]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - virt/kvm/kvm_main.c
Merge branch 'drm-nouveau-next' of git://anongit.freedesktop.org/git/nouveau/linux...
[mirror_ubuntu-bionic-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 /*
68 * Ordering of locks:
69 *
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71 */
72
73 DEFINE_SPINLOCK(kvm_lock);
74 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
75 LIST_HEAD(vm_list);
76
77 static cpumask_var_t cpus_hardware_enabled;
78 static int kvm_usage_count = 0;
79 static atomic_t hardware_enable_failed;
80
81 struct kmem_cache *kvm_vcpu_cache;
82 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
83
84 static __read_mostly struct preempt_ops kvm_preempt_ops;
85
86 struct dentry *kvm_debugfs_dir;
87
88 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
89 unsigned long arg);
90 #ifdef CONFIG_COMPAT
91 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
92 unsigned long arg);
93 #endif
94 static int hardware_enable_all(void);
95 static void hardware_disable_all(void);
96
97 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
98 static void update_memslots(struct kvm_memslots *slots,
99 struct kvm_memory_slot *new, u64 last_generation);
100
101 static void kvm_release_pfn_dirty(pfn_t pfn);
102 static void mark_page_dirty_in_slot(struct kvm *kvm,
103 struct kvm_memory_slot *memslot, gfn_t gfn);
104
105 __visible bool kvm_rebooting;
106 EXPORT_SYMBOL_GPL(kvm_rebooting);
107
108 static bool largepages_enabled = true;
109
110 bool kvm_is_mmio_pfn(pfn_t pfn)
111 {
112 if (pfn_valid(pfn))
113 return PageReserved(pfn_to_page(pfn));
114
115 return true;
116 }
117
118 /*
119 * Switches to specified vcpu, until a matching vcpu_put()
120 */
121 int vcpu_load(struct kvm_vcpu *vcpu)
122 {
123 int cpu;
124
125 if (mutex_lock_killable(&vcpu->mutex))
126 return -EINTR;
127 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
128 /* The thread running this VCPU changed. */
129 struct pid *oldpid = vcpu->pid;
130 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
131 rcu_assign_pointer(vcpu->pid, newpid);
132 synchronize_rcu();
133 put_pid(oldpid);
134 }
135 cpu = get_cpu();
136 preempt_notifier_register(&vcpu->preempt_notifier);
137 kvm_arch_vcpu_load(vcpu, cpu);
138 put_cpu();
139 return 0;
140 }
141
142 void vcpu_put(struct kvm_vcpu *vcpu)
143 {
144 preempt_disable();
145 kvm_arch_vcpu_put(vcpu);
146 preempt_notifier_unregister(&vcpu->preempt_notifier);
147 preempt_enable();
148 mutex_unlock(&vcpu->mutex);
149 }
150
151 static void ack_flush(void *_completed)
152 {
153 }
154
155 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
156 {
157 int i, cpu, me;
158 cpumask_var_t cpus;
159 bool called = true;
160 struct kvm_vcpu *vcpu;
161
162 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
163
164 me = get_cpu();
165 kvm_for_each_vcpu(i, vcpu, kvm) {
166 kvm_make_request(req, vcpu);
167 cpu = vcpu->cpu;
168
169 /* Set ->requests bit before we read ->mode */
170 smp_mb();
171
172 if (cpus != NULL && cpu != -1 && cpu != me &&
173 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
174 cpumask_set_cpu(cpu, cpus);
175 }
176 if (unlikely(cpus == NULL))
177 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
178 else if (!cpumask_empty(cpus))
179 smp_call_function_many(cpus, ack_flush, NULL, 1);
180 else
181 called = false;
182 put_cpu();
183 free_cpumask_var(cpus);
184 return called;
185 }
186
187 void kvm_flush_remote_tlbs(struct kvm *kvm)
188 {
189 long dirty_count = kvm->tlbs_dirty;
190
191 smp_mb();
192 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
193 ++kvm->stat.remote_tlb_flush;
194 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
195 }
196 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
197
198 void kvm_reload_remote_mmus(struct kvm *kvm)
199 {
200 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
201 }
202
203 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
204 {
205 make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
206 }
207
208 void kvm_make_scan_ioapic_request(struct kvm *kvm)
209 {
210 make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
211 }
212
213 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
214 {
215 struct page *page;
216 int r;
217
218 mutex_init(&vcpu->mutex);
219 vcpu->cpu = -1;
220 vcpu->kvm = kvm;
221 vcpu->vcpu_id = id;
222 vcpu->pid = NULL;
223 init_waitqueue_head(&vcpu->wq);
224 kvm_async_pf_vcpu_init(vcpu);
225
226 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
227 if (!page) {
228 r = -ENOMEM;
229 goto fail;
230 }
231 vcpu->run = page_address(page);
232
233 kvm_vcpu_set_in_spin_loop(vcpu, false);
234 kvm_vcpu_set_dy_eligible(vcpu, false);
235 vcpu->preempted = false;
236
237 r = kvm_arch_vcpu_init(vcpu);
238 if (r < 0)
239 goto fail_free_run;
240 return 0;
241
242 fail_free_run:
243 free_page((unsigned long)vcpu->run);
244 fail:
245 return r;
246 }
247 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
248
249 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
250 {
251 put_pid(vcpu->pid);
252 kvm_arch_vcpu_uninit(vcpu);
253 free_page((unsigned long)vcpu->run);
254 }
255 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
256
257 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
258 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
259 {
260 return container_of(mn, struct kvm, mmu_notifier);
261 }
262
263 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
264 struct mm_struct *mm,
265 unsigned long address)
266 {
267 struct kvm *kvm = mmu_notifier_to_kvm(mn);
268 int need_tlb_flush, idx;
269
270 /*
271 * When ->invalidate_page runs, the linux pte has been zapped
272 * already but the page is still allocated until
273 * ->invalidate_page returns. So if we increase the sequence
274 * here the kvm page fault will notice if the spte can't be
275 * established because the page is going to be freed. If
276 * instead the kvm page fault establishes the spte before
277 * ->invalidate_page runs, kvm_unmap_hva will release it
278 * before returning.
279 *
280 * The sequence increase only need to be seen at spin_unlock
281 * time, and not at spin_lock time.
282 *
283 * Increasing the sequence after the spin_unlock would be
284 * unsafe because the kvm page fault could then establish the
285 * pte after kvm_unmap_hva returned, without noticing the page
286 * is going to be freed.
287 */
288 idx = srcu_read_lock(&kvm->srcu);
289 spin_lock(&kvm->mmu_lock);
290
291 kvm->mmu_notifier_seq++;
292 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
293 /* we've to flush the tlb before the pages can be freed */
294 if (need_tlb_flush)
295 kvm_flush_remote_tlbs(kvm);
296
297 spin_unlock(&kvm->mmu_lock);
298 srcu_read_unlock(&kvm->srcu, idx);
299 }
300
301 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
302 struct mm_struct *mm,
303 unsigned long address,
304 pte_t pte)
305 {
306 struct kvm *kvm = mmu_notifier_to_kvm(mn);
307 int idx;
308
309 idx = srcu_read_lock(&kvm->srcu);
310 spin_lock(&kvm->mmu_lock);
311 kvm->mmu_notifier_seq++;
312 kvm_set_spte_hva(kvm, address, pte);
313 spin_unlock(&kvm->mmu_lock);
314 srcu_read_unlock(&kvm->srcu, idx);
315 }
316
317 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
318 struct mm_struct *mm,
319 unsigned long start,
320 unsigned long end)
321 {
322 struct kvm *kvm = mmu_notifier_to_kvm(mn);
323 int need_tlb_flush = 0, idx;
324
325 idx = srcu_read_lock(&kvm->srcu);
326 spin_lock(&kvm->mmu_lock);
327 /*
328 * The count increase must become visible at unlock time as no
329 * spte can be established without taking the mmu_lock and
330 * count is also read inside the mmu_lock critical section.
331 */
332 kvm->mmu_notifier_count++;
333 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
334 need_tlb_flush |= kvm->tlbs_dirty;
335 /* we've to flush the tlb before the pages can be freed */
336 if (need_tlb_flush)
337 kvm_flush_remote_tlbs(kvm);
338
339 spin_unlock(&kvm->mmu_lock);
340 srcu_read_unlock(&kvm->srcu, idx);
341 }
342
343 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
344 struct mm_struct *mm,
345 unsigned long start,
346 unsigned long end)
347 {
348 struct kvm *kvm = mmu_notifier_to_kvm(mn);
349
350 spin_lock(&kvm->mmu_lock);
351 /*
352 * This sequence increase will notify the kvm page fault that
353 * the page that is going to be mapped in the spte could have
354 * been freed.
355 */
356 kvm->mmu_notifier_seq++;
357 smp_wmb();
358 /*
359 * The above sequence increase must be visible before the
360 * below count decrease, which is ensured by the smp_wmb above
361 * in conjunction with the smp_rmb in mmu_notifier_retry().
362 */
363 kvm->mmu_notifier_count--;
364 spin_unlock(&kvm->mmu_lock);
365
366 BUG_ON(kvm->mmu_notifier_count < 0);
367 }
368
369 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
370 struct mm_struct *mm,
371 unsigned long address)
372 {
373 struct kvm *kvm = mmu_notifier_to_kvm(mn);
374 int young, idx;
375
376 idx = srcu_read_lock(&kvm->srcu);
377 spin_lock(&kvm->mmu_lock);
378
379 young = kvm_age_hva(kvm, address);
380 if (young)
381 kvm_flush_remote_tlbs(kvm);
382
383 spin_unlock(&kvm->mmu_lock);
384 srcu_read_unlock(&kvm->srcu, idx);
385
386 return young;
387 }
388
389 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
390 struct mm_struct *mm,
391 unsigned long address)
392 {
393 struct kvm *kvm = mmu_notifier_to_kvm(mn);
394 int young, idx;
395
396 idx = srcu_read_lock(&kvm->srcu);
397 spin_lock(&kvm->mmu_lock);
398 young = kvm_test_age_hva(kvm, address);
399 spin_unlock(&kvm->mmu_lock);
400 srcu_read_unlock(&kvm->srcu, idx);
401
402 return young;
403 }
404
405 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
406 struct mm_struct *mm)
407 {
408 struct kvm *kvm = mmu_notifier_to_kvm(mn);
409 int idx;
410
411 idx = srcu_read_lock(&kvm->srcu);
412 kvm_arch_flush_shadow_all(kvm);
413 srcu_read_unlock(&kvm->srcu, idx);
414 }
415
416 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
417 .invalidate_page = kvm_mmu_notifier_invalidate_page,
418 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
419 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
420 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
421 .test_young = kvm_mmu_notifier_test_young,
422 .change_pte = kvm_mmu_notifier_change_pte,
423 .release = kvm_mmu_notifier_release,
424 };
425
426 static int kvm_init_mmu_notifier(struct kvm *kvm)
427 {
428 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
429 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
430 }
431
432 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
433
434 static int kvm_init_mmu_notifier(struct kvm *kvm)
435 {
436 return 0;
437 }
438
439 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
440
441 static void kvm_init_memslots_id(struct kvm *kvm)
442 {
443 int i;
444 struct kvm_memslots *slots = kvm->memslots;
445
446 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
447 slots->id_to_index[i] = slots->memslots[i].id = i;
448 }
449
450 static struct kvm *kvm_create_vm(unsigned long type)
451 {
452 int r, i;
453 struct kvm *kvm = kvm_arch_alloc_vm();
454
455 if (!kvm)
456 return ERR_PTR(-ENOMEM);
457
458 r = kvm_arch_init_vm(kvm, type);
459 if (r)
460 goto out_err_no_disable;
461
462 r = hardware_enable_all();
463 if (r)
464 goto out_err_no_disable;
465
466 #ifdef CONFIG_HAVE_KVM_IRQCHIP
467 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
468 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
469 #endif
470
471 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
472
473 r = -ENOMEM;
474 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
475 if (!kvm->memslots)
476 goto out_err_no_srcu;
477 kvm_init_memslots_id(kvm);
478 if (init_srcu_struct(&kvm->srcu))
479 goto out_err_no_srcu;
480 if (init_srcu_struct(&kvm->irq_srcu))
481 goto out_err_no_irq_srcu;
482 for (i = 0; i < KVM_NR_BUSES; i++) {
483 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
484 GFP_KERNEL);
485 if (!kvm->buses[i])
486 goto out_err;
487 }
488
489 spin_lock_init(&kvm->mmu_lock);
490 kvm->mm = current->mm;
491 atomic_inc(&kvm->mm->mm_count);
492 kvm_eventfd_init(kvm);
493 mutex_init(&kvm->lock);
494 mutex_init(&kvm->irq_lock);
495 mutex_init(&kvm->slots_lock);
496 atomic_set(&kvm->users_count, 1);
497 INIT_LIST_HEAD(&kvm->devices);
498
499 r = kvm_init_mmu_notifier(kvm);
500 if (r)
501 goto out_err;
502
503 spin_lock(&kvm_lock);
504 list_add(&kvm->vm_list, &vm_list);
505 spin_unlock(&kvm_lock);
506
507 return kvm;
508
509 out_err:
510 cleanup_srcu_struct(&kvm->irq_srcu);
511 out_err_no_irq_srcu:
512 cleanup_srcu_struct(&kvm->srcu);
513 out_err_no_srcu:
514 hardware_disable_all();
515 out_err_no_disable:
516 for (i = 0; i < KVM_NR_BUSES; i++)
517 kfree(kvm->buses[i]);
518 kfree(kvm->memslots);
519 kvm_arch_free_vm(kvm);
520 return ERR_PTR(r);
521 }
522
523 /*
524 * Avoid using vmalloc for a small buffer.
525 * Should not be used when the size is statically known.
526 */
527 void *kvm_kvzalloc(unsigned long size)
528 {
529 if (size > PAGE_SIZE)
530 return vzalloc(size);
531 else
532 return kzalloc(size, GFP_KERNEL);
533 }
534
535 void kvm_kvfree(const void *addr)
536 {
537 if (is_vmalloc_addr(addr))
538 vfree(addr);
539 else
540 kfree(addr);
541 }
542
543 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
544 {
545 if (!memslot->dirty_bitmap)
546 return;
547
548 kvm_kvfree(memslot->dirty_bitmap);
549 memslot->dirty_bitmap = NULL;
550 }
551
552 /*
553 * Free any memory in @free but not in @dont.
554 */
555 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
556 struct kvm_memory_slot *dont)
557 {
558 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
559 kvm_destroy_dirty_bitmap(free);
560
561 kvm_arch_free_memslot(kvm, free, dont);
562
563 free->npages = 0;
564 }
565
566 static void kvm_free_physmem(struct kvm *kvm)
567 {
568 struct kvm_memslots *slots = kvm->memslots;
569 struct kvm_memory_slot *memslot;
570
571 kvm_for_each_memslot(memslot, slots)
572 kvm_free_physmem_slot(kvm, memslot, NULL);
573
574 kfree(kvm->memslots);
575 }
576
577 static void kvm_destroy_devices(struct kvm *kvm)
578 {
579 struct list_head *node, *tmp;
580
581 list_for_each_safe(node, tmp, &kvm->devices) {
582 struct kvm_device *dev =
583 list_entry(node, struct kvm_device, vm_node);
584
585 list_del(node);
586 dev->ops->destroy(dev);
587 }
588 }
589
590 static void kvm_destroy_vm(struct kvm *kvm)
591 {
592 int i;
593 struct mm_struct *mm = kvm->mm;
594
595 kvm_arch_sync_events(kvm);
596 spin_lock(&kvm_lock);
597 list_del(&kvm->vm_list);
598 spin_unlock(&kvm_lock);
599 kvm_free_irq_routing(kvm);
600 for (i = 0; i < KVM_NR_BUSES; i++)
601 kvm_io_bus_destroy(kvm->buses[i]);
602 kvm_coalesced_mmio_free(kvm);
603 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
604 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
605 #else
606 kvm_arch_flush_shadow_all(kvm);
607 #endif
608 kvm_arch_destroy_vm(kvm);
609 kvm_destroy_devices(kvm);
610 kvm_free_physmem(kvm);
611 cleanup_srcu_struct(&kvm->irq_srcu);
612 cleanup_srcu_struct(&kvm->srcu);
613 kvm_arch_free_vm(kvm);
614 hardware_disable_all();
615 mmdrop(mm);
616 }
617
618 void kvm_get_kvm(struct kvm *kvm)
619 {
620 atomic_inc(&kvm->users_count);
621 }
622 EXPORT_SYMBOL_GPL(kvm_get_kvm);
623
624 void kvm_put_kvm(struct kvm *kvm)
625 {
626 if (atomic_dec_and_test(&kvm->users_count))
627 kvm_destroy_vm(kvm);
628 }
629 EXPORT_SYMBOL_GPL(kvm_put_kvm);
630
631
632 static int kvm_vm_release(struct inode *inode, struct file *filp)
633 {
634 struct kvm *kvm = filp->private_data;
635
636 kvm_irqfd_release(kvm);
637
638 kvm_put_kvm(kvm);
639 return 0;
640 }
641
642 /*
643 * Allocation size is twice as large as the actual dirty bitmap size.
644 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
645 */
646 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
647 {
648 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
649
650 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
651 if (!memslot->dirty_bitmap)
652 return -ENOMEM;
653
654 return 0;
655 }
656
657 static int cmp_memslot(const void *slot1, const void *slot2)
658 {
659 struct kvm_memory_slot *s1, *s2;
660
661 s1 = (struct kvm_memory_slot *)slot1;
662 s2 = (struct kvm_memory_slot *)slot2;
663
664 if (s1->npages < s2->npages)
665 return 1;
666 if (s1->npages > s2->npages)
667 return -1;
668
669 return 0;
670 }
671
672 /*
673 * Sort the memslots base on its size, so the larger slots
674 * will get better fit.
675 */
676 static void sort_memslots(struct kvm_memslots *slots)
677 {
678 int i;
679
680 sort(slots->memslots, KVM_MEM_SLOTS_NUM,
681 sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
682
683 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
684 slots->id_to_index[slots->memslots[i].id] = i;
685 }
686
687 static void update_memslots(struct kvm_memslots *slots,
688 struct kvm_memory_slot *new,
689 u64 last_generation)
690 {
691 if (new) {
692 int id = new->id;
693 struct kvm_memory_slot *old = id_to_memslot(slots, id);
694 unsigned long npages = old->npages;
695
696 *old = *new;
697 if (new->npages != npages)
698 sort_memslots(slots);
699 }
700
701 slots->generation = last_generation + 1;
702 }
703
704 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
705 {
706 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
707
708 #ifdef KVM_CAP_READONLY_MEM
709 valid_flags |= KVM_MEM_READONLY;
710 #endif
711
712 if (mem->flags & ~valid_flags)
713 return -EINVAL;
714
715 return 0;
716 }
717
718 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
719 struct kvm_memslots *slots, struct kvm_memory_slot *new)
720 {
721 struct kvm_memslots *old_memslots = kvm->memslots;
722
723 update_memslots(slots, new, kvm->memslots->generation);
724 rcu_assign_pointer(kvm->memslots, slots);
725 synchronize_srcu_expedited(&kvm->srcu);
726
727 kvm_arch_memslots_updated(kvm);
728
729 return old_memslots;
730 }
731
732 /*
733 * Allocate some memory and give it an address in the guest physical address
734 * space.
735 *
736 * Discontiguous memory is allowed, mostly for framebuffers.
737 *
738 * Must be called holding mmap_sem for write.
739 */
740 int __kvm_set_memory_region(struct kvm *kvm,
741 struct kvm_userspace_memory_region *mem)
742 {
743 int r;
744 gfn_t base_gfn;
745 unsigned long npages;
746 struct kvm_memory_slot *slot;
747 struct kvm_memory_slot old, new;
748 struct kvm_memslots *slots = NULL, *old_memslots;
749 enum kvm_mr_change change;
750
751 r = check_memory_region_flags(mem);
752 if (r)
753 goto out;
754
755 r = -EINVAL;
756 /* General sanity checks */
757 if (mem->memory_size & (PAGE_SIZE - 1))
758 goto out;
759 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
760 goto out;
761 /* We can read the guest memory with __xxx_user() later on. */
762 if ((mem->slot < KVM_USER_MEM_SLOTS) &&
763 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
764 !access_ok(VERIFY_WRITE,
765 (void __user *)(unsigned long)mem->userspace_addr,
766 mem->memory_size)))
767 goto out;
768 if (mem->slot >= KVM_MEM_SLOTS_NUM)
769 goto out;
770 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
771 goto out;
772
773 slot = id_to_memslot(kvm->memslots, mem->slot);
774 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
775 npages = mem->memory_size >> PAGE_SHIFT;
776
777 r = -EINVAL;
778 if (npages > KVM_MEM_MAX_NR_PAGES)
779 goto out;
780
781 if (!npages)
782 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
783
784 new = old = *slot;
785
786 new.id = mem->slot;
787 new.base_gfn = base_gfn;
788 new.npages = npages;
789 new.flags = mem->flags;
790
791 r = -EINVAL;
792 if (npages) {
793 if (!old.npages)
794 change = KVM_MR_CREATE;
795 else { /* Modify an existing slot. */
796 if ((mem->userspace_addr != old.userspace_addr) ||
797 (npages != old.npages) ||
798 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
799 goto out;
800
801 if (base_gfn != old.base_gfn)
802 change = KVM_MR_MOVE;
803 else if (new.flags != old.flags)
804 change = KVM_MR_FLAGS_ONLY;
805 else { /* Nothing to change. */
806 r = 0;
807 goto out;
808 }
809 }
810 } else if (old.npages) {
811 change = KVM_MR_DELETE;
812 } else /* Modify a non-existent slot: disallowed. */
813 goto out;
814
815 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
816 /* Check for overlaps */
817 r = -EEXIST;
818 kvm_for_each_memslot(slot, kvm->memslots) {
819 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
820 (slot->id == mem->slot))
821 continue;
822 if (!((base_gfn + npages <= slot->base_gfn) ||
823 (base_gfn >= slot->base_gfn + slot->npages)))
824 goto out;
825 }
826 }
827
828 /* Free page dirty bitmap if unneeded */
829 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
830 new.dirty_bitmap = NULL;
831
832 r = -ENOMEM;
833 if (change == KVM_MR_CREATE) {
834 new.userspace_addr = mem->userspace_addr;
835
836 if (kvm_arch_create_memslot(kvm, &new, npages))
837 goto out_free;
838 }
839
840 /* Allocate page dirty bitmap if needed */
841 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
842 if (kvm_create_dirty_bitmap(&new) < 0)
843 goto out_free;
844 }
845
846 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
847 r = -ENOMEM;
848 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
849 GFP_KERNEL);
850 if (!slots)
851 goto out_free;
852 slot = id_to_memslot(slots, mem->slot);
853 slot->flags |= KVM_MEMSLOT_INVALID;
854
855 old_memslots = install_new_memslots(kvm, slots, NULL);
856
857 /* slot was deleted or moved, clear iommu mapping */
858 kvm_iommu_unmap_pages(kvm, &old);
859 /* From this point no new shadow pages pointing to a deleted,
860 * or moved, memslot will be created.
861 *
862 * validation of sp->gfn happens in:
863 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
864 * - kvm_is_visible_gfn (mmu_check_roots)
865 */
866 kvm_arch_flush_shadow_memslot(kvm, slot);
867 slots = old_memslots;
868 }
869
870 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
871 if (r)
872 goto out_slots;
873
874 r = -ENOMEM;
875 /*
876 * We can re-use the old_memslots from above, the only difference
877 * from the currently installed memslots is the invalid flag. This
878 * will get overwritten by update_memslots anyway.
879 */
880 if (!slots) {
881 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
882 GFP_KERNEL);
883 if (!slots)
884 goto out_free;
885 }
886
887 /* actual memory is freed via old in kvm_free_physmem_slot below */
888 if (change == KVM_MR_DELETE) {
889 new.dirty_bitmap = NULL;
890 memset(&new.arch, 0, sizeof(new.arch));
891 }
892
893 old_memslots = install_new_memslots(kvm, slots, &new);
894
895 kvm_arch_commit_memory_region(kvm, mem, &old, change);
896
897 kvm_free_physmem_slot(kvm, &old, &new);
898 kfree(old_memslots);
899
900 /*
901 * IOMMU mapping: New slots need to be mapped. Old slots need to be
902 * un-mapped and re-mapped if their base changes. Since base change
903 * unmapping is handled above with slot deletion, mapping alone is
904 * needed here. Anything else the iommu might care about for existing
905 * slots (size changes, userspace addr changes and read-only flag
906 * changes) is disallowed above, so any other attribute changes getting
907 * here can be skipped.
908 */
909 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
910 r = kvm_iommu_map_pages(kvm, &new);
911 return r;
912 }
913
914 return 0;
915
916 out_slots:
917 kfree(slots);
918 out_free:
919 kvm_free_physmem_slot(kvm, &new, &old);
920 out:
921 return r;
922 }
923 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
924
925 int kvm_set_memory_region(struct kvm *kvm,
926 struct kvm_userspace_memory_region *mem)
927 {
928 int r;
929
930 mutex_lock(&kvm->slots_lock);
931 r = __kvm_set_memory_region(kvm, mem);
932 mutex_unlock(&kvm->slots_lock);
933 return r;
934 }
935 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
936
937 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
938 struct kvm_userspace_memory_region *mem)
939 {
940 if (mem->slot >= KVM_USER_MEM_SLOTS)
941 return -EINVAL;
942 return kvm_set_memory_region(kvm, mem);
943 }
944
945 int kvm_get_dirty_log(struct kvm *kvm,
946 struct kvm_dirty_log *log, int *is_dirty)
947 {
948 struct kvm_memory_slot *memslot;
949 int r, i;
950 unsigned long n;
951 unsigned long any = 0;
952
953 r = -EINVAL;
954 if (log->slot >= KVM_USER_MEM_SLOTS)
955 goto out;
956
957 memslot = id_to_memslot(kvm->memslots, log->slot);
958 r = -ENOENT;
959 if (!memslot->dirty_bitmap)
960 goto out;
961
962 n = kvm_dirty_bitmap_bytes(memslot);
963
964 for (i = 0; !any && i < n/sizeof(long); ++i)
965 any = memslot->dirty_bitmap[i];
966
967 r = -EFAULT;
968 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
969 goto out;
970
971 if (any)
972 *is_dirty = 1;
973
974 r = 0;
975 out:
976 return r;
977 }
978 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
979
980 bool kvm_largepages_enabled(void)
981 {
982 return largepages_enabled;
983 }
984
985 void kvm_disable_largepages(void)
986 {
987 largepages_enabled = false;
988 }
989 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
990
991 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
992 {
993 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
994 }
995 EXPORT_SYMBOL_GPL(gfn_to_memslot);
996
997 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
998 {
999 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1000
1001 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1002 memslot->flags & KVM_MEMSLOT_INVALID)
1003 return 0;
1004
1005 return 1;
1006 }
1007 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1008
1009 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1010 {
1011 struct vm_area_struct *vma;
1012 unsigned long addr, size;
1013
1014 size = PAGE_SIZE;
1015
1016 addr = gfn_to_hva(kvm, gfn);
1017 if (kvm_is_error_hva(addr))
1018 return PAGE_SIZE;
1019
1020 down_read(&current->mm->mmap_sem);
1021 vma = find_vma(current->mm, addr);
1022 if (!vma)
1023 goto out;
1024
1025 size = vma_kernel_pagesize(vma);
1026
1027 out:
1028 up_read(&current->mm->mmap_sem);
1029
1030 return size;
1031 }
1032
1033 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1034 {
1035 return slot->flags & KVM_MEM_READONLY;
1036 }
1037
1038 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1039 gfn_t *nr_pages, bool write)
1040 {
1041 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1042 return KVM_HVA_ERR_BAD;
1043
1044 if (memslot_is_readonly(slot) && write)
1045 return KVM_HVA_ERR_RO_BAD;
1046
1047 if (nr_pages)
1048 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1049
1050 return __gfn_to_hva_memslot(slot, gfn);
1051 }
1052
1053 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1054 gfn_t *nr_pages)
1055 {
1056 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1057 }
1058
1059 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1060 gfn_t gfn)
1061 {
1062 return gfn_to_hva_many(slot, gfn, NULL);
1063 }
1064 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1065
1066 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1067 {
1068 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1069 }
1070 EXPORT_SYMBOL_GPL(gfn_to_hva);
1071
1072 /*
1073 * If writable is set to false, the hva returned by this function is only
1074 * allowed to be read.
1075 */
1076 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1077 {
1078 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1079 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1080
1081 if (!kvm_is_error_hva(hva) && writable)
1082 *writable = !memslot_is_readonly(slot);
1083
1084 return hva;
1085 }
1086
1087 static int kvm_read_hva(void *data, void __user *hva, int len)
1088 {
1089 return __copy_from_user(data, hva, len);
1090 }
1091
1092 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1093 {
1094 return __copy_from_user_inatomic(data, hva, len);
1095 }
1096
1097 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1098 unsigned long start, int write, struct page **page)
1099 {
1100 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1101
1102 if (write)
1103 flags |= FOLL_WRITE;
1104
1105 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1106 }
1107
1108 static inline int check_user_page_hwpoison(unsigned long addr)
1109 {
1110 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1111
1112 rc = __get_user_pages(current, current->mm, addr, 1,
1113 flags, NULL, NULL, NULL);
1114 return rc == -EHWPOISON;
1115 }
1116
1117 /*
1118 * The atomic path to get the writable pfn which will be stored in @pfn,
1119 * true indicates success, otherwise false is returned.
1120 */
1121 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1122 bool write_fault, bool *writable, pfn_t *pfn)
1123 {
1124 struct page *page[1];
1125 int npages;
1126
1127 if (!(async || atomic))
1128 return false;
1129
1130 /*
1131 * Fast pin a writable pfn only if it is a write fault request
1132 * or the caller allows to map a writable pfn for a read fault
1133 * request.
1134 */
1135 if (!(write_fault || writable))
1136 return false;
1137
1138 npages = __get_user_pages_fast(addr, 1, 1, page);
1139 if (npages == 1) {
1140 *pfn = page_to_pfn(page[0]);
1141
1142 if (writable)
1143 *writable = true;
1144 return true;
1145 }
1146
1147 return false;
1148 }
1149
1150 /*
1151 * The slow path to get the pfn of the specified host virtual address,
1152 * 1 indicates success, -errno is returned if error is detected.
1153 */
1154 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1155 bool *writable, pfn_t *pfn)
1156 {
1157 struct page *page[1];
1158 int npages = 0;
1159
1160 might_sleep();
1161
1162 if (writable)
1163 *writable = write_fault;
1164
1165 if (async) {
1166 down_read(&current->mm->mmap_sem);
1167 npages = get_user_page_nowait(current, current->mm,
1168 addr, write_fault, page);
1169 up_read(&current->mm->mmap_sem);
1170 } else
1171 npages = get_user_pages_fast(addr, 1, write_fault,
1172 page);
1173 if (npages != 1)
1174 return npages;
1175
1176 /* map read fault as writable if possible */
1177 if (unlikely(!write_fault) && writable) {
1178 struct page *wpage[1];
1179
1180 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1181 if (npages == 1) {
1182 *writable = true;
1183 put_page(page[0]);
1184 page[0] = wpage[0];
1185 }
1186
1187 npages = 1;
1188 }
1189 *pfn = page_to_pfn(page[0]);
1190 return npages;
1191 }
1192
1193 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1194 {
1195 if (unlikely(!(vma->vm_flags & VM_READ)))
1196 return false;
1197
1198 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1199 return false;
1200
1201 return true;
1202 }
1203
1204 /*
1205 * Pin guest page in memory and return its pfn.
1206 * @addr: host virtual address which maps memory to the guest
1207 * @atomic: whether this function can sleep
1208 * @async: whether this function need to wait IO complete if the
1209 * host page is not in the memory
1210 * @write_fault: whether we should get a writable host page
1211 * @writable: whether it allows to map a writable host page for !@write_fault
1212 *
1213 * The function will map a writable host page for these two cases:
1214 * 1): @write_fault = true
1215 * 2): @write_fault = false && @writable, @writable will tell the caller
1216 * whether the mapping is writable.
1217 */
1218 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1219 bool write_fault, bool *writable)
1220 {
1221 struct vm_area_struct *vma;
1222 pfn_t pfn = 0;
1223 int npages;
1224
1225 /* we can do it either atomically or asynchronously, not both */
1226 BUG_ON(atomic && async);
1227
1228 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1229 return pfn;
1230
1231 if (atomic)
1232 return KVM_PFN_ERR_FAULT;
1233
1234 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1235 if (npages == 1)
1236 return pfn;
1237
1238 down_read(&current->mm->mmap_sem);
1239 if (npages == -EHWPOISON ||
1240 (!async && check_user_page_hwpoison(addr))) {
1241 pfn = KVM_PFN_ERR_HWPOISON;
1242 goto exit;
1243 }
1244
1245 vma = find_vma_intersection(current->mm, addr, addr + 1);
1246
1247 if (vma == NULL)
1248 pfn = KVM_PFN_ERR_FAULT;
1249 else if ((vma->vm_flags & VM_PFNMAP)) {
1250 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1251 vma->vm_pgoff;
1252 BUG_ON(!kvm_is_mmio_pfn(pfn));
1253 } else {
1254 if (async && vma_is_valid(vma, write_fault))
1255 *async = true;
1256 pfn = KVM_PFN_ERR_FAULT;
1257 }
1258 exit:
1259 up_read(&current->mm->mmap_sem);
1260 return pfn;
1261 }
1262
1263 static pfn_t
1264 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1265 bool *async, bool write_fault, bool *writable)
1266 {
1267 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1268
1269 if (addr == KVM_HVA_ERR_RO_BAD)
1270 return KVM_PFN_ERR_RO_FAULT;
1271
1272 if (kvm_is_error_hva(addr))
1273 return KVM_PFN_NOSLOT;
1274
1275 /* Do not map writable pfn in the readonly memslot. */
1276 if (writable && memslot_is_readonly(slot)) {
1277 *writable = false;
1278 writable = NULL;
1279 }
1280
1281 return hva_to_pfn(addr, atomic, async, write_fault,
1282 writable);
1283 }
1284
1285 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1286 bool write_fault, bool *writable)
1287 {
1288 struct kvm_memory_slot *slot;
1289
1290 if (async)
1291 *async = false;
1292
1293 slot = gfn_to_memslot(kvm, gfn);
1294
1295 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1296 writable);
1297 }
1298
1299 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1300 {
1301 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1302 }
1303 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1304
1305 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1306 bool write_fault, bool *writable)
1307 {
1308 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1309 }
1310 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1311
1312 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1313 {
1314 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1315 }
1316 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1317
1318 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1319 bool *writable)
1320 {
1321 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1322 }
1323 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1324
1325 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1326 {
1327 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1328 }
1329
1330 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1331 {
1332 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1333 }
1334 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1335
1336 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1337 int nr_pages)
1338 {
1339 unsigned long addr;
1340 gfn_t entry;
1341
1342 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1343 if (kvm_is_error_hva(addr))
1344 return -1;
1345
1346 if (entry < nr_pages)
1347 return 0;
1348
1349 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1350 }
1351 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1352
1353 static struct page *kvm_pfn_to_page(pfn_t pfn)
1354 {
1355 if (is_error_noslot_pfn(pfn))
1356 return KVM_ERR_PTR_BAD_PAGE;
1357
1358 if (kvm_is_mmio_pfn(pfn)) {
1359 WARN_ON(1);
1360 return KVM_ERR_PTR_BAD_PAGE;
1361 }
1362
1363 return pfn_to_page(pfn);
1364 }
1365
1366 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1367 {
1368 pfn_t pfn;
1369
1370 pfn = gfn_to_pfn(kvm, gfn);
1371
1372 return kvm_pfn_to_page(pfn);
1373 }
1374
1375 EXPORT_SYMBOL_GPL(gfn_to_page);
1376
1377 void kvm_release_page_clean(struct page *page)
1378 {
1379 WARN_ON(is_error_page(page));
1380
1381 kvm_release_pfn_clean(page_to_pfn(page));
1382 }
1383 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1384
1385 void kvm_release_pfn_clean(pfn_t pfn)
1386 {
1387 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1388 put_page(pfn_to_page(pfn));
1389 }
1390 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1391
1392 void kvm_release_page_dirty(struct page *page)
1393 {
1394 WARN_ON(is_error_page(page));
1395
1396 kvm_release_pfn_dirty(page_to_pfn(page));
1397 }
1398 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1399
1400 static void kvm_release_pfn_dirty(pfn_t pfn)
1401 {
1402 kvm_set_pfn_dirty(pfn);
1403 kvm_release_pfn_clean(pfn);
1404 }
1405
1406 void kvm_set_pfn_dirty(pfn_t pfn)
1407 {
1408 if (!kvm_is_mmio_pfn(pfn)) {
1409 struct page *page = pfn_to_page(pfn);
1410 if (!PageReserved(page))
1411 SetPageDirty(page);
1412 }
1413 }
1414 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1415
1416 void kvm_set_pfn_accessed(pfn_t pfn)
1417 {
1418 if (!kvm_is_mmio_pfn(pfn))
1419 mark_page_accessed(pfn_to_page(pfn));
1420 }
1421 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1422
1423 void kvm_get_pfn(pfn_t pfn)
1424 {
1425 if (!kvm_is_mmio_pfn(pfn))
1426 get_page(pfn_to_page(pfn));
1427 }
1428 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1429
1430 static int next_segment(unsigned long len, int offset)
1431 {
1432 if (len > PAGE_SIZE - offset)
1433 return PAGE_SIZE - offset;
1434 else
1435 return len;
1436 }
1437
1438 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1439 int len)
1440 {
1441 int r;
1442 unsigned long addr;
1443
1444 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1445 if (kvm_is_error_hva(addr))
1446 return -EFAULT;
1447 r = kvm_read_hva(data, (void __user *)addr + offset, len);
1448 if (r)
1449 return -EFAULT;
1450 return 0;
1451 }
1452 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1453
1454 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1455 {
1456 gfn_t gfn = gpa >> PAGE_SHIFT;
1457 int seg;
1458 int offset = offset_in_page(gpa);
1459 int ret;
1460
1461 while ((seg = next_segment(len, offset)) != 0) {
1462 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1463 if (ret < 0)
1464 return ret;
1465 offset = 0;
1466 len -= seg;
1467 data += seg;
1468 ++gfn;
1469 }
1470 return 0;
1471 }
1472 EXPORT_SYMBOL_GPL(kvm_read_guest);
1473
1474 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1475 unsigned long len)
1476 {
1477 int r;
1478 unsigned long addr;
1479 gfn_t gfn = gpa >> PAGE_SHIFT;
1480 int offset = offset_in_page(gpa);
1481
1482 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1483 if (kvm_is_error_hva(addr))
1484 return -EFAULT;
1485 pagefault_disable();
1486 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1487 pagefault_enable();
1488 if (r)
1489 return -EFAULT;
1490 return 0;
1491 }
1492 EXPORT_SYMBOL(kvm_read_guest_atomic);
1493
1494 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1495 int offset, int len)
1496 {
1497 int r;
1498 unsigned long addr;
1499
1500 addr = gfn_to_hva(kvm, gfn);
1501 if (kvm_is_error_hva(addr))
1502 return -EFAULT;
1503 r = __copy_to_user((void __user *)addr + offset, data, len);
1504 if (r)
1505 return -EFAULT;
1506 mark_page_dirty(kvm, gfn);
1507 return 0;
1508 }
1509 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1510
1511 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1512 unsigned long len)
1513 {
1514 gfn_t gfn = gpa >> PAGE_SHIFT;
1515 int seg;
1516 int offset = offset_in_page(gpa);
1517 int ret;
1518
1519 while ((seg = next_segment(len, offset)) != 0) {
1520 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1521 if (ret < 0)
1522 return ret;
1523 offset = 0;
1524 len -= seg;
1525 data += seg;
1526 ++gfn;
1527 }
1528 return 0;
1529 }
1530
1531 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1532 gpa_t gpa, unsigned long len)
1533 {
1534 struct kvm_memslots *slots = kvm_memslots(kvm);
1535 int offset = offset_in_page(gpa);
1536 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1537 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1538 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1539 gfn_t nr_pages_avail;
1540
1541 ghc->gpa = gpa;
1542 ghc->generation = slots->generation;
1543 ghc->len = len;
1544 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1545 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1546 if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1547 ghc->hva += offset;
1548 } else {
1549 /*
1550 * If the requested region crosses two memslots, we still
1551 * verify that the entire region is valid here.
1552 */
1553 while (start_gfn <= end_gfn) {
1554 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1555 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1556 &nr_pages_avail);
1557 if (kvm_is_error_hva(ghc->hva))
1558 return -EFAULT;
1559 start_gfn += nr_pages_avail;
1560 }
1561 /* Use the slow path for cross page reads and writes. */
1562 ghc->memslot = NULL;
1563 }
1564 return 0;
1565 }
1566 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1567
1568 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1569 void *data, unsigned long len)
1570 {
1571 struct kvm_memslots *slots = kvm_memslots(kvm);
1572 int r;
1573
1574 BUG_ON(len > ghc->len);
1575
1576 if (slots->generation != ghc->generation)
1577 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1578
1579 if (unlikely(!ghc->memslot))
1580 return kvm_write_guest(kvm, ghc->gpa, data, len);
1581
1582 if (kvm_is_error_hva(ghc->hva))
1583 return -EFAULT;
1584
1585 r = __copy_to_user((void __user *)ghc->hva, data, len);
1586 if (r)
1587 return -EFAULT;
1588 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1589
1590 return 0;
1591 }
1592 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1593
1594 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1595 void *data, unsigned long len)
1596 {
1597 struct kvm_memslots *slots = kvm_memslots(kvm);
1598 int r;
1599
1600 BUG_ON(len > ghc->len);
1601
1602 if (slots->generation != ghc->generation)
1603 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1604
1605 if (unlikely(!ghc->memslot))
1606 return kvm_read_guest(kvm, ghc->gpa, data, len);
1607
1608 if (kvm_is_error_hva(ghc->hva))
1609 return -EFAULT;
1610
1611 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1612 if (r)
1613 return -EFAULT;
1614
1615 return 0;
1616 }
1617 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1618
1619 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1620 {
1621 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1622
1623 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1624 }
1625 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1626
1627 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1628 {
1629 gfn_t gfn = gpa >> PAGE_SHIFT;
1630 int seg;
1631 int offset = offset_in_page(gpa);
1632 int ret;
1633
1634 while ((seg = next_segment(len, offset)) != 0) {
1635 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1636 if (ret < 0)
1637 return ret;
1638 offset = 0;
1639 len -= seg;
1640 ++gfn;
1641 }
1642 return 0;
1643 }
1644 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1645
1646 static void mark_page_dirty_in_slot(struct kvm *kvm,
1647 struct kvm_memory_slot *memslot,
1648 gfn_t gfn)
1649 {
1650 if (memslot && memslot->dirty_bitmap) {
1651 unsigned long rel_gfn = gfn - memslot->base_gfn;
1652
1653 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1654 }
1655 }
1656
1657 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1658 {
1659 struct kvm_memory_slot *memslot;
1660
1661 memslot = gfn_to_memslot(kvm, gfn);
1662 mark_page_dirty_in_slot(kvm, memslot, gfn);
1663 }
1664 EXPORT_SYMBOL_GPL(mark_page_dirty);
1665
1666 /*
1667 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1668 */
1669 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1670 {
1671 DEFINE_WAIT(wait);
1672
1673 for (;;) {
1674 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1675
1676 if (kvm_arch_vcpu_runnable(vcpu)) {
1677 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1678 break;
1679 }
1680 if (kvm_cpu_has_pending_timer(vcpu))
1681 break;
1682 if (signal_pending(current))
1683 break;
1684
1685 schedule();
1686 }
1687
1688 finish_wait(&vcpu->wq, &wait);
1689 }
1690 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1691
1692 #ifndef CONFIG_S390
1693 /*
1694 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1695 */
1696 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1697 {
1698 int me;
1699 int cpu = vcpu->cpu;
1700 wait_queue_head_t *wqp;
1701
1702 wqp = kvm_arch_vcpu_wq(vcpu);
1703 if (waitqueue_active(wqp)) {
1704 wake_up_interruptible(wqp);
1705 ++vcpu->stat.halt_wakeup;
1706 }
1707
1708 me = get_cpu();
1709 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1710 if (kvm_arch_vcpu_should_kick(vcpu))
1711 smp_send_reschedule(cpu);
1712 put_cpu();
1713 }
1714 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1715 #endif /* !CONFIG_S390 */
1716
1717 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1718 {
1719 struct pid *pid;
1720 struct task_struct *task = NULL;
1721 int ret = 0;
1722
1723 rcu_read_lock();
1724 pid = rcu_dereference(target->pid);
1725 if (pid)
1726 task = get_pid_task(target->pid, PIDTYPE_PID);
1727 rcu_read_unlock();
1728 if (!task)
1729 return ret;
1730 if (task->flags & PF_VCPU) {
1731 put_task_struct(task);
1732 return ret;
1733 }
1734 ret = yield_to(task, 1);
1735 put_task_struct(task);
1736
1737 return ret;
1738 }
1739 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1740
1741 /*
1742 * Helper that checks whether a VCPU is eligible for directed yield.
1743 * Most eligible candidate to yield is decided by following heuristics:
1744 *
1745 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1746 * (preempted lock holder), indicated by @in_spin_loop.
1747 * Set at the beiginning and cleared at the end of interception/PLE handler.
1748 *
1749 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1750 * chance last time (mostly it has become eligible now since we have probably
1751 * yielded to lockholder in last iteration. This is done by toggling
1752 * @dy_eligible each time a VCPU checked for eligibility.)
1753 *
1754 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1755 * to preempted lock-holder could result in wrong VCPU selection and CPU
1756 * burning. Giving priority for a potential lock-holder increases lock
1757 * progress.
1758 *
1759 * Since algorithm is based on heuristics, accessing another VCPU data without
1760 * locking does not harm. It may result in trying to yield to same VCPU, fail
1761 * and continue with next VCPU and so on.
1762 */
1763 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1764 {
1765 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1766 bool eligible;
1767
1768 eligible = !vcpu->spin_loop.in_spin_loop ||
1769 (vcpu->spin_loop.in_spin_loop &&
1770 vcpu->spin_loop.dy_eligible);
1771
1772 if (vcpu->spin_loop.in_spin_loop)
1773 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1774
1775 return eligible;
1776 #else
1777 return true;
1778 #endif
1779 }
1780
1781 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1782 {
1783 struct kvm *kvm = me->kvm;
1784 struct kvm_vcpu *vcpu;
1785 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1786 int yielded = 0;
1787 int try = 3;
1788 int pass;
1789 int i;
1790
1791 kvm_vcpu_set_in_spin_loop(me, true);
1792 /*
1793 * We boost the priority of a VCPU that is runnable but not
1794 * currently running, because it got preempted by something
1795 * else and called schedule in __vcpu_run. Hopefully that
1796 * VCPU is holding the lock that we need and will release it.
1797 * We approximate round-robin by starting at the last boosted VCPU.
1798 */
1799 for (pass = 0; pass < 2 && !yielded && try; pass++) {
1800 kvm_for_each_vcpu(i, vcpu, kvm) {
1801 if (!pass && i <= last_boosted_vcpu) {
1802 i = last_boosted_vcpu;
1803 continue;
1804 } else if (pass && i > last_boosted_vcpu)
1805 break;
1806 if (!ACCESS_ONCE(vcpu->preempted))
1807 continue;
1808 if (vcpu == me)
1809 continue;
1810 if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
1811 continue;
1812 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1813 continue;
1814
1815 yielded = kvm_vcpu_yield_to(vcpu);
1816 if (yielded > 0) {
1817 kvm->last_boosted_vcpu = i;
1818 break;
1819 } else if (yielded < 0) {
1820 try--;
1821 if (!try)
1822 break;
1823 }
1824 }
1825 }
1826 kvm_vcpu_set_in_spin_loop(me, false);
1827
1828 /* Ensure vcpu is not eligible during next spinloop */
1829 kvm_vcpu_set_dy_eligible(me, false);
1830 }
1831 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1832
1833 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1834 {
1835 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1836 struct page *page;
1837
1838 if (vmf->pgoff == 0)
1839 page = virt_to_page(vcpu->run);
1840 #ifdef CONFIG_X86
1841 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1842 page = virt_to_page(vcpu->arch.pio_data);
1843 #endif
1844 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1845 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1846 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1847 #endif
1848 else
1849 return kvm_arch_vcpu_fault(vcpu, vmf);
1850 get_page(page);
1851 vmf->page = page;
1852 return 0;
1853 }
1854
1855 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1856 .fault = kvm_vcpu_fault,
1857 };
1858
1859 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1860 {
1861 vma->vm_ops = &kvm_vcpu_vm_ops;
1862 return 0;
1863 }
1864
1865 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1866 {
1867 struct kvm_vcpu *vcpu = filp->private_data;
1868
1869 kvm_put_kvm(vcpu->kvm);
1870 return 0;
1871 }
1872
1873 static struct file_operations kvm_vcpu_fops = {
1874 .release = kvm_vcpu_release,
1875 .unlocked_ioctl = kvm_vcpu_ioctl,
1876 #ifdef CONFIG_COMPAT
1877 .compat_ioctl = kvm_vcpu_compat_ioctl,
1878 #endif
1879 .mmap = kvm_vcpu_mmap,
1880 .llseek = noop_llseek,
1881 };
1882
1883 /*
1884 * Allocates an inode for the vcpu.
1885 */
1886 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1887 {
1888 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1889 }
1890
1891 /*
1892 * Creates some virtual cpus. Good luck creating more than one.
1893 */
1894 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1895 {
1896 int r;
1897 struct kvm_vcpu *vcpu, *v;
1898
1899 if (id >= KVM_MAX_VCPUS)
1900 return -EINVAL;
1901
1902 vcpu = kvm_arch_vcpu_create(kvm, id);
1903 if (IS_ERR(vcpu))
1904 return PTR_ERR(vcpu);
1905
1906 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1907
1908 r = kvm_arch_vcpu_setup(vcpu);
1909 if (r)
1910 goto vcpu_destroy;
1911
1912 mutex_lock(&kvm->lock);
1913 if (!kvm_vcpu_compatible(vcpu)) {
1914 r = -EINVAL;
1915 goto unlock_vcpu_destroy;
1916 }
1917 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1918 r = -EINVAL;
1919 goto unlock_vcpu_destroy;
1920 }
1921
1922 kvm_for_each_vcpu(r, v, kvm)
1923 if (v->vcpu_id == id) {
1924 r = -EEXIST;
1925 goto unlock_vcpu_destroy;
1926 }
1927
1928 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1929
1930 /* Now it's all set up, let userspace reach it */
1931 kvm_get_kvm(kvm);
1932 r = create_vcpu_fd(vcpu);
1933 if (r < 0) {
1934 kvm_put_kvm(kvm);
1935 goto unlock_vcpu_destroy;
1936 }
1937
1938 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1939 smp_wmb();
1940 atomic_inc(&kvm->online_vcpus);
1941
1942 mutex_unlock(&kvm->lock);
1943 kvm_arch_vcpu_postcreate(vcpu);
1944 return r;
1945
1946 unlock_vcpu_destroy:
1947 mutex_unlock(&kvm->lock);
1948 vcpu_destroy:
1949 kvm_arch_vcpu_destroy(vcpu);
1950 return r;
1951 }
1952
1953 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1954 {
1955 if (sigset) {
1956 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1957 vcpu->sigset_active = 1;
1958 vcpu->sigset = *sigset;
1959 } else
1960 vcpu->sigset_active = 0;
1961 return 0;
1962 }
1963
1964 static long kvm_vcpu_ioctl(struct file *filp,
1965 unsigned int ioctl, unsigned long arg)
1966 {
1967 struct kvm_vcpu *vcpu = filp->private_data;
1968 void __user *argp = (void __user *)arg;
1969 int r;
1970 struct kvm_fpu *fpu = NULL;
1971 struct kvm_sregs *kvm_sregs = NULL;
1972
1973 if (vcpu->kvm->mm != current->mm)
1974 return -EIO;
1975
1976 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
1977 /*
1978 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1979 * so vcpu_load() would break it.
1980 */
1981 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1982 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1983 #endif
1984
1985
1986 r = vcpu_load(vcpu);
1987 if (r)
1988 return r;
1989 switch (ioctl) {
1990 case KVM_RUN:
1991 r = -EINVAL;
1992 if (arg)
1993 goto out;
1994 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1995 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1996 break;
1997 case KVM_GET_REGS: {
1998 struct kvm_regs *kvm_regs;
1999
2000 r = -ENOMEM;
2001 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2002 if (!kvm_regs)
2003 goto out;
2004 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2005 if (r)
2006 goto out_free1;
2007 r = -EFAULT;
2008 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2009 goto out_free1;
2010 r = 0;
2011 out_free1:
2012 kfree(kvm_regs);
2013 break;
2014 }
2015 case KVM_SET_REGS: {
2016 struct kvm_regs *kvm_regs;
2017
2018 r = -ENOMEM;
2019 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2020 if (IS_ERR(kvm_regs)) {
2021 r = PTR_ERR(kvm_regs);
2022 goto out;
2023 }
2024 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2025 kfree(kvm_regs);
2026 break;
2027 }
2028 case KVM_GET_SREGS: {
2029 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2030 r = -ENOMEM;
2031 if (!kvm_sregs)
2032 goto out;
2033 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2034 if (r)
2035 goto out;
2036 r = -EFAULT;
2037 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2038 goto out;
2039 r = 0;
2040 break;
2041 }
2042 case KVM_SET_SREGS: {
2043 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2044 if (IS_ERR(kvm_sregs)) {
2045 r = PTR_ERR(kvm_sregs);
2046 kvm_sregs = NULL;
2047 goto out;
2048 }
2049 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2050 break;
2051 }
2052 case KVM_GET_MP_STATE: {
2053 struct kvm_mp_state mp_state;
2054
2055 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2056 if (r)
2057 goto out;
2058 r = -EFAULT;
2059 if (copy_to_user(argp, &mp_state, sizeof mp_state))
2060 goto out;
2061 r = 0;
2062 break;
2063 }
2064 case KVM_SET_MP_STATE: {
2065 struct kvm_mp_state mp_state;
2066
2067 r = -EFAULT;
2068 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2069 goto out;
2070 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2071 break;
2072 }
2073 case KVM_TRANSLATE: {
2074 struct kvm_translation tr;
2075
2076 r = -EFAULT;
2077 if (copy_from_user(&tr, argp, sizeof tr))
2078 goto out;
2079 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2080 if (r)
2081 goto out;
2082 r = -EFAULT;
2083 if (copy_to_user(argp, &tr, sizeof tr))
2084 goto out;
2085 r = 0;
2086 break;
2087 }
2088 case KVM_SET_GUEST_DEBUG: {
2089 struct kvm_guest_debug dbg;
2090
2091 r = -EFAULT;
2092 if (copy_from_user(&dbg, argp, sizeof dbg))
2093 goto out;
2094 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2095 break;
2096 }
2097 case KVM_SET_SIGNAL_MASK: {
2098 struct kvm_signal_mask __user *sigmask_arg = argp;
2099 struct kvm_signal_mask kvm_sigmask;
2100 sigset_t sigset, *p;
2101
2102 p = NULL;
2103 if (argp) {
2104 r = -EFAULT;
2105 if (copy_from_user(&kvm_sigmask, argp,
2106 sizeof kvm_sigmask))
2107 goto out;
2108 r = -EINVAL;
2109 if (kvm_sigmask.len != sizeof sigset)
2110 goto out;
2111 r = -EFAULT;
2112 if (copy_from_user(&sigset, sigmask_arg->sigset,
2113 sizeof sigset))
2114 goto out;
2115 p = &sigset;
2116 }
2117 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2118 break;
2119 }
2120 case KVM_GET_FPU: {
2121 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2122 r = -ENOMEM;
2123 if (!fpu)
2124 goto out;
2125 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2126 if (r)
2127 goto out;
2128 r = -EFAULT;
2129 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2130 goto out;
2131 r = 0;
2132 break;
2133 }
2134 case KVM_SET_FPU: {
2135 fpu = memdup_user(argp, sizeof(*fpu));
2136 if (IS_ERR(fpu)) {
2137 r = PTR_ERR(fpu);
2138 fpu = NULL;
2139 goto out;
2140 }
2141 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2142 break;
2143 }
2144 default:
2145 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2146 }
2147 out:
2148 vcpu_put(vcpu);
2149 kfree(fpu);
2150 kfree(kvm_sregs);
2151 return r;
2152 }
2153
2154 #ifdef CONFIG_COMPAT
2155 static long kvm_vcpu_compat_ioctl(struct file *filp,
2156 unsigned int ioctl, unsigned long arg)
2157 {
2158 struct kvm_vcpu *vcpu = filp->private_data;
2159 void __user *argp = compat_ptr(arg);
2160 int r;
2161
2162 if (vcpu->kvm->mm != current->mm)
2163 return -EIO;
2164
2165 switch (ioctl) {
2166 case KVM_SET_SIGNAL_MASK: {
2167 struct kvm_signal_mask __user *sigmask_arg = argp;
2168 struct kvm_signal_mask kvm_sigmask;
2169 compat_sigset_t csigset;
2170 sigset_t sigset;
2171
2172 if (argp) {
2173 r = -EFAULT;
2174 if (copy_from_user(&kvm_sigmask, argp,
2175 sizeof kvm_sigmask))
2176 goto out;
2177 r = -EINVAL;
2178 if (kvm_sigmask.len != sizeof csigset)
2179 goto out;
2180 r = -EFAULT;
2181 if (copy_from_user(&csigset, sigmask_arg->sigset,
2182 sizeof csigset))
2183 goto out;
2184 sigset_from_compat(&sigset, &csigset);
2185 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2186 } else
2187 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2188 break;
2189 }
2190 default:
2191 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2192 }
2193
2194 out:
2195 return r;
2196 }
2197 #endif
2198
2199 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2200 int (*accessor)(struct kvm_device *dev,
2201 struct kvm_device_attr *attr),
2202 unsigned long arg)
2203 {
2204 struct kvm_device_attr attr;
2205
2206 if (!accessor)
2207 return -EPERM;
2208
2209 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2210 return -EFAULT;
2211
2212 return accessor(dev, &attr);
2213 }
2214
2215 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2216 unsigned long arg)
2217 {
2218 struct kvm_device *dev = filp->private_data;
2219
2220 switch (ioctl) {
2221 case KVM_SET_DEVICE_ATTR:
2222 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2223 case KVM_GET_DEVICE_ATTR:
2224 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2225 case KVM_HAS_DEVICE_ATTR:
2226 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2227 default:
2228 if (dev->ops->ioctl)
2229 return dev->ops->ioctl(dev, ioctl, arg);
2230
2231 return -ENOTTY;
2232 }
2233 }
2234
2235 static int kvm_device_release(struct inode *inode, struct file *filp)
2236 {
2237 struct kvm_device *dev = filp->private_data;
2238 struct kvm *kvm = dev->kvm;
2239
2240 kvm_put_kvm(kvm);
2241 return 0;
2242 }
2243
2244 static const struct file_operations kvm_device_fops = {
2245 .unlocked_ioctl = kvm_device_ioctl,
2246 #ifdef CONFIG_COMPAT
2247 .compat_ioctl = kvm_device_ioctl,
2248 #endif
2249 .release = kvm_device_release,
2250 };
2251
2252 struct kvm_device *kvm_device_from_filp(struct file *filp)
2253 {
2254 if (filp->f_op != &kvm_device_fops)
2255 return NULL;
2256
2257 return filp->private_data;
2258 }
2259
2260 static int kvm_ioctl_create_device(struct kvm *kvm,
2261 struct kvm_create_device *cd)
2262 {
2263 struct kvm_device_ops *ops = NULL;
2264 struct kvm_device *dev;
2265 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2266 int ret;
2267
2268 switch (cd->type) {
2269 #ifdef CONFIG_KVM_MPIC
2270 case KVM_DEV_TYPE_FSL_MPIC_20:
2271 case KVM_DEV_TYPE_FSL_MPIC_42:
2272 ops = &kvm_mpic_ops;
2273 break;
2274 #endif
2275 #ifdef CONFIG_KVM_XICS
2276 case KVM_DEV_TYPE_XICS:
2277 ops = &kvm_xics_ops;
2278 break;
2279 #endif
2280 #ifdef CONFIG_KVM_VFIO
2281 case KVM_DEV_TYPE_VFIO:
2282 ops = &kvm_vfio_ops;
2283 break;
2284 #endif
2285 #ifdef CONFIG_KVM_ARM_VGIC
2286 case KVM_DEV_TYPE_ARM_VGIC_V2:
2287 ops = &kvm_arm_vgic_v2_ops;
2288 break;
2289 #endif
2290 #ifdef CONFIG_S390
2291 case KVM_DEV_TYPE_FLIC:
2292 ops = &kvm_flic_ops;
2293 break;
2294 #endif
2295 default:
2296 return -ENODEV;
2297 }
2298
2299 if (test)
2300 return 0;
2301
2302 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2303 if (!dev)
2304 return -ENOMEM;
2305
2306 dev->ops = ops;
2307 dev->kvm = kvm;
2308
2309 ret = ops->create(dev, cd->type);
2310 if (ret < 0) {
2311 kfree(dev);
2312 return ret;
2313 }
2314
2315 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2316 if (ret < 0) {
2317 ops->destroy(dev);
2318 return ret;
2319 }
2320
2321 list_add(&dev->vm_node, &kvm->devices);
2322 kvm_get_kvm(kvm);
2323 cd->fd = ret;
2324 return 0;
2325 }
2326
2327 static long kvm_vm_ioctl(struct file *filp,
2328 unsigned int ioctl, unsigned long arg)
2329 {
2330 struct kvm *kvm = filp->private_data;
2331 void __user *argp = (void __user *)arg;
2332 int r;
2333
2334 if (kvm->mm != current->mm)
2335 return -EIO;
2336 switch (ioctl) {
2337 case KVM_CREATE_VCPU:
2338 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2339 break;
2340 case KVM_SET_USER_MEMORY_REGION: {
2341 struct kvm_userspace_memory_region kvm_userspace_mem;
2342
2343 r = -EFAULT;
2344 if (copy_from_user(&kvm_userspace_mem, argp,
2345 sizeof kvm_userspace_mem))
2346 goto out;
2347
2348 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2349 break;
2350 }
2351 case KVM_GET_DIRTY_LOG: {
2352 struct kvm_dirty_log log;
2353
2354 r = -EFAULT;
2355 if (copy_from_user(&log, argp, sizeof log))
2356 goto out;
2357 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2358 break;
2359 }
2360 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2361 case KVM_REGISTER_COALESCED_MMIO: {
2362 struct kvm_coalesced_mmio_zone zone;
2363 r = -EFAULT;
2364 if (copy_from_user(&zone, argp, sizeof zone))
2365 goto out;
2366 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2367 break;
2368 }
2369 case KVM_UNREGISTER_COALESCED_MMIO: {
2370 struct kvm_coalesced_mmio_zone zone;
2371 r = -EFAULT;
2372 if (copy_from_user(&zone, argp, sizeof zone))
2373 goto out;
2374 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2375 break;
2376 }
2377 #endif
2378 case KVM_IRQFD: {
2379 struct kvm_irqfd data;
2380
2381 r = -EFAULT;
2382 if (copy_from_user(&data, argp, sizeof data))
2383 goto out;
2384 r = kvm_irqfd(kvm, &data);
2385 break;
2386 }
2387 case KVM_IOEVENTFD: {
2388 struct kvm_ioeventfd data;
2389
2390 r = -EFAULT;
2391 if (copy_from_user(&data, argp, sizeof data))
2392 goto out;
2393 r = kvm_ioeventfd(kvm, &data);
2394 break;
2395 }
2396 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2397 case KVM_SET_BOOT_CPU_ID:
2398 r = 0;
2399 mutex_lock(&kvm->lock);
2400 if (atomic_read(&kvm->online_vcpus) != 0)
2401 r = -EBUSY;
2402 else
2403 kvm->bsp_vcpu_id = arg;
2404 mutex_unlock(&kvm->lock);
2405 break;
2406 #endif
2407 #ifdef CONFIG_HAVE_KVM_MSI
2408 case KVM_SIGNAL_MSI: {
2409 struct kvm_msi msi;
2410
2411 r = -EFAULT;
2412 if (copy_from_user(&msi, argp, sizeof msi))
2413 goto out;
2414 r = kvm_send_userspace_msi(kvm, &msi);
2415 break;
2416 }
2417 #endif
2418 #ifdef __KVM_HAVE_IRQ_LINE
2419 case KVM_IRQ_LINE_STATUS:
2420 case KVM_IRQ_LINE: {
2421 struct kvm_irq_level irq_event;
2422
2423 r = -EFAULT;
2424 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2425 goto out;
2426
2427 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2428 ioctl == KVM_IRQ_LINE_STATUS);
2429 if (r)
2430 goto out;
2431
2432 r = -EFAULT;
2433 if (ioctl == KVM_IRQ_LINE_STATUS) {
2434 if (copy_to_user(argp, &irq_event, sizeof irq_event))
2435 goto out;
2436 }
2437
2438 r = 0;
2439 break;
2440 }
2441 #endif
2442 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2443 case KVM_SET_GSI_ROUTING: {
2444 struct kvm_irq_routing routing;
2445 struct kvm_irq_routing __user *urouting;
2446 struct kvm_irq_routing_entry *entries;
2447
2448 r = -EFAULT;
2449 if (copy_from_user(&routing, argp, sizeof(routing)))
2450 goto out;
2451 r = -EINVAL;
2452 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2453 goto out;
2454 if (routing.flags)
2455 goto out;
2456 r = -ENOMEM;
2457 entries = vmalloc(routing.nr * sizeof(*entries));
2458 if (!entries)
2459 goto out;
2460 r = -EFAULT;
2461 urouting = argp;
2462 if (copy_from_user(entries, urouting->entries,
2463 routing.nr * sizeof(*entries)))
2464 goto out_free_irq_routing;
2465 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2466 routing.flags);
2467 out_free_irq_routing:
2468 vfree(entries);
2469 break;
2470 }
2471 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2472 case KVM_CREATE_DEVICE: {
2473 struct kvm_create_device cd;
2474
2475 r = -EFAULT;
2476 if (copy_from_user(&cd, argp, sizeof(cd)))
2477 goto out;
2478
2479 r = kvm_ioctl_create_device(kvm, &cd);
2480 if (r)
2481 goto out;
2482
2483 r = -EFAULT;
2484 if (copy_to_user(argp, &cd, sizeof(cd)))
2485 goto out;
2486
2487 r = 0;
2488 break;
2489 }
2490 default:
2491 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2492 if (r == -ENOTTY)
2493 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2494 }
2495 out:
2496 return r;
2497 }
2498
2499 #ifdef CONFIG_COMPAT
2500 struct compat_kvm_dirty_log {
2501 __u32 slot;
2502 __u32 padding1;
2503 union {
2504 compat_uptr_t dirty_bitmap; /* one bit per page */
2505 __u64 padding2;
2506 };
2507 };
2508
2509 static long kvm_vm_compat_ioctl(struct file *filp,
2510 unsigned int ioctl, unsigned long arg)
2511 {
2512 struct kvm *kvm = filp->private_data;
2513 int r;
2514
2515 if (kvm->mm != current->mm)
2516 return -EIO;
2517 switch (ioctl) {
2518 case KVM_GET_DIRTY_LOG: {
2519 struct compat_kvm_dirty_log compat_log;
2520 struct kvm_dirty_log log;
2521
2522 r = -EFAULT;
2523 if (copy_from_user(&compat_log, (void __user *)arg,
2524 sizeof(compat_log)))
2525 goto out;
2526 log.slot = compat_log.slot;
2527 log.padding1 = compat_log.padding1;
2528 log.padding2 = compat_log.padding2;
2529 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2530
2531 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2532 break;
2533 }
2534 default:
2535 r = kvm_vm_ioctl(filp, ioctl, arg);
2536 }
2537
2538 out:
2539 return r;
2540 }
2541 #endif
2542
2543 static struct file_operations kvm_vm_fops = {
2544 .release = kvm_vm_release,
2545 .unlocked_ioctl = kvm_vm_ioctl,
2546 #ifdef CONFIG_COMPAT
2547 .compat_ioctl = kvm_vm_compat_ioctl,
2548 #endif
2549 .llseek = noop_llseek,
2550 };
2551
2552 static int kvm_dev_ioctl_create_vm(unsigned long type)
2553 {
2554 int r;
2555 struct kvm *kvm;
2556
2557 kvm = kvm_create_vm(type);
2558 if (IS_ERR(kvm))
2559 return PTR_ERR(kvm);
2560 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2561 r = kvm_coalesced_mmio_init(kvm);
2562 if (r < 0) {
2563 kvm_put_kvm(kvm);
2564 return r;
2565 }
2566 #endif
2567 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2568 if (r < 0)
2569 kvm_put_kvm(kvm);
2570
2571 return r;
2572 }
2573
2574 static long kvm_dev_ioctl_check_extension_generic(long arg)
2575 {
2576 switch (arg) {
2577 case KVM_CAP_USER_MEMORY:
2578 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2579 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2580 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2581 case KVM_CAP_SET_BOOT_CPU_ID:
2582 #endif
2583 case KVM_CAP_INTERNAL_ERROR_DATA:
2584 #ifdef CONFIG_HAVE_KVM_MSI
2585 case KVM_CAP_SIGNAL_MSI:
2586 #endif
2587 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2588 case KVM_CAP_IRQFD_RESAMPLE:
2589 #endif
2590 return 1;
2591 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2592 case KVM_CAP_IRQ_ROUTING:
2593 return KVM_MAX_IRQ_ROUTES;
2594 #endif
2595 default:
2596 break;
2597 }
2598 return kvm_dev_ioctl_check_extension(arg);
2599 }
2600
2601 static long kvm_dev_ioctl(struct file *filp,
2602 unsigned int ioctl, unsigned long arg)
2603 {
2604 long r = -EINVAL;
2605
2606 switch (ioctl) {
2607 case KVM_GET_API_VERSION:
2608 r = -EINVAL;
2609 if (arg)
2610 goto out;
2611 r = KVM_API_VERSION;
2612 break;
2613 case KVM_CREATE_VM:
2614 r = kvm_dev_ioctl_create_vm(arg);
2615 break;
2616 case KVM_CHECK_EXTENSION:
2617 r = kvm_dev_ioctl_check_extension_generic(arg);
2618 break;
2619 case KVM_GET_VCPU_MMAP_SIZE:
2620 r = -EINVAL;
2621 if (arg)
2622 goto out;
2623 r = PAGE_SIZE; /* struct kvm_run */
2624 #ifdef CONFIG_X86
2625 r += PAGE_SIZE; /* pio data page */
2626 #endif
2627 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2628 r += PAGE_SIZE; /* coalesced mmio ring page */
2629 #endif
2630 break;
2631 case KVM_TRACE_ENABLE:
2632 case KVM_TRACE_PAUSE:
2633 case KVM_TRACE_DISABLE:
2634 r = -EOPNOTSUPP;
2635 break;
2636 default:
2637 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2638 }
2639 out:
2640 return r;
2641 }
2642
2643 static struct file_operations kvm_chardev_ops = {
2644 .unlocked_ioctl = kvm_dev_ioctl,
2645 .compat_ioctl = kvm_dev_ioctl,
2646 .llseek = noop_llseek,
2647 };
2648
2649 static struct miscdevice kvm_dev = {
2650 KVM_MINOR,
2651 "kvm",
2652 &kvm_chardev_ops,
2653 };
2654
2655 static void hardware_enable_nolock(void *junk)
2656 {
2657 int cpu = raw_smp_processor_id();
2658 int r;
2659
2660 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2661 return;
2662
2663 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2664
2665 r = kvm_arch_hardware_enable(NULL);
2666
2667 if (r) {
2668 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2669 atomic_inc(&hardware_enable_failed);
2670 printk(KERN_INFO "kvm: enabling virtualization on "
2671 "CPU%d failed\n", cpu);
2672 }
2673 }
2674
2675 static void hardware_enable(void)
2676 {
2677 raw_spin_lock(&kvm_count_lock);
2678 if (kvm_usage_count)
2679 hardware_enable_nolock(NULL);
2680 raw_spin_unlock(&kvm_count_lock);
2681 }
2682
2683 static void hardware_disable_nolock(void *junk)
2684 {
2685 int cpu = raw_smp_processor_id();
2686
2687 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2688 return;
2689 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2690 kvm_arch_hardware_disable(NULL);
2691 }
2692
2693 static void hardware_disable(void)
2694 {
2695 raw_spin_lock(&kvm_count_lock);
2696 if (kvm_usage_count)
2697 hardware_disable_nolock(NULL);
2698 raw_spin_unlock(&kvm_count_lock);
2699 }
2700
2701 static void hardware_disable_all_nolock(void)
2702 {
2703 BUG_ON(!kvm_usage_count);
2704
2705 kvm_usage_count--;
2706 if (!kvm_usage_count)
2707 on_each_cpu(hardware_disable_nolock, NULL, 1);
2708 }
2709
2710 static void hardware_disable_all(void)
2711 {
2712 raw_spin_lock(&kvm_count_lock);
2713 hardware_disable_all_nolock();
2714 raw_spin_unlock(&kvm_count_lock);
2715 }
2716
2717 static int hardware_enable_all(void)
2718 {
2719 int r = 0;
2720
2721 raw_spin_lock(&kvm_count_lock);
2722
2723 kvm_usage_count++;
2724 if (kvm_usage_count == 1) {
2725 atomic_set(&hardware_enable_failed, 0);
2726 on_each_cpu(hardware_enable_nolock, NULL, 1);
2727
2728 if (atomic_read(&hardware_enable_failed)) {
2729 hardware_disable_all_nolock();
2730 r = -EBUSY;
2731 }
2732 }
2733
2734 raw_spin_unlock(&kvm_count_lock);
2735
2736 return r;
2737 }
2738
2739 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2740 void *v)
2741 {
2742 int cpu = (long)v;
2743
2744 val &= ~CPU_TASKS_FROZEN;
2745 switch (val) {
2746 case CPU_DYING:
2747 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2748 cpu);
2749 hardware_disable();
2750 break;
2751 case CPU_STARTING:
2752 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2753 cpu);
2754 hardware_enable();
2755 break;
2756 }
2757 return NOTIFY_OK;
2758 }
2759
2760 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2761 void *v)
2762 {
2763 /*
2764 * Some (well, at least mine) BIOSes hang on reboot if
2765 * in vmx root mode.
2766 *
2767 * And Intel TXT required VMX off for all cpu when system shutdown.
2768 */
2769 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2770 kvm_rebooting = true;
2771 on_each_cpu(hardware_disable_nolock, NULL, 1);
2772 return NOTIFY_OK;
2773 }
2774
2775 static struct notifier_block kvm_reboot_notifier = {
2776 .notifier_call = kvm_reboot,
2777 .priority = 0,
2778 };
2779
2780 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2781 {
2782 int i;
2783
2784 for (i = 0; i < bus->dev_count; i++) {
2785 struct kvm_io_device *pos = bus->range[i].dev;
2786
2787 kvm_iodevice_destructor(pos);
2788 }
2789 kfree(bus);
2790 }
2791
2792 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2793 const struct kvm_io_range *r2)
2794 {
2795 if (r1->addr < r2->addr)
2796 return -1;
2797 if (r1->addr + r1->len > r2->addr + r2->len)
2798 return 1;
2799 return 0;
2800 }
2801
2802 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2803 {
2804 return kvm_io_bus_cmp(p1, p2);
2805 }
2806
2807 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2808 gpa_t addr, int len)
2809 {
2810 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2811 .addr = addr,
2812 .len = len,
2813 .dev = dev,
2814 };
2815
2816 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2817 kvm_io_bus_sort_cmp, NULL);
2818
2819 return 0;
2820 }
2821
2822 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2823 gpa_t addr, int len)
2824 {
2825 struct kvm_io_range *range, key;
2826 int off;
2827
2828 key = (struct kvm_io_range) {
2829 .addr = addr,
2830 .len = len,
2831 };
2832
2833 range = bsearch(&key, bus->range, bus->dev_count,
2834 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2835 if (range == NULL)
2836 return -ENOENT;
2837
2838 off = range - bus->range;
2839
2840 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2841 off--;
2842
2843 return off;
2844 }
2845
2846 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2847 struct kvm_io_range *range, const void *val)
2848 {
2849 int idx;
2850
2851 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2852 if (idx < 0)
2853 return -EOPNOTSUPP;
2854
2855 while (idx < bus->dev_count &&
2856 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2857 if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2858 range->len, val))
2859 return idx;
2860 idx++;
2861 }
2862
2863 return -EOPNOTSUPP;
2864 }
2865
2866 /* kvm_io_bus_write - called under kvm->slots_lock */
2867 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2868 int len, const void *val)
2869 {
2870 struct kvm_io_bus *bus;
2871 struct kvm_io_range range;
2872 int r;
2873
2874 range = (struct kvm_io_range) {
2875 .addr = addr,
2876 .len = len,
2877 };
2878
2879 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2880 r = __kvm_io_bus_write(bus, &range, val);
2881 return r < 0 ? r : 0;
2882 }
2883
2884 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2885 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2886 int len, const void *val, long cookie)
2887 {
2888 struct kvm_io_bus *bus;
2889 struct kvm_io_range range;
2890
2891 range = (struct kvm_io_range) {
2892 .addr = addr,
2893 .len = len,
2894 };
2895
2896 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2897
2898 /* First try the device referenced by cookie. */
2899 if ((cookie >= 0) && (cookie < bus->dev_count) &&
2900 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2901 if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2902 val))
2903 return cookie;
2904
2905 /*
2906 * cookie contained garbage; fall back to search and return the
2907 * correct cookie value.
2908 */
2909 return __kvm_io_bus_write(bus, &range, val);
2910 }
2911
2912 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2913 void *val)
2914 {
2915 int idx;
2916
2917 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2918 if (idx < 0)
2919 return -EOPNOTSUPP;
2920
2921 while (idx < bus->dev_count &&
2922 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2923 if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
2924 range->len, val))
2925 return idx;
2926 idx++;
2927 }
2928
2929 return -EOPNOTSUPP;
2930 }
2931 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
2932
2933 /* kvm_io_bus_read - called under kvm->slots_lock */
2934 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2935 int len, void *val)
2936 {
2937 struct kvm_io_bus *bus;
2938 struct kvm_io_range range;
2939 int r;
2940
2941 range = (struct kvm_io_range) {
2942 .addr = addr,
2943 .len = len,
2944 };
2945
2946 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2947 r = __kvm_io_bus_read(bus, &range, val);
2948 return r < 0 ? r : 0;
2949 }
2950
2951
2952 /* Caller must hold slots_lock. */
2953 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2954 int len, struct kvm_io_device *dev)
2955 {
2956 struct kvm_io_bus *new_bus, *bus;
2957
2958 bus = kvm->buses[bus_idx];
2959 /* exclude ioeventfd which is limited by maximum fd */
2960 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
2961 return -ENOSPC;
2962
2963 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2964 sizeof(struct kvm_io_range)), GFP_KERNEL);
2965 if (!new_bus)
2966 return -ENOMEM;
2967 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2968 sizeof(struct kvm_io_range)));
2969 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2970 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2971 synchronize_srcu_expedited(&kvm->srcu);
2972 kfree(bus);
2973
2974 return 0;
2975 }
2976
2977 /* Caller must hold slots_lock. */
2978 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2979 struct kvm_io_device *dev)
2980 {
2981 int i, r;
2982 struct kvm_io_bus *new_bus, *bus;
2983
2984 bus = kvm->buses[bus_idx];
2985 r = -ENOENT;
2986 for (i = 0; i < bus->dev_count; i++)
2987 if (bus->range[i].dev == dev) {
2988 r = 0;
2989 break;
2990 }
2991
2992 if (r)
2993 return r;
2994
2995 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2996 sizeof(struct kvm_io_range)), GFP_KERNEL);
2997 if (!new_bus)
2998 return -ENOMEM;
2999
3000 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3001 new_bus->dev_count--;
3002 memcpy(new_bus->range + i, bus->range + i + 1,
3003 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3004
3005 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3006 synchronize_srcu_expedited(&kvm->srcu);
3007 kfree(bus);
3008 return r;
3009 }
3010
3011 static struct notifier_block kvm_cpu_notifier = {
3012 .notifier_call = kvm_cpu_hotplug,
3013 };
3014
3015 static int vm_stat_get(void *_offset, u64 *val)
3016 {
3017 unsigned offset = (long)_offset;
3018 struct kvm *kvm;
3019
3020 *val = 0;
3021 spin_lock(&kvm_lock);
3022 list_for_each_entry(kvm, &vm_list, vm_list)
3023 *val += *(u32 *)((void *)kvm + offset);
3024 spin_unlock(&kvm_lock);
3025 return 0;
3026 }
3027
3028 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3029
3030 static int vcpu_stat_get(void *_offset, u64 *val)
3031 {
3032 unsigned offset = (long)_offset;
3033 struct kvm *kvm;
3034 struct kvm_vcpu *vcpu;
3035 int i;
3036
3037 *val = 0;
3038 spin_lock(&kvm_lock);
3039 list_for_each_entry(kvm, &vm_list, vm_list)
3040 kvm_for_each_vcpu(i, vcpu, kvm)
3041 *val += *(u32 *)((void *)vcpu + offset);
3042
3043 spin_unlock(&kvm_lock);
3044 return 0;
3045 }
3046
3047 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3048
3049 static const struct file_operations *stat_fops[] = {
3050 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3051 [KVM_STAT_VM] = &vm_stat_fops,
3052 };
3053
3054 static int kvm_init_debug(void)
3055 {
3056 int r = -EEXIST;
3057 struct kvm_stats_debugfs_item *p;
3058
3059 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3060 if (kvm_debugfs_dir == NULL)
3061 goto out;
3062
3063 for (p = debugfs_entries; p->name; ++p) {
3064 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3065 (void *)(long)p->offset,
3066 stat_fops[p->kind]);
3067 if (p->dentry == NULL)
3068 goto out_dir;
3069 }
3070
3071 return 0;
3072
3073 out_dir:
3074 debugfs_remove_recursive(kvm_debugfs_dir);
3075 out:
3076 return r;
3077 }
3078
3079 static void kvm_exit_debug(void)
3080 {
3081 struct kvm_stats_debugfs_item *p;
3082
3083 for (p = debugfs_entries; p->name; ++p)
3084 debugfs_remove(p->dentry);
3085 debugfs_remove(kvm_debugfs_dir);
3086 }
3087
3088 static int kvm_suspend(void)
3089 {
3090 if (kvm_usage_count)
3091 hardware_disable_nolock(NULL);
3092 return 0;
3093 }
3094
3095 static void kvm_resume(void)
3096 {
3097 if (kvm_usage_count) {
3098 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3099 hardware_enable_nolock(NULL);
3100 }
3101 }
3102
3103 static struct syscore_ops kvm_syscore_ops = {
3104 .suspend = kvm_suspend,
3105 .resume = kvm_resume,
3106 };
3107
3108 static inline
3109 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3110 {
3111 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3112 }
3113
3114 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3115 {
3116 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3117 if (vcpu->preempted)
3118 vcpu->preempted = false;
3119
3120 kvm_arch_vcpu_load(vcpu, cpu);
3121 }
3122
3123 static void kvm_sched_out(struct preempt_notifier *pn,
3124 struct task_struct *next)
3125 {
3126 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3127
3128 if (current->state == TASK_RUNNING)
3129 vcpu->preempted = true;
3130 kvm_arch_vcpu_put(vcpu);
3131 }
3132
3133 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3134 struct module *module)
3135 {
3136 int r;
3137 int cpu;
3138
3139 r = kvm_arch_init(opaque);
3140 if (r)
3141 goto out_fail;
3142
3143 /*
3144 * kvm_arch_init makes sure there's at most one caller
3145 * for architectures that support multiple implementations,
3146 * like intel and amd on x86.
3147 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3148 * conflicts in case kvm is already setup for another implementation.
3149 */
3150 r = kvm_irqfd_init();
3151 if (r)
3152 goto out_irqfd;
3153
3154 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3155 r = -ENOMEM;
3156 goto out_free_0;
3157 }
3158
3159 r = kvm_arch_hardware_setup();
3160 if (r < 0)
3161 goto out_free_0a;
3162
3163 for_each_online_cpu(cpu) {
3164 smp_call_function_single(cpu,
3165 kvm_arch_check_processor_compat,
3166 &r, 1);
3167 if (r < 0)
3168 goto out_free_1;
3169 }
3170
3171 r = register_cpu_notifier(&kvm_cpu_notifier);
3172 if (r)
3173 goto out_free_2;
3174 register_reboot_notifier(&kvm_reboot_notifier);
3175
3176 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3177 if (!vcpu_align)
3178 vcpu_align = __alignof__(struct kvm_vcpu);
3179 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3180 0, NULL);
3181 if (!kvm_vcpu_cache) {
3182 r = -ENOMEM;
3183 goto out_free_3;
3184 }
3185
3186 r = kvm_async_pf_init();
3187 if (r)
3188 goto out_free;
3189
3190 kvm_chardev_ops.owner = module;
3191 kvm_vm_fops.owner = module;
3192 kvm_vcpu_fops.owner = module;
3193
3194 r = misc_register(&kvm_dev);
3195 if (r) {
3196 printk(KERN_ERR "kvm: misc device register failed\n");
3197 goto out_unreg;
3198 }
3199
3200 register_syscore_ops(&kvm_syscore_ops);
3201
3202 kvm_preempt_ops.sched_in = kvm_sched_in;
3203 kvm_preempt_ops.sched_out = kvm_sched_out;
3204
3205 r = kvm_init_debug();
3206 if (r) {
3207 printk(KERN_ERR "kvm: create debugfs files failed\n");
3208 goto out_undebugfs;
3209 }
3210
3211 return 0;
3212
3213 out_undebugfs:
3214 unregister_syscore_ops(&kvm_syscore_ops);
3215 misc_deregister(&kvm_dev);
3216 out_unreg:
3217 kvm_async_pf_deinit();
3218 out_free:
3219 kmem_cache_destroy(kvm_vcpu_cache);
3220 out_free_3:
3221 unregister_reboot_notifier(&kvm_reboot_notifier);
3222 unregister_cpu_notifier(&kvm_cpu_notifier);
3223 out_free_2:
3224 out_free_1:
3225 kvm_arch_hardware_unsetup();
3226 out_free_0a:
3227 free_cpumask_var(cpus_hardware_enabled);
3228 out_free_0:
3229 kvm_irqfd_exit();
3230 out_irqfd:
3231 kvm_arch_exit();
3232 out_fail:
3233 return r;
3234 }
3235 EXPORT_SYMBOL_GPL(kvm_init);
3236
3237 void kvm_exit(void)
3238 {
3239 kvm_exit_debug();
3240 misc_deregister(&kvm_dev);
3241 kmem_cache_destroy(kvm_vcpu_cache);
3242 kvm_async_pf_deinit();
3243 unregister_syscore_ops(&kvm_syscore_ops);
3244 unregister_reboot_notifier(&kvm_reboot_notifier);
3245 unregister_cpu_notifier(&kvm_cpu_notifier);
3246 on_each_cpu(hardware_disable_nolock, NULL, 1);
3247 kvm_arch_hardware_unsetup();
3248 kvm_arch_exit();
3249 kvm_irqfd_exit();
3250 free_cpumask_var(cpus_hardware_enabled);
3251 }
3252 EXPORT_SYMBOL_GPL(kvm_exit);