]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - virt/kvm/kvm_main.c
kvm: x86, powerpc: do not allow clearing largepages debugfs entry
[mirror_ubuntu-bionic-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90 * Ordering of locks:
91 *
92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93 */
94
95 DEFINE_MUTEX(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124
125 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
126
127 __visible bool kvm_rebooting;
128 EXPORT_SYMBOL_GPL(kvm_rebooting);
129
130 static bool largepages_enabled = true;
131
132 #define KVM_EVENT_CREATE_VM 0
133 #define KVM_EVENT_DESTROY_VM 1
134 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
135 static unsigned long long kvm_createvm_count;
136 static unsigned long long kvm_active_vms;
137
138 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
139 unsigned long start, unsigned long end)
140 {
141 }
142
143 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
144 {
145 if (pfn_valid(pfn))
146 return PageReserved(pfn_to_page(pfn));
147
148 return true;
149 }
150
151 /*
152 * Switches to specified vcpu, until a matching vcpu_put()
153 */
154 int vcpu_load(struct kvm_vcpu *vcpu)
155 {
156 int cpu;
157
158 if (mutex_lock_killable(&vcpu->mutex))
159 return -EINTR;
160 cpu = get_cpu();
161 preempt_notifier_register(&vcpu->preempt_notifier);
162 kvm_arch_vcpu_load(vcpu, cpu);
163 put_cpu();
164 return 0;
165 }
166 EXPORT_SYMBOL_GPL(vcpu_load);
167
168 void vcpu_put(struct kvm_vcpu *vcpu)
169 {
170 preempt_disable();
171 kvm_arch_vcpu_put(vcpu);
172 preempt_notifier_unregister(&vcpu->preempt_notifier);
173 preempt_enable();
174 mutex_unlock(&vcpu->mutex);
175 }
176 EXPORT_SYMBOL_GPL(vcpu_put);
177
178 /* TODO: merge with kvm_arch_vcpu_should_kick */
179 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
180 {
181 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
182
183 /*
184 * We need to wait for the VCPU to reenable interrupts and get out of
185 * READING_SHADOW_PAGE_TABLES mode.
186 */
187 if (req & KVM_REQUEST_WAIT)
188 return mode != OUTSIDE_GUEST_MODE;
189
190 /*
191 * Need to kick a running VCPU, but otherwise there is nothing to do.
192 */
193 return mode == IN_GUEST_MODE;
194 }
195
196 static void ack_flush(void *_completed)
197 {
198 }
199
200 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
201 {
202 if (unlikely(!cpus))
203 cpus = cpu_online_mask;
204
205 if (cpumask_empty(cpus))
206 return false;
207
208 smp_call_function_many(cpus, ack_flush, NULL, wait);
209 return true;
210 }
211
212 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
213 {
214 int i, cpu, me;
215 cpumask_var_t cpus;
216 bool called;
217 struct kvm_vcpu *vcpu;
218
219 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
220
221 me = get_cpu();
222 kvm_for_each_vcpu(i, vcpu, kvm) {
223 kvm_make_request(req, vcpu);
224 cpu = vcpu->cpu;
225
226 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
227 continue;
228
229 if (cpus != NULL && cpu != -1 && cpu != me &&
230 kvm_request_needs_ipi(vcpu, req))
231 __cpumask_set_cpu(cpu, cpus);
232 }
233 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
234 put_cpu();
235 free_cpumask_var(cpus);
236 return called;
237 }
238
239 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
240 void kvm_flush_remote_tlbs(struct kvm *kvm)
241 {
242 /*
243 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
244 * kvm_make_all_cpus_request.
245 */
246 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
247
248 /*
249 * We want to publish modifications to the page tables before reading
250 * mode. Pairs with a memory barrier in arch-specific code.
251 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
252 * and smp_mb in walk_shadow_page_lockless_begin/end.
253 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
254 *
255 * There is already an smp_mb__after_atomic() before
256 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
257 * barrier here.
258 */
259 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
260 ++kvm->stat.remote_tlb_flush;
261 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
262 }
263 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
264 #endif
265
266 void kvm_reload_remote_mmus(struct kvm *kvm)
267 {
268 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
269 }
270
271 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
272 {
273 struct page *page;
274 int r;
275
276 mutex_init(&vcpu->mutex);
277 vcpu->cpu = -1;
278 vcpu->kvm = kvm;
279 vcpu->vcpu_id = id;
280 vcpu->pid = NULL;
281 init_swait_queue_head(&vcpu->wq);
282 kvm_async_pf_vcpu_init(vcpu);
283
284 vcpu->pre_pcpu = -1;
285 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
286
287 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
288 if (!page) {
289 r = -ENOMEM;
290 goto fail;
291 }
292 vcpu->run = page_address(page);
293
294 kvm_vcpu_set_in_spin_loop(vcpu, false);
295 kvm_vcpu_set_dy_eligible(vcpu, false);
296 vcpu->preempted = false;
297
298 r = kvm_arch_vcpu_init(vcpu);
299 if (r < 0)
300 goto fail_free_run;
301 return 0;
302
303 fail_free_run:
304 free_page((unsigned long)vcpu->run);
305 fail:
306 return r;
307 }
308 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
309
310 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
311 {
312 /*
313 * no need for rcu_read_lock as VCPU_RUN is the only place that
314 * will change the vcpu->pid pointer and on uninit all file
315 * descriptors are already gone.
316 */
317 put_pid(rcu_dereference_protected(vcpu->pid, 1));
318 kvm_arch_vcpu_uninit(vcpu);
319 free_page((unsigned long)vcpu->run);
320 }
321 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
322
323 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
324 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
325 {
326 return container_of(mn, struct kvm, mmu_notifier);
327 }
328
329 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
330 struct mm_struct *mm,
331 unsigned long address,
332 pte_t pte)
333 {
334 struct kvm *kvm = mmu_notifier_to_kvm(mn);
335 int idx;
336
337 idx = srcu_read_lock(&kvm->srcu);
338 spin_lock(&kvm->mmu_lock);
339 kvm->mmu_notifier_seq++;
340 kvm_set_spte_hva(kvm, address, pte);
341 spin_unlock(&kvm->mmu_lock);
342 srcu_read_unlock(&kvm->srcu, idx);
343 }
344
345 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
346 struct mm_struct *mm,
347 unsigned long start,
348 unsigned long end)
349 {
350 struct kvm *kvm = mmu_notifier_to_kvm(mn);
351 int need_tlb_flush = 0, idx;
352
353 idx = srcu_read_lock(&kvm->srcu);
354 spin_lock(&kvm->mmu_lock);
355 /*
356 * The count increase must become visible at unlock time as no
357 * spte can be established without taking the mmu_lock and
358 * count is also read inside the mmu_lock critical section.
359 */
360 kvm->mmu_notifier_count++;
361 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
362 need_tlb_flush |= kvm->tlbs_dirty;
363 /* we've to flush the tlb before the pages can be freed */
364 if (need_tlb_flush)
365 kvm_flush_remote_tlbs(kvm);
366
367 spin_unlock(&kvm->mmu_lock);
368
369 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
370
371 srcu_read_unlock(&kvm->srcu, idx);
372 }
373
374 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
375 struct mm_struct *mm,
376 unsigned long start,
377 unsigned long end)
378 {
379 struct kvm *kvm = mmu_notifier_to_kvm(mn);
380
381 spin_lock(&kvm->mmu_lock);
382 /*
383 * This sequence increase will notify the kvm page fault that
384 * the page that is going to be mapped in the spte could have
385 * been freed.
386 */
387 kvm->mmu_notifier_seq++;
388 smp_wmb();
389 /*
390 * The above sequence increase must be visible before the
391 * below count decrease, which is ensured by the smp_wmb above
392 * in conjunction with the smp_rmb in mmu_notifier_retry().
393 */
394 kvm->mmu_notifier_count--;
395 spin_unlock(&kvm->mmu_lock);
396
397 BUG_ON(kvm->mmu_notifier_count < 0);
398 }
399
400 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
401 struct mm_struct *mm,
402 unsigned long start,
403 unsigned long end)
404 {
405 struct kvm *kvm = mmu_notifier_to_kvm(mn);
406 int young, idx;
407
408 idx = srcu_read_lock(&kvm->srcu);
409 spin_lock(&kvm->mmu_lock);
410
411 young = kvm_age_hva(kvm, start, end);
412 if (young)
413 kvm_flush_remote_tlbs(kvm);
414
415 spin_unlock(&kvm->mmu_lock);
416 srcu_read_unlock(&kvm->srcu, idx);
417
418 return young;
419 }
420
421 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
422 struct mm_struct *mm,
423 unsigned long start,
424 unsigned long end)
425 {
426 struct kvm *kvm = mmu_notifier_to_kvm(mn);
427 int young, idx;
428
429 idx = srcu_read_lock(&kvm->srcu);
430 spin_lock(&kvm->mmu_lock);
431 /*
432 * Even though we do not flush TLB, this will still adversely
433 * affect performance on pre-Haswell Intel EPT, where there is
434 * no EPT Access Bit to clear so that we have to tear down EPT
435 * tables instead. If we find this unacceptable, we can always
436 * add a parameter to kvm_age_hva so that it effectively doesn't
437 * do anything on clear_young.
438 *
439 * Also note that currently we never issue secondary TLB flushes
440 * from clear_young, leaving this job up to the regular system
441 * cadence. If we find this inaccurate, we might come up with a
442 * more sophisticated heuristic later.
443 */
444 young = kvm_age_hva(kvm, start, end);
445 spin_unlock(&kvm->mmu_lock);
446 srcu_read_unlock(&kvm->srcu, idx);
447
448 return young;
449 }
450
451 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
452 struct mm_struct *mm,
453 unsigned long address)
454 {
455 struct kvm *kvm = mmu_notifier_to_kvm(mn);
456 int young, idx;
457
458 idx = srcu_read_lock(&kvm->srcu);
459 spin_lock(&kvm->mmu_lock);
460 young = kvm_test_age_hva(kvm, address);
461 spin_unlock(&kvm->mmu_lock);
462 srcu_read_unlock(&kvm->srcu, idx);
463
464 return young;
465 }
466
467 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
468 struct mm_struct *mm)
469 {
470 struct kvm *kvm = mmu_notifier_to_kvm(mn);
471 int idx;
472
473 idx = srcu_read_lock(&kvm->srcu);
474 kvm_arch_flush_shadow_all(kvm);
475 srcu_read_unlock(&kvm->srcu, idx);
476 }
477
478 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
479 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
480 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
481 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
482 .clear_young = kvm_mmu_notifier_clear_young,
483 .test_young = kvm_mmu_notifier_test_young,
484 .change_pte = kvm_mmu_notifier_change_pte,
485 .release = kvm_mmu_notifier_release,
486 };
487
488 static int kvm_init_mmu_notifier(struct kvm *kvm)
489 {
490 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
491 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
492 }
493
494 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
495
496 static int kvm_init_mmu_notifier(struct kvm *kvm)
497 {
498 return 0;
499 }
500
501 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
502
503 static struct kvm_memslots *kvm_alloc_memslots(void)
504 {
505 int i;
506 struct kvm_memslots *slots;
507
508 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
509 if (!slots)
510 return NULL;
511
512 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
513 slots->id_to_index[i] = slots->memslots[i].id = i;
514
515 return slots;
516 }
517
518 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
519 {
520 if (!memslot->dirty_bitmap)
521 return;
522
523 kvfree(memslot->dirty_bitmap);
524 memslot->dirty_bitmap = NULL;
525 }
526
527 /*
528 * Free any memory in @free but not in @dont.
529 */
530 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
531 struct kvm_memory_slot *dont)
532 {
533 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
534 kvm_destroy_dirty_bitmap(free);
535
536 kvm_arch_free_memslot(kvm, free, dont);
537
538 free->npages = 0;
539 }
540
541 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
542 {
543 struct kvm_memory_slot *memslot;
544
545 if (!slots)
546 return;
547
548 kvm_for_each_memslot(memslot, slots)
549 kvm_free_memslot(kvm, memslot, NULL);
550
551 kvfree(slots);
552 }
553
554 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
555 {
556 int i;
557
558 if (!kvm->debugfs_dentry)
559 return;
560
561 debugfs_remove_recursive(kvm->debugfs_dentry);
562
563 if (kvm->debugfs_stat_data) {
564 for (i = 0; i < kvm_debugfs_num_entries; i++)
565 kfree(kvm->debugfs_stat_data[i]);
566 kfree(kvm->debugfs_stat_data);
567 }
568 }
569
570 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
571 {
572 char dir_name[ITOA_MAX_LEN * 2];
573 struct kvm_stat_data *stat_data;
574 struct kvm_stats_debugfs_item *p;
575
576 if (!debugfs_initialized())
577 return 0;
578
579 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
580 kvm->debugfs_dentry = debugfs_create_dir(dir_name,
581 kvm_debugfs_dir);
582 if (!kvm->debugfs_dentry)
583 return -ENOMEM;
584
585 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
586 sizeof(*kvm->debugfs_stat_data),
587 GFP_KERNEL);
588 if (!kvm->debugfs_stat_data)
589 return -ENOMEM;
590
591 for (p = debugfs_entries; p->name; p++) {
592 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
593 if (!stat_data)
594 return -ENOMEM;
595
596 stat_data->kvm = kvm;
597 stat_data->offset = p->offset;
598 stat_data->mode = p->mode ? p->mode : 0644;
599 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
600 if (!debugfs_create_file(p->name, stat_data->mode,
601 kvm->debugfs_dentry,
602 stat_data,
603 stat_fops_per_vm[p->kind]))
604 return -ENOMEM;
605 }
606 return 0;
607 }
608
609 static struct kvm *kvm_create_vm(unsigned long type)
610 {
611 int r, i;
612 struct kvm *kvm = kvm_arch_alloc_vm();
613
614 if (!kvm)
615 return ERR_PTR(-ENOMEM);
616
617 spin_lock_init(&kvm->mmu_lock);
618 mmgrab(current->mm);
619 kvm->mm = current->mm;
620 kvm_eventfd_init(kvm);
621 mutex_init(&kvm->lock);
622 mutex_init(&kvm->irq_lock);
623 mutex_init(&kvm->slots_lock);
624 refcount_set(&kvm->users_count, 1);
625 INIT_LIST_HEAD(&kvm->devices);
626
627 r = kvm_arch_init_vm(kvm, type);
628 if (r)
629 goto out_err_no_disable;
630
631 r = hardware_enable_all();
632 if (r)
633 goto out_err_no_disable;
634
635 #ifdef CONFIG_HAVE_KVM_IRQFD
636 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
637 #endif
638
639 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
640
641 r = -ENOMEM;
642 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
643 struct kvm_memslots *slots = kvm_alloc_memslots();
644 if (!slots)
645 goto out_err_no_srcu;
646 /*
647 * Generations must be different for each address space.
648 * Init kvm generation close to the maximum to easily test the
649 * code of handling generation number wrap-around.
650 */
651 slots->generation = i * 2 - 150;
652 rcu_assign_pointer(kvm->memslots[i], slots);
653 }
654
655 if (init_srcu_struct(&kvm->srcu))
656 goto out_err_no_srcu;
657 if (init_srcu_struct(&kvm->irq_srcu))
658 goto out_err_no_irq_srcu;
659 for (i = 0; i < KVM_NR_BUSES; i++) {
660 rcu_assign_pointer(kvm->buses[i],
661 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
662 if (!kvm->buses[i])
663 goto out_err;
664 }
665
666 r = kvm_init_mmu_notifier(kvm);
667 if (r)
668 goto out_err;
669
670 mutex_lock(&kvm_lock);
671 list_add(&kvm->vm_list, &vm_list);
672 mutex_unlock(&kvm_lock);
673
674 preempt_notifier_inc();
675
676 return kvm;
677
678 out_err:
679 cleanup_srcu_struct(&kvm->irq_srcu);
680 out_err_no_irq_srcu:
681 cleanup_srcu_struct(&kvm->srcu);
682 out_err_no_srcu:
683 hardware_disable_all();
684 out_err_no_disable:
685 refcount_set(&kvm->users_count, 0);
686 for (i = 0; i < KVM_NR_BUSES; i++)
687 kfree(kvm_get_bus(kvm, i));
688 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
689 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
690 kvm_arch_free_vm(kvm);
691 mmdrop(current->mm);
692 return ERR_PTR(r);
693 }
694
695 static void kvm_destroy_devices(struct kvm *kvm)
696 {
697 struct kvm_device *dev, *tmp;
698
699 /*
700 * We do not need to take the kvm->lock here, because nobody else
701 * has a reference to the struct kvm at this point and therefore
702 * cannot access the devices list anyhow.
703 */
704 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
705 list_del(&dev->vm_node);
706 dev->ops->destroy(dev);
707 }
708 }
709
710 static void kvm_destroy_vm(struct kvm *kvm)
711 {
712 int i;
713 struct mm_struct *mm = kvm->mm;
714
715 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
716 kvm_destroy_vm_debugfs(kvm);
717 kvm_arch_sync_events(kvm);
718 mutex_lock(&kvm_lock);
719 list_del(&kvm->vm_list);
720 mutex_unlock(&kvm_lock);
721 kvm_free_irq_routing(kvm);
722 for (i = 0; i < KVM_NR_BUSES; i++) {
723 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
724
725 if (bus)
726 kvm_io_bus_destroy(bus);
727 kvm->buses[i] = NULL;
728 }
729 kvm_coalesced_mmio_free(kvm);
730 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
731 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
732 #else
733 kvm_arch_flush_shadow_all(kvm);
734 #endif
735 kvm_arch_destroy_vm(kvm);
736 kvm_destroy_devices(kvm);
737 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
738 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
739 cleanup_srcu_struct(&kvm->irq_srcu);
740 cleanup_srcu_struct(&kvm->srcu);
741 kvm_arch_free_vm(kvm);
742 preempt_notifier_dec();
743 hardware_disable_all();
744 mmdrop(mm);
745 }
746
747 void kvm_get_kvm(struct kvm *kvm)
748 {
749 refcount_inc(&kvm->users_count);
750 }
751 EXPORT_SYMBOL_GPL(kvm_get_kvm);
752
753 void kvm_put_kvm(struct kvm *kvm)
754 {
755 if (refcount_dec_and_test(&kvm->users_count))
756 kvm_destroy_vm(kvm);
757 }
758 EXPORT_SYMBOL_GPL(kvm_put_kvm);
759
760
761 static int kvm_vm_release(struct inode *inode, struct file *filp)
762 {
763 struct kvm *kvm = filp->private_data;
764
765 kvm_irqfd_release(kvm);
766
767 kvm_put_kvm(kvm);
768 return 0;
769 }
770
771 /*
772 * Allocation size is twice as large as the actual dirty bitmap size.
773 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
774 */
775 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
776 {
777 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
778
779 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
780 if (!memslot->dirty_bitmap)
781 return -ENOMEM;
782
783 return 0;
784 }
785
786 /*
787 * Insert memslot and re-sort memslots based on their GFN,
788 * so binary search could be used to lookup GFN.
789 * Sorting algorithm takes advantage of having initially
790 * sorted array and known changed memslot position.
791 */
792 static void update_memslots(struct kvm_memslots *slots,
793 struct kvm_memory_slot *new)
794 {
795 int id = new->id;
796 int i = slots->id_to_index[id];
797 struct kvm_memory_slot *mslots = slots->memslots;
798
799 WARN_ON(mslots[i].id != id);
800 if (!new->npages) {
801 WARN_ON(!mslots[i].npages);
802 if (mslots[i].npages)
803 slots->used_slots--;
804 } else {
805 if (!mslots[i].npages)
806 slots->used_slots++;
807 }
808
809 while (i < KVM_MEM_SLOTS_NUM - 1 &&
810 new->base_gfn <= mslots[i + 1].base_gfn) {
811 if (!mslots[i + 1].npages)
812 break;
813 mslots[i] = mslots[i + 1];
814 slots->id_to_index[mslots[i].id] = i;
815 i++;
816 }
817
818 /*
819 * The ">=" is needed when creating a slot with base_gfn == 0,
820 * so that it moves before all those with base_gfn == npages == 0.
821 *
822 * On the other hand, if new->npages is zero, the above loop has
823 * already left i pointing to the beginning of the empty part of
824 * mslots, and the ">=" would move the hole backwards in this
825 * case---which is wrong. So skip the loop when deleting a slot.
826 */
827 if (new->npages) {
828 while (i > 0 &&
829 new->base_gfn >= mslots[i - 1].base_gfn) {
830 mslots[i] = mslots[i - 1];
831 slots->id_to_index[mslots[i].id] = i;
832 i--;
833 }
834 } else
835 WARN_ON_ONCE(i != slots->used_slots);
836
837 mslots[i] = *new;
838 slots->id_to_index[mslots[i].id] = i;
839 }
840
841 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
842 {
843 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
844
845 #ifdef __KVM_HAVE_READONLY_MEM
846 valid_flags |= KVM_MEM_READONLY;
847 #endif
848
849 if (mem->flags & ~valid_flags)
850 return -EINVAL;
851
852 return 0;
853 }
854
855 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
856 int as_id, struct kvm_memslots *slots)
857 {
858 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
859 u64 gen;
860
861 /*
862 * Set the low bit in the generation, which disables SPTE caching
863 * until the end of synchronize_srcu_expedited.
864 */
865 WARN_ON(old_memslots->generation & 1);
866 slots->generation = old_memslots->generation + 1;
867
868 rcu_assign_pointer(kvm->memslots[as_id], slots);
869 synchronize_srcu_expedited(&kvm->srcu);
870
871 /*
872 * Increment the new memslot generation a second time. This prevents
873 * vm exits that race with memslot updates from caching a memslot
874 * generation that will (potentially) be valid forever.
875 *
876 * Generations must be unique even across address spaces. We do not need
877 * a global counter for that, instead the generation space is evenly split
878 * across address spaces. For example, with two address spaces, address
879 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
880 * use generations 2, 6, 10, 14, ...
881 */
882 gen = slots->generation + KVM_ADDRESS_SPACE_NUM * 2 - 1;
883
884 kvm_arch_memslots_updated(kvm, gen);
885
886 slots->generation = gen;
887
888 return old_memslots;
889 }
890
891 /*
892 * Allocate some memory and give it an address in the guest physical address
893 * space.
894 *
895 * Discontiguous memory is allowed, mostly for framebuffers.
896 *
897 * Must be called holding kvm->slots_lock for write.
898 */
899 int __kvm_set_memory_region(struct kvm *kvm,
900 const struct kvm_userspace_memory_region *mem)
901 {
902 int r;
903 gfn_t base_gfn;
904 unsigned long npages;
905 struct kvm_memory_slot *slot;
906 struct kvm_memory_slot old, new;
907 struct kvm_memslots *slots = NULL, *old_memslots;
908 int as_id, id;
909 enum kvm_mr_change change;
910
911 r = check_memory_region_flags(mem);
912 if (r)
913 goto out;
914
915 r = -EINVAL;
916 as_id = mem->slot >> 16;
917 id = (u16)mem->slot;
918
919 /* General sanity checks */
920 if (mem->memory_size & (PAGE_SIZE - 1))
921 goto out;
922 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
923 goto out;
924 /* We can read the guest memory with __xxx_user() later on. */
925 if ((id < KVM_USER_MEM_SLOTS) &&
926 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
927 !access_ok(VERIFY_WRITE,
928 (void __user *)(unsigned long)mem->userspace_addr,
929 mem->memory_size)))
930 goto out;
931 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
932 goto out;
933 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
934 goto out;
935
936 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
937 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
938 npages = mem->memory_size >> PAGE_SHIFT;
939
940 if (npages > KVM_MEM_MAX_NR_PAGES)
941 goto out;
942
943 new = old = *slot;
944
945 new.id = id;
946 new.base_gfn = base_gfn;
947 new.npages = npages;
948 new.flags = mem->flags;
949
950 if (npages) {
951 if (!old.npages)
952 change = KVM_MR_CREATE;
953 else { /* Modify an existing slot. */
954 if ((mem->userspace_addr != old.userspace_addr) ||
955 (npages != old.npages) ||
956 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
957 goto out;
958
959 if (base_gfn != old.base_gfn)
960 change = KVM_MR_MOVE;
961 else if (new.flags != old.flags)
962 change = KVM_MR_FLAGS_ONLY;
963 else { /* Nothing to change. */
964 r = 0;
965 goto out;
966 }
967 }
968 } else {
969 if (!old.npages)
970 goto out;
971
972 change = KVM_MR_DELETE;
973 new.base_gfn = 0;
974 new.flags = 0;
975 }
976
977 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
978 /* Check for overlaps */
979 r = -EEXIST;
980 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
981 if (slot->id == id)
982 continue;
983 if (!((base_gfn + npages <= slot->base_gfn) ||
984 (base_gfn >= slot->base_gfn + slot->npages)))
985 goto out;
986 }
987 }
988
989 /* Free page dirty bitmap if unneeded */
990 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
991 new.dirty_bitmap = NULL;
992
993 r = -ENOMEM;
994 if (change == KVM_MR_CREATE) {
995 new.userspace_addr = mem->userspace_addr;
996
997 if (kvm_arch_create_memslot(kvm, &new, npages))
998 goto out_free;
999 }
1000
1001 /* Allocate page dirty bitmap if needed */
1002 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1003 if (kvm_create_dirty_bitmap(&new) < 0)
1004 goto out_free;
1005 }
1006
1007 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1008 if (!slots)
1009 goto out_free;
1010 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1011
1012 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1013 slot = id_to_memslot(slots, id);
1014 slot->flags |= KVM_MEMSLOT_INVALID;
1015
1016 old_memslots = install_new_memslots(kvm, as_id, slots);
1017
1018 /* From this point no new shadow pages pointing to a deleted,
1019 * or moved, memslot will be created.
1020 *
1021 * validation of sp->gfn happens in:
1022 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1023 * - kvm_is_visible_gfn (mmu_check_roots)
1024 */
1025 kvm_arch_flush_shadow_memslot(kvm, slot);
1026
1027 /*
1028 * We can re-use the old_memslots from above, the only difference
1029 * from the currently installed memslots is the invalid flag. This
1030 * will get overwritten by update_memslots anyway.
1031 */
1032 slots = old_memslots;
1033 }
1034
1035 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1036 if (r)
1037 goto out_slots;
1038
1039 /* actual memory is freed via old in kvm_free_memslot below */
1040 if (change == KVM_MR_DELETE) {
1041 new.dirty_bitmap = NULL;
1042 memset(&new.arch, 0, sizeof(new.arch));
1043 }
1044
1045 update_memslots(slots, &new);
1046 old_memslots = install_new_memslots(kvm, as_id, slots);
1047
1048 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1049
1050 kvm_free_memslot(kvm, &old, &new);
1051 kvfree(old_memslots);
1052 return 0;
1053
1054 out_slots:
1055 kvfree(slots);
1056 out_free:
1057 kvm_free_memslot(kvm, &new, &old);
1058 out:
1059 return r;
1060 }
1061 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1062
1063 int kvm_set_memory_region(struct kvm *kvm,
1064 const struct kvm_userspace_memory_region *mem)
1065 {
1066 int r;
1067
1068 mutex_lock(&kvm->slots_lock);
1069 r = __kvm_set_memory_region(kvm, mem);
1070 mutex_unlock(&kvm->slots_lock);
1071 return r;
1072 }
1073 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1074
1075 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1076 struct kvm_userspace_memory_region *mem)
1077 {
1078 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1079 return -EINVAL;
1080
1081 return kvm_set_memory_region(kvm, mem);
1082 }
1083
1084 int kvm_get_dirty_log(struct kvm *kvm,
1085 struct kvm_dirty_log *log, int *is_dirty)
1086 {
1087 struct kvm_memslots *slots;
1088 struct kvm_memory_slot *memslot;
1089 int i, as_id, id;
1090 unsigned long n;
1091 unsigned long any = 0;
1092
1093 as_id = log->slot >> 16;
1094 id = (u16)log->slot;
1095 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1096 return -EINVAL;
1097
1098 slots = __kvm_memslots(kvm, as_id);
1099 memslot = id_to_memslot(slots, id);
1100 if (!memslot->dirty_bitmap)
1101 return -ENOENT;
1102
1103 n = kvm_dirty_bitmap_bytes(memslot);
1104
1105 for (i = 0; !any && i < n/sizeof(long); ++i)
1106 any = memslot->dirty_bitmap[i];
1107
1108 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1109 return -EFAULT;
1110
1111 if (any)
1112 *is_dirty = 1;
1113 return 0;
1114 }
1115 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1116
1117 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1118 /**
1119 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1120 * are dirty write protect them for next write.
1121 * @kvm: pointer to kvm instance
1122 * @log: slot id and address to which we copy the log
1123 * @is_dirty: flag set if any page is dirty
1124 *
1125 * We need to keep it in mind that VCPU threads can write to the bitmap
1126 * concurrently. So, to avoid losing track of dirty pages we keep the
1127 * following order:
1128 *
1129 * 1. Take a snapshot of the bit and clear it if needed.
1130 * 2. Write protect the corresponding page.
1131 * 3. Copy the snapshot to the userspace.
1132 * 4. Upon return caller flushes TLB's if needed.
1133 *
1134 * Between 2 and 4, the guest may write to the page using the remaining TLB
1135 * entry. This is not a problem because the page is reported dirty using
1136 * the snapshot taken before and step 4 ensures that writes done after
1137 * exiting to userspace will be logged for the next call.
1138 *
1139 */
1140 int kvm_get_dirty_log_protect(struct kvm *kvm,
1141 struct kvm_dirty_log *log, bool *is_dirty)
1142 {
1143 struct kvm_memslots *slots;
1144 struct kvm_memory_slot *memslot;
1145 int i, as_id, id;
1146 unsigned long n;
1147 unsigned long *dirty_bitmap;
1148 unsigned long *dirty_bitmap_buffer;
1149
1150 as_id = log->slot >> 16;
1151 id = (u16)log->slot;
1152 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1153 return -EINVAL;
1154
1155 slots = __kvm_memslots(kvm, as_id);
1156 memslot = id_to_memslot(slots, id);
1157
1158 dirty_bitmap = memslot->dirty_bitmap;
1159 if (!dirty_bitmap)
1160 return -ENOENT;
1161
1162 n = kvm_dirty_bitmap_bytes(memslot);
1163
1164 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1165 memset(dirty_bitmap_buffer, 0, n);
1166
1167 spin_lock(&kvm->mmu_lock);
1168 *is_dirty = false;
1169 for (i = 0; i < n / sizeof(long); i++) {
1170 unsigned long mask;
1171 gfn_t offset;
1172
1173 if (!dirty_bitmap[i])
1174 continue;
1175
1176 *is_dirty = true;
1177
1178 mask = xchg(&dirty_bitmap[i], 0);
1179 dirty_bitmap_buffer[i] = mask;
1180
1181 if (mask) {
1182 offset = i * BITS_PER_LONG;
1183 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1184 offset, mask);
1185 }
1186 }
1187
1188 spin_unlock(&kvm->mmu_lock);
1189 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1190 return -EFAULT;
1191 return 0;
1192 }
1193 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1194 #endif
1195
1196 bool kvm_largepages_enabled(void)
1197 {
1198 return largepages_enabled;
1199 }
1200
1201 void kvm_disable_largepages(void)
1202 {
1203 largepages_enabled = false;
1204 }
1205 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1206
1207 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1208 {
1209 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1210 }
1211 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1212
1213 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1214 {
1215 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1216 }
1217
1218 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1219 {
1220 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1221
1222 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1223 memslot->flags & KVM_MEMSLOT_INVALID)
1224 return false;
1225
1226 return true;
1227 }
1228 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1229
1230 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1231 {
1232 struct vm_area_struct *vma;
1233 unsigned long addr, size;
1234
1235 size = PAGE_SIZE;
1236
1237 addr = gfn_to_hva(kvm, gfn);
1238 if (kvm_is_error_hva(addr))
1239 return PAGE_SIZE;
1240
1241 down_read(&current->mm->mmap_sem);
1242 vma = find_vma(current->mm, addr);
1243 if (!vma)
1244 goto out;
1245
1246 size = vma_kernel_pagesize(vma);
1247
1248 out:
1249 up_read(&current->mm->mmap_sem);
1250
1251 return size;
1252 }
1253
1254 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1255 {
1256 return slot->flags & KVM_MEM_READONLY;
1257 }
1258
1259 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1260 gfn_t *nr_pages, bool write)
1261 {
1262 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1263 return KVM_HVA_ERR_BAD;
1264
1265 if (memslot_is_readonly(slot) && write)
1266 return KVM_HVA_ERR_RO_BAD;
1267
1268 if (nr_pages)
1269 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1270
1271 return __gfn_to_hva_memslot(slot, gfn);
1272 }
1273
1274 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1275 gfn_t *nr_pages)
1276 {
1277 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1278 }
1279
1280 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1281 gfn_t gfn)
1282 {
1283 return gfn_to_hva_many(slot, gfn, NULL);
1284 }
1285 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1286
1287 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1288 {
1289 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1290 }
1291 EXPORT_SYMBOL_GPL(gfn_to_hva);
1292
1293 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1294 {
1295 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1296 }
1297 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1298
1299 /*
1300 * If writable is set to false, the hva returned by this function is only
1301 * allowed to be read.
1302 */
1303 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1304 gfn_t gfn, bool *writable)
1305 {
1306 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1307
1308 if (!kvm_is_error_hva(hva) && writable)
1309 *writable = !memslot_is_readonly(slot);
1310
1311 return hva;
1312 }
1313
1314 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1315 {
1316 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1317
1318 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1319 }
1320
1321 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1322 {
1323 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1324
1325 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1326 }
1327
1328 static int get_user_page_nowait(unsigned long start, int write,
1329 struct page **page)
1330 {
1331 int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1332
1333 if (write)
1334 flags |= FOLL_WRITE;
1335
1336 return get_user_pages(start, 1, flags, page, NULL);
1337 }
1338
1339 static inline int check_user_page_hwpoison(unsigned long addr)
1340 {
1341 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1342
1343 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1344 return rc == -EHWPOISON;
1345 }
1346
1347 /*
1348 * The atomic path to get the writable pfn which will be stored in @pfn,
1349 * true indicates success, otherwise false is returned.
1350 */
1351 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1352 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1353 {
1354 struct page *page[1];
1355 int npages;
1356
1357 if (!(async || atomic))
1358 return false;
1359
1360 /*
1361 * Fast pin a writable pfn only if it is a write fault request
1362 * or the caller allows to map a writable pfn for a read fault
1363 * request.
1364 */
1365 if (!(write_fault || writable))
1366 return false;
1367
1368 npages = __get_user_pages_fast(addr, 1, 1, page);
1369 if (npages == 1) {
1370 *pfn = page_to_pfn(page[0]);
1371
1372 if (writable)
1373 *writable = true;
1374 return true;
1375 }
1376
1377 return false;
1378 }
1379
1380 /*
1381 * The slow path to get the pfn of the specified host virtual address,
1382 * 1 indicates success, -errno is returned if error is detected.
1383 */
1384 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1385 bool *writable, kvm_pfn_t *pfn)
1386 {
1387 struct page *page[1];
1388 int npages = 0;
1389
1390 might_sleep();
1391
1392 if (writable)
1393 *writable = write_fault;
1394
1395 if (async) {
1396 down_read(&current->mm->mmap_sem);
1397 npages = get_user_page_nowait(addr, write_fault, page);
1398 up_read(&current->mm->mmap_sem);
1399 } else {
1400 unsigned int flags = FOLL_HWPOISON;
1401
1402 if (write_fault)
1403 flags |= FOLL_WRITE;
1404
1405 npages = get_user_pages_unlocked(addr, 1, page, flags);
1406 }
1407 if (npages != 1)
1408 return npages;
1409
1410 /* map read fault as writable if possible */
1411 if (unlikely(!write_fault) && writable) {
1412 struct page *wpage[1];
1413
1414 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1415 if (npages == 1) {
1416 *writable = true;
1417 put_page(page[0]);
1418 page[0] = wpage[0];
1419 }
1420
1421 npages = 1;
1422 }
1423 *pfn = page_to_pfn(page[0]);
1424 return npages;
1425 }
1426
1427 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1428 {
1429 if (unlikely(!(vma->vm_flags & VM_READ)))
1430 return false;
1431
1432 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1433 return false;
1434
1435 return true;
1436 }
1437
1438 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1439 unsigned long addr, bool *async,
1440 bool write_fault, bool *writable,
1441 kvm_pfn_t *p_pfn)
1442 {
1443 unsigned long pfn;
1444 int r;
1445
1446 r = follow_pfn(vma, addr, &pfn);
1447 if (r) {
1448 /*
1449 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1450 * not call the fault handler, so do it here.
1451 */
1452 bool unlocked = false;
1453 r = fixup_user_fault(current, current->mm, addr,
1454 (write_fault ? FAULT_FLAG_WRITE : 0),
1455 &unlocked);
1456 if (unlocked)
1457 return -EAGAIN;
1458 if (r)
1459 return r;
1460
1461 r = follow_pfn(vma, addr, &pfn);
1462 if (r)
1463 return r;
1464
1465 }
1466
1467 if (writable)
1468 *writable = true;
1469
1470 /*
1471 * Get a reference here because callers of *hva_to_pfn* and
1472 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1473 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1474 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1475 * simply do nothing for reserved pfns.
1476 *
1477 * Whoever called remap_pfn_range is also going to call e.g.
1478 * unmap_mapping_range before the underlying pages are freed,
1479 * causing a call to our MMU notifier.
1480 */
1481 kvm_get_pfn(pfn);
1482
1483 *p_pfn = pfn;
1484 return 0;
1485 }
1486
1487 /*
1488 * Pin guest page in memory and return its pfn.
1489 * @addr: host virtual address which maps memory to the guest
1490 * @atomic: whether this function can sleep
1491 * @async: whether this function need to wait IO complete if the
1492 * host page is not in the memory
1493 * @write_fault: whether we should get a writable host page
1494 * @writable: whether it allows to map a writable host page for !@write_fault
1495 *
1496 * The function will map a writable host page for these two cases:
1497 * 1): @write_fault = true
1498 * 2): @write_fault = false && @writable, @writable will tell the caller
1499 * whether the mapping is writable.
1500 */
1501 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1502 bool write_fault, bool *writable)
1503 {
1504 struct vm_area_struct *vma;
1505 kvm_pfn_t pfn = 0;
1506 int npages, r;
1507
1508 /* we can do it either atomically or asynchronously, not both */
1509 BUG_ON(atomic && async);
1510
1511 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1512 return pfn;
1513
1514 if (atomic)
1515 return KVM_PFN_ERR_FAULT;
1516
1517 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1518 if (npages == 1)
1519 return pfn;
1520
1521 down_read(&current->mm->mmap_sem);
1522 if (npages == -EHWPOISON ||
1523 (!async && check_user_page_hwpoison(addr))) {
1524 pfn = KVM_PFN_ERR_HWPOISON;
1525 goto exit;
1526 }
1527
1528 retry:
1529 vma = find_vma_intersection(current->mm, addr, addr + 1);
1530
1531 if (vma == NULL)
1532 pfn = KVM_PFN_ERR_FAULT;
1533 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1534 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1535 if (r == -EAGAIN)
1536 goto retry;
1537 if (r < 0)
1538 pfn = KVM_PFN_ERR_FAULT;
1539 } else {
1540 if (async && vma_is_valid(vma, write_fault))
1541 *async = true;
1542 pfn = KVM_PFN_ERR_FAULT;
1543 }
1544 exit:
1545 up_read(&current->mm->mmap_sem);
1546 return pfn;
1547 }
1548
1549 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1550 bool atomic, bool *async, bool write_fault,
1551 bool *writable)
1552 {
1553 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1554
1555 if (addr == KVM_HVA_ERR_RO_BAD) {
1556 if (writable)
1557 *writable = false;
1558 return KVM_PFN_ERR_RO_FAULT;
1559 }
1560
1561 if (kvm_is_error_hva(addr)) {
1562 if (writable)
1563 *writable = false;
1564 return KVM_PFN_NOSLOT;
1565 }
1566
1567 /* Do not map writable pfn in the readonly memslot. */
1568 if (writable && memslot_is_readonly(slot)) {
1569 *writable = false;
1570 writable = NULL;
1571 }
1572
1573 return hva_to_pfn(addr, atomic, async, write_fault,
1574 writable);
1575 }
1576 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1577
1578 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1579 bool *writable)
1580 {
1581 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1582 write_fault, writable);
1583 }
1584 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1585
1586 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1587 {
1588 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1589 }
1590 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1591
1592 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1593 {
1594 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1595 }
1596 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1597
1598 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1599 {
1600 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1601 }
1602 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1603
1604 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1605 {
1606 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1607 }
1608 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1609
1610 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1611 {
1612 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1613 }
1614 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1615
1616 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1617 {
1618 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1619 }
1620 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1621
1622 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1623 struct page **pages, int nr_pages)
1624 {
1625 unsigned long addr;
1626 gfn_t entry = 0;
1627
1628 addr = gfn_to_hva_many(slot, gfn, &entry);
1629 if (kvm_is_error_hva(addr))
1630 return -1;
1631
1632 if (entry < nr_pages)
1633 return 0;
1634
1635 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1636 }
1637 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1638
1639 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1640 {
1641 if (is_error_noslot_pfn(pfn))
1642 return KVM_ERR_PTR_BAD_PAGE;
1643
1644 if (kvm_is_reserved_pfn(pfn)) {
1645 WARN_ON(1);
1646 return KVM_ERR_PTR_BAD_PAGE;
1647 }
1648
1649 return pfn_to_page(pfn);
1650 }
1651
1652 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1653 {
1654 kvm_pfn_t pfn;
1655
1656 pfn = gfn_to_pfn(kvm, gfn);
1657
1658 return kvm_pfn_to_page(pfn);
1659 }
1660 EXPORT_SYMBOL_GPL(gfn_to_page);
1661
1662 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1663 {
1664 kvm_pfn_t pfn;
1665
1666 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1667
1668 return kvm_pfn_to_page(pfn);
1669 }
1670 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1671
1672 void kvm_release_page_clean(struct page *page)
1673 {
1674 WARN_ON(is_error_page(page));
1675
1676 kvm_release_pfn_clean(page_to_pfn(page));
1677 }
1678 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1679
1680 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1681 {
1682 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1683 put_page(pfn_to_page(pfn));
1684 }
1685 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1686
1687 void kvm_release_page_dirty(struct page *page)
1688 {
1689 WARN_ON(is_error_page(page));
1690
1691 kvm_release_pfn_dirty(page_to_pfn(page));
1692 }
1693 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1694
1695 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1696 {
1697 kvm_set_pfn_dirty(pfn);
1698 kvm_release_pfn_clean(pfn);
1699 }
1700 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1701
1702 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1703 {
1704 if (!kvm_is_reserved_pfn(pfn)) {
1705 struct page *page = pfn_to_page(pfn);
1706
1707 if (!PageReserved(page))
1708 SetPageDirty(page);
1709 }
1710 }
1711 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1712
1713 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1714 {
1715 if (!kvm_is_reserved_pfn(pfn))
1716 mark_page_accessed(pfn_to_page(pfn));
1717 }
1718 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1719
1720 void kvm_get_pfn(kvm_pfn_t pfn)
1721 {
1722 if (!kvm_is_reserved_pfn(pfn))
1723 get_page(pfn_to_page(pfn));
1724 }
1725 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1726
1727 static int next_segment(unsigned long len, int offset)
1728 {
1729 if (len > PAGE_SIZE - offset)
1730 return PAGE_SIZE - offset;
1731 else
1732 return len;
1733 }
1734
1735 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1736 void *data, int offset, int len)
1737 {
1738 int r;
1739 unsigned long addr;
1740
1741 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1742 if (kvm_is_error_hva(addr))
1743 return -EFAULT;
1744 r = __copy_from_user(data, (void __user *)addr + offset, len);
1745 if (r)
1746 return -EFAULT;
1747 return 0;
1748 }
1749
1750 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1751 int len)
1752 {
1753 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1754
1755 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1756 }
1757 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1758
1759 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1760 int offset, int len)
1761 {
1762 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1763
1764 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1765 }
1766 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1767
1768 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1769 {
1770 gfn_t gfn = gpa >> PAGE_SHIFT;
1771 int seg;
1772 int offset = offset_in_page(gpa);
1773 int ret;
1774
1775 while ((seg = next_segment(len, offset)) != 0) {
1776 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1777 if (ret < 0)
1778 return ret;
1779 offset = 0;
1780 len -= seg;
1781 data += seg;
1782 ++gfn;
1783 }
1784 return 0;
1785 }
1786 EXPORT_SYMBOL_GPL(kvm_read_guest);
1787
1788 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1789 {
1790 gfn_t gfn = gpa >> PAGE_SHIFT;
1791 int seg;
1792 int offset = offset_in_page(gpa);
1793 int ret;
1794
1795 while ((seg = next_segment(len, offset)) != 0) {
1796 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1797 if (ret < 0)
1798 return ret;
1799 offset = 0;
1800 len -= seg;
1801 data += seg;
1802 ++gfn;
1803 }
1804 return 0;
1805 }
1806 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1807
1808 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1809 void *data, int offset, unsigned long len)
1810 {
1811 int r;
1812 unsigned long addr;
1813
1814 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1815 if (kvm_is_error_hva(addr))
1816 return -EFAULT;
1817 pagefault_disable();
1818 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1819 pagefault_enable();
1820 if (r)
1821 return -EFAULT;
1822 return 0;
1823 }
1824
1825 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1826 unsigned long len)
1827 {
1828 gfn_t gfn = gpa >> PAGE_SHIFT;
1829 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1830 int offset = offset_in_page(gpa);
1831
1832 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1833 }
1834 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1835
1836 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1837 void *data, unsigned long len)
1838 {
1839 gfn_t gfn = gpa >> PAGE_SHIFT;
1840 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1841 int offset = offset_in_page(gpa);
1842
1843 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1844 }
1845 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1846
1847 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1848 const void *data, int offset, int len)
1849 {
1850 int r;
1851 unsigned long addr;
1852
1853 addr = gfn_to_hva_memslot(memslot, gfn);
1854 if (kvm_is_error_hva(addr))
1855 return -EFAULT;
1856 r = __copy_to_user((void __user *)addr + offset, data, len);
1857 if (r)
1858 return -EFAULT;
1859 mark_page_dirty_in_slot(memslot, gfn);
1860 return 0;
1861 }
1862
1863 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1864 const void *data, int offset, int len)
1865 {
1866 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1867
1868 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1869 }
1870 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1871
1872 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1873 const void *data, int offset, int len)
1874 {
1875 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1876
1877 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1878 }
1879 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1880
1881 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1882 unsigned long len)
1883 {
1884 gfn_t gfn = gpa >> PAGE_SHIFT;
1885 int seg;
1886 int offset = offset_in_page(gpa);
1887 int ret;
1888
1889 while ((seg = next_segment(len, offset)) != 0) {
1890 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1891 if (ret < 0)
1892 return ret;
1893 offset = 0;
1894 len -= seg;
1895 data += seg;
1896 ++gfn;
1897 }
1898 return 0;
1899 }
1900 EXPORT_SYMBOL_GPL(kvm_write_guest);
1901
1902 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1903 unsigned long len)
1904 {
1905 gfn_t gfn = gpa >> PAGE_SHIFT;
1906 int seg;
1907 int offset = offset_in_page(gpa);
1908 int ret;
1909
1910 while ((seg = next_segment(len, offset)) != 0) {
1911 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1912 if (ret < 0)
1913 return ret;
1914 offset = 0;
1915 len -= seg;
1916 data += seg;
1917 ++gfn;
1918 }
1919 return 0;
1920 }
1921 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1922
1923 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1924 struct gfn_to_hva_cache *ghc,
1925 gpa_t gpa, unsigned long len)
1926 {
1927 int offset = offset_in_page(gpa);
1928 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1929 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1930 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1931 gfn_t nr_pages_avail;
1932
1933 ghc->gpa = gpa;
1934 ghc->generation = slots->generation;
1935 ghc->len = len;
1936 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1937 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1938 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1939 ghc->hva += offset;
1940 } else {
1941 /*
1942 * If the requested region crosses two memslots, we still
1943 * verify that the entire region is valid here.
1944 */
1945 while (start_gfn <= end_gfn) {
1946 nr_pages_avail = 0;
1947 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1948 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1949 &nr_pages_avail);
1950 if (kvm_is_error_hva(ghc->hva))
1951 return -EFAULT;
1952 start_gfn += nr_pages_avail;
1953 }
1954 /* Use the slow path for cross page reads and writes. */
1955 ghc->memslot = NULL;
1956 }
1957 return 0;
1958 }
1959
1960 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1961 gpa_t gpa, unsigned long len)
1962 {
1963 struct kvm_memslots *slots = kvm_memslots(kvm);
1964 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1965 }
1966 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1967
1968 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1969 void *data, unsigned int offset,
1970 unsigned long len)
1971 {
1972 struct kvm_memslots *slots = kvm_memslots(kvm);
1973 int r;
1974 gpa_t gpa = ghc->gpa + offset;
1975
1976 BUG_ON(len + offset > ghc->len);
1977
1978 if (slots->generation != ghc->generation)
1979 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1980
1981 if (unlikely(!ghc->memslot))
1982 return kvm_write_guest(kvm, gpa, data, len);
1983
1984 if (kvm_is_error_hva(ghc->hva))
1985 return -EFAULT;
1986
1987 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1988 if (r)
1989 return -EFAULT;
1990 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1991
1992 return 0;
1993 }
1994 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1995
1996 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1997 void *data, unsigned long len)
1998 {
1999 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2000 }
2001 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2002
2003 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2004 void *data, unsigned long len)
2005 {
2006 struct kvm_memslots *slots = kvm_memslots(kvm);
2007 int r;
2008
2009 BUG_ON(len > ghc->len);
2010
2011 if (slots->generation != ghc->generation)
2012 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2013
2014 if (unlikely(!ghc->memslot))
2015 return kvm_read_guest(kvm, ghc->gpa, data, len);
2016
2017 if (kvm_is_error_hva(ghc->hva))
2018 return -EFAULT;
2019
2020 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2021 if (r)
2022 return -EFAULT;
2023
2024 return 0;
2025 }
2026 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2027
2028 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2029 {
2030 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2031
2032 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2033 }
2034 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2035
2036 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2037 {
2038 gfn_t gfn = gpa >> PAGE_SHIFT;
2039 int seg;
2040 int offset = offset_in_page(gpa);
2041 int ret;
2042
2043 while ((seg = next_segment(len, offset)) != 0) {
2044 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2045 if (ret < 0)
2046 return ret;
2047 offset = 0;
2048 len -= seg;
2049 ++gfn;
2050 }
2051 return 0;
2052 }
2053 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2054
2055 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2056 gfn_t gfn)
2057 {
2058 if (memslot && memslot->dirty_bitmap) {
2059 unsigned long rel_gfn = gfn - memslot->base_gfn;
2060
2061 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2062 }
2063 }
2064
2065 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2066 {
2067 struct kvm_memory_slot *memslot;
2068
2069 memslot = gfn_to_memslot(kvm, gfn);
2070 mark_page_dirty_in_slot(memslot, gfn);
2071 }
2072 EXPORT_SYMBOL_GPL(mark_page_dirty);
2073
2074 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2075 {
2076 struct kvm_memory_slot *memslot;
2077
2078 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2079 mark_page_dirty_in_slot(memslot, gfn);
2080 }
2081 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2082
2083 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2084 {
2085 if (!vcpu->sigset_active)
2086 return;
2087
2088 /*
2089 * This does a lockless modification of ->real_blocked, which is fine
2090 * because, only current can change ->real_blocked and all readers of
2091 * ->real_blocked don't care as long ->real_blocked is always a subset
2092 * of ->blocked.
2093 */
2094 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2095 }
2096
2097 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2098 {
2099 if (!vcpu->sigset_active)
2100 return;
2101
2102 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2103 sigemptyset(&current->real_blocked);
2104 }
2105
2106 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2107 {
2108 unsigned int old, val, grow;
2109
2110 old = val = vcpu->halt_poll_ns;
2111 grow = READ_ONCE(halt_poll_ns_grow);
2112 /* 10us base */
2113 if (val == 0 && grow)
2114 val = 10000;
2115 else
2116 val *= grow;
2117
2118 if (val > halt_poll_ns)
2119 val = halt_poll_ns;
2120
2121 vcpu->halt_poll_ns = val;
2122 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2123 }
2124
2125 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2126 {
2127 unsigned int old, val, shrink;
2128
2129 old = val = vcpu->halt_poll_ns;
2130 shrink = READ_ONCE(halt_poll_ns_shrink);
2131 if (shrink == 0)
2132 val = 0;
2133 else
2134 val /= shrink;
2135
2136 vcpu->halt_poll_ns = val;
2137 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2138 }
2139
2140 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2141 {
2142 if (kvm_arch_vcpu_runnable(vcpu)) {
2143 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2144 return -EINTR;
2145 }
2146 if (kvm_cpu_has_pending_timer(vcpu))
2147 return -EINTR;
2148 if (signal_pending(current))
2149 return -EINTR;
2150
2151 return 0;
2152 }
2153
2154 /*
2155 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2156 */
2157 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2158 {
2159 ktime_t start, cur;
2160 DECLARE_SWAITQUEUE(wait);
2161 bool waited = false;
2162 u64 block_ns;
2163
2164 start = cur = ktime_get();
2165 if (vcpu->halt_poll_ns) {
2166 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2167
2168 ++vcpu->stat.halt_attempted_poll;
2169 do {
2170 /*
2171 * This sets KVM_REQ_UNHALT if an interrupt
2172 * arrives.
2173 */
2174 if (kvm_vcpu_check_block(vcpu) < 0) {
2175 ++vcpu->stat.halt_successful_poll;
2176 if (!vcpu_valid_wakeup(vcpu))
2177 ++vcpu->stat.halt_poll_invalid;
2178 goto out;
2179 }
2180 cur = ktime_get();
2181 } while (single_task_running() && ktime_before(cur, stop));
2182 }
2183
2184 kvm_arch_vcpu_blocking(vcpu);
2185
2186 for (;;) {
2187 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2188
2189 if (kvm_vcpu_check_block(vcpu) < 0)
2190 break;
2191
2192 waited = true;
2193 schedule();
2194 }
2195
2196 finish_swait(&vcpu->wq, &wait);
2197 cur = ktime_get();
2198
2199 kvm_arch_vcpu_unblocking(vcpu);
2200 out:
2201 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2202
2203 if (!vcpu_valid_wakeup(vcpu))
2204 shrink_halt_poll_ns(vcpu);
2205 else if (halt_poll_ns) {
2206 if (block_ns <= vcpu->halt_poll_ns)
2207 ;
2208 /* we had a long block, shrink polling */
2209 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2210 shrink_halt_poll_ns(vcpu);
2211 /* we had a short halt and our poll time is too small */
2212 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2213 block_ns < halt_poll_ns)
2214 grow_halt_poll_ns(vcpu);
2215 } else
2216 vcpu->halt_poll_ns = 0;
2217
2218 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2219 kvm_arch_vcpu_block_finish(vcpu);
2220 }
2221 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2222
2223 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2224 {
2225 struct swait_queue_head *wqp;
2226
2227 wqp = kvm_arch_vcpu_wq(vcpu);
2228 if (swq_has_sleeper(wqp)) {
2229 swake_up(wqp);
2230 ++vcpu->stat.halt_wakeup;
2231 return true;
2232 }
2233
2234 return false;
2235 }
2236 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2237
2238 #ifndef CONFIG_S390
2239 /*
2240 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2241 */
2242 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2243 {
2244 int me;
2245 int cpu = vcpu->cpu;
2246
2247 if (kvm_vcpu_wake_up(vcpu))
2248 return;
2249
2250 me = get_cpu();
2251 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2252 if (kvm_arch_vcpu_should_kick(vcpu))
2253 smp_send_reschedule(cpu);
2254 put_cpu();
2255 }
2256 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2257 #endif /* !CONFIG_S390 */
2258
2259 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2260 {
2261 struct pid *pid;
2262 struct task_struct *task = NULL;
2263 int ret = 0;
2264
2265 rcu_read_lock();
2266 pid = rcu_dereference(target->pid);
2267 if (pid)
2268 task = get_pid_task(pid, PIDTYPE_PID);
2269 rcu_read_unlock();
2270 if (!task)
2271 return ret;
2272 ret = yield_to(task, 1);
2273 put_task_struct(task);
2274
2275 return ret;
2276 }
2277 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2278
2279 /*
2280 * Helper that checks whether a VCPU is eligible for directed yield.
2281 * Most eligible candidate to yield is decided by following heuristics:
2282 *
2283 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2284 * (preempted lock holder), indicated by @in_spin_loop.
2285 * Set at the beiginning and cleared at the end of interception/PLE handler.
2286 *
2287 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2288 * chance last time (mostly it has become eligible now since we have probably
2289 * yielded to lockholder in last iteration. This is done by toggling
2290 * @dy_eligible each time a VCPU checked for eligibility.)
2291 *
2292 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2293 * to preempted lock-holder could result in wrong VCPU selection and CPU
2294 * burning. Giving priority for a potential lock-holder increases lock
2295 * progress.
2296 *
2297 * Since algorithm is based on heuristics, accessing another VCPU data without
2298 * locking does not harm. It may result in trying to yield to same VCPU, fail
2299 * and continue with next VCPU and so on.
2300 */
2301 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2302 {
2303 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2304 bool eligible;
2305
2306 eligible = !vcpu->spin_loop.in_spin_loop ||
2307 vcpu->spin_loop.dy_eligible;
2308
2309 if (vcpu->spin_loop.in_spin_loop)
2310 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2311
2312 return eligible;
2313 #else
2314 return true;
2315 #endif
2316 }
2317
2318 /*
2319 * Unlike kvm_arch_vcpu_runnable, this function is called outside
2320 * a vcpu_load/vcpu_put pair. However, for most architectures
2321 * kvm_arch_vcpu_runnable does not require vcpu_load.
2322 */
2323 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2324 {
2325 return kvm_arch_vcpu_runnable(vcpu);
2326 }
2327
2328 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2329 {
2330 if (kvm_arch_dy_runnable(vcpu))
2331 return true;
2332
2333 #ifdef CONFIG_KVM_ASYNC_PF
2334 if (!list_empty_careful(&vcpu->async_pf.done))
2335 return true;
2336 #endif
2337
2338 return false;
2339 }
2340
2341 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2342 {
2343 struct kvm *kvm = me->kvm;
2344 struct kvm_vcpu *vcpu;
2345 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2346 int yielded = 0;
2347 int try = 3;
2348 int pass;
2349 int i;
2350
2351 kvm_vcpu_set_in_spin_loop(me, true);
2352 /*
2353 * We boost the priority of a VCPU that is runnable but not
2354 * currently running, because it got preempted by something
2355 * else and called schedule in __vcpu_run. Hopefully that
2356 * VCPU is holding the lock that we need and will release it.
2357 * We approximate round-robin by starting at the last boosted VCPU.
2358 */
2359 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2360 kvm_for_each_vcpu(i, vcpu, kvm) {
2361 if (!pass && i <= last_boosted_vcpu) {
2362 i = last_boosted_vcpu;
2363 continue;
2364 } else if (pass && i > last_boosted_vcpu)
2365 break;
2366 if (!READ_ONCE(vcpu->preempted))
2367 continue;
2368 if (vcpu == me)
2369 continue;
2370 if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2371 continue;
2372 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2373 continue;
2374 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2375 continue;
2376
2377 yielded = kvm_vcpu_yield_to(vcpu);
2378 if (yielded > 0) {
2379 kvm->last_boosted_vcpu = i;
2380 break;
2381 } else if (yielded < 0) {
2382 try--;
2383 if (!try)
2384 break;
2385 }
2386 }
2387 }
2388 kvm_vcpu_set_in_spin_loop(me, false);
2389
2390 /* Ensure vcpu is not eligible during next spinloop */
2391 kvm_vcpu_set_dy_eligible(me, false);
2392 }
2393 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2394
2395 static int kvm_vcpu_fault(struct vm_fault *vmf)
2396 {
2397 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2398 struct page *page;
2399
2400 if (vmf->pgoff == 0)
2401 page = virt_to_page(vcpu->run);
2402 #ifdef CONFIG_X86
2403 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2404 page = virt_to_page(vcpu->arch.pio_data);
2405 #endif
2406 #ifdef CONFIG_KVM_MMIO
2407 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2408 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2409 #endif
2410 else
2411 return kvm_arch_vcpu_fault(vcpu, vmf);
2412 get_page(page);
2413 vmf->page = page;
2414 return 0;
2415 }
2416
2417 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2418 .fault = kvm_vcpu_fault,
2419 };
2420
2421 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2422 {
2423 vma->vm_ops = &kvm_vcpu_vm_ops;
2424 return 0;
2425 }
2426
2427 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2428 {
2429 struct kvm_vcpu *vcpu = filp->private_data;
2430
2431 debugfs_remove_recursive(vcpu->debugfs_dentry);
2432 kvm_put_kvm(vcpu->kvm);
2433 return 0;
2434 }
2435
2436 static struct file_operations kvm_vcpu_fops = {
2437 .release = kvm_vcpu_release,
2438 .unlocked_ioctl = kvm_vcpu_ioctl,
2439 #ifdef CONFIG_KVM_COMPAT
2440 .compat_ioctl = kvm_vcpu_compat_ioctl,
2441 #endif
2442 .mmap = kvm_vcpu_mmap,
2443 .llseek = noop_llseek,
2444 };
2445
2446 /*
2447 * Allocates an inode for the vcpu.
2448 */
2449 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2450 {
2451 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2452 }
2453
2454 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2455 {
2456 char dir_name[ITOA_MAX_LEN * 2];
2457 int ret;
2458
2459 if (!kvm_arch_has_vcpu_debugfs())
2460 return 0;
2461
2462 if (!debugfs_initialized())
2463 return 0;
2464
2465 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2466 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2467 vcpu->kvm->debugfs_dentry);
2468 if (!vcpu->debugfs_dentry)
2469 return -ENOMEM;
2470
2471 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2472 if (ret < 0) {
2473 debugfs_remove_recursive(vcpu->debugfs_dentry);
2474 return ret;
2475 }
2476
2477 return 0;
2478 }
2479
2480 /*
2481 * Creates some virtual cpus. Good luck creating more than one.
2482 */
2483 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2484 {
2485 int r;
2486 struct kvm_vcpu *vcpu;
2487
2488 if (id >= KVM_MAX_VCPU_ID)
2489 return -EINVAL;
2490
2491 mutex_lock(&kvm->lock);
2492 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2493 mutex_unlock(&kvm->lock);
2494 return -EINVAL;
2495 }
2496
2497 kvm->created_vcpus++;
2498 mutex_unlock(&kvm->lock);
2499
2500 vcpu = kvm_arch_vcpu_create(kvm, id);
2501 if (IS_ERR(vcpu)) {
2502 r = PTR_ERR(vcpu);
2503 goto vcpu_decrement;
2504 }
2505
2506 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2507
2508 r = kvm_arch_vcpu_setup(vcpu);
2509 if (r)
2510 goto vcpu_destroy;
2511
2512 r = kvm_create_vcpu_debugfs(vcpu);
2513 if (r)
2514 goto vcpu_destroy;
2515
2516 mutex_lock(&kvm->lock);
2517 if (kvm_get_vcpu_by_id(kvm, id)) {
2518 r = -EEXIST;
2519 goto unlock_vcpu_destroy;
2520 }
2521
2522 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2523
2524 /* Now it's all set up, let userspace reach it */
2525 kvm_get_kvm(kvm);
2526 r = create_vcpu_fd(vcpu);
2527 if (r < 0) {
2528 kvm_put_kvm(kvm);
2529 goto unlock_vcpu_destroy;
2530 }
2531
2532 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2533
2534 /*
2535 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2536 * before kvm->online_vcpu's incremented value.
2537 */
2538 smp_wmb();
2539 atomic_inc(&kvm->online_vcpus);
2540
2541 mutex_unlock(&kvm->lock);
2542 kvm_arch_vcpu_postcreate(vcpu);
2543 return r;
2544
2545 unlock_vcpu_destroy:
2546 mutex_unlock(&kvm->lock);
2547 debugfs_remove_recursive(vcpu->debugfs_dentry);
2548 vcpu_destroy:
2549 kvm_arch_vcpu_destroy(vcpu);
2550 vcpu_decrement:
2551 mutex_lock(&kvm->lock);
2552 kvm->created_vcpus--;
2553 mutex_unlock(&kvm->lock);
2554 return r;
2555 }
2556
2557 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2558 {
2559 if (sigset) {
2560 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2561 vcpu->sigset_active = 1;
2562 vcpu->sigset = *sigset;
2563 } else
2564 vcpu->sigset_active = 0;
2565 return 0;
2566 }
2567
2568 static long kvm_vcpu_ioctl(struct file *filp,
2569 unsigned int ioctl, unsigned long arg)
2570 {
2571 struct kvm_vcpu *vcpu = filp->private_data;
2572 void __user *argp = (void __user *)arg;
2573 int r;
2574 struct kvm_fpu *fpu = NULL;
2575 struct kvm_sregs *kvm_sregs = NULL;
2576
2577 if (vcpu->kvm->mm != current->mm)
2578 return -EIO;
2579
2580 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2581 return -EINVAL;
2582
2583 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2584 /*
2585 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2586 * so vcpu_load() would break it.
2587 */
2588 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2589 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2590 #endif
2591
2592
2593 r = vcpu_load(vcpu);
2594 if (r)
2595 return r;
2596 switch (ioctl) {
2597 case KVM_RUN: {
2598 struct pid *oldpid;
2599 r = -EINVAL;
2600 if (arg)
2601 goto out;
2602 oldpid = rcu_access_pointer(vcpu->pid);
2603 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2604 /* The thread running this VCPU changed. */
2605 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2606
2607 rcu_assign_pointer(vcpu->pid, newpid);
2608 if (oldpid)
2609 synchronize_rcu();
2610 put_pid(oldpid);
2611 }
2612 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2613 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2614 break;
2615 }
2616 case KVM_GET_REGS: {
2617 struct kvm_regs *kvm_regs;
2618
2619 r = -ENOMEM;
2620 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2621 if (!kvm_regs)
2622 goto out;
2623 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2624 if (r)
2625 goto out_free1;
2626 r = -EFAULT;
2627 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2628 goto out_free1;
2629 r = 0;
2630 out_free1:
2631 kfree(kvm_regs);
2632 break;
2633 }
2634 case KVM_SET_REGS: {
2635 struct kvm_regs *kvm_regs;
2636
2637 r = -ENOMEM;
2638 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2639 if (IS_ERR(kvm_regs)) {
2640 r = PTR_ERR(kvm_regs);
2641 goto out;
2642 }
2643 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2644 kfree(kvm_regs);
2645 break;
2646 }
2647 case KVM_GET_SREGS: {
2648 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2649 r = -ENOMEM;
2650 if (!kvm_sregs)
2651 goto out;
2652 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2653 if (r)
2654 goto out;
2655 r = -EFAULT;
2656 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2657 goto out;
2658 r = 0;
2659 break;
2660 }
2661 case KVM_SET_SREGS: {
2662 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2663 if (IS_ERR(kvm_sregs)) {
2664 r = PTR_ERR(kvm_sregs);
2665 kvm_sregs = NULL;
2666 goto out;
2667 }
2668 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2669 break;
2670 }
2671 case KVM_GET_MP_STATE: {
2672 struct kvm_mp_state mp_state;
2673
2674 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2675 if (r)
2676 goto out;
2677 r = -EFAULT;
2678 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2679 goto out;
2680 r = 0;
2681 break;
2682 }
2683 case KVM_SET_MP_STATE: {
2684 struct kvm_mp_state mp_state;
2685
2686 r = -EFAULT;
2687 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2688 goto out;
2689 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2690 break;
2691 }
2692 case KVM_TRANSLATE: {
2693 struct kvm_translation tr;
2694
2695 r = -EFAULT;
2696 if (copy_from_user(&tr, argp, sizeof(tr)))
2697 goto out;
2698 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2699 if (r)
2700 goto out;
2701 r = -EFAULT;
2702 if (copy_to_user(argp, &tr, sizeof(tr)))
2703 goto out;
2704 r = 0;
2705 break;
2706 }
2707 case KVM_SET_GUEST_DEBUG: {
2708 struct kvm_guest_debug dbg;
2709
2710 r = -EFAULT;
2711 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2712 goto out;
2713 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2714 break;
2715 }
2716 case KVM_SET_SIGNAL_MASK: {
2717 struct kvm_signal_mask __user *sigmask_arg = argp;
2718 struct kvm_signal_mask kvm_sigmask;
2719 sigset_t sigset, *p;
2720
2721 p = NULL;
2722 if (argp) {
2723 r = -EFAULT;
2724 if (copy_from_user(&kvm_sigmask, argp,
2725 sizeof(kvm_sigmask)))
2726 goto out;
2727 r = -EINVAL;
2728 if (kvm_sigmask.len != sizeof(sigset))
2729 goto out;
2730 r = -EFAULT;
2731 if (copy_from_user(&sigset, sigmask_arg->sigset,
2732 sizeof(sigset)))
2733 goto out;
2734 p = &sigset;
2735 }
2736 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2737 break;
2738 }
2739 case KVM_GET_FPU: {
2740 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2741 r = -ENOMEM;
2742 if (!fpu)
2743 goto out;
2744 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2745 if (r)
2746 goto out;
2747 r = -EFAULT;
2748 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2749 goto out;
2750 r = 0;
2751 break;
2752 }
2753 case KVM_SET_FPU: {
2754 fpu = memdup_user(argp, sizeof(*fpu));
2755 if (IS_ERR(fpu)) {
2756 r = PTR_ERR(fpu);
2757 fpu = NULL;
2758 goto out;
2759 }
2760 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2761 break;
2762 }
2763 default:
2764 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2765 }
2766 out:
2767 vcpu_put(vcpu);
2768 kfree(fpu);
2769 kfree(kvm_sregs);
2770 return r;
2771 }
2772
2773 #ifdef CONFIG_KVM_COMPAT
2774 static long kvm_vcpu_compat_ioctl(struct file *filp,
2775 unsigned int ioctl, unsigned long arg)
2776 {
2777 struct kvm_vcpu *vcpu = filp->private_data;
2778 void __user *argp = compat_ptr(arg);
2779 int r;
2780
2781 if (vcpu->kvm->mm != current->mm)
2782 return -EIO;
2783
2784 switch (ioctl) {
2785 case KVM_SET_SIGNAL_MASK: {
2786 struct kvm_signal_mask __user *sigmask_arg = argp;
2787 struct kvm_signal_mask kvm_sigmask;
2788 sigset_t sigset;
2789
2790 if (argp) {
2791 r = -EFAULT;
2792 if (copy_from_user(&kvm_sigmask, argp,
2793 sizeof(kvm_sigmask)))
2794 goto out;
2795 r = -EINVAL;
2796 if (kvm_sigmask.len != sizeof(compat_sigset_t))
2797 goto out;
2798 r = -EFAULT;
2799 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2800 goto out;
2801 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2802 } else
2803 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2804 break;
2805 }
2806 default:
2807 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2808 }
2809
2810 out:
2811 return r;
2812 }
2813 #endif
2814
2815 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2816 int (*accessor)(struct kvm_device *dev,
2817 struct kvm_device_attr *attr),
2818 unsigned long arg)
2819 {
2820 struct kvm_device_attr attr;
2821
2822 if (!accessor)
2823 return -EPERM;
2824
2825 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2826 return -EFAULT;
2827
2828 return accessor(dev, &attr);
2829 }
2830
2831 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2832 unsigned long arg)
2833 {
2834 struct kvm_device *dev = filp->private_data;
2835
2836 if (dev->kvm->mm != current->mm)
2837 return -EIO;
2838
2839 switch (ioctl) {
2840 case KVM_SET_DEVICE_ATTR:
2841 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2842 case KVM_GET_DEVICE_ATTR:
2843 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2844 case KVM_HAS_DEVICE_ATTR:
2845 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2846 default:
2847 if (dev->ops->ioctl)
2848 return dev->ops->ioctl(dev, ioctl, arg);
2849
2850 return -ENOTTY;
2851 }
2852 }
2853
2854 static int kvm_device_release(struct inode *inode, struct file *filp)
2855 {
2856 struct kvm_device *dev = filp->private_data;
2857 struct kvm *kvm = dev->kvm;
2858
2859 kvm_put_kvm(kvm);
2860 return 0;
2861 }
2862
2863 static const struct file_operations kvm_device_fops = {
2864 .unlocked_ioctl = kvm_device_ioctl,
2865 #ifdef CONFIG_KVM_COMPAT
2866 .compat_ioctl = kvm_device_ioctl,
2867 #endif
2868 .release = kvm_device_release,
2869 };
2870
2871 struct kvm_device *kvm_device_from_filp(struct file *filp)
2872 {
2873 if (filp->f_op != &kvm_device_fops)
2874 return NULL;
2875
2876 return filp->private_data;
2877 }
2878
2879 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2880 #ifdef CONFIG_KVM_MPIC
2881 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2882 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2883 #endif
2884 };
2885
2886 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2887 {
2888 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2889 return -ENOSPC;
2890
2891 if (kvm_device_ops_table[type] != NULL)
2892 return -EEXIST;
2893
2894 kvm_device_ops_table[type] = ops;
2895 return 0;
2896 }
2897
2898 void kvm_unregister_device_ops(u32 type)
2899 {
2900 if (kvm_device_ops_table[type] != NULL)
2901 kvm_device_ops_table[type] = NULL;
2902 }
2903
2904 static int kvm_ioctl_create_device(struct kvm *kvm,
2905 struct kvm_create_device *cd)
2906 {
2907 struct kvm_device_ops *ops = NULL;
2908 struct kvm_device *dev;
2909 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2910 int type;
2911 int ret;
2912
2913 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2914 return -ENODEV;
2915
2916 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
2917 ops = kvm_device_ops_table[type];
2918 if (ops == NULL)
2919 return -ENODEV;
2920
2921 if (test)
2922 return 0;
2923
2924 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2925 if (!dev)
2926 return -ENOMEM;
2927
2928 dev->ops = ops;
2929 dev->kvm = kvm;
2930
2931 mutex_lock(&kvm->lock);
2932 ret = ops->create(dev, type);
2933 if (ret < 0) {
2934 mutex_unlock(&kvm->lock);
2935 kfree(dev);
2936 return ret;
2937 }
2938 list_add(&dev->vm_node, &kvm->devices);
2939 mutex_unlock(&kvm->lock);
2940
2941 if (ops->init)
2942 ops->init(dev);
2943
2944 kvm_get_kvm(kvm);
2945 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2946 if (ret < 0) {
2947 kvm_put_kvm(kvm);
2948 mutex_lock(&kvm->lock);
2949 list_del(&dev->vm_node);
2950 mutex_unlock(&kvm->lock);
2951 ops->destroy(dev);
2952 return ret;
2953 }
2954
2955 cd->fd = ret;
2956 return 0;
2957 }
2958
2959 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2960 {
2961 switch (arg) {
2962 case KVM_CAP_USER_MEMORY:
2963 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2964 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2965 case KVM_CAP_INTERNAL_ERROR_DATA:
2966 #ifdef CONFIG_HAVE_KVM_MSI
2967 case KVM_CAP_SIGNAL_MSI:
2968 #endif
2969 #ifdef CONFIG_HAVE_KVM_IRQFD
2970 case KVM_CAP_IRQFD:
2971 case KVM_CAP_IRQFD_RESAMPLE:
2972 #endif
2973 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2974 case KVM_CAP_CHECK_EXTENSION_VM:
2975 return 1;
2976 #ifdef CONFIG_KVM_MMIO
2977 case KVM_CAP_COALESCED_MMIO:
2978 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2979 #endif
2980 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2981 case KVM_CAP_IRQ_ROUTING:
2982 return KVM_MAX_IRQ_ROUTES;
2983 #endif
2984 #if KVM_ADDRESS_SPACE_NUM > 1
2985 case KVM_CAP_MULTI_ADDRESS_SPACE:
2986 return KVM_ADDRESS_SPACE_NUM;
2987 #endif
2988 default:
2989 break;
2990 }
2991 return kvm_vm_ioctl_check_extension(kvm, arg);
2992 }
2993
2994 static long kvm_vm_ioctl(struct file *filp,
2995 unsigned int ioctl, unsigned long arg)
2996 {
2997 struct kvm *kvm = filp->private_data;
2998 void __user *argp = (void __user *)arg;
2999 int r;
3000
3001 if (kvm->mm != current->mm)
3002 return -EIO;
3003 switch (ioctl) {
3004 case KVM_CREATE_VCPU:
3005 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3006 break;
3007 case KVM_SET_USER_MEMORY_REGION: {
3008 struct kvm_userspace_memory_region kvm_userspace_mem;
3009
3010 r = -EFAULT;
3011 if (copy_from_user(&kvm_userspace_mem, argp,
3012 sizeof(kvm_userspace_mem)))
3013 goto out;
3014
3015 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3016 break;
3017 }
3018 case KVM_GET_DIRTY_LOG: {
3019 struct kvm_dirty_log log;
3020
3021 r = -EFAULT;
3022 if (copy_from_user(&log, argp, sizeof(log)))
3023 goto out;
3024 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3025 break;
3026 }
3027 #ifdef CONFIG_KVM_MMIO
3028 case KVM_REGISTER_COALESCED_MMIO: {
3029 struct kvm_coalesced_mmio_zone zone;
3030
3031 r = -EFAULT;
3032 if (copy_from_user(&zone, argp, sizeof(zone)))
3033 goto out;
3034 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3035 break;
3036 }
3037 case KVM_UNREGISTER_COALESCED_MMIO: {
3038 struct kvm_coalesced_mmio_zone zone;
3039
3040 r = -EFAULT;
3041 if (copy_from_user(&zone, argp, sizeof(zone)))
3042 goto out;
3043 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3044 break;
3045 }
3046 #endif
3047 case KVM_IRQFD: {
3048 struct kvm_irqfd data;
3049
3050 r = -EFAULT;
3051 if (copy_from_user(&data, argp, sizeof(data)))
3052 goto out;
3053 r = kvm_irqfd(kvm, &data);
3054 break;
3055 }
3056 case KVM_IOEVENTFD: {
3057 struct kvm_ioeventfd data;
3058
3059 r = -EFAULT;
3060 if (copy_from_user(&data, argp, sizeof(data)))
3061 goto out;
3062 r = kvm_ioeventfd(kvm, &data);
3063 break;
3064 }
3065 #ifdef CONFIG_HAVE_KVM_MSI
3066 case KVM_SIGNAL_MSI: {
3067 struct kvm_msi msi;
3068
3069 r = -EFAULT;
3070 if (copy_from_user(&msi, argp, sizeof(msi)))
3071 goto out;
3072 r = kvm_send_userspace_msi(kvm, &msi);
3073 break;
3074 }
3075 #endif
3076 #ifdef __KVM_HAVE_IRQ_LINE
3077 case KVM_IRQ_LINE_STATUS:
3078 case KVM_IRQ_LINE: {
3079 struct kvm_irq_level irq_event;
3080
3081 r = -EFAULT;
3082 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3083 goto out;
3084
3085 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3086 ioctl == KVM_IRQ_LINE_STATUS);
3087 if (r)
3088 goto out;
3089
3090 r = -EFAULT;
3091 if (ioctl == KVM_IRQ_LINE_STATUS) {
3092 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3093 goto out;
3094 }
3095
3096 r = 0;
3097 break;
3098 }
3099 #endif
3100 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3101 case KVM_SET_GSI_ROUTING: {
3102 struct kvm_irq_routing routing;
3103 struct kvm_irq_routing __user *urouting;
3104 struct kvm_irq_routing_entry *entries = NULL;
3105
3106 r = -EFAULT;
3107 if (copy_from_user(&routing, argp, sizeof(routing)))
3108 goto out;
3109 r = -EINVAL;
3110 if (!kvm_arch_can_set_irq_routing(kvm))
3111 goto out;
3112 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3113 goto out;
3114 if (routing.flags)
3115 goto out;
3116 if (routing.nr) {
3117 r = -ENOMEM;
3118 entries = vmalloc(routing.nr * sizeof(*entries));
3119 if (!entries)
3120 goto out;
3121 r = -EFAULT;
3122 urouting = argp;
3123 if (copy_from_user(entries, urouting->entries,
3124 routing.nr * sizeof(*entries)))
3125 goto out_free_irq_routing;
3126 }
3127 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3128 routing.flags);
3129 out_free_irq_routing:
3130 vfree(entries);
3131 break;
3132 }
3133 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3134 case KVM_CREATE_DEVICE: {
3135 struct kvm_create_device cd;
3136
3137 r = -EFAULT;
3138 if (copy_from_user(&cd, argp, sizeof(cd)))
3139 goto out;
3140
3141 r = kvm_ioctl_create_device(kvm, &cd);
3142 if (r)
3143 goto out;
3144
3145 r = -EFAULT;
3146 if (copy_to_user(argp, &cd, sizeof(cd)))
3147 goto out;
3148
3149 r = 0;
3150 break;
3151 }
3152 case KVM_CHECK_EXTENSION:
3153 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3154 break;
3155 default:
3156 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3157 }
3158 out:
3159 return r;
3160 }
3161
3162 #ifdef CONFIG_KVM_COMPAT
3163 struct compat_kvm_dirty_log {
3164 __u32 slot;
3165 __u32 padding1;
3166 union {
3167 compat_uptr_t dirty_bitmap; /* one bit per page */
3168 __u64 padding2;
3169 };
3170 };
3171
3172 static long kvm_vm_compat_ioctl(struct file *filp,
3173 unsigned int ioctl, unsigned long arg)
3174 {
3175 struct kvm *kvm = filp->private_data;
3176 int r;
3177
3178 if (kvm->mm != current->mm)
3179 return -EIO;
3180 switch (ioctl) {
3181 case KVM_GET_DIRTY_LOG: {
3182 struct compat_kvm_dirty_log compat_log;
3183 struct kvm_dirty_log log;
3184
3185 if (copy_from_user(&compat_log, (void __user *)arg,
3186 sizeof(compat_log)))
3187 return -EFAULT;
3188 log.slot = compat_log.slot;
3189 log.padding1 = compat_log.padding1;
3190 log.padding2 = compat_log.padding2;
3191 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3192
3193 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3194 break;
3195 }
3196 default:
3197 r = kvm_vm_ioctl(filp, ioctl, arg);
3198 }
3199 return r;
3200 }
3201 #endif
3202
3203 static struct file_operations kvm_vm_fops = {
3204 .release = kvm_vm_release,
3205 .unlocked_ioctl = kvm_vm_ioctl,
3206 #ifdef CONFIG_KVM_COMPAT
3207 .compat_ioctl = kvm_vm_compat_ioctl,
3208 #endif
3209 .llseek = noop_llseek,
3210 };
3211
3212 static int kvm_dev_ioctl_create_vm(unsigned long type)
3213 {
3214 int r;
3215 struct kvm *kvm;
3216 struct file *file;
3217
3218 kvm = kvm_create_vm(type);
3219 if (IS_ERR(kvm))
3220 return PTR_ERR(kvm);
3221 #ifdef CONFIG_KVM_MMIO
3222 r = kvm_coalesced_mmio_init(kvm);
3223 if (r < 0) {
3224 kvm_put_kvm(kvm);
3225 return r;
3226 }
3227 #endif
3228 r = get_unused_fd_flags(O_CLOEXEC);
3229 if (r < 0) {
3230 kvm_put_kvm(kvm);
3231 return r;
3232 }
3233 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3234 if (IS_ERR(file)) {
3235 put_unused_fd(r);
3236 kvm_put_kvm(kvm);
3237 return PTR_ERR(file);
3238 }
3239
3240 /*
3241 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3242 * already set, with ->release() being kvm_vm_release(). In error
3243 * cases it will be called by the final fput(file) and will take
3244 * care of doing kvm_put_kvm(kvm).
3245 */
3246 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3247 put_unused_fd(r);
3248 fput(file);
3249 return -ENOMEM;
3250 }
3251 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3252
3253 fd_install(r, file);
3254 return r;
3255 }
3256
3257 static long kvm_dev_ioctl(struct file *filp,
3258 unsigned int ioctl, unsigned long arg)
3259 {
3260 long r = -EINVAL;
3261
3262 switch (ioctl) {
3263 case KVM_GET_API_VERSION:
3264 if (arg)
3265 goto out;
3266 r = KVM_API_VERSION;
3267 break;
3268 case KVM_CREATE_VM:
3269 r = kvm_dev_ioctl_create_vm(arg);
3270 break;
3271 case KVM_CHECK_EXTENSION:
3272 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3273 break;
3274 case KVM_GET_VCPU_MMAP_SIZE:
3275 if (arg)
3276 goto out;
3277 r = PAGE_SIZE; /* struct kvm_run */
3278 #ifdef CONFIG_X86
3279 r += PAGE_SIZE; /* pio data page */
3280 #endif
3281 #ifdef CONFIG_KVM_MMIO
3282 r += PAGE_SIZE; /* coalesced mmio ring page */
3283 #endif
3284 break;
3285 case KVM_TRACE_ENABLE:
3286 case KVM_TRACE_PAUSE:
3287 case KVM_TRACE_DISABLE:
3288 r = -EOPNOTSUPP;
3289 break;
3290 default:
3291 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3292 }
3293 out:
3294 return r;
3295 }
3296
3297 static struct file_operations kvm_chardev_ops = {
3298 .unlocked_ioctl = kvm_dev_ioctl,
3299 .compat_ioctl = kvm_dev_ioctl,
3300 .llseek = noop_llseek,
3301 };
3302
3303 static struct miscdevice kvm_dev = {
3304 KVM_MINOR,
3305 "kvm",
3306 &kvm_chardev_ops,
3307 };
3308
3309 static void hardware_enable_nolock(void *junk)
3310 {
3311 int cpu = raw_smp_processor_id();
3312 int r;
3313
3314 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3315 return;
3316
3317 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3318
3319 r = kvm_arch_hardware_enable();
3320
3321 if (r) {
3322 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3323 atomic_inc(&hardware_enable_failed);
3324 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3325 }
3326 }
3327
3328 static int kvm_starting_cpu(unsigned int cpu)
3329 {
3330 raw_spin_lock(&kvm_count_lock);
3331 if (kvm_usage_count)
3332 hardware_enable_nolock(NULL);
3333 raw_spin_unlock(&kvm_count_lock);
3334 return 0;
3335 }
3336
3337 static void hardware_disable_nolock(void *junk)
3338 {
3339 int cpu = raw_smp_processor_id();
3340
3341 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3342 return;
3343 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3344 kvm_arch_hardware_disable();
3345 }
3346
3347 static int kvm_dying_cpu(unsigned int cpu)
3348 {
3349 raw_spin_lock(&kvm_count_lock);
3350 if (kvm_usage_count)
3351 hardware_disable_nolock(NULL);
3352 raw_spin_unlock(&kvm_count_lock);
3353 return 0;
3354 }
3355
3356 static void hardware_disable_all_nolock(void)
3357 {
3358 BUG_ON(!kvm_usage_count);
3359
3360 kvm_usage_count--;
3361 if (!kvm_usage_count)
3362 on_each_cpu(hardware_disable_nolock, NULL, 1);
3363 }
3364
3365 static void hardware_disable_all(void)
3366 {
3367 raw_spin_lock(&kvm_count_lock);
3368 hardware_disable_all_nolock();
3369 raw_spin_unlock(&kvm_count_lock);
3370 }
3371
3372 static int hardware_enable_all(void)
3373 {
3374 int r = 0;
3375
3376 raw_spin_lock(&kvm_count_lock);
3377
3378 kvm_usage_count++;
3379 if (kvm_usage_count == 1) {
3380 atomic_set(&hardware_enable_failed, 0);
3381 on_each_cpu(hardware_enable_nolock, NULL, 1);
3382
3383 if (atomic_read(&hardware_enable_failed)) {
3384 hardware_disable_all_nolock();
3385 r = -EBUSY;
3386 }
3387 }
3388
3389 raw_spin_unlock(&kvm_count_lock);
3390
3391 return r;
3392 }
3393
3394 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3395 void *v)
3396 {
3397 /*
3398 * Some (well, at least mine) BIOSes hang on reboot if
3399 * in vmx root mode.
3400 *
3401 * And Intel TXT required VMX off for all cpu when system shutdown.
3402 */
3403 pr_info("kvm: exiting hardware virtualization\n");
3404 kvm_rebooting = true;
3405 on_each_cpu(hardware_disable_nolock, NULL, 1);
3406 return NOTIFY_OK;
3407 }
3408
3409 static struct notifier_block kvm_reboot_notifier = {
3410 .notifier_call = kvm_reboot,
3411 .priority = 0,
3412 };
3413
3414 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3415 {
3416 int i;
3417
3418 for (i = 0; i < bus->dev_count; i++) {
3419 struct kvm_io_device *pos = bus->range[i].dev;
3420
3421 kvm_iodevice_destructor(pos);
3422 }
3423 kfree(bus);
3424 }
3425
3426 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3427 const struct kvm_io_range *r2)
3428 {
3429 gpa_t addr1 = r1->addr;
3430 gpa_t addr2 = r2->addr;
3431
3432 if (addr1 < addr2)
3433 return -1;
3434
3435 /* If r2->len == 0, match the exact address. If r2->len != 0,
3436 * accept any overlapping write. Any order is acceptable for
3437 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3438 * we process all of them.
3439 */
3440 if (r2->len) {
3441 addr1 += r1->len;
3442 addr2 += r2->len;
3443 }
3444
3445 if (addr1 > addr2)
3446 return 1;
3447
3448 return 0;
3449 }
3450
3451 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3452 {
3453 return kvm_io_bus_cmp(p1, p2);
3454 }
3455
3456 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3457 gpa_t addr, int len)
3458 {
3459 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3460 .addr = addr,
3461 .len = len,
3462 .dev = dev,
3463 };
3464
3465 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3466 kvm_io_bus_sort_cmp, NULL);
3467
3468 return 0;
3469 }
3470
3471 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3472 gpa_t addr, int len)
3473 {
3474 struct kvm_io_range *range, key;
3475 int off;
3476
3477 key = (struct kvm_io_range) {
3478 .addr = addr,
3479 .len = len,
3480 };
3481
3482 range = bsearch(&key, bus->range, bus->dev_count,
3483 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3484 if (range == NULL)
3485 return -ENOENT;
3486
3487 off = range - bus->range;
3488
3489 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3490 off--;
3491
3492 return off;
3493 }
3494
3495 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3496 struct kvm_io_range *range, const void *val)
3497 {
3498 int idx;
3499
3500 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3501 if (idx < 0)
3502 return -EOPNOTSUPP;
3503
3504 while (idx < bus->dev_count &&
3505 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3506 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3507 range->len, val))
3508 return idx;
3509 idx++;
3510 }
3511
3512 return -EOPNOTSUPP;
3513 }
3514
3515 /* kvm_io_bus_write - called under kvm->slots_lock */
3516 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3517 int len, const void *val)
3518 {
3519 struct kvm_io_bus *bus;
3520 struct kvm_io_range range;
3521 int r;
3522
3523 range = (struct kvm_io_range) {
3524 .addr = addr,
3525 .len = len,
3526 };
3527
3528 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3529 if (!bus)
3530 return -ENOMEM;
3531 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3532 return r < 0 ? r : 0;
3533 }
3534
3535 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3536 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3537 gpa_t addr, int len, const void *val, long cookie)
3538 {
3539 struct kvm_io_bus *bus;
3540 struct kvm_io_range range;
3541
3542 range = (struct kvm_io_range) {
3543 .addr = addr,
3544 .len = len,
3545 };
3546
3547 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3548 if (!bus)
3549 return -ENOMEM;
3550
3551 /* First try the device referenced by cookie. */
3552 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3553 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3554 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3555 val))
3556 return cookie;
3557
3558 /*
3559 * cookie contained garbage; fall back to search and return the
3560 * correct cookie value.
3561 */
3562 return __kvm_io_bus_write(vcpu, bus, &range, val);
3563 }
3564
3565 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3566 struct kvm_io_range *range, void *val)
3567 {
3568 int idx;
3569
3570 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3571 if (idx < 0)
3572 return -EOPNOTSUPP;
3573
3574 while (idx < bus->dev_count &&
3575 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3576 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3577 range->len, val))
3578 return idx;
3579 idx++;
3580 }
3581
3582 return -EOPNOTSUPP;
3583 }
3584 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3585
3586 /* kvm_io_bus_read - called under kvm->slots_lock */
3587 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3588 int len, void *val)
3589 {
3590 struct kvm_io_bus *bus;
3591 struct kvm_io_range range;
3592 int r;
3593
3594 range = (struct kvm_io_range) {
3595 .addr = addr,
3596 .len = len,
3597 };
3598
3599 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3600 if (!bus)
3601 return -ENOMEM;
3602 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3603 return r < 0 ? r : 0;
3604 }
3605
3606
3607 /* Caller must hold slots_lock. */
3608 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3609 int len, struct kvm_io_device *dev)
3610 {
3611 struct kvm_io_bus *new_bus, *bus;
3612
3613 bus = kvm_get_bus(kvm, bus_idx);
3614 if (!bus)
3615 return -ENOMEM;
3616
3617 /* exclude ioeventfd which is limited by maximum fd */
3618 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3619 return -ENOSPC;
3620
3621 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3622 sizeof(struct kvm_io_range)), GFP_KERNEL);
3623 if (!new_bus)
3624 return -ENOMEM;
3625 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3626 sizeof(struct kvm_io_range)));
3627 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3628 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3629 synchronize_srcu_expedited(&kvm->srcu);
3630 kfree(bus);
3631
3632 return 0;
3633 }
3634
3635 /* Caller must hold slots_lock. */
3636 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3637 struct kvm_io_device *dev)
3638 {
3639 int i;
3640 struct kvm_io_bus *new_bus, *bus;
3641
3642 bus = kvm_get_bus(kvm, bus_idx);
3643 if (!bus)
3644 return;
3645
3646 for (i = 0; i < bus->dev_count; i++)
3647 if (bus->range[i].dev == dev) {
3648 break;
3649 }
3650
3651 if (i == bus->dev_count)
3652 return;
3653
3654 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3655 sizeof(struct kvm_io_range)), GFP_KERNEL);
3656 if (!new_bus) {
3657 pr_err("kvm: failed to shrink bus, removing it completely\n");
3658 goto broken;
3659 }
3660
3661 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3662 new_bus->dev_count--;
3663 memcpy(new_bus->range + i, bus->range + i + 1,
3664 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3665
3666 broken:
3667 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3668 synchronize_srcu_expedited(&kvm->srcu);
3669 kfree(bus);
3670 return;
3671 }
3672
3673 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3674 gpa_t addr)
3675 {
3676 struct kvm_io_bus *bus;
3677 int dev_idx, srcu_idx;
3678 struct kvm_io_device *iodev = NULL;
3679
3680 srcu_idx = srcu_read_lock(&kvm->srcu);
3681
3682 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3683 if (!bus)
3684 goto out_unlock;
3685
3686 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3687 if (dev_idx < 0)
3688 goto out_unlock;
3689
3690 iodev = bus->range[dev_idx].dev;
3691
3692 out_unlock:
3693 srcu_read_unlock(&kvm->srcu, srcu_idx);
3694
3695 return iodev;
3696 }
3697 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3698
3699 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3700 int (*get)(void *, u64 *), int (*set)(void *, u64),
3701 const char *fmt)
3702 {
3703 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3704 inode->i_private;
3705
3706 /* The debugfs files are a reference to the kvm struct which
3707 * is still valid when kvm_destroy_vm is called.
3708 * To avoid the race between open and the removal of the debugfs
3709 * directory we test against the users count.
3710 */
3711 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3712 return -ENOENT;
3713
3714 if (simple_attr_open(inode, file, get,
3715 stat_data->mode & S_IWUGO ? set : NULL,
3716 fmt)) {
3717 kvm_put_kvm(stat_data->kvm);
3718 return -ENOMEM;
3719 }
3720
3721 return 0;
3722 }
3723
3724 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3725 {
3726 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3727 inode->i_private;
3728
3729 simple_attr_release(inode, file);
3730 kvm_put_kvm(stat_data->kvm);
3731
3732 return 0;
3733 }
3734
3735 static int vm_stat_get_per_vm(void *data, u64 *val)
3736 {
3737 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3738
3739 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3740
3741 return 0;
3742 }
3743
3744 static int vm_stat_clear_per_vm(void *data, u64 val)
3745 {
3746 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3747
3748 if (val)
3749 return -EINVAL;
3750
3751 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3752
3753 return 0;
3754 }
3755
3756 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3757 {
3758 __simple_attr_check_format("%llu\n", 0ull);
3759 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3760 vm_stat_clear_per_vm, "%llu\n");
3761 }
3762
3763 static const struct file_operations vm_stat_get_per_vm_fops = {
3764 .owner = THIS_MODULE,
3765 .open = vm_stat_get_per_vm_open,
3766 .release = kvm_debugfs_release,
3767 .read = simple_attr_read,
3768 .write = simple_attr_write,
3769 .llseek = no_llseek,
3770 };
3771
3772 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3773 {
3774 int i;
3775 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3776 struct kvm_vcpu *vcpu;
3777
3778 *val = 0;
3779
3780 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3781 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3782
3783 return 0;
3784 }
3785
3786 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3787 {
3788 int i;
3789 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3790 struct kvm_vcpu *vcpu;
3791
3792 if (val)
3793 return -EINVAL;
3794
3795 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3796 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3797
3798 return 0;
3799 }
3800
3801 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3802 {
3803 __simple_attr_check_format("%llu\n", 0ull);
3804 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3805 vcpu_stat_clear_per_vm, "%llu\n");
3806 }
3807
3808 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3809 .owner = THIS_MODULE,
3810 .open = vcpu_stat_get_per_vm_open,
3811 .release = kvm_debugfs_release,
3812 .read = simple_attr_read,
3813 .write = simple_attr_write,
3814 .llseek = no_llseek,
3815 };
3816
3817 static const struct file_operations *stat_fops_per_vm[] = {
3818 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3819 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3820 };
3821
3822 static int vm_stat_get(void *_offset, u64 *val)
3823 {
3824 unsigned offset = (long)_offset;
3825 struct kvm *kvm;
3826 struct kvm_stat_data stat_tmp = {.offset = offset};
3827 u64 tmp_val;
3828
3829 *val = 0;
3830 mutex_lock(&kvm_lock);
3831 list_for_each_entry(kvm, &vm_list, vm_list) {
3832 stat_tmp.kvm = kvm;
3833 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3834 *val += tmp_val;
3835 }
3836 mutex_unlock(&kvm_lock);
3837 return 0;
3838 }
3839
3840 static int vm_stat_clear(void *_offset, u64 val)
3841 {
3842 unsigned offset = (long)_offset;
3843 struct kvm *kvm;
3844 struct kvm_stat_data stat_tmp = {.offset = offset};
3845
3846 if (val)
3847 return -EINVAL;
3848
3849 mutex_lock(&kvm_lock);
3850 list_for_each_entry(kvm, &vm_list, vm_list) {
3851 stat_tmp.kvm = kvm;
3852 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3853 }
3854 mutex_unlock(&kvm_lock);
3855
3856 return 0;
3857 }
3858
3859 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3860
3861 static int vcpu_stat_get(void *_offset, u64 *val)
3862 {
3863 unsigned offset = (long)_offset;
3864 struct kvm *kvm;
3865 struct kvm_stat_data stat_tmp = {.offset = offset};
3866 u64 tmp_val;
3867
3868 *val = 0;
3869 mutex_lock(&kvm_lock);
3870 list_for_each_entry(kvm, &vm_list, vm_list) {
3871 stat_tmp.kvm = kvm;
3872 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3873 *val += tmp_val;
3874 }
3875 mutex_unlock(&kvm_lock);
3876 return 0;
3877 }
3878
3879 static int vcpu_stat_clear(void *_offset, u64 val)
3880 {
3881 unsigned offset = (long)_offset;
3882 struct kvm *kvm;
3883 struct kvm_stat_data stat_tmp = {.offset = offset};
3884
3885 if (val)
3886 return -EINVAL;
3887
3888 mutex_lock(&kvm_lock);
3889 list_for_each_entry(kvm, &vm_list, vm_list) {
3890 stat_tmp.kvm = kvm;
3891 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3892 }
3893 mutex_unlock(&kvm_lock);
3894
3895 return 0;
3896 }
3897
3898 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3899 "%llu\n");
3900
3901 static const struct file_operations *stat_fops[] = {
3902 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3903 [KVM_STAT_VM] = &vm_stat_fops,
3904 };
3905
3906 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3907 {
3908 struct kobj_uevent_env *env;
3909 unsigned long long created, active;
3910
3911 if (!kvm_dev.this_device || !kvm)
3912 return;
3913
3914 mutex_lock(&kvm_lock);
3915 if (type == KVM_EVENT_CREATE_VM) {
3916 kvm_createvm_count++;
3917 kvm_active_vms++;
3918 } else if (type == KVM_EVENT_DESTROY_VM) {
3919 kvm_active_vms--;
3920 }
3921 created = kvm_createvm_count;
3922 active = kvm_active_vms;
3923 mutex_unlock(&kvm_lock);
3924
3925 env = kzalloc(sizeof(*env), GFP_KERNEL);
3926 if (!env)
3927 return;
3928
3929 add_uevent_var(env, "CREATED=%llu", created);
3930 add_uevent_var(env, "COUNT=%llu", active);
3931
3932 if (type == KVM_EVENT_CREATE_VM) {
3933 add_uevent_var(env, "EVENT=create");
3934 kvm->userspace_pid = task_pid_nr(current);
3935 } else if (type == KVM_EVENT_DESTROY_VM) {
3936 add_uevent_var(env, "EVENT=destroy");
3937 }
3938 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3939
3940 if (kvm->debugfs_dentry) {
3941 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3942
3943 if (p) {
3944 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3945 if (!IS_ERR(tmp))
3946 add_uevent_var(env, "STATS_PATH=%s", tmp);
3947 kfree(p);
3948 }
3949 }
3950 /* no need for checks, since we are adding at most only 5 keys */
3951 env->envp[env->envp_idx++] = NULL;
3952 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3953 kfree(env);
3954 }
3955
3956 static int kvm_init_debug(void)
3957 {
3958 int r = -EEXIST;
3959 struct kvm_stats_debugfs_item *p;
3960
3961 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3962 if (kvm_debugfs_dir == NULL)
3963 goto out;
3964
3965 kvm_debugfs_num_entries = 0;
3966 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3967 int mode = p->mode ? p->mode : 0644;
3968 if (!debugfs_create_file(p->name, mode, kvm_debugfs_dir,
3969 (void *)(long)p->offset,
3970 stat_fops[p->kind]))
3971 goto out_dir;
3972 }
3973
3974 return 0;
3975
3976 out_dir:
3977 debugfs_remove_recursive(kvm_debugfs_dir);
3978 out:
3979 return r;
3980 }
3981
3982 static int kvm_suspend(void)
3983 {
3984 if (kvm_usage_count)
3985 hardware_disable_nolock(NULL);
3986 return 0;
3987 }
3988
3989 static void kvm_resume(void)
3990 {
3991 if (kvm_usage_count) {
3992 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3993 hardware_enable_nolock(NULL);
3994 }
3995 }
3996
3997 static struct syscore_ops kvm_syscore_ops = {
3998 .suspend = kvm_suspend,
3999 .resume = kvm_resume,
4000 };
4001
4002 static inline
4003 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4004 {
4005 return container_of(pn, struct kvm_vcpu, preempt_notifier);
4006 }
4007
4008 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4009 {
4010 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4011
4012 if (vcpu->preempted)
4013 vcpu->preempted = false;
4014
4015 kvm_arch_sched_in(vcpu, cpu);
4016
4017 kvm_arch_vcpu_load(vcpu, cpu);
4018 }
4019
4020 static void kvm_sched_out(struct preempt_notifier *pn,
4021 struct task_struct *next)
4022 {
4023 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4024
4025 if (current->state == TASK_RUNNING)
4026 vcpu->preempted = true;
4027 kvm_arch_vcpu_put(vcpu);
4028 }
4029
4030 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4031 struct module *module)
4032 {
4033 int r;
4034 int cpu;
4035
4036 r = kvm_arch_init(opaque);
4037 if (r)
4038 goto out_fail;
4039
4040 /*
4041 * kvm_arch_init makes sure there's at most one caller
4042 * for architectures that support multiple implementations,
4043 * like intel and amd on x86.
4044 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4045 * conflicts in case kvm is already setup for another implementation.
4046 */
4047 r = kvm_irqfd_init();
4048 if (r)
4049 goto out_irqfd;
4050
4051 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4052 r = -ENOMEM;
4053 goto out_free_0;
4054 }
4055
4056 r = kvm_arch_hardware_setup();
4057 if (r < 0)
4058 goto out_free_0a;
4059
4060 for_each_online_cpu(cpu) {
4061 smp_call_function_single(cpu,
4062 kvm_arch_check_processor_compat,
4063 &r, 1);
4064 if (r < 0)
4065 goto out_free_1;
4066 }
4067
4068 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4069 kvm_starting_cpu, kvm_dying_cpu);
4070 if (r)
4071 goto out_free_2;
4072 register_reboot_notifier(&kvm_reboot_notifier);
4073
4074 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4075 if (!vcpu_align)
4076 vcpu_align = __alignof__(struct kvm_vcpu);
4077 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
4078 SLAB_ACCOUNT, NULL);
4079 if (!kvm_vcpu_cache) {
4080 r = -ENOMEM;
4081 goto out_free_3;
4082 }
4083
4084 r = kvm_async_pf_init();
4085 if (r)
4086 goto out_free;
4087
4088 kvm_chardev_ops.owner = module;
4089 kvm_vm_fops.owner = module;
4090 kvm_vcpu_fops.owner = module;
4091
4092 r = misc_register(&kvm_dev);
4093 if (r) {
4094 pr_err("kvm: misc device register failed\n");
4095 goto out_unreg;
4096 }
4097
4098 register_syscore_ops(&kvm_syscore_ops);
4099
4100 kvm_preempt_ops.sched_in = kvm_sched_in;
4101 kvm_preempt_ops.sched_out = kvm_sched_out;
4102
4103 r = kvm_init_debug();
4104 if (r) {
4105 pr_err("kvm: create debugfs files failed\n");
4106 goto out_undebugfs;
4107 }
4108
4109 r = kvm_vfio_ops_init();
4110 WARN_ON(r);
4111
4112 return 0;
4113
4114 out_undebugfs:
4115 unregister_syscore_ops(&kvm_syscore_ops);
4116 misc_deregister(&kvm_dev);
4117 out_unreg:
4118 kvm_async_pf_deinit();
4119 out_free:
4120 kmem_cache_destroy(kvm_vcpu_cache);
4121 out_free_3:
4122 unregister_reboot_notifier(&kvm_reboot_notifier);
4123 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4124 out_free_2:
4125 out_free_1:
4126 kvm_arch_hardware_unsetup();
4127 out_free_0a:
4128 free_cpumask_var(cpus_hardware_enabled);
4129 out_free_0:
4130 kvm_irqfd_exit();
4131 out_irqfd:
4132 kvm_arch_exit();
4133 out_fail:
4134 return r;
4135 }
4136 EXPORT_SYMBOL_GPL(kvm_init);
4137
4138 void kvm_exit(void)
4139 {
4140 debugfs_remove_recursive(kvm_debugfs_dir);
4141 misc_deregister(&kvm_dev);
4142 kmem_cache_destroy(kvm_vcpu_cache);
4143 kvm_async_pf_deinit();
4144 unregister_syscore_ops(&kvm_syscore_ops);
4145 unregister_reboot_notifier(&kvm_reboot_notifier);
4146 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4147 on_each_cpu(hardware_disable_nolock, NULL, 1);
4148 kvm_arch_hardware_unsetup();
4149 kvm_arch_exit();
4150 kvm_irqfd_exit();
4151 free_cpumask_var(cpus_hardware_enabled);
4152 kvm_vfio_ops_exit();
4153 }
4154 EXPORT_SYMBOL_GPL(kvm_exit);