
3992 for_each_online_cpu(cpu) {
3993 smp_call_function_single(cpu,
3994 kvm_arch_check_processor_compat,
3995 &r, 1);
3996 if (r < 0)
3997 goto out_free_1;
3998 }
3999
4000 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4001 kvm_starting_cpu, kvm_dying_cpu);
4002 if (r)
4003 goto out_free_2;
4004 register_reboot_notifier(&kvm_reboot_notifier);
4005
4006 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4007 if (!vcpu_align)
4008 vcpu_align = __alignof__(struct kvm_vcpu);
4009 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
4010 SLAB_ACCOUNT, NULL);
4011 if (!kvm_vcpu_cache) {
4012 r = -ENOMEM;
4013 goto out_free_3;
4014 }
4015
4016 r = kvm_async_pf_init();
4017 if (r)
4018 goto out_free;
4019
4020 kvm_chardev_ops.owner = module;
4021 kvm_vm_fops.owner = module;
4022 kvm_vcpu_fops.owner = module;
4023
4024 r = misc_register(&kvm_dev);
4025 if (r) {
4026 pr_err("kvm: misc device register failed\n");
4027 goto out_unreg;
4028 }
4029
4030 register_syscore_ops(&kvm_syscore_ops);
4031
4032 kvm_preempt_ops.sched_in = kvm_sched_in;
4033 kvm_preempt_ops.sched_out = kvm_sched_out;
4034
4035 r = kvm_init_debug();
4036 if (r) {
4037 pr_err("kvm: create debugfs files failed\n");
4038 goto out_undebugfs;
4039 }
4040
4041 r = kvm_vfio_ops_init();
4042 WARN_ON(r);
4043
4044 return 0;
4045
4046 out_undebugfs:
4047 unregister_syscore_ops(&kvm_syscore_ops);
4048 misc_deregister(&kvm_dev);
4049 out_unreg:
4050 kvm_async_pf_deinit();
4051 out_free:
4052 kmem_cache_destroy(kvm_vcpu_cache);
4053 out_free_3:
4054 unregister_reboot_notifier(&kvm_reboot_notifier);
4055 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4056 out_free_2:
4057 out_free_1:
4058 kvm_arch_hardware_unsetup();
4059 out_free_0a:
4060 free_cpumask_var(cpus_hardware_enabled);
4061 out_free_0:
4062 kvm_irqfd_exit();
4063 out_irqfd:
4064 kvm_arch_exit();
4065 out_fail:
4066 return r;
4067 }
4068 EXPORT_SYMBOL_GPL(kvm_init);
4069
4070 void kvm_exit(void)
4071 {
4072 debugfs_remove_recursive(kvm_debugfs_dir);
4073 misc_deregister(&kvm_dev);
4074 kmem_cache_destroy(kvm_vcpu_cache);
4075 kvm_async_pf_deinit();
4076 unregister_syscore_ops(&kvm_syscore_ops);
4077 unregister_reboot_notifier(&kvm_reboot_notifier);
4078 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4079 on_each_cpu(hardware_disable_nolock, NULL, 1);
4080 kvm_arch_hardware_unsetup();
4081 kvm_arch_exit();
4082 kvm_irqfd_exit();
4083 free_cpumask_var(cpus_hardware_enabled);
4084 kvm_vfio_ops_exit();
4085 }
4086 EXPORT_SYMBOL_GPL(kvm_exit);