]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - virt/kvm/kvm_main.c
KVM: Remove redundant argument to kvm_arch_vcpu_ioctl_run
[mirror_ubuntu-jammy-kernel.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 #include <asm/pgtable.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "vfio.h"
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66
67 /* Worst case buffer size needed for holding an integer. */
68 #define ITOA_MAX_LEN 12
69
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72
73 /* Architectures should define their poll value according to the halt latency */
74 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
75 module_param(halt_poll_ns, uint, 0644);
76 EXPORT_SYMBOL_GPL(halt_poll_ns);
77
78 /* Default doubles per-vcpu halt_poll_ns. */
79 unsigned int halt_poll_ns_grow = 2;
80 module_param(halt_poll_ns_grow, uint, 0644);
81 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
82
83 /* The start value to grow halt_poll_ns from */
84 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
85 module_param(halt_poll_ns_grow_start, uint, 0644);
86 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
87
88 /* Default resets per-vcpu halt_poll_ns . */
89 unsigned int halt_poll_ns_shrink;
90 module_param(halt_poll_ns_shrink, uint, 0644);
91 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
92
93 /*
94 * Ordering of locks:
95 *
96 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
97 */
98
99 DEFINE_MUTEX(kvm_lock);
100 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
101 LIST_HEAD(vm_list);
102
103 static cpumask_var_t cpus_hardware_enabled;
104 static int kvm_usage_count;
105 static atomic_t hardware_enable_failed;
106
107 static struct kmem_cache *kvm_vcpu_cache;
108
109 static __read_mostly struct preempt_ops kvm_preempt_ops;
110 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
111
112 struct dentry *kvm_debugfs_dir;
113 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
114
115 static int kvm_debugfs_num_entries;
116 static const struct file_operations stat_fops_per_vm;
117
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119 unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122 unsigned long arg);
123 #define KVM_COMPAT(c) .compat_ioctl = (c)
124 #else
125 /*
126 * For architectures that don't implement a compat infrastructure,
127 * adopt a double line of defense:
128 * - Prevent a compat task from opening /dev/kvm
129 * - If the open has been done by a 64bit task, and the KVM fd
130 * passed to a compat task, let the ioctls fail.
131 */
132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133 unsigned long arg) { return -EINVAL; }
134
135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
136 {
137 return is_compat_task() ? -ENODEV : 0;
138 }
139 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
140 .open = kvm_no_compat_open
141 #endif
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
144
145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146
147 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
148
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157
158 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
159 unsigned long start, unsigned long end, bool blockable)
160 {
161 return 0;
162 }
163
164 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
165 {
166 /*
167 * The metadata used by is_zone_device_page() to determine whether or
168 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
169 * the device has been pinned, e.g. by get_user_pages(). WARN if the
170 * page_count() is zero to help detect bad usage of this helper.
171 */
172 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
173 return false;
174
175 return is_zone_device_page(pfn_to_page(pfn));
176 }
177
178 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
179 {
180 /*
181 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
182 * perspective they are "normal" pages, albeit with slightly different
183 * usage rules.
184 */
185 if (pfn_valid(pfn))
186 return PageReserved(pfn_to_page(pfn)) &&
187 !is_zero_pfn(pfn) &&
188 !kvm_is_zone_device_pfn(pfn);
189
190 return true;
191 }
192
193 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
194 {
195 struct page *page = pfn_to_page(pfn);
196
197 if (!PageTransCompoundMap(page))
198 return false;
199
200 return is_transparent_hugepage(compound_head(page));
201 }
202
203 /*
204 * Switches to specified vcpu, until a matching vcpu_put()
205 */
206 void vcpu_load(struct kvm_vcpu *vcpu)
207 {
208 int cpu = get_cpu();
209
210 __this_cpu_write(kvm_running_vcpu, vcpu);
211 preempt_notifier_register(&vcpu->preempt_notifier);
212 kvm_arch_vcpu_load(vcpu, cpu);
213 put_cpu();
214 }
215 EXPORT_SYMBOL_GPL(vcpu_load);
216
217 void vcpu_put(struct kvm_vcpu *vcpu)
218 {
219 preempt_disable();
220 kvm_arch_vcpu_put(vcpu);
221 preempt_notifier_unregister(&vcpu->preempt_notifier);
222 __this_cpu_write(kvm_running_vcpu, NULL);
223 preempt_enable();
224 }
225 EXPORT_SYMBOL_GPL(vcpu_put);
226
227 /* TODO: merge with kvm_arch_vcpu_should_kick */
228 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
229 {
230 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
231
232 /*
233 * We need to wait for the VCPU to reenable interrupts and get out of
234 * READING_SHADOW_PAGE_TABLES mode.
235 */
236 if (req & KVM_REQUEST_WAIT)
237 return mode != OUTSIDE_GUEST_MODE;
238
239 /*
240 * Need to kick a running VCPU, but otherwise there is nothing to do.
241 */
242 return mode == IN_GUEST_MODE;
243 }
244
245 static void ack_flush(void *_completed)
246 {
247 }
248
249 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
250 {
251 if (unlikely(!cpus))
252 cpus = cpu_online_mask;
253
254 if (cpumask_empty(cpus))
255 return false;
256
257 smp_call_function_many(cpus, ack_flush, NULL, wait);
258 return true;
259 }
260
261 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
262 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
263 {
264 int i, cpu, me;
265 struct kvm_vcpu *vcpu;
266 bool called;
267
268 me = get_cpu();
269
270 kvm_for_each_vcpu(i, vcpu, kvm) {
271 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
272 continue;
273
274 kvm_make_request(req, vcpu);
275 cpu = vcpu->cpu;
276
277 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
278 continue;
279
280 if (tmp != NULL && cpu != -1 && cpu != me &&
281 kvm_request_needs_ipi(vcpu, req))
282 __cpumask_set_cpu(cpu, tmp);
283 }
284
285 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
286 put_cpu();
287
288 return called;
289 }
290
291 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
292 {
293 cpumask_var_t cpus;
294 bool called;
295
296 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
297
298 called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
299
300 free_cpumask_var(cpus);
301 return called;
302 }
303
304 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
305 void kvm_flush_remote_tlbs(struct kvm *kvm)
306 {
307 /*
308 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
309 * kvm_make_all_cpus_request.
310 */
311 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
312
313 /*
314 * We want to publish modifications to the page tables before reading
315 * mode. Pairs with a memory barrier in arch-specific code.
316 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
317 * and smp_mb in walk_shadow_page_lockless_begin/end.
318 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
319 *
320 * There is already an smp_mb__after_atomic() before
321 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
322 * barrier here.
323 */
324 if (!kvm_arch_flush_remote_tlb(kvm)
325 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
326 ++kvm->stat.remote_tlb_flush;
327 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
328 }
329 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
330 #endif
331
332 void kvm_reload_remote_mmus(struct kvm *kvm)
333 {
334 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
335 }
336
337 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
338 {
339 mutex_init(&vcpu->mutex);
340 vcpu->cpu = -1;
341 vcpu->kvm = kvm;
342 vcpu->vcpu_id = id;
343 vcpu->pid = NULL;
344 init_swait_queue_head(&vcpu->wq);
345 kvm_async_pf_vcpu_init(vcpu);
346
347 vcpu->pre_pcpu = -1;
348 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
349
350 kvm_vcpu_set_in_spin_loop(vcpu, false);
351 kvm_vcpu_set_dy_eligible(vcpu, false);
352 vcpu->preempted = false;
353 vcpu->ready = false;
354 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
355 }
356
357 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
358 {
359 kvm_arch_vcpu_destroy(vcpu);
360
361 /*
362 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
363 * the vcpu->pid pointer, and at destruction time all file descriptors
364 * are already gone.
365 */
366 put_pid(rcu_dereference_protected(vcpu->pid, 1));
367
368 free_page((unsigned long)vcpu->run);
369 kmem_cache_free(kvm_vcpu_cache, vcpu);
370 }
371 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
372
373 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
374 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
375 {
376 return container_of(mn, struct kvm, mmu_notifier);
377 }
378
379 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
380 struct mm_struct *mm,
381 unsigned long address,
382 pte_t pte)
383 {
384 struct kvm *kvm = mmu_notifier_to_kvm(mn);
385 int idx;
386
387 idx = srcu_read_lock(&kvm->srcu);
388 spin_lock(&kvm->mmu_lock);
389 kvm->mmu_notifier_seq++;
390
391 if (kvm_set_spte_hva(kvm, address, pte))
392 kvm_flush_remote_tlbs(kvm);
393
394 spin_unlock(&kvm->mmu_lock);
395 srcu_read_unlock(&kvm->srcu, idx);
396 }
397
398 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
399 const struct mmu_notifier_range *range)
400 {
401 struct kvm *kvm = mmu_notifier_to_kvm(mn);
402 int need_tlb_flush = 0, idx;
403 int ret;
404
405 idx = srcu_read_lock(&kvm->srcu);
406 spin_lock(&kvm->mmu_lock);
407 /*
408 * The count increase must become visible at unlock time as no
409 * spte can be established without taking the mmu_lock and
410 * count is also read inside the mmu_lock critical section.
411 */
412 kvm->mmu_notifier_count++;
413 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
414 need_tlb_flush |= kvm->tlbs_dirty;
415 /* we've to flush the tlb before the pages can be freed */
416 if (need_tlb_flush)
417 kvm_flush_remote_tlbs(kvm);
418
419 spin_unlock(&kvm->mmu_lock);
420
421 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
422 range->end,
423 mmu_notifier_range_blockable(range));
424
425 srcu_read_unlock(&kvm->srcu, idx);
426
427 return ret;
428 }
429
430 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
431 const struct mmu_notifier_range *range)
432 {
433 struct kvm *kvm = mmu_notifier_to_kvm(mn);
434
435 spin_lock(&kvm->mmu_lock);
436 /*
437 * This sequence increase will notify the kvm page fault that
438 * the page that is going to be mapped in the spte could have
439 * been freed.
440 */
441 kvm->mmu_notifier_seq++;
442 smp_wmb();
443 /*
444 * The above sequence increase must be visible before the
445 * below count decrease, which is ensured by the smp_wmb above
446 * in conjunction with the smp_rmb in mmu_notifier_retry().
447 */
448 kvm->mmu_notifier_count--;
449 spin_unlock(&kvm->mmu_lock);
450
451 BUG_ON(kvm->mmu_notifier_count < 0);
452 }
453
454 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
455 struct mm_struct *mm,
456 unsigned long start,
457 unsigned long end)
458 {
459 struct kvm *kvm = mmu_notifier_to_kvm(mn);
460 int young, idx;
461
462 idx = srcu_read_lock(&kvm->srcu);
463 spin_lock(&kvm->mmu_lock);
464
465 young = kvm_age_hva(kvm, start, end);
466 if (young)
467 kvm_flush_remote_tlbs(kvm);
468
469 spin_unlock(&kvm->mmu_lock);
470 srcu_read_unlock(&kvm->srcu, idx);
471
472 return young;
473 }
474
475 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
476 struct mm_struct *mm,
477 unsigned long start,
478 unsigned long end)
479 {
480 struct kvm *kvm = mmu_notifier_to_kvm(mn);
481 int young, idx;
482
483 idx = srcu_read_lock(&kvm->srcu);
484 spin_lock(&kvm->mmu_lock);
485 /*
486 * Even though we do not flush TLB, this will still adversely
487 * affect performance on pre-Haswell Intel EPT, where there is
488 * no EPT Access Bit to clear so that we have to tear down EPT
489 * tables instead. If we find this unacceptable, we can always
490 * add a parameter to kvm_age_hva so that it effectively doesn't
491 * do anything on clear_young.
492 *
493 * Also note that currently we never issue secondary TLB flushes
494 * from clear_young, leaving this job up to the regular system
495 * cadence. If we find this inaccurate, we might come up with a
496 * more sophisticated heuristic later.
497 */
498 young = kvm_age_hva(kvm, start, end);
499 spin_unlock(&kvm->mmu_lock);
500 srcu_read_unlock(&kvm->srcu, idx);
501
502 return young;
503 }
504
505 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
506 struct mm_struct *mm,
507 unsigned long address)
508 {
509 struct kvm *kvm = mmu_notifier_to_kvm(mn);
510 int young, idx;
511
512 idx = srcu_read_lock(&kvm->srcu);
513 spin_lock(&kvm->mmu_lock);
514 young = kvm_test_age_hva(kvm, address);
515 spin_unlock(&kvm->mmu_lock);
516 srcu_read_unlock(&kvm->srcu, idx);
517
518 return young;
519 }
520
521 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
522 struct mm_struct *mm)
523 {
524 struct kvm *kvm = mmu_notifier_to_kvm(mn);
525 int idx;
526
527 idx = srcu_read_lock(&kvm->srcu);
528 kvm_arch_flush_shadow_all(kvm);
529 srcu_read_unlock(&kvm->srcu, idx);
530 }
531
532 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
533 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
534 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
535 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
536 .clear_young = kvm_mmu_notifier_clear_young,
537 .test_young = kvm_mmu_notifier_test_young,
538 .change_pte = kvm_mmu_notifier_change_pte,
539 .release = kvm_mmu_notifier_release,
540 };
541
542 static int kvm_init_mmu_notifier(struct kvm *kvm)
543 {
544 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
545 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
546 }
547
548 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
549
550 static int kvm_init_mmu_notifier(struct kvm *kvm)
551 {
552 return 0;
553 }
554
555 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
556
557 static struct kvm_memslots *kvm_alloc_memslots(void)
558 {
559 int i;
560 struct kvm_memslots *slots;
561
562 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
563 if (!slots)
564 return NULL;
565
566 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
567 slots->id_to_index[i] = -1;
568
569 return slots;
570 }
571
572 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
573 {
574 if (!memslot->dirty_bitmap)
575 return;
576
577 kvfree(memslot->dirty_bitmap);
578 memslot->dirty_bitmap = NULL;
579 }
580
581 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
582 {
583 kvm_destroy_dirty_bitmap(slot);
584
585 kvm_arch_free_memslot(kvm, slot);
586
587 slot->flags = 0;
588 slot->npages = 0;
589 }
590
591 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
592 {
593 struct kvm_memory_slot *memslot;
594
595 if (!slots)
596 return;
597
598 kvm_for_each_memslot(memslot, slots)
599 kvm_free_memslot(kvm, memslot);
600
601 kvfree(slots);
602 }
603
604 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
605 {
606 int i;
607
608 if (!kvm->debugfs_dentry)
609 return;
610
611 debugfs_remove_recursive(kvm->debugfs_dentry);
612
613 if (kvm->debugfs_stat_data) {
614 for (i = 0; i < kvm_debugfs_num_entries; i++)
615 kfree(kvm->debugfs_stat_data[i]);
616 kfree(kvm->debugfs_stat_data);
617 }
618 }
619
620 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
621 {
622 char dir_name[ITOA_MAX_LEN * 2];
623 struct kvm_stat_data *stat_data;
624 struct kvm_stats_debugfs_item *p;
625
626 if (!debugfs_initialized())
627 return 0;
628
629 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
630 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
631
632 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
633 sizeof(*kvm->debugfs_stat_data),
634 GFP_KERNEL_ACCOUNT);
635 if (!kvm->debugfs_stat_data)
636 return -ENOMEM;
637
638 for (p = debugfs_entries; p->name; p++) {
639 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
640 if (!stat_data)
641 return -ENOMEM;
642
643 stat_data->kvm = kvm;
644 stat_data->dbgfs_item = p;
645 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
646 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
647 kvm->debugfs_dentry, stat_data,
648 &stat_fops_per_vm);
649 }
650 return 0;
651 }
652
653 /*
654 * Called after the VM is otherwise initialized, but just before adding it to
655 * the vm_list.
656 */
657 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
658 {
659 return 0;
660 }
661
662 /*
663 * Called just after removing the VM from the vm_list, but before doing any
664 * other destruction.
665 */
666 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
667 {
668 }
669
670 static struct kvm *kvm_create_vm(unsigned long type)
671 {
672 struct kvm *kvm = kvm_arch_alloc_vm();
673 int r = -ENOMEM;
674 int i;
675
676 if (!kvm)
677 return ERR_PTR(-ENOMEM);
678
679 spin_lock_init(&kvm->mmu_lock);
680 mmgrab(current->mm);
681 kvm->mm = current->mm;
682 kvm_eventfd_init(kvm);
683 mutex_init(&kvm->lock);
684 mutex_init(&kvm->irq_lock);
685 mutex_init(&kvm->slots_lock);
686 INIT_LIST_HEAD(&kvm->devices);
687
688 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
689
690 if (init_srcu_struct(&kvm->srcu))
691 goto out_err_no_srcu;
692 if (init_srcu_struct(&kvm->irq_srcu))
693 goto out_err_no_irq_srcu;
694
695 refcount_set(&kvm->users_count, 1);
696 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
697 struct kvm_memslots *slots = kvm_alloc_memslots();
698
699 if (!slots)
700 goto out_err_no_arch_destroy_vm;
701 /* Generations must be different for each address space. */
702 slots->generation = i;
703 rcu_assign_pointer(kvm->memslots[i], slots);
704 }
705
706 for (i = 0; i < KVM_NR_BUSES; i++) {
707 rcu_assign_pointer(kvm->buses[i],
708 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
709 if (!kvm->buses[i])
710 goto out_err_no_arch_destroy_vm;
711 }
712
713 r = kvm_arch_init_vm(kvm, type);
714 if (r)
715 goto out_err_no_arch_destroy_vm;
716
717 r = hardware_enable_all();
718 if (r)
719 goto out_err_no_disable;
720
721 #ifdef CONFIG_HAVE_KVM_IRQFD
722 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
723 #endif
724
725 r = kvm_init_mmu_notifier(kvm);
726 if (r)
727 goto out_err_no_mmu_notifier;
728
729 r = kvm_arch_post_init_vm(kvm);
730 if (r)
731 goto out_err;
732
733 mutex_lock(&kvm_lock);
734 list_add(&kvm->vm_list, &vm_list);
735 mutex_unlock(&kvm_lock);
736
737 preempt_notifier_inc();
738
739 return kvm;
740
741 out_err:
742 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
743 if (kvm->mmu_notifier.ops)
744 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
745 #endif
746 out_err_no_mmu_notifier:
747 hardware_disable_all();
748 out_err_no_disable:
749 kvm_arch_destroy_vm(kvm);
750 out_err_no_arch_destroy_vm:
751 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
752 for (i = 0; i < KVM_NR_BUSES; i++)
753 kfree(kvm_get_bus(kvm, i));
754 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
755 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
756 cleanup_srcu_struct(&kvm->irq_srcu);
757 out_err_no_irq_srcu:
758 cleanup_srcu_struct(&kvm->srcu);
759 out_err_no_srcu:
760 kvm_arch_free_vm(kvm);
761 mmdrop(current->mm);
762 return ERR_PTR(r);
763 }
764
765 static void kvm_destroy_devices(struct kvm *kvm)
766 {
767 struct kvm_device *dev, *tmp;
768
769 /*
770 * We do not need to take the kvm->lock here, because nobody else
771 * has a reference to the struct kvm at this point and therefore
772 * cannot access the devices list anyhow.
773 */
774 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
775 list_del(&dev->vm_node);
776 dev->ops->destroy(dev);
777 }
778 }
779
780 static void kvm_destroy_vm(struct kvm *kvm)
781 {
782 int i;
783 struct mm_struct *mm = kvm->mm;
784
785 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
786 kvm_destroy_vm_debugfs(kvm);
787 kvm_arch_sync_events(kvm);
788 mutex_lock(&kvm_lock);
789 list_del(&kvm->vm_list);
790 mutex_unlock(&kvm_lock);
791 kvm_arch_pre_destroy_vm(kvm);
792
793 kvm_free_irq_routing(kvm);
794 for (i = 0; i < KVM_NR_BUSES; i++) {
795 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
796
797 if (bus)
798 kvm_io_bus_destroy(bus);
799 kvm->buses[i] = NULL;
800 }
801 kvm_coalesced_mmio_free(kvm);
802 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
803 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
804 #else
805 kvm_arch_flush_shadow_all(kvm);
806 #endif
807 kvm_arch_destroy_vm(kvm);
808 kvm_destroy_devices(kvm);
809 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
810 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
811 cleanup_srcu_struct(&kvm->irq_srcu);
812 cleanup_srcu_struct(&kvm->srcu);
813 kvm_arch_free_vm(kvm);
814 preempt_notifier_dec();
815 hardware_disable_all();
816 mmdrop(mm);
817 }
818
819 void kvm_get_kvm(struct kvm *kvm)
820 {
821 refcount_inc(&kvm->users_count);
822 }
823 EXPORT_SYMBOL_GPL(kvm_get_kvm);
824
825 void kvm_put_kvm(struct kvm *kvm)
826 {
827 if (refcount_dec_and_test(&kvm->users_count))
828 kvm_destroy_vm(kvm);
829 }
830 EXPORT_SYMBOL_GPL(kvm_put_kvm);
831
832 /*
833 * Used to put a reference that was taken on behalf of an object associated
834 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
835 * of the new file descriptor fails and the reference cannot be transferred to
836 * its final owner. In such cases, the caller is still actively using @kvm and
837 * will fail miserably if the refcount unexpectedly hits zero.
838 */
839 void kvm_put_kvm_no_destroy(struct kvm *kvm)
840 {
841 WARN_ON(refcount_dec_and_test(&kvm->users_count));
842 }
843 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
844
845 static int kvm_vm_release(struct inode *inode, struct file *filp)
846 {
847 struct kvm *kvm = filp->private_data;
848
849 kvm_irqfd_release(kvm);
850
851 kvm_put_kvm(kvm);
852 return 0;
853 }
854
855 /*
856 * Allocation size is twice as large as the actual dirty bitmap size.
857 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
858 */
859 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
860 {
861 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
862
863 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
864 if (!memslot->dirty_bitmap)
865 return -ENOMEM;
866
867 return 0;
868 }
869
870 /*
871 * Delete a memslot by decrementing the number of used slots and shifting all
872 * other entries in the array forward one spot.
873 */
874 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
875 struct kvm_memory_slot *memslot)
876 {
877 struct kvm_memory_slot *mslots = slots->memslots;
878 int i;
879
880 if (WARN_ON(slots->id_to_index[memslot->id] == -1))
881 return;
882
883 slots->used_slots--;
884
885 if (atomic_read(&slots->lru_slot) >= slots->used_slots)
886 atomic_set(&slots->lru_slot, 0);
887
888 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
889 mslots[i] = mslots[i + 1];
890 slots->id_to_index[mslots[i].id] = i;
891 }
892 mslots[i] = *memslot;
893 slots->id_to_index[memslot->id] = -1;
894 }
895
896 /*
897 * "Insert" a new memslot by incrementing the number of used slots. Returns
898 * the new slot's initial index into the memslots array.
899 */
900 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
901 {
902 return slots->used_slots++;
903 }
904
905 /*
906 * Move a changed memslot backwards in the array by shifting existing slots
907 * with a higher GFN toward the front of the array. Note, the changed memslot
908 * itself is not preserved in the array, i.e. not swapped at this time, only
909 * its new index into the array is tracked. Returns the changed memslot's
910 * current index into the memslots array.
911 */
912 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
913 struct kvm_memory_slot *memslot)
914 {
915 struct kvm_memory_slot *mslots = slots->memslots;
916 int i;
917
918 if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
919 WARN_ON_ONCE(!slots->used_slots))
920 return -1;
921
922 /*
923 * Move the target memslot backward in the array by shifting existing
924 * memslots with a higher GFN (than the target memslot) towards the
925 * front of the array.
926 */
927 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
928 if (memslot->base_gfn > mslots[i + 1].base_gfn)
929 break;
930
931 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
932
933 /* Shift the next memslot forward one and update its index. */
934 mslots[i] = mslots[i + 1];
935 slots->id_to_index[mslots[i].id] = i;
936 }
937 return i;
938 }
939
940 /*
941 * Move a changed memslot forwards in the array by shifting existing slots with
942 * a lower GFN toward the back of the array. Note, the changed memslot itself
943 * is not preserved in the array, i.e. not swapped at this time, only its new
944 * index into the array is tracked. Returns the changed memslot's final index
945 * into the memslots array.
946 */
947 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
948 struct kvm_memory_slot *memslot,
949 int start)
950 {
951 struct kvm_memory_slot *mslots = slots->memslots;
952 int i;
953
954 for (i = start; i > 0; i--) {
955 if (memslot->base_gfn < mslots[i - 1].base_gfn)
956 break;
957
958 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
959
960 /* Shift the next memslot back one and update its index. */
961 mslots[i] = mslots[i - 1];
962 slots->id_to_index[mslots[i].id] = i;
963 }
964 return i;
965 }
966
967 /*
968 * Re-sort memslots based on their GFN to account for an added, deleted, or
969 * moved memslot. Sorting memslots by GFN allows using a binary search during
970 * memslot lookup.
971 *
972 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! I.e. the entry
973 * at memslots[0] has the highest GFN.
974 *
975 * The sorting algorithm takes advantage of having initially sorted memslots
976 * and knowing the position of the changed memslot. Sorting is also optimized
977 * by not swapping the updated memslot and instead only shifting other memslots
978 * and tracking the new index for the update memslot. Only once its final
979 * index is known is the updated memslot copied into its position in the array.
980 *
981 * - When deleting a memslot, the deleted memslot simply needs to be moved to
982 * the end of the array.
983 *
984 * - When creating a memslot, the algorithm "inserts" the new memslot at the
985 * end of the array and then it forward to its correct location.
986 *
987 * - When moving a memslot, the algorithm first moves the updated memslot
988 * backward to handle the scenario where the memslot's GFN was changed to a
989 * lower value. update_memslots() then falls through and runs the same flow
990 * as creating a memslot to move the memslot forward to handle the scenario
991 * where its GFN was changed to a higher value.
992 *
993 * Note, slots are sorted from highest->lowest instead of lowest->highest for
994 * historical reasons. Originally, invalid memslots where denoted by having
995 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
996 * to the end of the array. The current algorithm uses dedicated logic to
997 * delete a memslot and thus does not rely on invalid memslots having GFN=0.
998 *
999 * The other historical motiviation for highest->lowest was to improve the
1000 * performance of memslot lookup. KVM originally used a linear search starting
1001 * at memslots[0]. On x86, the largest memslot usually has one of the highest,
1002 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1003 * single memslot above the 4gb boundary. As the largest memslot is also the
1004 * most likely to be referenced, sorting it to the front of the array was
1005 * advantageous. The current binary search starts from the middle of the array
1006 * and uses an LRU pointer to improve performance for all memslots and GFNs.
1007 */
1008 static void update_memslots(struct kvm_memslots *slots,
1009 struct kvm_memory_slot *memslot,
1010 enum kvm_mr_change change)
1011 {
1012 int i;
1013
1014 if (change == KVM_MR_DELETE) {
1015 kvm_memslot_delete(slots, memslot);
1016 } else {
1017 if (change == KVM_MR_CREATE)
1018 i = kvm_memslot_insert_back(slots);
1019 else
1020 i = kvm_memslot_move_backward(slots, memslot);
1021 i = kvm_memslot_move_forward(slots, memslot, i);
1022
1023 /*
1024 * Copy the memslot to its new position in memslots and update
1025 * its index accordingly.
1026 */
1027 slots->memslots[i] = *memslot;
1028 slots->id_to_index[memslot->id] = i;
1029 }
1030 }
1031
1032 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1033 {
1034 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1035
1036 #ifdef __KVM_HAVE_READONLY_MEM
1037 valid_flags |= KVM_MEM_READONLY;
1038 #endif
1039
1040 if (mem->flags & ~valid_flags)
1041 return -EINVAL;
1042
1043 return 0;
1044 }
1045
1046 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1047 int as_id, struct kvm_memslots *slots)
1048 {
1049 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1050 u64 gen = old_memslots->generation;
1051
1052 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1053 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1054
1055 rcu_assign_pointer(kvm->memslots[as_id], slots);
1056 synchronize_srcu_expedited(&kvm->srcu);
1057
1058 /*
1059 * Increment the new memslot generation a second time, dropping the
1060 * update in-progress flag and incrementing the generation based on
1061 * the number of address spaces. This provides a unique and easily
1062 * identifiable generation number while the memslots are in flux.
1063 */
1064 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1065
1066 /*
1067 * Generations must be unique even across address spaces. We do not need
1068 * a global counter for that, instead the generation space is evenly split
1069 * across address spaces. For example, with two address spaces, address
1070 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1071 * use generations 1, 3, 5, ...
1072 */
1073 gen += KVM_ADDRESS_SPACE_NUM;
1074
1075 kvm_arch_memslots_updated(kvm, gen);
1076
1077 slots->generation = gen;
1078
1079 return old_memslots;
1080 }
1081
1082 /*
1083 * Note, at a minimum, the current number of used slots must be allocated, even
1084 * when deleting a memslot, as we need a complete duplicate of the memslots for
1085 * use when invalidating a memslot prior to deleting/moving the memslot.
1086 */
1087 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1088 enum kvm_mr_change change)
1089 {
1090 struct kvm_memslots *slots;
1091 size_t old_size, new_size;
1092
1093 old_size = sizeof(struct kvm_memslots) +
1094 (sizeof(struct kvm_memory_slot) * old->used_slots);
1095
1096 if (change == KVM_MR_CREATE)
1097 new_size = old_size + sizeof(struct kvm_memory_slot);
1098 else
1099 new_size = old_size;
1100
1101 slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1102 if (likely(slots))
1103 memcpy(slots, old, old_size);
1104
1105 return slots;
1106 }
1107
1108 static int kvm_set_memslot(struct kvm *kvm,
1109 const struct kvm_userspace_memory_region *mem,
1110 struct kvm_memory_slot *old,
1111 struct kvm_memory_slot *new, int as_id,
1112 enum kvm_mr_change change)
1113 {
1114 struct kvm_memory_slot *slot;
1115 struct kvm_memslots *slots;
1116 int r;
1117
1118 slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1119 if (!slots)
1120 return -ENOMEM;
1121
1122 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1123 /*
1124 * Note, the INVALID flag needs to be in the appropriate entry
1125 * in the freshly allocated memslots, not in @old or @new.
1126 */
1127 slot = id_to_memslot(slots, old->id);
1128 slot->flags |= KVM_MEMSLOT_INVALID;
1129
1130 /*
1131 * We can re-use the old memslots, the only difference from the
1132 * newly installed memslots is the invalid flag, which will get
1133 * dropped by update_memslots anyway. We'll also revert to the
1134 * old memslots if preparing the new memory region fails.
1135 */
1136 slots = install_new_memslots(kvm, as_id, slots);
1137
1138 /* From this point no new shadow pages pointing to a deleted,
1139 * or moved, memslot will be created.
1140 *
1141 * validation of sp->gfn happens in:
1142 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1143 * - kvm_is_visible_gfn (mmu_check_root)
1144 */
1145 kvm_arch_flush_shadow_memslot(kvm, slot);
1146 }
1147
1148 r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1149 if (r)
1150 goto out_slots;
1151
1152 update_memslots(slots, new, change);
1153 slots = install_new_memslots(kvm, as_id, slots);
1154
1155 kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1156
1157 kvfree(slots);
1158 return 0;
1159
1160 out_slots:
1161 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1162 slots = install_new_memslots(kvm, as_id, slots);
1163 kvfree(slots);
1164 return r;
1165 }
1166
1167 static int kvm_delete_memslot(struct kvm *kvm,
1168 const struct kvm_userspace_memory_region *mem,
1169 struct kvm_memory_slot *old, int as_id)
1170 {
1171 struct kvm_memory_slot new;
1172 int r;
1173
1174 if (!old->npages)
1175 return -EINVAL;
1176
1177 memset(&new, 0, sizeof(new));
1178 new.id = old->id;
1179
1180 r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1181 if (r)
1182 return r;
1183
1184 kvm_free_memslot(kvm, old);
1185 return 0;
1186 }
1187
1188 /*
1189 * Allocate some memory and give it an address in the guest physical address
1190 * space.
1191 *
1192 * Discontiguous memory is allowed, mostly for framebuffers.
1193 *
1194 * Must be called holding kvm->slots_lock for write.
1195 */
1196 int __kvm_set_memory_region(struct kvm *kvm,
1197 const struct kvm_userspace_memory_region *mem)
1198 {
1199 struct kvm_memory_slot old, new;
1200 struct kvm_memory_slot *tmp;
1201 enum kvm_mr_change change;
1202 int as_id, id;
1203 int r;
1204
1205 r = check_memory_region_flags(mem);
1206 if (r)
1207 return r;
1208
1209 as_id = mem->slot >> 16;
1210 id = (u16)mem->slot;
1211
1212 /* General sanity checks */
1213 if (mem->memory_size & (PAGE_SIZE - 1))
1214 return -EINVAL;
1215 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1216 return -EINVAL;
1217 /* We can read the guest memory with __xxx_user() later on. */
1218 if ((id < KVM_USER_MEM_SLOTS) &&
1219 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1220 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1221 mem->memory_size)))
1222 return -EINVAL;
1223 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1224 return -EINVAL;
1225 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1226 return -EINVAL;
1227
1228 /*
1229 * Make a full copy of the old memslot, the pointer will become stale
1230 * when the memslots are re-sorted by update_memslots(), and the old
1231 * memslot needs to be referenced after calling update_memslots(), e.g.
1232 * to free its resources and for arch specific behavior.
1233 */
1234 tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1235 if (tmp) {
1236 old = *tmp;
1237 tmp = NULL;
1238 } else {
1239 memset(&old, 0, sizeof(old));
1240 old.id = id;
1241 }
1242
1243 if (!mem->memory_size)
1244 return kvm_delete_memslot(kvm, mem, &old, as_id);
1245
1246 new.id = id;
1247 new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1248 new.npages = mem->memory_size >> PAGE_SHIFT;
1249 new.flags = mem->flags;
1250 new.userspace_addr = mem->userspace_addr;
1251
1252 if (new.npages > KVM_MEM_MAX_NR_PAGES)
1253 return -EINVAL;
1254
1255 if (!old.npages) {
1256 change = KVM_MR_CREATE;
1257 new.dirty_bitmap = NULL;
1258 memset(&new.arch, 0, sizeof(new.arch));
1259 } else { /* Modify an existing slot. */
1260 if ((new.userspace_addr != old.userspace_addr) ||
1261 (new.npages != old.npages) ||
1262 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1263 return -EINVAL;
1264
1265 if (new.base_gfn != old.base_gfn)
1266 change = KVM_MR_MOVE;
1267 else if (new.flags != old.flags)
1268 change = KVM_MR_FLAGS_ONLY;
1269 else /* Nothing to change. */
1270 return 0;
1271
1272 /* Copy dirty_bitmap and arch from the current memslot. */
1273 new.dirty_bitmap = old.dirty_bitmap;
1274 memcpy(&new.arch, &old.arch, sizeof(new.arch));
1275 }
1276
1277 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1278 /* Check for overlaps */
1279 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1280 if (tmp->id == id)
1281 continue;
1282 if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1283 (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1284 return -EEXIST;
1285 }
1286 }
1287
1288 /* Allocate/free page dirty bitmap as needed */
1289 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1290 new.dirty_bitmap = NULL;
1291 else if (!new.dirty_bitmap) {
1292 r = kvm_alloc_dirty_bitmap(&new);
1293 if (r)
1294 return r;
1295
1296 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1297 bitmap_set(new.dirty_bitmap, 0, new.npages);
1298 }
1299
1300 r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1301 if (r)
1302 goto out_bitmap;
1303
1304 if (old.dirty_bitmap && !new.dirty_bitmap)
1305 kvm_destroy_dirty_bitmap(&old);
1306 return 0;
1307
1308 out_bitmap:
1309 if (new.dirty_bitmap && !old.dirty_bitmap)
1310 kvm_destroy_dirty_bitmap(&new);
1311 return r;
1312 }
1313 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1314
1315 int kvm_set_memory_region(struct kvm *kvm,
1316 const struct kvm_userspace_memory_region *mem)
1317 {
1318 int r;
1319
1320 mutex_lock(&kvm->slots_lock);
1321 r = __kvm_set_memory_region(kvm, mem);
1322 mutex_unlock(&kvm->slots_lock);
1323 return r;
1324 }
1325 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1326
1327 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1328 struct kvm_userspace_memory_region *mem)
1329 {
1330 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1331 return -EINVAL;
1332
1333 return kvm_set_memory_region(kvm, mem);
1334 }
1335
1336 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1337 /**
1338 * kvm_get_dirty_log - get a snapshot of dirty pages
1339 * @kvm: pointer to kvm instance
1340 * @log: slot id and address to which we copy the log
1341 * @is_dirty: set to '1' if any dirty pages were found
1342 * @memslot: set to the associated memslot, always valid on success
1343 */
1344 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1345 int *is_dirty, struct kvm_memory_slot **memslot)
1346 {
1347 struct kvm_memslots *slots;
1348 int i, as_id, id;
1349 unsigned long n;
1350 unsigned long any = 0;
1351
1352 *memslot = NULL;
1353 *is_dirty = 0;
1354
1355 as_id = log->slot >> 16;
1356 id = (u16)log->slot;
1357 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1358 return -EINVAL;
1359
1360 slots = __kvm_memslots(kvm, as_id);
1361 *memslot = id_to_memslot(slots, id);
1362 if (!(*memslot) || !(*memslot)->dirty_bitmap)
1363 return -ENOENT;
1364
1365 kvm_arch_sync_dirty_log(kvm, *memslot);
1366
1367 n = kvm_dirty_bitmap_bytes(*memslot);
1368
1369 for (i = 0; !any && i < n/sizeof(long); ++i)
1370 any = (*memslot)->dirty_bitmap[i];
1371
1372 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1373 return -EFAULT;
1374
1375 if (any)
1376 *is_dirty = 1;
1377 return 0;
1378 }
1379 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1380
1381 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1382 /**
1383 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1384 * and reenable dirty page tracking for the corresponding pages.
1385 * @kvm: pointer to kvm instance
1386 * @log: slot id and address to which we copy the log
1387 *
1388 * We need to keep it in mind that VCPU threads can write to the bitmap
1389 * concurrently. So, to avoid losing track of dirty pages we keep the
1390 * following order:
1391 *
1392 * 1. Take a snapshot of the bit and clear it if needed.
1393 * 2. Write protect the corresponding page.
1394 * 3. Copy the snapshot to the userspace.
1395 * 4. Upon return caller flushes TLB's if needed.
1396 *
1397 * Between 2 and 4, the guest may write to the page using the remaining TLB
1398 * entry. This is not a problem because the page is reported dirty using
1399 * the snapshot taken before and step 4 ensures that writes done after
1400 * exiting to userspace will be logged for the next call.
1401 *
1402 */
1403 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1404 {
1405 struct kvm_memslots *slots;
1406 struct kvm_memory_slot *memslot;
1407 int i, as_id, id;
1408 unsigned long n;
1409 unsigned long *dirty_bitmap;
1410 unsigned long *dirty_bitmap_buffer;
1411 bool flush;
1412
1413 as_id = log->slot >> 16;
1414 id = (u16)log->slot;
1415 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1416 return -EINVAL;
1417
1418 slots = __kvm_memslots(kvm, as_id);
1419 memslot = id_to_memslot(slots, id);
1420 if (!memslot || !memslot->dirty_bitmap)
1421 return -ENOENT;
1422
1423 dirty_bitmap = memslot->dirty_bitmap;
1424
1425 kvm_arch_sync_dirty_log(kvm, memslot);
1426
1427 n = kvm_dirty_bitmap_bytes(memslot);
1428 flush = false;
1429 if (kvm->manual_dirty_log_protect) {
1430 /*
1431 * Unlike kvm_get_dirty_log, we always return false in *flush,
1432 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
1433 * is some code duplication between this function and
1434 * kvm_get_dirty_log, but hopefully all architecture
1435 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1436 * can be eliminated.
1437 */
1438 dirty_bitmap_buffer = dirty_bitmap;
1439 } else {
1440 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1441 memset(dirty_bitmap_buffer, 0, n);
1442
1443 spin_lock(&kvm->mmu_lock);
1444 for (i = 0; i < n / sizeof(long); i++) {
1445 unsigned long mask;
1446 gfn_t offset;
1447
1448 if (!dirty_bitmap[i])
1449 continue;
1450
1451 flush = true;
1452 mask = xchg(&dirty_bitmap[i], 0);
1453 dirty_bitmap_buffer[i] = mask;
1454
1455 offset = i * BITS_PER_LONG;
1456 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1457 offset, mask);
1458 }
1459 spin_unlock(&kvm->mmu_lock);
1460 }
1461
1462 if (flush)
1463 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1464
1465 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1466 return -EFAULT;
1467 return 0;
1468 }
1469
1470
1471 /**
1472 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1473 * @kvm: kvm instance
1474 * @log: slot id and address to which we copy the log
1475 *
1476 * Steps 1-4 below provide general overview of dirty page logging. See
1477 * kvm_get_dirty_log_protect() function description for additional details.
1478 *
1479 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1480 * always flush the TLB (step 4) even if previous step failed and the dirty
1481 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1482 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1483 * writes will be marked dirty for next log read.
1484 *
1485 * 1. Take a snapshot of the bit and clear it if needed.
1486 * 2. Write protect the corresponding page.
1487 * 3. Copy the snapshot to the userspace.
1488 * 4. Flush TLB's if needed.
1489 */
1490 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1491 struct kvm_dirty_log *log)
1492 {
1493 int r;
1494
1495 mutex_lock(&kvm->slots_lock);
1496
1497 r = kvm_get_dirty_log_protect(kvm, log);
1498
1499 mutex_unlock(&kvm->slots_lock);
1500 return r;
1501 }
1502
1503 /**
1504 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1505 * and reenable dirty page tracking for the corresponding pages.
1506 * @kvm: pointer to kvm instance
1507 * @log: slot id and address from which to fetch the bitmap of dirty pages
1508 */
1509 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1510 struct kvm_clear_dirty_log *log)
1511 {
1512 struct kvm_memslots *slots;
1513 struct kvm_memory_slot *memslot;
1514 int as_id, id;
1515 gfn_t offset;
1516 unsigned long i, n;
1517 unsigned long *dirty_bitmap;
1518 unsigned long *dirty_bitmap_buffer;
1519 bool flush;
1520
1521 as_id = log->slot >> 16;
1522 id = (u16)log->slot;
1523 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1524 return -EINVAL;
1525
1526 if (log->first_page & 63)
1527 return -EINVAL;
1528
1529 slots = __kvm_memslots(kvm, as_id);
1530 memslot = id_to_memslot(slots, id);
1531 if (!memslot || !memslot->dirty_bitmap)
1532 return -ENOENT;
1533
1534 dirty_bitmap = memslot->dirty_bitmap;
1535
1536 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1537
1538 if (log->first_page > memslot->npages ||
1539 log->num_pages > memslot->npages - log->first_page ||
1540 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1541 return -EINVAL;
1542
1543 kvm_arch_sync_dirty_log(kvm, memslot);
1544
1545 flush = false;
1546 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1547 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1548 return -EFAULT;
1549
1550 spin_lock(&kvm->mmu_lock);
1551 for (offset = log->first_page, i = offset / BITS_PER_LONG,
1552 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1553 i++, offset += BITS_PER_LONG) {
1554 unsigned long mask = *dirty_bitmap_buffer++;
1555 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1556 if (!mask)
1557 continue;
1558
1559 mask &= atomic_long_fetch_andnot(mask, p);
1560
1561 /*
1562 * mask contains the bits that really have been cleared. This
1563 * never includes any bits beyond the length of the memslot (if
1564 * the length is not aligned to 64 pages), therefore it is not
1565 * a problem if userspace sets them in log->dirty_bitmap.
1566 */
1567 if (mask) {
1568 flush = true;
1569 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1570 offset, mask);
1571 }
1572 }
1573 spin_unlock(&kvm->mmu_lock);
1574
1575 if (flush)
1576 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1577
1578 return 0;
1579 }
1580
1581 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1582 struct kvm_clear_dirty_log *log)
1583 {
1584 int r;
1585
1586 mutex_lock(&kvm->slots_lock);
1587
1588 r = kvm_clear_dirty_log_protect(kvm, log);
1589
1590 mutex_unlock(&kvm->slots_lock);
1591 return r;
1592 }
1593 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1594
1595 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1596 {
1597 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1598 }
1599 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1600
1601 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1602 {
1603 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1604 }
1605
1606 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1607 {
1608 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1609
1610 return kvm_is_visible_memslot(memslot);
1611 }
1612 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1613
1614 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1615 {
1616 struct vm_area_struct *vma;
1617 unsigned long addr, size;
1618
1619 size = PAGE_SIZE;
1620
1621 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1622 if (kvm_is_error_hva(addr))
1623 return PAGE_SIZE;
1624
1625 down_read(&current->mm->mmap_sem);
1626 vma = find_vma(current->mm, addr);
1627 if (!vma)
1628 goto out;
1629
1630 size = vma_kernel_pagesize(vma);
1631
1632 out:
1633 up_read(&current->mm->mmap_sem);
1634
1635 return size;
1636 }
1637
1638 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1639 {
1640 return slot->flags & KVM_MEM_READONLY;
1641 }
1642
1643 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1644 gfn_t *nr_pages, bool write)
1645 {
1646 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1647 return KVM_HVA_ERR_BAD;
1648
1649 if (memslot_is_readonly(slot) && write)
1650 return KVM_HVA_ERR_RO_BAD;
1651
1652 if (nr_pages)
1653 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1654
1655 return __gfn_to_hva_memslot(slot, gfn);
1656 }
1657
1658 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1659 gfn_t *nr_pages)
1660 {
1661 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1662 }
1663
1664 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1665 gfn_t gfn)
1666 {
1667 return gfn_to_hva_many(slot, gfn, NULL);
1668 }
1669 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1670
1671 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1672 {
1673 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1674 }
1675 EXPORT_SYMBOL_GPL(gfn_to_hva);
1676
1677 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1678 {
1679 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1680 }
1681 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1682
1683 /*
1684 * Return the hva of a @gfn and the R/W attribute if possible.
1685 *
1686 * @slot: the kvm_memory_slot which contains @gfn
1687 * @gfn: the gfn to be translated
1688 * @writable: used to return the read/write attribute of the @slot if the hva
1689 * is valid and @writable is not NULL
1690 */
1691 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1692 gfn_t gfn, bool *writable)
1693 {
1694 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1695
1696 if (!kvm_is_error_hva(hva) && writable)
1697 *writable = !memslot_is_readonly(slot);
1698
1699 return hva;
1700 }
1701
1702 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1703 {
1704 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1705
1706 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1707 }
1708
1709 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1710 {
1711 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1712
1713 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1714 }
1715
1716 static inline int check_user_page_hwpoison(unsigned long addr)
1717 {
1718 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1719
1720 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1721 return rc == -EHWPOISON;
1722 }
1723
1724 /*
1725 * The fast path to get the writable pfn which will be stored in @pfn,
1726 * true indicates success, otherwise false is returned. It's also the
1727 * only part that runs if we can in atomic context.
1728 */
1729 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1730 bool *writable, kvm_pfn_t *pfn)
1731 {
1732 struct page *page[1];
1733 int npages;
1734
1735 /*
1736 * Fast pin a writable pfn only if it is a write fault request
1737 * or the caller allows to map a writable pfn for a read fault
1738 * request.
1739 */
1740 if (!(write_fault || writable))
1741 return false;
1742
1743 npages = __get_user_pages_fast(addr, 1, 1, page);
1744 if (npages == 1) {
1745 *pfn = page_to_pfn(page[0]);
1746
1747 if (writable)
1748 *writable = true;
1749 return true;
1750 }
1751
1752 return false;
1753 }
1754
1755 /*
1756 * The slow path to get the pfn of the specified host virtual address,
1757 * 1 indicates success, -errno is returned if error is detected.
1758 */
1759 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1760 bool *writable, kvm_pfn_t *pfn)
1761 {
1762 unsigned int flags = FOLL_HWPOISON;
1763 struct page *page;
1764 int npages = 0;
1765
1766 might_sleep();
1767
1768 if (writable)
1769 *writable = write_fault;
1770
1771 if (write_fault)
1772 flags |= FOLL_WRITE;
1773 if (async)
1774 flags |= FOLL_NOWAIT;
1775
1776 npages = get_user_pages_unlocked(addr, 1, &page, flags);
1777 if (npages != 1)
1778 return npages;
1779
1780 /* map read fault as writable if possible */
1781 if (unlikely(!write_fault) && writable) {
1782 struct page *wpage;
1783
1784 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1785 *writable = true;
1786 put_page(page);
1787 page = wpage;
1788 }
1789 }
1790 *pfn = page_to_pfn(page);
1791 return npages;
1792 }
1793
1794 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1795 {
1796 if (unlikely(!(vma->vm_flags & VM_READ)))
1797 return false;
1798
1799 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1800 return false;
1801
1802 return true;
1803 }
1804
1805 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1806 unsigned long addr, bool *async,
1807 bool write_fault, bool *writable,
1808 kvm_pfn_t *p_pfn)
1809 {
1810 unsigned long pfn;
1811 int r;
1812
1813 r = follow_pfn(vma, addr, &pfn);
1814 if (r) {
1815 /*
1816 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1817 * not call the fault handler, so do it here.
1818 */
1819 bool unlocked = false;
1820 r = fixup_user_fault(current, current->mm, addr,
1821 (write_fault ? FAULT_FLAG_WRITE : 0),
1822 &unlocked);
1823 if (unlocked)
1824 return -EAGAIN;
1825 if (r)
1826 return r;
1827
1828 r = follow_pfn(vma, addr, &pfn);
1829 if (r)
1830 return r;
1831
1832 }
1833
1834 if (writable)
1835 *writable = true;
1836
1837 /*
1838 * Get a reference here because callers of *hva_to_pfn* and
1839 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1840 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1841 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1842 * simply do nothing for reserved pfns.
1843 *
1844 * Whoever called remap_pfn_range is also going to call e.g.
1845 * unmap_mapping_range before the underlying pages are freed,
1846 * causing a call to our MMU notifier.
1847 */
1848 kvm_get_pfn(pfn);
1849
1850 *p_pfn = pfn;
1851 return 0;
1852 }
1853
1854 /*
1855 * Pin guest page in memory and return its pfn.
1856 * @addr: host virtual address which maps memory to the guest
1857 * @atomic: whether this function can sleep
1858 * @async: whether this function need to wait IO complete if the
1859 * host page is not in the memory
1860 * @write_fault: whether we should get a writable host page
1861 * @writable: whether it allows to map a writable host page for !@write_fault
1862 *
1863 * The function will map a writable host page for these two cases:
1864 * 1): @write_fault = true
1865 * 2): @write_fault = false && @writable, @writable will tell the caller
1866 * whether the mapping is writable.
1867 */
1868 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1869 bool write_fault, bool *writable)
1870 {
1871 struct vm_area_struct *vma;
1872 kvm_pfn_t pfn = 0;
1873 int npages, r;
1874
1875 /* we can do it either atomically or asynchronously, not both */
1876 BUG_ON(atomic && async);
1877
1878 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1879 return pfn;
1880
1881 if (atomic)
1882 return KVM_PFN_ERR_FAULT;
1883
1884 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1885 if (npages == 1)
1886 return pfn;
1887
1888 down_read(&current->mm->mmap_sem);
1889 if (npages == -EHWPOISON ||
1890 (!async && check_user_page_hwpoison(addr))) {
1891 pfn = KVM_PFN_ERR_HWPOISON;
1892 goto exit;
1893 }
1894
1895 retry:
1896 vma = find_vma_intersection(current->mm, addr, addr + 1);
1897
1898 if (vma == NULL)
1899 pfn = KVM_PFN_ERR_FAULT;
1900 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1901 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1902 if (r == -EAGAIN)
1903 goto retry;
1904 if (r < 0)
1905 pfn = KVM_PFN_ERR_FAULT;
1906 } else {
1907 if (async && vma_is_valid(vma, write_fault))
1908 *async = true;
1909 pfn = KVM_PFN_ERR_FAULT;
1910 }
1911 exit:
1912 up_read(&current->mm->mmap_sem);
1913 return pfn;
1914 }
1915
1916 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1917 bool atomic, bool *async, bool write_fault,
1918 bool *writable)
1919 {
1920 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1921
1922 if (addr == KVM_HVA_ERR_RO_BAD) {
1923 if (writable)
1924 *writable = false;
1925 return KVM_PFN_ERR_RO_FAULT;
1926 }
1927
1928 if (kvm_is_error_hva(addr)) {
1929 if (writable)
1930 *writable = false;
1931 return KVM_PFN_NOSLOT;
1932 }
1933
1934 /* Do not map writable pfn in the readonly memslot. */
1935 if (writable && memslot_is_readonly(slot)) {
1936 *writable = false;
1937 writable = NULL;
1938 }
1939
1940 return hva_to_pfn(addr, atomic, async, write_fault,
1941 writable);
1942 }
1943 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1944
1945 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1946 bool *writable)
1947 {
1948 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1949 write_fault, writable);
1950 }
1951 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1952
1953 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1954 {
1955 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1956 }
1957 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1958
1959 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1960 {
1961 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1962 }
1963 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1964
1965 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1966 {
1967 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1968 }
1969 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1970
1971 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1972 {
1973 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1974 }
1975 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1976
1977 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1978 {
1979 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1980 }
1981 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1982
1983 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1984 struct page **pages, int nr_pages)
1985 {
1986 unsigned long addr;
1987 gfn_t entry = 0;
1988
1989 addr = gfn_to_hva_many(slot, gfn, &entry);
1990 if (kvm_is_error_hva(addr))
1991 return -1;
1992
1993 if (entry < nr_pages)
1994 return 0;
1995
1996 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1997 }
1998 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1999
2000 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2001 {
2002 if (is_error_noslot_pfn(pfn))
2003 return KVM_ERR_PTR_BAD_PAGE;
2004
2005 if (kvm_is_reserved_pfn(pfn)) {
2006 WARN_ON(1);
2007 return KVM_ERR_PTR_BAD_PAGE;
2008 }
2009
2010 return pfn_to_page(pfn);
2011 }
2012
2013 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2014 {
2015 kvm_pfn_t pfn;
2016
2017 pfn = gfn_to_pfn(kvm, gfn);
2018
2019 return kvm_pfn_to_page(pfn);
2020 }
2021 EXPORT_SYMBOL_GPL(gfn_to_page);
2022
2023 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2024 {
2025 if (pfn == 0)
2026 return;
2027
2028 if (cache)
2029 cache->pfn = cache->gfn = 0;
2030
2031 if (dirty)
2032 kvm_release_pfn_dirty(pfn);
2033 else
2034 kvm_release_pfn_clean(pfn);
2035 }
2036
2037 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2038 struct gfn_to_pfn_cache *cache, u64 gen)
2039 {
2040 kvm_release_pfn(cache->pfn, cache->dirty, cache);
2041
2042 cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2043 cache->gfn = gfn;
2044 cache->dirty = false;
2045 cache->generation = gen;
2046 }
2047
2048 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2049 struct kvm_host_map *map,
2050 struct gfn_to_pfn_cache *cache,
2051 bool atomic)
2052 {
2053 kvm_pfn_t pfn;
2054 void *hva = NULL;
2055 struct page *page = KVM_UNMAPPED_PAGE;
2056 struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2057 u64 gen = slots->generation;
2058
2059 if (!map)
2060 return -EINVAL;
2061
2062 if (cache) {
2063 if (!cache->pfn || cache->gfn != gfn ||
2064 cache->generation != gen) {
2065 if (atomic)
2066 return -EAGAIN;
2067 kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2068 }
2069 pfn = cache->pfn;
2070 } else {
2071 if (atomic)
2072 return -EAGAIN;
2073 pfn = gfn_to_pfn_memslot(slot, gfn);
2074 }
2075 if (is_error_noslot_pfn(pfn))
2076 return -EINVAL;
2077
2078 if (pfn_valid(pfn)) {
2079 page = pfn_to_page(pfn);
2080 if (atomic)
2081 hva = kmap_atomic(page);
2082 else
2083 hva = kmap(page);
2084 #ifdef CONFIG_HAS_IOMEM
2085 } else if (!atomic) {
2086 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2087 } else {
2088 return -EINVAL;
2089 #endif
2090 }
2091
2092 if (!hva)
2093 return -EFAULT;
2094
2095 map->page = page;
2096 map->hva = hva;
2097 map->pfn = pfn;
2098 map->gfn = gfn;
2099
2100 return 0;
2101 }
2102
2103 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2104 struct gfn_to_pfn_cache *cache, bool atomic)
2105 {
2106 return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2107 cache, atomic);
2108 }
2109 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2110
2111 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2112 {
2113 return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2114 NULL, false);
2115 }
2116 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2117
2118 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
2119 struct kvm_host_map *map,
2120 struct gfn_to_pfn_cache *cache,
2121 bool dirty, bool atomic)
2122 {
2123 if (!map)
2124 return;
2125
2126 if (!map->hva)
2127 return;
2128
2129 if (map->page != KVM_UNMAPPED_PAGE) {
2130 if (atomic)
2131 kunmap_atomic(map->hva);
2132 else
2133 kunmap(map->page);
2134 }
2135 #ifdef CONFIG_HAS_IOMEM
2136 else if (!atomic)
2137 memunmap(map->hva);
2138 else
2139 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2140 #endif
2141
2142 if (dirty)
2143 mark_page_dirty_in_slot(memslot, map->gfn);
2144
2145 if (cache)
2146 cache->dirty |= dirty;
2147 else
2148 kvm_release_pfn(map->pfn, dirty, NULL);
2149
2150 map->hva = NULL;
2151 map->page = NULL;
2152 }
2153
2154 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2155 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2156 {
2157 __kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
2158 cache, dirty, atomic);
2159 return 0;
2160 }
2161 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2162
2163 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2164 {
2165 __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
2166 dirty, false);
2167 }
2168 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2169
2170 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2171 {
2172 kvm_pfn_t pfn;
2173
2174 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2175
2176 return kvm_pfn_to_page(pfn);
2177 }
2178 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2179
2180 void kvm_release_page_clean(struct page *page)
2181 {
2182 WARN_ON(is_error_page(page));
2183
2184 kvm_release_pfn_clean(page_to_pfn(page));
2185 }
2186 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2187
2188 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2189 {
2190 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2191 put_page(pfn_to_page(pfn));
2192 }
2193 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2194
2195 void kvm_release_page_dirty(struct page *page)
2196 {
2197 WARN_ON(is_error_page(page));
2198
2199 kvm_release_pfn_dirty(page_to_pfn(page));
2200 }
2201 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2202
2203 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2204 {
2205 kvm_set_pfn_dirty(pfn);
2206 kvm_release_pfn_clean(pfn);
2207 }
2208 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2209
2210 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2211 {
2212 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2213 SetPageDirty(pfn_to_page(pfn));
2214 }
2215 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2216
2217 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2218 {
2219 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2220 mark_page_accessed(pfn_to_page(pfn));
2221 }
2222 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2223
2224 void kvm_get_pfn(kvm_pfn_t pfn)
2225 {
2226 if (!kvm_is_reserved_pfn(pfn))
2227 get_page(pfn_to_page(pfn));
2228 }
2229 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2230
2231 static int next_segment(unsigned long len, int offset)
2232 {
2233 if (len > PAGE_SIZE - offset)
2234 return PAGE_SIZE - offset;
2235 else
2236 return len;
2237 }
2238
2239 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2240 void *data, int offset, int len)
2241 {
2242 int r;
2243 unsigned long addr;
2244
2245 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2246 if (kvm_is_error_hva(addr))
2247 return -EFAULT;
2248 r = __copy_from_user(data, (void __user *)addr + offset, len);
2249 if (r)
2250 return -EFAULT;
2251 return 0;
2252 }
2253
2254 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2255 int len)
2256 {
2257 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2258
2259 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2260 }
2261 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2262
2263 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2264 int offset, int len)
2265 {
2266 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2267
2268 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2269 }
2270 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2271
2272 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2273 {
2274 gfn_t gfn = gpa >> PAGE_SHIFT;
2275 int seg;
2276 int offset = offset_in_page(gpa);
2277 int ret;
2278
2279 while ((seg = next_segment(len, offset)) != 0) {
2280 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2281 if (ret < 0)
2282 return ret;
2283 offset = 0;
2284 len -= seg;
2285 data += seg;
2286 ++gfn;
2287 }
2288 return 0;
2289 }
2290 EXPORT_SYMBOL_GPL(kvm_read_guest);
2291
2292 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2293 {
2294 gfn_t gfn = gpa >> PAGE_SHIFT;
2295 int seg;
2296 int offset = offset_in_page(gpa);
2297 int ret;
2298
2299 while ((seg = next_segment(len, offset)) != 0) {
2300 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2301 if (ret < 0)
2302 return ret;
2303 offset = 0;
2304 len -= seg;
2305 data += seg;
2306 ++gfn;
2307 }
2308 return 0;
2309 }
2310 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2311
2312 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2313 void *data, int offset, unsigned long len)
2314 {
2315 int r;
2316 unsigned long addr;
2317
2318 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2319 if (kvm_is_error_hva(addr))
2320 return -EFAULT;
2321 pagefault_disable();
2322 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2323 pagefault_enable();
2324 if (r)
2325 return -EFAULT;
2326 return 0;
2327 }
2328
2329 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2330 void *data, unsigned long len)
2331 {
2332 gfn_t gfn = gpa >> PAGE_SHIFT;
2333 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2334 int offset = offset_in_page(gpa);
2335
2336 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2337 }
2338 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2339
2340 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2341 const void *data, int offset, int len)
2342 {
2343 int r;
2344 unsigned long addr;
2345
2346 addr = gfn_to_hva_memslot(memslot, gfn);
2347 if (kvm_is_error_hva(addr))
2348 return -EFAULT;
2349 r = __copy_to_user((void __user *)addr + offset, data, len);
2350 if (r)
2351 return -EFAULT;
2352 mark_page_dirty_in_slot(memslot, gfn);
2353 return 0;
2354 }
2355
2356 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2357 const void *data, int offset, int len)
2358 {
2359 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2360
2361 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2362 }
2363 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2364
2365 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2366 const void *data, int offset, int len)
2367 {
2368 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2369
2370 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2371 }
2372 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2373
2374 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2375 unsigned long len)
2376 {
2377 gfn_t gfn = gpa >> PAGE_SHIFT;
2378 int seg;
2379 int offset = offset_in_page(gpa);
2380 int ret;
2381
2382 while ((seg = next_segment(len, offset)) != 0) {
2383 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2384 if (ret < 0)
2385 return ret;
2386 offset = 0;
2387 len -= seg;
2388 data += seg;
2389 ++gfn;
2390 }
2391 return 0;
2392 }
2393 EXPORT_SYMBOL_GPL(kvm_write_guest);
2394
2395 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2396 unsigned long len)
2397 {
2398 gfn_t gfn = gpa >> PAGE_SHIFT;
2399 int seg;
2400 int offset = offset_in_page(gpa);
2401 int ret;
2402
2403 while ((seg = next_segment(len, offset)) != 0) {
2404 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2405 if (ret < 0)
2406 return ret;
2407 offset = 0;
2408 len -= seg;
2409 data += seg;
2410 ++gfn;
2411 }
2412 return 0;
2413 }
2414 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2415
2416 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2417 struct gfn_to_hva_cache *ghc,
2418 gpa_t gpa, unsigned long len)
2419 {
2420 int offset = offset_in_page(gpa);
2421 gfn_t start_gfn = gpa >> PAGE_SHIFT;
2422 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2423 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2424 gfn_t nr_pages_avail;
2425
2426 /* Update ghc->generation before performing any error checks. */
2427 ghc->generation = slots->generation;
2428
2429 if (start_gfn > end_gfn) {
2430 ghc->hva = KVM_HVA_ERR_BAD;
2431 return -EINVAL;
2432 }
2433
2434 /*
2435 * If the requested region crosses two memslots, we still
2436 * verify that the entire region is valid here.
2437 */
2438 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2439 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2440 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2441 &nr_pages_avail);
2442 if (kvm_is_error_hva(ghc->hva))
2443 return -EFAULT;
2444 }
2445
2446 /* Use the slow path for cross page reads and writes. */
2447 if (nr_pages_needed == 1)
2448 ghc->hva += offset;
2449 else
2450 ghc->memslot = NULL;
2451
2452 ghc->gpa = gpa;
2453 ghc->len = len;
2454 return 0;
2455 }
2456
2457 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2458 gpa_t gpa, unsigned long len)
2459 {
2460 struct kvm_memslots *slots = kvm_memslots(kvm);
2461 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2462 }
2463 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2464
2465 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2466 void *data, unsigned int offset,
2467 unsigned long len)
2468 {
2469 struct kvm_memslots *slots = kvm_memslots(kvm);
2470 int r;
2471 gpa_t gpa = ghc->gpa + offset;
2472
2473 BUG_ON(len + offset > ghc->len);
2474
2475 if (slots->generation != ghc->generation) {
2476 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2477 return -EFAULT;
2478 }
2479
2480 if (kvm_is_error_hva(ghc->hva))
2481 return -EFAULT;
2482
2483 if (unlikely(!ghc->memslot))
2484 return kvm_write_guest(kvm, gpa, data, len);
2485
2486 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2487 if (r)
2488 return -EFAULT;
2489 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2490
2491 return 0;
2492 }
2493 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2494
2495 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2496 void *data, unsigned long len)
2497 {
2498 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2499 }
2500 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2501
2502 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2503 void *data, unsigned long len)
2504 {
2505 struct kvm_memslots *slots = kvm_memslots(kvm);
2506 int r;
2507
2508 BUG_ON(len > ghc->len);
2509
2510 if (slots->generation != ghc->generation) {
2511 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2512 return -EFAULT;
2513 }
2514
2515 if (kvm_is_error_hva(ghc->hva))
2516 return -EFAULT;
2517
2518 if (unlikely(!ghc->memslot))
2519 return kvm_read_guest(kvm, ghc->gpa, data, len);
2520
2521 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2522 if (r)
2523 return -EFAULT;
2524
2525 return 0;
2526 }
2527 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2528
2529 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2530 {
2531 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2532
2533 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2534 }
2535 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2536
2537 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2538 {
2539 gfn_t gfn = gpa >> PAGE_SHIFT;
2540 int seg;
2541 int offset = offset_in_page(gpa);
2542 int ret;
2543
2544 while ((seg = next_segment(len, offset)) != 0) {
2545 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2546 if (ret < 0)
2547 return ret;
2548 offset = 0;
2549 len -= seg;
2550 ++gfn;
2551 }
2552 return 0;
2553 }
2554 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2555
2556 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2557 gfn_t gfn)
2558 {
2559 if (memslot && memslot->dirty_bitmap) {
2560 unsigned long rel_gfn = gfn - memslot->base_gfn;
2561
2562 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2563 }
2564 }
2565
2566 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2567 {
2568 struct kvm_memory_slot *memslot;
2569
2570 memslot = gfn_to_memslot(kvm, gfn);
2571 mark_page_dirty_in_slot(memslot, gfn);
2572 }
2573 EXPORT_SYMBOL_GPL(mark_page_dirty);
2574
2575 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2576 {
2577 struct kvm_memory_slot *memslot;
2578
2579 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2580 mark_page_dirty_in_slot(memslot, gfn);
2581 }
2582 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2583
2584 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2585 {
2586 if (!vcpu->sigset_active)
2587 return;
2588
2589 /*
2590 * This does a lockless modification of ->real_blocked, which is fine
2591 * because, only current can change ->real_blocked and all readers of
2592 * ->real_blocked don't care as long ->real_blocked is always a subset
2593 * of ->blocked.
2594 */
2595 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2596 }
2597
2598 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2599 {
2600 if (!vcpu->sigset_active)
2601 return;
2602
2603 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2604 sigemptyset(&current->real_blocked);
2605 }
2606
2607 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2608 {
2609 unsigned int old, val, grow, grow_start;
2610
2611 old = val = vcpu->halt_poll_ns;
2612 grow_start = READ_ONCE(halt_poll_ns_grow_start);
2613 grow = READ_ONCE(halt_poll_ns_grow);
2614 if (!grow)
2615 goto out;
2616
2617 val *= grow;
2618 if (val < grow_start)
2619 val = grow_start;
2620
2621 if (val > halt_poll_ns)
2622 val = halt_poll_ns;
2623
2624 vcpu->halt_poll_ns = val;
2625 out:
2626 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2627 }
2628
2629 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2630 {
2631 unsigned int old, val, shrink;
2632
2633 old = val = vcpu->halt_poll_ns;
2634 shrink = READ_ONCE(halt_poll_ns_shrink);
2635 if (shrink == 0)
2636 val = 0;
2637 else
2638 val /= shrink;
2639
2640 vcpu->halt_poll_ns = val;
2641 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2642 }
2643
2644 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2645 {
2646 int ret = -EINTR;
2647 int idx = srcu_read_lock(&vcpu->kvm->srcu);
2648
2649 if (kvm_arch_vcpu_runnable(vcpu)) {
2650 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2651 goto out;
2652 }
2653 if (kvm_cpu_has_pending_timer(vcpu))
2654 goto out;
2655 if (signal_pending(current))
2656 goto out;
2657
2658 ret = 0;
2659 out:
2660 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2661 return ret;
2662 }
2663
2664 /*
2665 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2666 */
2667 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2668 {
2669 ktime_t start, cur;
2670 DECLARE_SWAITQUEUE(wait);
2671 bool waited = false;
2672 u64 block_ns;
2673
2674 kvm_arch_vcpu_blocking(vcpu);
2675
2676 start = cur = ktime_get();
2677 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2678 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2679
2680 ++vcpu->stat.halt_attempted_poll;
2681 do {
2682 /*
2683 * This sets KVM_REQ_UNHALT if an interrupt
2684 * arrives.
2685 */
2686 if (kvm_vcpu_check_block(vcpu) < 0) {
2687 ++vcpu->stat.halt_successful_poll;
2688 if (!vcpu_valid_wakeup(vcpu))
2689 ++vcpu->stat.halt_poll_invalid;
2690 goto out;
2691 }
2692 cur = ktime_get();
2693 } while (single_task_running() && ktime_before(cur, stop));
2694 }
2695
2696 for (;;) {
2697 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2698
2699 if (kvm_vcpu_check_block(vcpu) < 0)
2700 break;
2701
2702 waited = true;
2703 schedule();
2704 }
2705
2706 finish_swait(&vcpu->wq, &wait);
2707 cur = ktime_get();
2708 out:
2709 kvm_arch_vcpu_unblocking(vcpu);
2710 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2711
2712 if (!kvm_arch_no_poll(vcpu)) {
2713 if (!vcpu_valid_wakeup(vcpu)) {
2714 shrink_halt_poll_ns(vcpu);
2715 } else if (halt_poll_ns) {
2716 if (block_ns <= vcpu->halt_poll_ns)
2717 ;
2718 /* we had a long block, shrink polling */
2719 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2720 shrink_halt_poll_ns(vcpu);
2721 /* we had a short halt and our poll time is too small */
2722 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2723 block_ns < halt_poll_ns)
2724 grow_halt_poll_ns(vcpu);
2725 } else {
2726 vcpu->halt_poll_ns = 0;
2727 }
2728 }
2729
2730 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2731 kvm_arch_vcpu_block_finish(vcpu);
2732 }
2733 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2734
2735 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2736 {
2737 struct swait_queue_head *wqp;
2738
2739 wqp = kvm_arch_vcpu_wq(vcpu);
2740 if (swq_has_sleeper(wqp)) {
2741 swake_up_one(wqp);
2742 WRITE_ONCE(vcpu->ready, true);
2743 ++vcpu->stat.halt_wakeup;
2744 return true;
2745 }
2746
2747 return false;
2748 }
2749 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2750
2751 #ifndef CONFIG_S390
2752 /*
2753 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2754 */
2755 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2756 {
2757 int me;
2758 int cpu = vcpu->cpu;
2759
2760 if (kvm_vcpu_wake_up(vcpu))
2761 return;
2762
2763 me = get_cpu();
2764 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2765 if (kvm_arch_vcpu_should_kick(vcpu))
2766 smp_send_reschedule(cpu);
2767 put_cpu();
2768 }
2769 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2770 #endif /* !CONFIG_S390 */
2771
2772 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2773 {
2774 struct pid *pid;
2775 struct task_struct *task = NULL;
2776 int ret = 0;
2777
2778 rcu_read_lock();
2779 pid = rcu_dereference(target->pid);
2780 if (pid)
2781 task = get_pid_task(pid, PIDTYPE_PID);
2782 rcu_read_unlock();
2783 if (!task)
2784 return ret;
2785 ret = yield_to(task, 1);
2786 put_task_struct(task);
2787
2788 return ret;
2789 }
2790 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2791
2792 /*
2793 * Helper that checks whether a VCPU is eligible for directed yield.
2794 * Most eligible candidate to yield is decided by following heuristics:
2795 *
2796 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2797 * (preempted lock holder), indicated by @in_spin_loop.
2798 * Set at the beiginning and cleared at the end of interception/PLE handler.
2799 *
2800 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2801 * chance last time (mostly it has become eligible now since we have probably
2802 * yielded to lockholder in last iteration. This is done by toggling
2803 * @dy_eligible each time a VCPU checked for eligibility.)
2804 *
2805 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2806 * to preempted lock-holder could result in wrong VCPU selection and CPU
2807 * burning. Giving priority for a potential lock-holder increases lock
2808 * progress.
2809 *
2810 * Since algorithm is based on heuristics, accessing another VCPU data without
2811 * locking does not harm. It may result in trying to yield to same VCPU, fail
2812 * and continue with next VCPU and so on.
2813 */
2814 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2815 {
2816 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2817 bool eligible;
2818
2819 eligible = !vcpu->spin_loop.in_spin_loop ||
2820 vcpu->spin_loop.dy_eligible;
2821
2822 if (vcpu->spin_loop.in_spin_loop)
2823 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2824
2825 return eligible;
2826 #else
2827 return true;
2828 #endif
2829 }
2830
2831 /*
2832 * Unlike kvm_arch_vcpu_runnable, this function is called outside
2833 * a vcpu_load/vcpu_put pair. However, for most architectures
2834 * kvm_arch_vcpu_runnable does not require vcpu_load.
2835 */
2836 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2837 {
2838 return kvm_arch_vcpu_runnable(vcpu);
2839 }
2840
2841 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2842 {
2843 if (kvm_arch_dy_runnable(vcpu))
2844 return true;
2845
2846 #ifdef CONFIG_KVM_ASYNC_PF
2847 if (!list_empty_careful(&vcpu->async_pf.done))
2848 return true;
2849 #endif
2850
2851 return false;
2852 }
2853
2854 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2855 {
2856 struct kvm *kvm = me->kvm;
2857 struct kvm_vcpu *vcpu;
2858 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2859 int yielded = 0;
2860 int try = 3;
2861 int pass;
2862 int i;
2863
2864 kvm_vcpu_set_in_spin_loop(me, true);
2865 /*
2866 * We boost the priority of a VCPU that is runnable but not
2867 * currently running, because it got preempted by something
2868 * else and called schedule in __vcpu_run. Hopefully that
2869 * VCPU is holding the lock that we need and will release it.
2870 * We approximate round-robin by starting at the last boosted VCPU.
2871 */
2872 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2873 kvm_for_each_vcpu(i, vcpu, kvm) {
2874 if (!pass && i <= last_boosted_vcpu) {
2875 i = last_boosted_vcpu;
2876 continue;
2877 } else if (pass && i > last_boosted_vcpu)
2878 break;
2879 if (!READ_ONCE(vcpu->ready))
2880 continue;
2881 if (vcpu == me)
2882 continue;
2883 if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2884 continue;
2885 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2886 !kvm_arch_vcpu_in_kernel(vcpu))
2887 continue;
2888 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2889 continue;
2890
2891 yielded = kvm_vcpu_yield_to(vcpu);
2892 if (yielded > 0) {
2893 kvm->last_boosted_vcpu = i;
2894 break;
2895 } else if (yielded < 0) {
2896 try--;
2897 if (!try)
2898 break;
2899 }
2900 }
2901 }
2902 kvm_vcpu_set_in_spin_loop(me, false);
2903
2904 /* Ensure vcpu is not eligible during next spinloop */
2905 kvm_vcpu_set_dy_eligible(me, false);
2906 }
2907 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2908
2909 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2910 {
2911 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2912 struct page *page;
2913
2914 if (vmf->pgoff == 0)
2915 page = virt_to_page(vcpu->run);
2916 #ifdef CONFIG_X86
2917 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2918 page = virt_to_page(vcpu->arch.pio_data);
2919 #endif
2920 #ifdef CONFIG_KVM_MMIO
2921 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2922 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2923 #endif
2924 else
2925 return kvm_arch_vcpu_fault(vcpu, vmf);
2926 get_page(page);
2927 vmf->page = page;
2928 return 0;
2929 }
2930
2931 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2932 .fault = kvm_vcpu_fault,
2933 };
2934
2935 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2936 {
2937 vma->vm_ops = &kvm_vcpu_vm_ops;
2938 return 0;
2939 }
2940
2941 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2942 {
2943 struct kvm_vcpu *vcpu = filp->private_data;
2944
2945 debugfs_remove_recursive(vcpu->debugfs_dentry);
2946 kvm_put_kvm(vcpu->kvm);
2947 return 0;
2948 }
2949
2950 static struct file_operations kvm_vcpu_fops = {
2951 .release = kvm_vcpu_release,
2952 .unlocked_ioctl = kvm_vcpu_ioctl,
2953 .mmap = kvm_vcpu_mmap,
2954 .llseek = noop_llseek,
2955 KVM_COMPAT(kvm_vcpu_compat_ioctl),
2956 };
2957
2958 /*
2959 * Allocates an inode for the vcpu.
2960 */
2961 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2962 {
2963 char name[8 + 1 + ITOA_MAX_LEN + 1];
2964
2965 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2966 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2967 }
2968
2969 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2970 {
2971 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
2972 char dir_name[ITOA_MAX_LEN * 2];
2973
2974 if (!debugfs_initialized())
2975 return;
2976
2977 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2978 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2979 vcpu->kvm->debugfs_dentry);
2980
2981 kvm_arch_create_vcpu_debugfs(vcpu);
2982 #endif
2983 }
2984
2985 /*
2986 * Creates some virtual cpus. Good luck creating more than one.
2987 */
2988 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2989 {
2990 int r;
2991 struct kvm_vcpu *vcpu;
2992 struct page *page;
2993
2994 if (id >= KVM_MAX_VCPU_ID)
2995 return -EINVAL;
2996
2997 mutex_lock(&kvm->lock);
2998 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2999 mutex_unlock(&kvm->lock);
3000 return -EINVAL;
3001 }
3002
3003 kvm->created_vcpus++;
3004 mutex_unlock(&kvm->lock);
3005
3006 r = kvm_arch_vcpu_precreate(kvm, id);
3007 if (r)
3008 goto vcpu_decrement;
3009
3010 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3011 if (!vcpu) {
3012 r = -ENOMEM;
3013 goto vcpu_decrement;
3014 }
3015
3016 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3017 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3018 if (!page) {
3019 r = -ENOMEM;
3020 goto vcpu_free;
3021 }
3022 vcpu->run = page_address(page);
3023
3024 kvm_vcpu_init(vcpu, kvm, id);
3025
3026 r = kvm_arch_vcpu_create(vcpu);
3027 if (r)
3028 goto vcpu_free_run_page;
3029
3030 mutex_lock(&kvm->lock);
3031 if (kvm_get_vcpu_by_id(kvm, id)) {
3032 r = -EEXIST;
3033 goto unlock_vcpu_destroy;
3034 }
3035
3036 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3037 BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3038
3039 /* Now it's all set up, let userspace reach it */
3040 kvm_get_kvm(kvm);
3041 r = create_vcpu_fd(vcpu);
3042 if (r < 0) {
3043 kvm_put_kvm_no_destroy(kvm);
3044 goto unlock_vcpu_destroy;
3045 }
3046
3047 kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3048
3049 /*
3050 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
3051 * before kvm->online_vcpu's incremented value.
3052 */
3053 smp_wmb();
3054 atomic_inc(&kvm->online_vcpus);
3055
3056 mutex_unlock(&kvm->lock);
3057 kvm_arch_vcpu_postcreate(vcpu);
3058 kvm_create_vcpu_debugfs(vcpu);
3059 return r;
3060
3061 unlock_vcpu_destroy:
3062 mutex_unlock(&kvm->lock);
3063 kvm_arch_vcpu_destroy(vcpu);
3064 vcpu_free_run_page:
3065 free_page((unsigned long)vcpu->run);
3066 vcpu_free:
3067 kmem_cache_free(kvm_vcpu_cache, vcpu);
3068 vcpu_decrement:
3069 mutex_lock(&kvm->lock);
3070 kvm->created_vcpus--;
3071 mutex_unlock(&kvm->lock);
3072 return r;
3073 }
3074
3075 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3076 {
3077 if (sigset) {
3078 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3079 vcpu->sigset_active = 1;
3080 vcpu->sigset = *sigset;
3081 } else
3082 vcpu->sigset_active = 0;
3083 return 0;
3084 }
3085
3086 static long kvm_vcpu_ioctl(struct file *filp,
3087 unsigned int ioctl, unsigned long arg)
3088 {
3089 struct kvm_vcpu *vcpu = filp->private_data;
3090 void __user *argp = (void __user *)arg;
3091 int r;
3092 struct kvm_fpu *fpu = NULL;
3093 struct kvm_sregs *kvm_sregs = NULL;
3094
3095 if (vcpu->kvm->mm != current->mm)
3096 return -EIO;
3097
3098 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3099 return -EINVAL;
3100
3101 /*
3102 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3103 * execution; mutex_lock() would break them.
3104 */
3105 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3106 if (r != -ENOIOCTLCMD)
3107 return r;
3108
3109 if (mutex_lock_killable(&vcpu->mutex))
3110 return -EINTR;
3111 switch (ioctl) {
3112 case KVM_RUN: {
3113 struct pid *oldpid;
3114 r = -EINVAL;
3115 if (arg)
3116 goto out;
3117 oldpid = rcu_access_pointer(vcpu->pid);
3118 if (unlikely(oldpid != task_pid(current))) {
3119 /* The thread running this VCPU changed. */
3120 struct pid *newpid;
3121
3122 r = kvm_arch_vcpu_run_pid_change(vcpu);
3123 if (r)
3124 break;
3125
3126 newpid = get_task_pid(current, PIDTYPE_PID);
3127 rcu_assign_pointer(vcpu->pid, newpid);
3128 if (oldpid)
3129 synchronize_rcu();
3130 put_pid(oldpid);
3131 }
3132 r = kvm_arch_vcpu_ioctl_run(vcpu);
3133 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3134 break;
3135 }
3136 case KVM_GET_REGS: {
3137 struct kvm_regs *kvm_regs;
3138
3139 r = -ENOMEM;
3140 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3141 if (!kvm_regs)
3142 goto out;
3143 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3144 if (r)
3145 goto out_free1;
3146 r = -EFAULT;
3147 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3148 goto out_free1;
3149 r = 0;
3150 out_free1:
3151 kfree(kvm_regs);
3152 break;
3153 }
3154 case KVM_SET_REGS: {
3155 struct kvm_regs *kvm_regs;
3156
3157 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3158 if (IS_ERR(kvm_regs)) {
3159 r = PTR_ERR(kvm_regs);
3160 goto out;
3161 }
3162 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3163 kfree(kvm_regs);
3164 break;
3165 }
3166 case KVM_GET_SREGS: {
3167 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3168 GFP_KERNEL_ACCOUNT);
3169 r = -ENOMEM;
3170 if (!kvm_sregs)
3171 goto out;
3172 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3173 if (r)
3174 goto out;
3175 r = -EFAULT;
3176 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3177 goto out;
3178 r = 0;
3179 break;
3180 }
3181 case KVM_SET_SREGS: {
3182 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3183 if (IS_ERR(kvm_sregs)) {
3184 r = PTR_ERR(kvm_sregs);
3185 kvm_sregs = NULL;
3186 goto out;
3187 }
3188 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3189 break;
3190 }
3191 case KVM_GET_MP_STATE: {
3192 struct kvm_mp_state mp_state;
3193
3194 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3195 if (r)
3196 goto out;
3197 r = -EFAULT;
3198 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3199 goto out;
3200 r = 0;
3201 break;
3202 }
3203 case KVM_SET_MP_STATE: {
3204 struct kvm_mp_state mp_state;
3205
3206 r = -EFAULT;
3207 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3208 goto out;
3209 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3210 break;
3211 }
3212 case KVM_TRANSLATE: {
3213 struct kvm_translation tr;
3214
3215 r = -EFAULT;
3216 if (copy_from_user(&tr, argp, sizeof(tr)))
3217 goto out;
3218 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3219 if (r)
3220 goto out;
3221 r = -EFAULT;
3222 if (copy_to_user(argp, &tr, sizeof(tr)))
3223 goto out;
3224 r = 0;
3225 break;
3226 }
3227 case KVM_SET_GUEST_DEBUG: {
3228 struct kvm_guest_debug dbg;
3229
3230 r = -EFAULT;
3231 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3232 goto out;
3233 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3234 break;
3235 }
3236 case KVM_SET_SIGNAL_MASK: {
3237 struct kvm_signal_mask __user *sigmask_arg = argp;
3238 struct kvm_signal_mask kvm_sigmask;
3239 sigset_t sigset, *p;
3240
3241 p = NULL;
3242 if (argp) {
3243 r = -EFAULT;
3244 if (copy_from_user(&kvm_sigmask, argp,
3245 sizeof(kvm_sigmask)))
3246 goto out;
3247 r = -EINVAL;
3248 if (kvm_sigmask.len != sizeof(sigset))
3249 goto out;
3250 r = -EFAULT;
3251 if (copy_from_user(&sigset, sigmask_arg->sigset,
3252 sizeof(sigset)))
3253 goto out;
3254 p = &sigset;
3255 }
3256 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3257 break;
3258 }
3259 case KVM_GET_FPU: {
3260 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3261 r = -ENOMEM;
3262 if (!fpu)
3263 goto out;
3264 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3265 if (r)
3266 goto out;
3267 r = -EFAULT;
3268 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3269 goto out;
3270 r = 0;
3271 break;
3272 }
3273 case KVM_SET_FPU: {
3274 fpu = memdup_user(argp, sizeof(*fpu));
3275 if (IS_ERR(fpu)) {
3276 r = PTR_ERR(fpu);
3277 fpu = NULL;
3278 goto out;
3279 }
3280 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3281 break;
3282 }
3283 default:
3284 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3285 }
3286 out:
3287 mutex_unlock(&vcpu->mutex);
3288 kfree(fpu);
3289 kfree(kvm_sregs);
3290 return r;
3291 }
3292
3293 #ifdef CONFIG_KVM_COMPAT
3294 static long kvm_vcpu_compat_ioctl(struct file *filp,
3295 unsigned int ioctl, unsigned long arg)
3296 {
3297 struct kvm_vcpu *vcpu = filp->private_data;
3298 void __user *argp = compat_ptr(arg);
3299 int r;
3300
3301 if (vcpu->kvm->mm != current->mm)
3302 return -EIO;
3303
3304 switch (ioctl) {
3305 case KVM_SET_SIGNAL_MASK: {
3306 struct kvm_signal_mask __user *sigmask_arg = argp;
3307 struct kvm_signal_mask kvm_sigmask;
3308 sigset_t sigset;
3309
3310 if (argp) {
3311 r = -EFAULT;
3312 if (copy_from_user(&kvm_sigmask, argp,
3313 sizeof(kvm_sigmask)))
3314 goto out;
3315 r = -EINVAL;
3316 if (kvm_sigmask.len != sizeof(compat_sigset_t))
3317 goto out;
3318 r = -EFAULT;
3319 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
3320 goto out;
3321 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3322 } else
3323 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3324 break;
3325 }
3326 default:
3327 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3328 }
3329
3330 out:
3331 return r;
3332 }
3333 #endif
3334
3335 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3336 {
3337 struct kvm_device *dev = filp->private_data;
3338
3339 if (dev->ops->mmap)
3340 return dev->ops->mmap(dev, vma);
3341
3342 return -ENODEV;
3343 }
3344
3345 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3346 int (*accessor)(struct kvm_device *dev,
3347 struct kvm_device_attr *attr),
3348 unsigned long arg)
3349 {
3350 struct kvm_device_attr attr;
3351
3352 if (!accessor)
3353 return -EPERM;
3354
3355 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3356 return -EFAULT;
3357
3358 return accessor(dev, &attr);
3359 }
3360
3361 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3362 unsigned long arg)
3363 {
3364 struct kvm_device *dev = filp->private_data;
3365
3366 if (dev->kvm->mm != current->mm)
3367 return -EIO;
3368
3369 switch (ioctl) {
3370 case KVM_SET_DEVICE_ATTR:
3371 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3372 case KVM_GET_DEVICE_ATTR:
3373 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3374 case KVM_HAS_DEVICE_ATTR:
3375 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3376 default:
3377 if (dev->ops->ioctl)
3378 return dev->ops->ioctl(dev, ioctl, arg);
3379
3380 return -ENOTTY;
3381 }
3382 }
3383
3384 static int kvm_device_release(struct inode *inode, struct file *filp)
3385 {
3386 struct kvm_device *dev = filp->private_data;
3387 struct kvm *kvm = dev->kvm;
3388
3389 if (dev->ops->release) {
3390 mutex_lock(&kvm->lock);
3391 list_del(&dev->vm_node);
3392 dev->ops->release(dev);
3393 mutex_unlock(&kvm->lock);
3394 }
3395
3396 kvm_put_kvm(kvm);
3397 return 0;
3398 }
3399
3400 static const struct file_operations kvm_device_fops = {
3401 .unlocked_ioctl = kvm_device_ioctl,
3402 .release = kvm_device_release,
3403 KVM_COMPAT(kvm_device_ioctl),
3404 .mmap = kvm_device_mmap,
3405 };
3406
3407 struct kvm_device *kvm_device_from_filp(struct file *filp)
3408 {
3409 if (filp->f_op != &kvm_device_fops)
3410 return NULL;
3411
3412 return filp->private_data;
3413 }
3414
3415 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3416 #ifdef CONFIG_KVM_MPIC
3417 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
3418 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
3419 #endif
3420 };
3421
3422 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3423 {
3424 if (type >= ARRAY_SIZE(kvm_device_ops_table))
3425 return -ENOSPC;
3426
3427 if (kvm_device_ops_table[type] != NULL)
3428 return -EEXIST;
3429
3430 kvm_device_ops_table[type] = ops;
3431 return 0;
3432 }
3433
3434 void kvm_unregister_device_ops(u32 type)
3435 {
3436 if (kvm_device_ops_table[type] != NULL)
3437 kvm_device_ops_table[type] = NULL;
3438 }
3439
3440 static int kvm_ioctl_create_device(struct kvm *kvm,
3441 struct kvm_create_device *cd)
3442 {
3443 const struct kvm_device_ops *ops = NULL;
3444 struct kvm_device *dev;
3445 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3446 int type;
3447 int ret;
3448
3449 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3450 return -ENODEV;
3451
3452 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3453 ops = kvm_device_ops_table[type];
3454 if (ops == NULL)
3455 return -ENODEV;
3456
3457 if (test)
3458 return 0;
3459
3460 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3461 if (!dev)
3462 return -ENOMEM;
3463
3464 dev->ops = ops;
3465 dev->kvm = kvm;
3466
3467 mutex_lock(&kvm->lock);
3468 ret = ops->create(dev, type);
3469 if (ret < 0) {
3470 mutex_unlock(&kvm->lock);
3471 kfree(dev);
3472 return ret;
3473 }
3474 list_add(&dev->vm_node, &kvm->devices);
3475 mutex_unlock(&kvm->lock);
3476
3477 if (ops->init)
3478 ops->init(dev);
3479
3480 kvm_get_kvm(kvm);
3481 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3482 if (ret < 0) {
3483 kvm_put_kvm_no_destroy(kvm);
3484 mutex_lock(&kvm->lock);
3485 list_del(&dev->vm_node);
3486 mutex_unlock(&kvm->lock);
3487 ops->destroy(dev);
3488 return ret;
3489 }
3490
3491 cd->fd = ret;
3492 return 0;
3493 }
3494
3495 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3496 {
3497 switch (arg) {
3498 case KVM_CAP_USER_MEMORY:
3499 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3500 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3501 case KVM_CAP_INTERNAL_ERROR_DATA:
3502 #ifdef CONFIG_HAVE_KVM_MSI
3503 case KVM_CAP_SIGNAL_MSI:
3504 #endif
3505 #ifdef CONFIG_HAVE_KVM_IRQFD
3506 case KVM_CAP_IRQFD:
3507 case KVM_CAP_IRQFD_RESAMPLE:
3508 #endif
3509 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3510 case KVM_CAP_CHECK_EXTENSION_VM:
3511 case KVM_CAP_ENABLE_CAP_VM:
3512 return 1;
3513 #ifdef CONFIG_KVM_MMIO
3514 case KVM_CAP_COALESCED_MMIO:
3515 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3516 case KVM_CAP_COALESCED_PIO:
3517 return 1;
3518 #endif
3519 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3520 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3521 return KVM_DIRTY_LOG_MANUAL_CAPS;
3522 #endif
3523 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3524 case KVM_CAP_IRQ_ROUTING:
3525 return KVM_MAX_IRQ_ROUTES;
3526 #endif
3527 #if KVM_ADDRESS_SPACE_NUM > 1
3528 case KVM_CAP_MULTI_ADDRESS_SPACE:
3529 return KVM_ADDRESS_SPACE_NUM;
3530 #endif
3531 case KVM_CAP_NR_MEMSLOTS:
3532 return KVM_USER_MEM_SLOTS;
3533 default:
3534 break;
3535 }
3536 return kvm_vm_ioctl_check_extension(kvm, arg);
3537 }
3538
3539 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3540 struct kvm_enable_cap *cap)
3541 {
3542 return -EINVAL;
3543 }
3544
3545 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3546 struct kvm_enable_cap *cap)
3547 {
3548 switch (cap->cap) {
3549 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3550 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3551 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3552
3553 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3554 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3555
3556 if (cap->flags || (cap->args[0] & ~allowed_options))
3557 return -EINVAL;
3558 kvm->manual_dirty_log_protect = cap->args[0];
3559 return 0;
3560 }
3561 #endif
3562 default:
3563 return kvm_vm_ioctl_enable_cap(kvm, cap);
3564 }
3565 }
3566
3567 static long kvm_vm_ioctl(struct file *filp,
3568 unsigned int ioctl, unsigned long arg)
3569 {
3570 struct kvm *kvm = filp->private_data;
3571 void __user *argp = (void __user *)arg;
3572 int r;
3573
3574 if (kvm->mm != current->mm)
3575 return -EIO;
3576 switch (ioctl) {
3577 case KVM_CREATE_VCPU:
3578 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3579 break;
3580 case KVM_ENABLE_CAP: {
3581 struct kvm_enable_cap cap;
3582
3583 r = -EFAULT;
3584 if (copy_from_user(&cap, argp, sizeof(cap)))
3585 goto out;
3586 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3587 break;
3588 }
3589 case KVM_SET_USER_MEMORY_REGION: {
3590 struct kvm_userspace_memory_region kvm_userspace_mem;
3591
3592 r = -EFAULT;
3593 if (copy_from_user(&kvm_userspace_mem, argp,
3594 sizeof(kvm_userspace_mem)))
3595 goto out;
3596
3597 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3598 break;
3599 }
3600 case KVM_GET_DIRTY_LOG: {
3601 struct kvm_dirty_log log;
3602
3603 r = -EFAULT;
3604 if (copy_from_user(&log, argp, sizeof(log)))
3605 goto out;
3606 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3607 break;
3608 }
3609 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3610 case KVM_CLEAR_DIRTY_LOG: {
3611 struct kvm_clear_dirty_log log;
3612
3613 r = -EFAULT;
3614 if (copy_from_user(&log, argp, sizeof(log)))
3615 goto out;
3616 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3617 break;
3618 }
3619 #endif
3620 #ifdef CONFIG_KVM_MMIO
3621 case KVM_REGISTER_COALESCED_MMIO: {
3622 struct kvm_coalesced_mmio_zone zone;
3623
3624 r = -EFAULT;
3625 if (copy_from_user(&zone, argp, sizeof(zone)))
3626 goto out;
3627 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3628 break;
3629 }
3630 case KVM_UNREGISTER_COALESCED_MMIO: {
3631 struct kvm_coalesced_mmio_zone zone;
3632
3633 r = -EFAULT;
3634 if (copy_from_user(&zone, argp, sizeof(zone)))
3635 goto out;
3636 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3637 break;
3638 }
3639 #endif
3640 case KVM_IRQFD: {
3641 struct kvm_irqfd data;
3642
3643 r = -EFAULT;
3644 if (copy_from_user(&data, argp, sizeof(data)))
3645 goto out;
3646 r = kvm_irqfd(kvm, &data);
3647 break;
3648 }
3649 case KVM_IOEVENTFD: {
3650 struct kvm_ioeventfd data;
3651
3652 r = -EFAULT;
3653 if (copy_from_user(&data, argp, sizeof(data)))
3654 goto out;
3655 r = kvm_ioeventfd(kvm, &data);
3656 break;
3657 }
3658 #ifdef CONFIG_HAVE_KVM_MSI
3659 case KVM_SIGNAL_MSI: {
3660 struct kvm_msi msi;
3661
3662 r = -EFAULT;
3663 if (copy_from_user(&msi, argp, sizeof(msi)))
3664 goto out;
3665 r = kvm_send_userspace_msi(kvm, &msi);
3666 break;
3667 }
3668 #endif
3669 #ifdef __KVM_HAVE_IRQ_LINE
3670 case KVM_IRQ_LINE_STATUS:
3671 case KVM_IRQ_LINE: {
3672 struct kvm_irq_level irq_event;
3673
3674 r = -EFAULT;
3675 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3676 goto out;
3677
3678 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3679 ioctl == KVM_IRQ_LINE_STATUS);
3680 if (r)
3681 goto out;
3682
3683 r = -EFAULT;
3684 if (ioctl == KVM_IRQ_LINE_STATUS) {
3685 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3686 goto out;
3687 }
3688
3689 r = 0;
3690 break;
3691 }
3692 #endif
3693 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3694 case KVM_SET_GSI_ROUTING: {
3695 struct kvm_irq_routing routing;
3696 struct kvm_irq_routing __user *urouting;
3697 struct kvm_irq_routing_entry *entries = NULL;
3698
3699 r = -EFAULT;
3700 if (copy_from_user(&routing, argp, sizeof(routing)))
3701 goto out;
3702 r = -EINVAL;
3703 if (!kvm_arch_can_set_irq_routing(kvm))
3704 goto out;
3705 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3706 goto out;
3707 if (routing.flags)
3708 goto out;
3709 if (routing.nr) {
3710 r = -ENOMEM;
3711 entries = vmalloc(array_size(sizeof(*entries),
3712 routing.nr));
3713 if (!entries)
3714 goto out;
3715 r = -EFAULT;
3716 urouting = argp;
3717 if (copy_from_user(entries, urouting->entries,
3718 routing.nr * sizeof(*entries)))
3719 goto out_free_irq_routing;
3720 }
3721 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3722 routing.flags);
3723 out_free_irq_routing:
3724 vfree(entries);
3725 break;
3726 }
3727 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3728 case KVM_CREATE_DEVICE: {
3729 struct kvm_create_device cd;
3730
3731 r = -EFAULT;
3732 if (copy_from_user(&cd, argp, sizeof(cd)))
3733 goto out;
3734
3735 r = kvm_ioctl_create_device(kvm, &cd);
3736 if (r)
3737 goto out;
3738
3739 r = -EFAULT;
3740 if (copy_to_user(argp, &cd, sizeof(cd)))
3741 goto out;
3742
3743 r = 0;
3744 break;
3745 }
3746 case KVM_CHECK_EXTENSION:
3747 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3748 break;
3749 default:
3750 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3751 }
3752 out:
3753 return r;
3754 }
3755
3756 #ifdef CONFIG_KVM_COMPAT
3757 struct compat_kvm_dirty_log {
3758 __u32 slot;
3759 __u32 padding1;
3760 union {
3761 compat_uptr_t dirty_bitmap; /* one bit per page */
3762 __u64 padding2;
3763 };
3764 };
3765
3766 static long kvm_vm_compat_ioctl(struct file *filp,
3767 unsigned int ioctl, unsigned long arg)
3768 {
3769 struct kvm *kvm = filp->private_data;
3770 int r;
3771
3772 if (kvm->mm != current->mm)
3773 return -EIO;
3774 switch (ioctl) {
3775 case KVM_GET_DIRTY_LOG: {
3776 struct compat_kvm_dirty_log compat_log;
3777 struct kvm_dirty_log log;
3778
3779 if (copy_from_user(&compat_log, (void __user *)arg,
3780 sizeof(compat_log)))
3781 return -EFAULT;
3782 log.slot = compat_log.slot;
3783 log.padding1 = compat_log.padding1;
3784 log.padding2 = compat_log.padding2;
3785 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3786
3787 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3788 break;
3789 }
3790 default:
3791 r = kvm_vm_ioctl(filp, ioctl, arg);
3792 }
3793 return r;
3794 }
3795 #endif
3796
3797 static struct file_operations kvm_vm_fops = {
3798 .release = kvm_vm_release,
3799 .unlocked_ioctl = kvm_vm_ioctl,
3800 .llseek = noop_llseek,
3801 KVM_COMPAT(kvm_vm_compat_ioctl),
3802 };
3803
3804 static int kvm_dev_ioctl_create_vm(unsigned long type)
3805 {
3806 int r;
3807 struct kvm *kvm;
3808 struct file *file;
3809
3810 kvm = kvm_create_vm(type);
3811 if (IS_ERR(kvm))
3812 return PTR_ERR(kvm);
3813 #ifdef CONFIG_KVM_MMIO
3814 r = kvm_coalesced_mmio_init(kvm);
3815 if (r < 0)
3816 goto put_kvm;
3817 #endif
3818 r = get_unused_fd_flags(O_CLOEXEC);
3819 if (r < 0)
3820 goto put_kvm;
3821
3822 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3823 if (IS_ERR(file)) {
3824 put_unused_fd(r);
3825 r = PTR_ERR(file);
3826 goto put_kvm;
3827 }
3828
3829 /*
3830 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3831 * already set, with ->release() being kvm_vm_release(). In error
3832 * cases it will be called by the final fput(file) and will take
3833 * care of doing kvm_put_kvm(kvm).
3834 */
3835 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3836 put_unused_fd(r);
3837 fput(file);
3838 return -ENOMEM;
3839 }
3840 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3841
3842 fd_install(r, file);
3843 return r;
3844
3845 put_kvm:
3846 kvm_put_kvm(kvm);
3847 return r;
3848 }
3849
3850 static long kvm_dev_ioctl(struct file *filp,
3851 unsigned int ioctl, unsigned long arg)
3852 {
3853 long r = -EINVAL;
3854
3855 switch (ioctl) {
3856 case KVM_GET_API_VERSION:
3857 if (arg)
3858 goto out;
3859 r = KVM_API_VERSION;
3860 break;
3861 case KVM_CREATE_VM:
3862 r = kvm_dev_ioctl_create_vm(arg);
3863 break;
3864 case KVM_CHECK_EXTENSION:
3865 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3866 break;
3867 case KVM_GET_VCPU_MMAP_SIZE:
3868 if (arg)
3869 goto out;
3870 r = PAGE_SIZE; /* struct kvm_run */
3871 #ifdef CONFIG_X86
3872 r += PAGE_SIZE; /* pio data page */
3873 #endif
3874 #ifdef CONFIG_KVM_MMIO
3875 r += PAGE_SIZE; /* coalesced mmio ring page */
3876 #endif
3877 break;
3878 case KVM_TRACE_ENABLE:
3879 case KVM_TRACE_PAUSE:
3880 case KVM_TRACE_DISABLE:
3881 r = -EOPNOTSUPP;
3882 break;
3883 default:
3884 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3885 }
3886 out:
3887 return r;
3888 }
3889
3890 static struct file_operations kvm_chardev_ops = {
3891 .unlocked_ioctl = kvm_dev_ioctl,
3892 .llseek = noop_llseek,
3893 KVM_COMPAT(kvm_dev_ioctl),
3894 };
3895
3896 static struct miscdevice kvm_dev = {
3897 KVM_MINOR,
3898 "kvm",
3899 &kvm_chardev_ops,
3900 };
3901
3902 static void hardware_enable_nolock(void *junk)
3903 {
3904 int cpu = raw_smp_processor_id();
3905 int r;
3906
3907 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3908 return;
3909
3910 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3911
3912 r = kvm_arch_hardware_enable();
3913
3914 if (r) {
3915 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3916 atomic_inc(&hardware_enable_failed);
3917 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3918 }
3919 }
3920
3921 static int kvm_starting_cpu(unsigned int cpu)
3922 {
3923 raw_spin_lock(&kvm_count_lock);
3924 if (kvm_usage_count)
3925 hardware_enable_nolock(NULL);
3926 raw_spin_unlock(&kvm_count_lock);
3927 return 0;
3928 }
3929
3930 static void hardware_disable_nolock(void *junk)
3931 {
3932 int cpu = raw_smp_processor_id();
3933
3934 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3935 return;
3936 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3937 kvm_arch_hardware_disable();
3938 }
3939
3940 static int kvm_dying_cpu(unsigned int cpu)
3941 {
3942 raw_spin_lock(&kvm_count_lock);
3943 if (kvm_usage_count)
3944 hardware_disable_nolock(NULL);
3945 raw_spin_unlock(&kvm_count_lock);
3946 return 0;
3947 }
3948
3949 static void hardware_disable_all_nolock(void)
3950 {
3951 BUG_ON(!kvm_usage_count);
3952
3953 kvm_usage_count--;
3954 if (!kvm_usage_count)
3955 on_each_cpu(hardware_disable_nolock, NULL, 1);
3956 }
3957
3958 static void hardware_disable_all(void)
3959 {
3960 raw_spin_lock(&kvm_count_lock);
3961 hardware_disable_all_nolock();
3962 raw_spin_unlock(&kvm_count_lock);
3963 }
3964
3965 static int hardware_enable_all(void)
3966 {
3967 int r = 0;
3968
3969 raw_spin_lock(&kvm_count_lock);
3970
3971 kvm_usage_count++;
3972 if (kvm_usage_count == 1) {
3973 atomic_set(&hardware_enable_failed, 0);
3974 on_each_cpu(hardware_enable_nolock, NULL, 1);
3975
3976 if (atomic_read(&hardware_enable_failed)) {
3977 hardware_disable_all_nolock();
3978 r = -EBUSY;
3979 }
3980 }
3981
3982 raw_spin_unlock(&kvm_count_lock);
3983
3984 return r;
3985 }
3986
3987 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3988 void *v)
3989 {
3990 /*
3991 * Some (well, at least mine) BIOSes hang on reboot if
3992 * in vmx root mode.
3993 *
3994 * And Intel TXT required VMX off for all cpu when system shutdown.
3995 */
3996 pr_info("kvm: exiting hardware virtualization\n");
3997 kvm_rebooting = true;
3998 on_each_cpu(hardware_disable_nolock, NULL, 1);
3999 return NOTIFY_OK;
4000 }
4001
4002 static struct notifier_block kvm_reboot_notifier = {
4003 .notifier_call = kvm_reboot,
4004 .priority = 0,
4005 };
4006
4007 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4008 {
4009 int i;
4010
4011 for (i = 0; i < bus->dev_count; i++) {
4012 struct kvm_io_device *pos = bus->range[i].dev;
4013
4014 kvm_iodevice_destructor(pos);
4015 }
4016 kfree(bus);
4017 }
4018
4019 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4020 const struct kvm_io_range *r2)
4021 {
4022 gpa_t addr1 = r1->addr;
4023 gpa_t addr2 = r2->addr;
4024
4025 if (addr1 < addr2)
4026 return -1;
4027
4028 /* If r2->len == 0, match the exact address. If r2->len != 0,
4029 * accept any overlapping write. Any order is acceptable for
4030 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4031 * we process all of them.
4032 */
4033 if (r2->len) {
4034 addr1 += r1->len;
4035 addr2 += r2->len;
4036 }
4037
4038 if (addr1 > addr2)
4039 return 1;
4040
4041 return 0;
4042 }
4043
4044 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4045 {
4046 return kvm_io_bus_cmp(p1, p2);
4047 }
4048
4049 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4050 gpa_t addr, int len)
4051 {
4052 struct kvm_io_range *range, key;
4053 int off;
4054
4055 key = (struct kvm_io_range) {
4056 .addr = addr,
4057 .len = len,
4058 };
4059
4060 range = bsearch(&key, bus->range, bus->dev_count,
4061 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4062 if (range == NULL)
4063 return -ENOENT;
4064
4065 off = range - bus->range;
4066
4067 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4068 off--;
4069
4070 return off;
4071 }
4072
4073 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4074 struct kvm_io_range *range, const void *val)
4075 {
4076 int idx;
4077
4078 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4079 if (idx < 0)
4080 return -EOPNOTSUPP;
4081
4082 while (idx < bus->dev_count &&
4083 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4084 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4085 range->len, val))
4086 return idx;
4087 idx++;
4088 }
4089
4090 return -EOPNOTSUPP;
4091 }
4092
4093 /* kvm_io_bus_write - called under kvm->slots_lock */
4094 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4095 int len, const void *val)
4096 {
4097 struct kvm_io_bus *bus;
4098 struct kvm_io_range range;
4099 int r;
4100
4101 range = (struct kvm_io_range) {
4102 .addr = addr,
4103 .len = len,
4104 };
4105
4106 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4107 if (!bus)
4108 return -ENOMEM;
4109 r = __kvm_io_bus_write(vcpu, bus, &range, val);
4110 return r < 0 ? r : 0;
4111 }
4112 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4113
4114 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4115 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4116 gpa_t addr, int len, const void *val, long cookie)
4117 {
4118 struct kvm_io_bus *bus;
4119 struct kvm_io_range range;
4120
4121 range = (struct kvm_io_range) {
4122 .addr = addr,
4123 .len = len,
4124 };
4125
4126 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4127 if (!bus)
4128 return -ENOMEM;
4129
4130 /* First try the device referenced by cookie. */
4131 if ((cookie >= 0) && (cookie < bus->dev_count) &&
4132 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4133 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4134 val))
4135 return cookie;
4136
4137 /*
4138 * cookie contained garbage; fall back to search and return the
4139 * correct cookie value.
4140 */
4141 return __kvm_io_bus_write(vcpu, bus, &range, val);
4142 }
4143
4144 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4145 struct kvm_io_range *range, void *val)
4146 {
4147 int idx;
4148
4149 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4150 if (idx < 0)
4151 return -EOPNOTSUPP;
4152
4153 while (idx < bus->dev_count &&
4154 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4155 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4156 range->len, val))
4157 return idx;
4158 idx++;
4159 }
4160
4161 return -EOPNOTSUPP;
4162 }
4163
4164 /* kvm_io_bus_read - called under kvm->slots_lock */
4165 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4166 int len, void *val)
4167 {
4168 struct kvm_io_bus *bus;
4169 struct kvm_io_range range;
4170 int r;
4171
4172 range = (struct kvm_io_range) {
4173 .addr = addr,
4174 .len = len,
4175 };
4176
4177 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4178 if (!bus)
4179 return -ENOMEM;
4180 r = __kvm_io_bus_read(vcpu, bus, &range, val);
4181 return r < 0 ? r : 0;
4182 }
4183
4184 /* Caller must hold slots_lock. */
4185 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4186 int len, struct kvm_io_device *dev)
4187 {
4188 int i;
4189 struct kvm_io_bus *new_bus, *bus;
4190 struct kvm_io_range range;
4191
4192 bus = kvm_get_bus(kvm, bus_idx);
4193 if (!bus)
4194 return -ENOMEM;
4195
4196 /* exclude ioeventfd which is limited by maximum fd */
4197 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4198 return -ENOSPC;
4199
4200 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4201 GFP_KERNEL_ACCOUNT);
4202 if (!new_bus)
4203 return -ENOMEM;
4204
4205 range = (struct kvm_io_range) {
4206 .addr = addr,
4207 .len = len,
4208 .dev = dev,
4209 };
4210
4211 for (i = 0; i < bus->dev_count; i++)
4212 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4213 break;
4214
4215 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4216 new_bus->dev_count++;
4217 new_bus->range[i] = range;
4218 memcpy(new_bus->range + i + 1, bus->range + i,
4219 (bus->dev_count - i) * sizeof(struct kvm_io_range));
4220 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4221 synchronize_srcu_expedited(&kvm->srcu);
4222 kfree(bus);
4223
4224 return 0;
4225 }
4226
4227 /* Caller must hold slots_lock. */
4228 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4229 struct kvm_io_device *dev)
4230 {
4231 int i;
4232 struct kvm_io_bus *new_bus, *bus;
4233
4234 bus = kvm_get_bus(kvm, bus_idx);
4235 if (!bus)
4236 return;
4237
4238 for (i = 0; i < bus->dev_count; i++)
4239 if (bus->range[i].dev == dev) {
4240 break;
4241 }
4242
4243 if (i == bus->dev_count)
4244 return;
4245
4246 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4247 GFP_KERNEL_ACCOUNT);
4248 if (!new_bus) {
4249 pr_err("kvm: failed to shrink bus, removing it completely\n");
4250 goto broken;
4251 }
4252
4253 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4254 new_bus->dev_count--;
4255 memcpy(new_bus->range + i, bus->range + i + 1,
4256 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
4257
4258 broken:
4259 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4260 synchronize_srcu_expedited(&kvm->srcu);
4261 kfree(bus);
4262 return;
4263 }
4264
4265 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4266 gpa_t addr)
4267 {
4268 struct kvm_io_bus *bus;
4269 int dev_idx, srcu_idx;
4270 struct kvm_io_device *iodev = NULL;
4271
4272 srcu_idx = srcu_read_lock(&kvm->srcu);
4273
4274 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4275 if (!bus)
4276 goto out_unlock;
4277
4278 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4279 if (dev_idx < 0)
4280 goto out_unlock;
4281
4282 iodev = bus->range[dev_idx].dev;
4283
4284 out_unlock:
4285 srcu_read_unlock(&kvm->srcu, srcu_idx);
4286
4287 return iodev;
4288 }
4289 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4290
4291 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4292 int (*get)(void *, u64 *), int (*set)(void *, u64),
4293 const char *fmt)
4294 {
4295 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4296 inode->i_private;
4297
4298 /* The debugfs files are a reference to the kvm struct which
4299 * is still valid when kvm_destroy_vm is called.
4300 * To avoid the race between open and the removal of the debugfs
4301 * directory we test against the users count.
4302 */
4303 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4304 return -ENOENT;
4305
4306 if (simple_attr_open(inode, file, get,
4307 KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4308 ? set : NULL,
4309 fmt)) {
4310 kvm_put_kvm(stat_data->kvm);
4311 return -ENOMEM;
4312 }
4313
4314 return 0;
4315 }
4316
4317 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4318 {
4319 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4320 inode->i_private;
4321
4322 simple_attr_release(inode, file);
4323 kvm_put_kvm(stat_data->kvm);
4324
4325 return 0;
4326 }
4327
4328 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4329 {
4330 *val = *(ulong *)((void *)kvm + offset);
4331
4332 return 0;
4333 }
4334
4335 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4336 {
4337 *(ulong *)((void *)kvm + offset) = 0;
4338
4339 return 0;
4340 }
4341
4342 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4343 {
4344 int i;
4345 struct kvm_vcpu *vcpu;
4346
4347 *val = 0;
4348
4349 kvm_for_each_vcpu(i, vcpu, kvm)
4350 *val += *(u64 *)((void *)vcpu + offset);
4351
4352 return 0;
4353 }
4354
4355 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4356 {
4357 int i;
4358 struct kvm_vcpu *vcpu;
4359
4360 kvm_for_each_vcpu(i, vcpu, kvm)
4361 *(u64 *)((void *)vcpu + offset) = 0;
4362
4363 return 0;
4364 }
4365
4366 static int kvm_stat_data_get(void *data, u64 *val)
4367 {
4368 int r = -EFAULT;
4369 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4370
4371 switch (stat_data->dbgfs_item->kind) {
4372 case KVM_STAT_VM:
4373 r = kvm_get_stat_per_vm(stat_data->kvm,
4374 stat_data->dbgfs_item->offset, val);
4375 break;
4376 case KVM_STAT_VCPU:
4377 r = kvm_get_stat_per_vcpu(stat_data->kvm,
4378 stat_data->dbgfs_item->offset, val);
4379 break;
4380 }
4381
4382 return r;
4383 }
4384
4385 static int kvm_stat_data_clear(void *data, u64 val)
4386 {
4387 int r = -EFAULT;
4388 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4389
4390 if (val)
4391 return -EINVAL;
4392
4393 switch (stat_data->dbgfs_item->kind) {
4394 case KVM_STAT_VM:
4395 r = kvm_clear_stat_per_vm(stat_data->kvm,
4396 stat_data->dbgfs_item->offset);
4397 break;
4398 case KVM_STAT_VCPU:
4399 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4400 stat_data->dbgfs_item->offset);
4401 break;
4402 }
4403
4404 return r;
4405 }
4406
4407 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4408 {
4409 __simple_attr_check_format("%llu\n", 0ull);
4410 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4411 kvm_stat_data_clear, "%llu\n");
4412 }
4413
4414 static const struct file_operations stat_fops_per_vm = {
4415 .owner = THIS_MODULE,
4416 .open = kvm_stat_data_open,
4417 .release = kvm_debugfs_release,
4418 .read = simple_attr_read,
4419 .write = simple_attr_write,
4420 .llseek = no_llseek,
4421 };
4422
4423 static int vm_stat_get(void *_offset, u64 *val)
4424 {
4425 unsigned offset = (long)_offset;
4426 struct kvm *kvm;
4427 u64 tmp_val;
4428
4429 *val = 0;
4430 mutex_lock(&kvm_lock);
4431 list_for_each_entry(kvm, &vm_list, vm_list) {
4432 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4433 *val += tmp_val;
4434 }
4435 mutex_unlock(&kvm_lock);
4436 return 0;
4437 }
4438
4439 static int vm_stat_clear(void *_offset, u64 val)
4440 {
4441 unsigned offset = (long)_offset;
4442 struct kvm *kvm;
4443
4444 if (val)
4445 return -EINVAL;
4446
4447 mutex_lock(&kvm_lock);
4448 list_for_each_entry(kvm, &vm_list, vm_list) {
4449 kvm_clear_stat_per_vm(kvm, offset);
4450 }
4451 mutex_unlock(&kvm_lock);
4452
4453 return 0;
4454 }
4455
4456 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4457
4458 static int vcpu_stat_get(void *_offset, u64 *val)
4459 {
4460 unsigned offset = (long)_offset;
4461 struct kvm *kvm;
4462 u64 tmp_val;
4463
4464 *val = 0;
4465 mutex_lock(&kvm_lock);
4466 list_for_each_entry(kvm, &vm_list, vm_list) {
4467 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4468 *val += tmp_val;
4469 }
4470 mutex_unlock(&kvm_lock);
4471 return 0;
4472 }
4473
4474 static int vcpu_stat_clear(void *_offset, u64 val)
4475 {
4476 unsigned offset = (long)_offset;
4477 struct kvm *kvm;
4478
4479 if (val)
4480 return -EINVAL;
4481
4482 mutex_lock(&kvm_lock);
4483 list_for_each_entry(kvm, &vm_list, vm_list) {
4484 kvm_clear_stat_per_vcpu(kvm, offset);
4485 }
4486 mutex_unlock(&kvm_lock);
4487
4488 return 0;
4489 }
4490
4491 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4492 "%llu\n");
4493
4494 static const struct file_operations *stat_fops[] = {
4495 [KVM_STAT_VCPU] = &vcpu_stat_fops,
4496 [KVM_STAT_VM] = &vm_stat_fops,
4497 };
4498
4499 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4500 {
4501 struct kobj_uevent_env *env;
4502 unsigned long long created, active;
4503
4504 if (!kvm_dev.this_device || !kvm)
4505 return;
4506
4507 mutex_lock(&kvm_lock);
4508 if (type == KVM_EVENT_CREATE_VM) {
4509 kvm_createvm_count++;
4510 kvm_active_vms++;
4511 } else if (type == KVM_EVENT_DESTROY_VM) {
4512 kvm_active_vms--;
4513 }
4514 created = kvm_createvm_count;
4515 active = kvm_active_vms;
4516 mutex_unlock(&kvm_lock);
4517
4518 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4519 if (!env)
4520 return;
4521
4522 add_uevent_var(env, "CREATED=%llu", created);
4523 add_uevent_var(env, "COUNT=%llu", active);
4524
4525 if (type == KVM_EVENT_CREATE_VM) {
4526 add_uevent_var(env, "EVENT=create");
4527 kvm->userspace_pid = task_pid_nr(current);
4528 } else if (type == KVM_EVENT_DESTROY_VM) {
4529 add_uevent_var(env, "EVENT=destroy");
4530 }
4531 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4532
4533 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4534 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4535
4536 if (p) {
4537 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4538 if (!IS_ERR(tmp))
4539 add_uevent_var(env, "STATS_PATH=%s", tmp);
4540 kfree(p);
4541 }
4542 }
4543 /* no need for checks, since we are adding at most only 5 keys */
4544 env->envp[env->envp_idx++] = NULL;
4545 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4546 kfree(env);
4547 }
4548
4549 static void kvm_init_debug(void)
4550 {
4551 struct kvm_stats_debugfs_item *p;
4552
4553 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4554
4555 kvm_debugfs_num_entries = 0;
4556 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4557 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4558 kvm_debugfs_dir, (void *)(long)p->offset,
4559 stat_fops[p->kind]);
4560 }
4561 }
4562
4563 static int kvm_suspend(void)
4564 {
4565 if (kvm_usage_count)
4566 hardware_disable_nolock(NULL);
4567 return 0;
4568 }
4569
4570 static void kvm_resume(void)
4571 {
4572 if (kvm_usage_count) {
4573 #ifdef CONFIG_LOCKDEP
4574 WARN_ON(lockdep_is_held(&kvm_count_lock));
4575 #endif
4576 hardware_enable_nolock(NULL);
4577 }
4578 }
4579
4580 static struct syscore_ops kvm_syscore_ops = {
4581 .suspend = kvm_suspend,
4582 .resume = kvm_resume,
4583 };
4584
4585 static inline
4586 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4587 {
4588 return container_of(pn, struct kvm_vcpu, preempt_notifier);
4589 }
4590
4591 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4592 {
4593 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4594
4595 WRITE_ONCE(vcpu->preempted, false);
4596 WRITE_ONCE(vcpu->ready, false);
4597
4598 __this_cpu_write(kvm_running_vcpu, vcpu);
4599 kvm_arch_sched_in(vcpu, cpu);
4600 kvm_arch_vcpu_load(vcpu, cpu);
4601 }
4602
4603 static void kvm_sched_out(struct preempt_notifier *pn,
4604 struct task_struct *next)
4605 {
4606 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4607
4608 if (current->state == TASK_RUNNING) {
4609 WRITE_ONCE(vcpu->preempted, true);
4610 WRITE_ONCE(vcpu->ready, true);
4611 }
4612 kvm_arch_vcpu_put(vcpu);
4613 __this_cpu_write(kvm_running_vcpu, NULL);
4614 }
4615
4616 /**
4617 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4618 *
4619 * We can disable preemption locally around accessing the per-CPU variable,
4620 * and use the resolved vcpu pointer after enabling preemption again,
4621 * because even if the current thread is migrated to another CPU, reading
4622 * the per-CPU value later will give us the same value as we update the
4623 * per-CPU variable in the preempt notifier handlers.
4624 */
4625 struct kvm_vcpu *kvm_get_running_vcpu(void)
4626 {
4627 struct kvm_vcpu *vcpu;
4628
4629 preempt_disable();
4630 vcpu = __this_cpu_read(kvm_running_vcpu);
4631 preempt_enable();
4632
4633 return vcpu;
4634 }
4635
4636 /**
4637 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4638 */
4639 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4640 {
4641 return &kvm_running_vcpu;
4642 }
4643
4644 struct kvm_cpu_compat_check {
4645 void *opaque;
4646 int *ret;
4647 };
4648
4649 static void check_processor_compat(void *data)
4650 {
4651 struct kvm_cpu_compat_check *c = data;
4652
4653 *c->ret = kvm_arch_check_processor_compat(c->opaque);
4654 }
4655
4656 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4657 struct module *module)
4658 {
4659 struct kvm_cpu_compat_check c;
4660 int r;
4661 int cpu;
4662
4663 r = kvm_arch_init(opaque);
4664 if (r)
4665 goto out_fail;
4666
4667 /*
4668 * kvm_arch_init makes sure there's at most one caller
4669 * for architectures that support multiple implementations,
4670 * like intel and amd on x86.
4671 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4672 * conflicts in case kvm is already setup for another implementation.
4673 */
4674 r = kvm_irqfd_init();
4675 if (r)
4676 goto out_irqfd;
4677
4678 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4679 r = -ENOMEM;
4680 goto out_free_0;
4681 }
4682
4683 r = kvm_arch_hardware_setup(opaque);
4684 if (r < 0)
4685 goto out_free_1;
4686
4687 c.ret = &r;
4688 c.opaque = opaque;
4689 for_each_online_cpu(cpu) {
4690 smp_call_function_single(cpu, check_processor_compat, &c, 1);
4691 if (r < 0)
4692 goto out_free_2;
4693 }
4694
4695 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4696 kvm_starting_cpu, kvm_dying_cpu);
4697 if (r)
4698 goto out_free_2;
4699 register_reboot_notifier(&kvm_reboot_notifier);
4700
4701 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4702 if (!vcpu_align)
4703 vcpu_align = __alignof__(struct kvm_vcpu);
4704 kvm_vcpu_cache =
4705 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4706 SLAB_ACCOUNT,
4707 offsetof(struct kvm_vcpu, arch),
4708 sizeof_field(struct kvm_vcpu, arch),
4709 NULL);
4710 if (!kvm_vcpu_cache) {
4711 r = -ENOMEM;
4712 goto out_free_3;
4713 }
4714
4715 r = kvm_async_pf_init();
4716 if (r)
4717 goto out_free;
4718
4719 kvm_chardev_ops.owner = module;
4720 kvm_vm_fops.owner = module;
4721 kvm_vcpu_fops.owner = module;
4722
4723 r = misc_register(&kvm_dev);
4724 if (r) {
4725 pr_err("kvm: misc device register failed\n");
4726 goto out_unreg;
4727 }
4728
4729 register_syscore_ops(&kvm_syscore_ops);
4730
4731 kvm_preempt_ops.sched_in = kvm_sched_in;
4732 kvm_preempt_ops.sched_out = kvm_sched_out;
4733
4734 kvm_init_debug();
4735
4736 r = kvm_vfio_ops_init();
4737 WARN_ON(r);
4738
4739 return 0;
4740
4741 out_unreg:
4742 kvm_async_pf_deinit();
4743 out_free:
4744 kmem_cache_destroy(kvm_vcpu_cache);
4745 out_free_3:
4746 unregister_reboot_notifier(&kvm_reboot_notifier);
4747 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4748 out_free_2:
4749 kvm_arch_hardware_unsetup();
4750 out_free_1:
4751 free_cpumask_var(cpus_hardware_enabled);
4752 out_free_0:
4753 kvm_irqfd_exit();
4754 out_irqfd:
4755 kvm_arch_exit();
4756 out_fail:
4757 return r;
4758 }
4759 EXPORT_SYMBOL_GPL(kvm_init);
4760
4761 void kvm_exit(void)
4762 {
4763 debugfs_remove_recursive(kvm_debugfs_dir);
4764 misc_deregister(&kvm_dev);
4765 kmem_cache_destroy(kvm_vcpu_cache);
4766 kvm_async_pf_deinit();
4767 unregister_syscore_ops(&kvm_syscore_ops);
4768 unregister_reboot_notifier(&kvm_reboot_notifier);
4769 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4770 on_each_cpu(hardware_disable_nolock, NULL, 1);
4771 kvm_arch_hardware_unsetup();
4772 kvm_arch_exit();
4773 kvm_irqfd_exit();
4774 free_cpumask_var(cpus_hardware_enabled);
4775 kvm_vfio_ops_exit();
4776 }
4777 EXPORT_SYMBOL_GPL(kvm_exit);
4778
4779 struct kvm_vm_worker_thread_context {
4780 struct kvm *kvm;
4781 struct task_struct *parent;
4782 struct completion init_done;
4783 kvm_vm_thread_fn_t thread_fn;
4784 uintptr_t data;
4785 int err;
4786 };
4787
4788 static int kvm_vm_worker_thread(void *context)
4789 {
4790 /*
4791 * The init_context is allocated on the stack of the parent thread, so
4792 * we have to locally copy anything that is needed beyond initialization
4793 */
4794 struct kvm_vm_worker_thread_context *init_context = context;
4795 struct kvm *kvm = init_context->kvm;
4796 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4797 uintptr_t data = init_context->data;
4798 int err;
4799
4800 err = kthread_park(current);
4801 /* kthread_park(current) is never supposed to return an error */
4802 WARN_ON(err != 0);
4803 if (err)
4804 goto init_complete;
4805
4806 err = cgroup_attach_task_all(init_context->parent, current);
4807 if (err) {
4808 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4809 __func__, err);
4810 goto init_complete;
4811 }
4812
4813 set_user_nice(current, task_nice(init_context->parent));
4814
4815 init_complete:
4816 init_context->err = err;
4817 complete(&init_context->init_done);
4818 init_context = NULL;
4819
4820 if (err)
4821 return err;
4822
4823 /* Wait to be woken up by the spawner before proceeding. */
4824 kthread_parkme();
4825
4826 if (!kthread_should_stop())
4827 err = thread_fn(kvm, data);
4828
4829 return err;
4830 }
4831
4832 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4833 uintptr_t data, const char *name,
4834 struct task_struct **thread_ptr)
4835 {
4836 struct kvm_vm_worker_thread_context init_context = {};
4837 struct task_struct *thread;
4838
4839 *thread_ptr = NULL;
4840 init_context.kvm = kvm;
4841 init_context.parent = current;
4842 init_context.thread_fn = thread_fn;
4843 init_context.data = data;
4844 init_completion(&init_context.init_done);
4845
4846 thread = kthread_run(kvm_vm_worker_thread, &init_context,
4847 "%s-%d", name, task_pid_nr(current));
4848 if (IS_ERR(thread))
4849 return PTR_ERR(thread);
4850
4851 /* kthread_run is never supposed to return NULL */
4852 WARN_ON(thread == NULL);
4853
4854 wait_for_completion(&init_context.init_done);
4855
4856 if (!init_context.err)
4857 *thread_ptr = thread;
4858
4859 return init_context.err;
4860 }