]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - virt/kvm/kvm_main.c
sched/headers: Prepare to move signal wakeup & sigpending methods from <linux/sched...
[mirror_ubuntu-artful-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/cpumask.h>
38 #include <linux/smp.h>
39 #include <linux/anon_inodes.h>
40 #include <linux/profile.h>
41 #include <linux/kvm_para.h>
42 #include <linux/pagemap.h>
43 #include <linux/mman.h>
44 #include <linux/swap.h>
45 #include <linux/bitops.h>
46 #include <linux/spinlock.h>
47 #include <linux/compat.h>
48 #include <linux/srcu.h>
49 #include <linux/hugetlb.h>
50 #include <linux/slab.h>
51 #include <linux/sort.h>
52 #include <linux/bsearch.h>
53
54 #include <asm/processor.h>
55 #include <asm/io.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 #include <asm/pgtable.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "vfio.h"
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66
67 /* Worst case buffer size needed for holding an integer. */
68 #define ITOA_MAX_LEN 12
69
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72
73 /* Architectures should define their poll value according to the halt latency */
74 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
75 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
76 EXPORT_SYMBOL_GPL(halt_poll_ns);
77
78 /* Default doubles per-vcpu halt_poll_ns. */
79 unsigned int halt_poll_ns_grow = 2;
80 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
81 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
82
83 /* Default resets per-vcpu halt_poll_ns . */
84 unsigned int halt_poll_ns_shrink;
85 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
86 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
87
88 /*
89 * Ordering of locks:
90 *
91 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
92 */
93
94 DEFINE_SPINLOCK(kvm_lock);
95 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
96 LIST_HEAD(vm_list);
97
98 static cpumask_var_t cpus_hardware_enabled;
99 static int kvm_usage_count;
100 static atomic_t hardware_enable_failed;
101
102 struct kmem_cache *kvm_vcpu_cache;
103 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
104
105 static __read_mostly struct preempt_ops kvm_preempt_ops;
106
107 struct dentry *kvm_debugfs_dir;
108 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
109
110 static int kvm_debugfs_num_entries;
111 static const struct file_operations *stat_fops_per_vm[];
112
113 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
114 unsigned long arg);
115 #ifdef CONFIG_KVM_COMPAT
116 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
117 unsigned long arg);
118 #endif
119 static int hardware_enable_all(void);
120 static void hardware_disable_all(void);
121
122 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
123
124 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
125 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
126
127 __visible bool kvm_rebooting;
128 EXPORT_SYMBOL_GPL(kvm_rebooting);
129
130 static bool largepages_enabled = true;
131
132 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
133 {
134 if (pfn_valid(pfn))
135 return PageReserved(pfn_to_page(pfn));
136
137 return true;
138 }
139
140 /*
141 * Switches to specified vcpu, until a matching vcpu_put()
142 */
143 int vcpu_load(struct kvm_vcpu *vcpu)
144 {
145 int cpu;
146
147 if (mutex_lock_killable(&vcpu->mutex))
148 return -EINTR;
149 cpu = get_cpu();
150 preempt_notifier_register(&vcpu->preempt_notifier);
151 kvm_arch_vcpu_load(vcpu, cpu);
152 put_cpu();
153 return 0;
154 }
155 EXPORT_SYMBOL_GPL(vcpu_load);
156
157 void vcpu_put(struct kvm_vcpu *vcpu)
158 {
159 preempt_disable();
160 kvm_arch_vcpu_put(vcpu);
161 preempt_notifier_unregister(&vcpu->preempt_notifier);
162 preempt_enable();
163 mutex_unlock(&vcpu->mutex);
164 }
165 EXPORT_SYMBOL_GPL(vcpu_put);
166
167 static void ack_flush(void *_completed)
168 {
169 }
170
171 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
172 {
173 int i, cpu, me;
174 cpumask_var_t cpus;
175 bool called = true;
176 struct kvm_vcpu *vcpu;
177
178 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
179
180 me = get_cpu();
181 kvm_for_each_vcpu(i, vcpu, kvm) {
182 kvm_make_request(req, vcpu);
183 cpu = vcpu->cpu;
184
185 /* Set ->requests bit before we read ->mode. */
186 smp_mb__after_atomic();
187
188 if (cpus != NULL && cpu != -1 && cpu != me &&
189 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
190 cpumask_set_cpu(cpu, cpus);
191 }
192 if (unlikely(cpus == NULL))
193 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
194 else if (!cpumask_empty(cpus))
195 smp_call_function_many(cpus, ack_flush, NULL, 1);
196 else
197 called = false;
198 put_cpu();
199 free_cpumask_var(cpus);
200 return called;
201 }
202
203 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
204 void kvm_flush_remote_tlbs(struct kvm *kvm)
205 {
206 /*
207 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
208 * kvm_make_all_cpus_request.
209 */
210 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
211
212 /*
213 * We want to publish modifications to the page tables before reading
214 * mode. Pairs with a memory barrier in arch-specific code.
215 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
216 * and smp_mb in walk_shadow_page_lockless_begin/end.
217 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
218 *
219 * There is already an smp_mb__after_atomic() before
220 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
221 * barrier here.
222 */
223 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
224 ++kvm->stat.remote_tlb_flush;
225 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
226 }
227 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
228 #endif
229
230 void kvm_reload_remote_mmus(struct kvm *kvm)
231 {
232 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
233 }
234
235 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
236 {
237 struct page *page;
238 int r;
239
240 mutex_init(&vcpu->mutex);
241 vcpu->cpu = -1;
242 vcpu->kvm = kvm;
243 vcpu->vcpu_id = id;
244 vcpu->pid = NULL;
245 init_swait_queue_head(&vcpu->wq);
246 kvm_async_pf_vcpu_init(vcpu);
247
248 vcpu->pre_pcpu = -1;
249 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
250
251 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
252 if (!page) {
253 r = -ENOMEM;
254 goto fail;
255 }
256 vcpu->run = page_address(page);
257
258 kvm_vcpu_set_in_spin_loop(vcpu, false);
259 kvm_vcpu_set_dy_eligible(vcpu, false);
260 vcpu->preempted = false;
261
262 r = kvm_arch_vcpu_init(vcpu);
263 if (r < 0)
264 goto fail_free_run;
265 return 0;
266
267 fail_free_run:
268 free_page((unsigned long)vcpu->run);
269 fail:
270 return r;
271 }
272 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
273
274 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
275 {
276 put_pid(vcpu->pid);
277 kvm_arch_vcpu_uninit(vcpu);
278 free_page((unsigned long)vcpu->run);
279 }
280 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
281
282 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
283 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
284 {
285 return container_of(mn, struct kvm, mmu_notifier);
286 }
287
288 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
289 struct mm_struct *mm,
290 unsigned long address)
291 {
292 struct kvm *kvm = mmu_notifier_to_kvm(mn);
293 int need_tlb_flush, idx;
294
295 /*
296 * When ->invalidate_page runs, the linux pte has been zapped
297 * already but the page is still allocated until
298 * ->invalidate_page returns. So if we increase the sequence
299 * here the kvm page fault will notice if the spte can't be
300 * established because the page is going to be freed. If
301 * instead the kvm page fault establishes the spte before
302 * ->invalidate_page runs, kvm_unmap_hva will release it
303 * before returning.
304 *
305 * The sequence increase only need to be seen at spin_unlock
306 * time, and not at spin_lock time.
307 *
308 * Increasing the sequence after the spin_unlock would be
309 * unsafe because the kvm page fault could then establish the
310 * pte after kvm_unmap_hva returned, without noticing the page
311 * is going to be freed.
312 */
313 idx = srcu_read_lock(&kvm->srcu);
314 spin_lock(&kvm->mmu_lock);
315
316 kvm->mmu_notifier_seq++;
317 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
318 /* we've to flush the tlb before the pages can be freed */
319 if (need_tlb_flush)
320 kvm_flush_remote_tlbs(kvm);
321
322 spin_unlock(&kvm->mmu_lock);
323
324 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
325
326 srcu_read_unlock(&kvm->srcu, idx);
327 }
328
329 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
330 struct mm_struct *mm,
331 unsigned long address,
332 pte_t pte)
333 {
334 struct kvm *kvm = mmu_notifier_to_kvm(mn);
335 int idx;
336
337 idx = srcu_read_lock(&kvm->srcu);
338 spin_lock(&kvm->mmu_lock);
339 kvm->mmu_notifier_seq++;
340 kvm_set_spte_hva(kvm, address, pte);
341 spin_unlock(&kvm->mmu_lock);
342 srcu_read_unlock(&kvm->srcu, idx);
343 }
344
345 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
346 struct mm_struct *mm,
347 unsigned long start,
348 unsigned long end)
349 {
350 struct kvm *kvm = mmu_notifier_to_kvm(mn);
351 int need_tlb_flush = 0, idx;
352
353 idx = srcu_read_lock(&kvm->srcu);
354 spin_lock(&kvm->mmu_lock);
355 /*
356 * The count increase must become visible at unlock time as no
357 * spte can be established without taking the mmu_lock and
358 * count is also read inside the mmu_lock critical section.
359 */
360 kvm->mmu_notifier_count++;
361 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
362 need_tlb_flush |= kvm->tlbs_dirty;
363 /* we've to flush the tlb before the pages can be freed */
364 if (need_tlb_flush)
365 kvm_flush_remote_tlbs(kvm);
366
367 spin_unlock(&kvm->mmu_lock);
368 srcu_read_unlock(&kvm->srcu, idx);
369 }
370
371 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
372 struct mm_struct *mm,
373 unsigned long start,
374 unsigned long end)
375 {
376 struct kvm *kvm = mmu_notifier_to_kvm(mn);
377
378 spin_lock(&kvm->mmu_lock);
379 /*
380 * This sequence increase will notify the kvm page fault that
381 * the page that is going to be mapped in the spte could have
382 * been freed.
383 */
384 kvm->mmu_notifier_seq++;
385 smp_wmb();
386 /*
387 * The above sequence increase must be visible before the
388 * below count decrease, which is ensured by the smp_wmb above
389 * in conjunction with the smp_rmb in mmu_notifier_retry().
390 */
391 kvm->mmu_notifier_count--;
392 spin_unlock(&kvm->mmu_lock);
393
394 BUG_ON(kvm->mmu_notifier_count < 0);
395 }
396
397 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
398 struct mm_struct *mm,
399 unsigned long start,
400 unsigned long end)
401 {
402 struct kvm *kvm = mmu_notifier_to_kvm(mn);
403 int young, idx;
404
405 idx = srcu_read_lock(&kvm->srcu);
406 spin_lock(&kvm->mmu_lock);
407
408 young = kvm_age_hva(kvm, start, end);
409 if (young)
410 kvm_flush_remote_tlbs(kvm);
411
412 spin_unlock(&kvm->mmu_lock);
413 srcu_read_unlock(&kvm->srcu, idx);
414
415 return young;
416 }
417
418 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
419 struct mm_struct *mm,
420 unsigned long start,
421 unsigned long end)
422 {
423 struct kvm *kvm = mmu_notifier_to_kvm(mn);
424 int young, idx;
425
426 idx = srcu_read_lock(&kvm->srcu);
427 spin_lock(&kvm->mmu_lock);
428 /*
429 * Even though we do not flush TLB, this will still adversely
430 * affect performance on pre-Haswell Intel EPT, where there is
431 * no EPT Access Bit to clear so that we have to tear down EPT
432 * tables instead. If we find this unacceptable, we can always
433 * add a parameter to kvm_age_hva so that it effectively doesn't
434 * do anything on clear_young.
435 *
436 * Also note that currently we never issue secondary TLB flushes
437 * from clear_young, leaving this job up to the regular system
438 * cadence. If we find this inaccurate, we might come up with a
439 * more sophisticated heuristic later.
440 */
441 young = kvm_age_hva(kvm, start, end);
442 spin_unlock(&kvm->mmu_lock);
443 srcu_read_unlock(&kvm->srcu, idx);
444
445 return young;
446 }
447
448 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
449 struct mm_struct *mm,
450 unsigned long address)
451 {
452 struct kvm *kvm = mmu_notifier_to_kvm(mn);
453 int young, idx;
454
455 idx = srcu_read_lock(&kvm->srcu);
456 spin_lock(&kvm->mmu_lock);
457 young = kvm_test_age_hva(kvm, address);
458 spin_unlock(&kvm->mmu_lock);
459 srcu_read_unlock(&kvm->srcu, idx);
460
461 return young;
462 }
463
464 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
465 struct mm_struct *mm)
466 {
467 struct kvm *kvm = mmu_notifier_to_kvm(mn);
468 int idx;
469
470 idx = srcu_read_lock(&kvm->srcu);
471 kvm_arch_flush_shadow_all(kvm);
472 srcu_read_unlock(&kvm->srcu, idx);
473 }
474
475 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
476 .invalidate_page = kvm_mmu_notifier_invalidate_page,
477 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
478 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
479 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
480 .clear_young = kvm_mmu_notifier_clear_young,
481 .test_young = kvm_mmu_notifier_test_young,
482 .change_pte = kvm_mmu_notifier_change_pte,
483 .release = kvm_mmu_notifier_release,
484 };
485
486 static int kvm_init_mmu_notifier(struct kvm *kvm)
487 {
488 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
489 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
490 }
491
492 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
493
494 static int kvm_init_mmu_notifier(struct kvm *kvm)
495 {
496 return 0;
497 }
498
499 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
500
501 static struct kvm_memslots *kvm_alloc_memslots(void)
502 {
503 int i;
504 struct kvm_memslots *slots;
505
506 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
507 if (!slots)
508 return NULL;
509
510 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
511 slots->id_to_index[i] = slots->memslots[i].id = i;
512
513 return slots;
514 }
515
516 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
517 {
518 if (!memslot->dirty_bitmap)
519 return;
520
521 kvfree(memslot->dirty_bitmap);
522 memslot->dirty_bitmap = NULL;
523 }
524
525 /*
526 * Free any memory in @free but not in @dont.
527 */
528 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
529 struct kvm_memory_slot *dont)
530 {
531 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
532 kvm_destroy_dirty_bitmap(free);
533
534 kvm_arch_free_memslot(kvm, free, dont);
535
536 free->npages = 0;
537 }
538
539 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
540 {
541 struct kvm_memory_slot *memslot;
542
543 if (!slots)
544 return;
545
546 kvm_for_each_memslot(memslot, slots)
547 kvm_free_memslot(kvm, memslot, NULL);
548
549 kvfree(slots);
550 }
551
552 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
553 {
554 int i;
555
556 if (!kvm->debugfs_dentry)
557 return;
558
559 debugfs_remove_recursive(kvm->debugfs_dentry);
560
561 if (kvm->debugfs_stat_data) {
562 for (i = 0; i < kvm_debugfs_num_entries; i++)
563 kfree(kvm->debugfs_stat_data[i]);
564 kfree(kvm->debugfs_stat_data);
565 }
566 }
567
568 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
569 {
570 char dir_name[ITOA_MAX_LEN * 2];
571 struct kvm_stat_data *stat_data;
572 struct kvm_stats_debugfs_item *p;
573
574 if (!debugfs_initialized())
575 return 0;
576
577 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
578 kvm->debugfs_dentry = debugfs_create_dir(dir_name,
579 kvm_debugfs_dir);
580 if (!kvm->debugfs_dentry)
581 return -ENOMEM;
582
583 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
584 sizeof(*kvm->debugfs_stat_data),
585 GFP_KERNEL);
586 if (!kvm->debugfs_stat_data)
587 return -ENOMEM;
588
589 for (p = debugfs_entries; p->name; p++) {
590 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
591 if (!stat_data)
592 return -ENOMEM;
593
594 stat_data->kvm = kvm;
595 stat_data->offset = p->offset;
596 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
597 if (!debugfs_create_file(p->name, 0644,
598 kvm->debugfs_dentry,
599 stat_data,
600 stat_fops_per_vm[p->kind]))
601 return -ENOMEM;
602 }
603 return 0;
604 }
605
606 static struct kvm *kvm_create_vm(unsigned long type)
607 {
608 int r, i;
609 struct kvm *kvm = kvm_arch_alloc_vm();
610
611 if (!kvm)
612 return ERR_PTR(-ENOMEM);
613
614 spin_lock_init(&kvm->mmu_lock);
615 mmgrab(current->mm);
616 kvm->mm = current->mm;
617 kvm_eventfd_init(kvm);
618 mutex_init(&kvm->lock);
619 mutex_init(&kvm->irq_lock);
620 mutex_init(&kvm->slots_lock);
621 atomic_set(&kvm->users_count, 1);
622 INIT_LIST_HEAD(&kvm->devices);
623
624 r = kvm_arch_init_vm(kvm, type);
625 if (r)
626 goto out_err_no_disable;
627
628 r = hardware_enable_all();
629 if (r)
630 goto out_err_no_disable;
631
632 #ifdef CONFIG_HAVE_KVM_IRQFD
633 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
634 #endif
635
636 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
637
638 r = -ENOMEM;
639 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
640 struct kvm_memslots *slots = kvm_alloc_memslots();
641 if (!slots)
642 goto out_err_no_srcu;
643 /*
644 * Generations must be different for each address space.
645 * Init kvm generation close to the maximum to easily test the
646 * code of handling generation number wrap-around.
647 */
648 slots->generation = i * 2 - 150;
649 rcu_assign_pointer(kvm->memslots[i], slots);
650 }
651
652 if (init_srcu_struct(&kvm->srcu))
653 goto out_err_no_srcu;
654 if (init_srcu_struct(&kvm->irq_srcu))
655 goto out_err_no_irq_srcu;
656 for (i = 0; i < KVM_NR_BUSES; i++) {
657 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
658 GFP_KERNEL);
659 if (!kvm->buses[i])
660 goto out_err;
661 }
662
663 r = kvm_init_mmu_notifier(kvm);
664 if (r)
665 goto out_err;
666
667 spin_lock(&kvm_lock);
668 list_add(&kvm->vm_list, &vm_list);
669 spin_unlock(&kvm_lock);
670
671 preempt_notifier_inc();
672
673 return kvm;
674
675 out_err:
676 cleanup_srcu_struct(&kvm->irq_srcu);
677 out_err_no_irq_srcu:
678 cleanup_srcu_struct(&kvm->srcu);
679 out_err_no_srcu:
680 hardware_disable_all();
681 out_err_no_disable:
682 for (i = 0; i < KVM_NR_BUSES; i++)
683 kfree(kvm->buses[i]);
684 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
685 kvm_free_memslots(kvm, kvm->memslots[i]);
686 kvm_arch_free_vm(kvm);
687 mmdrop(current->mm);
688 return ERR_PTR(r);
689 }
690
691 /*
692 * Avoid using vmalloc for a small buffer.
693 * Should not be used when the size is statically known.
694 */
695 void *kvm_kvzalloc(unsigned long size)
696 {
697 if (size > PAGE_SIZE)
698 return vzalloc(size);
699 else
700 return kzalloc(size, GFP_KERNEL);
701 }
702
703 static void kvm_destroy_devices(struct kvm *kvm)
704 {
705 struct kvm_device *dev, *tmp;
706
707 /*
708 * We do not need to take the kvm->lock here, because nobody else
709 * has a reference to the struct kvm at this point and therefore
710 * cannot access the devices list anyhow.
711 */
712 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
713 list_del(&dev->vm_node);
714 dev->ops->destroy(dev);
715 }
716 }
717
718 static void kvm_destroy_vm(struct kvm *kvm)
719 {
720 int i;
721 struct mm_struct *mm = kvm->mm;
722
723 kvm_destroy_vm_debugfs(kvm);
724 kvm_arch_sync_events(kvm);
725 spin_lock(&kvm_lock);
726 list_del(&kvm->vm_list);
727 spin_unlock(&kvm_lock);
728 kvm_free_irq_routing(kvm);
729 for (i = 0; i < KVM_NR_BUSES; i++)
730 kvm_io_bus_destroy(kvm->buses[i]);
731 kvm_coalesced_mmio_free(kvm);
732 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
733 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
734 #else
735 kvm_arch_flush_shadow_all(kvm);
736 #endif
737 kvm_arch_destroy_vm(kvm);
738 kvm_destroy_devices(kvm);
739 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
740 kvm_free_memslots(kvm, kvm->memslots[i]);
741 cleanup_srcu_struct(&kvm->irq_srcu);
742 cleanup_srcu_struct(&kvm->srcu);
743 kvm_arch_free_vm(kvm);
744 preempt_notifier_dec();
745 hardware_disable_all();
746 mmdrop(mm);
747 }
748
749 void kvm_get_kvm(struct kvm *kvm)
750 {
751 atomic_inc(&kvm->users_count);
752 }
753 EXPORT_SYMBOL_GPL(kvm_get_kvm);
754
755 void kvm_put_kvm(struct kvm *kvm)
756 {
757 if (atomic_dec_and_test(&kvm->users_count))
758 kvm_destroy_vm(kvm);
759 }
760 EXPORT_SYMBOL_GPL(kvm_put_kvm);
761
762
763 static int kvm_vm_release(struct inode *inode, struct file *filp)
764 {
765 struct kvm *kvm = filp->private_data;
766
767 kvm_irqfd_release(kvm);
768
769 kvm_put_kvm(kvm);
770 return 0;
771 }
772
773 /*
774 * Allocation size is twice as large as the actual dirty bitmap size.
775 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
776 */
777 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
778 {
779 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
780
781 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
782 if (!memslot->dirty_bitmap)
783 return -ENOMEM;
784
785 return 0;
786 }
787
788 /*
789 * Insert memslot and re-sort memslots based on their GFN,
790 * so binary search could be used to lookup GFN.
791 * Sorting algorithm takes advantage of having initially
792 * sorted array and known changed memslot position.
793 */
794 static void update_memslots(struct kvm_memslots *slots,
795 struct kvm_memory_slot *new)
796 {
797 int id = new->id;
798 int i = slots->id_to_index[id];
799 struct kvm_memory_slot *mslots = slots->memslots;
800
801 WARN_ON(mslots[i].id != id);
802 if (!new->npages) {
803 WARN_ON(!mslots[i].npages);
804 if (mslots[i].npages)
805 slots->used_slots--;
806 } else {
807 if (!mslots[i].npages)
808 slots->used_slots++;
809 }
810
811 while (i < KVM_MEM_SLOTS_NUM - 1 &&
812 new->base_gfn <= mslots[i + 1].base_gfn) {
813 if (!mslots[i + 1].npages)
814 break;
815 mslots[i] = mslots[i + 1];
816 slots->id_to_index[mslots[i].id] = i;
817 i++;
818 }
819
820 /*
821 * The ">=" is needed when creating a slot with base_gfn == 0,
822 * so that it moves before all those with base_gfn == npages == 0.
823 *
824 * On the other hand, if new->npages is zero, the above loop has
825 * already left i pointing to the beginning of the empty part of
826 * mslots, and the ">=" would move the hole backwards in this
827 * case---which is wrong. So skip the loop when deleting a slot.
828 */
829 if (new->npages) {
830 while (i > 0 &&
831 new->base_gfn >= mslots[i - 1].base_gfn) {
832 mslots[i] = mslots[i - 1];
833 slots->id_to_index[mslots[i].id] = i;
834 i--;
835 }
836 } else
837 WARN_ON_ONCE(i != slots->used_slots);
838
839 mslots[i] = *new;
840 slots->id_to_index[mslots[i].id] = i;
841 }
842
843 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
844 {
845 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
846
847 #ifdef __KVM_HAVE_READONLY_MEM
848 valid_flags |= KVM_MEM_READONLY;
849 #endif
850
851 if (mem->flags & ~valid_flags)
852 return -EINVAL;
853
854 return 0;
855 }
856
857 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
858 int as_id, struct kvm_memslots *slots)
859 {
860 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
861
862 /*
863 * Set the low bit in the generation, which disables SPTE caching
864 * until the end of synchronize_srcu_expedited.
865 */
866 WARN_ON(old_memslots->generation & 1);
867 slots->generation = old_memslots->generation + 1;
868
869 rcu_assign_pointer(kvm->memslots[as_id], slots);
870 synchronize_srcu_expedited(&kvm->srcu);
871
872 /*
873 * Increment the new memslot generation a second time. This prevents
874 * vm exits that race with memslot updates from caching a memslot
875 * generation that will (potentially) be valid forever.
876 *
877 * Generations must be unique even across address spaces. We do not need
878 * a global counter for that, instead the generation space is evenly split
879 * across address spaces. For example, with two address spaces, address
880 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
881 * use generations 2, 6, 10, 14, ...
882 */
883 slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
884
885 kvm_arch_memslots_updated(kvm, slots);
886
887 return old_memslots;
888 }
889
890 /*
891 * Allocate some memory and give it an address in the guest physical address
892 * space.
893 *
894 * Discontiguous memory is allowed, mostly for framebuffers.
895 *
896 * Must be called holding kvm->slots_lock for write.
897 */
898 int __kvm_set_memory_region(struct kvm *kvm,
899 const struct kvm_userspace_memory_region *mem)
900 {
901 int r;
902 gfn_t base_gfn;
903 unsigned long npages;
904 struct kvm_memory_slot *slot;
905 struct kvm_memory_slot old, new;
906 struct kvm_memslots *slots = NULL, *old_memslots;
907 int as_id, id;
908 enum kvm_mr_change change;
909
910 r = check_memory_region_flags(mem);
911 if (r)
912 goto out;
913
914 r = -EINVAL;
915 as_id = mem->slot >> 16;
916 id = (u16)mem->slot;
917
918 /* General sanity checks */
919 if (mem->memory_size & (PAGE_SIZE - 1))
920 goto out;
921 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
922 goto out;
923 /* We can read the guest memory with __xxx_user() later on. */
924 if ((id < KVM_USER_MEM_SLOTS) &&
925 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
926 !access_ok(VERIFY_WRITE,
927 (void __user *)(unsigned long)mem->userspace_addr,
928 mem->memory_size)))
929 goto out;
930 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
931 goto out;
932 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
933 goto out;
934
935 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
936 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
937 npages = mem->memory_size >> PAGE_SHIFT;
938
939 if (npages > KVM_MEM_MAX_NR_PAGES)
940 goto out;
941
942 new = old = *slot;
943
944 new.id = id;
945 new.base_gfn = base_gfn;
946 new.npages = npages;
947 new.flags = mem->flags;
948
949 if (npages) {
950 if (!old.npages)
951 change = KVM_MR_CREATE;
952 else { /* Modify an existing slot. */
953 if ((mem->userspace_addr != old.userspace_addr) ||
954 (npages != old.npages) ||
955 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
956 goto out;
957
958 if (base_gfn != old.base_gfn)
959 change = KVM_MR_MOVE;
960 else if (new.flags != old.flags)
961 change = KVM_MR_FLAGS_ONLY;
962 else { /* Nothing to change. */
963 r = 0;
964 goto out;
965 }
966 }
967 } else {
968 if (!old.npages)
969 goto out;
970
971 change = KVM_MR_DELETE;
972 new.base_gfn = 0;
973 new.flags = 0;
974 }
975
976 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
977 /* Check for overlaps */
978 r = -EEXIST;
979 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
980 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
981 (slot->id == id))
982 continue;
983 if (!((base_gfn + npages <= slot->base_gfn) ||
984 (base_gfn >= slot->base_gfn + slot->npages)))
985 goto out;
986 }
987 }
988
989 /* Free page dirty bitmap if unneeded */
990 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
991 new.dirty_bitmap = NULL;
992
993 r = -ENOMEM;
994 if (change == KVM_MR_CREATE) {
995 new.userspace_addr = mem->userspace_addr;
996
997 if (kvm_arch_create_memslot(kvm, &new, npages))
998 goto out_free;
999 }
1000
1001 /* Allocate page dirty bitmap if needed */
1002 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1003 if (kvm_create_dirty_bitmap(&new) < 0)
1004 goto out_free;
1005 }
1006
1007 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
1008 if (!slots)
1009 goto out_free;
1010 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1011
1012 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1013 slot = id_to_memslot(slots, id);
1014 slot->flags |= KVM_MEMSLOT_INVALID;
1015
1016 old_memslots = install_new_memslots(kvm, as_id, slots);
1017
1018 /* slot was deleted or moved, clear iommu mapping */
1019 kvm_iommu_unmap_pages(kvm, &old);
1020 /* From this point no new shadow pages pointing to a deleted,
1021 * or moved, memslot will be created.
1022 *
1023 * validation of sp->gfn happens in:
1024 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1025 * - kvm_is_visible_gfn (mmu_check_roots)
1026 */
1027 kvm_arch_flush_shadow_memslot(kvm, slot);
1028
1029 /*
1030 * We can re-use the old_memslots from above, the only difference
1031 * from the currently installed memslots is the invalid flag. This
1032 * will get overwritten by update_memslots anyway.
1033 */
1034 slots = old_memslots;
1035 }
1036
1037 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1038 if (r)
1039 goto out_slots;
1040
1041 /* actual memory is freed via old in kvm_free_memslot below */
1042 if (change == KVM_MR_DELETE) {
1043 new.dirty_bitmap = NULL;
1044 memset(&new.arch, 0, sizeof(new.arch));
1045 }
1046
1047 update_memslots(slots, &new);
1048 old_memslots = install_new_memslots(kvm, as_id, slots);
1049
1050 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1051
1052 kvm_free_memslot(kvm, &old, &new);
1053 kvfree(old_memslots);
1054
1055 /*
1056 * IOMMU mapping: New slots need to be mapped. Old slots need to be
1057 * un-mapped and re-mapped if their base changes. Since base change
1058 * unmapping is handled above with slot deletion, mapping alone is
1059 * needed here. Anything else the iommu might care about for existing
1060 * slots (size changes, userspace addr changes and read-only flag
1061 * changes) is disallowed above, so any other attribute changes getting
1062 * here can be skipped.
1063 */
1064 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1065 r = kvm_iommu_map_pages(kvm, &new);
1066 return r;
1067 }
1068
1069 return 0;
1070
1071 out_slots:
1072 kvfree(slots);
1073 out_free:
1074 kvm_free_memslot(kvm, &new, &old);
1075 out:
1076 return r;
1077 }
1078 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1079
1080 int kvm_set_memory_region(struct kvm *kvm,
1081 const struct kvm_userspace_memory_region *mem)
1082 {
1083 int r;
1084
1085 mutex_lock(&kvm->slots_lock);
1086 r = __kvm_set_memory_region(kvm, mem);
1087 mutex_unlock(&kvm->slots_lock);
1088 return r;
1089 }
1090 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1091
1092 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1093 struct kvm_userspace_memory_region *mem)
1094 {
1095 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1096 return -EINVAL;
1097
1098 return kvm_set_memory_region(kvm, mem);
1099 }
1100
1101 int kvm_get_dirty_log(struct kvm *kvm,
1102 struct kvm_dirty_log *log, int *is_dirty)
1103 {
1104 struct kvm_memslots *slots;
1105 struct kvm_memory_slot *memslot;
1106 int i, as_id, id;
1107 unsigned long n;
1108 unsigned long any = 0;
1109
1110 as_id = log->slot >> 16;
1111 id = (u16)log->slot;
1112 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1113 return -EINVAL;
1114
1115 slots = __kvm_memslots(kvm, as_id);
1116 memslot = id_to_memslot(slots, id);
1117 if (!memslot->dirty_bitmap)
1118 return -ENOENT;
1119
1120 n = kvm_dirty_bitmap_bytes(memslot);
1121
1122 for (i = 0; !any && i < n/sizeof(long); ++i)
1123 any = memslot->dirty_bitmap[i];
1124
1125 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1126 return -EFAULT;
1127
1128 if (any)
1129 *is_dirty = 1;
1130 return 0;
1131 }
1132 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1133
1134 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1135 /**
1136 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1137 * are dirty write protect them for next write.
1138 * @kvm: pointer to kvm instance
1139 * @log: slot id and address to which we copy the log
1140 * @is_dirty: flag set if any page is dirty
1141 *
1142 * We need to keep it in mind that VCPU threads can write to the bitmap
1143 * concurrently. So, to avoid losing track of dirty pages we keep the
1144 * following order:
1145 *
1146 * 1. Take a snapshot of the bit and clear it if needed.
1147 * 2. Write protect the corresponding page.
1148 * 3. Copy the snapshot to the userspace.
1149 * 4. Upon return caller flushes TLB's if needed.
1150 *
1151 * Between 2 and 4, the guest may write to the page using the remaining TLB
1152 * entry. This is not a problem because the page is reported dirty using
1153 * the snapshot taken before and step 4 ensures that writes done after
1154 * exiting to userspace will be logged for the next call.
1155 *
1156 */
1157 int kvm_get_dirty_log_protect(struct kvm *kvm,
1158 struct kvm_dirty_log *log, bool *is_dirty)
1159 {
1160 struct kvm_memslots *slots;
1161 struct kvm_memory_slot *memslot;
1162 int i, as_id, id;
1163 unsigned long n;
1164 unsigned long *dirty_bitmap;
1165 unsigned long *dirty_bitmap_buffer;
1166
1167 as_id = log->slot >> 16;
1168 id = (u16)log->slot;
1169 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1170 return -EINVAL;
1171
1172 slots = __kvm_memslots(kvm, as_id);
1173 memslot = id_to_memslot(slots, id);
1174
1175 dirty_bitmap = memslot->dirty_bitmap;
1176 if (!dirty_bitmap)
1177 return -ENOENT;
1178
1179 n = kvm_dirty_bitmap_bytes(memslot);
1180
1181 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1182 memset(dirty_bitmap_buffer, 0, n);
1183
1184 spin_lock(&kvm->mmu_lock);
1185 *is_dirty = false;
1186 for (i = 0; i < n / sizeof(long); i++) {
1187 unsigned long mask;
1188 gfn_t offset;
1189
1190 if (!dirty_bitmap[i])
1191 continue;
1192
1193 *is_dirty = true;
1194
1195 mask = xchg(&dirty_bitmap[i], 0);
1196 dirty_bitmap_buffer[i] = mask;
1197
1198 if (mask) {
1199 offset = i * BITS_PER_LONG;
1200 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1201 offset, mask);
1202 }
1203 }
1204
1205 spin_unlock(&kvm->mmu_lock);
1206 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1207 return -EFAULT;
1208 return 0;
1209 }
1210 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1211 #endif
1212
1213 bool kvm_largepages_enabled(void)
1214 {
1215 return largepages_enabled;
1216 }
1217
1218 void kvm_disable_largepages(void)
1219 {
1220 largepages_enabled = false;
1221 }
1222 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1223
1224 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1225 {
1226 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1227 }
1228 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1229
1230 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1231 {
1232 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1233 }
1234
1235 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1236 {
1237 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1238
1239 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1240 memslot->flags & KVM_MEMSLOT_INVALID)
1241 return false;
1242
1243 return true;
1244 }
1245 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1246
1247 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1248 {
1249 struct vm_area_struct *vma;
1250 unsigned long addr, size;
1251
1252 size = PAGE_SIZE;
1253
1254 addr = gfn_to_hva(kvm, gfn);
1255 if (kvm_is_error_hva(addr))
1256 return PAGE_SIZE;
1257
1258 down_read(&current->mm->mmap_sem);
1259 vma = find_vma(current->mm, addr);
1260 if (!vma)
1261 goto out;
1262
1263 size = vma_kernel_pagesize(vma);
1264
1265 out:
1266 up_read(&current->mm->mmap_sem);
1267
1268 return size;
1269 }
1270
1271 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1272 {
1273 return slot->flags & KVM_MEM_READONLY;
1274 }
1275
1276 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1277 gfn_t *nr_pages, bool write)
1278 {
1279 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1280 return KVM_HVA_ERR_BAD;
1281
1282 if (memslot_is_readonly(slot) && write)
1283 return KVM_HVA_ERR_RO_BAD;
1284
1285 if (nr_pages)
1286 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1287
1288 return __gfn_to_hva_memslot(slot, gfn);
1289 }
1290
1291 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1292 gfn_t *nr_pages)
1293 {
1294 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1295 }
1296
1297 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1298 gfn_t gfn)
1299 {
1300 return gfn_to_hva_many(slot, gfn, NULL);
1301 }
1302 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1303
1304 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1305 {
1306 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1307 }
1308 EXPORT_SYMBOL_GPL(gfn_to_hva);
1309
1310 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1311 {
1312 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1313 }
1314 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1315
1316 /*
1317 * If writable is set to false, the hva returned by this function is only
1318 * allowed to be read.
1319 */
1320 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1321 gfn_t gfn, bool *writable)
1322 {
1323 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1324
1325 if (!kvm_is_error_hva(hva) && writable)
1326 *writable = !memslot_is_readonly(slot);
1327
1328 return hva;
1329 }
1330
1331 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1332 {
1333 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1334
1335 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1336 }
1337
1338 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1339 {
1340 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1341
1342 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1343 }
1344
1345 static int get_user_page_nowait(unsigned long start, int write,
1346 struct page **page)
1347 {
1348 int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1349
1350 if (write)
1351 flags |= FOLL_WRITE;
1352
1353 return get_user_pages(start, 1, flags, page, NULL);
1354 }
1355
1356 static inline int check_user_page_hwpoison(unsigned long addr)
1357 {
1358 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1359
1360 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1361 return rc == -EHWPOISON;
1362 }
1363
1364 /*
1365 * The atomic path to get the writable pfn which will be stored in @pfn,
1366 * true indicates success, otherwise false is returned.
1367 */
1368 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1369 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1370 {
1371 struct page *page[1];
1372 int npages;
1373
1374 if (!(async || atomic))
1375 return false;
1376
1377 /*
1378 * Fast pin a writable pfn only if it is a write fault request
1379 * or the caller allows to map a writable pfn for a read fault
1380 * request.
1381 */
1382 if (!(write_fault || writable))
1383 return false;
1384
1385 npages = __get_user_pages_fast(addr, 1, 1, page);
1386 if (npages == 1) {
1387 *pfn = page_to_pfn(page[0]);
1388
1389 if (writable)
1390 *writable = true;
1391 return true;
1392 }
1393
1394 return false;
1395 }
1396
1397 /*
1398 * The slow path to get the pfn of the specified host virtual address,
1399 * 1 indicates success, -errno is returned if error is detected.
1400 */
1401 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1402 bool *writable, kvm_pfn_t *pfn)
1403 {
1404 struct page *page[1];
1405 int npages = 0;
1406
1407 might_sleep();
1408
1409 if (writable)
1410 *writable = write_fault;
1411
1412 if (async) {
1413 down_read(&current->mm->mmap_sem);
1414 npages = get_user_page_nowait(addr, write_fault, page);
1415 up_read(&current->mm->mmap_sem);
1416 } else {
1417 unsigned int flags = FOLL_HWPOISON;
1418
1419 if (write_fault)
1420 flags |= FOLL_WRITE;
1421
1422 npages = get_user_pages_unlocked(addr, 1, page, flags);
1423 }
1424 if (npages != 1)
1425 return npages;
1426
1427 /* map read fault as writable if possible */
1428 if (unlikely(!write_fault) && writable) {
1429 struct page *wpage[1];
1430
1431 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1432 if (npages == 1) {
1433 *writable = true;
1434 put_page(page[0]);
1435 page[0] = wpage[0];
1436 }
1437
1438 npages = 1;
1439 }
1440 *pfn = page_to_pfn(page[0]);
1441 return npages;
1442 }
1443
1444 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1445 {
1446 if (unlikely(!(vma->vm_flags & VM_READ)))
1447 return false;
1448
1449 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1450 return false;
1451
1452 return true;
1453 }
1454
1455 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1456 unsigned long addr, bool *async,
1457 bool write_fault, kvm_pfn_t *p_pfn)
1458 {
1459 unsigned long pfn;
1460 int r;
1461
1462 r = follow_pfn(vma, addr, &pfn);
1463 if (r) {
1464 /*
1465 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1466 * not call the fault handler, so do it here.
1467 */
1468 bool unlocked = false;
1469 r = fixup_user_fault(current, current->mm, addr,
1470 (write_fault ? FAULT_FLAG_WRITE : 0),
1471 &unlocked);
1472 if (unlocked)
1473 return -EAGAIN;
1474 if (r)
1475 return r;
1476
1477 r = follow_pfn(vma, addr, &pfn);
1478 if (r)
1479 return r;
1480
1481 }
1482
1483
1484 /*
1485 * Get a reference here because callers of *hva_to_pfn* and
1486 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1487 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1488 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1489 * simply do nothing for reserved pfns.
1490 *
1491 * Whoever called remap_pfn_range is also going to call e.g.
1492 * unmap_mapping_range before the underlying pages are freed,
1493 * causing a call to our MMU notifier.
1494 */
1495 kvm_get_pfn(pfn);
1496
1497 *p_pfn = pfn;
1498 return 0;
1499 }
1500
1501 /*
1502 * Pin guest page in memory and return its pfn.
1503 * @addr: host virtual address which maps memory to the guest
1504 * @atomic: whether this function can sleep
1505 * @async: whether this function need to wait IO complete if the
1506 * host page is not in the memory
1507 * @write_fault: whether we should get a writable host page
1508 * @writable: whether it allows to map a writable host page for !@write_fault
1509 *
1510 * The function will map a writable host page for these two cases:
1511 * 1): @write_fault = true
1512 * 2): @write_fault = false && @writable, @writable will tell the caller
1513 * whether the mapping is writable.
1514 */
1515 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1516 bool write_fault, bool *writable)
1517 {
1518 struct vm_area_struct *vma;
1519 kvm_pfn_t pfn = 0;
1520 int npages, r;
1521
1522 /* we can do it either atomically or asynchronously, not both */
1523 BUG_ON(atomic && async);
1524
1525 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1526 return pfn;
1527
1528 if (atomic)
1529 return KVM_PFN_ERR_FAULT;
1530
1531 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1532 if (npages == 1)
1533 return pfn;
1534
1535 down_read(&current->mm->mmap_sem);
1536 if (npages == -EHWPOISON ||
1537 (!async && check_user_page_hwpoison(addr))) {
1538 pfn = KVM_PFN_ERR_HWPOISON;
1539 goto exit;
1540 }
1541
1542 retry:
1543 vma = find_vma_intersection(current->mm, addr, addr + 1);
1544
1545 if (vma == NULL)
1546 pfn = KVM_PFN_ERR_FAULT;
1547 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1548 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1549 if (r == -EAGAIN)
1550 goto retry;
1551 if (r < 0)
1552 pfn = KVM_PFN_ERR_FAULT;
1553 } else {
1554 if (async && vma_is_valid(vma, write_fault))
1555 *async = true;
1556 pfn = KVM_PFN_ERR_FAULT;
1557 }
1558 exit:
1559 up_read(&current->mm->mmap_sem);
1560 return pfn;
1561 }
1562
1563 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1564 bool atomic, bool *async, bool write_fault,
1565 bool *writable)
1566 {
1567 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1568
1569 if (addr == KVM_HVA_ERR_RO_BAD) {
1570 if (writable)
1571 *writable = false;
1572 return KVM_PFN_ERR_RO_FAULT;
1573 }
1574
1575 if (kvm_is_error_hva(addr)) {
1576 if (writable)
1577 *writable = false;
1578 return KVM_PFN_NOSLOT;
1579 }
1580
1581 /* Do not map writable pfn in the readonly memslot. */
1582 if (writable && memslot_is_readonly(slot)) {
1583 *writable = false;
1584 writable = NULL;
1585 }
1586
1587 return hva_to_pfn(addr, atomic, async, write_fault,
1588 writable);
1589 }
1590 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1591
1592 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1593 bool *writable)
1594 {
1595 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1596 write_fault, writable);
1597 }
1598 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1599
1600 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1601 {
1602 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1603 }
1604 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1605
1606 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1607 {
1608 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1609 }
1610 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1611
1612 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1613 {
1614 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1615 }
1616 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1617
1618 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1619 {
1620 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1621 }
1622 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1623
1624 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1625 {
1626 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1627 }
1628 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1629
1630 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1631 {
1632 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1633 }
1634 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1635
1636 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1637 struct page **pages, int nr_pages)
1638 {
1639 unsigned long addr;
1640 gfn_t entry;
1641
1642 addr = gfn_to_hva_many(slot, gfn, &entry);
1643 if (kvm_is_error_hva(addr))
1644 return -1;
1645
1646 if (entry < nr_pages)
1647 return 0;
1648
1649 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1650 }
1651 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1652
1653 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1654 {
1655 if (is_error_noslot_pfn(pfn))
1656 return KVM_ERR_PTR_BAD_PAGE;
1657
1658 if (kvm_is_reserved_pfn(pfn)) {
1659 WARN_ON(1);
1660 return KVM_ERR_PTR_BAD_PAGE;
1661 }
1662
1663 return pfn_to_page(pfn);
1664 }
1665
1666 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1667 {
1668 kvm_pfn_t pfn;
1669
1670 pfn = gfn_to_pfn(kvm, gfn);
1671
1672 return kvm_pfn_to_page(pfn);
1673 }
1674 EXPORT_SYMBOL_GPL(gfn_to_page);
1675
1676 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1677 {
1678 kvm_pfn_t pfn;
1679
1680 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1681
1682 return kvm_pfn_to_page(pfn);
1683 }
1684 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1685
1686 void kvm_release_page_clean(struct page *page)
1687 {
1688 WARN_ON(is_error_page(page));
1689
1690 kvm_release_pfn_clean(page_to_pfn(page));
1691 }
1692 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1693
1694 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1695 {
1696 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1697 put_page(pfn_to_page(pfn));
1698 }
1699 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1700
1701 void kvm_release_page_dirty(struct page *page)
1702 {
1703 WARN_ON(is_error_page(page));
1704
1705 kvm_release_pfn_dirty(page_to_pfn(page));
1706 }
1707 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1708
1709 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1710 {
1711 kvm_set_pfn_dirty(pfn);
1712 kvm_release_pfn_clean(pfn);
1713 }
1714
1715 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1716 {
1717 if (!kvm_is_reserved_pfn(pfn)) {
1718 struct page *page = pfn_to_page(pfn);
1719
1720 if (!PageReserved(page))
1721 SetPageDirty(page);
1722 }
1723 }
1724 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1725
1726 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1727 {
1728 if (!kvm_is_reserved_pfn(pfn))
1729 mark_page_accessed(pfn_to_page(pfn));
1730 }
1731 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1732
1733 void kvm_get_pfn(kvm_pfn_t pfn)
1734 {
1735 if (!kvm_is_reserved_pfn(pfn))
1736 get_page(pfn_to_page(pfn));
1737 }
1738 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1739
1740 static int next_segment(unsigned long len, int offset)
1741 {
1742 if (len > PAGE_SIZE - offset)
1743 return PAGE_SIZE - offset;
1744 else
1745 return len;
1746 }
1747
1748 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1749 void *data, int offset, int len)
1750 {
1751 int r;
1752 unsigned long addr;
1753
1754 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1755 if (kvm_is_error_hva(addr))
1756 return -EFAULT;
1757 r = __copy_from_user(data, (void __user *)addr + offset, len);
1758 if (r)
1759 return -EFAULT;
1760 return 0;
1761 }
1762
1763 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1764 int len)
1765 {
1766 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1767
1768 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1769 }
1770 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1771
1772 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1773 int offset, int len)
1774 {
1775 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1776
1777 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1778 }
1779 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1780
1781 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1782 {
1783 gfn_t gfn = gpa >> PAGE_SHIFT;
1784 int seg;
1785 int offset = offset_in_page(gpa);
1786 int ret;
1787
1788 while ((seg = next_segment(len, offset)) != 0) {
1789 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1790 if (ret < 0)
1791 return ret;
1792 offset = 0;
1793 len -= seg;
1794 data += seg;
1795 ++gfn;
1796 }
1797 return 0;
1798 }
1799 EXPORT_SYMBOL_GPL(kvm_read_guest);
1800
1801 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1802 {
1803 gfn_t gfn = gpa >> PAGE_SHIFT;
1804 int seg;
1805 int offset = offset_in_page(gpa);
1806 int ret;
1807
1808 while ((seg = next_segment(len, offset)) != 0) {
1809 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1810 if (ret < 0)
1811 return ret;
1812 offset = 0;
1813 len -= seg;
1814 data += seg;
1815 ++gfn;
1816 }
1817 return 0;
1818 }
1819 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1820
1821 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1822 void *data, int offset, unsigned long len)
1823 {
1824 int r;
1825 unsigned long addr;
1826
1827 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1828 if (kvm_is_error_hva(addr))
1829 return -EFAULT;
1830 pagefault_disable();
1831 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1832 pagefault_enable();
1833 if (r)
1834 return -EFAULT;
1835 return 0;
1836 }
1837
1838 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1839 unsigned long len)
1840 {
1841 gfn_t gfn = gpa >> PAGE_SHIFT;
1842 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1843 int offset = offset_in_page(gpa);
1844
1845 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1846 }
1847 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1848
1849 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1850 void *data, unsigned long len)
1851 {
1852 gfn_t gfn = gpa >> PAGE_SHIFT;
1853 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1854 int offset = offset_in_page(gpa);
1855
1856 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1857 }
1858 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1859
1860 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1861 const void *data, int offset, int len)
1862 {
1863 int r;
1864 unsigned long addr;
1865
1866 addr = gfn_to_hva_memslot(memslot, gfn);
1867 if (kvm_is_error_hva(addr))
1868 return -EFAULT;
1869 r = __copy_to_user((void __user *)addr + offset, data, len);
1870 if (r)
1871 return -EFAULT;
1872 mark_page_dirty_in_slot(memslot, gfn);
1873 return 0;
1874 }
1875
1876 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1877 const void *data, int offset, int len)
1878 {
1879 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1880
1881 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1882 }
1883 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1884
1885 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1886 const void *data, int offset, int len)
1887 {
1888 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1889
1890 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1891 }
1892 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1893
1894 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1895 unsigned long len)
1896 {
1897 gfn_t gfn = gpa >> PAGE_SHIFT;
1898 int seg;
1899 int offset = offset_in_page(gpa);
1900 int ret;
1901
1902 while ((seg = next_segment(len, offset)) != 0) {
1903 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1904 if (ret < 0)
1905 return ret;
1906 offset = 0;
1907 len -= seg;
1908 data += seg;
1909 ++gfn;
1910 }
1911 return 0;
1912 }
1913 EXPORT_SYMBOL_GPL(kvm_write_guest);
1914
1915 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1916 unsigned long len)
1917 {
1918 gfn_t gfn = gpa >> PAGE_SHIFT;
1919 int seg;
1920 int offset = offset_in_page(gpa);
1921 int ret;
1922
1923 while ((seg = next_segment(len, offset)) != 0) {
1924 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1925 if (ret < 0)
1926 return ret;
1927 offset = 0;
1928 len -= seg;
1929 data += seg;
1930 ++gfn;
1931 }
1932 return 0;
1933 }
1934 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1935
1936 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1937 struct gfn_to_hva_cache *ghc,
1938 gpa_t gpa, unsigned long len)
1939 {
1940 int offset = offset_in_page(gpa);
1941 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1942 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1943 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1944 gfn_t nr_pages_avail;
1945
1946 ghc->gpa = gpa;
1947 ghc->generation = slots->generation;
1948 ghc->len = len;
1949 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1950 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1951 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1952 ghc->hva += offset;
1953 } else {
1954 /*
1955 * If the requested region crosses two memslots, we still
1956 * verify that the entire region is valid here.
1957 */
1958 while (start_gfn <= end_gfn) {
1959 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1960 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1961 &nr_pages_avail);
1962 if (kvm_is_error_hva(ghc->hva))
1963 return -EFAULT;
1964 start_gfn += nr_pages_avail;
1965 }
1966 /* Use the slow path for cross page reads and writes. */
1967 ghc->memslot = NULL;
1968 }
1969 return 0;
1970 }
1971
1972 int kvm_vcpu_gfn_to_hva_cache_init(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
1973 gpa_t gpa, unsigned long len)
1974 {
1975 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
1976 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1977 }
1978 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva_cache_init);
1979
1980 int kvm_vcpu_write_guest_offset_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
1981 void *data, int offset, unsigned long len)
1982 {
1983 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
1984 int r;
1985 gpa_t gpa = ghc->gpa + offset;
1986
1987 BUG_ON(len + offset > ghc->len);
1988
1989 if (slots->generation != ghc->generation)
1990 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1991
1992 if (unlikely(!ghc->memslot))
1993 return kvm_vcpu_write_guest(vcpu, gpa, data, len);
1994
1995 if (kvm_is_error_hva(ghc->hva))
1996 return -EFAULT;
1997
1998 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1999 if (r)
2000 return -EFAULT;
2001 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2002
2003 return 0;
2004 }
2005 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_offset_cached);
2006
2007 int kvm_vcpu_write_guest_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
2008 void *data, unsigned long len)
2009 {
2010 return kvm_vcpu_write_guest_offset_cached(vcpu, ghc, data, 0, len);
2011 }
2012 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_cached);
2013
2014 int kvm_vcpu_read_guest_cached(struct kvm_vcpu *vcpu, struct gfn_to_hva_cache *ghc,
2015 void *data, unsigned long len)
2016 {
2017 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2018 int r;
2019
2020 BUG_ON(len > ghc->len);
2021
2022 if (slots->generation != ghc->generation)
2023 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2024
2025 if (unlikely(!ghc->memslot))
2026 return kvm_vcpu_read_guest(vcpu, ghc->gpa, data, len);
2027
2028 if (kvm_is_error_hva(ghc->hva))
2029 return -EFAULT;
2030
2031 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2032 if (r)
2033 return -EFAULT;
2034
2035 return 0;
2036 }
2037 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_cached);
2038
2039 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2040 {
2041 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2042
2043 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2044 }
2045 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2046
2047 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2048 {
2049 gfn_t gfn = gpa >> PAGE_SHIFT;
2050 int seg;
2051 int offset = offset_in_page(gpa);
2052 int ret;
2053
2054 while ((seg = next_segment(len, offset)) != 0) {
2055 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2056 if (ret < 0)
2057 return ret;
2058 offset = 0;
2059 len -= seg;
2060 ++gfn;
2061 }
2062 return 0;
2063 }
2064 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2065
2066 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2067 gfn_t gfn)
2068 {
2069 if (memslot && memslot->dirty_bitmap) {
2070 unsigned long rel_gfn = gfn - memslot->base_gfn;
2071
2072 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2073 }
2074 }
2075
2076 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2077 {
2078 struct kvm_memory_slot *memslot;
2079
2080 memslot = gfn_to_memslot(kvm, gfn);
2081 mark_page_dirty_in_slot(memslot, gfn);
2082 }
2083 EXPORT_SYMBOL_GPL(mark_page_dirty);
2084
2085 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2086 {
2087 struct kvm_memory_slot *memslot;
2088
2089 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2090 mark_page_dirty_in_slot(memslot, gfn);
2091 }
2092 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2093
2094 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2095 {
2096 unsigned int old, val, grow;
2097
2098 old = val = vcpu->halt_poll_ns;
2099 grow = READ_ONCE(halt_poll_ns_grow);
2100 /* 10us base */
2101 if (val == 0 && grow)
2102 val = 10000;
2103 else
2104 val *= grow;
2105
2106 if (val > halt_poll_ns)
2107 val = halt_poll_ns;
2108
2109 vcpu->halt_poll_ns = val;
2110 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2111 }
2112
2113 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2114 {
2115 unsigned int old, val, shrink;
2116
2117 old = val = vcpu->halt_poll_ns;
2118 shrink = READ_ONCE(halt_poll_ns_shrink);
2119 if (shrink == 0)
2120 val = 0;
2121 else
2122 val /= shrink;
2123
2124 vcpu->halt_poll_ns = val;
2125 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2126 }
2127
2128 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2129 {
2130 if (kvm_arch_vcpu_runnable(vcpu)) {
2131 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2132 return -EINTR;
2133 }
2134 if (kvm_cpu_has_pending_timer(vcpu))
2135 return -EINTR;
2136 if (signal_pending(current))
2137 return -EINTR;
2138
2139 return 0;
2140 }
2141
2142 /*
2143 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2144 */
2145 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2146 {
2147 ktime_t start, cur;
2148 DECLARE_SWAITQUEUE(wait);
2149 bool waited = false;
2150 u64 block_ns;
2151
2152 start = cur = ktime_get();
2153 if (vcpu->halt_poll_ns) {
2154 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2155
2156 ++vcpu->stat.halt_attempted_poll;
2157 do {
2158 /*
2159 * This sets KVM_REQ_UNHALT if an interrupt
2160 * arrives.
2161 */
2162 if (kvm_vcpu_check_block(vcpu) < 0) {
2163 ++vcpu->stat.halt_successful_poll;
2164 if (!vcpu_valid_wakeup(vcpu))
2165 ++vcpu->stat.halt_poll_invalid;
2166 goto out;
2167 }
2168 cur = ktime_get();
2169 } while (single_task_running() && ktime_before(cur, stop));
2170 }
2171
2172 kvm_arch_vcpu_blocking(vcpu);
2173
2174 for (;;) {
2175 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2176
2177 if (kvm_vcpu_check_block(vcpu) < 0)
2178 break;
2179
2180 waited = true;
2181 schedule();
2182 }
2183
2184 finish_swait(&vcpu->wq, &wait);
2185 cur = ktime_get();
2186
2187 kvm_arch_vcpu_unblocking(vcpu);
2188 out:
2189 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2190
2191 if (!vcpu_valid_wakeup(vcpu))
2192 shrink_halt_poll_ns(vcpu);
2193 else if (halt_poll_ns) {
2194 if (block_ns <= vcpu->halt_poll_ns)
2195 ;
2196 /* we had a long block, shrink polling */
2197 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2198 shrink_halt_poll_ns(vcpu);
2199 /* we had a short halt and our poll time is too small */
2200 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2201 block_ns < halt_poll_ns)
2202 grow_halt_poll_ns(vcpu);
2203 } else
2204 vcpu->halt_poll_ns = 0;
2205
2206 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2207 kvm_arch_vcpu_block_finish(vcpu);
2208 }
2209 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2210
2211 #ifndef CONFIG_S390
2212 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2213 {
2214 struct swait_queue_head *wqp;
2215
2216 wqp = kvm_arch_vcpu_wq(vcpu);
2217 if (swait_active(wqp)) {
2218 swake_up(wqp);
2219 ++vcpu->stat.halt_wakeup;
2220 }
2221
2222 }
2223 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2224
2225 /*
2226 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2227 */
2228 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2229 {
2230 int me;
2231 int cpu = vcpu->cpu;
2232
2233 kvm_vcpu_wake_up(vcpu);
2234 me = get_cpu();
2235 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2236 if (kvm_arch_vcpu_should_kick(vcpu))
2237 smp_send_reschedule(cpu);
2238 put_cpu();
2239 }
2240 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2241 #endif /* !CONFIG_S390 */
2242
2243 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2244 {
2245 struct pid *pid;
2246 struct task_struct *task = NULL;
2247 int ret = 0;
2248
2249 rcu_read_lock();
2250 pid = rcu_dereference(target->pid);
2251 if (pid)
2252 task = get_pid_task(pid, PIDTYPE_PID);
2253 rcu_read_unlock();
2254 if (!task)
2255 return ret;
2256 ret = yield_to(task, 1);
2257 put_task_struct(task);
2258
2259 return ret;
2260 }
2261 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2262
2263 /*
2264 * Helper that checks whether a VCPU is eligible for directed yield.
2265 * Most eligible candidate to yield is decided by following heuristics:
2266 *
2267 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2268 * (preempted lock holder), indicated by @in_spin_loop.
2269 * Set at the beiginning and cleared at the end of interception/PLE handler.
2270 *
2271 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2272 * chance last time (mostly it has become eligible now since we have probably
2273 * yielded to lockholder in last iteration. This is done by toggling
2274 * @dy_eligible each time a VCPU checked for eligibility.)
2275 *
2276 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2277 * to preempted lock-holder could result in wrong VCPU selection and CPU
2278 * burning. Giving priority for a potential lock-holder increases lock
2279 * progress.
2280 *
2281 * Since algorithm is based on heuristics, accessing another VCPU data without
2282 * locking does not harm. It may result in trying to yield to same VCPU, fail
2283 * and continue with next VCPU and so on.
2284 */
2285 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2286 {
2287 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2288 bool eligible;
2289
2290 eligible = !vcpu->spin_loop.in_spin_loop ||
2291 vcpu->spin_loop.dy_eligible;
2292
2293 if (vcpu->spin_loop.in_spin_loop)
2294 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2295
2296 return eligible;
2297 #else
2298 return true;
2299 #endif
2300 }
2301
2302 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2303 {
2304 struct kvm *kvm = me->kvm;
2305 struct kvm_vcpu *vcpu;
2306 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2307 int yielded = 0;
2308 int try = 3;
2309 int pass;
2310 int i;
2311
2312 kvm_vcpu_set_in_spin_loop(me, true);
2313 /*
2314 * We boost the priority of a VCPU that is runnable but not
2315 * currently running, because it got preempted by something
2316 * else and called schedule in __vcpu_run. Hopefully that
2317 * VCPU is holding the lock that we need and will release it.
2318 * We approximate round-robin by starting at the last boosted VCPU.
2319 */
2320 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2321 kvm_for_each_vcpu(i, vcpu, kvm) {
2322 if (!pass && i <= last_boosted_vcpu) {
2323 i = last_boosted_vcpu;
2324 continue;
2325 } else if (pass && i > last_boosted_vcpu)
2326 break;
2327 if (!ACCESS_ONCE(vcpu->preempted))
2328 continue;
2329 if (vcpu == me)
2330 continue;
2331 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2332 continue;
2333 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2334 continue;
2335
2336 yielded = kvm_vcpu_yield_to(vcpu);
2337 if (yielded > 0) {
2338 kvm->last_boosted_vcpu = i;
2339 break;
2340 } else if (yielded < 0) {
2341 try--;
2342 if (!try)
2343 break;
2344 }
2345 }
2346 }
2347 kvm_vcpu_set_in_spin_loop(me, false);
2348
2349 /* Ensure vcpu is not eligible during next spinloop */
2350 kvm_vcpu_set_dy_eligible(me, false);
2351 }
2352 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2353
2354 static int kvm_vcpu_fault(struct vm_fault *vmf)
2355 {
2356 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2357 struct page *page;
2358
2359 if (vmf->pgoff == 0)
2360 page = virt_to_page(vcpu->run);
2361 #ifdef CONFIG_X86
2362 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2363 page = virt_to_page(vcpu->arch.pio_data);
2364 #endif
2365 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2366 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2367 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2368 #endif
2369 else
2370 return kvm_arch_vcpu_fault(vcpu, vmf);
2371 get_page(page);
2372 vmf->page = page;
2373 return 0;
2374 }
2375
2376 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2377 .fault = kvm_vcpu_fault,
2378 };
2379
2380 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2381 {
2382 vma->vm_ops = &kvm_vcpu_vm_ops;
2383 return 0;
2384 }
2385
2386 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2387 {
2388 struct kvm_vcpu *vcpu = filp->private_data;
2389
2390 debugfs_remove_recursive(vcpu->debugfs_dentry);
2391 kvm_put_kvm(vcpu->kvm);
2392 return 0;
2393 }
2394
2395 static struct file_operations kvm_vcpu_fops = {
2396 .release = kvm_vcpu_release,
2397 .unlocked_ioctl = kvm_vcpu_ioctl,
2398 #ifdef CONFIG_KVM_COMPAT
2399 .compat_ioctl = kvm_vcpu_compat_ioctl,
2400 #endif
2401 .mmap = kvm_vcpu_mmap,
2402 .llseek = noop_llseek,
2403 };
2404
2405 /*
2406 * Allocates an inode for the vcpu.
2407 */
2408 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2409 {
2410 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2411 }
2412
2413 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2414 {
2415 char dir_name[ITOA_MAX_LEN * 2];
2416 int ret;
2417
2418 if (!kvm_arch_has_vcpu_debugfs())
2419 return 0;
2420
2421 if (!debugfs_initialized())
2422 return 0;
2423
2424 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2425 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2426 vcpu->kvm->debugfs_dentry);
2427 if (!vcpu->debugfs_dentry)
2428 return -ENOMEM;
2429
2430 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2431 if (ret < 0) {
2432 debugfs_remove_recursive(vcpu->debugfs_dentry);
2433 return ret;
2434 }
2435
2436 return 0;
2437 }
2438
2439 /*
2440 * Creates some virtual cpus. Good luck creating more than one.
2441 */
2442 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2443 {
2444 int r;
2445 struct kvm_vcpu *vcpu;
2446
2447 if (id >= KVM_MAX_VCPU_ID)
2448 return -EINVAL;
2449
2450 mutex_lock(&kvm->lock);
2451 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2452 mutex_unlock(&kvm->lock);
2453 return -EINVAL;
2454 }
2455
2456 kvm->created_vcpus++;
2457 mutex_unlock(&kvm->lock);
2458
2459 vcpu = kvm_arch_vcpu_create(kvm, id);
2460 if (IS_ERR(vcpu)) {
2461 r = PTR_ERR(vcpu);
2462 goto vcpu_decrement;
2463 }
2464
2465 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2466
2467 r = kvm_arch_vcpu_setup(vcpu);
2468 if (r)
2469 goto vcpu_destroy;
2470
2471 r = kvm_create_vcpu_debugfs(vcpu);
2472 if (r)
2473 goto vcpu_destroy;
2474
2475 mutex_lock(&kvm->lock);
2476 if (kvm_get_vcpu_by_id(kvm, id)) {
2477 r = -EEXIST;
2478 goto unlock_vcpu_destroy;
2479 }
2480
2481 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2482
2483 /* Now it's all set up, let userspace reach it */
2484 kvm_get_kvm(kvm);
2485 r = create_vcpu_fd(vcpu);
2486 if (r < 0) {
2487 kvm_put_kvm(kvm);
2488 goto unlock_vcpu_destroy;
2489 }
2490
2491 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2492
2493 /*
2494 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2495 * before kvm->online_vcpu's incremented value.
2496 */
2497 smp_wmb();
2498 atomic_inc(&kvm->online_vcpus);
2499
2500 mutex_unlock(&kvm->lock);
2501 kvm_arch_vcpu_postcreate(vcpu);
2502 return r;
2503
2504 unlock_vcpu_destroy:
2505 mutex_unlock(&kvm->lock);
2506 debugfs_remove_recursive(vcpu->debugfs_dentry);
2507 vcpu_destroy:
2508 kvm_arch_vcpu_destroy(vcpu);
2509 vcpu_decrement:
2510 mutex_lock(&kvm->lock);
2511 kvm->created_vcpus--;
2512 mutex_unlock(&kvm->lock);
2513 return r;
2514 }
2515
2516 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2517 {
2518 if (sigset) {
2519 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2520 vcpu->sigset_active = 1;
2521 vcpu->sigset = *sigset;
2522 } else
2523 vcpu->sigset_active = 0;
2524 return 0;
2525 }
2526
2527 static long kvm_vcpu_ioctl(struct file *filp,
2528 unsigned int ioctl, unsigned long arg)
2529 {
2530 struct kvm_vcpu *vcpu = filp->private_data;
2531 void __user *argp = (void __user *)arg;
2532 int r;
2533 struct kvm_fpu *fpu = NULL;
2534 struct kvm_sregs *kvm_sregs = NULL;
2535
2536 if (vcpu->kvm->mm != current->mm)
2537 return -EIO;
2538
2539 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2540 return -EINVAL;
2541
2542 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2543 /*
2544 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2545 * so vcpu_load() would break it.
2546 */
2547 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2548 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2549 #endif
2550
2551
2552 r = vcpu_load(vcpu);
2553 if (r)
2554 return r;
2555 switch (ioctl) {
2556 case KVM_RUN:
2557 r = -EINVAL;
2558 if (arg)
2559 goto out;
2560 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2561 /* The thread running this VCPU changed. */
2562 struct pid *oldpid = vcpu->pid;
2563 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2564
2565 rcu_assign_pointer(vcpu->pid, newpid);
2566 if (oldpid)
2567 synchronize_rcu();
2568 put_pid(oldpid);
2569 }
2570 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2571 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2572 break;
2573 case KVM_GET_REGS: {
2574 struct kvm_regs *kvm_regs;
2575
2576 r = -ENOMEM;
2577 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2578 if (!kvm_regs)
2579 goto out;
2580 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2581 if (r)
2582 goto out_free1;
2583 r = -EFAULT;
2584 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2585 goto out_free1;
2586 r = 0;
2587 out_free1:
2588 kfree(kvm_regs);
2589 break;
2590 }
2591 case KVM_SET_REGS: {
2592 struct kvm_regs *kvm_regs;
2593
2594 r = -ENOMEM;
2595 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2596 if (IS_ERR(kvm_regs)) {
2597 r = PTR_ERR(kvm_regs);
2598 goto out;
2599 }
2600 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2601 kfree(kvm_regs);
2602 break;
2603 }
2604 case KVM_GET_SREGS: {
2605 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2606 r = -ENOMEM;
2607 if (!kvm_sregs)
2608 goto out;
2609 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2610 if (r)
2611 goto out;
2612 r = -EFAULT;
2613 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2614 goto out;
2615 r = 0;
2616 break;
2617 }
2618 case KVM_SET_SREGS: {
2619 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2620 if (IS_ERR(kvm_sregs)) {
2621 r = PTR_ERR(kvm_sregs);
2622 kvm_sregs = NULL;
2623 goto out;
2624 }
2625 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2626 break;
2627 }
2628 case KVM_GET_MP_STATE: {
2629 struct kvm_mp_state mp_state;
2630
2631 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2632 if (r)
2633 goto out;
2634 r = -EFAULT;
2635 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2636 goto out;
2637 r = 0;
2638 break;
2639 }
2640 case KVM_SET_MP_STATE: {
2641 struct kvm_mp_state mp_state;
2642
2643 r = -EFAULT;
2644 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2645 goto out;
2646 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2647 break;
2648 }
2649 case KVM_TRANSLATE: {
2650 struct kvm_translation tr;
2651
2652 r = -EFAULT;
2653 if (copy_from_user(&tr, argp, sizeof(tr)))
2654 goto out;
2655 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2656 if (r)
2657 goto out;
2658 r = -EFAULT;
2659 if (copy_to_user(argp, &tr, sizeof(tr)))
2660 goto out;
2661 r = 0;
2662 break;
2663 }
2664 case KVM_SET_GUEST_DEBUG: {
2665 struct kvm_guest_debug dbg;
2666
2667 r = -EFAULT;
2668 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2669 goto out;
2670 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2671 break;
2672 }
2673 case KVM_SET_SIGNAL_MASK: {
2674 struct kvm_signal_mask __user *sigmask_arg = argp;
2675 struct kvm_signal_mask kvm_sigmask;
2676 sigset_t sigset, *p;
2677
2678 p = NULL;
2679 if (argp) {
2680 r = -EFAULT;
2681 if (copy_from_user(&kvm_sigmask, argp,
2682 sizeof(kvm_sigmask)))
2683 goto out;
2684 r = -EINVAL;
2685 if (kvm_sigmask.len != sizeof(sigset))
2686 goto out;
2687 r = -EFAULT;
2688 if (copy_from_user(&sigset, sigmask_arg->sigset,
2689 sizeof(sigset)))
2690 goto out;
2691 p = &sigset;
2692 }
2693 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2694 break;
2695 }
2696 case KVM_GET_FPU: {
2697 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2698 r = -ENOMEM;
2699 if (!fpu)
2700 goto out;
2701 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2702 if (r)
2703 goto out;
2704 r = -EFAULT;
2705 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2706 goto out;
2707 r = 0;
2708 break;
2709 }
2710 case KVM_SET_FPU: {
2711 fpu = memdup_user(argp, sizeof(*fpu));
2712 if (IS_ERR(fpu)) {
2713 r = PTR_ERR(fpu);
2714 fpu = NULL;
2715 goto out;
2716 }
2717 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2718 break;
2719 }
2720 default:
2721 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2722 }
2723 out:
2724 vcpu_put(vcpu);
2725 kfree(fpu);
2726 kfree(kvm_sregs);
2727 return r;
2728 }
2729
2730 #ifdef CONFIG_KVM_COMPAT
2731 static long kvm_vcpu_compat_ioctl(struct file *filp,
2732 unsigned int ioctl, unsigned long arg)
2733 {
2734 struct kvm_vcpu *vcpu = filp->private_data;
2735 void __user *argp = compat_ptr(arg);
2736 int r;
2737
2738 if (vcpu->kvm->mm != current->mm)
2739 return -EIO;
2740
2741 switch (ioctl) {
2742 case KVM_SET_SIGNAL_MASK: {
2743 struct kvm_signal_mask __user *sigmask_arg = argp;
2744 struct kvm_signal_mask kvm_sigmask;
2745 compat_sigset_t csigset;
2746 sigset_t sigset;
2747
2748 if (argp) {
2749 r = -EFAULT;
2750 if (copy_from_user(&kvm_sigmask, argp,
2751 sizeof(kvm_sigmask)))
2752 goto out;
2753 r = -EINVAL;
2754 if (kvm_sigmask.len != sizeof(csigset))
2755 goto out;
2756 r = -EFAULT;
2757 if (copy_from_user(&csigset, sigmask_arg->sigset,
2758 sizeof(csigset)))
2759 goto out;
2760 sigset_from_compat(&sigset, &csigset);
2761 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2762 } else
2763 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2764 break;
2765 }
2766 default:
2767 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2768 }
2769
2770 out:
2771 return r;
2772 }
2773 #endif
2774
2775 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2776 int (*accessor)(struct kvm_device *dev,
2777 struct kvm_device_attr *attr),
2778 unsigned long arg)
2779 {
2780 struct kvm_device_attr attr;
2781
2782 if (!accessor)
2783 return -EPERM;
2784
2785 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2786 return -EFAULT;
2787
2788 return accessor(dev, &attr);
2789 }
2790
2791 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2792 unsigned long arg)
2793 {
2794 struct kvm_device *dev = filp->private_data;
2795
2796 switch (ioctl) {
2797 case KVM_SET_DEVICE_ATTR:
2798 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2799 case KVM_GET_DEVICE_ATTR:
2800 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2801 case KVM_HAS_DEVICE_ATTR:
2802 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2803 default:
2804 if (dev->ops->ioctl)
2805 return dev->ops->ioctl(dev, ioctl, arg);
2806
2807 return -ENOTTY;
2808 }
2809 }
2810
2811 static int kvm_device_release(struct inode *inode, struct file *filp)
2812 {
2813 struct kvm_device *dev = filp->private_data;
2814 struct kvm *kvm = dev->kvm;
2815
2816 kvm_put_kvm(kvm);
2817 return 0;
2818 }
2819
2820 static const struct file_operations kvm_device_fops = {
2821 .unlocked_ioctl = kvm_device_ioctl,
2822 #ifdef CONFIG_KVM_COMPAT
2823 .compat_ioctl = kvm_device_ioctl,
2824 #endif
2825 .release = kvm_device_release,
2826 };
2827
2828 struct kvm_device *kvm_device_from_filp(struct file *filp)
2829 {
2830 if (filp->f_op != &kvm_device_fops)
2831 return NULL;
2832
2833 return filp->private_data;
2834 }
2835
2836 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2837 #ifdef CONFIG_KVM_MPIC
2838 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2839 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2840 #endif
2841
2842 #ifdef CONFIG_KVM_XICS
2843 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2844 #endif
2845 };
2846
2847 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2848 {
2849 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2850 return -ENOSPC;
2851
2852 if (kvm_device_ops_table[type] != NULL)
2853 return -EEXIST;
2854
2855 kvm_device_ops_table[type] = ops;
2856 return 0;
2857 }
2858
2859 void kvm_unregister_device_ops(u32 type)
2860 {
2861 if (kvm_device_ops_table[type] != NULL)
2862 kvm_device_ops_table[type] = NULL;
2863 }
2864
2865 static int kvm_ioctl_create_device(struct kvm *kvm,
2866 struct kvm_create_device *cd)
2867 {
2868 struct kvm_device_ops *ops = NULL;
2869 struct kvm_device *dev;
2870 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2871 int ret;
2872
2873 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2874 return -ENODEV;
2875
2876 ops = kvm_device_ops_table[cd->type];
2877 if (ops == NULL)
2878 return -ENODEV;
2879
2880 if (test)
2881 return 0;
2882
2883 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2884 if (!dev)
2885 return -ENOMEM;
2886
2887 dev->ops = ops;
2888 dev->kvm = kvm;
2889
2890 mutex_lock(&kvm->lock);
2891 ret = ops->create(dev, cd->type);
2892 if (ret < 0) {
2893 mutex_unlock(&kvm->lock);
2894 kfree(dev);
2895 return ret;
2896 }
2897 list_add(&dev->vm_node, &kvm->devices);
2898 mutex_unlock(&kvm->lock);
2899
2900 if (ops->init)
2901 ops->init(dev);
2902
2903 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2904 if (ret < 0) {
2905 mutex_lock(&kvm->lock);
2906 list_del(&dev->vm_node);
2907 mutex_unlock(&kvm->lock);
2908 ops->destroy(dev);
2909 return ret;
2910 }
2911
2912 kvm_get_kvm(kvm);
2913 cd->fd = ret;
2914 return 0;
2915 }
2916
2917 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2918 {
2919 switch (arg) {
2920 case KVM_CAP_USER_MEMORY:
2921 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2922 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2923 case KVM_CAP_INTERNAL_ERROR_DATA:
2924 #ifdef CONFIG_HAVE_KVM_MSI
2925 case KVM_CAP_SIGNAL_MSI:
2926 #endif
2927 #ifdef CONFIG_HAVE_KVM_IRQFD
2928 case KVM_CAP_IRQFD:
2929 case KVM_CAP_IRQFD_RESAMPLE:
2930 #endif
2931 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2932 case KVM_CAP_CHECK_EXTENSION_VM:
2933 return 1;
2934 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2935 case KVM_CAP_IRQ_ROUTING:
2936 return KVM_MAX_IRQ_ROUTES;
2937 #endif
2938 #if KVM_ADDRESS_SPACE_NUM > 1
2939 case KVM_CAP_MULTI_ADDRESS_SPACE:
2940 return KVM_ADDRESS_SPACE_NUM;
2941 #endif
2942 case KVM_CAP_MAX_VCPU_ID:
2943 return KVM_MAX_VCPU_ID;
2944 default:
2945 break;
2946 }
2947 return kvm_vm_ioctl_check_extension(kvm, arg);
2948 }
2949
2950 static long kvm_vm_ioctl(struct file *filp,
2951 unsigned int ioctl, unsigned long arg)
2952 {
2953 struct kvm *kvm = filp->private_data;
2954 void __user *argp = (void __user *)arg;
2955 int r;
2956
2957 if (kvm->mm != current->mm)
2958 return -EIO;
2959 switch (ioctl) {
2960 case KVM_CREATE_VCPU:
2961 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2962 break;
2963 case KVM_SET_USER_MEMORY_REGION: {
2964 struct kvm_userspace_memory_region kvm_userspace_mem;
2965
2966 r = -EFAULT;
2967 if (copy_from_user(&kvm_userspace_mem, argp,
2968 sizeof(kvm_userspace_mem)))
2969 goto out;
2970
2971 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2972 break;
2973 }
2974 case KVM_GET_DIRTY_LOG: {
2975 struct kvm_dirty_log log;
2976
2977 r = -EFAULT;
2978 if (copy_from_user(&log, argp, sizeof(log)))
2979 goto out;
2980 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2981 break;
2982 }
2983 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2984 case KVM_REGISTER_COALESCED_MMIO: {
2985 struct kvm_coalesced_mmio_zone zone;
2986
2987 r = -EFAULT;
2988 if (copy_from_user(&zone, argp, sizeof(zone)))
2989 goto out;
2990 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2991 break;
2992 }
2993 case KVM_UNREGISTER_COALESCED_MMIO: {
2994 struct kvm_coalesced_mmio_zone zone;
2995
2996 r = -EFAULT;
2997 if (copy_from_user(&zone, argp, sizeof(zone)))
2998 goto out;
2999 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3000 break;
3001 }
3002 #endif
3003 case KVM_IRQFD: {
3004 struct kvm_irqfd data;
3005
3006 r = -EFAULT;
3007 if (copy_from_user(&data, argp, sizeof(data)))
3008 goto out;
3009 r = kvm_irqfd(kvm, &data);
3010 break;
3011 }
3012 case KVM_IOEVENTFD: {
3013 struct kvm_ioeventfd data;
3014
3015 r = -EFAULT;
3016 if (copy_from_user(&data, argp, sizeof(data)))
3017 goto out;
3018 r = kvm_ioeventfd(kvm, &data);
3019 break;
3020 }
3021 #ifdef CONFIG_HAVE_KVM_MSI
3022 case KVM_SIGNAL_MSI: {
3023 struct kvm_msi msi;
3024
3025 r = -EFAULT;
3026 if (copy_from_user(&msi, argp, sizeof(msi)))
3027 goto out;
3028 r = kvm_send_userspace_msi(kvm, &msi);
3029 break;
3030 }
3031 #endif
3032 #ifdef __KVM_HAVE_IRQ_LINE
3033 case KVM_IRQ_LINE_STATUS:
3034 case KVM_IRQ_LINE: {
3035 struct kvm_irq_level irq_event;
3036
3037 r = -EFAULT;
3038 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3039 goto out;
3040
3041 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3042 ioctl == KVM_IRQ_LINE_STATUS);
3043 if (r)
3044 goto out;
3045
3046 r = -EFAULT;
3047 if (ioctl == KVM_IRQ_LINE_STATUS) {
3048 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3049 goto out;
3050 }
3051
3052 r = 0;
3053 break;
3054 }
3055 #endif
3056 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3057 case KVM_SET_GSI_ROUTING: {
3058 struct kvm_irq_routing routing;
3059 struct kvm_irq_routing __user *urouting;
3060 struct kvm_irq_routing_entry *entries = NULL;
3061
3062 r = -EFAULT;
3063 if (copy_from_user(&routing, argp, sizeof(routing)))
3064 goto out;
3065 r = -EINVAL;
3066 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3067 goto out;
3068 if (routing.flags)
3069 goto out;
3070 if (routing.nr) {
3071 r = -ENOMEM;
3072 entries = vmalloc(routing.nr * sizeof(*entries));
3073 if (!entries)
3074 goto out;
3075 r = -EFAULT;
3076 urouting = argp;
3077 if (copy_from_user(entries, urouting->entries,
3078 routing.nr * sizeof(*entries)))
3079 goto out_free_irq_routing;
3080 }
3081 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3082 routing.flags);
3083 out_free_irq_routing:
3084 vfree(entries);
3085 break;
3086 }
3087 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3088 case KVM_CREATE_DEVICE: {
3089 struct kvm_create_device cd;
3090
3091 r = -EFAULT;
3092 if (copy_from_user(&cd, argp, sizeof(cd)))
3093 goto out;
3094
3095 r = kvm_ioctl_create_device(kvm, &cd);
3096 if (r)
3097 goto out;
3098
3099 r = -EFAULT;
3100 if (copy_to_user(argp, &cd, sizeof(cd)))
3101 goto out;
3102
3103 r = 0;
3104 break;
3105 }
3106 case KVM_CHECK_EXTENSION:
3107 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3108 break;
3109 default:
3110 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3111 }
3112 out:
3113 return r;
3114 }
3115
3116 #ifdef CONFIG_KVM_COMPAT
3117 struct compat_kvm_dirty_log {
3118 __u32 slot;
3119 __u32 padding1;
3120 union {
3121 compat_uptr_t dirty_bitmap; /* one bit per page */
3122 __u64 padding2;
3123 };
3124 };
3125
3126 static long kvm_vm_compat_ioctl(struct file *filp,
3127 unsigned int ioctl, unsigned long arg)
3128 {
3129 struct kvm *kvm = filp->private_data;
3130 int r;
3131
3132 if (kvm->mm != current->mm)
3133 return -EIO;
3134 switch (ioctl) {
3135 case KVM_GET_DIRTY_LOG: {
3136 struct compat_kvm_dirty_log compat_log;
3137 struct kvm_dirty_log log;
3138
3139 if (copy_from_user(&compat_log, (void __user *)arg,
3140 sizeof(compat_log)))
3141 return -EFAULT;
3142 log.slot = compat_log.slot;
3143 log.padding1 = compat_log.padding1;
3144 log.padding2 = compat_log.padding2;
3145 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3146
3147 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3148 break;
3149 }
3150 default:
3151 r = kvm_vm_ioctl(filp, ioctl, arg);
3152 }
3153 return r;
3154 }
3155 #endif
3156
3157 static struct file_operations kvm_vm_fops = {
3158 .release = kvm_vm_release,
3159 .unlocked_ioctl = kvm_vm_ioctl,
3160 #ifdef CONFIG_KVM_COMPAT
3161 .compat_ioctl = kvm_vm_compat_ioctl,
3162 #endif
3163 .llseek = noop_llseek,
3164 };
3165
3166 static int kvm_dev_ioctl_create_vm(unsigned long type)
3167 {
3168 int r;
3169 struct kvm *kvm;
3170 struct file *file;
3171
3172 kvm = kvm_create_vm(type);
3173 if (IS_ERR(kvm))
3174 return PTR_ERR(kvm);
3175 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3176 r = kvm_coalesced_mmio_init(kvm);
3177 if (r < 0) {
3178 kvm_put_kvm(kvm);
3179 return r;
3180 }
3181 #endif
3182 r = get_unused_fd_flags(O_CLOEXEC);
3183 if (r < 0) {
3184 kvm_put_kvm(kvm);
3185 return r;
3186 }
3187 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3188 if (IS_ERR(file)) {
3189 put_unused_fd(r);
3190 kvm_put_kvm(kvm);
3191 return PTR_ERR(file);
3192 }
3193
3194 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3195 put_unused_fd(r);
3196 fput(file);
3197 return -ENOMEM;
3198 }
3199
3200 fd_install(r, file);
3201 return r;
3202 }
3203
3204 static long kvm_dev_ioctl(struct file *filp,
3205 unsigned int ioctl, unsigned long arg)
3206 {
3207 long r = -EINVAL;
3208
3209 switch (ioctl) {
3210 case KVM_GET_API_VERSION:
3211 if (arg)
3212 goto out;
3213 r = KVM_API_VERSION;
3214 break;
3215 case KVM_CREATE_VM:
3216 r = kvm_dev_ioctl_create_vm(arg);
3217 break;
3218 case KVM_CHECK_EXTENSION:
3219 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3220 break;
3221 case KVM_GET_VCPU_MMAP_SIZE:
3222 if (arg)
3223 goto out;
3224 r = PAGE_SIZE; /* struct kvm_run */
3225 #ifdef CONFIG_X86
3226 r += PAGE_SIZE; /* pio data page */
3227 #endif
3228 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3229 r += PAGE_SIZE; /* coalesced mmio ring page */
3230 #endif
3231 break;
3232 case KVM_TRACE_ENABLE:
3233 case KVM_TRACE_PAUSE:
3234 case KVM_TRACE_DISABLE:
3235 r = -EOPNOTSUPP;
3236 break;
3237 default:
3238 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3239 }
3240 out:
3241 return r;
3242 }
3243
3244 static struct file_operations kvm_chardev_ops = {
3245 .unlocked_ioctl = kvm_dev_ioctl,
3246 .compat_ioctl = kvm_dev_ioctl,
3247 .llseek = noop_llseek,
3248 };
3249
3250 static struct miscdevice kvm_dev = {
3251 KVM_MINOR,
3252 "kvm",
3253 &kvm_chardev_ops,
3254 };
3255
3256 static void hardware_enable_nolock(void *junk)
3257 {
3258 int cpu = raw_smp_processor_id();
3259 int r;
3260
3261 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3262 return;
3263
3264 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3265
3266 r = kvm_arch_hardware_enable();
3267
3268 if (r) {
3269 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3270 atomic_inc(&hardware_enable_failed);
3271 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3272 }
3273 }
3274
3275 static int kvm_starting_cpu(unsigned int cpu)
3276 {
3277 raw_spin_lock(&kvm_count_lock);
3278 if (kvm_usage_count)
3279 hardware_enable_nolock(NULL);
3280 raw_spin_unlock(&kvm_count_lock);
3281 return 0;
3282 }
3283
3284 static void hardware_disable_nolock(void *junk)
3285 {
3286 int cpu = raw_smp_processor_id();
3287
3288 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3289 return;
3290 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3291 kvm_arch_hardware_disable();
3292 }
3293
3294 static int kvm_dying_cpu(unsigned int cpu)
3295 {
3296 raw_spin_lock(&kvm_count_lock);
3297 if (kvm_usage_count)
3298 hardware_disable_nolock(NULL);
3299 raw_spin_unlock(&kvm_count_lock);
3300 return 0;
3301 }
3302
3303 static void hardware_disable_all_nolock(void)
3304 {
3305 BUG_ON(!kvm_usage_count);
3306
3307 kvm_usage_count--;
3308 if (!kvm_usage_count)
3309 on_each_cpu(hardware_disable_nolock, NULL, 1);
3310 }
3311
3312 static void hardware_disable_all(void)
3313 {
3314 raw_spin_lock(&kvm_count_lock);
3315 hardware_disable_all_nolock();
3316 raw_spin_unlock(&kvm_count_lock);
3317 }
3318
3319 static int hardware_enable_all(void)
3320 {
3321 int r = 0;
3322
3323 raw_spin_lock(&kvm_count_lock);
3324
3325 kvm_usage_count++;
3326 if (kvm_usage_count == 1) {
3327 atomic_set(&hardware_enable_failed, 0);
3328 on_each_cpu(hardware_enable_nolock, NULL, 1);
3329
3330 if (atomic_read(&hardware_enable_failed)) {
3331 hardware_disable_all_nolock();
3332 r = -EBUSY;
3333 }
3334 }
3335
3336 raw_spin_unlock(&kvm_count_lock);
3337
3338 return r;
3339 }
3340
3341 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3342 void *v)
3343 {
3344 /*
3345 * Some (well, at least mine) BIOSes hang on reboot if
3346 * in vmx root mode.
3347 *
3348 * And Intel TXT required VMX off for all cpu when system shutdown.
3349 */
3350 pr_info("kvm: exiting hardware virtualization\n");
3351 kvm_rebooting = true;
3352 on_each_cpu(hardware_disable_nolock, NULL, 1);
3353 return NOTIFY_OK;
3354 }
3355
3356 static struct notifier_block kvm_reboot_notifier = {
3357 .notifier_call = kvm_reboot,
3358 .priority = 0,
3359 };
3360
3361 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3362 {
3363 int i;
3364
3365 for (i = 0; i < bus->dev_count; i++) {
3366 struct kvm_io_device *pos = bus->range[i].dev;
3367
3368 kvm_iodevice_destructor(pos);
3369 }
3370 kfree(bus);
3371 }
3372
3373 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3374 const struct kvm_io_range *r2)
3375 {
3376 gpa_t addr1 = r1->addr;
3377 gpa_t addr2 = r2->addr;
3378
3379 if (addr1 < addr2)
3380 return -1;
3381
3382 /* If r2->len == 0, match the exact address. If r2->len != 0,
3383 * accept any overlapping write. Any order is acceptable for
3384 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3385 * we process all of them.
3386 */
3387 if (r2->len) {
3388 addr1 += r1->len;
3389 addr2 += r2->len;
3390 }
3391
3392 if (addr1 > addr2)
3393 return 1;
3394
3395 return 0;
3396 }
3397
3398 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3399 {
3400 return kvm_io_bus_cmp(p1, p2);
3401 }
3402
3403 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3404 gpa_t addr, int len)
3405 {
3406 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3407 .addr = addr,
3408 .len = len,
3409 .dev = dev,
3410 };
3411
3412 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3413 kvm_io_bus_sort_cmp, NULL);
3414
3415 return 0;
3416 }
3417
3418 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3419 gpa_t addr, int len)
3420 {
3421 struct kvm_io_range *range, key;
3422 int off;
3423
3424 key = (struct kvm_io_range) {
3425 .addr = addr,
3426 .len = len,
3427 };
3428
3429 range = bsearch(&key, bus->range, bus->dev_count,
3430 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3431 if (range == NULL)
3432 return -ENOENT;
3433
3434 off = range - bus->range;
3435
3436 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3437 off--;
3438
3439 return off;
3440 }
3441
3442 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3443 struct kvm_io_range *range, const void *val)
3444 {
3445 int idx;
3446
3447 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3448 if (idx < 0)
3449 return -EOPNOTSUPP;
3450
3451 while (idx < bus->dev_count &&
3452 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3453 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3454 range->len, val))
3455 return idx;
3456 idx++;
3457 }
3458
3459 return -EOPNOTSUPP;
3460 }
3461
3462 /* kvm_io_bus_write - called under kvm->slots_lock */
3463 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3464 int len, const void *val)
3465 {
3466 struct kvm_io_bus *bus;
3467 struct kvm_io_range range;
3468 int r;
3469
3470 range = (struct kvm_io_range) {
3471 .addr = addr,
3472 .len = len,
3473 };
3474
3475 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3476 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3477 return r < 0 ? r : 0;
3478 }
3479
3480 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3481 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3482 gpa_t addr, int len, const void *val, long cookie)
3483 {
3484 struct kvm_io_bus *bus;
3485 struct kvm_io_range range;
3486
3487 range = (struct kvm_io_range) {
3488 .addr = addr,
3489 .len = len,
3490 };
3491
3492 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3493
3494 /* First try the device referenced by cookie. */
3495 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3496 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3497 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3498 val))
3499 return cookie;
3500
3501 /*
3502 * cookie contained garbage; fall back to search and return the
3503 * correct cookie value.
3504 */
3505 return __kvm_io_bus_write(vcpu, bus, &range, val);
3506 }
3507
3508 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3509 struct kvm_io_range *range, void *val)
3510 {
3511 int idx;
3512
3513 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3514 if (idx < 0)
3515 return -EOPNOTSUPP;
3516
3517 while (idx < bus->dev_count &&
3518 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3519 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3520 range->len, val))
3521 return idx;
3522 idx++;
3523 }
3524
3525 return -EOPNOTSUPP;
3526 }
3527 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3528
3529 /* kvm_io_bus_read - called under kvm->slots_lock */
3530 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3531 int len, void *val)
3532 {
3533 struct kvm_io_bus *bus;
3534 struct kvm_io_range range;
3535 int r;
3536
3537 range = (struct kvm_io_range) {
3538 .addr = addr,
3539 .len = len,
3540 };
3541
3542 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3543 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3544 return r < 0 ? r : 0;
3545 }
3546
3547
3548 /* Caller must hold slots_lock. */
3549 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3550 int len, struct kvm_io_device *dev)
3551 {
3552 struct kvm_io_bus *new_bus, *bus;
3553
3554 bus = kvm->buses[bus_idx];
3555 /* exclude ioeventfd which is limited by maximum fd */
3556 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3557 return -ENOSPC;
3558
3559 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3560 sizeof(struct kvm_io_range)), GFP_KERNEL);
3561 if (!new_bus)
3562 return -ENOMEM;
3563 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3564 sizeof(struct kvm_io_range)));
3565 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3566 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3567 synchronize_srcu_expedited(&kvm->srcu);
3568 kfree(bus);
3569
3570 return 0;
3571 }
3572
3573 /* Caller must hold slots_lock. */
3574 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3575 struct kvm_io_device *dev)
3576 {
3577 int i, r;
3578 struct kvm_io_bus *new_bus, *bus;
3579
3580 bus = kvm->buses[bus_idx];
3581 r = -ENOENT;
3582 for (i = 0; i < bus->dev_count; i++)
3583 if (bus->range[i].dev == dev) {
3584 r = 0;
3585 break;
3586 }
3587
3588 if (r)
3589 return r;
3590
3591 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3592 sizeof(struct kvm_io_range)), GFP_KERNEL);
3593 if (!new_bus)
3594 return -ENOMEM;
3595
3596 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3597 new_bus->dev_count--;
3598 memcpy(new_bus->range + i, bus->range + i + 1,
3599 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3600
3601 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3602 synchronize_srcu_expedited(&kvm->srcu);
3603 kfree(bus);
3604 return r;
3605 }
3606
3607 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3608 gpa_t addr)
3609 {
3610 struct kvm_io_bus *bus;
3611 int dev_idx, srcu_idx;
3612 struct kvm_io_device *iodev = NULL;
3613
3614 srcu_idx = srcu_read_lock(&kvm->srcu);
3615
3616 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3617
3618 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3619 if (dev_idx < 0)
3620 goto out_unlock;
3621
3622 iodev = bus->range[dev_idx].dev;
3623
3624 out_unlock:
3625 srcu_read_unlock(&kvm->srcu, srcu_idx);
3626
3627 return iodev;
3628 }
3629 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3630
3631 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3632 int (*get)(void *, u64 *), int (*set)(void *, u64),
3633 const char *fmt)
3634 {
3635 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3636 inode->i_private;
3637
3638 /* The debugfs files are a reference to the kvm struct which
3639 * is still valid when kvm_destroy_vm is called.
3640 * To avoid the race between open and the removal of the debugfs
3641 * directory we test against the users count.
3642 */
3643 if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0))
3644 return -ENOENT;
3645
3646 if (simple_attr_open(inode, file, get, set, fmt)) {
3647 kvm_put_kvm(stat_data->kvm);
3648 return -ENOMEM;
3649 }
3650
3651 return 0;
3652 }
3653
3654 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3655 {
3656 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3657 inode->i_private;
3658
3659 simple_attr_release(inode, file);
3660 kvm_put_kvm(stat_data->kvm);
3661
3662 return 0;
3663 }
3664
3665 static int vm_stat_get_per_vm(void *data, u64 *val)
3666 {
3667 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3668
3669 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3670
3671 return 0;
3672 }
3673
3674 static int vm_stat_clear_per_vm(void *data, u64 val)
3675 {
3676 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3677
3678 if (val)
3679 return -EINVAL;
3680
3681 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3682
3683 return 0;
3684 }
3685
3686 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3687 {
3688 __simple_attr_check_format("%llu\n", 0ull);
3689 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3690 vm_stat_clear_per_vm, "%llu\n");
3691 }
3692
3693 static const struct file_operations vm_stat_get_per_vm_fops = {
3694 .owner = THIS_MODULE,
3695 .open = vm_stat_get_per_vm_open,
3696 .release = kvm_debugfs_release,
3697 .read = simple_attr_read,
3698 .write = simple_attr_write,
3699 .llseek = generic_file_llseek,
3700 };
3701
3702 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3703 {
3704 int i;
3705 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3706 struct kvm_vcpu *vcpu;
3707
3708 *val = 0;
3709
3710 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3711 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3712
3713 return 0;
3714 }
3715
3716 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3717 {
3718 int i;
3719 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3720 struct kvm_vcpu *vcpu;
3721
3722 if (val)
3723 return -EINVAL;
3724
3725 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3726 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3727
3728 return 0;
3729 }
3730
3731 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3732 {
3733 __simple_attr_check_format("%llu\n", 0ull);
3734 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3735 vcpu_stat_clear_per_vm, "%llu\n");
3736 }
3737
3738 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3739 .owner = THIS_MODULE,
3740 .open = vcpu_stat_get_per_vm_open,
3741 .release = kvm_debugfs_release,
3742 .read = simple_attr_read,
3743 .write = simple_attr_write,
3744 .llseek = generic_file_llseek,
3745 };
3746
3747 static const struct file_operations *stat_fops_per_vm[] = {
3748 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3749 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3750 };
3751
3752 static int vm_stat_get(void *_offset, u64 *val)
3753 {
3754 unsigned offset = (long)_offset;
3755 struct kvm *kvm;
3756 struct kvm_stat_data stat_tmp = {.offset = offset};
3757 u64 tmp_val;
3758
3759 *val = 0;
3760 spin_lock(&kvm_lock);
3761 list_for_each_entry(kvm, &vm_list, vm_list) {
3762 stat_tmp.kvm = kvm;
3763 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3764 *val += tmp_val;
3765 }
3766 spin_unlock(&kvm_lock);
3767 return 0;
3768 }
3769
3770 static int vm_stat_clear(void *_offset, u64 val)
3771 {
3772 unsigned offset = (long)_offset;
3773 struct kvm *kvm;
3774 struct kvm_stat_data stat_tmp = {.offset = offset};
3775
3776 if (val)
3777 return -EINVAL;
3778
3779 spin_lock(&kvm_lock);
3780 list_for_each_entry(kvm, &vm_list, vm_list) {
3781 stat_tmp.kvm = kvm;
3782 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3783 }
3784 spin_unlock(&kvm_lock);
3785
3786 return 0;
3787 }
3788
3789 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3790
3791 static int vcpu_stat_get(void *_offset, u64 *val)
3792 {
3793 unsigned offset = (long)_offset;
3794 struct kvm *kvm;
3795 struct kvm_stat_data stat_tmp = {.offset = offset};
3796 u64 tmp_val;
3797
3798 *val = 0;
3799 spin_lock(&kvm_lock);
3800 list_for_each_entry(kvm, &vm_list, vm_list) {
3801 stat_tmp.kvm = kvm;
3802 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3803 *val += tmp_val;
3804 }
3805 spin_unlock(&kvm_lock);
3806 return 0;
3807 }
3808
3809 static int vcpu_stat_clear(void *_offset, u64 val)
3810 {
3811 unsigned offset = (long)_offset;
3812 struct kvm *kvm;
3813 struct kvm_stat_data stat_tmp = {.offset = offset};
3814
3815 if (val)
3816 return -EINVAL;
3817
3818 spin_lock(&kvm_lock);
3819 list_for_each_entry(kvm, &vm_list, vm_list) {
3820 stat_tmp.kvm = kvm;
3821 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3822 }
3823 spin_unlock(&kvm_lock);
3824
3825 return 0;
3826 }
3827
3828 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3829 "%llu\n");
3830
3831 static const struct file_operations *stat_fops[] = {
3832 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3833 [KVM_STAT_VM] = &vm_stat_fops,
3834 };
3835
3836 static int kvm_init_debug(void)
3837 {
3838 int r = -EEXIST;
3839 struct kvm_stats_debugfs_item *p;
3840
3841 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3842 if (kvm_debugfs_dir == NULL)
3843 goto out;
3844
3845 kvm_debugfs_num_entries = 0;
3846 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3847 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3848 (void *)(long)p->offset,
3849 stat_fops[p->kind]))
3850 goto out_dir;
3851 }
3852
3853 return 0;
3854
3855 out_dir:
3856 debugfs_remove_recursive(kvm_debugfs_dir);
3857 out:
3858 return r;
3859 }
3860
3861 static int kvm_suspend(void)
3862 {
3863 if (kvm_usage_count)
3864 hardware_disable_nolock(NULL);
3865 return 0;
3866 }
3867
3868 static void kvm_resume(void)
3869 {
3870 if (kvm_usage_count) {
3871 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3872 hardware_enable_nolock(NULL);
3873 }
3874 }
3875
3876 static struct syscore_ops kvm_syscore_ops = {
3877 .suspend = kvm_suspend,
3878 .resume = kvm_resume,
3879 };
3880
3881 static inline
3882 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3883 {
3884 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3885 }
3886
3887 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3888 {
3889 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3890
3891 if (vcpu->preempted)
3892 vcpu->preempted = false;
3893
3894 kvm_arch_sched_in(vcpu, cpu);
3895
3896 kvm_arch_vcpu_load(vcpu, cpu);
3897 }
3898
3899 static void kvm_sched_out(struct preempt_notifier *pn,
3900 struct task_struct *next)
3901 {
3902 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3903
3904 if (current->state == TASK_RUNNING)
3905 vcpu->preempted = true;
3906 kvm_arch_vcpu_put(vcpu);
3907 }
3908
3909 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3910 struct module *module)
3911 {
3912 int r;
3913 int cpu;
3914
3915 r = kvm_arch_init(opaque);
3916 if (r)
3917 goto out_fail;
3918
3919 /*
3920 * kvm_arch_init makes sure there's at most one caller
3921 * for architectures that support multiple implementations,
3922 * like intel and amd on x86.
3923 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3924 * conflicts in case kvm is already setup for another implementation.
3925 */
3926 r = kvm_irqfd_init();
3927 if (r)
3928 goto out_irqfd;
3929
3930 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3931 r = -ENOMEM;
3932 goto out_free_0;
3933 }
3934
3935 r = kvm_arch_hardware_setup();
3936 if (r < 0)
3937 goto out_free_0a;
3938
3939 for_each_online_cpu(cpu) {
3940 smp_call_function_single(cpu,
3941 kvm_arch_check_processor_compat,
3942 &r, 1);
3943 if (r < 0)
3944 goto out_free_1;
3945 }
3946
3947 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
3948 kvm_starting_cpu, kvm_dying_cpu);
3949 if (r)
3950 goto out_free_2;
3951 register_reboot_notifier(&kvm_reboot_notifier);
3952
3953 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3954 if (!vcpu_align)
3955 vcpu_align = __alignof__(struct kvm_vcpu);
3956 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3957 0, NULL);
3958 if (!kvm_vcpu_cache) {
3959 r = -ENOMEM;
3960 goto out_free_3;
3961 }
3962
3963 r = kvm_async_pf_init();
3964 if (r)
3965 goto out_free;
3966
3967 kvm_chardev_ops.owner = module;
3968 kvm_vm_fops.owner = module;
3969 kvm_vcpu_fops.owner = module;
3970
3971 r = misc_register(&kvm_dev);
3972 if (r) {
3973 pr_err("kvm: misc device register failed\n");
3974 goto out_unreg;
3975 }
3976
3977 register_syscore_ops(&kvm_syscore_ops);
3978
3979 kvm_preempt_ops.sched_in = kvm_sched_in;
3980 kvm_preempt_ops.sched_out = kvm_sched_out;
3981
3982 r = kvm_init_debug();
3983 if (r) {
3984 pr_err("kvm: create debugfs files failed\n");
3985 goto out_undebugfs;
3986 }
3987
3988 r = kvm_vfio_ops_init();
3989 WARN_ON(r);
3990
3991 return 0;
3992
3993 out_undebugfs:
3994 unregister_syscore_ops(&kvm_syscore_ops);
3995 misc_deregister(&kvm_dev);
3996 out_unreg:
3997 kvm_async_pf_deinit();
3998 out_free:
3999 kmem_cache_destroy(kvm_vcpu_cache);
4000 out_free_3:
4001 unregister_reboot_notifier(&kvm_reboot_notifier);
4002 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4003 out_free_2:
4004 out_free_1:
4005 kvm_arch_hardware_unsetup();
4006 out_free_0a:
4007 free_cpumask_var(cpus_hardware_enabled);
4008 out_free_0:
4009 kvm_irqfd_exit();
4010 out_irqfd:
4011 kvm_arch_exit();
4012 out_fail:
4013 return r;
4014 }
4015 EXPORT_SYMBOL_GPL(kvm_init);
4016
4017 void kvm_exit(void)
4018 {
4019 debugfs_remove_recursive(kvm_debugfs_dir);
4020 misc_deregister(&kvm_dev);
4021 kmem_cache_destroy(kvm_vcpu_cache);
4022 kvm_async_pf_deinit();
4023 unregister_syscore_ops(&kvm_syscore_ops);
4024 unregister_reboot_notifier(&kvm_reboot_notifier);
4025 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4026 on_each_cpu(hardware_disable_nolock, NULL, 1);
4027 kvm_arch_hardware_unsetup();
4028 kvm_arch_exit();
4029 kvm_irqfd_exit();
4030 free_cpumask_var(cpus_hardware_enabled);
4031 kvm_vfio_ops_exit();
4032 }
4033 EXPORT_SYMBOL_GPL(kvm_exit);