]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - virt/kvm/kvm_main.c
Merge remote-tracking branch 'regulator/topic/gpio' into regulator-next
[mirror_ubuntu-artful-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 /*
68 * Ordering of locks:
69 *
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71 */
72
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84
85 struct dentry *kvm_debugfs_dir;
86
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88 unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91 unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
100
101 static bool largepages_enabled = true;
102
103 bool kvm_is_mmio_pfn(pfn_t pfn)
104 {
105 if (pfn_valid(pfn)) {
106 int reserved;
107 struct page *tail = pfn_to_page(pfn);
108 struct page *head = compound_trans_head(tail);
109 reserved = PageReserved(head);
110 if (head != tail) {
111 /*
112 * "head" is not a dangling pointer
113 * (compound_trans_head takes care of that)
114 * but the hugepage may have been splitted
115 * from under us (and we may not hold a
116 * reference count on the head page so it can
117 * be reused before we run PageReferenced), so
118 * we've to check PageTail before returning
119 * what we just read.
120 */
121 smp_rmb();
122 if (PageTail(tail))
123 return reserved;
124 }
125 return PageReserved(tail);
126 }
127
128 return true;
129 }
130
131 /*
132 * Switches to specified vcpu, until a matching vcpu_put()
133 */
134 int vcpu_load(struct kvm_vcpu *vcpu)
135 {
136 int cpu;
137
138 if (mutex_lock_killable(&vcpu->mutex))
139 return -EINTR;
140 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
141 /* The thread running this VCPU changed. */
142 struct pid *oldpid = vcpu->pid;
143 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
144 rcu_assign_pointer(vcpu->pid, newpid);
145 synchronize_rcu();
146 put_pid(oldpid);
147 }
148 cpu = get_cpu();
149 preempt_notifier_register(&vcpu->preempt_notifier);
150 kvm_arch_vcpu_load(vcpu, cpu);
151 put_cpu();
152 return 0;
153 }
154
155 void vcpu_put(struct kvm_vcpu *vcpu)
156 {
157 preempt_disable();
158 kvm_arch_vcpu_put(vcpu);
159 preempt_notifier_unregister(&vcpu->preempt_notifier);
160 preempt_enable();
161 mutex_unlock(&vcpu->mutex);
162 }
163
164 static void ack_flush(void *_completed)
165 {
166 }
167
168 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
169 {
170 int i, cpu, me;
171 cpumask_var_t cpus;
172 bool called = true;
173 struct kvm_vcpu *vcpu;
174
175 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
176
177 me = get_cpu();
178 kvm_for_each_vcpu(i, vcpu, kvm) {
179 kvm_make_request(req, vcpu);
180 cpu = vcpu->cpu;
181
182 /* Set ->requests bit before we read ->mode */
183 smp_mb();
184
185 if (cpus != NULL && cpu != -1 && cpu != me &&
186 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
187 cpumask_set_cpu(cpu, cpus);
188 }
189 if (unlikely(cpus == NULL))
190 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
191 else if (!cpumask_empty(cpus))
192 smp_call_function_many(cpus, ack_flush, NULL, 1);
193 else
194 called = false;
195 put_cpu();
196 free_cpumask_var(cpus);
197 return called;
198 }
199
200 void kvm_flush_remote_tlbs(struct kvm *kvm)
201 {
202 long dirty_count = kvm->tlbs_dirty;
203
204 smp_mb();
205 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
206 ++kvm->stat.remote_tlb_flush;
207 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
208 }
209
210 void kvm_reload_remote_mmus(struct kvm *kvm)
211 {
212 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
213 }
214
215 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
216 {
217 struct page *page;
218 int r;
219
220 mutex_init(&vcpu->mutex);
221 vcpu->cpu = -1;
222 vcpu->kvm = kvm;
223 vcpu->vcpu_id = id;
224 vcpu->pid = NULL;
225 init_waitqueue_head(&vcpu->wq);
226 kvm_async_pf_vcpu_init(vcpu);
227
228 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
229 if (!page) {
230 r = -ENOMEM;
231 goto fail;
232 }
233 vcpu->run = page_address(page);
234
235 kvm_vcpu_set_in_spin_loop(vcpu, false);
236 kvm_vcpu_set_dy_eligible(vcpu, false);
237
238 r = kvm_arch_vcpu_init(vcpu);
239 if (r < 0)
240 goto fail_free_run;
241 return 0;
242
243 fail_free_run:
244 free_page((unsigned long)vcpu->run);
245 fail:
246 return r;
247 }
248 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
249
250 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
251 {
252 put_pid(vcpu->pid);
253 kvm_arch_vcpu_uninit(vcpu);
254 free_page((unsigned long)vcpu->run);
255 }
256 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
257
258 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
259 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
260 {
261 return container_of(mn, struct kvm, mmu_notifier);
262 }
263
264 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
265 struct mm_struct *mm,
266 unsigned long address)
267 {
268 struct kvm *kvm = mmu_notifier_to_kvm(mn);
269 int need_tlb_flush, idx;
270
271 /*
272 * When ->invalidate_page runs, the linux pte has been zapped
273 * already but the page is still allocated until
274 * ->invalidate_page returns. So if we increase the sequence
275 * here the kvm page fault will notice if the spte can't be
276 * established because the page is going to be freed. If
277 * instead the kvm page fault establishes the spte before
278 * ->invalidate_page runs, kvm_unmap_hva will release it
279 * before returning.
280 *
281 * The sequence increase only need to be seen at spin_unlock
282 * time, and not at spin_lock time.
283 *
284 * Increasing the sequence after the spin_unlock would be
285 * unsafe because the kvm page fault could then establish the
286 * pte after kvm_unmap_hva returned, without noticing the page
287 * is going to be freed.
288 */
289 idx = srcu_read_lock(&kvm->srcu);
290 spin_lock(&kvm->mmu_lock);
291
292 kvm->mmu_notifier_seq++;
293 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
294 /* we've to flush the tlb before the pages can be freed */
295 if (need_tlb_flush)
296 kvm_flush_remote_tlbs(kvm);
297
298 spin_unlock(&kvm->mmu_lock);
299 srcu_read_unlock(&kvm->srcu, idx);
300 }
301
302 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
303 struct mm_struct *mm,
304 unsigned long address,
305 pte_t pte)
306 {
307 struct kvm *kvm = mmu_notifier_to_kvm(mn);
308 int idx;
309
310 idx = srcu_read_lock(&kvm->srcu);
311 spin_lock(&kvm->mmu_lock);
312 kvm->mmu_notifier_seq++;
313 kvm_set_spte_hva(kvm, address, pte);
314 spin_unlock(&kvm->mmu_lock);
315 srcu_read_unlock(&kvm->srcu, idx);
316 }
317
318 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
319 struct mm_struct *mm,
320 unsigned long start,
321 unsigned long end)
322 {
323 struct kvm *kvm = mmu_notifier_to_kvm(mn);
324 int need_tlb_flush = 0, idx;
325
326 idx = srcu_read_lock(&kvm->srcu);
327 spin_lock(&kvm->mmu_lock);
328 /*
329 * The count increase must become visible at unlock time as no
330 * spte can be established without taking the mmu_lock and
331 * count is also read inside the mmu_lock critical section.
332 */
333 kvm->mmu_notifier_count++;
334 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
335 need_tlb_flush |= kvm->tlbs_dirty;
336 /* we've to flush the tlb before the pages can be freed */
337 if (need_tlb_flush)
338 kvm_flush_remote_tlbs(kvm);
339
340 spin_unlock(&kvm->mmu_lock);
341 srcu_read_unlock(&kvm->srcu, idx);
342 }
343
344 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
345 struct mm_struct *mm,
346 unsigned long start,
347 unsigned long end)
348 {
349 struct kvm *kvm = mmu_notifier_to_kvm(mn);
350
351 spin_lock(&kvm->mmu_lock);
352 /*
353 * This sequence increase will notify the kvm page fault that
354 * the page that is going to be mapped in the spte could have
355 * been freed.
356 */
357 kvm->mmu_notifier_seq++;
358 smp_wmb();
359 /*
360 * The above sequence increase must be visible before the
361 * below count decrease, which is ensured by the smp_wmb above
362 * in conjunction with the smp_rmb in mmu_notifier_retry().
363 */
364 kvm->mmu_notifier_count--;
365 spin_unlock(&kvm->mmu_lock);
366
367 BUG_ON(kvm->mmu_notifier_count < 0);
368 }
369
370 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
371 struct mm_struct *mm,
372 unsigned long address)
373 {
374 struct kvm *kvm = mmu_notifier_to_kvm(mn);
375 int young, idx;
376
377 idx = srcu_read_lock(&kvm->srcu);
378 spin_lock(&kvm->mmu_lock);
379
380 young = kvm_age_hva(kvm, address);
381 if (young)
382 kvm_flush_remote_tlbs(kvm);
383
384 spin_unlock(&kvm->mmu_lock);
385 srcu_read_unlock(&kvm->srcu, idx);
386
387 return young;
388 }
389
390 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
391 struct mm_struct *mm,
392 unsigned long address)
393 {
394 struct kvm *kvm = mmu_notifier_to_kvm(mn);
395 int young, idx;
396
397 idx = srcu_read_lock(&kvm->srcu);
398 spin_lock(&kvm->mmu_lock);
399 young = kvm_test_age_hva(kvm, address);
400 spin_unlock(&kvm->mmu_lock);
401 srcu_read_unlock(&kvm->srcu, idx);
402
403 return young;
404 }
405
406 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
407 struct mm_struct *mm)
408 {
409 struct kvm *kvm = mmu_notifier_to_kvm(mn);
410 int idx;
411
412 idx = srcu_read_lock(&kvm->srcu);
413 kvm_arch_flush_shadow_all(kvm);
414 srcu_read_unlock(&kvm->srcu, idx);
415 }
416
417 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
418 .invalidate_page = kvm_mmu_notifier_invalidate_page,
419 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
420 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
421 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
422 .test_young = kvm_mmu_notifier_test_young,
423 .change_pte = kvm_mmu_notifier_change_pte,
424 .release = kvm_mmu_notifier_release,
425 };
426
427 static int kvm_init_mmu_notifier(struct kvm *kvm)
428 {
429 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
430 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
431 }
432
433 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
434
435 static int kvm_init_mmu_notifier(struct kvm *kvm)
436 {
437 return 0;
438 }
439
440 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
441
442 static void kvm_init_memslots_id(struct kvm *kvm)
443 {
444 int i;
445 struct kvm_memslots *slots = kvm->memslots;
446
447 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
448 slots->id_to_index[i] = slots->memslots[i].id = i;
449 }
450
451 static struct kvm *kvm_create_vm(unsigned long type)
452 {
453 int r, i;
454 struct kvm *kvm = kvm_arch_alloc_vm();
455
456 if (!kvm)
457 return ERR_PTR(-ENOMEM);
458
459 r = kvm_arch_init_vm(kvm, type);
460 if (r)
461 goto out_err_nodisable;
462
463 r = hardware_enable_all();
464 if (r)
465 goto out_err_nodisable;
466
467 #ifdef CONFIG_HAVE_KVM_IRQCHIP
468 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
469 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
470 #endif
471
472 r = -ENOMEM;
473 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
474 if (!kvm->memslots)
475 goto out_err_nosrcu;
476 kvm_init_memslots_id(kvm);
477 if (init_srcu_struct(&kvm->srcu))
478 goto out_err_nosrcu;
479 for (i = 0; i < KVM_NR_BUSES; i++) {
480 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
481 GFP_KERNEL);
482 if (!kvm->buses[i])
483 goto out_err;
484 }
485
486 spin_lock_init(&kvm->mmu_lock);
487 kvm->mm = current->mm;
488 atomic_inc(&kvm->mm->mm_count);
489 kvm_eventfd_init(kvm);
490 mutex_init(&kvm->lock);
491 mutex_init(&kvm->irq_lock);
492 mutex_init(&kvm->slots_lock);
493 atomic_set(&kvm->users_count, 1);
494
495 r = kvm_init_mmu_notifier(kvm);
496 if (r)
497 goto out_err;
498
499 raw_spin_lock(&kvm_lock);
500 list_add(&kvm->vm_list, &vm_list);
501 raw_spin_unlock(&kvm_lock);
502
503 return kvm;
504
505 out_err:
506 cleanup_srcu_struct(&kvm->srcu);
507 out_err_nosrcu:
508 hardware_disable_all();
509 out_err_nodisable:
510 for (i = 0; i < KVM_NR_BUSES; i++)
511 kfree(kvm->buses[i]);
512 kfree(kvm->memslots);
513 kvm_arch_free_vm(kvm);
514 return ERR_PTR(r);
515 }
516
517 /*
518 * Avoid using vmalloc for a small buffer.
519 * Should not be used when the size is statically known.
520 */
521 void *kvm_kvzalloc(unsigned long size)
522 {
523 if (size > PAGE_SIZE)
524 return vzalloc(size);
525 else
526 return kzalloc(size, GFP_KERNEL);
527 }
528
529 void kvm_kvfree(const void *addr)
530 {
531 if (is_vmalloc_addr(addr))
532 vfree(addr);
533 else
534 kfree(addr);
535 }
536
537 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
538 {
539 if (!memslot->dirty_bitmap)
540 return;
541
542 kvm_kvfree(memslot->dirty_bitmap);
543 memslot->dirty_bitmap = NULL;
544 }
545
546 /*
547 * Free any memory in @free but not in @dont.
548 */
549 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
550 struct kvm_memory_slot *dont)
551 {
552 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
553 kvm_destroy_dirty_bitmap(free);
554
555 kvm_arch_free_memslot(free, dont);
556
557 free->npages = 0;
558 }
559
560 void kvm_free_physmem(struct kvm *kvm)
561 {
562 struct kvm_memslots *slots = kvm->memslots;
563 struct kvm_memory_slot *memslot;
564
565 kvm_for_each_memslot(memslot, slots)
566 kvm_free_physmem_slot(memslot, NULL);
567
568 kfree(kvm->memslots);
569 }
570
571 static void kvm_destroy_vm(struct kvm *kvm)
572 {
573 int i;
574 struct mm_struct *mm = kvm->mm;
575
576 kvm_arch_sync_events(kvm);
577 raw_spin_lock(&kvm_lock);
578 list_del(&kvm->vm_list);
579 raw_spin_unlock(&kvm_lock);
580 kvm_free_irq_routing(kvm);
581 for (i = 0; i < KVM_NR_BUSES; i++)
582 kvm_io_bus_destroy(kvm->buses[i]);
583 kvm_coalesced_mmio_free(kvm);
584 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
585 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
586 #else
587 kvm_arch_flush_shadow_all(kvm);
588 #endif
589 kvm_arch_destroy_vm(kvm);
590 kvm_free_physmem(kvm);
591 cleanup_srcu_struct(&kvm->srcu);
592 kvm_arch_free_vm(kvm);
593 hardware_disable_all();
594 mmdrop(mm);
595 }
596
597 void kvm_get_kvm(struct kvm *kvm)
598 {
599 atomic_inc(&kvm->users_count);
600 }
601 EXPORT_SYMBOL_GPL(kvm_get_kvm);
602
603 void kvm_put_kvm(struct kvm *kvm)
604 {
605 if (atomic_dec_and_test(&kvm->users_count))
606 kvm_destroy_vm(kvm);
607 }
608 EXPORT_SYMBOL_GPL(kvm_put_kvm);
609
610
611 static int kvm_vm_release(struct inode *inode, struct file *filp)
612 {
613 struct kvm *kvm = filp->private_data;
614
615 kvm_irqfd_release(kvm);
616
617 kvm_put_kvm(kvm);
618 return 0;
619 }
620
621 /*
622 * Allocation size is twice as large as the actual dirty bitmap size.
623 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
624 */
625 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
626 {
627 #ifndef CONFIG_S390
628 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
629
630 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
631 if (!memslot->dirty_bitmap)
632 return -ENOMEM;
633
634 #endif /* !CONFIG_S390 */
635 return 0;
636 }
637
638 static int cmp_memslot(const void *slot1, const void *slot2)
639 {
640 struct kvm_memory_slot *s1, *s2;
641
642 s1 = (struct kvm_memory_slot *)slot1;
643 s2 = (struct kvm_memory_slot *)slot2;
644
645 if (s1->npages < s2->npages)
646 return 1;
647 if (s1->npages > s2->npages)
648 return -1;
649
650 return 0;
651 }
652
653 /*
654 * Sort the memslots base on its size, so the larger slots
655 * will get better fit.
656 */
657 static void sort_memslots(struct kvm_memslots *slots)
658 {
659 int i;
660
661 sort(slots->memslots, KVM_MEM_SLOTS_NUM,
662 sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
663
664 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
665 slots->id_to_index[slots->memslots[i].id] = i;
666 }
667
668 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
669 {
670 if (new) {
671 int id = new->id;
672 struct kvm_memory_slot *old = id_to_memslot(slots, id);
673 unsigned long npages = old->npages;
674
675 *old = *new;
676 if (new->npages != npages)
677 sort_memslots(slots);
678 }
679
680 slots->generation++;
681 }
682
683 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
684 {
685 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
686
687 #ifdef KVM_CAP_READONLY_MEM
688 valid_flags |= KVM_MEM_READONLY;
689 #endif
690
691 if (mem->flags & ~valid_flags)
692 return -EINVAL;
693
694 return 0;
695 }
696
697 /*
698 * Allocate some memory and give it an address in the guest physical address
699 * space.
700 *
701 * Discontiguous memory is allowed, mostly for framebuffers.
702 *
703 * Must be called holding mmap_sem for write.
704 */
705 int __kvm_set_memory_region(struct kvm *kvm,
706 struct kvm_userspace_memory_region *mem,
707 int user_alloc)
708 {
709 int r;
710 gfn_t base_gfn;
711 unsigned long npages;
712 unsigned long i;
713 struct kvm_memory_slot *memslot;
714 struct kvm_memory_slot old, new;
715 struct kvm_memslots *slots, *old_memslots;
716
717 r = check_memory_region_flags(mem);
718 if (r)
719 goto out;
720
721 r = -EINVAL;
722 /* General sanity checks */
723 if (mem->memory_size & (PAGE_SIZE - 1))
724 goto out;
725 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
726 goto out;
727 /* We can read the guest memory with __xxx_user() later on. */
728 if (user_alloc &&
729 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
730 !access_ok(VERIFY_WRITE,
731 (void __user *)(unsigned long)mem->userspace_addr,
732 mem->memory_size)))
733 goto out;
734 if (mem->slot >= KVM_MEM_SLOTS_NUM)
735 goto out;
736 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
737 goto out;
738
739 memslot = id_to_memslot(kvm->memslots, mem->slot);
740 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
741 npages = mem->memory_size >> PAGE_SHIFT;
742
743 r = -EINVAL;
744 if (npages > KVM_MEM_MAX_NR_PAGES)
745 goto out;
746
747 if (!npages)
748 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
749
750 new = old = *memslot;
751
752 new.id = mem->slot;
753 new.base_gfn = base_gfn;
754 new.npages = npages;
755 new.flags = mem->flags;
756
757 /* Disallow changing a memory slot's size. */
758 r = -EINVAL;
759 if (npages && old.npages && npages != old.npages)
760 goto out_free;
761
762 /* Check for overlaps */
763 r = -EEXIST;
764 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
765 struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
766
767 if (s == memslot || !s->npages)
768 continue;
769 if (!((base_gfn + npages <= s->base_gfn) ||
770 (base_gfn >= s->base_gfn + s->npages)))
771 goto out_free;
772 }
773
774 /* Free page dirty bitmap if unneeded */
775 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
776 new.dirty_bitmap = NULL;
777
778 r = -ENOMEM;
779
780 /* Allocate if a slot is being created */
781 if (npages && !old.npages) {
782 new.user_alloc = user_alloc;
783 new.userspace_addr = mem->userspace_addr;
784
785 if (kvm_arch_create_memslot(&new, npages))
786 goto out_free;
787 }
788
789 /* Allocate page dirty bitmap if needed */
790 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
791 if (kvm_create_dirty_bitmap(&new) < 0)
792 goto out_free;
793 /* destroy any largepage mappings for dirty tracking */
794 }
795
796 if (!npages || base_gfn != old.base_gfn) {
797 struct kvm_memory_slot *slot;
798
799 r = -ENOMEM;
800 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
801 GFP_KERNEL);
802 if (!slots)
803 goto out_free;
804 slot = id_to_memslot(slots, mem->slot);
805 slot->flags |= KVM_MEMSLOT_INVALID;
806
807 update_memslots(slots, NULL);
808
809 old_memslots = kvm->memslots;
810 rcu_assign_pointer(kvm->memslots, slots);
811 synchronize_srcu_expedited(&kvm->srcu);
812 /* From this point no new shadow pages pointing to a deleted,
813 * or moved, memslot will be created.
814 *
815 * validation of sp->gfn happens in:
816 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
817 * - kvm_is_visible_gfn (mmu_check_roots)
818 */
819 kvm_arch_flush_shadow_memslot(kvm, slot);
820 kfree(old_memslots);
821 }
822
823 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
824 if (r)
825 goto out_free;
826
827 /* map/unmap the pages in iommu page table */
828 if (npages) {
829 r = kvm_iommu_map_pages(kvm, &new);
830 if (r)
831 goto out_free;
832 } else
833 kvm_iommu_unmap_pages(kvm, &old);
834
835 r = -ENOMEM;
836 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
837 GFP_KERNEL);
838 if (!slots)
839 goto out_free;
840
841 /* actual memory is freed via old in kvm_free_physmem_slot below */
842 if (!npages) {
843 new.dirty_bitmap = NULL;
844 memset(&new.arch, 0, sizeof(new.arch));
845 }
846
847 update_memslots(slots, &new);
848 old_memslots = kvm->memslots;
849 rcu_assign_pointer(kvm->memslots, slots);
850 synchronize_srcu_expedited(&kvm->srcu);
851
852 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
853
854 kvm_free_physmem_slot(&old, &new);
855 kfree(old_memslots);
856
857 return 0;
858
859 out_free:
860 kvm_free_physmem_slot(&new, &old);
861 out:
862 return r;
863
864 }
865 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
866
867 int kvm_set_memory_region(struct kvm *kvm,
868 struct kvm_userspace_memory_region *mem,
869 int user_alloc)
870 {
871 int r;
872
873 mutex_lock(&kvm->slots_lock);
874 r = __kvm_set_memory_region(kvm, mem, user_alloc);
875 mutex_unlock(&kvm->slots_lock);
876 return r;
877 }
878 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
879
880 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
881 struct
882 kvm_userspace_memory_region *mem,
883 int user_alloc)
884 {
885 if (mem->slot >= KVM_MEMORY_SLOTS)
886 return -EINVAL;
887 return kvm_set_memory_region(kvm, mem, user_alloc);
888 }
889
890 int kvm_get_dirty_log(struct kvm *kvm,
891 struct kvm_dirty_log *log, int *is_dirty)
892 {
893 struct kvm_memory_slot *memslot;
894 int r, i;
895 unsigned long n;
896 unsigned long any = 0;
897
898 r = -EINVAL;
899 if (log->slot >= KVM_MEMORY_SLOTS)
900 goto out;
901
902 memslot = id_to_memslot(kvm->memslots, log->slot);
903 r = -ENOENT;
904 if (!memslot->dirty_bitmap)
905 goto out;
906
907 n = kvm_dirty_bitmap_bytes(memslot);
908
909 for (i = 0; !any && i < n/sizeof(long); ++i)
910 any = memslot->dirty_bitmap[i];
911
912 r = -EFAULT;
913 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
914 goto out;
915
916 if (any)
917 *is_dirty = 1;
918
919 r = 0;
920 out:
921 return r;
922 }
923
924 bool kvm_largepages_enabled(void)
925 {
926 return largepages_enabled;
927 }
928
929 void kvm_disable_largepages(void)
930 {
931 largepages_enabled = false;
932 }
933 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
934
935 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
936 {
937 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
938 }
939 EXPORT_SYMBOL_GPL(gfn_to_memslot);
940
941 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
942 {
943 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
944
945 if (!memslot || memslot->id >= KVM_MEMORY_SLOTS ||
946 memslot->flags & KVM_MEMSLOT_INVALID)
947 return 0;
948
949 return 1;
950 }
951 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
952
953 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
954 {
955 struct vm_area_struct *vma;
956 unsigned long addr, size;
957
958 size = PAGE_SIZE;
959
960 addr = gfn_to_hva(kvm, gfn);
961 if (kvm_is_error_hva(addr))
962 return PAGE_SIZE;
963
964 down_read(&current->mm->mmap_sem);
965 vma = find_vma(current->mm, addr);
966 if (!vma)
967 goto out;
968
969 size = vma_kernel_pagesize(vma);
970
971 out:
972 up_read(&current->mm->mmap_sem);
973
974 return size;
975 }
976
977 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
978 {
979 return slot->flags & KVM_MEM_READONLY;
980 }
981
982 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
983 gfn_t *nr_pages, bool write)
984 {
985 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
986 return KVM_HVA_ERR_BAD;
987
988 if (memslot_is_readonly(slot) && write)
989 return KVM_HVA_ERR_RO_BAD;
990
991 if (nr_pages)
992 *nr_pages = slot->npages - (gfn - slot->base_gfn);
993
994 return __gfn_to_hva_memslot(slot, gfn);
995 }
996
997 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
998 gfn_t *nr_pages)
999 {
1000 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1001 }
1002
1003 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1004 gfn_t gfn)
1005 {
1006 return gfn_to_hva_many(slot, gfn, NULL);
1007 }
1008 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1009
1010 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1011 {
1012 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1013 }
1014 EXPORT_SYMBOL_GPL(gfn_to_hva);
1015
1016 /*
1017 * The hva returned by this function is only allowed to be read.
1018 * It should pair with kvm_read_hva() or kvm_read_hva_atomic().
1019 */
1020 static unsigned long gfn_to_hva_read(struct kvm *kvm, gfn_t gfn)
1021 {
1022 return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false);
1023 }
1024
1025 static int kvm_read_hva(void *data, void __user *hva, int len)
1026 {
1027 return __copy_from_user(data, hva, len);
1028 }
1029
1030 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1031 {
1032 return __copy_from_user_inatomic(data, hva, len);
1033 }
1034
1035 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1036 unsigned long start, int write, struct page **page)
1037 {
1038 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1039
1040 if (write)
1041 flags |= FOLL_WRITE;
1042
1043 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1044 }
1045
1046 static inline int check_user_page_hwpoison(unsigned long addr)
1047 {
1048 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1049
1050 rc = __get_user_pages(current, current->mm, addr, 1,
1051 flags, NULL, NULL, NULL);
1052 return rc == -EHWPOISON;
1053 }
1054
1055 /*
1056 * The atomic path to get the writable pfn which will be stored in @pfn,
1057 * true indicates success, otherwise false is returned.
1058 */
1059 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1060 bool write_fault, bool *writable, pfn_t *pfn)
1061 {
1062 struct page *page[1];
1063 int npages;
1064
1065 if (!(async || atomic))
1066 return false;
1067
1068 /*
1069 * Fast pin a writable pfn only if it is a write fault request
1070 * or the caller allows to map a writable pfn for a read fault
1071 * request.
1072 */
1073 if (!(write_fault || writable))
1074 return false;
1075
1076 npages = __get_user_pages_fast(addr, 1, 1, page);
1077 if (npages == 1) {
1078 *pfn = page_to_pfn(page[0]);
1079
1080 if (writable)
1081 *writable = true;
1082 return true;
1083 }
1084
1085 return false;
1086 }
1087
1088 /*
1089 * The slow path to get the pfn of the specified host virtual address,
1090 * 1 indicates success, -errno is returned if error is detected.
1091 */
1092 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1093 bool *writable, pfn_t *pfn)
1094 {
1095 struct page *page[1];
1096 int npages = 0;
1097
1098 might_sleep();
1099
1100 if (writable)
1101 *writable = write_fault;
1102
1103 if (async) {
1104 down_read(&current->mm->mmap_sem);
1105 npages = get_user_page_nowait(current, current->mm,
1106 addr, write_fault, page);
1107 up_read(&current->mm->mmap_sem);
1108 } else
1109 npages = get_user_pages_fast(addr, 1, write_fault,
1110 page);
1111 if (npages != 1)
1112 return npages;
1113
1114 /* map read fault as writable if possible */
1115 if (unlikely(!write_fault) && writable) {
1116 struct page *wpage[1];
1117
1118 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1119 if (npages == 1) {
1120 *writable = true;
1121 put_page(page[0]);
1122 page[0] = wpage[0];
1123 }
1124
1125 npages = 1;
1126 }
1127 *pfn = page_to_pfn(page[0]);
1128 return npages;
1129 }
1130
1131 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1132 {
1133 if (unlikely(!(vma->vm_flags & VM_READ)))
1134 return false;
1135
1136 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1137 return false;
1138
1139 return true;
1140 }
1141
1142 /*
1143 * Pin guest page in memory and return its pfn.
1144 * @addr: host virtual address which maps memory to the guest
1145 * @atomic: whether this function can sleep
1146 * @async: whether this function need to wait IO complete if the
1147 * host page is not in the memory
1148 * @write_fault: whether we should get a writable host page
1149 * @writable: whether it allows to map a writable host page for !@write_fault
1150 *
1151 * The function will map a writable host page for these two cases:
1152 * 1): @write_fault = true
1153 * 2): @write_fault = false && @writable, @writable will tell the caller
1154 * whether the mapping is writable.
1155 */
1156 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1157 bool write_fault, bool *writable)
1158 {
1159 struct vm_area_struct *vma;
1160 pfn_t pfn = 0;
1161 int npages;
1162
1163 /* we can do it either atomically or asynchronously, not both */
1164 BUG_ON(atomic && async);
1165
1166 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1167 return pfn;
1168
1169 if (atomic)
1170 return KVM_PFN_ERR_FAULT;
1171
1172 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1173 if (npages == 1)
1174 return pfn;
1175
1176 down_read(&current->mm->mmap_sem);
1177 if (npages == -EHWPOISON ||
1178 (!async && check_user_page_hwpoison(addr))) {
1179 pfn = KVM_PFN_ERR_HWPOISON;
1180 goto exit;
1181 }
1182
1183 vma = find_vma_intersection(current->mm, addr, addr + 1);
1184
1185 if (vma == NULL)
1186 pfn = KVM_PFN_ERR_FAULT;
1187 else if ((vma->vm_flags & VM_PFNMAP)) {
1188 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1189 vma->vm_pgoff;
1190 BUG_ON(!kvm_is_mmio_pfn(pfn));
1191 } else {
1192 if (async && vma_is_valid(vma, write_fault))
1193 *async = true;
1194 pfn = KVM_PFN_ERR_FAULT;
1195 }
1196 exit:
1197 up_read(&current->mm->mmap_sem);
1198 return pfn;
1199 }
1200
1201 static pfn_t
1202 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1203 bool *async, bool write_fault, bool *writable)
1204 {
1205 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1206
1207 if (addr == KVM_HVA_ERR_RO_BAD)
1208 return KVM_PFN_ERR_RO_FAULT;
1209
1210 if (kvm_is_error_hva(addr))
1211 return KVM_PFN_ERR_BAD;
1212
1213 /* Do not map writable pfn in the readonly memslot. */
1214 if (writable && memslot_is_readonly(slot)) {
1215 *writable = false;
1216 writable = NULL;
1217 }
1218
1219 return hva_to_pfn(addr, atomic, async, write_fault,
1220 writable);
1221 }
1222
1223 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1224 bool write_fault, bool *writable)
1225 {
1226 struct kvm_memory_slot *slot;
1227
1228 if (async)
1229 *async = false;
1230
1231 slot = gfn_to_memslot(kvm, gfn);
1232
1233 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1234 writable);
1235 }
1236
1237 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1238 {
1239 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1240 }
1241 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1242
1243 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1244 bool write_fault, bool *writable)
1245 {
1246 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1247 }
1248 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1249
1250 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1251 {
1252 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1253 }
1254 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1255
1256 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1257 bool *writable)
1258 {
1259 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1260 }
1261 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1262
1263 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1264 {
1265 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1266 }
1267
1268 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1269 {
1270 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1271 }
1272 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1273
1274 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1275 int nr_pages)
1276 {
1277 unsigned long addr;
1278 gfn_t entry;
1279
1280 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1281 if (kvm_is_error_hva(addr))
1282 return -1;
1283
1284 if (entry < nr_pages)
1285 return 0;
1286
1287 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1288 }
1289 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1290
1291 static struct page *kvm_pfn_to_page(pfn_t pfn)
1292 {
1293 if (is_error_pfn(pfn))
1294 return KVM_ERR_PTR_BAD_PAGE;
1295
1296 if (kvm_is_mmio_pfn(pfn)) {
1297 WARN_ON(1);
1298 return KVM_ERR_PTR_BAD_PAGE;
1299 }
1300
1301 return pfn_to_page(pfn);
1302 }
1303
1304 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1305 {
1306 pfn_t pfn;
1307
1308 pfn = gfn_to_pfn(kvm, gfn);
1309
1310 return kvm_pfn_to_page(pfn);
1311 }
1312
1313 EXPORT_SYMBOL_GPL(gfn_to_page);
1314
1315 void kvm_release_page_clean(struct page *page)
1316 {
1317 WARN_ON(is_error_page(page));
1318
1319 kvm_release_pfn_clean(page_to_pfn(page));
1320 }
1321 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1322
1323 void kvm_release_pfn_clean(pfn_t pfn)
1324 {
1325 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1326 put_page(pfn_to_page(pfn));
1327 }
1328 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1329
1330 void kvm_release_page_dirty(struct page *page)
1331 {
1332 WARN_ON(is_error_page(page));
1333
1334 kvm_release_pfn_dirty(page_to_pfn(page));
1335 }
1336 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1337
1338 void kvm_release_pfn_dirty(pfn_t pfn)
1339 {
1340 kvm_set_pfn_dirty(pfn);
1341 kvm_release_pfn_clean(pfn);
1342 }
1343 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1344
1345 void kvm_set_page_dirty(struct page *page)
1346 {
1347 kvm_set_pfn_dirty(page_to_pfn(page));
1348 }
1349 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1350
1351 void kvm_set_pfn_dirty(pfn_t pfn)
1352 {
1353 if (!kvm_is_mmio_pfn(pfn)) {
1354 struct page *page = pfn_to_page(pfn);
1355 if (!PageReserved(page))
1356 SetPageDirty(page);
1357 }
1358 }
1359 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1360
1361 void kvm_set_pfn_accessed(pfn_t pfn)
1362 {
1363 if (!kvm_is_mmio_pfn(pfn))
1364 mark_page_accessed(pfn_to_page(pfn));
1365 }
1366 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1367
1368 void kvm_get_pfn(pfn_t pfn)
1369 {
1370 if (!kvm_is_mmio_pfn(pfn))
1371 get_page(pfn_to_page(pfn));
1372 }
1373 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1374
1375 static int next_segment(unsigned long len, int offset)
1376 {
1377 if (len > PAGE_SIZE - offset)
1378 return PAGE_SIZE - offset;
1379 else
1380 return len;
1381 }
1382
1383 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1384 int len)
1385 {
1386 int r;
1387 unsigned long addr;
1388
1389 addr = gfn_to_hva_read(kvm, gfn);
1390 if (kvm_is_error_hva(addr))
1391 return -EFAULT;
1392 r = kvm_read_hva(data, (void __user *)addr + offset, len);
1393 if (r)
1394 return -EFAULT;
1395 return 0;
1396 }
1397 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1398
1399 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1400 {
1401 gfn_t gfn = gpa >> PAGE_SHIFT;
1402 int seg;
1403 int offset = offset_in_page(gpa);
1404 int ret;
1405
1406 while ((seg = next_segment(len, offset)) != 0) {
1407 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1408 if (ret < 0)
1409 return ret;
1410 offset = 0;
1411 len -= seg;
1412 data += seg;
1413 ++gfn;
1414 }
1415 return 0;
1416 }
1417 EXPORT_SYMBOL_GPL(kvm_read_guest);
1418
1419 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1420 unsigned long len)
1421 {
1422 int r;
1423 unsigned long addr;
1424 gfn_t gfn = gpa >> PAGE_SHIFT;
1425 int offset = offset_in_page(gpa);
1426
1427 addr = gfn_to_hva_read(kvm, gfn);
1428 if (kvm_is_error_hva(addr))
1429 return -EFAULT;
1430 pagefault_disable();
1431 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1432 pagefault_enable();
1433 if (r)
1434 return -EFAULT;
1435 return 0;
1436 }
1437 EXPORT_SYMBOL(kvm_read_guest_atomic);
1438
1439 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1440 int offset, int len)
1441 {
1442 int r;
1443 unsigned long addr;
1444
1445 addr = gfn_to_hva(kvm, gfn);
1446 if (kvm_is_error_hva(addr))
1447 return -EFAULT;
1448 r = __copy_to_user((void __user *)addr + offset, data, len);
1449 if (r)
1450 return -EFAULT;
1451 mark_page_dirty(kvm, gfn);
1452 return 0;
1453 }
1454 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1455
1456 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1457 unsigned long len)
1458 {
1459 gfn_t gfn = gpa >> PAGE_SHIFT;
1460 int seg;
1461 int offset = offset_in_page(gpa);
1462 int ret;
1463
1464 while ((seg = next_segment(len, offset)) != 0) {
1465 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1466 if (ret < 0)
1467 return ret;
1468 offset = 0;
1469 len -= seg;
1470 data += seg;
1471 ++gfn;
1472 }
1473 return 0;
1474 }
1475
1476 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1477 gpa_t gpa)
1478 {
1479 struct kvm_memslots *slots = kvm_memslots(kvm);
1480 int offset = offset_in_page(gpa);
1481 gfn_t gfn = gpa >> PAGE_SHIFT;
1482
1483 ghc->gpa = gpa;
1484 ghc->generation = slots->generation;
1485 ghc->memslot = gfn_to_memslot(kvm, gfn);
1486 ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1487 if (!kvm_is_error_hva(ghc->hva))
1488 ghc->hva += offset;
1489 else
1490 return -EFAULT;
1491
1492 return 0;
1493 }
1494 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1495
1496 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1497 void *data, unsigned long len)
1498 {
1499 struct kvm_memslots *slots = kvm_memslots(kvm);
1500 int r;
1501
1502 if (slots->generation != ghc->generation)
1503 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1504
1505 if (kvm_is_error_hva(ghc->hva))
1506 return -EFAULT;
1507
1508 r = __copy_to_user((void __user *)ghc->hva, data, len);
1509 if (r)
1510 return -EFAULT;
1511 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1512
1513 return 0;
1514 }
1515 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1516
1517 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1518 void *data, unsigned long len)
1519 {
1520 struct kvm_memslots *slots = kvm_memslots(kvm);
1521 int r;
1522
1523 if (slots->generation != ghc->generation)
1524 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1525
1526 if (kvm_is_error_hva(ghc->hva))
1527 return -EFAULT;
1528
1529 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1530 if (r)
1531 return -EFAULT;
1532
1533 return 0;
1534 }
1535 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1536
1537 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1538 {
1539 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1540 offset, len);
1541 }
1542 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1543
1544 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1545 {
1546 gfn_t gfn = gpa >> PAGE_SHIFT;
1547 int seg;
1548 int offset = offset_in_page(gpa);
1549 int ret;
1550
1551 while ((seg = next_segment(len, offset)) != 0) {
1552 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1553 if (ret < 0)
1554 return ret;
1555 offset = 0;
1556 len -= seg;
1557 ++gfn;
1558 }
1559 return 0;
1560 }
1561 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1562
1563 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1564 gfn_t gfn)
1565 {
1566 if (memslot && memslot->dirty_bitmap) {
1567 unsigned long rel_gfn = gfn - memslot->base_gfn;
1568
1569 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1570 }
1571 }
1572
1573 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1574 {
1575 struct kvm_memory_slot *memslot;
1576
1577 memslot = gfn_to_memslot(kvm, gfn);
1578 mark_page_dirty_in_slot(kvm, memslot, gfn);
1579 }
1580
1581 /*
1582 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1583 */
1584 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1585 {
1586 DEFINE_WAIT(wait);
1587
1588 for (;;) {
1589 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1590
1591 if (kvm_arch_vcpu_runnable(vcpu)) {
1592 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1593 break;
1594 }
1595 if (kvm_cpu_has_pending_timer(vcpu))
1596 break;
1597 if (signal_pending(current))
1598 break;
1599
1600 schedule();
1601 }
1602
1603 finish_wait(&vcpu->wq, &wait);
1604 }
1605
1606 #ifndef CONFIG_S390
1607 /*
1608 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1609 */
1610 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1611 {
1612 int me;
1613 int cpu = vcpu->cpu;
1614 wait_queue_head_t *wqp;
1615
1616 wqp = kvm_arch_vcpu_wq(vcpu);
1617 if (waitqueue_active(wqp)) {
1618 wake_up_interruptible(wqp);
1619 ++vcpu->stat.halt_wakeup;
1620 }
1621
1622 me = get_cpu();
1623 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1624 if (kvm_arch_vcpu_should_kick(vcpu))
1625 smp_send_reschedule(cpu);
1626 put_cpu();
1627 }
1628 #endif /* !CONFIG_S390 */
1629
1630 void kvm_resched(struct kvm_vcpu *vcpu)
1631 {
1632 if (!need_resched())
1633 return;
1634 cond_resched();
1635 }
1636 EXPORT_SYMBOL_GPL(kvm_resched);
1637
1638 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1639 {
1640 struct pid *pid;
1641 struct task_struct *task = NULL;
1642
1643 rcu_read_lock();
1644 pid = rcu_dereference(target->pid);
1645 if (pid)
1646 task = get_pid_task(target->pid, PIDTYPE_PID);
1647 rcu_read_unlock();
1648 if (!task)
1649 return false;
1650 if (task->flags & PF_VCPU) {
1651 put_task_struct(task);
1652 return false;
1653 }
1654 if (yield_to(task, 1)) {
1655 put_task_struct(task);
1656 return true;
1657 }
1658 put_task_struct(task);
1659 return false;
1660 }
1661 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1662
1663 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1664 /*
1665 * Helper that checks whether a VCPU is eligible for directed yield.
1666 * Most eligible candidate to yield is decided by following heuristics:
1667 *
1668 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1669 * (preempted lock holder), indicated by @in_spin_loop.
1670 * Set at the beiginning and cleared at the end of interception/PLE handler.
1671 *
1672 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1673 * chance last time (mostly it has become eligible now since we have probably
1674 * yielded to lockholder in last iteration. This is done by toggling
1675 * @dy_eligible each time a VCPU checked for eligibility.)
1676 *
1677 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1678 * to preempted lock-holder could result in wrong VCPU selection and CPU
1679 * burning. Giving priority for a potential lock-holder increases lock
1680 * progress.
1681 *
1682 * Since algorithm is based on heuristics, accessing another VCPU data without
1683 * locking does not harm. It may result in trying to yield to same VCPU, fail
1684 * and continue with next VCPU and so on.
1685 */
1686 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1687 {
1688 bool eligible;
1689
1690 eligible = !vcpu->spin_loop.in_spin_loop ||
1691 (vcpu->spin_loop.in_spin_loop &&
1692 vcpu->spin_loop.dy_eligible);
1693
1694 if (vcpu->spin_loop.in_spin_loop)
1695 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1696
1697 return eligible;
1698 }
1699 #endif
1700 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1701 {
1702 struct kvm *kvm = me->kvm;
1703 struct kvm_vcpu *vcpu;
1704 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1705 int yielded = 0;
1706 int pass;
1707 int i;
1708
1709 kvm_vcpu_set_in_spin_loop(me, true);
1710 /*
1711 * We boost the priority of a VCPU that is runnable but not
1712 * currently running, because it got preempted by something
1713 * else and called schedule in __vcpu_run. Hopefully that
1714 * VCPU is holding the lock that we need and will release it.
1715 * We approximate round-robin by starting at the last boosted VCPU.
1716 */
1717 for (pass = 0; pass < 2 && !yielded; pass++) {
1718 kvm_for_each_vcpu(i, vcpu, kvm) {
1719 if (!pass && i <= last_boosted_vcpu) {
1720 i = last_boosted_vcpu;
1721 continue;
1722 } else if (pass && i > last_boosted_vcpu)
1723 break;
1724 if (vcpu == me)
1725 continue;
1726 if (waitqueue_active(&vcpu->wq))
1727 continue;
1728 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1729 continue;
1730 if (kvm_vcpu_yield_to(vcpu)) {
1731 kvm->last_boosted_vcpu = i;
1732 yielded = 1;
1733 break;
1734 }
1735 }
1736 }
1737 kvm_vcpu_set_in_spin_loop(me, false);
1738
1739 /* Ensure vcpu is not eligible during next spinloop */
1740 kvm_vcpu_set_dy_eligible(me, false);
1741 }
1742 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1743
1744 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1745 {
1746 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1747 struct page *page;
1748
1749 if (vmf->pgoff == 0)
1750 page = virt_to_page(vcpu->run);
1751 #ifdef CONFIG_X86
1752 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1753 page = virt_to_page(vcpu->arch.pio_data);
1754 #endif
1755 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1756 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1757 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1758 #endif
1759 else
1760 return kvm_arch_vcpu_fault(vcpu, vmf);
1761 get_page(page);
1762 vmf->page = page;
1763 return 0;
1764 }
1765
1766 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1767 .fault = kvm_vcpu_fault,
1768 };
1769
1770 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1771 {
1772 vma->vm_ops = &kvm_vcpu_vm_ops;
1773 return 0;
1774 }
1775
1776 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1777 {
1778 struct kvm_vcpu *vcpu = filp->private_data;
1779
1780 kvm_put_kvm(vcpu->kvm);
1781 return 0;
1782 }
1783
1784 static struct file_operations kvm_vcpu_fops = {
1785 .release = kvm_vcpu_release,
1786 .unlocked_ioctl = kvm_vcpu_ioctl,
1787 #ifdef CONFIG_COMPAT
1788 .compat_ioctl = kvm_vcpu_compat_ioctl,
1789 #endif
1790 .mmap = kvm_vcpu_mmap,
1791 .llseek = noop_llseek,
1792 };
1793
1794 /*
1795 * Allocates an inode for the vcpu.
1796 */
1797 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1798 {
1799 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1800 }
1801
1802 /*
1803 * Creates some virtual cpus. Good luck creating more than one.
1804 */
1805 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1806 {
1807 int r;
1808 struct kvm_vcpu *vcpu, *v;
1809
1810 vcpu = kvm_arch_vcpu_create(kvm, id);
1811 if (IS_ERR(vcpu))
1812 return PTR_ERR(vcpu);
1813
1814 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1815
1816 r = kvm_arch_vcpu_setup(vcpu);
1817 if (r)
1818 goto vcpu_destroy;
1819
1820 mutex_lock(&kvm->lock);
1821 if (!kvm_vcpu_compatible(vcpu)) {
1822 r = -EINVAL;
1823 goto unlock_vcpu_destroy;
1824 }
1825 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1826 r = -EINVAL;
1827 goto unlock_vcpu_destroy;
1828 }
1829
1830 kvm_for_each_vcpu(r, v, kvm)
1831 if (v->vcpu_id == id) {
1832 r = -EEXIST;
1833 goto unlock_vcpu_destroy;
1834 }
1835
1836 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1837
1838 /* Now it's all set up, let userspace reach it */
1839 kvm_get_kvm(kvm);
1840 r = create_vcpu_fd(vcpu);
1841 if (r < 0) {
1842 kvm_put_kvm(kvm);
1843 goto unlock_vcpu_destroy;
1844 }
1845
1846 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1847 smp_wmb();
1848 atomic_inc(&kvm->online_vcpus);
1849
1850 mutex_unlock(&kvm->lock);
1851 return r;
1852
1853 unlock_vcpu_destroy:
1854 mutex_unlock(&kvm->lock);
1855 vcpu_destroy:
1856 kvm_arch_vcpu_destroy(vcpu);
1857 return r;
1858 }
1859
1860 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1861 {
1862 if (sigset) {
1863 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1864 vcpu->sigset_active = 1;
1865 vcpu->sigset = *sigset;
1866 } else
1867 vcpu->sigset_active = 0;
1868 return 0;
1869 }
1870
1871 static long kvm_vcpu_ioctl(struct file *filp,
1872 unsigned int ioctl, unsigned long arg)
1873 {
1874 struct kvm_vcpu *vcpu = filp->private_data;
1875 void __user *argp = (void __user *)arg;
1876 int r;
1877 struct kvm_fpu *fpu = NULL;
1878 struct kvm_sregs *kvm_sregs = NULL;
1879
1880 if (vcpu->kvm->mm != current->mm)
1881 return -EIO;
1882
1883 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1884 /*
1885 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1886 * so vcpu_load() would break it.
1887 */
1888 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1889 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1890 #endif
1891
1892
1893 r = vcpu_load(vcpu);
1894 if (r)
1895 return r;
1896 switch (ioctl) {
1897 case KVM_RUN:
1898 r = -EINVAL;
1899 if (arg)
1900 goto out;
1901 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1902 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1903 break;
1904 case KVM_GET_REGS: {
1905 struct kvm_regs *kvm_regs;
1906
1907 r = -ENOMEM;
1908 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1909 if (!kvm_regs)
1910 goto out;
1911 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1912 if (r)
1913 goto out_free1;
1914 r = -EFAULT;
1915 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1916 goto out_free1;
1917 r = 0;
1918 out_free1:
1919 kfree(kvm_regs);
1920 break;
1921 }
1922 case KVM_SET_REGS: {
1923 struct kvm_regs *kvm_regs;
1924
1925 r = -ENOMEM;
1926 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
1927 if (IS_ERR(kvm_regs)) {
1928 r = PTR_ERR(kvm_regs);
1929 goto out;
1930 }
1931 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1932 if (r)
1933 goto out_free2;
1934 r = 0;
1935 out_free2:
1936 kfree(kvm_regs);
1937 break;
1938 }
1939 case KVM_GET_SREGS: {
1940 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1941 r = -ENOMEM;
1942 if (!kvm_sregs)
1943 goto out;
1944 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1945 if (r)
1946 goto out;
1947 r = -EFAULT;
1948 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1949 goto out;
1950 r = 0;
1951 break;
1952 }
1953 case KVM_SET_SREGS: {
1954 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
1955 if (IS_ERR(kvm_sregs)) {
1956 r = PTR_ERR(kvm_sregs);
1957 goto out;
1958 }
1959 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1960 if (r)
1961 goto out;
1962 r = 0;
1963 break;
1964 }
1965 case KVM_GET_MP_STATE: {
1966 struct kvm_mp_state mp_state;
1967
1968 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1969 if (r)
1970 goto out;
1971 r = -EFAULT;
1972 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1973 goto out;
1974 r = 0;
1975 break;
1976 }
1977 case KVM_SET_MP_STATE: {
1978 struct kvm_mp_state mp_state;
1979
1980 r = -EFAULT;
1981 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1982 goto out;
1983 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1984 if (r)
1985 goto out;
1986 r = 0;
1987 break;
1988 }
1989 case KVM_TRANSLATE: {
1990 struct kvm_translation tr;
1991
1992 r = -EFAULT;
1993 if (copy_from_user(&tr, argp, sizeof tr))
1994 goto out;
1995 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1996 if (r)
1997 goto out;
1998 r = -EFAULT;
1999 if (copy_to_user(argp, &tr, sizeof tr))
2000 goto out;
2001 r = 0;
2002 break;
2003 }
2004 case KVM_SET_GUEST_DEBUG: {
2005 struct kvm_guest_debug dbg;
2006
2007 r = -EFAULT;
2008 if (copy_from_user(&dbg, argp, sizeof dbg))
2009 goto out;
2010 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2011 if (r)
2012 goto out;
2013 r = 0;
2014 break;
2015 }
2016 case KVM_SET_SIGNAL_MASK: {
2017 struct kvm_signal_mask __user *sigmask_arg = argp;
2018 struct kvm_signal_mask kvm_sigmask;
2019 sigset_t sigset, *p;
2020
2021 p = NULL;
2022 if (argp) {
2023 r = -EFAULT;
2024 if (copy_from_user(&kvm_sigmask, argp,
2025 sizeof kvm_sigmask))
2026 goto out;
2027 r = -EINVAL;
2028 if (kvm_sigmask.len != sizeof sigset)
2029 goto out;
2030 r = -EFAULT;
2031 if (copy_from_user(&sigset, sigmask_arg->sigset,
2032 sizeof sigset))
2033 goto out;
2034 p = &sigset;
2035 }
2036 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2037 break;
2038 }
2039 case KVM_GET_FPU: {
2040 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2041 r = -ENOMEM;
2042 if (!fpu)
2043 goto out;
2044 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2045 if (r)
2046 goto out;
2047 r = -EFAULT;
2048 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2049 goto out;
2050 r = 0;
2051 break;
2052 }
2053 case KVM_SET_FPU: {
2054 fpu = memdup_user(argp, sizeof(*fpu));
2055 if (IS_ERR(fpu)) {
2056 r = PTR_ERR(fpu);
2057 goto out;
2058 }
2059 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2060 if (r)
2061 goto out;
2062 r = 0;
2063 break;
2064 }
2065 default:
2066 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2067 }
2068 out:
2069 vcpu_put(vcpu);
2070 kfree(fpu);
2071 kfree(kvm_sregs);
2072 return r;
2073 }
2074
2075 #ifdef CONFIG_COMPAT
2076 static long kvm_vcpu_compat_ioctl(struct file *filp,
2077 unsigned int ioctl, unsigned long arg)
2078 {
2079 struct kvm_vcpu *vcpu = filp->private_data;
2080 void __user *argp = compat_ptr(arg);
2081 int r;
2082
2083 if (vcpu->kvm->mm != current->mm)
2084 return -EIO;
2085
2086 switch (ioctl) {
2087 case KVM_SET_SIGNAL_MASK: {
2088 struct kvm_signal_mask __user *sigmask_arg = argp;
2089 struct kvm_signal_mask kvm_sigmask;
2090 compat_sigset_t csigset;
2091 sigset_t sigset;
2092
2093 if (argp) {
2094 r = -EFAULT;
2095 if (copy_from_user(&kvm_sigmask, argp,
2096 sizeof kvm_sigmask))
2097 goto out;
2098 r = -EINVAL;
2099 if (kvm_sigmask.len != sizeof csigset)
2100 goto out;
2101 r = -EFAULT;
2102 if (copy_from_user(&csigset, sigmask_arg->sigset,
2103 sizeof csigset))
2104 goto out;
2105 sigset_from_compat(&sigset, &csigset);
2106 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2107 } else
2108 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2109 break;
2110 }
2111 default:
2112 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2113 }
2114
2115 out:
2116 return r;
2117 }
2118 #endif
2119
2120 static long kvm_vm_ioctl(struct file *filp,
2121 unsigned int ioctl, unsigned long arg)
2122 {
2123 struct kvm *kvm = filp->private_data;
2124 void __user *argp = (void __user *)arg;
2125 int r;
2126
2127 if (kvm->mm != current->mm)
2128 return -EIO;
2129 switch (ioctl) {
2130 case KVM_CREATE_VCPU:
2131 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2132 if (r < 0)
2133 goto out;
2134 break;
2135 case KVM_SET_USER_MEMORY_REGION: {
2136 struct kvm_userspace_memory_region kvm_userspace_mem;
2137
2138 r = -EFAULT;
2139 if (copy_from_user(&kvm_userspace_mem, argp,
2140 sizeof kvm_userspace_mem))
2141 goto out;
2142
2143 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2144 if (r)
2145 goto out;
2146 break;
2147 }
2148 case KVM_GET_DIRTY_LOG: {
2149 struct kvm_dirty_log log;
2150
2151 r = -EFAULT;
2152 if (copy_from_user(&log, argp, sizeof log))
2153 goto out;
2154 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2155 if (r)
2156 goto out;
2157 break;
2158 }
2159 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2160 case KVM_REGISTER_COALESCED_MMIO: {
2161 struct kvm_coalesced_mmio_zone zone;
2162 r = -EFAULT;
2163 if (copy_from_user(&zone, argp, sizeof zone))
2164 goto out;
2165 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2166 if (r)
2167 goto out;
2168 r = 0;
2169 break;
2170 }
2171 case KVM_UNREGISTER_COALESCED_MMIO: {
2172 struct kvm_coalesced_mmio_zone zone;
2173 r = -EFAULT;
2174 if (copy_from_user(&zone, argp, sizeof zone))
2175 goto out;
2176 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2177 if (r)
2178 goto out;
2179 r = 0;
2180 break;
2181 }
2182 #endif
2183 case KVM_IRQFD: {
2184 struct kvm_irqfd data;
2185
2186 r = -EFAULT;
2187 if (copy_from_user(&data, argp, sizeof data))
2188 goto out;
2189 r = kvm_irqfd(kvm, &data);
2190 break;
2191 }
2192 case KVM_IOEVENTFD: {
2193 struct kvm_ioeventfd data;
2194
2195 r = -EFAULT;
2196 if (copy_from_user(&data, argp, sizeof data))
2197 goto out;
2198 r = kvm_ioeventfd(kvm, &data);
2199 break;
2200 }
2201 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2202 case KVM_SET_BOOT_CPU_ID:
2203 r = 0;
2204 mutex_lock(&kvm->lock);
2205 if (atomic_read(&kvm->online_vcpus) != 0)
2206 r = -EBUSY;
2207 else
2208 kvm->bsp_vcpu_id = arg;
2209 mutex_unlock(&kvm->lock);
2210 break;
2211 #endif
2212 #ifdef CONFIG_HAVE_KVM_MSI
2213 case KVM_SIGNAL_MSI: {
2214 struct kvm_msi msi;
2215
2216 r = -EFAULT;
2217 if (copy_from_user(&msi, argp, sizeof msi))
2218 goto out;
2219 r = kvm_send_userspace_msi(kvm, &msi);
2220 break;
2221 }
2222 #endif
2223 #ifdef __KVM_HAVE_IRQ_LINE
2224 case KVM_IRQ_LINE_STATUS:
2225 case KVM_IRQ_LINE: {
2226 struct kvm_irq_level irq_event;
2227
2228 r = -EFAULT;
2229 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2230 goto out;
2231
2232 r = kvm_vm_ioctl_irq_line(kvm, &irq_event);
2233 if (r)
2234 goto out;
2235
2236 r = -EFAULT;
2237 if (ioctl == KVM_IRQ_LINE_STATUS) {
2238 if (copy_to_user(argp, &irq_event, sizeof irq_event))
2239 goto out;
2240 }
2241
2242 r = 0;
2243 break;
2244 }
2245 #endif
2246 default:
2247 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2248 if (r == -ENOTTY)
2249 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2250 }
2251 out:
2252 return r;
2253 }
2254
2255 #ifdef CONFIG_COMPAT
2256 struct compat_kvm_dirty_log {
2257 __u32 slot;
2258 __u32 padding1;
2259 union {
2260 compat_uptr_t dirty_bitmap; /* one bit per page */
2261 __u64 padding2;
2262 };
2263 };
2264
2265 static long kvm_vm_compat_ioctl(struct file *filp,
2266 unsigned int ioctl, unsigned long arg)
2267 {
2268 struct kvm *kvm = filp->private_data;
2269 int r;
2270
2271 if (kvm->mm != current->mm)
2272 return -EIO;
2273 switch (ioctl) {
2274 case KVM_GET_DIRTY_LOG: {
2275 struct compat_kvm_dirty_log compat_log;
2276 struct kvm_dirty_log log;
2277
2278 r = -EFAULT;
2279 if (copy_from_user(&compat_log, (void __user *)arg,
2280 sizeof(compat_log)))
2281 goto out;
2282 log.slot = compat_log.slot;
2283 log.padding1 = compat_log.padding1;
2284 log.padding2 = compat_log.padding2;
2285 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2286
2287 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2288 if (r)
2289 goto out;
2290 break;
2291 }
2292 default:
2293 r = kvm_vm_ioctl(filp, ioctl, arg);
2294 }
2295
2296 out:
2297 return r;
2298 }
2299 #endif
2300
2301 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2302 {
2303 struct page *page[1];
2304 unsigned long addr;
2305 int npages;
2306 gfn_t gfn = vmf->pgoff;
2307 struct kvm *kvm = vma->vm_file->private_data;
2308
2309 addr = gfn_to_hva(kvm, gfn);
2310 if (kvm_is_error_hva(addr))
2311 return VM_FAULT_SIGBUS;
2312
2313 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2314 NULL);
2315 if (unlikely(npages != 1))
2316 return VM_FAULT_SIGBUS;
2317
2318 vmf->page = page[0];
2319 return 0;
2320 }
2321
2322 static const struct vm_operations_struct kvm_vm_vm_ops = {
2323 .fault = kvm_vm_fault,
2324 };
2325
2326 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2327 {
2328 vma->vm_ops = &kvm_vm_vm_ops;
2329 return 0;
2330 }
2331
2332 static struct file_operations kvm_vm_fops = {
2333 .release = kvm_vm_release,
2334 .unlocked_ioctl = kvm_vm_ioctl,
2335 #ifdef CONFIG_COMPAT
2336 .compat_ioctl = kvm_vm_compat_ioctl,
2337 #endif
2338 .mmap = kvm_vm_mmap,
2339 .llseek = noop_llseek,
2340 };
2341
2342 static int kvm_dev_ioctl_create_vm(unsigned long type)
2343 {
2344 int r;
2345 struct kvm *kvm;
2346
2347 kvm = kvm_create_vm(type);
2348 if (IS_ERR(kvm))
2349 return PTR_ERR(kvm);
2350 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2351 r = kvm_coalesced_mmio_init(kvm);
2352 if (r < 0) {
2353 kvm_put_kvm(kvm);
2354 return r;
2355 }
2356 #endif
2357 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2358 if (r < 0)
2359 kvm_put_kvm(kvm);
2360
2361 return r;
2362 }
2363
2364 static long kvm_dev_ioctl_check_extension_generic(long arg)
2365 {
2366 switch (arg) {
2367 case KVM_CAP_USER_MEMORY:
2368 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2369 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2370 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2371 case KVM_CAP_SET_BOOT_CPU_ID:
2372 #endif
2373 case KVM_CAP_INTERNAL_ERROR_DATA:
2374 #ifdef CONFIG_HAVE_KVM_MSI
2375 case KVM_CAP_SIGNAL_MSI:
2376 #endif
2377 return 1;
2378 #ifdef KVM_CAP_IRQ_ROUTING
2379 case KVM_CAP_IRQ_ROUTING:
2380 return KVM_MAX_IRQ_ROUTES;
2381 #endif
2382 default:
2383 break;
2384 }
2385 return kvm_dev_ioctl_check_extension(arg);
2386 }
2387
2388 static long kvm_dev_ioctl(struct file *filp,
2389 unsigned int ioctl, unsigned long arg)
2390 {
2391 long r = -EINVAL;
2392
2393 switch (ioctl) {
2394 case KVM_GET_API_VERSION:
2395 r = -EINVAL;
2396 if (arg)
2397 goto out;
2398 r = KVM_API_VERSION;
2399 break;
2400 case KVM_CREATE_VM:
2401 r = kvm_dev_ioctl_create_vm(arg);
2402 break;
2403 case KVM_CHECK_EXTENSION:
2404 r = kvm_dev_ioctl_check_extension_generic(arg);
2405 break;
2406 case KVM_GET_VCPU_MMAP_SIZE:
2407 r = -EINVAL;
2408 if (arg)
2409 goto out;
2410 r = PAGE_SIZE; /* struct kvm_run */
2411 #ifdef CONFIG_X86
2412 r += PAGE_SIZE; /* pio data page */
2413 #endif
2414 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2415 r += PAGE_SIZE; /* coalesced mmio ring page */
2416 #endif
2417 break;
2418 case KVM_TRACE_ENABLE:
2419 case KVM_TRACE_PAUSE:
2420 case KVM_TRACE_DISABLE:
2421 r = -EOPNOTSUPP;
2422 break;
2423 default:
2424 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2425 }
2426 out:
2427 return r;
2428 }
2429
2430 static struct file_operations kvm_chardev_ops = {
2431 .unlocked_ioctl = kvm_dev_ioctl,
2432 .compat_ioctl = kvm_dev_ioctl,
2433 .llseek = noop_llseek,
2434 };
2435
2436 static struct miscdevice kvm_dev = {
2437 KVM_MINOR,
2438 "kvm",
2439 &kvm_chardev_ops,
2440 };
2441
2442 static void hardware_enable_nolock(void *junk)
2443 {
2444 int cpu = raw_smp_processor_id();
2445 int r;
2446
2447 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2448 return;
2449
2450 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2451
2452 r = kvm_arch_hardware_enable(NULL);
2453
2454 if (r) {
2455 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2456 atomic_inc(&hardware_enable_failed);
2457 printk(KERN_INFO "kvm: enabling virtualization on "
2458 "CPU%d failed\n", cpu);
2459 }
2460 }
2461
2462 static void hardware_enable(void *junk)
2463 {
2464 raw_spin_lock(&kvm_lock);
2465 hardware_enable_nolock(junk);
2466 raw_spin_unlock(&kvm_lock);
2467 }
2468
2469 static void hardware_disable_nolock(void *junk)
2470 {
2471 int cpu = raw_smp_processor_id();
2472
2473 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2474 return;
2475 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2476 kvm_arch_hardware_disable(NULL);
2477 }
2478
2479 static void hardware_disable(void *junk)
2480 {
2481 raw_spin_lock(&kvm_lock);
2482 hardware_disable_nolock(junk);
2483 raw_spin_unlock(&kvm_lock);
2484 }
2485
2486 static void hardware_disable_all_nolock(void)
2487 {
2488 BUG_ON(!kvm_usage_count);
2489
2490 kvm_usage_count--;
2491 if (!kvm_usage_count)
2492 on_each_cpu(hardware_disable_nolock, NULL, 1);
2493 }
2494
2495 static void hardware_disable_all(void)
2496 {
2497 raw_spin_lock(&kvm_lock);
2498 hardware_disable_all_nolock();
2499 raw_spin_unlock(&kvm_lock);
2500 }
2501
2502 static int hardware_enable_all(void)
2503 {
2504 int r = 0;
2505
2506 raw_spin_lock(&kvm_lock);
2507
2508 kvm_usage_count++;
2509 if (kvm_usage_count == 1) {
2510 atomic_set(&hardware_enable_failed, 0);
2511 on_each_cpu(hardware_enable_nolock, NULL, 1);
2512
2513 if (atomic_read(&hardware_enable_failed)) {
2514 hardware_disable_all_nolock();
2515 r = -EBUSY;
2516 }
2517 }
2518
2519 raw_spin_unlock(&kvm_lock);
2520
2521 return r;
2522 }
2523
2524 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2525 void *v)
2526 {
2527 int cpu = (long)v;
2528
2529 if (!kvm_usage_count)
2530 return NOTIFY_OK;
2531
2532 val &= ~CPU_TASKS_FROZEN;
2533 switch (val) {
2534 case CPU_DYING:
2535 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2536 cpu);
2537 hardware_disable(NULL);
2538 break;
2539 case CPU_STARTING:
2540 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2541 cpu);
2542 hardware_enable(NULL);
2543 break;
2544 }
2545 return NOTIFY_OK;
2546 }
2547
2548
2549 asmlinkage void kvm_spurious_fault(void)
2550 {
2551 /* Fault while not rebooting. We want the trace. */
2552 BUG();
2553 }
2554 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2555
2556 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2557 void *v)
2558 {
2559 /*
2560 * Some (well, at least mine) BIOSes hang on reboot if
2561 * in vmx root mode.
2562 *
2563 * And Intel TXT required VMX off for all cpu when system shutdown.
2564 */
2565 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2566 kvm_rebooting = true;
2567 on_each_cpu(hardware_disable_nolock, NULL, 1);
2568 return NOTIFY_OK;
2569 }
2570
2571 static struct notifier_block kvm_reboot_notifier = {
2572 .notifier_call = kvm_reboot,
2573 .priority = 0,
2574 };
2575
2576 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2577 {
2578 int i;
2579
2580 for (i = 0; i < bus->dev_count; i++) {
2581 struct kvm_io_device *pos = bus->range[i].dev;
2582
2583 kvm_iodevice_destructor(pos);
2584 }
2585 kfree(bus);
2586 }
2587
2588 int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2589 {
2590 const struct kvm_io_range *r1 = p1;
2591 const struct kvm_io_range *r2 = p2;
2592
2593 if (r1->addr < r2->addr)
2594 return -1;
2595 if (r1->addr + r1->len > r2->addr + r2->len)
2596 return 1;
2597 return 0;
2598 }
2599
2600 int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2601 gpa_t addr, int len)
2602 {
2603 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2604 .addr = addr,
2605 .len = len,
2606 .dev = dev,
2607 };
2608
2609 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2610 kvm_io_bus_sort_cmp, NULL);
2611
2612 return 0;
2613 }
2614
2615 int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2616 gpa_t addr, int len)
2617 {
2618 struct kvm_io_range *range, key;
2619 int off;
2620
2621 key = (struct kvm_io_range) {
2622 .addr = addr,
2623 .len = len,
2624 };
2625
2626 range = bsearch(&key, bus->range, bus->dev_count,
2627 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2628 if (range == NULL)
2629 return -ENOENT;
2630
2631 off = range - bus->range;
2632
2633 while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2634 off--;
2635
2636 return off;
2637 }
2638
2639 /* kvm_io_bus_write - called under kvm->slots_lock */
2640 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2641 int len, const void *val)
2642 {
2643 int idx;
2644 struct kvm_io_bus *bus;
2645 struct kvm_io_range range;
2646
2647 range = (struct kvm_io_range) {
2648 .addr = addr,
2649 .len = len,
2650 };
2651
2652 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2653 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2654 if (idx < 0)
2655 return -EOPNOTSUPP;
2656
2657 while (idx < bus->dev_count &&
2658 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2659 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2660 return 0;
2661 idx++;
2662 }
2663
2664 return -EOPNOTSUPP;
2665 }
2666
2667 /* kvm_io_bus_read - called under kvm->slots_lock */
2668 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2669 int len, void *val)
2670 {
2671 int idx;
2672 struct kvm_io_bus *bus;
2673 struct kvm_io_range range;
2674
2675 range = (struct kvm_io_range) {
2676 .addr = addr,
2677 .len = len,
2678 };
2679
2680 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2681 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2682 if (idx < 0)
2683 return -EOPNOTSUPP;
2684
2685 while (idx < bus->dev_count &&
2686 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2687 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2688 return 0;
2689 idx++;
2690 }
2691
2692 return -EOPNOTSUPP;
2693 }
2694
2695 /* Caller must hold slots_lock. */
2696 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2697 int len, struct kvm_io_device *dev)
2698 {
2699 struct kvm_io_bus *new_bus, *bus;
2700
2701 bus = kvm->buses[bus_idx];
2702 if (bus->dev_count > NR_IOBUS_DEVS - 1)
2703 return -ENOSPC;
2704
2705 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2706 sizeof(struct kvm_io_range)), GFP_KERNEL);
2707 if (!new_bus)
2708 return -ENOMEM;
2709 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2710 sizeof(struct kvm_io_range)));
2711 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2712 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2713 synchronize_srcu_expedited(&kvm->srcu);
2714 kfree(bus);
2715
2716 return 0;
2717 }
2718
2719 /* Caller must hold slots_lock. */
2720 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2721 struct kvm_io_device *dev)
2722 {
2723 int i, r;
2724 struct kvm_io_bus *new_bus, *bus;
2725
2726 bus = kvm->buses[bus_idx];
2727 r = -ENOENT;
2728 for (i = 0; i < bus->dev_count; i++)
2729 if (bus->range[i].dev == dev) {
2730 r = 0;
2731 break;
2732 }
2733
2734 if (r)
2735 return r;
2736
2737 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2738 sizeof(struct kvm_io_range)), GFP_KERNEL);
2739 if (!new_bus)
2740 return -ENOMEM;
2741
2742 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2743 new_bus->dev_count--;
2744 memcpy(new_bus->range + i, bus->range + i + 1,
2745 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
2746
2747 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2748 synchronize_srcu_expedited(&kvm->srcu);
2749 kfree(bus);
2750 return r;
2751 }
2752
2753 static struct notifier_block kvm_cpu_notifier = {
2754 .notifier_call = kvm_cpu_hotplug,
2755 };
2756
2757 static int vm_stat_get(void *_offset, u64 *val)
2758 {
2759 unsigned offset = (long)_offset;
2760 struct kvm *kvm;
2761
2762 *val = 0;
2763 raw_spin_lock(&kvm_lock);
2764 list_for_each_entry(kvm, &vm_list, vm_list)
2765 *val += *(u32 *)((void *)kvm + offset);
2766 raw_spin_unlock(&kvm_lock);
2767 return 0;
2768 }
2769
2770 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2771
2772 static int vcpu_stat_get(void *_offset, u64 *val)
2773 {
2774 unsigned offset = (long)_offset;
2775 struct kvm *kvm;
2776 struct kvm_vcpu *vcpu;
2777 int i;
2778
2779 *val = 0;
2780 raw_spin_lock(&kvm_lock);
2781 list_for_each_entry(kvm, &vm_list, vm_list)
2782 kvm_for_each_vcpu(i, vcpu, kvm)
2783 *val += *(u32 *)((void *)vcpu + offset);
2784
2785 raw_spin_unlock(&kvm_lock);
2786 return 0;
2787 }
2788
2789 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2790
2791 static const struct file_operations *stat_fops[] = {
2792 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2793 [KVM_STAT_VM] = &vm_stat_fops,
2794 };
2795
2796 static int kvm_init_debug(void)
2797 {
2798 int r = -EFAULT;
2799 struct kvm_stats_debugfs_item *p;
2800
2801 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2802 if (kvm_debugfs_dir == NULL)
2803 goto out;
2804
2805 for (p = debugfs_entries; p->name; ++p) {
2806 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2807 (void *)(long)p->offset,
2808 stat_fops[p->kind]);
2809 if (p->dentry == NULL)
2810 goto out_dir;
2811 }
2812
2813 return 0;
2814
2815 out_dir:
2816 debugfs_remove_recursive(kvm_debugfs_dir);
2817 out:
2818 return r;
2819 }
2820
2821 static void kvm_exit_debug(void)
2822 {
2823 struct kvm_stats_debugfs_item *p;
2824
2825 for (p = debugfs_entries; p->name; ++p)
2826 debugfs_remove(p->dentry);
2827 debugfs_remove(kvm_debugfs_dir);
2828 }
2829
2830 static int kvm_suspend(void)
2831 {
2832 if (kvm_usage_count)
2833 hardware_disable_nolock(NULL);
2834 return 0;
2835 }
2836
2837 static void kvm_resume(void)
2838 {
2839 if (kvm_usage_count) {
2840 WARN_ON(raw_spin_is_locked(&kvm_lock));
2841 hardware_enable_nolock(NULL);
2842 }
2843 }
2844
2845 static struct syscore_ops kvm_syscore_ops = {
2846 .suspend = kvm_suspend,
2847 .resume = kvm_resume,
2848 };
2849
2850 static inline
2851 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2852 {
2853 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2854 }
2855
2856 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2857 {
2858 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2859
2860 kvm_arch_vcpu_load(vcpu, cpu);
2861 }
2862
2863 static void kvm_sched_out(struct preempt_notifier *pn,
2864 struct task_struct *next)
2865 {
2866 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2867
2868 kvm_arch_vcpu_put(vcpu);
2869 }
2870
2871 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2872 struct module *module)
2873 {
2874 int r;
2875 int cpu;
2876
2877 r = kvm_arch_init(opaque);
2878 if (r)
2879 goto out_fail;
2880
2881 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2882 r = -ENOMEM;
2883 goto out_free_0;
2884 }
2885
2886 r = kvm_arch_hardware_setup();
2887 if (r < 0)
2888 goto out_free_0a;
2889
2890 for_each_online_cpu(cpu) {
2891 smp_call_function_single(cpu,
2892 kvm_arch_check_processor_compat,
2893 &r, 1);
2894 if (r < 0)
2895 goto out_free_1;
2896 }
2897
2898 r = register_cpu_notifier(&kvm_cpu_notifier);
2899 if (r)
2900 goto out_free_2;
2901 register_reboot_notifier(&kvm_reboot_notifier);
2902
2903 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2904 if (!vcpu_align)
2905 vcpu_align = __alignof__(struct kvm_vcpu);
2906 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2907 0, NULL);
2908 if (!kvm_vcpu_cache) {
2909 r = -ENOMEM;
2910 goto out_free_3;
2911 }
2912
2913 r = kvm_async_pf_init();
2914 if (r)
2915 goto out_free;
2916
2917 kvm_chardev_ops.owner = module;
2918 kvm_vm_fops.owner = module;
2919 kvm_vcpu_fops.owner = module;
2920
2921 r = misc_register(&kvm_dev);
2922 if (r) {
2923 printk(KERN_ERR "kvm: misc device register failed\n");
2924 goto out_unreg;
2925 }
2926
2927 register_syscore_ops(&kvm_syscore_ops);
2928
2929 kvm_preempt_ops.sched_in = kvm_sched_in;
2930 kvm_preempt_ops.sched_out = kvm_sched_out;
2931
2932 r = kvm_init_debug();
2933 if (r) {
2934 printk(KERN_ERR "kvm: create debugfs files failed\n");
2935 goto out_undebugfs;
2936 }
2937
2938 return 0;
2939
2940 out_undebugfs:
2941 unregister_syscore_ops(&kvm_syscore_ops);
2942 out_unreg:
2943 kvm_async_pf_deinit();
2944 out_free:
2945 kmem_cache_destroy(kvm_vcpu_cache);
2946 out_free_3:
2947 unregister_reboot_notifier(&kvm_reboot_notifier);
2948 unregister_cpu_notifier(&kvm_cpu_notifier);
2949 out_free_2:
2950 out_free_1:
2951 kvm_arch_hardware_unsetup();
2952 out_free_0a:
2953 free_cpumask_var(cpus_hardware_enabled);
2954 out_free_0:
2955 kvm_arch_exit();
2956 out_fail:
2957 return r;
2958 }
2959 EXPORT_SYMBOL_GPL(kvm_init);
2960
2961 void kvm_exit(void)
2962 {
2963 kvm_exit_debug();
2964 misc_deregister(&kvm_dev);
2965 kmem_cache_destroy(kvm_vcpu_cache);
2966 kvm_async_pf_deinit();
2967 unregister_syscore_ops(&kvm_syscore_ops);
2968 unregister_reboot_notifier(&kvm_reboot_notifier);
2969 unregister_cpu_notifier(&kvm_cpu_notifier);
2970 on_each_cpu(hardware_disable_nolock, NULL, 1);
2971 kvm_arch_hardware_unsetup();
2972 kvm_arch_exit();
2973 free_cpumask_var(cpus_hardware_enabled);
2974 }
2975 EXPORT_SYMBOL_GPL(kvm_exit);