]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - virt/kvm/kvm_main.c
Merge tag 'iommu-fixes-v5.0-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-focal-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90 * Ordering of locks:
91 *
92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93 */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 unsigned long arg);
119 #define KVM_COMPAT(c) .compat_ioctl = (c)
120 #else
121 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
122 unsigned long arg) { return -EINVAL; }
123 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl
124 #endif
125 static int hardware_enable_all(void);
126 static void hardware_disable_all(void);
127
128 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
129
130 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
131
132 __visible bool kvm_rebooting;
133 EXPORT_SYMBOL_GPL(kvm_rebooting);
134
135 static bool largepages_enabled = true;
136
137 #define KVM_EVENT_CREATE_VM 0
138 #define KVM_EVENT_DESTROY_VM 1
139 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
140 static unsigned long long kvm_createvm_count;
141 static unsigned long long kvm_active_vms;
142
143 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
144 unsigned long start, unsigned long end, bool blockable)
145 {
146 return 0;
147 }
148
149 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
150 {
151 if (pfn_valid(pfn))
152 return PageReserved(pfn_to_page(pfn));
153
154 return true;
155 }
156
157 /*
158 * Switches to specified vcpu, until a matching vcpu_put()
159 */
160 void vcpu_load(struct kvm_vcpu *vcpu)
161 {
162 int cpu = get_cpu();
163 preempt_notifier_register(&vcpu->preempt_notifier);
164 kvm_arch_vcpu_load(vcpu, cpu);
165 put_cpu();
166 }
167 EXPORT_SYMBOL_GPL(vcpu_load);
168
169 void vcpu_put(struct kvm_vcpu *vcpu)
170 {
171 preempt_disable();
172 kvm_arch_vcpu_put(vcpu);
173 preempt_notifier_unregister(&vcpu->preempt_notifier);
174 preempt_enable();
175 }
176 EXPORT_SYMBOL_GPL(vcpu_put);
177
178 /* TODO: merge with kvm_arch_vcpu_should_kick */
179 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
180 {
181 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
182
183 /*
184 * We need to wait for the VCPU to reenable interrupts and get out of
185 * READING_SHADOW_PAGE_TABLES mode.
186 */
187 if (req & KVM_REQUEST_WAIT)
188 return mode != OUTSIDE_GUEST_MODE;
189
190 /*
191 * Need to kick a running VCPU, but otherwise there is nothing to do.
192 */
193 return mode == IN_GUEST_MODE;
194 }
195
196 static void ack_flush(void *_completed)
197 {
198 }
199
200 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
201 {
202 if (unlikely(!cpus))
203 cpus = cpu_online_mask;
204
205 if (cpumask_empty(cpus))
206 return false;
207
208 smp_call_function_many(cpus, ack_flush, NULL, wait);
209 return true;
210 }
211
212 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
213 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
214 {
215 int i, cpu, me;
216 struct kvm_vcpu *vcpu;
217 bool called;
218
219 me = get_cpu();
220
221 kvm_for_each_vcpu(i, vcpu, kvm) {
222 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
223 continue;
224
225 kvm_make_request(req, vcpu);
226 cpu = vcpu->cpu;
227
228 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
229 continue;
230
231 if (tmp != NULL && cpu != -1 && cpu != me &&
232 kvm_request_needs_ipi(vcpu, req))
233 __cpumask_set_cpu(cpu, tmp);
234 }
235
236 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
237 put_cpu();
238
239 return called;
240 }
241
242 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
243 {
244 cpumask_var_t cpus;
245 bool called;
246
247 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
248
249 called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
250
251 free_cpumask_var(cpus);
252 return called;
253 }
254
255 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
256 void kvm_flush_remote_tlbs(struct kvm *kvm)
257 {
258 /*
259 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
260 * kvm_make_all_cpus_request.
261 */
262 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
263
264 /*
265 * We want to publish modifications to the page tables before reading
266 * mode. Pairs with a memory barrier in arch-specific code.
267 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
268 * and smp_mb in walk_shadow_page_lockless_begin/end.
269 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
270 *
271 * There is already an smp_mb__after_atomic() before
272 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
273 * barrier here.
274 */
275 if (!kvm_arch_flush_remote_tlb(kvm)
276 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
277 ++kvm->stat.remote_tlb_flush;
278 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
279 }
280 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
281 #endif
282
283 void kvm_reload_remote_mmus(struct kvm *kvm)
284 {
285 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
286 }
287
288 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
289 {
290 struct page *page;
291 int r;
292
293 mutex_init(&vcpu->mutex);
294 vcpu->cpu = -1;
295 vcpu->kvm = kvm;
296 vcpu->vcpu_id = id;
297 vcpu->pid = NULL;
298 init_swait_queue_head(&vcpu->wq);
299 kvm_async_pf_vcpu_init(vcpu);
300
301 vcpu->pre_pcpu = -1;
302 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
303
304 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
305 if (!page) {
306 r = -ENOMEM;
307 goto fail;
308 }
309 vcpu->run = page_address(page);
310
311 kvm_vcpu_set_in_spin_loop(vcpu, false);
312 kvm_vcpu_set_dy_eligible(vcpu, false);
313 vcpu->preempted = false;
314
315 r = kvm_arch_vcpu_init(vcpu);
316 if (r < 0)
317 goto fail_free_run;
318 return 0;
319
320 fail_free_run:
321 free_page((unsigned long)vcpu->run);
322 fail:
323 return r;
324 }
325 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
326
327 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
328 {
329 /*
330 * no need for rcu_read_lock as VCPU_RUN is the only place that
331 * will change the vcpu->pid pointer and on uninit all file
332 * descriptors are already gone.
333 */
334 put_pid(rcu_dereference_protected(vcpu->pid, 1));
335 kvm_arch_vcpu_uninit(vcpu);
336 free_page((unsigned long)vcpu->run);
337 }
338 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
339
340 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
341 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
342 {
343 return container_of(mn, struct kvm, mmu_notifier);
344 }
345
346 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
347 struct mm_struct *mm,
348 unsigned long address,
349 pte_t pte)
350 {
351 struct kvm *kvm = mmu_notifier_to_kvm(mn);
352 int idx;
353
354 idx = srcu_read_lock(&kvm->srcu);
355 spin_lock(&kvm->mmu_lock);
356 kvm->mmu_notifier_seq++;
357
358 if (kvm_set_spte_hva(kvm, address, pte))
359 kvm_flush_remote_tlbs(kvm);
360
361 spin_unlock(&kvm->mmu_lock);
362 srcu_read_unlock(&kvm->srcu, idx);
363 }
364
365 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
366 const struct mmu_notifier_range *range)
367 {
368 struct kvm *kvm = mmu_notifier_to_kvm(mn);
369 int need_tlb_flush = 0, idx;
370 int ret;
371
372 idx = srcu_read_lock(&kvm->srcu);
373 spin_lock(&kvm->mmu_lock);
374 /*
375 * The count increase must become visible at unlock time as no
376 * spte can be established without taking the mmu_lock and
377 * count is also read inside the mmu_lock critical section.
378 */
379 kvm->mmu_notifier_count++;
380 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
381 need_tlb_flush |= kvm->tlbs_dirty;
382 /* we've to flush the tlb before the pages can be freed */
383 if (need_tlb_flush)
384 kvm_flush_remote_tlbs(kvm);
385
386 spin_unlock(&kvm->mmu_lock);
387
388 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
389 range->end, range->blockable);
390
391 srcu_read_unlock(&kvm->srcu, idx);
392
393 return ret;
394 }
395
396 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
397 const struct mmu_notifier_range *range)
398 {
399 struct kvm *kvm = mmu_notifier_to_kvm(mn);
400
401 spin_lock(&kvm->mmu_lock);
402 /*
403 * This sequence increase will notify the kvm page fault that
404 * the page that is going to be mapped in the spte could have
405 * been freed.
406 */
407 kvm->mmu_notifier_seq++;
408 smp_wmb();
409 /*
410 * The above sequence increase must be visible before the
411 * below count decrease, which is ensured by the smp_wmb above
412 * in conjunction with the smp_rmb in mmu_notifier_retry().
413 */
414 kvm->mmu_notifier_count--;
415 spin_unlock(&kvm->mmu_lock);
416
417 BUG_ON(kvm->mmu_notifier_count < 0);
418 }
419
420 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
421 struct mm_struct *mm,
422 unsigned long start,
423 unsigned long end)
424 {
425 struct kvm *kvm = mmu_notifier_to_kvm(mn);
426 int young, idx;
427
428 idx = srcu_read_lock(&kvm->srcu);
429 spin_lock(&kvm->mmu_lock);
430
431 young = kvm_age_hva(kvm, start, end);
432 if (young)
433 kvm_flush_remote_tlbs(kvm);
434
435 spin_unlock(&kvm->mmu_lock);
436 srcu_read_unlock(&kvm->srcu, idx);
437
438 return young;
439 }
440
441 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
442 struct mm_struct *mm,
443 unsigned long start,
444 unsigned long end)
445 {
446 struct kvm *kvm = mmu_notifier_to_kvm(mn);
447 int young, idx;
448
449 idx = srcu_read_lock(&kvm->srcu);
450 spin_lock(&kvm->mmu_lock);
451 /*
452 * Even though we do not flush TLB, this will still adversely
453 * affect performance on pre-Haswell Intel EPT, where there is
454 * no EPT Access Bit to clear so that we have to tear down EPT
455 * tables instead. If we find this unacceptable, we can always
456 * add a parameter to kvm_age_hva so that it effectively doesn't
457 * do anything on clear_young.
458 *
459 * Also note that currently we never issue secondary TLB flushes
460 * from clear_young, leaving this job up to the regular system
461 * cadence. If we find this inaccurate, we might come up with a
462 * more sophisticated heuristic later.
463 */
464 young = kvm_age_hva(kvm, start, end);
465 spin_unlock(&kvm->mmu_lock);
466 srcu_read_unlock(&kvm->srcu, idx);
467
468 return young;
469 }
470
471 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
472 struct mm_struct *mm,
473 unsigned long address)
474 {
475 struct kvm *kvm = mmu_notifier_to_kvm(mn);
476 int young, idx;
477
478 idx = srcu_read_lock(&kvm->srcu);
479 spin_lock(&kvm->mmu_lock);
480 young = kvm_test_age_hva(kvm, address);
481 spin_unlock(&kvm->mmu_lock);
482 srcu_read_unlock(&kvm->srcu, idx);
483
484 return young;
485 }
486
487 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
488 struct mm_struct *mm)
489 {
490 struct kvm *kvm = mmu_notifier_to_kvm(mn);
491 int idx;
492
493 idx = srcu_read_lock(&kvm->srcu);
494 kvm_arch_flush_shadow_all(kvm);
495 srcu_read_unlock(&kvm->srcu, idx);
496 }
497
498 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
499 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
500 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
501 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
502 .clear_young = kvm_mmu_notifier_clear_young,
503 .test_young = kvm_mmu_notifier_test_young,
504 .change_pte = kvm_mmu_notifier_change_pte,
505 .release = kvm_mmu_notifier_release,
506 };
507
508 static int kvm_init_mmu_notifier(struct kvm *kvm)
509 {
510 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
511 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
512 }
513
514 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
515
516 static int kvm_init_mmu_notifier(struct kvm *kvm)
517 {
518 return 0;
519 }
520
521 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
522
523 static struct kvm_memslots *kvm_alloc_memslots(void)
524 {
525 int i;
526 struct kvm_memslots *slots;
527
528 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
529 if (!slots)
530 return NULL;
531
532 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
533 slots->id_to_index[i] = slots->memslots[i].id = i;
534
535 return slots;
536 }
537
538 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
539 {
540 if (!memslot->dirty_bitmap)
541 return;
542
543 kvfree(memslot->dirty_bitmap);
544 memslot->dirty_bitmap = NULL;
545 }
546
547 /*
548 * Free any memory in @free but not in @dont.
549 */
550 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
551 struct kvm_memory_slot *dont)
552 {
553 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
554 kvm_destroy_dirty_bitmap(free);
555
556 kvm_arch_free_memslot(kvm, free, dont);
557
558 free->npages = 0;
559 }
560
561 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
562 {
563 struct kvm_memory_slot *memslot;
564
565 if (!slots)
566 return;
567
568 kvm_for_each_memslot(memslot, slots)
569 kvm_free_memslot(kvm, memslot, NULL);
570
571 kvfree(slots);
572 }
573
574 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
575 {
576 int i;
577
578 if (!kvm->debugfs_dentry)
579 return;
580
581 debugfs_remove_recursive(kvm->debugfs_dentry);
582
583 if (kvm->debugfs_stat_data) {
584 for (i = 0; i < kvm_debugfs_num_entries; i++)
585 kfree(kvm->debugfs_stat_data[i]);
586 kfree(kvm->debugfs_stat_data);
587 }
588 }
589
590 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
591 {
592 char dir_name[ITOA_MAX_LEN * 2];
593 struct kvm_stat_data *stat_data;
594 struct kvm_stats_debugfs_item *p;
595
596 if (!debugfs_initialized())
597 return 0;
598
599 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
600 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
601
602 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
603 sizeof(*kvm->debugfs_stat_data),
604 GFP_KERNEL);
605 if (!kvm->debugfs_stat_data)
606 return -ENOMEM;
607
608 for (p = debugfs_entries; p->name; p++) {
609 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
610 if (!stat_data)
611 return -ENOMEM;
612
613 stat_data->kvm = kvm;
614 stat_data->offset = p->offset;
615 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
616 debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
617 stat_data, stat_fops_per_vm[p->kind]);
618 }
619 return 0;
620 }
621
622 static struct kvm *kvm_create_vm(unsigned long type)
623 {
624 int r, i;
625 struct kvm *kvm = kvm_arch_alloc_vm();
626
627 if (!kvm)
628 return ERR_PTR(-ENOMEM);
629
630 spin_lock_init(&kvm->mmu_lock);
631 mmgrab(current->mm);
632 kvm->mm = current->mm;
633 kvm_eventfd_init(kvm);
634 mutex_init(&kvm->lock);
635 mutex_init(&kvm->irq_lock);
636 mutex_init(&kvm->slots_lock);
637 refcount_set(&kvm->users_count, 1);
638 INIT_LIST_HEAD(&kvm->devices);
639
640 r = kvm_arch_init_vm(kvm, type);
641 if (r)
642 goto out_err_no_disable;
643
644 r = hardware_enable_all();
645 if (r)
646 goto out_err_no_disable;
647
648 #ifdef CONFIG_HAVE_KVM_IRQFD
649 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
650 #endif
651
652 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
653
654 r = -ENOMEM;
655 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
656 struct kvm_memslots *slots = kvm_alloc_memslots();
657 if (!slots)
658 goto out_err_no_srcu;
659 /*
660 * Generations must be different for each address space.
661 * Init kvm generation close to the maximum to easily test the
662 * code of handling generation number wrap-around.
663 */
664 slots->generation = i * 2 - 150;
665 rcu_assign_pointer(kvm->memslots[i], slots);
666 }
667
668 if (init_srcu_struct(&kvm->srcu))
669 goto out_err_no_srcu;
670 if (init_srcu_struct(&kvm->irq_srcu))
671 goto out_err_no_irq_srcu;
672 for (i = 0; i < KVM_NR_BUSES; i++) {
673 rcu_assign_pointer(kvm->buses[i],
674 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
675 if (!kvm->buses[i])
676 goto out_err;
677 }
678
679 r = kvm_init_mmu_notifier(kvm);
680 if (r)
681 goto out_err;
682
683 spin_lock(&kvm_lock);
684 list_add(&kvm->vm_list, &vm_list);
685 spin_unlock(&kvm_lock);
686
687 preempt_notifier_inc();
688
689 return kvm;
690
691 out_err:
692 cleanup_srcu_struct(&kvm->irq_srcu);
693 out_err_no_irq_srcu:
694 cleanup_srcu_struct(&kvm->srcu);
695 out_err_no_srcu:
696 hardware_disable_all();
697 out_err_no_disable:
698 refcount_set(&kvm->users_count, 0);
699 for (i = 0; i < KVM_NR_BUSES; i++)
700 kfree(kvm_get_bus(kvm, i));
701 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
702 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
703 kvm_arch_free_vm(kvm);
704 mmdrop(current->mm);
705 return ERR_PTR(r);
706 }
707
708 static void kvm_destroy_devices(struct kvm *kvm)
709 {
710 struct kvm_device *dev, *tmp;
711
712 /*
713 * We do not need to take the kvm->lock here, because nobody else
714 * has a reference to the struct kvm at this point and therefore
715 * cannot access the devices list anyhow.
716 */
717 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
718 list_del(&dev->vm_node);
719 dev->ops->destroy(dev);
720 }
721 }
722
723 static void kvm_destroy_vm(struct kvm *kvm)
724 {
725 int i;
726 struct mm_struct *mm = kvm->mm;
727
728 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
729 kvm_destroy_vm_debugfs(kvm);
730 kvm_arch_sync_events(kvm);
731 spin_lock(&kvm_lock);
732 list_del(&kvm->vm_list);
733 spin_unlock(&kvm_lock);
734 kvm_free_irq_routing(kvm);
735 for (i = 0; i < KVM_NR_BUSES; i++) {
736 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
737
738 if (bus)
739 kvm_io_bus_destroy(bus);
740 kvm->buses[i] = NULL;
741 }
742 kvm_coalesced_mmio_free(kvm);
743 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
744 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
745 #else
746 kvm_arch_flush_shadow_all(kvm);
747 #endif
748 kvm_arch_destroy_vm(kvm);
749 kvm_destroy_devices(kvm);
750 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
751 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
752 cleanup_srcu_struct(&kvm->irq_srcu);
753 cleanup_srcu_struct(&kvm->srcu);
754 kvm_arch_free_vm(kvm);
755 preempt_notifier_dec();
756 hardware_disable_all();
757 mmdrop(mm);
758 }
759
760 void kvm_get_kvm(struct kvm *kvm)
761 {
762 refcount_inc(&kvm->users_count);
763 }
764 EXPORT_SYMBOL_GPL(kvm_get_kvm);
765
766 void kvm_put_kvm(struct kvm *kvm)
767 {
768 if (refcount_dec_and_test(&kvm->users_count))
769 kvm_destroy_vm(kvm);
770 }
771 EXPORT_SYMBOL_GPL(kvm_put_kvm);
772
773
774 static int kvm_vm_release(struct inode *inode, struct file *filp)
775 {
776 struct kvm *kvm = filp->private_data;
777
778 kvm_irqfd_release(kvm);
779
780 kvm_put_kvm(kvm);
781 return 0;
782 }
783
784 /*
785 * Allocation size is twice as large as the actual dirty bitmap size.
786 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
787 */
788 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
789 {
790 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
791
792 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
793 if (!memslot->dirty_bitmap)
794 return -ENOMEM;
795
796 return 0;
797 }
798
799 /*
800 * Insert memslot and re-sort memslots based on their GFN,
801 * so binary search could be used to lookup GFN.
802 * Sorting algorithm takes advantage of having initially
803 * sorted array and known changed memslot position.
804 */
805 static void update_memslots(struct kvm_memslots *slots,
806 struct kvm_memory_slot *new,
807 enum kvm_mr_change change)
808 {
809 int id = new->id;
810 int i = slots->id_to_index[id];
811 struct kvm_memory_slot *mslots = slots->memslots;
812
813 WARN_ON(mslots[i].id != id);
814 switch (change) {
815 case KVM_MR_CREATE:
816 slots->used_slots++;
817 WARN_ON(mslots[i].npages || !new->npages);
818 break;
819 case KVM_MR_DELETE:
820 slots->used_slots--;
821 WARN_ON(new->npages || !mslots[i].npages);
822 break;
823 default:
824 break;
825 }
826
827 while (i < KVM_MEM_SLOTS_NUM - 1 &&
828 new->base_gfn <= mslots[i + 1].base_gfn) {
829 if (!mslots[i + 1].npages)
830 break;
831 mslots[i] = mslots[i + 1];
832 slots->id_to_index[mslots[i].id] = i;
833 i++;
834 }
835
836 /*
837 * The ">=" is needed when creating a slot with base_gfn == 0,
838 * so that it moves before all those with base_gfn == npages == 0.
839 *
840 * On the other hand, if new->npages is zero, the above loop has
841 * already left i pointing to the beginning of the empty part of
842 * mslots, and the ">=" would move the hole backwards in this
843 * case---which is wrong. So skip the loop when deleting a slot.
844 */
845 if (new->npages) {
846 while (i > 0 &&
847 new->base_gfn >= mslots[i - 1].base_gfn) {
848 mslots[i] = mslots[i - 1];
849 slots->id_to_index[mslots[i].id] = i;
850 i--;
851 }
852 } else
853 WARN_ON_ONCE(i != slots->used_slots);
854
855 mslots[i] = *new;
856 slots->id_to_index[mslots[i].id] = i;
857 }
858
859 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
860 {
861 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
862
863 #ifdef __KVM_HAVE_READONLY_MEM
864 valid_flags |= KVM_MEM_READONLY;
865 #endif
866
867 if (mem->flags & ~valid_flags)
868 return -EINVAL;
869
870 return 0;
871 }
872
873 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
874 int as_id, struct kvm_memslots *slots)
875 {
876 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
877
878 /*
879 * Set the low bit in the generation, which disables SPTE caching
880 * until the end of synchronize_srcu_expedited.
881 */
882 WARN_ON(old_memslots->generation & 1);
883 slots->generation = old_memslots->generation + 1;
884
885 rcu_assign_pointer(kvm->memslots[as_id], slots);
886 synchronize_srcu_expedited(&kvm->srcu);
887
888 /*
889 * Increment the new memslot generation a second time. This prevents
890 * vm exits that race with memslot updates from caching a memslot
891 * generation that will (potentially) be valid forever.
892 *
893 * Generations must be unique even across address spaces. We do not need
894 * a global counter for that, instead the generation space is evenly split
895 * across address spaces. For example, with two address spaces, address
896 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
897 * use generations 2, 6, 10, 14, ...
898 */
899 slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
900
901 kvm_arch_memslots_updated(kvm, slots);
902
903 return old_memslots;
904 }
905
906 /*
907 * Allocate some memory and give it an address in the guest physical address
908 * space.
909 *
910 * Discontiguous memory is allowed, mostly for framebuffers.
911 *
912 * Must be called holding kvm->slots_lock for write.
913 */
914 int __kvm_set_memory_region(struct kvm *kvm,
915 const struct kvm_userspace_memory_region *mem)
916 {
917 int r;
918 gfn_t base_gfn;
919 unsigned long npages;
920 struct kvm_memory_slot *slot;
921 struct kvm_memory_slot old, new;
922 struct kvm_memslots *slots = NULL, *old_memslots;
923 int as_id, id;
924 enum kvm_mr_change change;
925
926 r = check_memory_region_flags(mem);
927 if (r)
928 goto out;
929
930 r = -EINVAL;
931 as_id = mem->slot >> 16;
932 id = (u16)mem->slot;
933
934 /* General sanity checks */
935 if (mem->memory_size & (PAGE_SIZE - 1))
936 goto out;
937 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
938 goto out;
939 /* We can read the guest memory with __xxx_user() later on. */
940 if ((id < KVM_USER_MEM_SLOTS) &&
941 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
942 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
943 mem->memory_size)))
944 goto out;
945 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
946 goto out;
947 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
948 goto out;
949
950 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
951 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
952 npages = mem->memory_size >> PAGE_SHIFT;
953
954 if (npages > KVM_MEM_MAX_NR_PAGES)
955 goto out;
956
957 new = old = *slot;
958
959 new.id = id;
960 new.base_gfn = base_gfn;
961 new.npages = npages;
962 new.flags = mem->flags;
963
964 if (npages) {
965 if (!old.npages)
966 change = KVM_MR_CREATE;
967 else { /* Modify an existing slot. */
968 if ((mem->userspace_addr != old.userspace_addr) ||
969 (npages != old.npages) ||
970 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
971 goto out;
972
973 if (base_gfn != old.base_gfn)
974 change = KVM_MR_MOVE;
975 else if (new.flags != old.flags)
976 change = KVM_MR_FLAGS_ONLY;
977 else { /* Nothing to change. */
978 r = 0;
979 goto out;
980 }
981 }
982 } else {
983 if (!old.npages)
984 goto out;
985
986 change = KVM_MR_DELETE;
987 new.base_gfn = 0;
988 new.flags = 0;
989 }
990
991 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
992 /* Check for overlaps */
993 r = -EEXIST;
994 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
995 if (slot->id == id)
996 continue;
997 if (!((base_gfn + npages <= slot->base_gfn) ||
998 (base_gfn >= slot->base_gfn + slot->npages)))
999 goto out;
1000 }
1001 }
1002
1003 /* Free page dirty bitmap if unneeded */
1004 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1005 new.dirty_bitmap = NULL;
1006
1007 r = -ENOMEM;
1008 if (change == KVM_MR_CREATE) {
1009 new.userspace_addr = mem->userspace_addr;
1010
1011 if (kvm_arch_create_memslot(kvm, &new, npages))
1012 goto out_free;
1013 }
1014
1015 /* Allocate page dirty bitmap if needed */
1016 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1017 if (kvm_create_dirty_bitmap(&new) < 0)
1018 goto out_free;
1019 }
1020
1021 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1022 if (!slots)
1023 goto out_free;
1024 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1025
1026 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1027 slot = id_to_memslot(slots, id);
1028 slot->flags |= KVM_MEMSLOT_INVALID;
1029
1030 old_memslots = install_new_memslots(kvm, as_id, slots);
1031
1032 /* From this point no new shadow pages pointing to a deleted,
1033 * or moved, memslot will be created.
1034 *
1035 * validation of sp->gfn happens in:
1036 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1037 * - kvm_is_visible_gfn (mmu_check_roots)
1038 */
1039 kvm_arch_flush_shadow_memslot(kvm, slot);
1040
1041 /*
1042 * We can re-use the old_memslots from above, the only difference
1043 * from the currently installed memslots is the invalid flag. This
1044 * will get overwritten by update_memslots anyway.
1045 */
1046 slots = old_memslots;
1047 }
1048
1049 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1050 if (r)
1051 goto out_slots;
1052
1053 /* actual memory is freed via old in kvm_free_memslot below */
1054 if (change == KVM_MR_DELETE) {
1055 new.dirty_bitmap = NULL;
1056 memset(&new.arch, 0, sizeof(new.arch));
1057 }
1058
1059 update_memslots(slots, &new, change);
1060 old_memslots = install_new_memslots(kvm, as_id, slots);
1061
1062 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1063
1064 kvm_free_memslot(kvm, &old, &new);
1065 kvfree(old_memslots);
1066 return 0;
1067
1068 out_slots:
1069 kvfree(slots);
1070 out_free:
1071 kvm_free_memslot(kvm, &new, &old);
1072 out:
1073 return r;
1074 }
1075 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1076
1077 int kvm_set_memory_region(struct kvm *kvm,
1078 const struct kvm_userspace_memory_region *mem)
1079 {
1080 int r;
1081
1082 mutex_lock(&kvm->slots_lock);
1083 r = __kvm_set_memory_region(kvm, mem);
1084 mutex_unlock(&kvm->slots_lock);
1085 return r;
1086 }
1087 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1088
1089 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1090 struct kvm_userspace_memory_region *mem)
1091 {
1092 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1093 return -EINVAL;
1094
1095 return kvm_set_memory_region(kvm, mem);
1096 }
1097
1098 int kvm_get_dirty_log(struct kvm *kvm,
1099 struct kvm_dirty_log *log, int *is_dirty)
1100 {
1101 struct kvm_memslots *slots;
1102 struct kvm_memory_slot *memslot;
1103 int i, as_id, id;
1104 unsigned long n;
1105 unsigned long any = 0;
1106
1107 as_id = log->slot >> 16;
1108 id = (u16)log->slot;
1109 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1110 return -EINVAL;
1111
1112 slots = __kvm_memslots(kvm, as_id);
1113 memslot = id_to_memslot(slots, id);
1114 if (!memslot->dirty_bitmap)
1115 return -ENOENT;
1116
1117 n = kvm_dirty_bitmap_bytes(memslot);
1118
1119 for (i = 0; !any && i < n/sizeof(long); ++i)
1120 any = memslot->dirty_bitmap[i];
1121
1122 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1123 return -EFAULT;
1124
1125 if (any)
1126 *is_dirty = 1;
1127 return 0;
1128 }
1129 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1130
1131 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1132 /**
1133 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1134 * and reenable dirty page tracking for the corresponding pages.
1135 * @kvm: pointer to kvm instance
1136 * @log: slot id and address to which we copy the log
1137 * @is_dirty: flag set if any page is dirty
1138 *
1139 * We need to keep it in mind that VCPU threads can write to the bitmap
1140 * concurrently. So, to avoid losing track of dirty pages we keep the
1141 * following order:
1142 *
1143 * 1. Take a snapshot of the bit and clear it if needed.
1144 * 2. Write protect the corresponding page.
1145 * 3. Copy the snapshot to the userspace.
1146 * 4. Upon return caller flushes TLB's if needed.
1147 *
1148 * Between 2 and 4, the guest may write to the page using the remaining TLB
1149 * entry. This is not a problem because the page is reported dirty using
1150 * the snapshot taken before and step 4 ensures that writes done after
1151 * exiting to userspace will be logged for the next call.
1152 *
1153 */
1154 int kvm_get_dirty_log_protect(struct kvm *kvm,
1155 struct kvm_dirty_log *log, bool *flush)
1156 {
1157 struct kvm_memslots *slots;
1158 struct kvm_memory_slot *memslot;
1159 int i, as_id, id;
1160 unsigned long n;
1161 unsigned long *dirty_bitmap;
1162 unsigned long *dirty_bitmap_buffer;
1163
1164 as_id = log->slot >> 16;
1165 id = (u16)log->slot;
1166 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1167 return -EINVAL;
1168
1169 slots = __kvm_memslots(kvm, as_id);
1170 memslot = id_to_memslot(slots, id);
1171
1172 dirty_bitmap = memslot->dirty_bitmap;
1173 if (!dirty_bitmap)
1174 return -ENOENT;
1175
1176 n = kvm_dirty_bitmap_bytes(memslot);
1177 *flush = false;
1178 if (kvm->manual_dirty_log_protect) {
1179 /*
1180 * Unlike kvm_get_dirty_log, we always return false in *flush,
1181 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
1182 * is some code duplication between this function and
1183 * kvm_get_dirty_log, but hopefully all architecture
1184 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1185 * can be eliminated.
1186 */
1187 dirty_bitmap_buffer = dirty_bitmap;
1188 } else {
1189 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1190 memset(dirty_bitmap_buffer, 0, n);
1191
1192 spin_lock(&kvm->mmu_lock);
1193 for (i = 0; i < n / sizeof(long); i++) {
1194 unsigned long mask;
1195 gfn_t offset;
1196
1197 if (!dirty_bitmap[i])
1198 continue;
1199
1200 *flush = true;
1201 mask = xchg(&dirty_bitmap[i], 0);
1202 dirty_bitmap_buffer[i] = mask;
1203
1204 if (mask) {
1205 offset = i * BITS_PER_LONG;
1206 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1207 offset, mask);
1208 }
1209 }
1210 spin_unlock(&kvm->mmu_lock);
1211 }
1212
1213 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1214 return -EFAULT;
1215 return 0;
1216 }
1217 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1218
1219 /**
1220 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1221 * and reenable dirty page tracking for the corresponding pages.
1222 * @kvm: pointer to kvm instance
1223 * @log: slot id and address from which to fetch the bitmap of dirty pages
1224 */
1225 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1226 struct kvm_clear_dirty_log *log, bool *flush)
1227 {
1228 struct kvm_memslots *slots;
1229 struct kvm_memory_slot *memslot;
1230 int as_id, id;
1231 gfn_t offset;
1232 unsigned long i, n;
1233 unsigned long *dirty_bitmap;
1234 unsigned long *dirty_bitmap_buffer;
1235
1236 as_id = log->slot >> 16;
1237 id = (u16)log->slot;
1238 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1239 return -EINVAL;
1240
1241 if ((log->first_page & 63) || (log->num_pages & 63))
1242 return -EINVAL;
1243
1244 slots = __kvm_memslots(kvm, as_id);
1245 memslot = id_to_memslot(slots, id);
1246
1247 dirty_bitmap = memslot->dirty_bitmap;
1248 if (!dirty_bitmap)
1249 return -ENOENT;
1250
1251 n = kvm_dirty_bitmap_bytes(memslot);
1252
1253 if (log->first_page > memslot->npages ||
1254 log->num_pages > memslot->npages - log->first_page)
1255 return -EINVAL;
1256
1257 *flush = false;
1258 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1259 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1260 return -EFAULT;
1261
1262 spin_lock(&kvm->mmu_lock);
1263 for (offset = log->first_page,
1264 i = offset / BITS_PER_LONG, n = log->num_pages / BITS_PER_LONG; n--;
1265 i++, offset += BITS_PER_LONG) {
1266 unsigned long mask = *dirty_bitmap_buffer++;
1267 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1268 if (!mask)
1269 continue;
1270
1271 mask &= atomic_long_fetch_andnot(mask, p);
1272
1273 /*
1274 * mask contains the bits that really have been cleared. This
1275 * never includes any bits beyond the length of the memslot (if
1276 * the length is not aligned to 64 pages), therefore it is not
1277 * a problem if userspace sets them in log->dirty_bitmap.
1278 */
1279 if (mask) {
1280 *flush = true;
1281 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1282 offset, mask);
1283 }
1284 }
1285 spin_unlock(&kvm->mmu_lock);
1286
1287 return 0;
1288 }
1289 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1290 #endif
1291
1292 bool kvm_largepages_enabled(void)
1293 {
1294 return largepages_enabled;
1295 }
1296
1297 void kvm_disable_largepages(void)
1298 {
1299 largepages_enabled = false;
1300 }
1301 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1302
1303 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1304 {
1305 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1306 }
1307 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1308
1309 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1310 {
1311 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1312 }
1313
1314 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1315 {
1316 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1317
1318 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1319 memslot->flags & KVM_MEMSLOT_INVALID)
1320 return false;
1321
1322 return true;
1323 }
1324 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1325
1326 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1327 {
1328 struct vm_area_struct *vma;
1329 unsigned long addr, size;
1330
1331 size = PAGE_SIZE;
1332
1333 addr = gfn_to_hva(kvm, gfn);
1334 if (kvm_is_error_hva(addr))
1335 return PAGE_SIZE;
1336
1337 down_read(&current->mm->mmap_sem);
1338 vma = find_vma(current->mm, addr);
1339 if (!vma)
1340 goto out;
1341
1342 size = vma_kernel_pagesize(vma);
1343
1344 out:
1345 up_read(&current->mm->mmap_sem);
1346
1347 return size;
1348 }
1349
1350 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1351 {
1352 return slot->flags & KVM_MEM_READONLY;
1353 }
1354
1355 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1356 gfn_t *nr_pages, bool write)
1357 {
1358 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1359 return KVM_HVA_ERR_BAD;
1360
1361 if (memslot_is_readonly(slot) && write)
1362 return KVM_HVA_ERR_RO_BAD;
1363
1364 if (nr_pages)
1365 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1366
1367 return __gfn_to_hva_memslot(slot, gfn);
1368 }
1369
1370 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1371 gfn_t *nr_pages)
1372 {
1373 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1374 }
1375
1376 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1377 gfn_t gfn)
1378 {
1379 return gfn_to_hva_many(slot, gfn, NULL);
1380 }
1381 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1382
1383 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1384 {
1385 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1386 }
1387 EXPORT_SYMBOL_GPL(gfn_to_hva);
1388
1389 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1390 {
1391 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1392 }
1393 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1394
1395 /*
1396 * Return the hva of a @gfn and the R/W attribute if possible.
1397 *
1398 * @slot: the kvm_memory_slot which contains @gfn
1399 * @gfn: the gfn to be translated
1400 * @writable: used to return the read/write attribute of the @slot if the hva
1401 * is valid and @writable is not NULL
1402 */
1403 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1404 gfn_t gfn, bool *writable)
1405 {
1406 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1407
1408 if (!kvm_is_error_hva(hva) && writable)
1409 *writable = !memslot_is_readonly(slot);
1410
1411 return hva;
1412 }
1413
1414 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1415 {
1416 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1417
1418 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1419 }
1420
1421 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1422 {
1423 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1424
1425 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1426 }
1427
1428 static inline int check_user_page_hwpoison(unsigned long addr)
1429 {
1430 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1431
1432 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1433 return rc == -EHWPOISON;
1434 }
1435
1436 /*
1437 * The fast path to get the writable pfn which will be stored in @pfn,
1438 * true indicates success, otherwise false is returned. It's also the
1439 * only part that runs if we can are in atomic context.
1440 */
1441 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1442 bool *writable, kvm_pfn_t *pfn)
1443 {
1444 struct page *page[1];
1445 int npages;
1446
1447 /*
1448 * Fast pin a writable pfn only if it is a write fault request
1449 * or the caller allows to map a writable pfn for a read fault
1450 * request.
1451 */
1452 if (!(write_fault || writable))
1453 return false;
1454
1455 npages = __get_user_pages_fast(addr, 1, 1, page);
1456 if (npages == 1) {
1457 *pfn = page_to_pfn(page[0]);
1458
1459 if (writable)
1460 *writable = true;
1461 return true;
1462 }
1463
1464 return false;
1465 }
1466
1467 /*
1468 * The slow path to get the pfn of the specified host virtual address,
1469 * 1 indicates success, -errno is returned if error is detected.
1470 */
1471 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1472 bool *writable, kvm_pfn_t *pfn)
1473 {
1474 unsigned int flags = FOLL_HWPOISON;
1475 struct page *page;
1476 int npages = 0;
1477
1478 might_sleep();
1479
1480 if (writable)
1481 *writable = write_fault;
1482
1483 if (write_fault)
1484 flags |= FOLL_WRITE;
1485 if (async)
1486 flags |= FOLL_NOWAIT;
1487
1488 npages = get_user_pages_unlocked(addr, 1, &page, flags);
1489 if (npages != 1)
1490 return npages;
1491
1492 /* map read fault as writable if possible */
1493 if (unlikely(!write_fault) && writable) {
1494 struct page *wpage;
1495
1496 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1497 *writable = true;
1498 put_page(page);
1499 page = wpage;
1500 }
1501 }
1502 *pfn = page_to_pfn(page);
1503 return npages;
1504 }
1505
1506 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1507 {
1508 if (unlikely(!(vma->vm_flags & VM_READ)))
1509 return false;
1510
1511 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1512 return false;
1513
1514 return true;
1515 }
1516
1517 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1518 unsigned long addr, bool *async,
1519 bool write_fault, bool *writable,
1520 kvm_pfn_t *p_pfn)
1521 {
1522 unsigned long pfn;
1523 int r;
1524
1525 r = follow_pfn(vma, addr, &pfn);
1526 if (r) {
1527 /*
1528 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1529 * not call the fault handler, so do it here.
1530 */
1531 bool unlocked = false;
1532 r = fixup_user_fault(current, current->mm, addr,
1533 (write_fault ? FAULT_FLAG_WRITE : 0),
1534 &unlocked);
1535 if (unlocked)
1536 return -EAGAIN;
1537 if (r)
1538 return r;
1539
1540 r = follow_pfn(vma, addr, &pfn);
1541 if (r)
1542 return r;
1543
1544 }
1545
1546 if (writable)
1547 *writable = true;
1548
1549 /*
1550 * Get a reference here because callers of *hva_to_pfn* and
1551 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1552 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1553 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1554 * simply do nothing for reserved pfns.
1555 *
1556 * Whoever called remap_pfn_range is also going to call e.g.
1557 * unmap_mapping_range before the underlying pages are freed,
1558 * causing a call to our MMU notifier.
1559 */
1560 kvm_get_pfn(pfn);
1561
1562 *p_pfn = pfn;
1563 return 0;
1564 }
1565
1566 /*
1567 * Pin guest page in memory and return its pfn.
1568 * @addr: host virtual address which maps memory to the guest
1569 * @atomic: whether this function can sleep
1570 * @async: whether this function need to wait IO complete if the
1571 * host page is not in the memory
1572 * @write_fault: whether we should get a writable host page
1573 * @writable: whether it allows to map a writable host page for !@write_fault
1574 *
1575 * The function will map a writable host page for these two cases:
1576 * 1): @write_fault = true
1577 * 2): @write_fault = false && @writable, @writable will tell the caller
1578 * whether the mapping is writable.
1579 */
1580 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1581 bool write_fault, bool *writable)
1582 {
1583 struct vm_area_struct *vma;
1584 kvm_pfn_t pfn = 0;
1585 int npages, r;
1586
1587 /* we can do it either atomically or asynchronously, not both */
1588 BUG_ON(atomic && async);
1589
1590 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1591 return pfn;
1592
1593 if (atomic)
1594 return KVM_PFN_ERR_FAULT;
1595
1596 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1597 if (npages == 1)
1598 return pfn;
1599
1600 down_read(&current->mm->mmap_sem);
1601 if (npages == -EHWPOISON ||
1602 (!async && check_user_page_hwpoison(addr))) {
1603 pfn = KVM_PFN_ERR_HWPOISON;
1604 goto exit;
1605 }
1606
1607 retry:
1608 vma = find_vma_intersection(current->mm, addr, addr + 1);
1609
1610 if (vma == NULL)
1611 pfn = KVM_PFN_ERR_FAULT;
1612 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1613 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1614 if (r == -EAGAIN)
1615 goto retry;
1616 if (r < 0)
1617 pfn = KVM_PFN_ERR_FAULT;
1618 } else {
1619 if (async && vma_is_valid(vma, write_fault))
1620 *async = true;
1621 pfn = KVM_PFN_ERR_FAULT;
1622 }
1623 exit:
1624 up_read(&current->mm->mmap_sem);
1625 return pfn;
1626 }
1627
1628 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1629 bool atomic, bool *async, bool write_fault,
1630 bool *writable)
1631 {
1632 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1633
1634 if (addr == KVM_HVA_ERR_RO_BAD) {
1635 if (writable)
1636 *writable = false;
1637 return KVM_PFN_ERR_RO_FAULT;
1638 }
1639
1640 if (kvm_is_error_hva(addr)) {
1641 if (writable)
1642 *writable = false;
1643 return KVM_PFN_NOSLOT;
1644 }
1645
1646 /* Do not map writable pfn in the readonly memslot. */
1647 if (writable && memslot_is_readonly(slot)) {
1648 *writable = false;
1649 writable = NULL;
1650 }
1651
1652 return hva_to_pfn(addr, atomic, async, write_fault,
1653 writable);
1654 }
1655 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1656
1657 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1658 bool *writable)
1659 {
1660 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1661 write_fault, writable);
1662 }
1663 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1664
1665 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1666 {
1667 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1668 }
1669 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1670
1671 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1672 {
1673 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1674 }
1675 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1676
1677 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1678 {
1679 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1680 }
1681 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1682
1683 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1684 {
1685 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1686 }
1687 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1688
1689 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1690 {
1691 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1692 }
1693 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1694
1695 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1696 {
1697 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1698 }
1699 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1700
1701 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1702 struct page **pages, int nr_pages)
1703 {
1704 unsigned long addr;
1705 gfn_t entry = 0;
1706
1707 addr = gfn_to_hva_many(slot, gfn, &entry);
1708 if (kvm_is_error_hva(addr))
1709 return -1;
1710
1711 if (entry < nr_pages)
1712 return 0;
1713
1714 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1715 }
1716 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1717
1718 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1719 {
1720 if (is_error_noslot_pfn(pfn))
1721 return KVM_ERR_PTR_BAD_PAGE;
1722
1723 if (kvm_is_reserved_pfn(pfn)) {
1724 WARN_ON(1);
1725 return KVM_ERR_PTR_BAD_PAGE;
1726 }
1727
1728 return pfn_to_page(pfn);
1729 }
1730
1731 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1732 {
1733 kvm_pfn_t pfn;
1734
1735 pfn = gfn_to_pfn(kvm, gfn);
1736
1737 return kvm_pfn_to_page(pfn);
1738 }
1739 EXPORT_SYMBOL_GPL(gfn_to_page);
1740
1741 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1742 {
1743 kvm_pfn_t pfn;
1744
1745 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1746
1747 return kvm_pfn_to_page(pfn);
1748 }
1749 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1750
1751 void kvm_release_page_clean(struct page *page)
1752 {
1753 WARN_ON(is_error_page(page));
1754
1755 kvm_release_pfn_clean(page_to_pfn(page));
1756 }
1757 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1758
1759 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1760 {
1761 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1762 put_page(pfn_to_page(pfn));
1763 }
1764 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1765
1766 void kvm_release_page_dirty(struct page *page)
1767 {
1768 WARN_ON(is_error_page(page));
1769
1770 kvm_release_pfn_dirty(page_to_pfn(page));
1771 }
1772 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1773
1774 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1775 {
1776 kvm_set_pfn_dirty(pfn);
1777 kvm_release_pfn_clean(pfn);
1778 }
1779 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1780
1781 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1782 {
1783 if (!kvm_is_reserved_pfn(pfn)) {
1784 struct page *page = pfn_to_page(pfn);
1785
1786 if (!PageReserved(page))
1787 SetPageDirty(page);
1788 }
1789 }
1790 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1791
1792 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1793 {
1794 if (!kvm_is_reserved_pfn(pfn))
1795 mark_page_accessed(pfn_to_page(pfn));
1796 }
1797 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1798
1799 void kvm_get_pfn(kvm_pfn_t pfn)
1800 {
1801 if (!kvm_is_reserved_pfn(pfn))
1802 get_page(pfn_to_page(pfn));
1803 }
1804 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1805
1806 static int next_segment(unsigned long len, int offset)
1807 {
1808 if (len > PAGE_SIZE - offset)
1809 return PAGE_SIZE - offset;
1810 else
1811 return len;
1812 }
1813
1814 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1815 void *data, int offset, int len)
1816 {
1817 int r;
1818 unsigned long addr;
1819
1820 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1821 if (kvm_is_error_hva(addr))
1822 return -EFAULT;
1823 r = __copy_from_user(data, (void __user *)addr + offset, len);
1824 if (r)
1825 return -EFAULT;
1826 return 0;
1827 }
1828
1829 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1830 int len)
1831 {
1832 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1833
1834 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1835 }
1836 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1837
1838 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1839 int offset, int len)
1840 {
1841 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1842
1843 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1844 }
1845 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1846
1847 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1848 {
1849 gfn_t gfn = gpa >> PAGE_SHIFT;
1850 int seg;
1851 int offset = offset_in_page(gpa);
1852 int ret;
1853
1854 while ((seg = next_segment(len, offset)) != 0) {
1855 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1856 if (ret < 0)
1857 return ret;
1858 offset = 0;
1859 len -= seg;
1860 data += seg;
1861 ++gfn;
1862 }
1863 return 0;
1864 }
1865 EXPORT_SYMBOL_GPL(kvm_read_guest);
1866
1867 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1868 {
1869 gfn_t gfn = gpa >> PAGE_SHIFT;
1870 int seg;
1871 int offset = offset_in_page(gpa);
1872 int ret;
1873
1874 while ((seg = next_segment(len, offset)) != 0) {
1875 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1876 if (ret < 0)
1877 return ret;
1878 offset = 0;
1879 len -= seg;
1880 data += seg;
1881 ++gfn;
1882 }
1883 return 0;
1884 }
1885 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1886
1887 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1888 void *data, int offset, unsigned long len)
1889 {
1890 int r;
1891 unsigned long addr;
1892
1893 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1894 if (kvm_is_error_hva(addr))
1895 return -EFAULT;
1896 pagefault_disable();
1897 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1898 pagefault_enable();
1899 if (r)
1900 return -EFAULT;
1901 return 0;
1902 }
1903
1904 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1905 unsigned long len)
1906 {
1907 gfn_t gfn = gpa >> PAGE_SHIFT;
1908 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1909 int offset = offset_in_page(gpa);
1910
1911 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1912 }
1913 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1914
1915 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1916 void *data, unsigned long len)
1917 {
1918 gfn_t gfn = gpa >> PAGE_SHIFT;
1919 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1920 int offset = offset_in_page(gpa);
1921
1922 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1923 }
1924 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1925
1926 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1927 const void *data, int offset, int len)
1928 {
1929 int r;
1930 unsigned long addr;
1931
1932 addr = gfn_to_hva_memslot(memslot, gfn);
1933 if (kvm_is_error_hva(addr))
1934 return -EFAULT;
1935 r = __copy_to_user((void __user *)addr + offset, data, len);
1936 if (r)
1937 return -EFAULT;
1938 mark_page_dirty_in_slot(memslot, gfn);
1939 return 0;
1940 }
1941
1942 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1943 const void *data, int offset, int len)
1944 {
1945 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1946
1947 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1948 }
1949 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1950
1951 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1952 const void *data, int offset, int len)
1953 {
1954 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1955
1956 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1957 }
1958 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1959
1960 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1961 unsigned long len)
1962 {
1963 gfn_t gfn = gpa >> PAGE_SHIFT;
1964 int seg;
1965 int offset = offset_in_page(gpa);
1966 int ret;
1967
1968 while ((seg = next_segment(len, offset)) != 0) {
1969 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1970 if (ret < 0)
1971 return ret;
1972 offset = 0;
1973 len -= seg;
1974 data += seg;
1975 ++gfn;
1976 }
1977 return 0;
1978 }
1979 EXPORT_SYMBOL_GPL(kvm_write_guest);
1980
1981 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1982 unsigned long len)
1983 {
1984 gfn_t gfn = gpa >> PAGE_SHIFT;
1985 int seg;
1986 int offset = offset_in_page(gpa);
1987 int ret;
1988
1989 while ((seg = next_segment(len, offset)) != 0) {
1990 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1991 if (ret < 0)
1992 return ret;
1993 offset = 0;
1994 len -= seg;
1995 data += seg;
1996 ++gfn;
1997 }
1998 return 0;
1999 }
2000 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2001
2002 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2003 struct gfn_to_hva_cache *ghc,
2004 gpa_t gpa, unsigned long len)
2005 {
2006 int offset = offset_in_page(gpa);
2007 gfn_t start_gfn = gpa >> PAGE_SHIFT;
2008 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2009 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2010 gfn_t nr_pages_avail;
2011 int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2012
2013 ghc->gpa = gpa;
2014 ghc->generation = slots->generation;
2015 ghc->len = len;
2016 ghc->hva = KVM_HVA_ERR_BAD;
2017
2018 /*
2019 * If the requested region crosses two memslots, we still
2020 * verify that the entire region is valid here.
2021 */
2022 while (!r && start_gfn <= end_gfn) {
2023 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2024 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2025 &nr_pages_avail);
2026 if (kvm_is_error_hva(ghc->hva))
2027 r = -EFAULT;
2028 start_gfn += nr_pages_avail;
2029 }
2030
2031 /* Use the slow path for cross page reads and writes. */
2032 if (!r && nr_pages_needed == 1)
2033 ghc->hva += offset;
2034 else
2035 ghc->memslot = NULL;
2036
2037 return r;
2038 }
2039
2040 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2041 gpa_t gpa, unsigned long len)
2042 {
2043 struct kvm_memslots *slots = kvm_memslots(kvm);
2044 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2045 }
2046 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2047
2048 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2049 void *data, unsigned int offset,
2050 unsigned long len)
2051 {
2052 struct kvm_memslots *slots = kvm_memslots(kvm);
2053 int r;
2054 gpa_t gpa = ghc->gpa + offset;
2055
2056 BUG_ON(len + offset > ghc->len);
2057
2058 if (slots->generation != ghc->generation)
2059 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2060
2061 if (unlikely(!ghc->memslot))
2062 return kvm_write_guest(kvm, gpa, data, len);
2063
2064 if (kvm_is_error_hva(ghc->hva))
2065 return -EFAULT;
2066
2067 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2068 if (r)
2069 return -EFAULT;
2070 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2071
2072 return 0;
2073 }
2074 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2075
2076 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2077 void *data, unsigned long len)
2078 {
2079 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2080 }
2081 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2082
2083 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2084 void *data, unsigned long len)
2085 {
2086 struct kvm_memslots *slots = kvm_memslots(kvm);
2087 int r;
2088
2089 BUG_ON(len > ghc->len);
2090
2091 if (slots->generation != ghc->generation)
2092 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2093
2094 if (unlikely(!ghc->memslot))
2095 return kvm_read_guest(kvm, ghc->gpa, data, len);
2096
2097 if (kvm_is_error_hva(ghc->hva))
2098 return -EFAULT;
2099
2100 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2101 if (r)
2102 return -EFAULT;
2103
2104 return 0;
2105 }
2106 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2107
2108 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2109 {
2110 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2111
2112 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2113 }
2114 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2115
2116 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2117 {
2118 gfn_t gfn = gpa >> PAGE_SHIFT;
2119 int seg;
2120 int offset = offset_in_page(gpa);
2121 int ret;
2122
2123 while ((seg = next_segment(len, offset)) != 0) {
2124 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2125 if (ret < 0)
2126 return ret;
2127 offset = 0;
2128 len -= seg;
2129 ++gfn;
2130 }
2131 return 0;
2132 }
2133 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2134
2135 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2136 gfn_t gfn)
2137 {
2138 if (memslot && memslot->dirty_bitmap) {
2139 unsigned long rel_gfn = gfn - memslot->base_gfn;
2140
2141 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2142 }
2143 }
2144
2145 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2146 {
2147 struct kvm_memory_slot *memslot;
2148
2149 memslot = gfn_to_memslot(kvm, gfn);
2150 mark_page_dirty_in_slot(memslot, gfn);
2151 }
2152 EXPORT_SYMBOL_GPL(mark_page_dirty);
2153
2154 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2155 {
2156 struct kvm_memory_slot *memslot;
2157
2158 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2159 mark_page_dirty_in_slot(memslot, gfn);
2160 }
2161 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2162
2163 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2164 {
2165 if (!vcpu->sigset_active)
2166 return;
2167
2168 /*
2169 * This does a lockless modification of ->real_blocked, which is fine
2170 * because, only current can change ->real_blocked and all readers of
2171 * ->real_blocked don't care as long ->real_blocked is always a subset
2172 * of ->blocked.
2173 */
2174 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2175 }
2176
2177 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2178 {
2179 if (!vcpu->sigset_active)
2180 return;
2181
2182 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2183 sigemptyset(&current->real_blocked);
2184 }
2185
2186 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2187 {
2188 unsigned int old, val, grow;
2189
2190 old = val = vcpu->halt_poll_ns;
2191 grow = READ_ONCE(halt_poll_ns_grow);
2192 /* 10us base */
2193 if (val == 0 && grow)
2194 val = 10000;
2195 else
2196 val *= grow;
2197
2198 if (val > halt_poll_ns)
2199 val = halt_poll_ns;
2200
2201 vcpu->halt_poll_ns = val;
2202 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2203 }
2204
2205 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2206 {
2207 unsigned int old, val, shrink;
2208
2209 old = val = vcpu->halt_poll_ns;
2210 shrink = READ_ONCE(halt_poll_ns_shrink);
2211 if (shrink == 0)
2212 val = 0;
2213 else
2214 val /= shrink;
2215
2216 vcpu->halt_poll_ns = val;
2217 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2218 }
2219
2220 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2221 {
2222 int ret = -EINTR;
2223 int idx = srcu_read_lock(&vcpu->kvm->srcu);
2224
2225 if (kvm_arch_vcpu_runnable(vcpu)) {
2226 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2227 goto out;
2228 }
2229 if (kvm_cpu_has_pending_timer(vcpu))
2230 goto out;
2231 if (signal_pending(current))
2232 goto out;
2233
2234 ret = 0;
2235 out:
2236 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2237 return ret;
2238 }
2239
2240 /*
2241 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2242 */
2243 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2244 {
2245 ktime_t start, cur;
2246 DECLARE_SWAITQUEUE(wait);
2247 bool waited = false;
2248 u64 block_ns;
2249
2250 start = cur = ktime_get();
2251 if (vcpu->halt_poll_ns) {
2252 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2253
2254 ++vcpu->stat.halt_attempted_poll;
2255 do {
2256 /*
2257 * This sets KVM_REQ_UNHALT if an interrupt
2258 * arrives.
2259 */
2260 if (kvm_vcpu_check_block(vcpu) < 0) {
2261 ++vcpu->stat.halt_successful_poll;
2262 if (!vcpu_valid_wakeup(vcpu))
2263 ++vcpu->stat.halt_poll_invalid;
2264 goto out;
2265 }
2266 cur = ktime_get();
2267 } while (single_task_running() && ktime_before(cur, stop));
2268 }
2269
2270 kvm_arch_vcpu_blocking(vcpu);
2271
2272 for (;;) {
2273 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2274
2275 if (kvm_vcpu_check_block(vcpu) < 0)
2276 break;
2277
2278 waited = true;
2279 schedule();
2280 }
2281
2282 finish_swait(&vcpu->wq, &wait);
2283 cur = ktime_get();
2284
2285 kvm_arch_vcpu_unblocking(vcpu);
2286 out:
2287 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2288
2289 if (!vcpu_valid_wakeup(vcpu))
2290 shrink_halt_poll_ns(vcpu);
2291 else if (halt_poll_ns) {
2292 if (block_ns <= vcpu->halt_poll_ns)
2293 ;
2294 /* we had a long block, shrink polling */
2295 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2296 shrink_halt_poll_ns(vcpu);
2297 /* we had a short halt and our poll time is too small */
2298 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2299 block_ns < halt_poll_ns)
2300 grow_halt_poll_ns(vcpu);
2301 } else
2302 vcpu->halt_poll_ns = 0;
2303
2304 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2305 kvm_arch_vcpu_block_finish(vcpu);
2306 }
2307 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2308
2309 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2310 {
2311 struct swait_queue_head *wqp;
2312
2313 wqp = kvm_arch_vcpu_wq(vcpu);
2314 if (swq_has_sleeper(wqp)) {
2315 swake_up_one(wqp);
2316 ++vcpu->stat.halt_wakeup;
2317 return true;
2318 }
2319
2320 return false;
2321 }
2322 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2323
2324 #ifndef CONFIG_S390
2325 /*
2326 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2327 */
2328 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2329 {
2330 int me;
2331 int cpu = vcpu->cpu;
2332
2333 if (kvm_vcpu_wake_up(vcpu))
2334 return;
2335
2336 me = get_cpu();
2337 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2338 if (kvm_arch_vcpu_should_kick(vcpu))
2339 smp_send_reschedule(cpu);
2340 put_cpu();
2341 }
2342 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2343 #endif /* !CONFIG_S390 */
2344
2345 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2346 {
2347 struct pid *pid;
2348 struct task_struct *task = NULL;
2349 int ret = 0;
2350
2351 rcu_read_lock();
2352 pid = rcu_dereference(target->pid);
2353 if (pid)
2354 task = get_pid_task(pid, PIDTYPE_PID);
2355 rcu_read_unlock();
2356 if (!task)
2357 return ret;
2358 ret = yield_to(task, 1);
2359 put_task_struct(task);
2360
2361 return ret;
2362 }
2363 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2364
2365 /*
2366 * Helper that checks whether a VCPU is eligible for directed yield.
2367 * Most eligible candidate to yield is decided by following heuristics:
2368 *
2369 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2370 * (preempted lock holder), indicated by @in_spin_loop.
2371 * Set at the beiginning and cleared at the end of interception/PLE handler.
2372 *
2373 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2374 * chance last time (mostly it has become eligible now since we have probably
2375 * yielded to lockholder in last iteration. This is done by toggling
2376 * @dy_eligible each time a VCPU checked for eligibility.)
2377 *
2378 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2379 * to preempted lock-holder could result in wrong VCPU selection and CPU
2380 * burning. Giving priority for a potential lock-holder increases lock
2381 * progress.
2382 *
2383 * Since algorithm is based on heuristics, accessing another VCPU data without
2384 * locking does not harm. It may result in trying to yield to same VCPU, fail
2385 * and continue with next VCPU and so on.
2386 */
2387 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2388 {
2389 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2390 bool eligible;
2391
2392 eligible = !vcpu->spin_loop.in_spin_loop ||
2393 vcpu->spin_loop.dy_eligible;
2394
2395 if (vcpu->spin_loop.in_spin_loop)
2396 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2397
2398 return eligible;
2399 #else
2400 return true;
2401 #endif
2402 }
2403
2404 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2405 {
2406 struct kvm *kvm = me->kvm;
2407 struct kvm_vcpu *vcpu;
2408 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2409 int yielded = 0;
2410 int try = 3;
2411 int pass;
2412 int i;
2413
2414 kvm_vcpu_set_in_spin_loop(me, true);
2415 /*
2416 * We boost the priority of a VCPU that is runnable but not
2417 * currently running, because it got preempted by something
2418 * else and called schedule in __vcpu_run. Hopefully that
2419 * VCPU is holding the lock that we need and will release it.
2420 * We approximate round-robin by starting at the last boosted VCPU.
2421 */
2422 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2423 kvm_for_each_vcpu(i, vcpu, kvm) {
2424 if (!pass && i <= last_boosted_vcpu) {
2425 i = last_boosted_vcpu;
2426 continue;
2427 } else if (pass && i > last_boosted_vcpu)
2428 break;
2429 if (!READ_ONCE(vcpu->preempted))
2430 continue;
2431 if (vcpu == me)
2432 continue;
2433 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2434 continue;
2435 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2436 continue;
2437 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2438 continue;
2439
2440 yielded = kvm_vcpu_yield_to(vcpu);
2441 if (yielded > 0) {
2442 kvm->last_boosted_vcpu = i;
2443 break;
2444 } else if (yielded < 0) {
2445 try--;
2446 if (!try)
2447 break;
2448 }
2449 }
2450 }
2451 kvm_vcpu_set_in_spin_loop(me, false);
2452
2453 /* Ensure vcpu is not eligible during next spinloop */
2454 kvm_vcpu_set_dy_eligible(me, false);
2455 }
2456 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2457
2458 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2459 {
2460 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2461 struct page *page;
2462
2463 if (vmf->pgoff == 0)
2464 page = virt_to_page(vcpu->run);
2465 #ifdef CONFIG_X86
2466 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2467 page = virt_to_page(vcpu->arch.pio_data);
2468 #endif
2469 #ifdef CONFIG_KVM_MMIO
2470 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2471 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2472 #endif
2473 else
2474 return kvm_arch_vcpu_fault(vcpu, vmf);
2475 get_page(page);
2476 vmf->page = page;
2477 return 0;
2478 }
2479
2480 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2481 .fault = kvm_vcpu_fault,
2482 };
2483
2484 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2485 {
2486 vma->vm_ops = &kvm_vcpu_vm_ops;
2487 return 0;
2488 }
2489
2490 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2491 {
2492 struct kvm_vcpu *vcpu = filp->private_data;
2493
2494 debugfs_remove_recursive(vcpu->debugfs_dentry);
2495 kvm_put_kvm(vcpu->kvm);
2496 return 0;
2497 }
2498
2499 static struct file_operations kvm_vcpu_fops = {
2500 .release = kvm_vcpu_release,
2501 .unlocked_ioctl = kvm_vcpu_ioctl,
2502 .mmap = kvm_vcpu_mmap,
2503 .llseek = noop_llseek,
2504 KVM_COMPAT(kvm_vcpu_compat_ioctl),
2505 };
2506
2507 /*
2508 * Allocates an inode for the vcpu.
2509 */
2510 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2511 {
2512 char name[8 + 1 + ITOA_MAX_LEN + 1];
2513
2514 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2515 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2516 }
2517
2518 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2519 {
2520 char dir_name[ITOA_MAX_LEN * 2];
2521 int ret;
2522
2523 if (!kvm_arch_has_vcpu_debugfs())
2524 return 0;
2525
2526 if (!debugfs_initialized())
2527 return 0;
2528
2529 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2530 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2531 vcpu->kvm->debugfs_dentry);
2532 if (!vcpu->debugfs_dentry)
2533 return -ENOMEM;
2534
2535 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2536 if (ret < 0) {
2537 debugfs_remove_recursive(vcpu->debugfs_dentry);
2538 return ret;
2539 }
2540
2541 return 0;
2542 }
2543
2544 /*
2545 * Creates some virtual cpus. Good luck creating more than one.
2546 */
2547 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2548 {
2549 int r;
2550 struct kvm_vcpu *vcpu;
2551
2552 if (id >= KVM_MAX_VCPU_ID)
2553 return -EINVAL;
2554
2555 mutex_lock(&kvm->lock);
2556 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2557 mutex_unlock(&kvm->lock);
2558 return -EINVAL;
2559 }
2560
2561 kvm->created_vcpus++;
2562 mutex_unlock(&kvm->lock);
2563
2564 vcpu = kvm_arch_vcpu_create(kvm, id);
2565 if (IS_ERR(vcpu)) {
2566 r = PTR_ERR(vcpu);
2567 goto vcpu_decrement;
2568 }
2569
2570 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2571
2572 r = kvm_arch_vcpu_setup(vcpu);
2573 if (r)
2574 goto vcpu_destroy;
2575
2576 r = kvm_create_vcpu_debugfs(vcpu);
2577 if (r)
2578 goto vcpu_destroy;
2579
2580 mutex_lock(&kvm->lock);
2581 if (kvm_get_vcpu_by_id(kvm, id)) {
2582 r = -EEXIST;
2583 goto unlock_vcpu_destroy;
2584 }
2585
2586 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2587
2588 /* Now it's all set up, let userspace reach it */
2589 kvm_get_kvm(kvm);
2590 r = create_vcpu_fd(vcpu);
2591 if (r < 0) {
2592 kvm_put_kvm(kvm);
2593 goto unlock_vcpu_destroy;
2594 }
2595
2596 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2597
2598 /*
2599 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2600 * before kvm->online_vcpu's incremented value.
2601 */
2602 smp_wmb();
2603 atomic_inc(&kvm->online_vcpus);
2604
2605 mutex_unlock(&kvm->lock);
2606 kvm_arch_vcpu_postcreate(vcpu);
2607 return r;
2608
2609 unlock_vcpu_destroy:
2610 mutex_unlock(&kvm->lock);
2611 debugfs_remove_recursive(vcpu->debugfs_dentry);
2612 vcpu_destroy:
2613 kvm_arch_vcpu_destroy(vcpu);
2614 vcpu_decrement:
2615 mutex_lock(&kvm->lock);
2616 kvm->created_vcpus--;
2617 mutex_unlock(&kvm->lock);
2618 return r;
2619 }
2620
2621 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2622 {
2623 if (sigset) {
2624 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2625 vcpu->sigset_active = 1;
2626 vcpu->sigset = *sigset;
2627 } else
2628 vcpu->sigset_active = 0;
2629 return 0;
2630 }
2631
2632 static long kvm_vcpu_ioctl(struct file *filp,
2633 unsigned int ioctl, unsigned long arg)
2634 {
2635 struct kvm_vcpu *vcpu = filp->private_data;
2636 void __user *argp = (void __user *)arg;
2637 int r;
2638 struct kvm_fpu *fpu = NULL;
2639 struct kvm_sregs *kvm_sregs = NULL;
2640
2641 if (vcpu->kvm->mm != current->mm)
2642 return -EIO;
2643
2644 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2645 return -EINVAL;
2646
2647 /*
2648 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2649 * execution; mutex_lock() would break them.
2650 */
2651 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2652 if (r != -ENOIOCTLCMD)
2653 return r;
2654
2655 if (mutex_lock_killable(&vcpu->mutex))
2656 return -EINTR;
2657 switch (ioctl) {
2658 case KVM_RUN: {
2659 struct pid *oldpid;
2660 r = -EINVAL;
2661 if (arg)
2662 goto out;
2663 oldpid = rcu_access_pointer(vcpu->pid);
2664 if (unlikely(oldpid != task_pid(current))) {
2665 /* The thread running this VCPU changed. */
2666 struct pid *newpid;
2667
2668 r = kvm_arch_vcpu_run_pid_change(vcpu);
2669 if (r)
2670 break;
2671
2672 newpid = get_task_pid(current, PIDTYPE_PID);
2673 rcu_assign_pointer(vcpu->pid, newpid);
2674 if (oldpid)
2675 synchronize_rcu();
2676 put_pid(oldpid);
2677 }
2678 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2679 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2680 break;
2681 }
2682 case KVM_GET_REGS: {
2683 struct kvm_regs *kvm_regs;
2684
2685 r = -ENOMEM;
2686 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2687 if (!kvm_regs)
2688 goto out;
2689 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2690 if (r)
2691 goto out_free1;
2692 r = -EFAULT;
2693 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2694 goto out_free1;
2695 r = 0;
2696 out_free1:
2697 kfree(kvm_regs);
2698 break;
2699 }
2700 case KVM_SET_REGS: {
2701 struct kvm_regs *kvm_regs;
2702
2703 r = -ENOMEM;
2704 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2705 if (IS_ERR(kvm_regs)) {
2706 r = PTR_ERR(kvm_regs);
2707 goto out;
2708 }
2709 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2710 kfree(kvm_regs);
2711 break;
2712 }
2713 case KVM_GET_SREGS: {
2714 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2715 r = -ENOMEM;
2716 if (!kvm_sregs)
2717 goto out;
2718 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2719 if (r)
2720 goto out;
2721 r = -EFAULT;
2722 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2723 goto out;
2724 r = 0;
2725 break;
2726 }
2727 case KVM_SET_SREGS: {
2728 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2729 if (IS_ERR(kvm_sregs)) {
2730 r = PTR_ERR(kvm_sregs);
2731 kvm_sregs = NULL;
2732 goto out;
2733 }
2734 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2735 break;
2736 }
2737 case KVM_GET_MP_STATE: {
2738 struct kvm_mp_state mp_state;
2739
2740 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2741 if (r)
2742 goto out;
2743 r = -EFAULT;
2744 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2745 goto out;
2746 r = 0;
2747 break;
2748 }
2749 case KVM_SET_MP_STATE: {
2750 struct kvm_mp_state mp_state;
2751
2752 r = -EFAULT;
2753 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2754 goto out;
2755 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2756 break;
2757 }
2758 case KVM_TRANSLATE: {
2759 struct kvm_translation tr;
2760
2761 r = -EFAULT;
2762 if (copy_from_user(&tr, argp, sizeof(tr)))
2763 goto out;
2764 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2765 if (r)
2766 goto out;
2767 r = -EFAULT;
2768 if (copy_to_user(argp, &tr, sizeof(tr)))
2769 goto out;
2770 r = 0;
2771 break;
2772 }
2773 case KVM_SET_GUEST_DEBUG: {
2774 struct kvm_guest_debug dbg;
2775
2776 r = -EFAULT;
2777 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2778 goto out;
2779 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2780 break;
2781 }
2782 case KVM_SET_SIGNAL_MASK: {
2783 struct kvm_signal_mask __user *sigmask_arg = argp;
2784 struct kvm_signal_mask kvm_sigmask;
2785 sigset_t sigset, *p;
2786
2787 p = NULL;
2788 if (argp) {
2789 r = -EFAULT;
2790 if (copy_from_user(&kvm_sigmask, argp,
2791 sizeof(kvm_sigmask)))
2792 goto out;
2793 r = -EINVAL;
2794 if (kvm_sigmask.len != sizeof(sigset))
2795 goto out;
2796 r = -EFAULT;
2797 if (copy_from_user(&sigset, sigmask_arg->sigset,
2798 sizeof(sigset)))
2799 goto out;
2800 p = &sigset;
2801 }
2802 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2803 break;
2804 }
2805 case KVM_GET_FPU: {
2806 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2807 r = -ENOMEM;
2808 if (!fpu)
2809 goto out;
2810 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2811 if (r)
2812 goto out;
2813 r = -EFAULT;
2814 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2815 goto out;
2816 r = 0;
2817 break;
2818 }
2819 case KVM_SET_FPU: {
2820 fpu = memdup_user(argp, sizeof(*fpu));
2821 if (IS_ERR(fpu)) {
2822 r = PTR_ERR(fpu);
2823 fpu = NULL;
2824 goto out;
2825 }
2826 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2827 break;
2828 }
2829 default:
2830 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2831 }
2832 out:
2833 mutex_unlock(&vcpu->mutex);
2834 kfree(fpu);
2835 kfree(kvm_sregs);
2836 return r;
2837 }
2838
2839 #ifdef CONFIG_KVM_COMPAT
2840 static long kvm_vcpu_compat_ioctl(struct file *filp,
2841 unsigned int ioctl, unsigned long arg)
2842 {
2843 struct kvm_vcpu *vcpu = filp->private_data;
2844 void __user *argp = compat_ptr(arg);
2845 int r;
2846
2847 if (vcpu->kvm->mm != current->mm)
2848 return -EIO;
2849
2850 switch (ioctl) {
2851 case KVM_SET_SIGNAL_MASK: {
2852 struct kvm_signal_mask __user *sigmask_arg = argp;
2853 struct kvm_signal_mask kvm_sigmask;
2854 sigset_t sigset;
2855
2856 if (argp) {
2857 r = -EFAULT;
2858 if (copy_from_user(&kvm_sigmask, argp,
2859 sizeof(kvm_sigmask)))
2860 goto out;
2861 r = -EINVAL;
2862 if (kvm_sigmask.len != sizeof(compat_sigset_t))
2863 goto out;
2864 r = -EFAULT;
2865 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2866 goto out;
2867 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2868 } else
2869 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2870 break;
2871 }
2872 default:
2873 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2874 }
2875
2876 out:
2877 return r;
2878 }
2879 #endif
2880
2881 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2882 int (*accessor)(struct kvm_device *dev,
2883 struct kvm_device_attr *attr),
2884 unsigned long arg)
2885 {
2886 struct kvm_device_attr attr;
2887
2888 if (!accessor)
2889 return -EPERM;
2890
2891 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2892 return -EFAULT;
2893
2894 return accessor(dev, &attr);
2895 }
2896
2897 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2898 unsigned long arg)
2899 {
2900 struct kvm_device *dev = filp->private_data;
2901
2902 switch (ioctl) {
2903 case KVM_SET_DEVICE_ATTR:
2904 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2905 case KVM_GET_DEVICE_ATTR:
2906 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2907 case KVM_HAS_DEVICE_ATTR:
2908 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2909 default:
2910 if (dev->ops->ioctl)
2911 return dev->ops->ioctl(dev, ioctl, arg);
2912
2913 return -ENOTTY;
2914 }
2915 }
2916
2917 static int kvm_device_release(struct inode *inode, struct file *filp)
2918 {
2919 struct kvm_device *dev = filp->private_data;
2920 struct kvm *kvm = dev->kvm;
2921
2922 kvm_put_kvm(kvm);
2923 return 0;
2924 }
2925
2926 static const struct file_operations kvm_device_fops = {
2927 .unlocked_ioctl = kvm_device_ioctl,
2928 .release = kvm_device_release,
2929 KVM_COMPAT(kvm_device_ioctl),
2930 };
2931
2932 struct kvm_device *kvm_device_from_filp(struct file *filp)
2933 {
2934 if (filp->f_op != &kvm_device_fops)
2935 return NULL;
2936
2937 return filp->private_data;
2938 }
2939
2940 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2941 #ifdef CONFIG_KVM_MPIC
2942 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2943 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2944 #endif
2945 };
2946
2947 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2948 {
2949 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2950 return -ENOSPC;
2951
2952 if (kvm_device_ops_table[type] != NULL)
2953 return -EEXIST;
2954
2955 kvm_device_ops_table[type] = ops;
2956 return 0;
2957 }
2958
2959 void kvm_unregister_device_ops(u32 type)
2960 {
2961 if (kvm_device_ops_table[type] != NULL)
2962 kvm_device_ops_table[type] = NULL;
2963 }
2964
2965 static int kvm_ioctl_create_device(struct kvm *kvm,
2966 struct kvm_create_device *cd)
2967 {
2968 struct kvm_device_ops *ops = NULL;
2969 struct kvm_device *dev;
2970 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2971 int ret;
2972
2973 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2974 return -ENODEV;
2975
2976 ops = kvm_device_ops_table[cd->type];
2977 if (ops == NULL)
2978 return -ENODEV;
2979
2980 if (test)
2981 return 0;
2982
2983 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2984 if (!dev)
2985 return -ENOMEM;
2986
2987 dev->ops = ops;
2988 dev->kvm = kvm;
2989
2990 mutex_lock(&kvm->lock);
2991 ret = ops->create(dev, cd->type);
2992 if (ret < 0) {
2993 mutex_unlock(&kvm->lock);
2994 kfree(dev);
2995 return ret;
2996 }
2997 list_add(&dev->vm_node, &kvm->devices);
2998 mutex_unlock(&kvm->lock);
2999
3000 if (ops->init)
3001 ops->init(dev);
3002
3003 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3004 if (ret < 0) {
3005 mutex_lock(&kvm->lock);
3006 list_del(&dev->vm_node);
3007 mutex_unlock(&kvm->lock);
3008 ops->destroy(dev);
3009 return ret;
3010 }
3011
3012 kvm_get_kvm(kvm);
3013 cd->fd = ret;
3014 return 0;
3015 }
3016
3017 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3018 {
3019 switch (arg) {
3020 case KVM_CAP_USER_MEMORY:
3021 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3022 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3023 case KVM_CAP_INTERNAL_ERROR_DATA:
3024 #ifdef CONFIG_HAVE_KVM_MSI
3025 case KVM_CAP_SIGNAL_MSI:
3026 #endif
3027 #ifdef CONFIG_HAVE_KVM_IRQFD
3028 case KVM_CAP_IRQFD:
3029 case KVM_CAP_IRQFD_RESAMPLE:
3030 #endif
3031 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3032 case KVM_CAP_CHECK_EXTENSION_VM:
3033 case KVM_CAP_ENABLE_CAP_VM:
3034 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3035 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT:
3036 #endif
3037 return 1;
3038 #ifdef CONFIG_KVM_MMIO
3039 case KVM_CAP_COALESCED_MMIO:
3040 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3041 case KVM_CAP_COALESCED_PIO:
3042 return 1;
3043 #endif
3044 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3045 case KVM_CAP_IRQ_ROUTING:
3046 return KVM_MAX_IRQ_ROUTES;
3047 #endif
3048 #if KVM_ADDRESS_SPACE_NUM > 1
3049 case KVM_CAP_MULTI_ADDRESS_SPACE:
3050 return KVM_ADDRESS_SPACE_NUM;
3051 #endif
3052 case KVM_CAP_MAX_VCPU_ID:
3053 return KVM_MAX_VCPU_ID;
3054 default:
3055 break;
3056 }
3057 return kvm_vm_ioctl_check_extension(kvm, arg);
3058 }
3059
3060 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3061 struct kvm_enable_cap *cap)
3062 {
3063 return -EINVAL;
3064 }
3065
3066 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3067 struct kvm_enable_cap *cap)
3068 {
3069 switch (cap->cap) {
3070 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3071 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT:
3072 if (cap->flags || (cap->args[0] & ~1))
3073 return -EINVAL;
3074 kvm->manual_dirty_log_protect = cap->args[0];
3075 return 0;
3076 #endif
3077 default:
3078 return kvm_vm_ioctl_enable_cap(kvm, cap);
3079 }
3080 }
3081
3082 static long kvm_vm_ioctl(struct file *filp,
3083 unsigned int ioctl, unsigned long arg)
3084 {
3085 struct kvm *kvm = filp->private_data;
3086 void __user *argp = (void __user *)arg;
3087 int r;
3088
3089 if (kvm->mm != current->mm)
3090 return -EIO;
3091 switch (ioctl) {
3092 case KVM_CREATE_VCPU:
3093 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3094 break;
3095 case KVM_ENABLE_CAP: {
3096 struct kvm_enable_cap cap;
3097
3098 r = -EFAULT;
3099 if (copy_from_user(&cap, argp, sizeof(cap)))
3100 goto out;
3101 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3102 break;
3103 }
3104 case KVM_SET_USER_MEMORY_REGION: {
3105 struct kvm_userspace_memory_region kvm_userspace_mem;
3106
3107 r = -EFAULT;
3108 if (copy_from_user(&kvm_userspace_mem, argp,
3109 sizeof(kvm_userspace_mem)))
3110 goto out;
3111
3112 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3113 break;
3114 }
3115 case KVM_GET_DIRTY_LOG: {
3116 struct kvm_dirty_log log;
3117
3118 r = -EFAULT;
3119 if (copy_from_user(&log, argp, sizeof(log)))
3120 goto out;
3121 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3122 break;
3123 }
3124 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3125 case KVM_CLEAR_DIRTY_LOG: {
3126 struct kvm_clear_dirty_log log;
3127
3128 r = -EFAULT;
3129 if (copy_from_user(&log, argp, sizeof(log)))
3130 goto out;
3131 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3132 break;
3133 }
3134 #endif
3135 #ifdef CONFIG_KVM_MMIO
3136 case KVM_REGISTER_COALESCED_MMIO: {
3137 struct kvm_coalesced_mmio_zone zone;
3138
3139 r = -EFAULT;
3140 if (copy_from_user(&zone, argp, sizeof(zone)))
3141 goto out;
3142 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3143 break;
3144 }
3145 case KVM_UNREGISTER_COALESCED_MMIO: {
3146 struct kvm_coalesced_mmio_zone zone;
3147
3148 r = -EFAULT;
3149 if (copy_from_user(&zone, argp, sizeof(zone)))
3150 goto out;
3151 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3152 break;
3153 }
3154 #endif
3155 case KVM_IRQFD: {
3156 struct kvm_irqfd data;
3157
3158 r = -EFAULT;
3159 if (copy_from_user(&data, argp, sizeof(data)))
3160 goto out;
3161 r = kvm_irqfd(kvm, &data);
3162 break;
3163 }
3164 case KVM_IOEVENTFD: {
3165 struct kvm_ioeventfd data;
3166
3167 r = -EFAULT;
3168 if (copy_from_user(&data, argp, sizeof(data)))
3169 goto out;
3170 r = kvm_ioeventfd(kvm, &data);
3171 break;
3172 }
3173 #ifdef CONFIG_HAVE_KVM_MSI
3174 case KVM_SIGNAL_MSI: {
3175 struct kvm_msi msi;
3176
3177 r = -EFAULT;
3178 if (copy_from_user(&msi, argp, sizeof(msi)))
3179 goto out;
3180 r = kvm_send_userspace_msi(kvm, &msi);
3181 break;
3182 }
3183 #endif
3184 #ifdef __KVM_HAVE_IRQ_LINE
3185 case KVM_IRQ_LINE_STATUS:
3186 case KVM_IRQ_LINE: {
3187 struct kvm_irq_level irq_event;
3188
3189 r = -EFAULT;
3190 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3191 goto out;
3192
3193 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3194 ioctl == KVM_IRQ_LINE_STATUS);
3195 if (r)
3196 goto out;
3197
3198 r = -EFAULT;
3199 if (ioctl == KVM_IRQ_LINE_STATUS) {
3200 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3201 goto out;
3202 }
3203
3204 r = 0;
3205 break;
3206 }
3207 #endif
3208 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3209 case KVM_SET_GSI_ROUTING: {
3210 struct kvm_irq_routing routing;
3211 struct kvm_irq_routing __user *urouting;
3212 struct kvm_irq_routing_entry *entries = NULL;
3213
3214 r = -EFAULT;
3215 if (copy_from_user(&routing, argp, sizeof(routing)))
3216 goto out;
3217 r = -EINVAL;
3218 if (!kvm_arch_can_set_irq_routing(kvm))
3219 goto out;
3220 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3221 goto out;
3222 if (routing.flags)
3223 goto out;
3224 if (routing.nr) {
3225 r = -ENOMEM;
3226 entries = vmalloc(array_size(sizeof(*entries),
3227 routing.nr));
3228 if (!entries)
3229 goto out;
3230 r = -EFAULT;
3231 urouting = argp;
3232 if (copy_from_user(entries, urouting->entries,
3233 routing.nr * sizeof(*entries)))
3234 goto out_free_irq_routing;
3235 }
3236 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3237 routing.flags);
3238 out_free_irq_routing:
3239 vfree(entries);
3240 break;
3241 }
3242 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3243 case KVM_CREATE_DEVICE: {
3244 struct kvm_create_device cd;
3245
3246 r = -EFAULT;
3247 if (copy_from_user(&cd, argp, sizeof(cd)))
3248 goto out;
3249
3250 r = kvm_ioctl_create_device(kvm, &cd);
3251 if (r)
3252 goto out;
3253
3254 r = -EFAULT;
3255 if (copy_to_user(argp, &cd, sizeof(cd)))
3256 goto out;
3257
3258 r = 0;
3259 break;
3260 }
3261 case KVM_CHECK_EXTENSION:
3262 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3263 break;
3264 default:
3265 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3266 }
3267 out:
3268 return r;
3269 }
3270
3271 #ifdef CONFIG_KVM_COMPAT
3272 struct compat_kvm_dirty_log {
3273 __u32 slot;
3274 __u32 padding1;
3275 union {
3276 compat_uptr_t dirty_bitmap; /* one bit per page */
3277 __u64 padding2;
3278 };
3279 };
3280
3281 static long kvm_vm_compat_ioctl(struct file *filp,
3282 unsigned int ioctl, unsigned long arg)
3283 {
3284 struct kvm *kvm = filp->private_data;
3285 int r;
3286
3287 if (kvm->mm != current->mm)
3288 return -EIO;
3289 switch (ioctl) {
3290 case KVM_GET_DIRTY_LOG: {
3291 struct compat_kvm_dirty_log compat_log;
3292 struct kvm_dirty_log log;
3293
3294 if (copy_from_user(&compat_log, (void __user *)arg,
3295 sizeof(compat_log)))
3296 return -EFAULT;
3297 log.slot = compat_log.slot;
3298 log.padding1 = compat_log.padding1;
3299 log.padding2 = compat_log.padding2;
3300 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3301
3302 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3303 break;
3304 }
3305 default:
3306 r = kvm_vm_ioctl(filp, ioctl, arg);
3307 }
3308 return r;
3309 }
3310 #endif
3311
3312 static struct file_operations kvm_vm_fops = {
3313 .release = kvm_vm_release,
3314 .unlocked_ioctl = kvm_vm_ioctl,
3315 .llseek = noop_llseek,
3316 KVM_COMPAT(kvm_vm_compat_ioctl),
3317 };
3318
3319 static int kvm_dev_ioctl_create_vm(unsigned long type)
3320 {
3321 int r;
3322 struct kvm *kvm;
3323 struct file *file;
3324
3325 kvm = kvm_create_vm(type);
3326 if (IS_ERR(kvm))
3327 return PTR_ERR(kvm);
3328 #ifdef CONFIG_KVM_MMIO
3329 r = kvm_coalesced_mmio_init(kvm);
3330 if (r < 0)
3331 goto put_kvm;
3332 #endif
3333 r = get_unused_fd_flags(O_CLOEXEC);
3334 if (r < 0)
3335 goto put_kvm;
3336
3337 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3338 if (IS_ERR(file)) {
3339 put_unused_fd(r);
3340 r = PTR_ERR(file);
3341 goto put_kvm;
3342 }
3343
3344 /*
3345 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3346 * already set, with ->release() being kvm_vm_release(). In error
3347 * cases it will be called by the final fput(file) and will take
3348 * care of doing kvm_put_kvm(kvm).
3349 */
3350 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3351 put_unused_fd(r);
3352 fput(file);
3353 return -ENOMEM;
3354 }
3355 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3356
3357 fd_install(r, file);
3358 return r;
3359
3360 put_kvm:
3361 kvm_put_kvm(kvm);
3362 return r;
3363 }
3364
3365 static long kvm_dev_ioctl(struct file *filp,
3366 unsigned int ioctl, unsigned long arg)
3367 {
3368 long r = -EINVAL;
3369
3370 switch (ioctl) {
3371 case KVM_GET_API_VERSION:
3372 if (arg)
3373 goto out;
3374 r = KVM_API_VERSION;
3375 break;
3376 case KVM_CREATE_VM:
3377 r = kvm_dev_ioctl_create_vm(arg);
3378 break;
3379 case KVM_CHECK_EXTENSION:
3380 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3381 break;
3382 case KVM_GET_VCPU_MMAP_SIZE:
3383 if (arg)
3384 goto out;
3385 r = PAGE_SIZE; /* struct kvm_run */
3386 #ifdef CONFIG_X86
3387 r += PAGE_SIZE; /* pio data page */
3388 #endif
3389 #ifdef CONFIG_KVM_MMIO
3390 r += PAGE_SIZE; /* coalesced mmio ring page */
3391 #endif
3392 break;
3393 case KVM_TRACE_ENABLE:
3394 case KVM_TRACE_PAUSE:
3395 case KVM_TRACE_DISABLE:
3396 r = -EOPNOTSUPP;
3397 break;
3398 default:
3399 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3400 }
3401 out:
3402 return r;
3403 }
3404
3405 static struct file_operations kvm_chardev_ops = {
3406 .unlocked_ioctl = kvm_dev_ioctl,
3407 .llseek = noop_llseek,
3408 KVM_COMPAT(kvm_dev_ioctl),
3409 };
3410
3411 static struct miscdevice kvm_dev = {
3412 KVM_MINOR,
3413 "kvm",
3414 &kvm_chardev_ops,
3415 };
3416
3417 static void hardware_enable_nolock(void *junk)
3418 {
3419 int cpu = raw_smp_processor_id();
3420 int r;
3421
3422 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3423 return;
3424
3425 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3426
3427 r = kvm_arch_hardware_enable();
3428
3429 if (r) {
3430 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3431 atomic_inc(&hardware_enable_failed);
3432 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3433 }
3434 }
3435
3436 static int kvm_starting_cpu(unsigned int cpu)
3437 {
3438 raw_spin_lock(&kvm_count_lock);
3439 if (kvm_usage_count)
3440 hardware_enable_nolock(NULL);
3441 raw_spin_unlock(&kvm_count_lock);
3442 return 0;
3443 }
3444
3445 static void hardware_disable_nolock(void *junk)
3446 {
3447 int cpu = raw_smp_processor_id();
3448
3449 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3450 return;
3451 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3452 kvm_arch_hardware_disable();
3453 }
3454
3455 static int kvm_dying_cpu(unsigned int cpu)
3456 {
3457 raw_spin_lock(&kvm_count_lock);
3458 if (kvm_usage_count)
3459 hardware_disable_nolock(NULL);
3460 raw_spin_unlock(&kvm_count_lock);
3461 return 0;
3462 }
3463
3464 static void hardware_disable_all_nolock(void)
3465 {
3466 BUG_ON(!kvm_usage_count);
3467
3468 kvm_usage_count--;
3469 if (!kvm_usage_count)
3470 on_each_cpu(hardware_disable_nolock, NULL, 1);
3471 }
3472
3473 static void hardware_disable_all(void)
3474 {
3475 raw_spin_lock(&kvm_count_lock);
3476 hardware_disable_all_nolock();
3477 raw_spin_unlock(&kvm_count_lock);
3478 }
3479
3480 static int hardware_enable_all(void)
3481 {
3482 int r = 0;
3483
3484 raw_spin_lock(&kvm_count_lock);
3485
3486 kvm_usage_count++;
3487 if (kvm_usage_count == 1) {
3488 atomic_set(&hardware_enable_failed, 0);
3489 on_each_cpu(hardware_enable_nolock, NULL, 1);
3490
3491 if (atomic_read(&hardware_enable_failed)) {
3492 hardware_disable_all_nolock();
3493 r = -EBUSY;
3494 }
3495 }
3496
3497 raw_spin_unlock(&kvm_count_lock);
3498
3499 return r;
3500 }
3501
3502 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3503 void *v)
3504 {
3505 /*
3506 * Some (well, at least mine) BIOSes hang on reboot if
3507 * in vmx root mode.
3508 *
3509 * And Intel TXT required VMX off for all cpu when system shutdown.
3510 */
3511 pr_info("kvm: exiting hardware virtualization\n");
3512 kvm_rebooting = true;
3513 on_each_cpu(hardware_disable_nolock, NULL, 1);
3514 return NOTIFY_OK;
3515 }
3516
3517 static struct notifier_block kvm_reboot_notifier = {
3518 .notifier_call = kvm_reboot,
3519 .priority = 0,
3520 };
3521
3522 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3523 {
3524 int i;
3525
3526 for (i = 0; i < bus->dev_count; i++) {
3527 struct kvm_io_device *pos = bus->range[i].dev;
3528
3529 kvm_iodevice_destructor(pos);
3530 }
3531 kfree(bus);
3532 }
3533
3534 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3535 const struct kvm_io_range *r2)
3536 {
3537 gpa_t addr1 = r1->addr;
3538 gpa_t addr2 = r2->addr;
3539
3540 if (addr1 < addr2)
3541 return -1;
3542
3543 /* If r2->len == 0, match the exact address. If r2->len != 0,
3544 * accept any overlapping write. Any order is acceptable for
3545 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3546 * we process all of them.
3547 */
3548 if (r2->len) {
3549 addr1 += r1->len;
3550 addr2 += r2->len;
3551 }
3552
3553 if (addr1 > addr2)
3554 return 1;
3555
3556 return 0;
3557 }
3558
3559 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3560 {
3561 return kvm_io_bus_cmp(p1, p2);
3562 }
3563
3564 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3565 gpa_t addr, int len)
3566 {
3567 struct kvm_io_range *range, key;
3568 int off;
3569
3570 key = (struct kvm_io_range) {
3571 .addr = addr,
3572 .len = len,
3573 };
3574
3575 range = bsearch(&key, bus->range, bus->dev_count,
3576 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3577 if (range == NULL)
3578 return -ENOENT;
3579
3580 off = range - bus->range;
3581
3582 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3583 off--;
3584
3585 return off;
3586 }
3587
3588 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3589 struct kvm_io_range *range, const void *val)
3590 {
3591 int idx;
3592
3593 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3594 if (idx < 0)
3595 return -EOPNOTSUPP;
3596
3597 while (idx < bus->dev_count &&
3598 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3599 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3600 range->len, val))
3601 return idx;
3602 idx++;
3603 }
3604
3605 return -EOPNOTSUPP;
3606 }
3607
3608 /* kvm_io_bus_write - called under kvm->slots_lock */
3609 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3610 int len, const void *val)
3611 {
3612 struct kvm_io_bus *bus;
3613 struct kvm_io_range range;
3614 int r;
3615
3616 range = (struct kvm_io_range) {
3617 .addr = addr,
3618 .len = len,
3619 };
3620
3621 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3622 if (!bus)
3623 return -ENOMEM;
3624 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3625 return r < 0 ? r : 0;
3626 }
3627
3628 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3629 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3630 gpa_t addr, int len, const void *val, long cookie)
3631 {
3632 struct kvm_io_bus *bus;
3633 struct kvm_io_range range;
3634
3635 range = (struct kvm_io_range) {
3636 .addr = addr,
3637 .len = len,
3638 };
3639
3640 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3641 if (!bus)
3642 return -ENOMEM;
3643
3644 /* First try the device referenced by cookie. */
3645 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3646 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3647 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3648 val))
3649 return cookie;
3650
3651 /*
3652 * cookie contained garbage; fall back to search and return the
3653 * correct cookie value.
3654 */
3655 return __kvm_io_bus_write(vcpu, bus, &range, val);
3656 }
3657
3658 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3659 struct kvm_io_range *range, void *val)
3660 {
3661 int idx;
3662
3663 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3664 if (idx < 0)
3665 return -EOPNOTSUPP;
3666
3667 while (idx < bus->dev_count &&
3668 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3669 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3670 range->len, val))
3671 return idx;
3672 idx++;
3673 }
3674
3675 return -EOPNOTSUPP;
3676 }
3677 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3678
3679 /* kvm_io_bus_read - called under kvm->slots_lock */
3680 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3681 int len, void *val)
3682 {
3683 struct kvm_io_bus *bus;
3684 struct kvm_io_range range;
3685 int r;
3686
3687 range = (struct kvm_io_range) {
3688 .addr = addr,
3689 .len = len,
3690 };
3691
3692 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3693 if (!bus)
3694 return -ENOMEM;
3695 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3696 return r < 0 ? r : 0;
3697 }
3698
3699
3700 /* Caller must hold slots_lock. */
3701 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3702 int len, struct kvm_io_device *dev)
3703 {
3704 int i;
3705 struct kvm_io_bus *new_bus, *bus;
3706 struct kvm_io_range range;
3707
3708 bus = kvm_get_bus(kvm, bus_idx);
3709 if (!bus)
3710 return -ENOMEM;
3711
3712 /* exclude ioeventfd which is limited by maximum fd */
3713 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3714 return -ENOSPC;
3715
3716 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3717 sizeof(struct kvm_io_range)), GFP_KERNEL);
3718 if (!new_bus)
3719 return -ENOMEM;
3720
3721 range = (struct kvm_io_range) {
3722 .addr = addr,
3723 .len = len,
3724 .dev = dev,
3725 };
3726
3727 for (i = 0; i < bus->dev_count; i++)
3728 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3729 break;
3730
3731 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3732 new_bus->dev_count++;
3733 new_bus->range[i] = range;
3734 memcpy(new_bus->range + i + 1, bus->range + i,
3735 (bus->dev_count - i) * sizeof(struct kvm_io_range));
3736 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3737 synchronize_srcu_expedited(&kvm->srcu);
3738 kfree(bus);
3739
3740 return 0;
3741 }
3742
3743 /* Caller must hold slots_lock. */
3744 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3745 struct kvm_io_device *dev)
3746 {
3747 int i;
3748 struct kvm_io_bus *new_bus, *bus;
3749
3750 bus = kvm_get_bus(kvm, bus_idx);
3751 if (!bus)
3752 return;
3753
3754 for (i = 0; i < bus->dev_count; i++)
3755 if (bus->range[i].dev == dev) {
3756 break;
3757 }
3758
3759 if (i == bus->dev_count)
3760 return;
3761
3762 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3763 sizeof(struct kvm_io_range)), GFP_KERNEL);
3764 if (!new_bus) {
3765 pr_err("kvm: failed to shrink bus, removing it completely\n");
3766 goto broken;
3767 }
3768
3769 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3770 new_bus->dev_count--;
3771 memcpy(new_bus->range + i, bus->range + i + 1,
3772 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3773
3774 broken:
3775 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3776 synchronize_srcu_expedited(&kvm->srcu);
3777 kfree(bus);
3778 return;
3779 }
3780
3781 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3782 gpa_t addr)
3783 {
3784 struct kvm_io_bus *bus;
3785 int dev_idx, srcu_idx;
3786 struct kvm_io_device *iodev = NULL;
3787
3788 srcu_idx = srcu_read_lock(&kvm->srcu);
3789
3790 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3791 if (!bus)
3792 goto out_unlock;
3793
3794 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3795 if (dev_idx < 0)
3796 goto out_unlock;
3797
3798 iodev = bus->range[dev_idx].dev;
3799
3800 out_unlock:
3801 srcu_read_unlock(&kvm->srcu, srcu_idx);
3802
3803 return iodev;
3804 }
3805 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3806
3807 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3808 int (*get)(void *, u64 *), int (*set)(void *, u64),
3809 const char *fmt)
3810 {
3811 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3812 inode->i_private;
3813
3814 /* The debugfs files are a reference to the kvm struct which
3815 * is still valid when kvm_destroy_vm is called.
3816 * To avoid the race between open and the removal of the debugfs
3817 * directory we test against the users count.
3818 */
3819 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3820 return -ENOENT;
3821
3822 if (simple_attr_open(inode, file, get, set, fmt)) {
3823 kvm_put_kvm(stat_data->kvm);
3824 return -ENOMEM;
3825 }
3826
3827 return 0;
3828 }
3829
3830 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3831 {
3832 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3833 inode->i_private;
3834
3835 simple_attr_release(inode, file);
3836 kvm_put_kvm(stat_data->kvm);
3837
3838 return 0;
3839 }
3840
3841 static int vm_stat_get_per_vm(void *data, u64 *val)
3842 {
3843 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3844
3845 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3846
3847 return 0;
3848 }
3849
3850 static int vm_stat_clear_per_vm(void *data, u64 val)
3851 {
3852 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3853
3854 if (val)
3855 return -EINVAL;
3856
3857 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3858
3859 return 0;
3860 }
3861
3862 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3863 {
3864 __simple_attr_check_format("%llu\n", 0ull);
3865 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3866 vm_stat_clear_per_vm, "%llu\n");
3867 }
3868
3869 static const struct file_operations vm_stat_get_per_vm_fops = {
3870 .owner = THIS_MODULE,
3871 .open = vm_stat_get_per_vm_open,
3872 .release = kvm_debugfs_release,
3873 .read = simple_attr_read,
3874 .write = simple_attr_write,
3875 .llseek = no_llseek,
3876 };
3877
3878 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3879 {
3880 int i;
3881 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3882 struct kvm_vcpu *vcpu;
3883
3884 *val = 0;
3885
3886 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3887 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3888
3889 return 0;
3890 }
3891
3892 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3893 {
3894 int i;
3895 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3896 struct kvm_vcpu *vcpu;
3897
3898 if (val)
3899 return -EINVAL;
3900
3901 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3902 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3903
3904 return 0;
3905 }
3906
3907 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3908 {
3909 __simple_attr_check_format("%llu\n", 0ull);
3910 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3911 vcpu_stat_clear_per_vm, "%llu\n");
3912 }
3913
3914 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3915 .owner = THIS_MODULE,
3916 .open = vcpu_stat_get_per_vm_open,
3917 .release = kvm_debugfs_release,
3918 .read = simple_attr_read,
3919 .write = simple_attr_write,
3920 .llseek = no_llseek,
3921 };
3922
3923 static const struct file_operations *stat_fops_per_vm[] = {
3924 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3925 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3926 };
3927
3928 static int vm_stat_get(void *_offset, u64 *val)
3929 {
3930 unsigned offset = (long)_offset;
3931 struct kvm *kvm;
3932 struct kvm_stat_data stat_tmp = {.offset = offset};
3933 u64 tmp_val;
3934
3935 *val = 0;
3936 spin_lock(&kvm_lock);
3937 list_for_each_entry(kvm, &vm_list, vm_list) {
3938 stat_tmp.kvm = kvm;
3939 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3940 *val += tmp_val;
3941 }
3942 spin_unlock(&kvm_lock);
3943 return 0;
3944 }
3945
3946 static int vm_stat_clear(void *_offset, u64 val)
3947 {
3948 unsigned offset = (long)_offset;
3949 struct kvm *kvm;
3950 struct kvm_stat_data stat_tmp = {.offset = offset};
3951
3952 if (val)
3953 return -EINVAL;
3954
3955 spin_lock(&kvm_lock);
3956 list_for_each_entry(kvm, &vm_list, vm_list) {
3957 stat_tmp.kvm = kvm;
3958 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3959 }
3960 spin_unlock(&kvm_lock);
3961
3962 return 0;
3963 }
3964
3965 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3966
3967 static int vcpu_stat_get(void *_offset, u64 *val)
3968 {
3969 unsigned offset = (long)_offset;
3970 struct kvm *kvm;
3971 struct kvm_stat_data stat_tmp = {.offset = offset};
3972 u64 tmp_val;
3973
3974 *val = 0;
3975 spin_lock(&kvm_lock);
3976 list_for_each_entry(kvm, &vm_list, vm_list) {
3977 stat_tmp.kvm = kvm;
3978 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3979 *val += tmp_val;
3980 }
3981 spin_unlock(&kvm_lock);
3982 return 0;
3983 }
3984
3985 static int vcpu_stat_clear(void *_offset, u64 val)
3986 {
3987 unsigned offset = (long)_offset;
3988 struct kvm *kvm;
3989 struct kvm_stat_data stat_tmp = {.offset = offset};
3990
3991 if (val)
3992 return -EINVAL;
3993
3994 spin_lock(&kvm_lock);
3995 list_for_each_entry(kvm, &vm_list, vm_list) {
3996 stat_tmp.kvm = kvm;
3997 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3998 }
3999 spin_unlock(&kvm_lock);
4000
4001 return 0;
4002 }
4003
4004 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4005 "%llu\n");
4006
4007 static const struct file_operations *stat_fops[] = {
4008 [KVM_STAT_VCPU] = &vcpu_stat_fops,
4009 [KVM_STAT_VM] = &vm_stat_fops,
4010 };
4011
4012 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4013 {
4014 struct kobj_uevent_env *env;
4015 unsigned long long created, active;
4016
4017 if (!kvm_dev.this_device || !kvm)
4018 return;
4019
4020 spin_lock(&kvm_lock);
4021 if (type == KVM_EVENT_CREATE_VM) {
4022 kvm_createvm_count++;
4023 kvm_active_vms++;
4024 } else if (type == KVM_EVENT_DESTROY_VM) {
4025 kvm_active_vms--;
4026 }
4027 created = kvm_createvm_count;
4028 active = kvm_active_vms;
4029 spin_unlock(&kvm_lock);
4030
4031 env = kzalloc(sizeof(*env), GFP_KERNEL);
4032 if (!env)
4033 return;
4034
4035 add_uevent_var(env, "CREATED=%llu", created);
4036 add_uevent_var(env, "COUNT=%llu", active);
4037
4038 if (type == KVM_EVENT_CREATE_VM) {
4039 add_uevent_var(env, "EVENT=create");
4040 kvm->userspace_pid = task_pid_nr(current);
4041 } else if (type == KVM_EVENT_DESTROY_VM) {
4042 add_uevent_var(env, "EVENT=destroy");
4043 }
4044 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4045
4046 if (kvm->debugfs_dentry) {
4047 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
4048
4049 if (p) {
4050 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4051 if (!IS_ERR(tmp))
4052 add_uevent_var(env, "STATS_PATH=%s", tmp);
4053 kfree(p);
4054 }
4055 }
4056 /* no need for checks, since we are adding at most only 5 keys */
4057 env->envp[env->envp_idx++] = NULL;
4058 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4059 kfree(env);
4060 }
4061
4062 static void kvm_init_debug(void)
4063 {
4064 struct kvm_stats_debugfs_item *p;
4065
4066 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4067
4068 kvm_debugfs_num_entries = 0;
4069 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4070 debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
4071 (void *)(long)p->offset,
4072 stat_fops[p->kind]);
4073 }
4074 }
4075
4076 static int kvm_suspend(void)
4077 {
4078 if (kvm_usage_count)
4079 hardware_disable_nolock(NULL);
4080 return 0;
4081 }
4082
4083 static void kvm_resume(void)
4084 {
4085 if (kvm_usage_count) {
4086 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
4087 hardware_enable_nolock(NULL);
4088 }
4089 }
4090
4091 static struct syscore_ops kvm_syscore_ops = {
4092 .suspend = kvm_suspend,
4093 .resume = kvm_resume,
4094 };
4095
4096 static inline
4097 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4098 {
4099 return container_of(pn, struct kvm_vcpu, preempt_notifier);
4100 }
4101
4102 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4103 {
4104 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4105
4106 if (vcpu->preempted)
4107 vcpu->preempted = false;
4108
4109 kvm_arch_sched_in(vcpu, cpu);
4110
4111 kvm_arch_vcpu_load(vcpu, cpu);
4112 }
4113
4114 static void kvm_sched_out(struct preempt_notifier *pn,
4115 struct task_struct *next)
4116 {
4117 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4118
4119 if (current->state == TASK_RUNNING)
4120 vcpu->preempted = true;
4121 kvm_arch_vcpu_put(vcpu);
4122 }
4123
4124 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4125 struct module *module)
4126 {
4127 int r;
4128 int cpu;
4129
4130 r = kvm_arch_init(opaque);
4131 if (r)
4132 goto out_fail;
4133
4134 /*
4135 * kvm_arch_init makes sure there's at most one caller
4136 * for architectures that support multiple implementations,
4137 * like intel and amd on x86.
4138 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4139 * conflicts in case kvm is already setup for another implementation.
4140 */
4141 r = kvm_irqfd_init();
4142 if (r)
4143 goto out_irqfd;
4144
4145 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4146 r = -ENOMEM;
4147 goto out_free_0;
4148 }
4149
4150 r = kvm_arch_hardware_setup();
4151 if (r < 0)
4152 goto out_free_0a;
4153
4154 for_each_online_cpu(cpu) {
4155 smp_call_function_single(cpu,
4156 kvm_arch_check_processor_compat,
4157 &r, 1);
4158 if (r < 0)
4159 goto out_free_1;
4160 }
4161
4162 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4163 kvm_starting_cpu, kvm_dying_cpu);
4164 if (r)
4165 goto out_free_2;
4166 register_reboot_notifier(&kvm_reboot_notifier);
4167
4168 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4169 if (!vcpu_align)
4170 vcpu_align = __alignof__(struct kvm_vcpu);
4171 kvm_vcpu_cache =
4172 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4173 SLAB_ACCOUNT,
4174 offsetof(struct kvm_vcpu, arch),
4175 sizeof_field(struct kvm_vcpu, arch),
4176 NULL);
4177 if (!kvm_vcpu_cache) {
4178 r = -ENOMEM;
4179 goto out_free_3;
4180 }
4181
4182 r = kvm_async_pf_init();
4183 if (r)
4184 goto out_free;
4185
4186 kvm_chardev_ops.owner = module;
4187 kvm_vm_fops.owner = module;
4188 kvm_vcpu_fops.owner = module;
4189
4190 r = misc_register(&kvm_dev);
4191 if (r) {
4192 pr_err("kvm: misc device register failed\n");
4193 goto out_unreg;
4194 }
4195
4196 register_syscore_ops(&kvm_syscore_ops);
4197
4198 kvm_preempt_ops.sched_in = kvm_sched_in;
4199 kvm_preempt_ops.sched_out = kvm_sched_out;
4200
4201 kvm_init_debug();
4202
4203 r = kvm_vfio_ops_init();
4204 WARN_ON(r);
4205
4206 return 0;
4207
4208 out_unreg:
4209 kvm_async_pf_deinit();
4210 out_free:
4211 kmem_cache_destroy(kvm_vcpu_cache);
4212 out_free_3:
4213 unregister_reboot_notifier(&kvm_reboot_notifier);
4214 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4215 out_free_2:
4216 out_free_1:
4217 kvm_arch_hardware_unsetup();
4218 out_free_0a:
4219 free_cpumask_var(cpus_hardware_enabled);
4220 out_free_0:
4221 kvm_irqfd_exit();
4222 out_irqfd:
4223 kvm_arch_exit();
4224 out_fail:
4225 return r;
4226 }
4227 EXPORT_SYMBOL_GPL(kvm_init);
4228
4229 void kvm_exit(void)
4230 {
4231 debugfs_remove_recursive(kvm_debugfs_dir);
4232 misc_deregister(&kvm_dev);
4233 kmem_cache_destroy(kvm_vcpu_cache);
4234 kvm_async_pf_deinit();
4235 unregister_syscore_ops(&kvm_syscore_ops);
4236 unregister_reboot_notifier(&kvm_reboot_notifier);
4237 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4238 on_each_cpu(hardware_disable_nolock, NULL, 1);
4239 kvm_arch_hardware_unsetup();
4240 kvm_arch_exit();
4241 kvm_irqfd_exit();
4242 free_cpumask_var(cpus_hardware_enabled);
4243 kvm_vfio_ops_exit();
4244 }
4245 EXPORT_SYMBOL_GPL(kvm_exit);