]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - virt/kvm/kvm_main.c
Merge remote-tracking branches 'asoc/fix/dpcm', 'asoc/fix/imx', 'asoc/fix/msm8916...
[mirror_ubuntu-artful-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90 * Ordering of locks:
91 *
92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93 */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124
125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
127
128 __visible bool kvm_rebooting;
129 EXPORT_SYMBOL_GPL(kvm_rebooting);
130
131 static bool largepages_enabled = true;
132
133 #define KVM_EVENT_CREATE_VM 0
134 #define KVM_EVENT_DESTROY_VM 1
135 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
136 static unsigned long long kvm_createvm_count;
137 static unsigned long long kvm_active_vms;
138
139 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
140 {
141 if (pfn_valid(pfn))
142 return PageReserved(pfn_to_page(pfn));
143
144 return true;
145 }
146
147 /*
148 * Switches to specified vcpu, until a matching vcpu_put()
149 */
150 int vcpu_load(struct kvm_vcpu *vcpu)
151 {
152 int cpu;
153
154 if (mutex_lock_killable(&vcpu->mutex))
155 return -EINTR;
156 cpu = get_cpu();
157 preempt_notifier_register(&vcpu->preempt_notifier);
158 kvm_arch_vcpu_load(vcpu, cpu);
159 put_cpu();
160 return 0;
161 }
162 EXPORT_SYMBOL_GPL(vcpu_load);
163
164 void vcpu_put(struct kvm_vcpu *vcpu)
165 {
166 preempt_disable();
167 kvm_arch_vcpu_put(vcpu);
168 preempt_notifier_unregister(&vcpu->preempt_notifier);
169 preempt_enable();
170 mutex_unlock(&vcpu->mutex);
171 }
172 EXPORT_SYMBOL_GPL(vcpu_put);
173
174 /* TODO: merge with kvm_arch_vcpu_should_kick */
175 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
176 {
177 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
178
179 /*
180 * We need to wait for the VCPU to reenable interrupts and get out of
181 * READING_SHADOW_PAGE_TABLES mode.
182 */
183 if (req & KVM_REQUEST_WAIT)
184 return mode != OUTSIDE_GUEST_MODE;
185
186 /*
187 * Need to kick a running VCPU, but otherwise there is nothing to do.
188 */
189 return mode == IN_GUEST_MODE;
190 }
191
192 static void ack_flush(void *_completed)
193 {
194 }
195
196 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
197 {
198 if (unlikely(!cpus))
199 cpus = cpu_online_mask;
200
201 if (cpumask_empty(cpus))
202 return false;
203
204 smp_call_function_many(cpus, ack_flush, NULL, wait);
205 return true;
206 }
207
208 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
209 {
210 int i, cpu, me;
211 cpumask_var_t cpus;
212 bool called;
213 struct kvm_vcpu *vcpu;
214
215 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
216
217 me = get_cpu();
218 kvm_for_each_vcpu(i, vcpu, kvm) {
219 kvm_make_request(req, vcpu);
220 cpu = vcpu->cpu;
221
222 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
223 continue;
224
225 if (cpus != NULL && cpu != -1 && cpu != me &&
226 kvm_request_needs_ipi(vcpu, req))
227 __cpumask_set_cpu(cpu, cpus);
228 }
229 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
230 put_cpu();
231 free_cpumask_var(cpus);
232 return called;
233 }
234
235 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
236 void kvm_flush_remote_tlbs(struct kvm *kvm)
237 {
238 /*
239 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
240 * kvm_make_all_cpus_request.
241 */
242 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
243
244 /*
245 * We want to publish modifications to the page tables before reading
246 * mode. Pairs with a memory barrier in arch-specific code.
247 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
248 * and smp_mb in walk_shadow_page_lockless_begin/end.
249 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
250 *
251 * There is already an smp_mb__after_atomic() before
252 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
253 * barrier here.
254 */
255 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
256 ++kvm->stat.remote_tlb_flush;
257 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
258 }
259 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
260 #endif
261
262 void kvm_reload_remote_mmus(struct kvm *kvm)
263 {
264 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
265 }
266
267 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
268 {
269 struct page *page;
270 int r;
271
272 mutex_init(&vcpu->mutex);
273 vcpu->cpu = -1;
274 vcpu->kvm = kvm;
275 vcpu->vcpu_id = id;
276 vcpu->pid = NULL;
277 init_swait_queue_head(&vcpu->wq);
278 kvm_async_pf_vcpu_init(vcpu);
279
280 vcpu->pre_pcpu = -1;
281 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
282
283 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
284 if (!page) {
285 r = -ENOMEM;
286 goto fail;
287 }
288 vcpu->run = page_address(page);
289
290 kvm_vcpu_set_in_spin_loop(vcpu, false);
291 kvm_vcpu_set_dy_eligible(vcpu, false);
292 vcpu->preempted = false;
293
294 r = kvm_arch_vcpu_init(vcpu);
295 if (r < 0)
296 goto fail_free_run;
297 return 0;
298
299 fail_free_run:
300 free_page((unsigned long)vcpu->run);
301 fail:
302 return r;
303 }
304 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
305
306 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
307 {
308 /*
309 * no need for rcu_read_lock as VCPU_RUN is the only place that
310 * will change the vcpu->pid pointer and on uninit all file
311 * descriptors are already gone.
312 */
313 put_pid(rcu_dereference_protected(vcpu->pid, 1));
314 kvm_arch_vcpu_uninit(vcpu);
315 free_page((unsigned long)vcpu->run);
316 }
317 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
318
319 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
320 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
321 {
322 return container_of(mn, struct kvm, mmu_notifier);
323 }
324
325 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
326 struct mm_struct *mm,
327 unsigned long address)
328 {
329 struct kvm *kvm = mmu_notifier_to_kvm(mn);
330 int need_tlb_flush, idx;
331
332 /*
333 * When ->invalidate_page runs, the linux pte has been zapped
334 * already but the page is still allocated until
335 * ->invalidate_page returns. So if we increase the sequence
336 * here the kvm page fault will notice if the spte can't be
337 * established because the page is going to be freed. If
338 * instead the kvm page fault establishes the spte before
339 * ->invalidate_page runs, kvm_unmap_hva will release it
340 * before returning.
341 *
342 * The sequence increase only need to be seen at spin_unlock
343 * time, and not at spin_lock time.
344 *
345 * Increasing the sequence after the spin_unlock would be
346 * unsafe because the kvm page fault could then establish the
347 * pte after kvm_unmap_hva returned, without noticing the page
348 * is going to be freed.
349 */
350 idx = srcu_read_lock(&kvm->srcu);
351 spin_lock(&kvm->mmu_lock);
352
353 kvm->mmu_notifier_seq++;
354 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
355 /* we've to flush the tlb before the pages can be freed */
356 if (need_tlb_flush)
357 kvm_flush_remote_tlbs(kvm);
358
359 spin_unlock(&kvm->mmu_lock);
360
361 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
362
363 srcu_read_unlock(&kvm->srcu, idx);
364 }
365
366 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
367 struct mm_struct *mm,
368 unsigned long address,
369 pte_t pte)
370 {
371 struct kvm *kvm = mmu_notifier_to_kvm(mn);
372 int idx;
373
374 idx = srcu_read_lock(&kvm->srcu);
375 spin_lock(&kvm->mmu_lock);
376 kvm->mmu_notifier_seq++;
377 kvm_set_spte_hva(kvm, address, pte);
378 spin_unlock(&kvm->mmu_lock);
379 srcu_read_unlock(&kvm->srcu, idx);
380 }
381
382 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
383 struct mm_struct *mm,
384 unsigned long start,
385 unsigned long end)
386 {
387 struct kvm *kvm = mmu_notifier_to_kvm(mn);
388 int need_tlb_flush = 0, idx;
389
390 idx = srcu_read_lock(&kvm->srcu);
391 spin_lock(&kvm->mmu_lock);
392 /*
393 * The count increase must become visible at unlock time as no
394 * spte can be established without taking the mmu_lock and
395 * count is also read inside the mmu_lock critical section.
396 */
397 kvm->mmu_notifier_count++;
398 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
399 need_tlb_flush |= kvm->tlbs_dirty;
400 /* we've to flush the tlb before the pages can be freed */
401 if (need_tlb_flush)
402 kvm_flush_remote_tlbs(kvm);
403
404 spin_unlock(&kvm->mmu_lock);
405 srcu_read_unlock(&kvm->srcu, idx);
406 }
407
408 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
409 struct mm_struct *mm,
410 unsigned long start,
411 unsigned long end)
412 {
413 struct kvm *kvm = mmu_notifier_to_kvm(mn);
414
415 spin_lock(&kvm->mmu_lock);
416 /*
417 * This sequence increase will notify the kvm page fault that
418 * the page that is going to be mapped in the spte could have
419 * been freed.
420 */
421 kvm->mmu_notifier_seq++;
422 smp_wmb();
423 /*
424 * The above sequence increase must be visible before the
425 * below count decrease, which is ensured by the smp_wmb above
426 * in conjunction with the smp_rmb in mmu_notifier_retry().
427 */
428 kvm->mmu_notifier_count--;
429 spin_unlock(&kvm->mmu_lock);
430
431 BUG_ON(kvm->mmu_notifier_count < 0);
432 }
433
434 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
435 struct mm_struct *mm,
436 unsigned long start,
437 unsigned long end)
438 {
439 struct kvm *kvm = mmu_notifier_to_kvm(mn);
440 int young, idx;
441
442 idx = srcu_read_lock(&kvm->srcu);
443 spin_lock(&kvm->mmu_lock);
444
445 young = kvm_age_hva(kvm, start, end);
446 if (young)
447 kvm_flush_remote_tlbs(kvm);
448
449 spin_unlock(&kvm->mmu_lock);
450 srcu_read_unlock(&kvm->srcu, idx);
451
452 return young;
453 }
454
455 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
456 struct mm_struct *mm,
457 unsigned long start,
458 unsigned long end)
459 {
460 struct kvm *kvm = mmu_notifier_to_kvm(mn);
461 int young, idx;
462
463 idx = srcu_read_lock(&kvm->srcu);
464 spin_lock(&kvm->mmu_lock);
465 /*
466 * Even though we do not flush TLB, this will still adversely
467 * affect performance on pre-Haswell Intel EPT, where there is
468 * no EPT Access Bit to clear so that we have to tear down EPT
469 * tables instead. If we find this unacceptable, we can always
470 * add a parameter to kvm_age_hva so that it effectively doesn't
471 * do anything on clear_young.
472 *
473 * Also note that currently we never issue secondary TLB flushes
474 * from clear_young, leaving this job up to the regular system
475 * cadence. If we find this inaccurate, we might come up with a
476 * more sophisticated heuristic later.
477 */
478 young = kvm_age_hva(kvm, start, end);
479 spin_unlock(&kvm->mmu_lock);
480 srcu_read_unlock(&kvm->srcu, idx);
481
482 return young;
483 }
484
485 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
486 struct mm_struct *mm,
487 unsigned long address)
488 {
489 struct kvm *kvm = mmu_notifier_to_kvm(mn);
490 int young, idx;
491
492 idx = srcu_read_lock(&kvm->srcu);
493 spin_lock(&kvm->mmu_lock);
494 young = kvm_test_age_hva(kvm, address);
495 spin_unlock(&kvm->mmu_lock);
496 srcu_read_unlock(&kvm->srcu, idx);
497
498 return young;
499 }
500
501 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
502 struct mm_struct *mm)
503 {
504 struct kvm *kvm = mmu_notifier_to_kvm(mn);
505 int idx;
506
507 idx = srcu_read_lock(&kvm->srcu);
508 kvm_arch_flush_shadow_all(kvm);
509 srcu_read_unlock(&kvm->srcu, idx);
510 }
511
512 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
513 .invalidate_page = kvm_mmu_notifier_invalidate_page,
514 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
515 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
516 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
517 .clear_young = kvm_mmu_notifier_clear_young,
518 .test_young = kvm_mmu_notifier_test_young,
519 .change_pte = kvm_mmu_notifier_change_pte,
520 .release = kvm_mmu_notifier_release,
521 };
522
523 static int kvm_init_mmu_notifier(struct kvm *kvm)
524 {
525 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
526 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
527 }
528
529 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
530
531 static int kvm_init_mmu_notifier(struct kvm *kvm)
532 {
533 return 0;
534 }
535
536 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
537
538 static struct kvm_memslots *kvm_alloc_memslots(void)
539 {
540 int i;
541 struct kvm_memslots *slots;
542
543 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
544 if (!slots)
545 return NULL;
546
547 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
548 slots->id_to_index[i] = slots->memslots[i].id = i;
549
550 return slots;
551 }
552
553 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
554 {
555 if (!memslot->dirty_bitmap)
556 return;
557
558 kvfree(memslot->dirty_bitmap);
559 memslot->dirty_bitmap = NULL;
560 }
561
562 /*
563 * Free any memory in @free but not in @dont.
564 */
565 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
566 struct kvm_memory_slot *dont)
567 {
568 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
569 kvm_destroy_dirty_bitmap(free);
570
571 kvm_arch_free_memslot(kvm, free, dont);
572
573 free->npages = 0;
574 }
575
576 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
577 {
578 struct kvm_memory_slot *memslot;
579
580 if (!slots)
581 return;
582
583 kvm_for_each_memslot(memslot, slots)
584 kvm_free_memslot(kvm, memslot, NULL);
585
586 kvfree(slots);
587 }
588
589 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
590 {
591 int i;
592
593 if (!kvm->debugfs_dentry)
594 return;
595
596 debugfs_remove_recursive(kvm->debugfs_dentry);
597
598 if (kvm->debugfs_stat_data) {
599 for (i = 0; i < kvm_debugfs_num_entries; i++)
600 kfree(kvm->debugfs_stat_data[i]);
601 kfree(kvm->debugfs_stat_data);
602 }
603 }
604
605 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
606 {
607 char dir_name[ITOA_MAX_LEN * 2];
608 struct kvm_stat_data *stat_data;
609 struct kvm_stats_debugfs_item *p;
610
611 if (!debugfs_initialized())
612 return 0;
613
614 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
615 kvm->debugfs_dentry = debugfs_create_dir(dir_name,
616 kvm_debugfs_dir);
617 if (!kvm->debugfs_dentry)
618 return -ENOMEM;
619
620 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
621 sizeof(*kvm->debugfs_stat_data),
622 GFP_KERNEL);
623 if (!kvm->debugfs_stat_data)
624 return -ENOMEM;
625
626 for (p = debugfs_entries; p->name; p++) {
627 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
628 if (!stat_data)
629 return -ENOMEM;
630
631 stat_data->kvm = kvm;
632 stat_data->offset = p->offset;
633 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
634 if (!debugfs_create_file(p->name, 0644,
635 kvm->debugfs_dentry,
636 stat_data,
637 stat_fops_per_vm[p->kind]))
638 return -ENOMEM;
639 }
640 return 0;
641 }
642
643 static struct kvm *kvm_create_vm(unsigned long type)
644 {
645 int r, i;
646 struct kvm *kvm = kvm_arch_alloc_vm();
647
648 if (!kvm)
649 return ERR_PTR(-ENOMEM);
650
651 spin_lock_init(&kvm->mmu_lock);
652 mmgrab(current->mm);
653 kvm->mm = current->mm;
654 kvm_eventfd_init(kvm);
655 mutex_init(&kvm->lock);
656 mutex_init(&kvm->irq_lock);
657 mutex_init(&kvm->slots_lock);
658 refcount_set(&kvm->users_count, 1);
659 INIT_LIST_HEAD(&kvm->devices);
660
661 r = kvm_arch_init_vm(kvm, type);
662 if (r)
663 goto out_err_no_disable;
664
665 r = hardware_enable_all();
666 if (r)
667 goto out_err_no_disable;
668
669 #ifdef CONFIG_HAVE_KVM_IRQFD
670 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
671 #endif
672
673 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
674
675 r = -ENOMEM;
676 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
677 struct kvm_memslots *slots = kvm_alloc_memslots();
678 if (!slots)
679 goto out_err_no_srcu;
680 /*
681 * Generations must be different for each address space.
682 * Init kvm generation close to the maximum to easily test the
683 * code of handling generation number wrap-around.
684 */
685 slots->generation = i * 2 - 150;
686 rcu_assign_pointer(kvm->memslots[i], slots);
687 }
688
689 if (init_srcu_struct(&kvm->srcu))
690 goto out_err_no_srcu;
691 if (init_srcu_struct(&kvm->irq_srcu))
692 goto out_err_no_irq_srcu;
693 for (i = 0; i < KVM_NR_BUSES; i++) {
694 rcu_assign_pointer(kvm->buses[i],
695 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
696 if (!kvm->buses[i])
697 goto out_err;
698 }
699
700 r = kvm_init_mmu_notifier(kvm);
701 if (r)
702 goto out_err;
703
704 spin_lock(&kvm_lock);
705 list_add(&kvm->vm_list, &vm_list);
706 spin_unlock(&kvm_lock);
707
708 preempt_notifier_inc();
709
710 return kvm;
711
712 out_err:
713 cleanup_srcu_struct(&kvm->irq_srcu);
714 out_err_no_irq_srcu:
715 cleanup_srcu_struct(&kvm->srcu);
716 out_err_no_srcu:
717 hardware_disable_all();
718 out_err_no_disable:
719 for (i = 0; i < KVM_NR_BUSES; i++)
720 kfree(rcu_access_pointer(kvm->buses[i]));
721 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
722 kvm_free_memslots(kvm,
723 rcu_dereference_protected(kvm->memslots[i], 1));
724 kvm_arch_free_vm(kvm);
725 mmdrop(current->mm);
726 return ERR_PTR(r);
727 }
728
729 static void kvm_destroy_devices(struct kvm *kvm)
730 {
731 struct kvm_device *dev, *tmp;
732
733 /*
734 * We do not need to take the kvm->lock here, because nobody else
735 * has a reference to the struct kvm at this point and therefore
736 * cannot access the devices list anyhow.
737 */
738 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
739 list_del(&dev->vm_node);
740 dev->ops->destroy(dev);
741 }
742 }
743
744 static void kvm_destroy_vm(struct kvm *kvm)
745 {
746 int i;
747 struct mm_struct *mm = kvm->mm;
748
749 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
750 kvm_destroy_vm_debugfs(kvm);
751 kvm_arch_sync_events(kvm);
752 spin_lock(&kvm_lock);
753 list_del(&kvm->vm_list);
754 spin_unlock(&kvm_lock);
755 kvm_free_irq_routing(kvm);
756 for (i = 0; i < KVM_NR_BUSES; i++) {
757 struct kvm_io_bus *bus;
758
759 bus = rcu_dereference_protected(kvm->buses[i], 1);
760 if (bus)
761 kvm_io_bus_destroy(bus);
762 kvm->buses[i] = NULL;
763 }
764 kvm_coalesced_mmio_free(kvm);
765 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
766 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
767 #else
768 kvm_arch_flush_shadow_all(kvm);
769 #endif
770 kvm_arch_destroy_vm(kvm);
771 kvm_destroy_devices(kvm);
772 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
773 kvm_free_memslots(kvm,
774 rcu_dereference_protected(kvm->memslots[i], 1));
775 cleanup_srcu_struct(&kvm->irq_srcu);
776 cleanup_srcu_struct(&kvm->srcu);
777 kvm_arch_free_vm(kvm);
778 preempt_notifier_dec();
779 hardware_disable_all();
780 mmdrop(mm);
781 }
782
783 void kvm_get_kvm(struct kvm *kvm)
784 {
785 refcount_inc(&kvm->users_count);
786 }
787 EXPORT_SYMBOL_GPL(kvm_get_kvm);
788
789 void kvm_put_kvm(struct kvm *kvm)
790 {
791 if (refcount_dec_and_test(&kvm->users_count))
792 kvm_destroy_vm(kvm);
793 }
794 EXPORT_SYMBOL_GPL(kvm_put_kvm);
795
796
797 static int kvm_vm_release(struct inode *inode, struct file *filp)
798 {
799 struct kvm *kvm = filp->private_data;
800
801 kvm_irqfd_release(kvm);
802
803 kvm_put_kvm(kvm);
804 return 0;
805 }
806
807 /*
808 * Allocation size is twice as large as the actual dirty bitmap size.
809 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
810 */
811 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
812 {
813 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
814
815 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
816 if (!memslot->dirty_bitmap)
817 return -ENOMEM;
818
819 return 0;
820 }
821
822 /*
823 * Insert memslot and re-sort memslots based on their GFN,
824 * so binary search could be used to lookup GFN.
825 * Sorting algorithm takes advantage of having initially
826 * sorted array and known changed memslot position.
827 */
828 static void update_memslots(struct kvm_memslots *slots,
829 struct kvm_memory_slot *new)
830 {
831 int id = new->id;
832 int i = slots->id_to_index[id];
833 struct kvm_memory_slot *mslots = slots->memslots;
834
835 WARN_ON(mslots[i].id != id);
836 if (!new->npages) {
837 WARN_ON(!mslots[i].npages);
838 if (mslots[i].npages)
839 slots->used_slots--;
840 } else {
841 if (!mslots[i].npages)
842 slots->used_slots++;
843 }
844
845 while (i < KVM_MEM_SLOTS_NUM - 1 &&
846 new->base_gfn <= mslots[i + 1].base_gfn) {
847 if (!mslots[i + 1].npages)
848 break;
849 mslots[i] = mslots[i + 1];
850 slots->id_to_index[mslots[i].id] = i;
851 i++;
852 }
853
854 /*
855 * The ">=" is needed when creating a slot with base_gfn == 0,
856 * so that it moves before all those with base_gfn == npages == 0.
857 *
858 * On the other hand, if new->npages is zero, the above loop has
859 * already left i pointing to the beginning of the empty part of
860 * mslots, and the ">=" would move the hole backwards in this
861 * case---which is wrong. So skip the loop when deleting a slot.
862 */
863 if (new->npages) {
864 while (i > 0 &&
865 new->base_gfn >= mslots[i - 1].base_gfn) {
866 mslots[i] = mslots[i - 1];
867 slots->id_to_index[mslots[i].id] = i;
868 i--;
869 }
870 } else
871 WARN_ON_ONCE(i != slots->used_slots);
872
873 mslots[i] = *new;
874 slots->id_to_index[mslots[i].id] = i;
875 }
876
877 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
878 {
879 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
880
881 #ifdef __KVM_HAVE_READONLY_MEM
882 valid_flags |= KVM_MEM_READONLY;
883 #endif
884
885 if (mem->flags & ~valid_flags)
886 return -EINVAL;
887
888 return 0;
889 }
890
891 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
892 int as_id, struct kvm_memslots *slots)
893 {
894 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
895
896 /*
897 * Set the low bit in the generation, which disables SPTE caching
898 * until the end of synchronize_srcu_expedited.
899 */
900 WARN_ON(old_memslots->generation & 1);
901 slots->generation = old_memslots->generation + 1;
902
903 rcu_assign_pointer(kvm->memslots[as_id], slots);
904 synchronize_srcu_expedited(&kvm->srcu);
905
906 /*
907 * Increment the new memslot generation a second time. This prevents
908 * vm exits that race with memslot updates from caching a memslot
909 * generation that will (potentially) be valid forever.
910 *
911 * Generations must be unique even across address spaces. We do not need
912 * a global counter for that, instead the generation space is evenly split
913 * across address spaces. For example, with two address spaces, address
914 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
915 * use generations 2, 6, 10, 14, ...
916 */
917 slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
918
919 kvm_arch_memslots_updated(kvm, slots);
920
921 return old_memslots;
922 }
923
924 /*
925 * Allocate some memory and give it an address in the guest physical address
926 * space.
927 *
928 * Discontiguous memory is allowed, mostly for framebuffers.
929 *
930 * Must be called holding kvm->slots_lock for write.
931 */
932 int __kvm_set_memory_region(struct kvm *kvm,
933 const struct kvm_userspace_memory_region *mem)
934 {
935 int r;
936 gfn_t base_gfn;
937 unsigned long npages;
938 struct kvm_memory_slot *slot;
939 struct kvm_memory_slot old, new;
940 struct kvm_memslots *slots = NULL, *old_memslots;
941 int as_id, id;
942 enum kvm_mr_change change;
943
944 r = check_memory_region_flags(mem);
945 if (r)
946 goto out;
947
948 r = -EINVAL;
949 as_id = mem->slot >> 16;
950 id = (u16)mem->slot;
951
952 /* General sanity checks */
953 if (mem->memory_size & (PAGE_SIZE - 1))
954 goto out;
955 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
956 goto out;
957 /* We can read the guest memory with __xxx_user() later on. */
958 if ((id < KVM_USER_MEM_SLOTS) &&
959 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
960 !access_ok(VERIFY_WRITE,
961 (void __user *)(unsigned long)mem->userspace_addr,
962 mem->memory_size)))
963 goto out;
964 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
965 goto out;
966 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
967 goto out;
968
969 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
970 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
971 npages = mem->memory_size >> PAGE_SHIFT;
972
973 if (npages > KVM_MEM_MAX_NR_PAGES)
974 goto out;
975
976 new = old = *slot;
977
978 new.id = id;
979 new.base_gfn = base_gfn;
980 new.npages = npages;
981 new.flags = mem->flags;
982
983 if (npages) {
984 if (!old.npages)
985 change = KVM_MR_CREATE;
986 else { /* Modify an existing slot. */
987 if ((mem->userspace_addr != old.userspace_addr) ||
988 (npages != old.npages) ||
989 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
990 goto out;
991
992 if (base_gfn != old.base_gfn)
993 change = KVM_MR_MOVE;
994 else if (new.flags != old.flags)
995 change = KVM_MR_FLAGS_ONLY;
996 else { /* Nothing to change. */
997 r = 0;
998 goto out;
999 }
1000 }
1001 } else {
1002 if (!old.npages)
1003 goto out;
1004
1005 change = KVM_MR_DELETE;
1006 new.base_gfn = 0;
1007 new.flags = 0;
1008 }
1009
1010 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1011 /* Check for overlaps */
1012 r = -EEXIST;
1013 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1014 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
1015 (slot->id == id))
1016 continue;
1017 if (!((base_gfn + npages <= slot->base_gfn) ||
1018 (base_gfn >= slot->base_gfn + slot->npages)))
1019 goto out;
1020 }
1021 }
1022
1023 /* Free page dirty bitmap if unneeded */
1024 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1025 new.dirty_bitmap = NULL;
1026
1027 r = -ENOMEM;
1028 if (change == KVM_MR_CREATE) {
1029 new.userspace_addr = mem->userspace_addr;
1030
1031 if (kvm_arch_create_memslot(kvm, &new, npages))
1032 goto out_free;
1033 }
1034
1035 /* Allocate page dirty bitmap if needed */
1036 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1037 if (kvm_create_dirty_bitmap(&new) < 0)
1038 goto out_free;
1039 }
1040
1041 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1042 if (!slots)
1043 goto out_free;
1044 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1045
1046 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1047 slot = id_to_memslot(slots, id);
1048 slot->flags |= KVM_MEMSLOT_INVALID;
1049
1050 old_memslots = install_new_memslots(kvm, as_id, slots);
1051
1052 /* From this point no new shadow pages pointing to a deleted,
1053 * or moved, memslot will be created.
1054 *
1055 * validation of sp->gfn happens in:
1056 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1057 * - kvm_is_visible_gfn (mmu_check_roots)
1058 */
1059 kvm_arch_flush_shadow_memslot(kvm, slot);
1060
1061 /*
1062 * We can re-use the old_memslots from above, the only difference
1063 * from the currently installed memslots is the invalid flag. This
1064 * will get overwritten by update_memslots anyway.
1065 */
1066 slots = old_memslots;
1067 }
1068
1069 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1070 if (r)
1071 goto out_slots;
1072
1073 /* actual memory is freed via old in kvm_free_memslot below */
1074 if (change == KVM_MR_DELETE) {
1075 new.dirty_bitmap = NULL;
1076 memset(&new.arch, 0, sizeof(new.arch));
1077 }
1078
1079 update_memslots(slots, &new);
1080 old_memslots = install_new_memslots(kvm, as_id, slots);
1081
1082 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1083
1084 kvm_free_memslot(kvm, &old, &new);
1085 kvfree(old_memslots);
1086 return 0;
1087
1088 out_slots:
1089 kvfree(slots);
1090 out_free:
1091 kvm_free_memslot(kvm, &new, &old);
1092 out:
1093 return r;
1094 }
1095 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1096
1097 int kvm_set_memory_region(struct kvm *kvm,
1098 const struct kvm_userspace_memory_region *mem)
1099 {
1100 int r;
1101
1102 mutex_lock(&kvm->slots_lock);
1103 r = __kvm_set_memory_region(kvm, mem);
1104 mutex_unlock(&kvm->slots_lock);
1105 return r;
1106 }
1107 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1108
1109 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1110 struct kvm_userspace_memory_region *mem)
1111 {
1112 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1113 return -EINVAL;
1114
1115 return kvm_set_memory_region(kvm, mem);
1116 }
1117
1118 int kvm_get_dirty_log(struct kvm *kvm,
1119 struct kvm_dirty_log *log, int *is_dirty)
1120 {
1121 struct kvm_memslots *slots;
1122 struct kvm_memory_slot *memslot;
1123 int i, as_id, id;
1124 unsigned long n;
1125 unsigned long any = 0;
1126
1127 as_id = log->slot >> 16;
1128 id = (u16)log->slot;
1129 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1130 return -EINVAL;
1131
1132 slots = __kvm_memslots(kvm, as_id);
1133 memslot = id_to_memslot(slots, id);
1134 if (!memslot->dirty_bitmap)
1135 return -ENOENT;
1136
1137 n = kvm_dirty_bitmap_bytes(memslot);
1138
1139 for (i = 0; !any && i < n/sizeof(long); ++i)
1140 any = memslot->dirty_bitmap[i];
1141
1142 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1143 return -EFAULT;
1144
1145 if (any)
1146 *is_dirty = 1;
1147 return 0;
1148 }
1149 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1150
1151 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1152 /**
1153 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1154 * are dirty write protect them for next write.
1155 * @kvm: pointer to kvm instance
1156 * @log: slot id and address to which we copy the log
1157 * @is_dirty: flag set if any page is dirty
1158 *
1159 * We need to keep it in mind that VCPU threads can write to the bitmap
1160 * concurrently. So, to avoid losing track of dirty pages we keep the
1161 * following order:
1162 *
1163 * 1. Take a snapshot of the bit and clear it if needed.
1164 * 2. Write protect the corresponding page.
1165 * 3. Copy the snapshot to the userspace.
1166 * 4. Upon return caller flushes TLB's if needed.
1167 *
1168 * Between 2 and 4, the guest may write to the page using the remaining TLB
1169 * entry. This is not a problem because the page is reported dirty using
1170 * the snapshot taken before and step 4 ensures that writes done after
1171 * exiting to userspace will be logged for the next call.
1172 *
1173 */
1174 int kvm_get_dirty_log_protect(struct kvm *kvm,
1175 struct kvm_dirty_log *log, bool *is_dirty)
1176 {
1177 struct kvm_memslots *slots;
1178 struct kvm_memory_slot *memslot;
1179 int i, as_id, id;
1180 unsigned long n;
1181 unsigned long *dirty_bitmap;
1182 unsigned long *dirty_bitmap_buffer;
1183
1184 as_id = log->slot >> 16;
1185 id = (u16)log->slot;
1186 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1187 return -EINVAL;
1188
1189 slots = __kvm_memslots(kvm, as_id);
1190 memslot = id_to_memslot(slots, id);
1191
1192 dirty_bitmap = memslot->dirty_bitmap;
1193 if (!dirty_bitmap)
1194 return -ENOENT;
1195
1196 n = kvm_dirty_bitmap_bytes(memslot);
1197
1198 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1199 memset(dirty_bitmap_buffer, 0, n);
1200
1201 spin_lock(&kvm->mmu_lock);
1202 *is_dirty = false;
1203 for (i = 0; i < n / sizeof(long); i++) {
1204 unsigned long mask;
1205 gfn_t offset;
1206
1207 if (!dirty_bitmap[i])
1208 continue;
1209
1210 *is_dirty = true;
1211
1212 mask = xchg(&dirty_bitmap[i], 0);
1213 dirty_bitmap_buffer[i] = mask;
1214
1215 if (mask) {
1216 offset = i * BITS_PER_LONG;
1217 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1218 offset, mask);
1219 }
1220 }
1221
1222 spin_unlock(&kvm->mmu_lock);
1223 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1224 return -EFAULT;
1225 return 0;
1226 }
1227 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1228 #endif
1229
1230 bool kvm_largepages_enabled(void)
1231 {
1232 return largepages_enabled;
1233 }
1234
1235 void kvm_disable_largepages(void)
1236 {
1237 largepages_enabled = false;
1238 }
1239 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1240
1241 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1242 {
1243 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1244 }
1245 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1246
1247 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1248 {
1249 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1250 }
1251
1252 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1253 {
1254 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1255
1256 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1257 memslot->flags & KVM_MEMSLOT_INVALID)
1258 return false;
1259
1260 return true;
1261 }
1262 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1263
1264 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1265 {
1266 struct vm_area_struct *vma;
1267 unsigned long addr, size;
1268
1269 size = PAGE_SIZE;
1270
1271 addr = gfn_to_hva(kvm, gfn);
1272 if (kvm_is_error_hva(addr))
1273 return PAGE_SIZE;
1274
1275 down_read(&current->mm->mmap_sem);
1276 vma = find_vma(current->mm, addr);
1277 if (!vma)
1278 goto out;
1279
1280 size = vma_kernel_pagesize(vma);
1281
1282 out:
1283 up_read(&current->mm->mmap_sem);
1284
1285 return size;
1286 }
1287
1288 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1289 {
1290 return slot->flags & KVM_MEM_READONLY;
1291 }
1292
1293 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1294 gfn_t *nr_pages, bool write)
1295 {
1296 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1297 return KVM_HVA_ERR_BAD;
1298
1299 if (memslot_is_readonly(slot) && write)
1300 return KVM_HVA_ERR_RO_BAD;
1301
1302 if (nr_pages)
1303 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1304
1305 return __gfn_to_hva_memslot(slot, gfn);
1306 }
1307
1308 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1309 gfn_t *nr_pages)
1310 {
1311 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1312 }
1313
1314 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1315 gfn_t gfn)
1316 {
1317 return gfn_to_hva_many(slot, gfn, NULL);
1318 }
1319 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1320
1321 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1322 {
1323 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1324 }
1325 EXPORT_SYMBOL_GPL(gfn_to_hva);
1326
1327 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1328 {
1329 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1330 }
1331 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1332
1333 /*
1334 * If writable is set to false, the hva returned by this function is only
1335 * allowed to be read.
1336 */
1337 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1338 gfn_t gfn, bool *writable)
1339 {
1340 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1341
1342 if (!kvm_is_error_hva(hva) && writable)
1343 *writable = !memslot_is_readonly(slot);
1344
1345 return hva;
1346 }
1347
1348 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1349 {
1350 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1351
1352 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1353 }
1354
1355 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1356 {
1357 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1358
1359 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1360 }
1361
1362 static int get_user_page_nowait(unsigned long start, int write,
1363 struct page **page)
1364 {
1365 int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1366
1367 if (write)
1368 flags |= FOLL_WRITE;
1369
1370 return get_user_pages(start, 1, flags, page, NULL);
1371 }
1372
1373 static inline int check_user_page_hwpoison(unsigned long addr)
1374 {
1375 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1376
1377 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1378 return rc == -EHWPOISON;
1379 }
1380
1381 /*
1382 * The atomic path to get the writable pfn which will be stored in @pfn,
1383 * true indicates success, otherwise false is returned.
1384 */
1385 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1386 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1387 {
1388 struct page *page[1];
1389 int npages;
1390
1391 if (!(async || atomic))
1392 return false;
1393
1394 /*
1395 * Fast pin a writable pfn only if it is a write fault request
1396 * or the caller allows to map a writable pfn for a read fault
1397 * request.
1398 */
1399 if (!(write_fault || writable))
1400 return false;
1401
1402 npages = __get_user_pages_fast(addr, 1, 1, page);
1403 if (npages == 1) {
1404 *pfn = page_to_pfn(page[0]);
1405
1406 if (writable)
1407 *writable = true;
1408 return true;
1409 }
1410
1411 return false;
1412 }
1413
1414 /*
1415 * The slow path to get the pfn of the specified host virtual address,
1416 * 1 indicates success, -errno is returned if error is detected.
1417 */
1418 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1419 bool *writable, kvm_pfn_t *pfn)
1420 {
1421 struct page *page[1];
1422 int npages = 0;
1423
1424 might_sleep();
1425
1426 if (writable)
1427 *writable = write_fault;
1428
1429 if (async) {
1430 down_read(&current->mm->mmap_sem);
1431 npages = get_user_page_nowait(addr, write_fault, page);
1432 up_read(&current->mm->mmap_sem);
1433 } else {
1434 unsigned int flags = FOLL_HWPOISON;
1435
1436 if (write_fault)
1437 flags |= FOLL_WRITE;
1438
1439 npages = get_user_pages_unlocked(addr, 1, page, flags);
1440 }
1441 if (npages != 1)
1442 return npages;
1443
1444 /* map read fault as writable if possible */
1445 if (unlikely(!write_fault) && writable) {
1446 struct page *wpage[1];
1447
1448 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1449 if (npages == 1) {
1450 *writable = true;
1451 put_page(page[0]);
1452 page[0] = wpage[0];
1453 }
1454
1455 npages = 1;
1456 }
1457 *pfn = page_to_pfn(page[0]);
1458 return npages;
1459 }
1460
1461 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1462 {
1463 if (unlikely(!(vma->vm_flags & VM_READ)))
1464 return false;
1465
1466 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1467 return false;
1468
1469 return true;
1470 }
1471
1472 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1473 unsigned long addr, bool *async,
1474 bool write_fault, kvm_pfn_t *p_pfn)
1475 {
1476 unsigned long pfn;
1477 int r;
1478
1479 r = follow_pfn(vma, addr, &pfn);
1480 if (r) {
1481 /*
1482 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1483 * not call the fault handler, so do it here.
1484 */
1485 bool unlocked = false;
1486 r = fixup_user_fault(current, current->mm, addr,
1487 (write_fault ? FAULT_FLAG_WRITE : 0),
1488 &unlocked);
1489 if (unlocked)
1490 return -EAGAIN;
1491 if (r)
1492 return r;
1493
1494 r = follow_pfn(vma, addr, &pfn);
1495 if (r)
1496 return r;
1497
1498 }
1499
1500
1501 /*
1502 * Get a reference here because callers of *hva_to_pfn* and
1503 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1504 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1505 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1506 * simply do nothing for reserved pfns.
1507 *
1508 * Whoever called remap_pfn_range is also going to call e.g.
1509 * unmap_mapping_range before the underlying pages are freed,
1510 * causing a call to our MMU notifier.
1511 */
1512 kvm_get_pfn(pfn);
1513
1514 *p_pfn = pfn;
1515 return 0;
1516 }
1517
1518 /*
1519 * Pin guest page in memory and return its pfn.
1520 * @addr: host virtual address which maps memory to the guest
1521 * @atomic: whether this function can sleep
1522 * @async: whether this function need to wait IO complete if the
1523 * host page is not in the memory
1524 * @write_fault: whether we should get a writable host page
1525 * @writable: whether it allows to map a writable host page for !@write_fault
1526 *
1527 * The function will map a writable host page for these two cases:
1528 * 1): @write_fault = true
1529 * 2): @write_fault = false && @writable, @writable will tell the caller
1530 * whether the mapping is writable.
1531 */
1532 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1533 bool write_fault, bool *writable)
1534 {
1535 struct vm_area_struct *vma;
1536 kvm_pfn_t pfn = 0;
1537 int npages, r;
1538
1539 /* we can do it either atomically or asynchronously, not both */
1540 BUG_ON(atomic && async);
1541
1542 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1543 return pfn;
1544
1545 if (atomic)
1546 return KVM_PFN_ERR_FAULT;
1547
1548 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1549 if (npages == 1)
1550 return pfn;
1551
1552 down_read(&current->mm->mmap_sem);
1553 if (npages == -EHWPOISON ||
1554 (!async && check_user_page_hwpoison(addr))) {
1555 pfn = KVM_PFN_ERR_HWPOISON;
1556 goto exit;
1557 }
1558
1559 retry:
1560 vma = find_vma_intersection(current->mm, addr, addr + 1);
1561
1562 if (vma == NULL)
1563 pfn = KVM_PFN_ERR_FAULT;
1564 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1565 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1566 if (r == -EAGAIN)
1567 goto retry;
1568 if (r < 0)
1569 pfn = KVM_PFN_ERR_FAULT;
1570 } else {
1571 if (async && vma_is_valid(vma, write_fault))
1572 *async = true;
1573 pfn = KVM_PFN_ERR_FAULT;
1574 }
1575 exit:
1576 up_read(&current->mm->mmap_sem);
1577 return pfn;
1578 }
1579
1580 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1581 bool atomic, bool *async, bool write_fault,
1582 bool *writable)
1583 {
1584 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1585
1586 if (addr == KVM_HVA_ERR_RO_BAD) {
1587 if (writable)
1588 *writable = false;
1589 return KVM_PFN_ERR_RO_FAULT;
1590 }
1591
1592 if (kvm_is_error_hva(addr)) {
1593 if (writable)
1594 *writable = false;
1595 return KVM_PFN_NOSLOT;
1596 }
1597
1598 /* Do not map writable pfn in the readonly memslot. */
1599 if (writable && memslot_is_readonly(slot)) {
1600 *writable = false;
1601 writable = NULL;
1602 }
1603
1604 return hva_to_pfn(addr, atomic, async, write_fault,
1605 writable);
1606 }
1607 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1608
1609 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1610 bool *writable)
1611 {
1612 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1613 write_fault, writable);
1614 }
1615 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1616
1617 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1618 {
1619 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1620 }
1621 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1622
1623 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1624 {
1625 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1626 }
1627 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1628
1629 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1630 {
1631 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1632 }
1633 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1634
1635 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1636 {
1637 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1638 }
1639 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1640
1641 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1642 {
1643 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1644 }
1645 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1646
1647 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1648 {
1649 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1650 }
1651 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1652
1653 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1654 struct page **pages, int nr_pages)
1655 {
1656 unsigned long addr;
1657 gfn_t entry;
1658
1659 addr = gfn_to_hva_many(slot, gfn, &entry);
1660 if (kvm_is_error_hva(addr))
1661 return -1;
1662
1663 if (entry < nr_pages)
1664 return 0;
1665
1666 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1667 }
1668 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1669
1670 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1671 {
1672 if (is_error_noslot_pfn(pfn))
1673 return KVM_ERR_PTR_BAD_PAGE;
1674
1675 if (kvm_is_reserved_pfn(pfn)) {
1676 WARN_ON(1);
1677 return KVM_ERR_PTR_BAD_PAGE;
1678 }
1679
1680 return pfn_to_page(pfn);
1681 }
1682
1683 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1684 {
1685 kvm_pfn_t pfn;
1686
1687 pfn = gfn_to_pfn(kvm, gfn);
1688
1689 return kvm_pfn_to_page(pfn);
1690 }
1691 EXPORT_SYMBOL_GPL(gfn_to_page);
1692
1693 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1694 {
1695 kvm_pfn_t pfn;
1696
1697 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1698
1699 return kvm_pfn_to_page(pfn);
1700 }
1701 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1702
1703 void kvm_release_page_clean(struct page *page)
1704 {
1705 WARN_ON(is_error_page(page));
1706
1707 kvm_release_pfn_clean(page_to_pfn(page));
1708 }
1709 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1710
1711 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1712 {
1713 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1714 put_page(pfn_to_page(pfn));
1715 }
1716 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1717
1718 void kvm_release_page_dirty(struct page *page)
1719 {
1720 WARN_ON(is_error_page(page));
1721
1722 kvm_release_pfn_dirty(page_to_pfn(page));
1723 }
1724 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1725
1726 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1727 {
1728 kvm_set_pfn_dirty(pfn);
1729 kvm_release_pfn_clean(pfn);
1730 }
1731
1732 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1733 {
1734 if (!kvm_is_reserved_pfn(pfn)) {
1735 struct page *page = pfn_to_page(pfn);
1736
1737 if (!PageReserved(page))
1738 SetPageDirty(page);
1739 }
1740 }
1741 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1742
1743 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1744 {
1745 if (!kvm_is_reserved_pfn(pfn))
1746 mark_page_accessed(pfn_to_page(pfn));
1747 }
1748 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1749
1750 void kvm_get_pfn(kvm_pfn_t pfn)
1751 {
1752 if (!kvm_is_reserved_pfn(pfn))
1753 get_page(pfn_to_page(pfn));
1754 }
1755 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1756
1757 static int next_segment(unsigned long len, int offset)
1758 {
1759 if (len > PAGE_SIZE - offset)
1760 return PAGE_SIZE - offset;
1761 else
1762 return len;
1763 }
1764
1765 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1766 void *data, int offset, int len)
1767 {
1768 int r;
1769 unsigned long addr;
1770
1771 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1772 if (kvm_is_error_hva(addr))
1773 return -EFAULT;
1774 r = __copy_from_user(data, (void __user *)addr + offset, len);
1775 if (r)
1776 return -EFAULT;
1777 return 0;
1778 }
1779
1780 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1781 int len)
1782 {
1783 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1784
1785 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1786 }
1787 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1788
1789 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1790 int offset, int len)
1791 {
1792 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1793
1794 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1795 }
1796 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1797
1798 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1799 {
1800 gfn_t gfn = gpa >> PAGE_SHIFT;
1801 int seg;
1802 int offset = offset_in_page(gpa);
1803 int ret;
1804
1805 while ((seg = next_segment(len, offset)) != 0) {
1806 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1807 if (ret < 0)
1808 return ret;
1809 offset = 0;
1810 len -= seg;
1811 data += seg;
1812 ++gfn;
1813 }
1814 return 0;
1815 }
1816 EXPORT_SYMBOL_GPL(kvm_read_guest);
1817
1818 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1819 {
1820 gfn_t gfn = gpa >> PAGE_SHIFT;
1821 int seg;
1822 int offset = offset_in_page(gpa);
1823 int ret;
1824
1825 while ((seg = next_segment(len, offset)) != 0) {
1826 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1827 if (ret < 0)
1828 return ret;
1829 offset = 0;
1830 len -= seg;
1831 data += seg;
1832 ++gfn;
1833 }
1834 return 0;
1835 }
1836 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1837
1838 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1839 void *data, int offset, unsigned long len)
1840 {
1841 int r;
1842 unsigned long addr;
1843
1844 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1845 if (kvm_is_error_hva(addr))
1846 return -EFAULT;
1847 pagefault_disable();
1848 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1849 pagefault_enable();
1850 if (r)
1851 return -EFAULT;
1852 return 0;
1853 }
1854
1855 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1856 unsigned long len)
1857 {
1858 gfn_t gfn = gpa >> PAGE_SHIFT;
1859 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1860 int offset = offset_in_page(gpa);
1861
1862 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1863 }
1864 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1865
1866 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1867 void *data, unsigned long len)
1868 {
1869 gfn_t gfn = gpa >> PAGE_SHIFT;
1870 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1871 int offset = offset_in_page(gpa);
1872
1873 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1874 }
1875 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1876
1877 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1878 const void *data, int offset, int len)
1879 {
1880 int r;
1881 unsigned long addr;
1882
1883 addr = gfn_to_hva_memslot(memslot, gfn);
1884 if (kvm_is_error_hva(addr))
1885 return -EFAULT;
1886 r = __copy_to_user((void __user *)addr + offset, data, len);
1887 if (r)
1888 return -EFAULT;
1889 mark_page_dirty_in_slot(memslot, gfn);
1890 return 0;
1891 }
1892
1893 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1894 const void *data, int offset, int len)
1895 {
1896 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1897
1898 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1899 }
1900 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1901
1902 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1903 const void *data, int offset, int len)
1904 {
1905 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1906
1907 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1908 }
1909 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1910
1911 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1912 unsigned long len)
1913 {
1914 gfn_t gfn = gpa >> PAGE_SHIFT;
1915 int seg;
1916 int offset = offset_in_page(gpa);
1917 int ret;
1918
1919 while ((seg = next_segment(len, offset)) != 0) {
1920 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1921 if (ret < 0)
1922 return ret;
1923 offset = 0;
1924 len -= seg;
1925 data += seg;
1926 ++gfn;
1927 }
1928 return 0;
1929 }
1930 EXPORT_SYMBOL_GPL(kvm_write_guest);
1931
1932 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1933 unsigned long len)
1934 {
1935 gfn_t gfn = gpa >> PAGE_SHIFT;
1936 int seg;
1937 int offset = offset_in_page(gpa);
1938 int ret;
1939
1940 while ((seg = next_segment(len, offset)) != 0) {
1941 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1942 if (ret < 0)
1943 return ret;
1944 offset = 0;
1945 len -= seg;
1946 data += seg;
1947 ++gfn;
1948 }
1949 return 0;
1950 }
1951 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1952
1953 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1954 struct gfn_to_hva_cache *ghc,
1955 gpa_t gpa, unsigned long len)
1956 {
1957 int offset = offset_in_page(gpa);
1958 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1959 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1960 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1961 gfn_t nr_pages_avail;
1962
1963 ghc->gpa = gpa;
1964 ghc->generation = slots->generation;
1965 ghc->len = len;
1966 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1967 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1968 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1969 ghc->hva += offset;
1970 } else {
1971 /*
1972 * If the requested region crosses two memslots, we still
1973 * verify that the entire region is valid here.
1974 */
1975 while (start_gfn <= end_gfn) {
1976 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1977 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1978 &nr_pages_avail);
1979 if (kvm_is_error_hva(ghc->hva))
1980 return -EFAULT;
1981 start_gfn += nr_pages_avail;
1982 }
1983 /* Use the slow path for cross page reads and writes. */
1984 ghc->memslot = NULL;
1985 }
1986 return 0;
1987 }
1988
1989 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1990 gpa_t gpa, unsigned long len)
1991 {
1992 struct kvm_memslots *slots = kvm_memslots(kvm);
1993 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1994 }
1995 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1996
1997 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1998 void *data, int offset, unsigned long len)
1999 {
2000 struct kvm_memslots *slots = kvm_memslots(kvm);
2001 int r;
2002 gpa_t gpa = ghc->gpa + offset;
2003
2004 BUG_ON(len + offset > ghc->len);
2005
2006 if (slots->generation != ghc->generation)
2007 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2008
2009 if (unlikely(!ghc->memslot))
2010 return kvm_write_guest(kvm, gpa, data, len);
2011
2012 if (kvm_is_error_hva(ghc->hva))
2013 return -EFAULT;
2014
2015 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2016 if (r)
2017 return -EFAULT;
2018 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2019
2020 return 0;
2021 }
2022 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2023
2024 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2025 void *data, unsigned long len)
2026 {
2027 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2028 }
2029 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2030
2031 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2032 void *data, unsigned long len)
2033 {
2034 struct kvm_memslots *slots = kvm_memslots(kvm);
2035 int r;
2036
2037 BUG_ON(len > ghc->len);
2038
2039 if (slots->generation != ghc->generation)
2040 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2041
2042 if (unlikely(!ghc->memslot))
2043 return kvm_read_guest(kvm, ghc->gpa, data, len);
2044
2045 if (kvm_is_error_hva(ghc->hva))
2046 return -EFAULT;
2047
2048 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2049 if (r)
2050 return -EFAULT;
2051
2052 return 0;
2053 }
2054 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2055
2056 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2057 {
2058 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2059
2060 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2061 }
2062 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2063
2064 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2065 {
2066 gfn_t gfn = gpa >> PAGE_SHIFT;
2067 int seg;
2068 int offset = offset_in_page(gpa);
2069 int ret;
2070
2071 while ((seg = next_segment(len, offset)) != 0) {
2072 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2073 if (ret < 0)
2074 return ret;
2075 offset = 0;
2076 len -= seg;
2077 ++gfn;
2078 }
2079 return 0;
2080 }
2081 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2082
2083 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2084 gfn_t gfn)
2085 {
2086 if (memslot && memslot->dirty_bitmap) {
2087 unsigned long rel_gfn = gfn - memslot->base_gfn;
2088
2089 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2090 }
2091 }
2092
2093 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2094 {
2095 struct kvm_memory_slot *memslot;
2096
2097 memslot = gfn_to_memslot(kvm, gfn);
2098 mark_page_dirty_in_slot(memslot, gfn);
2099 }
2100 EXPORT_SYMBOL_GPL(mark_page_dirty);
2101
2102 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2103 {
2104 struct kvm_memory_slot *memslot;
2105
2106 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2107 mark_page_dirty_in_slot(memslot, gfn);
2108 }
2109 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2110
2111 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2112 {
2113 unsigned int old, val, grow;
2114
2115 old = val = vcpu->halt_poll_ns;
2116 grow = READ_ONCE(halt_poll_ns_grow);
2117 /* 10us base */
2118 if (val == 0 && grow)
2119 val = 10000;
2120 else
2121 val *= grow;
2122
2123 if (val > halt_poll_ns)
2124 val = halt_poll_ns;
2125
2126 vcpu->halt_poll_ns = val;
2127 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2128 }
2129
2130 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2131 {
2132 unsigned int old, val, shrink;
2133
2134 old = val = vcpu->halt_poll_ns;
2135 shrink = READ_ONCE(halt_poll_ns_shrink);
2136 if (shrink == 0)
2137 val = 0;
2138 else
2139 val /= shrink;
2140
2141 vcpu->halt_poll_ns = val;
2142 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2143 }
2144
2145 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2146 {
2147 if (kvm_arch_vcpu_runnable(vcpu)) {
2148 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2149 return -EINTR;
2150 }
2151 if (kvm_cpu_has_pending_timer(vcpu))
2152 return -EINTR;
2153 if (signal_pending(current))
2154 return -EINTR;
2155
2156 return 0;
2157 }
2158
2159 /*
2160 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2161 */
2162 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2163 {
2164 ktime_t start, cur;
2165 DECLARE_SWAITQUEUE(wait);
2166 bool waited = false;
2167 u64 block_ns;
2168
2169 start = cur = ktime_get();
2170 if (vcpu->halt_poll_ns) {
2171 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2172
2173 ++vcpu->stat.halt_attempted_poll;
2174 do {
2175 /*
2176 * This sets KVM_REQ_UNHALT if an interrupt
2177 * arrives.
2178 */
2179 if (kvm_vcpu_check_block(vcpu) < 0) {
2180 ++vcpu->stat.halt_successful_poll;
2181 if (!vcpu_valid_wakeup(vcpu))
2182 ++vcpu->stat.halt_poll_invalid;
2183 goto out;
2184 }
2185 cur = ktime_get();
2186 } while (single_task_running() && ktime_before(cur, stop));
2187 }
2188
2189 kvm_arch_vcpu_blocking(vcpu);
2190
2191 for (;;) {
2192 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2193
2194 if (kvm_vcpu_check_block(vcpu) < 0)
2195 break;
2196
2197 waited = true;
2198 schedule();
2199 }
2200
2201 finish_swait(&vcpu->wq, &wait);
2202 cur = ktime_get();
2203
2204 kvm_arch_vcpu_unblocking(vcpu);
2205 out:
2206 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2207
2208 if (!vcpu_valid_wakeup(vcpu))
2209 shrink_halt_poll_ns(vcpu);
2210 else if (halt_poll_ns) {
2211 if (block_ns <= vcpu->halt_poll_ns)
2212 ;
2213 /* we had a long block, shrink polling */
2214 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2215 shrink_halt_poll_ns(vcpu);
2216 /* we had a short halt and our poll time is too small */
2217 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2218 block_ns < halt_poll_ns)
2219 grow_halt_poll_ns(vcpu);
2220 } else
2221 vcpu->halt_poll_ns = 0;
2222
2223 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2224 kvm_arch_vcpu_block_finish(vcpu);
2225 }
2226 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2227
2228 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2229 {
2230 struct swait_queue_head *wqp;
2231
2232 wqp = kvm_arch_vcpu_wq(vcpu);
2233 if (swait_active(wqp)) {
2234 swake_up(wqp);
2235 ++vcpu->stat.halt_wakeup;
2236 return true;
2237 }
2238
2239 return false;
2240 }
2241 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2242
2243 #ifndef CONFIG_S390
2244 /*
2245 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2246 */
2247 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2248 {
2249 int me;
2250 int cpu = vcpu->cpu;
2251
2252 if (kvm_vcpu_wake_up(vcpu))
2253 return;
2254
2255 me = get_cpu();
2256 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2257 if (kvm_arch_vcpu_should_kick(vcpu))
2258 smp_send_reschedule(cpu);
2259 put_cpu();
2260 }
2261 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2262 #endif /* !CONFIG_S390 */
2263
2264 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2265 {
2266 struct pid *pid;
2267 struct task_struct *task = NULL;
2268 int ret = 0;
2269
2270 rcu_read_lock();
2271 pid = rcu_dereference(target->pid);
2272 if (pid)
2273 task = get_pid_task(pid, PIDTYPE_PID);
2274 rcu_read_unlock();
2275 if (!task)
2276 return ret;
2277 ret = yield_to(task, 1);
2278 put_task_struct(task);
2279
2280 return ret;
2281 }
2282 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2283
2284 /*
2285 * Helper that checks whether a VCPU is eligible for directed yield.
2286 * Most eligible candidate to yield is decided by following heuristics:
2287 *
2288 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2289 * (preempted lock holder), indicated by @in_spin_loop.
2290 * Set at the beiginning and cleared at the end of interception/PLE handler.
2291 *
2292 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2293 * chance last time (mostly it has become eligible now since we have probably
2294 * yielded to lockholder in last iteration. This is done by toggling
2295 * @dy_eligible each time a VCPU checked for eligibility.)
2296 *
2297 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2298 * to preempted lock-holder could result in wrong VCPU selection and CPU
2299 * burning. Giving priority for a potential lock-holder increases lock
2300 * progress.
2301 *
2302 * Since algorithm is based on heuristics, accessing another VCPU data without
2303 * locking does not harm. It may result in trying to yield to same VCPU, fail
2304 * and continue with next VCPU and so on.
2305 */
2306 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2307 {
2308 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2309 bool eligible;
2310
2311 eligible = !vcpu->spin_loop.in_spin_loop ||
2312 vcpu->spin_loop.dy_eligible;
2313
2314 if (vcpu->spin_loop.in_spin_loop)
2315 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2316
2317 return eligible;
2318 #else
2319 return true;
2320 #endif
2321 }
2322
2323 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2324 {
2325 struct kvm *kvm = me->kvm;
2326 struct kvm_vcpu *vcpu;
2327 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2328 int yielded = 0;
2329 int try = 3;
2330 int pass;
2331 int i;
2332
2333 kvm_vcpu_set_in_spin_loop(me, true);
2334 /*
2335 * We boost the priority of a VCPU that is runnable but not
2336 * currently running, because it got preempted by something
2337 * else and called schedule in __vcpu_run. Hopefully that
2338 * VCPU is holding the lock that we need and will release it.
2339 * We approximate round-robin by starting at the last boosted VCPU.
2340 */
2341 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2342 kvm_for_each_vcpu(i, vcpu, kvm) {
2343 if (!pass && i <= last_boosted_vcpu) {
2344 i = last_boosted_vcpu;
2345 continue;
2346 } else if (pass && i > last_boosted_vcpu)
2347 break;
2348 if (!ACCESS_ONCE(vcpu->preempted))
2349 continue;
2350 if (vcpu == me)
2351 continue;
2352 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2353 continue;
2354 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2355 continue;
2356
2357 yielded = kvm_vcpu_yield_to(vcpu);
2358 if (yielded > 0) {
2359 kvm->last_boosted_vcpu = i;
2360 break;
2361 } else if (yielded < 0) {
2362 try--;
2363 if (!try)
2364 break;
2365 }
2366 }
2367 }
2368 kvm_vcpu_set_in_spin_loop(me, false);
2369
2370 /* Ensure vcpu is not eligible during next spinloop */
2371 kvm_vcpu_set_dy_eligible(me, false);
2372 }
2373 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2374
2375 static int kvm_vcpu_fault(struct vm_fault *vmf)
2376 {
2377 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2378 struct page *page;
2379
2380 if (vmf->pgoff == 0)
2381 page = virt_to_page(vcpu->run);
2382 #ifdef CONFIG_X86
2383 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2384 page = virt_to_page(vcpu->arch.pio_data);
2385 #endif
2386 #ifdef CONFIG_KVM_MMIO
2387 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2388 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2389 #endif
2390 else
2391 return kvm_arch_vcpu_fault(vcpu, vmf);
2392 get_page(page);
2393 vmf->page = page;
2394 return 0;
2395 }
2396
2397 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2398 .fault = kvm_vcpu_fault,
2399 };
2400
2401 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2402 {
2403 vma->vm_ops = &kvm_vcpu_vm_ops;
2404 return 0;
2405 }
2406
2407 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2408 {
2409 struct kvm_vcpu *vcpu = filp->private_data;
2410
2411 debugfs_remove_recursive(vcpu->debugfs_dentry);
2412 kvm_put_kvm(vcpu->kvm);
2413 return 0;
2414 }
2415
2416 static struct file_operations kvm_vcpu_fops = {
2417 .release = kvm_vcpu_release,
2418 .unlocked_ioctl = kvm_vcpu_ioctl,
2419 #ifdef CONFIG_KVM_COMPAT
2420 .compat_ioctl = kvm_vcpu_compat_ioctl,
2421 #endif
2422 .mmap = kvm_vcpu_mmap,
2423 .llseek = noop_llseek,
2424 };
2425
2426 /*
2427 * Allocates an inode for the vcpu.
2428 */
2429 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2430 {
2431 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2432 }
2433
2434 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2435 {
2436 char dir_name[ITOA_MAX_LEN * 2];
2437 int ret;
2438
2439 if (!kvm_arch_has_vcpu_debugfs())
2440 return 0;
2441
2442 if (!debugfs_initialized())
2443 return 0;
2444
2445 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2446 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2447 vcpu->kvm->debugfs_dentry);
2448 if (!vcpu->debugfs_dentry)
2449 return -ENOMEM;
2450
2451 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2452 if (ret < 0) {
2453 debugfs_remove_recursive(vcpu->debugfs_dentry);
2454 return ret;
2455 }
2456
2457 return 0;
2458 }
2459
2460 /*
2461 * Creates some virtual cpus. Good luck creating more than one.
2462 */
2463 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2464 {
2465 int r;
2466 struct kvm_vcpu *vcpu;
2467
2468 if (id >= KVM_MAX_VCPU_ID)
2469 return -EINVAL;
2470
2471 mutex_lock(&kvm->lock);
2472 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2473 mutex_unlock(&kvm->lock);
2474 return -EINVAL;
2475 }
2476
2477 kvm->created_vcpus++;
2478 mutex_unlock(&kvm->lock);
2479
2480 vcpu = kvm_arch_vcpu_create(kvm, id);
2481 if (IS_ERR(vcpu)) {
2482 r = PTR_ERR(vcpu);
2483 goto vcpu_decrement;
2484 }
2485
2486 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2487
2488 r = kvm_arch_vcpu_setup(vcpu);
2489 if (r)
2490 goto vcpu_destroy;
2491
2492 r = kvm_create_vcpu_debugfs(vcpu);
2493 if (r)
2494 goto vcpu_destroy;
2495
2496 mutex_lock(&kvm->lock);
2497 if (kvm_get_vcpu_by_id(kvm, id)) {
2498 r = -EEXIST;
2499 goto unlock_vcpu_destroy;
2500 }
2501
2502 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2503
2504 /* Now it's all set up, let userspace reach it */
2505 kvm_get_kvm(kvm);
2506 r = create_vcpu_fd(vcpu);
2507 if (r < 0) {
2508 kvm_put_kvm(kvm);
2509 goto unlock_vcpu_destroy;
2510 }
2511
2512 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2513
2514 /*
2515 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2516 * before kvm->online_vcpu's incremented value.
2517 */
2518 smp_wmb();
2519 atomic_inc(&kvm->online_vcpus);
2520
2521 mutex_unlock(&kvm->lock);
2522 kvm_arch_vcpu_postcreate(vcpu);
2523 return r;
2524
2525 unlock_vcpu_destroy:
2526 mutex_unlock(&kvm->lock);
2527 debugfs_remove_recursive(vcpu->debugfs_dentry);
2528 vcpu_destroy:
2529 kvm_arch_vcpu_destroy(vcpu);
2530 vcpu_decrement:
2531 mutex_lock(&kvm->lock);
2532 kvm->created_vcpus--;
2533 mutex_unlock(&kvm->lock);
2534 return r;
2535 }
2536
2537 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2538 {
2539 if (sigset) {
2540 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2541 vcpu->sigset_active = 1;
2542 vcpu->sigset = *sigset;
2543 } else
2544 vcpu->sigset_active = 0;
2545 return 0;
2546 }
2547
2548 static long kvm_vcpu_ioctl(struct file *filp,
2549 unsigned int ioctl, unsigned long arg)
2550 {
2551 struct kvm_vcpu *vcpu = filp->private_data;
2552 void __user *argp = (void __user *)arg;
2553 int r;
2554 struct kvm_fpu *fpu = NULL;
2555 struct kvm_sregs *kvm_sregs = NULL;
2556
2557 if (vcpu->kvm->mm != current->mm)
2558 return -EIO;
2559
2560 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2561 return -EINVAL;
2562
2563 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2564 /*
2565 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2566 * so vcpu_load() would break it.
2567 */
2568 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2569 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2570 #endif
2571
2572
2573 r = vcpu_load(vcpu);
2574 if (r)
2575 return r;
2576 switch (ioctl) {
2577 case KVM_RUN: {
2578 struct pid *oldpid;
2579 r = -EINVAL;
2580 if (arg)
2581 goto out;
2582 oldpid = rcu_access_pointer(vcpu->pid);
2583 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2584 /* The thread running this VCPU changed. */
2585 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2586
2587 rcu_assign_pointer(vcpu->pid, newpid);
2588 if (oldpid)
2589 synchronize_rcu();
2590 put_pid(oldpid);
2591 }
2592 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2593 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2594 break;
2595 }
2596 case KVM_GET_REGS: {
2597 struct kvm_regs *kvm_regs;
2598
2599 r = -ENOMEM;
2600 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2601 if (!kvm_regs)
2602 goto out;
2603 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2604 if (r)
2605 goto out_free1;
2606 r = -EFAULT;
2607 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2608 goto out_free1;
2609 r = 0;
2610 out_free1:
2611 kfree(kvm_regs);
2612 break;
2613 }
2614 case KVM_SET_REGS: {
2615 struct kvm_regs *kvm_regs;
2616
2617 r = -ENOMEM;
2618 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2619 if (IS_ERR(kvm_regs)) {
2620 r = PTR_ERR(kvm_regs);
2621 goto out;
2622 }
2623 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2624 kfree(kvm_regs);
2625 break;
2626 }
2627 case KVM_GET_SREGS: {
2628 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2629 r = -ENOMEM;
2630 if (!kvm_sregs)
2631 goto out;
2632 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2633 if (r)
2634 goto out;
2635 r = -EFAULT;
2636 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2637 goto out;
2638 r = 0;
2639 break;
2640 }
2641 case KVM_SET_SREGS: {
2642 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2643 if (IS_ERR(kvm_sregs)) {
2644 r = PTR_ERR(kvm_sregs);
2645 kvm_sregs = NULL;
2646 goto out;
2647 }
2648 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2649 break;
2650 }
2651 case KVM_GET_MP_STATE: {
2652 struct kvm_mp_state mp_state;
2653
2654 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2655 if (r)
2656 goto out;
2657 r = -EFAULT;
2658 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2659 goto out;
2660 r = 0;
2661 break;
2662 }
2663 case KVM_SET_MP_STATE: {
2664 struct kvm_mp_state mp_state;
2665
2666 r = -EFAULT;
2667 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2668 goto out;
2669 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2670 break;
2671 }
2672 case KVM_TRANSLATE: {
2673 struct kvm_translation tr;
2674
2675 r = -EFAULT;
2676 if (copy_from_user(&tr, argp, sizeof(tr)))
2677 goto out;
2678 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2679 if (r)
2680 goto out;
2681 r = -EFAULT;
2682 if (copy_to_user(argp, &tr, sizeof(tr)))
2683 goto out;
2684 r = 0;
2685 break;
2686 }
2687 case KVM_SET_GUEST_DEBUG: {
2688 struct kvm_guest_debug dbg;
2689
2690 r = -EFAULT;
2691 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2692 goto out;
2693 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2694 break;
2695 }
2696 case KVM_SET_SIGNAL_MASK: {
2697 struct kvm_signal_mask __user *sigmask_arg = argp;
2698 struct kvm_signal_mask kvm_sigmask;
2699 sigset_t sigset, *p;
2700
2701 p = NULL;
2702 if (argp) {
2703 r = -EFAULT;
2704 if (copy_from_user(&kvm_sigmask, argp,
2705 sizeof(kvm_sigmask)))
2706 goto out;
2707 r = -EINVAL;
2708 if (kvm_sigmask.len != sizeof(sigset))
2709 goto out;
2710 r = -EFAULT;
2711 if (copy_from_user(&sigset, sigmask_arg->sigset,
2712 sizeof(sigset)))
2713 goto out;
2714 p = &sigset;
2715 }
2716 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2717 break;
2718 }
2719 case KVM_GET_FPU: {
2720 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2721 r = -ENOMEM;
2722 if (!fpu)
2723 goto out;
2724 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2725 if (r)
2726 goto out;
2727 r = -EFAULT;
2728 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2729 goto out;
2730 r = 0;
2731 break;
2732 }
2733 case KVM_SET_FPU: {
2734 fpu = memdup_user(argp, sizeof(*fpu));
2735 if (IS_ERR(fpu)) {
2736 r = PTR_ERR(fpu);
2737 fpu = NULL;
2738 goto out;
2739 }
2740 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2741 break;
2742 }
2743 default:
2744 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2745 }
2746 out:
2747 vcpu_put(vcpu);
2748 kfree(fpu);
2749 kfree(kvm_sregs);
2750 return r;
2751 }
2752
2753 #ifdef CONFIG_KVM_COMPAT
2754 static long kvm_vcpu_compat_ioctl(struct file *filp,
2755 unsigned int ioctl, unsigned long arg)
2756 {
2757 struct kvm_vcpu *vcpu = filp->private_data;
2758 void __user *argp = compat_ptr(arg);
2759 int r;
2760
2761 if (vcpu->kvm->mm != current->mm)
2762 return -EIO;
2763
2764 switch (ioctl) {
2765 case KVM_SET_SIGNAL_MASK: {
2766 struct kvm_signal_mask __user *sigmask_arg = argp;
2767 struct kvm_signal_mask kvm_sigmask;
2768 compat_sigset_t csigset;
2769 sigset_t sigset;
2770
2771 if (argp) {
2772 r = -EFAULT;
2773 if (copy_from_user(&kvm_sigmask, argp,
2774 sizeof(kvm_sigmask)))
2775 goto out;
2776 r = -EINVAL;
2777 if (kvm_sigmask.len != sizeof(csigset))
2778 goto out;
2779 r = -EFAULT;
2780 if (copy_from_user(&csigset, sigmask_arg->sigset,
2781 sizeof(csigset)))
2782 goto out;
2783 sigset_from_compat(&sigset, &csigset);
2784 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2785 } else
2786 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2787 break;
2788 }
2789 default:
2790 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2791 }
2792
2793 out:
2794 return r;
2795 }
2796 #endif
2797
2798 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2799 int (*accessor)(struct kvm_device *dev,
2800 struct kvm_device_attr *attr),
2801 unsigned long arg)
2802 {
2803 struct kvm_device_attr attr;
2804
2805 if (!accessor)
2806 return -EPERM;
2807
2808 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2809 return -EFAULT;
2810
2811 return accessor(dev, &attr);
2812 }
2813
2814 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2815 unsigned long arg)
2816 {
2817 struct kvm_device *dev = filp->private_data;
2818
2819 switch (ioctl) {
2820 case KVM_SET_DEVICE_ATTR:
2821 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2822 case KVM_GET_DEVICE_ATTR:
2823 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2824 case KVM_HAS_DEVICE_ATTR:
2825 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2826 default:
2827 if (dev->ops->ioctl)
2828 return dev->ops->ioctl(dev, ioctl, arg);
2829
2830 return -ENOTTY;
2831 }
2832 }
2833
2834 static int kvm_device_release(struct inode *inode, struct file *filp)
2835 {
2836 struct kvm_device *dev = filp->private_data;
2837 struct kvm *kvm = dev->kvm;
2838
2839 kvm_put_kvm(kvm);
2840 return 0;
2841 }
2842
2843 static const struct file_operations kvm_device_fops = {
2844 .unlocked_ioctl = kvm_device_ioctl,
2845 #ifdef CONFIG_KVM_COMPAT
2846 .compat_ioctl = kvm_device_ioctl,
2847 #endif
2848 .release = kvm_device_release,
2849 };
2850
2851 struct kvm_device *kvm_device_from_filp(struct file *filp)
2852 {
2853 if (filp->f_op != &kvm_device_fops)
2854 return NULL;
2855
2856 return filp->private_data;
2857 }
2858
2859 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2860 #ifdef CONFIG_KVM_MPIC
2861 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2862 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2863 #endif
2864 };
2865
2866 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2867 {
2868 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2869 return -ENOSPC;
2870
2871 if (kvm_device_ops_table[type] != NULL)
2872 return -EEXIST;
2873
2874 kvm_device_ops_table[type] = ops;
2875 return 0;
2876 }
2877
2878 void kvm_unregister_device_ops(u32 type)
2879 {
2880 if (kvm_device_ops_table[type] != NULL)
2881 kvm_device_ops_table[type] = NULL;
2882 }
2883
2884 static int kvm_ioctl_create_device(struct kvm *kvm,
2885 struct kvm_create_device *cd)
2886 {
2887 struct kvm_device_ops *ops = NULL;
2888 struct kvm_device *dev;
2889 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2890 int ret;
2891
2892 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2893 return -ENODEV;
2894
2895 ops = kvm_device_ops_table[cd->type];
2896 if (ops == NULL)
2897 return -ENODEV;
2898
2899 if (test)
2900 return 0;
2901
2902 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2903 if (!dev)
2904 return -ENOMEM;
2905
2906 dev->ops = ops;
2907 dev->kvm = kvm;
2908
2909 mutex_lock(&kvm->lock);
2910 ret = ops->create(dev, cd->type);
2911 if (ret < 0) {
2912 mutex_unlock(&kvm->lock);
2913 kfree(dev);
2914 return ret;
2915 }
2916 list_add(&dev->vm_node, &kvm->devices);
2917 mutex_unlock(&kvm->lock);
2918
2919 if (ops->init)
2920 ops->init(dev);
2921
2922 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2923 if (ret < 0) {
2924 mutex_lock(&kvm->lock);
2925 list_del(&dev->vm_node);
2926 mutex_unlock(&kvm->lock);
2927 ops->destroy(dev);
2928 return ret;
2929 }
2930
2931 kvm_get_kvm(kvm);
2932 cd->fd = ret;
2933 return 0;
2934 }
2935
2936 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2937 {
2938 switch (arg) {
2939 case KVM_CAP_USER_MEMORY:
2940 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2941 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2942 case KVM_CAP_INTERNAL_ERROR_DATA:
2943 #ifdef CONFIG_HAVE_KVM_MSI
2944 case KVM_CAP_SIGNAL_MSI:
2945 #endif
2946 #ifdef CONFIG_HAVE_KVM_IRQFD
2947 case KVM_CAP_IRQFD:
2948 case KVM_CAP_IRQFD_RESAMPLE:
2949 #endif
2950 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2951 case KVM_CAP_CHECK_EXTENSION_VM:
2952 return 1;
2953 #ifdef CONFIG_KVM_MMIO
2954 case KVM_CAP_COALESCED_MMIO:
2955 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2956 #endif
2957 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2958 case KVM_CAP_IRQ_ROUTING:
2959 return KVM_MAX_IRQ_ROUTES;
2960 #endif
2961 #if KVM_ADDRESS_SPACE_NUM > 1
2962 case KVM_CAP_MULTI_ADDRESS_SPACE:
2963 return KVM_ADDRESS_SPACE_NUM;
2964 #endif
2965 case KVM_CAP_MAX_VCPU_ID:
2966 return KVM_MAX_VCPU_ID;
2967 default:
2968 break;
2969 }
2970 return kvm_vm_ioctl_check_extension(kvm, arg);
2971 }
2972
2973 static long kvm_vm_ioctl(struct file *filp,
2974 unsigned int ioctl, unsigned long arg)
2975 {
2976 struct kvm *kvm = filp->private_data;
2977 void __user *argp = (void __user *)arg;
2978 int r;
2979
2980 if (kvm->mm != current->mm)
2981 return -EIO;
2982 switch (ioctl) {
2983 case KVM_CREATE_VCPU:
2984 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2985 break;
2986 case KVM_SET_USER_MEMORY_REGION: {
2987 struct kvm_userspace_memory_region kvm_userspace_mem;
2988
2989 r = -EFAULT;
2990 if (copy_from_user(&kvm_userspace_mem, argp,
2991 sizeof(kvm_userspace_mem)))
2992 goto out;
2993
2994 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2995 break;
2996 }
2997 case KVM_GET_DIRTY_LOG: {
2998 struct kvm_dirty_log log;
2999
3000 r = -EFAULT;
3001 if (copy_from_user(&log, argp, sizeof(log)))
3002 goto out;
3003 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3004 break;
3005 }
3006 #ifdef CONFIG_KVM_MMIO
3007 case KVM_REGISTER_COALESCED_MMIO: {
3008 struct kvm_coalesced_mmio_zone zone;
3009
3010 r = -EFAULT;
3011 if (copy_from_user(&zone, argp, sizeof(zone)))
3012 goto out;
3013 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3014 break;
3015 }
3016 case KVM_UNREGISTER_COALESCED_MMIO: {
3017 struct kvm_coalesced_mmio_zone zone;
3018
3019 r = -EFAULT;
3020 if (copy_from_user(&zone, argp, sizeof(zone)))
3021 goto out;
3022 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3023 break;
3024 }
3025 #endif
3026 case KVM_IRQFD: {
3027 struct kvm_irqfd data;
3028
3029 r = -EFAULT;
3030 if (copy_from_user(&data, argp, sizeof(data)))
3031 goto out;
3032 r = kvm_irqfd(kvm, &data);
3033 break;
3034 }
3035 case KVM_IOEVENTFD: {
3036 struct kvm_ioeventfd data;
3037
3038 r = -EFAULT;
3039 if (copy_from_user(&data, argp, sizeof(data)))
3040 goto out;
3041 r = kvm_ioeventfd(kvm, &data);
3042 break;
3043 }
3044 #ifdef CONFIG_HAVE_KVM_MSI
3045 case KVM_SIGNAL_MSI: {
3046 struct kvm_msi msi;
3047
3048 r = -EFAULT;
3049 if (copy_from_user(&msi, argp, sizeof(msi)))
3050 goto out;
3051 r = kvm_send_userspace_msi(kvm, &msi);
3052 break;
3053 }
3054 #endif
3055 #ifdef __KVM_HAVE_IRQ_LINE
3056 case KVM_IRQ_LINE_STATUS:
3057 case KVM_IRQ_LINE: {
3058 struct kvm_irq_level irq_event;
3059
3060 r = -EFAULT;
3061 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3062 goto out;
3063
3064 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3065 ioctl == KVM_IRQ_LINE_STATUS);
3066 if (r)
3067 goto out;
3068
3069 r = -EFAULT;
3070 if (ioctl == KVM_IRQ_LINE_STATUS) {
3071 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3072 goto out;
3073 }
3074
3075 r = 0;
3076 break;
3077 }
3078 #endif
3079 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3080 case KVM_SET_GSI_ROUTING: {
3081 struct kvm_irq_routing routing;
3082 struct kvm_irq_routing __user *urouting;
3083 struct kvm_irq_routing_entry *entries = NULL;
3084
3085 r = -EFAULT;
3086 if (copy_from_user(&routing, argp, sizeof(routing)))
3087 goto out;
3088 r = -EINVAL;
3089 if (!kvm_arch_can_set_irq_routing(kvm))
3090 goto out;
3091 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3092 goto out;
3093 if (routing.flags)
3094 goto out;
3095 if (routing.nr) {
3096 r = -ENOMEM;
3097 entries = vmalloc(routing.nr * sizeof(*entries));
3098 if (!entries)
3099 goto out;
3100 r = -EFAULT;
3101 urouting = argp;
3102 if (copy_from_user(entries, urouting->entries,
3103 routing.nr * sizeof(*entries)))
3104 goto out_free_irq_routing;
3105 }
3106 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3107 routing.flags);
3108 out_free_irq_routing:
3109 vfree(entries);
3110 break;
3111 }
3112 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3113 case KVM_CREATE_DEVICE: {
3114 struct kvm_create_device cd;
3115
3116 r = -EFAULT;
3117 if (copy_from_user(&cd, argp, sizeof(cd)))
3118 goto out;
3119
3120 r = kvm_ioctl_create_device(kvm, &cd);
3121 if (r)
3122 goto out;
3123
3124 r = -EFAULT;
3125 if (copy_to_user(argp, &cd, sizeof(cd)))
3126 goto out;
3127
3128 r = 0;
3129 break;
3130 }
3131 case KVM_CHECK_EXTENSION:
3132 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3133 break;
3134 default:
3135 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3136 }
3137 out:
3138 return r;
3139 }
3140
3141 #ifdef CONFIG_KVM_COMPAT
3142 struct compat_kvm_dirty_log {
3143 __u32 slot;
3144 __u32 padding1;
3145 union {
3146 compat_uptr_t dirty_bitmap; /* one bit per page */
3147 __u64 padding2;
3148 };
3149 };
3150
3151 static long kvm_vm_compat_ioctl(struct file *filp,
3152 unsigned int ioctl, unsigned long arg)
3153 {
3154 struct kvm *kvm = filp->private_data;
3155 int r;
3156
3157 if (kvm->mm != current->mm)
3158 return -EIO;
3159 switch (ioctl) {
3160 case KVM_GET_DIRTY_LOG: {
3161 struct compat_kvm_dirty_log compat_log;
3162 struct kvm_dirty_log log;
3163
3164 if (copy_from_user(&compat_log, (void __user *)arg,
3165 sizeof(compat_log)))
3166 return -EFAULT;
3167 log.slot = compat_log.slot;
3168 log.padding1 = compat_log.padding1;
3169 log.padding2 = compat_log.padding2;
3170 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3171
3172 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3173 break;
3174 }
3175 default:
3176 r = kvm_vm_ioctl(filp, ioctl, arg);
3177 }
3178 return r;
3179 }
3180 #endif
3181
3182 static struct file_operations kvm_vm_fops = {
3183 .release = kvm_vm_release,
3184 .unlocked_ioctl = kvm_vm_ioctl,
3185 #ifdef CONFIG_KVM_COMPAT
3186 .compat_ioctl = kvm_vm_compat_ioctl,
3187 #endif
3188 .llseek = noop_llseek,
3189 };
3190
3191 static int kvm_dev_ioctl_create_vm(unsigned long type)
3192 {
3193 int r;
3194 struct kvm *kvm;
3195 struct file *file;
3196
3197 kvm = kvm_create_vm(type);
3198 if (IS_ERR(kvm))
3199 return PTR_ERR(kvm);
3200 #ifdef CONFIG_KVM_MMIO
3201 r = kvm_coalesced_mmio_init(kvm);
3202 if (r < 0) {
3203 kvm_put_kvm(kvm);
3204 return r;
3205 }
3206 #endif
3207 r = get_unused_fd_flags(O_CLOEXEC);
3208 if (r < 0) {
3209 kvm_put_kvm(kvm);
3210 return r;
3211 }
3212 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3213 if (IS_ERR(file)) {
3214 put_unused_fd(r);
3215 kvm_put_kvm(kvm);
3216 return PTR_ERR(file);
3217 }
3218
3219 /*
3220 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3221 * already set, with ->release() being kvm_vm_release(). In error
3222 * cases it will be called by the final fput(file) and will take
3223 * care of doing kvm_put_kvm(kvm).
3224 */
3225 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3226 put_unused_fd(r);
3227 fput(file);
3228 return -ENOMEM;
3229 }
3230 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3231
3232 fd_install(r, file);
3233 return r;
3234 }
3235
3236 static long kvm_dev_ioctl(struct file *filp,
3237 unsigned int ioctl, unsigned long arg)
3238 {
3239 long r = -EINVAL;
3240
3241 switch (ioctl) {
3242 case KVM_GET_API_VERSION:
3243 if (arg)
3244 goto out;
3245 r = KVM_API_VERSION;
3246 break;
3247 case KVM_CREATE_VM:
3248 r = kvm_dev_ioctl_create_vm(arg);
3249 break;
3250 case KVM_CHECK_EXTENSION:
3251 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3252 break;
3253 case KVM_GET_VCPU_MMAP_SIZE:
3254 if (arg)
3255 goto out;
3256 r = PAGE_SIZE; /* struct kvm_run */
3257 #ifdef CONFIG_X86
3258 r += PAGE_SIZE; /* pio data page */
3259 #endif
3260 #ifdef CONFIG_KVM_MMIO
3261 r += PAGE_SIZE; /* coalesced mmio ring page */
3262 #endif
3263 break;
3264 case KVM_TRACE_ENABLE:
3265 case KVM_TRACE_PAUSE:
3266 case KVM_TRACE_DISABLE:
3267 r = -EOPNOTSUPP;
3268 break;
3269 default:
3270 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3271 }
3272 out:
3273 return r;
3274 }
3275
3276 static struct file_operations kvm_chardev_ops = {
3277 .unlocked_ioctl = kvm_dev_ioctl,
3278 .compat_ioctl = kvm_dev_ioctl,
3279 .llseek = noop_llseek,
3280 };
3281
3282 static struct miscdevice kvm_dev = {
3283 KVM_MINOR,
3284 "kvm",
3285 &kvm_chardev_ops,
3286 };
3287
3288 static void hardware_enable_nolock(void *junk)
3289 {
3290 int cpu = raw_smp_processor_id();
3291 int r;
3292
3293 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3294 return;
3295
3296 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3297
3298 r = kvm_arch_hardware_enable();
3299
3300 if (r) {
3301 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3302 atomic_inc(&hardware_enable_failed);
3303 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3304 }
3305 }
3306
3307 static int kvm_starting_cpu(unsigned int cpu)
3308 {
3309 raw_spin_lock(&kvm_count_lock);
3310 if (kvm_usage_count)
3311 hardware_enable_nolock(NULL);
3312 raw_spin_unlock(&kvm_count_lock);
3313 return 0;
3314 }
3315
3316 static void hardware_disable_nolock(void *junk)
3317 {
3318 int cpu = raw_smp_processor_id();
3319
3320 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3321 return;
3322 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3323 kvm_arch_hardware_disable();
3324 }
3325
3326 static int kvm_dying_cpu(unsigned int cpu)
3327 {
3328 raw_spin_lock(&kvm_count_lock);
3329 if (kvm_usage_count)
3330 hardware_disable_nolock(NULL);
3331 raw_spin_unlock(&kvm_count_lock);
3332 return 0;
3333 }
3334
3335 static void hardware_disable_all_nolock(void)
3336 {
3337 BUG_ON(!kvm_usage_count);
3338
3339 kvm_usage_count--;
3340 if (!kvm_usage_count)
3341 on_each_cpu(hardware_disable_nolock, NULL, 1);
3342 }
3343
3344 static void hardware_disable_all(void)
3345 {
3346 raw_spin_lock(&kvm_count_lock);
3347 hardware_disable_all_nolock();
3348 raw_spin_unlock(&kvm_count_lock);
3349 }
3350
3351 static int hardware_enable_all(void)
3352 {
3353 int r = 0;
3354
3355 raw_spin_lock(&kvm_count_lock);
3356
3357 kvm_usage_count++;
3358 if (kvm_usage_count == 1) {
3359 atomic_set(&hardware_enable_failed, 0);
3360 on_each_cpu(hardware_enable_nolock, NULL, 1);
3361
3362 if (atomic_read(&hardware_enable_failed)) {
3363 hardware_disable_all_nolock();
3364 r = -EBUSY;
3365 }
3366 }
3367
3368 raw_spin_unlock(&kvm_count_lock);
3369
3370 return r;
3371 }
3372
3373 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3374 void *v)
3375 {
3376 /*
3377 * Some (well, at least mine) BIOSes hang on reboot if
3378 * in vmx root mode.
3379 *
3380 * And Intel TXT required VMX off for all cpu when system shutdown.
3381 */
3382 pr_info("kvm: exiting hardware virtualization\n");
3383 kvm_rebooting = true;
3384 on_each_cpu(hardware_disable_nolock, NULL, 1);
3385 return NOTIFY_OK;
3386 }
3387
3388 static struct notifier_block kvm_reboot_notifier = {
3389 .notifier_call = kvm_reboot,
3390 .priority = 0,
3391 };
3392
3393 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3394 {
3395 int i;
3396
3397 for (i = 0; i < bus->dev_count; i++) {
3398 struct kvm_io_device *pos = bus->range[i].dev;
3399
3400 kvm_iodevice_destructor(pos);
3401 }
3402 kfree(bus);
3403 }
3404
3405 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3406 const struct kvm_io_range *r2)
3407 {
3408 gpa_t addr1 = r1->addr;
3409 gpa_t addr2 = r2->addr;
3410
3411 if (addr1 < addr2)
3412 return -1;
3413
3414 /* If r2->len == 0, match the exact address. If r2->len != 0,
3415 * accept any overlapping write. Any order is acceptable for
3416 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3417 * we process all of them.
3418 */
3419 if (r2->len) {
3420 addr1 += r1->len;
3421 addr2 += r2->len;
3422 }
3423
3424 if (addr1 > addr2)
3425 return 1;
3426
3427 return 0;
3428 }
3429
3430 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3431 {
3432 return kvm_io_bus_cmp(p1, p2);
3433 }
3434
3435 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3436 gpa_t addr, int len)
3437 {
3438 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3439 .addr = addr,
3440 .len = len,
3441 .dev = dev,
3442 };
3443
3444 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3445 kvm_io_bus_sort_cmp, NULL);
3446
3447 return 0;
3448 }
3449
3450 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3451 gpa_t addr, int len)
3452 {
3453 struct kvm_io_range *range, key;
3454 int off;
3455
3456 key = (struct kvm_io_range) {
3457 .addr = addr,
3458 .len = len,
3459 };
3460
3461 range = bsearch(&key, bus->range, bus->dev_count,
3462 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3463 if (range == NULL)
3464 return -ENOENT;
3465
3466 off = range - bus->range;
3467
3468 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3469 off--;
3470
3471 return off;
3472 }
3473
3474 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3475 struct kvm_io_range *range, const void *val)
3476 {
3477 int idx;
3478
3479 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3480 if (idx < 0)
3481 return -EOPNOTSUPP;
3482
3483 while (idx < bus->dev_count &&
3484 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3485 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3486 range->len, val))
3487 return idx;
3488 idx++;
3489 }
3490
3491 return -EOPNOTSUPP;
3492 }
3493
3494 /* kvm_io_bus_write - called under kvm->slots_lock */
3495 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3496 int len, const void *val)
3497 {
3498 struct kvm_io_bus *bus;
3499 struct kvm_io_range range;
3500 int r;
3501
3502 range = (struct kvm_io_range) {
3503 .addr = addr,
3504 .len = len,
3505 };
3506
3507 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3508 if (!bus)
3509 return -ENOMEM;
3510 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3511 return r < 0 ? r : 0;
3512 }
3513
3514 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3515 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3516 gpa_t addr, int len, const void *val, long cookie)
3517 {
3518 struct kvm_io_bus *bus;
3519 struct kvm_io_range range;
3520
3521 range = (struct kvm_io_range) {
3522 .addr = addr,
3523 .len = len,
3524 };
3525
3526 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3527 if (!bus)
3528 return -ENOMEM;
3529
3530 /* First try the device referenced by cookie. */
3531 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3532 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3533 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3534 val))
3535 return cookie;
3536
3537 /*
3538 * cookie contained garbage; fall back to search and return the
3539 * correct cookie value.
3540 */
3541 return __kvm_io_bus_write(vcpu, bus, &range, val);
3542 }
3543
3544 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3545 struct kvm_io_range *range, void *val)
3546 {
3547 int idx;
3548
3549 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3550 if (idx < 0)
3551 return -EOPNOTSUPP;
3552
3553 while (idx < bus->dev_count &&
3554 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3555 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3556 range->len, val))
3557 return idx;
3558 idx++;
3559 }
3560
3561 return -EOPNOTSUPP;
3562 }
3563 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3564
3565 /* kvm_io_bus_read - called under kvm->slots_lock */
3566 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3567 int len, void *val)
3568 {
3569 struct kvm_io_bus *bus;
3570 struct kvm_io_range range;
3571 int r;
3572
3573 range = (struct kvm_io_range) {
3574 .addr = addr,
3575 .len = len,
3576 };
3577
3578 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3579 if (!bus)
3580 return -ENOMEM;
3581 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3582 return r < 0 ? r : 0;
3583 }
3584
3585
3586 /* Caller must hold slots_lock. */
3587 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3588 int len, struct kvm_io_device *dev)
3589 {
3590 struct kvm_io_bus *new_bus, *bus;
3591
3592 bus = kvm_get_bus(kvm, bus_idx);
3593 if (!bus)
3594 return -ENOMEM;
3595
3596 /* exclude ioeventfd which is limited by maximum fd */
3597 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3598 return -ENOSPC;
3599
3600 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3601 sizeof(struct kvm_io_range)), GFP_KERNEL);
3602 if (!new_bus)
3603 return -ENOMEM;
3604 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3605 sizeof(struct kvm_io_range)));
3606 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3607 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3608 synchronize_srcu_expedited(&kvm->srcu);
3609 kfree(bus);
3610
3611 return 0;
3612 }
3613
3614 /* Caller must hold slots_lock. */
3615 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3616 struct kvm_io_device *dev)
3617 {
3618 int i;
3619 struct kvm_io_bus *new_bus, *bus;
3620
3621 bus = kvm_get_bus(kvm, bus_idx);
3622 if (!bus)
3623 return;
3624
3625 for (i = 0; i < bus->dev_count; i++)
3626 if (bus->range[i].dev == dev) {
3627 break;
3628 }
3629
3630 if (i == bus->dev_count)
3631 return;
3632
3633 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3634 sizeof(struct kvm_io_range)), GFP_KERNEL);
3635 if (!new_bus) {
3636 pr_err("kvm: failed to shrink bus, removing it completely\n");
3637 goto broken;
3638 }
3639
3640 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3641 new_bus->dev_count--;
3642 memcpy(new_bus->range + i, bus->range + i + 1,
3643 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3644
3645 broken:
3646 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3647 synchronize_srcu_expedited(&kvm->srcu);
3648 kfree(bus);
3649 return;
3650 }
3651
3652 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3653 gpa_t addr)
3654 {
3655 struct kvm_io_bus *bus;
3656 int dev_idx, srcu_idx;
3657 struct kvm_io_device *iodev = NULL;
3658
3659 srcu_idx = srcu_read_lock(&kvm->srcu);
3660
3661 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3662 if (!bus)
3663 goto out_unlock;
3664
3665 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3666 if (dev_idx < 0)
3667 goto out_unlock;
3668
3669 iodev = bus->range[dev_idx].dev;
3670
3671 out_unlock:
3672 srcu_read_unlock(&kvm->srcu, srcu_idx);
3673
3674 return iodev;
3675 }
3676 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3677
3678 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3679 int (*get)(void *, u64 *), int (*set)(void *, u64),
3680 const char *fmt)
3681 {
3682 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3683 inode->i_private;
3684
3685 /* The debugfs files are a reference to the kvm struct which
3686 * is still valid when kvm_destroy_vm is called.
3687 * To avoid the race between open and the removal of the debugfs
3688 * directory we test against the users count.
3689 */
3690 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3691 return -ENOENT;
3692
3693 if (simple_attr_open(inode, file, get, set, fmt)) {
3694 kvm_put_kvm(stat_data->kvm);
3695 return -ENOMEM;
3696 }
3697
3698 return 0;
3699 }
3700
3701 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3702 {
3703 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3704 inode->i_private;
3705
3706 simple_attr_release(inode, file);
3707 kvm_put_kvm(stat_data->kvm);
3708
3709 return 0;
3710 }
3711
3712 static int vm_stat_get_per_vm(void *data, u64 *val)
3713 {
3714 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3715
3716 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3717
3718 return 0;
3719 }
3720
3721 static int vm_stat_clear_per_vm(void *data, u64 val)
3722 {
3723 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3724
3725 if (val)
3726 return -EINVAL;
3727
3728 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3729
3730 return 0;
3731 }
3732
3733 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3734 {
3735 __simple_attr_check_format("%llu\n", 0ull);
3736 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3737 vm_stat_clear_per_vm, "%llu\n");
3738 }
3739
3740 static const struct file_operations vm_stat_get_per_vm_fops = {
3741 .owner = THIS_MODULE,
3742 .open = vm_stat_get_per_vm_open,
3743 .release = kvm_debugfs_release,
3744 .read = simple_attr_read,
3745 .write = simple_attr_write,
3746 .llseek = no_llseek,
3747 };
3748
3749 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3750 {
3751 int i;
3752 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3753 struct kvm_vcpu *vcpu;
3754
3755 *val = 0;
3756
3757 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3758 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3759
3760 return 0;
3761 }
3762
3763 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3764 {
3765 int i;
3766 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3767 struct kvm_vcpu *vcpu;
3768
3769 if (val)
3770 return -EINVAL;
3771
3772 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3773 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3774
3775 return 0;
3776 }
3777
3778 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3779 {
3780 __simple_attr_check_format("%llu\n", 0ull);
3781 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3782 vcpu_stat_clear_per_vm, "%llu\n");
3783 }
3784
3785 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3786 .owner = THIS_MODULE,
3787 .open = vcpu_stat_get_per_vm_open,
3788 .release = kvm_debugfs_release,
3789 .read = simple_attr_read,
3790 .write = simple_attr_write,
3791 .llseek = no_llseek,
3792 };
3793
3794 static const struct file_operations *stat_fops_per_vm[] = {
3795 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3796 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3797 };
3798
3799 static int vm_stat_get(void *_offset, u64 *val)
3800 {
3801 unsigned offset = (long)_offset;
3802 struct kvm *kvm;
3803 struct kvm_stat_data stat_tmp = {.offset = offset};
3804 u64 tmp_val;
3805
3806 *val = 0;
3807 spin_lock(&kvm_lock);
3808 list_for_each_entry(kvm, &vm_list, vm_list) {
3809 stat_tmp.kvm = kvm;
3810 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3811 *val += tmp_val;
3812 }
3813 spin_unlock(&kvm_lock);
3814 return 0;
3815 }
3816
3817 static int vm_stat_clear(void *_offset, u64 val)
3818 {
3819 unsigned offset = (long)_offset;
3820 struct kvm *kvm;
3821 struct kvm_stat_data stat_tmp = {.offset = offset};
3822
3823 if (val)
3824 return -EINVAL;
3825
3826 spin_lock(&kvm_lock);
3827 list_for_each_entry(kvm, &vm_list, vm_list) {
3828 stat_tmp.kvm = kvm;
3829 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3830 }
3831 spin_unlock(&kvm_lock);
3832
3833 return 0;
3834 }
3835
3836 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3837
3838 static int vcpu_stat_get(void *_offset, u64 *val)
3839 {
3840 unsigned offset = (long)_offset;
3841 struct kvm *kvm;
3842 struct kvm_stat_data stat_tmp = {.offset = offset};
3843 u64 tmp_val;
3844
3845 *val = 0;
3846 spin_lock(&kvm_lock);
3847 list_for_each_entry(kvm, &vm_list, vm_list) {
3848 stat_tmp.kvm = kvm;
3849 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3850 *val += tmp_val;
3851 }
3852 spin_unlock(&kvm_lock);
3853 return 0;
3854 }
3855
3856 static int vcpu_stat_clear(void *_offset, u64 val)
3857 {
3858 unsigned offset = (long)_offset;
3859 struct kvm *kvm;
3860 struct kvm_stat_data stat_tmp = {.offset = offset};
3861
3862 if (val)
3863 return -EINVAL;
3864
3865 spin_lock(&kvm_lock);
3866 list_for_each_entry(kvm, &vm_list, vm_list) {
3867 stat_tmp.kvm = kvm;
3868 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3869 }
3870 spin_unlock(&kvm_lock);
3871
3872 return 0;
3873 }
3874
3875 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3876 "%llu\n");
3877
3878 static const struct file_operations *stat_fops[] = {
3879 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3880 [KVM_STAT_VM] = &vm_stat_fops,
3881 };
3882
3883 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3884 {
3885 struct kobj_uevent_env *env;
3886 unsigned long long created, active;
3887
3888 if (!kvm_dev.this_device || !kvm)
3889 return;
3890
3891 spin_lock(&kvm_lock);
3892 if (type == KVM_EVENT_CREATE_VM) {
3893 kvm_createvm_count++;
3894 kvm_active_vms++;
3895 } else if (type == KVM_EVENT_DESTROY_VM) {
3896 kvm_active_vms--;
3897 }
3898 created = kvm_createvm_count;
3899 active = kvm_active_vms;
3900 spin_unlock(&kvm_lock);
3901
3902 env = kzalloc(sizeof(*env), GFP_KERNEL);
3903 if (!env)
3904 return;
3905
3906 add_uevent_var(env, "CREATED=%llu", created);
3907 add_uevent_var(env, "COUNT=%llu", active);
3908
3909 if (type == KVM_EVENT_CREATE_VM) {
3910 add_uevent_var(env, "EVENT=create");
3911 kvm->userspace_pid = task_pid_nr(current);
3912 } else if (type == KVM_EVENT_DESTROY_VM) {
3913 add_uevent_var(env, "EVENT=destroy");
3914 }
3915 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3916
3917 if (kvm->debugfs_dentry) {
3918 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3919
3920 if (p) {
3921 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3922 if (!IS_ERR(tmp))
3923 add_uevent_var(env, "STATS_PATH=%s", tmp);
3924 kfree(p);
3925 }
3926 }
3927 /* no need for checks, since we are adding at most only 5 keys */
3928 env->envp[env->envp_idx++] = NULL;
3929 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3930 kfree(env);
3931 }
3932
3933 static int kvm_init_debug(void)
3934 {
3935 int r = -EEXIST;
3936 struct kvm_stats_debugfs_item *p;
3937
3938 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3939 if (kvm_debugfs_dir == NULL)
3940 goto out;
3941
3942 kvm_debugfs_num_entries = 0;
3943 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3944 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3945 (void *)(long)p->offset,
3946 stat_fops[p->kind]))
3947 goto out_dir;
3948 }
3949
3950 return 0;
3951
3952 out_dir:
3953 debugfs_remove_recursive(kvm_debugfs_dir);
3954 out:
3955 return r;
3956 }
3957
3958 static int kvm_suspend(void)
3959 {
3960 if (kvm_usage_count)
3961 hardware_disable_nolock(NULL);
3962 return 0;
3963 }
3964
3965 static void kvm_resume(void)
3966 {
3967 if (kvm_usage_count) {
3968 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3969 hardware_enable_nolock(NULL);
3970 }
3971 }
3972
3973 static struct syscore_ops kvm_syscore_ops = {
3974 .suspend = kvm_suspend,
3975 .resume = kvm_resume,
3976 };
3977
3978 static inline
3979 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3980 {
3981 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3982 }
3983
3984 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3985 {
3986 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3987
3988 if (vcpu->preempted)
3989 vcpu->preempted = false;
3990
3991 kvm_arch_sched_in(vcpu, cpu);
3992
3993 kvm_arch_vcpu_load(vcpu, cpu);
3994 }
3995
3996 static void kvm_sched_out(struct preempt_notifier *pn,
3997 struct task_struct *next)
3998 {
3999 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4000
4001 if (current->state == TASK_RUNNING)
4002 vcpu->preempted = true;
4003 kvm_arch_vcpu_put(vcpu);
4004 }
4005
4006 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4007 struct module *module)
4008 {
4009 int r;
4010 int cpu;
4011
4012 r = kvm_arch_init(opaque);
4013 if (r)
4014 goto out_fail;
4015
4016 /*
4017 * kvm_arch_init makes sure there's at most one caller
4018 * for architectures that support multiple implementations,
4019 * like intel and amd on x86.
4020 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4021 * conflicts in case kvm is already setup for another implementation.
4022 */
4023 r = kvm_irqfd_init();
4024 if (r)
4025 goto out_irqfd;
4026
4027 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4028 r = -ENOMEM;
4029 goto out_free_0;
4030 }
4031
4032 r = kvm_arch_hardware_setup();
4033 if (r < 0)
4034 goto out_free_0a;
4035
4036 for_each_online_cpu(cpu) {
4037 smp_call_function_single(cpu,
4038 kvm_arch_check_processor_compat,
4039 &r, 1);
4040 if (r < 0)
4041 goto out_free_1;
4042 }
4043
4044 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4045 kvm_starting_cpu, kvm_dying_cpu);
4046 if (r)
4047 goto out_free_2;
4048 register_reboot_notifier(&kvm_reboot_notifier);
4049
4050 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4051 if (!vcpu_align)
4052 vcpu_align = __alignof__(struct kvm_vcpu);
4053 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
4054 0, NULL);
4055 if (!kvm_vcpu_cache) {
4056 r = -ENOMEM;
4057 goto out_free_3;
4058 }
4059
4060 r = kvm_async_pf_init();
4061 if (r)
4062 goto out_free;
4063
4064 kvm_chardev_ops.owner = module;
4065 kvm_vm_fops.owner = module;
4066 kvm_vcpu_fops.owner = module;
4067
4068 r = misc_register(&kvm_dev);
4069 if (r) {
4070 pr_err("kvm: misc device register failed\n");
4071 goto out_unreg;
4072 }
4073
4074 register_syscore_ops(&kvm_syscore_ops);
4075
4076 kvm_preempt_ops.sched_in = kvm_sched_in;
4077 kvm_preempt_ops.sched_out = kvm_sched_out;
4078
4079 r = kvm_init_debug();
4080 if (r) {
4081 pr_err("kvm: create debugfs files failed\n");
4082 goto out_undebugfs;
4083 }
4084
4085 r = kvm_vfio_ops_init();
4086 WARN_ON(r);
4087
4088 return 0;
4089
4090 out_undebugfs:
4091 unregister_syscore_ops(&kvm_syscore_ops);
4092 misc_deregister(&kvm_dev);
4093 out_unreg:
4094 kvm_async_pf_deinit();
4095 out_free:
4096 kmem_cache_destroy(kvm_vcpu_cache);
4097 out_free_3:
4098 unregister_reboot_notifier(&kvm_reboot_notifier);
4099 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4100 out_free_2:
4101 out_free_1:
4102 kvm_arch_hardware_unsetup();
4103 out_free_0a:
4104 free_cpumask_var(cpus_hardware_enabled);
4105 out_free_0:
4106 kvm_irqfd_exit();
4107 out_irqfd:
4108 kvm_arch_exit();
4109 out_fail:
4110 return r;
4111 }
4112 EXPORT_SYMBOL_GPL(kvm_init);
4113
4114 void kvm_exit(void)
4115 {
4116 debugfs_remove_recursive(kvm_debugfs_dir);
4117 misc_deregister(&kvm_dev);
4118 kmem_cache_destroy(kvm_vcpu_cache);
4119 kvm_async_pf_deinit();
4120 unregister_syscore_ops(&kvm_syscore_ops);
4121 unregister_reboot_notifier(&kvm_reboot_notifier);
4122 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4123 on_each_cpu(hardware_disable_nolock, NULL, 1);
4124 kvm_arch_hardware_unsetup();
4125 kvm_arch_exit();
4126 kvm_irqfd_exit();
4127 free_cpumask_var(cpus_hardware_enabled);
4128 kvm_vfio_ops_exit();
4129 }
4130 EXPORT_SYMBOL_GPL(kvm_exit);