]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - virt/kvm/kvm_main.c
kvm: Fix page ageing bugs
[mirror_ubuntu-jammy-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 /*
70 * Ordering of locks:
71 *
72 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
73 */
74
75 DEFINE_SPINLOCK(kvm_lock);
76 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
77 LIST_HEAD(vm_list);
78
79 static cpumask_var_t cpus_hardware_enabled;
80 static int kvm_usage_count = 0;
81 static atomic_t hardware_enable_failed;
82
83 struct kmem_cache *kvm_vcpu_cache;
84 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
85
86 static __read_mostly struct preempt_ops kvm_preempt_ops;
87
88 struct dentry *kvm_debugfs_dir;
89
90 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
91 unsigned long arg);
92 #ifdef CONFIG_COMPAT
93 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
94 unsigned long arg);
95 #endif
96 static int hardware_enable_all(void);
97 static void hardware_disable_all(void);
98
99 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
100
101 static void kvm_release_pfn_dirty(pfn_t pfn);
102 static void mark_page_dirty_in_slot(struct kvm *kvm,
103 struct kvm_memory_slot *memslot, gfn_t gfn);
104
105 __visible bool kvm_rebooting;
106 EXPORT_SYMBOL_GPL(kvm_rebooting);
107
108 static bool largepages_enabled = true;
109
110 bool kvm_is_mmio_pfn(pfn_t pfn)
111 {
112 if (pfn_valid(pfn))
113 return PageReserved(pfn_to_page(pfn));
114
115 return true;
116 }
117
118 /*
119 * Switches to specified vcpu, until a matching vcpu_put()
120 */
121 int vcpu_load(struct kvm_vcpu *vcpu)
122 {
123 int cpu;
124
125 if (mutex_lock_killable(&vcpu->mutex))
126 return -EINTR;
127 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
128 /* The thread running this VCPU changed. */
129 struct pid *oldpid = vcpu->pid;
130 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
131 rcu_assign_pointer(vcpu->pid, newpid);
132 if (oldpid)
133 synchronize_rcu();
134 put_pid(oldpid);
135 }
136 cpu = get_cpu();
137 preempt_notifier_register(&vcpu->preempt_notifier);
138 kvm_arch_vcpu_load(vcpu, cpu);
139 put_cpu();
140 return 0;
141 }
142
143 void vcpu_put(struct kvm_vcpu *vcpu)
144 {
145 preempt_disable();
146 kvm_arch_vcpu_put(vcpu);
147 preempt_notifier_unregister(&vcpu->preempt_notifier);
148 preempt_enable();
149 mutex_unlock(&vcpu->mutex);
150 }
151
152 static void ack_flush(void *_completed)
153 {
154 }
155
156 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
157 {
158 int i, cpu, me;
159 cpumask_var_t cpus;
160 bool called = true;
161 struct kvm_vcpu *vcpu;
162
163 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
164
165 me = get_cpu();
166 kvm_for_each_vcpu(i, vcpu, kvm) {
167 kvm_make_request(req, vcpu);
168 cpu = vcpu->cpu;
169
170 /* Set ->requests bit before we read ->mode */
171 smp_mb();
172
173 if (cpus != NULL && cpu != -1 && cpu != me &&
174 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
175 cpumask_set_cpu(cpu, cpus);
176 }
177 if (unlikely(cpus == NULL))
178 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
179 else if (!cpumask_empty(cpus))
180 smp_call_function_many(cpus, ack_flush, NULL, 1);
181 else
182 called = false;
183 put_cpu();
184 free_cpumask_var(cpus);
185 return called;
186 }
187
188 void kvm_flush_remote_tlbs(struct kvm *kvm)
189 {
190 long dirty_count = kvm->tlbs_dirty;
191
192 smp_mb();
193 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
194 ++kvm->stat.remote_tlb_flush;
195 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
196 }
197 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
198
199 void kvm_reload_remote_mmus(struct kvm *kvm)
200 {
201 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
202 }
203
204 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
205 {
206 make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
207 }
208
209 void kvm_make_scan_ioapic_request(struct kvm *kvm)
210 {
211 make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
212 }
213
214 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
215 {
216 struct page *page;
217 int r;
218
219 mutex_init(&vcpu->mutex);
220 vcpu->cpu = -1;
221 vcpu->kvm = kvm;
222 vcpu->vcpu_id = id;
223 vcpu->pid = NULL;
224 init_waitqueue_head(&vcpu->wq);
225 kvm_async_pf_vcpu_init(vcpu);
226
227 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
228 if (!page) {
229 r = -ENOMEM;
230 goto fail;
231 }
232 vcpu->run = page_address(page);
233
234 kvm_vcpu_set_in_spin_loop(vcpu, false);
235 kvm_vcpu_set_dy_eligible(vcpu, false);
236 vcpu->preempted = false;
237
238 r = kvm_arch_vcpu_init(vcpu);
239 if (r < 0)
240 goto fail_free_run;
241 return 0;
242
243 fail_free_run:
244 free_page((unsigned long)vcpu->run);
245 fail:
246 return r;
247 }
248 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
249
250 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
251 {
252 put_pid(vcpu->pid);
253 kvm_arch_vcpu_uninit(vcpu);
254 free_page((unsigned long)vcpu->run);
255 }
256 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
257
258 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
259 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
260 {
261 return container_of(mn, struct kvm, mmu_notifier);
262 }
263
264 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
265 struct mm_struct *mm,
266 unsigned long address)
267 {
268 struct kvm *kvm = mmu_notifier_to_kvm(mn);
269 int need_tlb_flush, idx;
270
271 /*
272 * When ->invalidate_page runs, the linux pte has been zapped
273 * already but the page is still allocated until
274 * ->invalidate_page returns. So if we increase the sequence
275 * here the kvm page fault will notice if the spte can't be
276 * established because the page is going to be freed. If
277 * instead the kvm page fault establishes the spte before
278 * ->invalidate_page runs, kvm_unmap_hva will release it
279 * before returning.
280 *
281 * The sequence increase only need to be seen at spin_unlock
282 * time, and not at spin_lock time.
283 *
284 * Increasing the sequence after the spin_unlock would be
285 * unsafe because the kvm page fault could then establish the
286 * pte after kvm_unmap_hva returned, without noticing the page
287 * is going to be freed.
288 */
289 idx = srcu_read_lock(&kvm->srcu);
290 spin_lock(&kvm->mmu_lock);
291
292 kvm->mmu_notifier_seq++;
293 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
294 /* we've to flush the tlb before the pages can be freed */
295 if (need_tlb_flush)
296 kvm_flush_remote_tlbs(kvm);
297
298 spin_unlock(&kvm->mmu_lock);
299 srcu_read_unlock(&kvm->srcu, idx);
300 }
301
302 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
303 struct mm_struct *mm,
304 unsigned long address,
305 pte_t pte)
306 {
307 struct kvm *kvm = mmu_notifier_to_kvm(mn);
308 int idx;
309
310 idx = srcu_read_lock(&kvm->srcu);
311 spin_lock(&kvm->mmu_lock);
312 kvm->mmu_notifier_seq++;
313 kvm_set_spte_hva(kvm, address, pte);
314 spin_unlock(&kvm->mmu_lock);
315 srcu_read_unlock(&kvm->srcu, idx);
316 }
317
318 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
319 struct mm_struct *mm,
320 unsigned long start,
321 unsigned long end)
322 {
323 struct kvm *kvm = mmu_notifier_to_kvm(mn);
324 int need_tlb_flush = 0, idx;
325
326 idx = srcu_read_lock(&kvm->srcu);
327 spin_lock(&kvm->mmu_lock);
328 /*
329 * The count increase must become visible at unlock time as no
330 * spte can be established without taking the mmu_lock and
331 * count is also read inside the mmu_lock critical section.
332 */
333 kvm->mmu_notifier_count++;
334 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
335 need_tlb_flush |= kvm->tlbs_dirty;
336 /* we've to flush the tlb before the pages can be freed */
337 if (need_tlb_flush)
338 kvm_flush_remote_tlbs(kvm);
339
340 spin_unlock(&kvm->mmu_lock);
341 srcu_read_unlock(&kvm->srcu, idx);
342 }
343
344 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
345 struct mm_struct *mm,
346 unsigned long start,
347 unsigned long end)
348 {
349 struct kvm *kvm = mmu_notifier_to_kvm(mn);
350
351 spin_lock(&kvm->mmu_lock);
352 /*
353 * This sequence increase will notify the kvm page fault that
354 * the page that is going to be mapped in the spte could have
355 * been freed.
356 */
357 kvm->mmu_notifier_seq++;
358 smp_wmb();
359 /*
360 * The above sequence increase must be visible before the
361 * below count decrease, which is ensured by the smp_wmb above
362 * in conjunction with the smp_rmb in mmu_notifier_retry().
363 */
364 kvm->mmu_notifier_count--;
365 spin_unlock(&kvm->mmu_lock);
366
367 BUG_ON(kvm->mmu_notifier_count < 0);
368 }
369
370 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
371 struct mm_struct *mm,
372 unsigned long start,
373 unsigned long end)
374 {
375 struct kvm *kvm = mmu_notifier_to_kvm(mn);
376 int young, idx;
377
378 idx = srcu_read_lock(&kvm->srcu);
379 spin_lock(&kvm->mmu_lock);
380
381 young = kvm_age_hva(kvm, start, end);
382 if (young)
383 kvm_flush_remote_tlbs(kvm);
384
385 spin_unlock(&kvm->mmu_lock);
386 srcu_read_unlock(&kvm->srcu, idx);
387
388 return young;
389 }
390
391 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
392 struct mm_struct *mm,
393 unsigned long address)
394 {
395 struct kvm *kvm = mmu_notifier_to_kvm(mn);
396 int young, idx;
397
398 idx = srcu_read_lock(&kvm->srcu);
399 spin_lock(&kvm->mmu_lock);
400 young = kvm_test_age_hva(kvm, address);
401 spin_unlock(&kvm->mmu_lock);
402 srcu_read_unlock(&kvm->srcu, idx);
403
404 return young;
405 }
406
407 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
408 struct mm_struct *mm)
409 {
410 struct kvm *kvm = mmu_notifier_to_kvm(mn);
411 int idx;
412
413 idx = srcu_read_lock(&kvm->srcu);
414 kvm_arch_flush_shadow_all(kvm);
415 srcu_read_unlock(&kvm->srcu, idx);
416 }
417
418 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
419 .invalidate_page = kvm_mmu_notifier_invalidate_page,
420 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
421 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
422 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
423 .test_young = kvm_mmu_notifier_test_young,
424 .change_pte = kvm_mmu_notifier_change_pte,
425 .release = kvm_mmu_notifier_release,
426 };
427
428 static int kvm_init_mmu_notifier(struct kvm *kvm)
429 {
430 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
431 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
432 }
433
434 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
435
436 static int kvm_init_mmu_notifier(struct kvm *kvm)
437 {
438 return 0;
439 }
440
441 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
442
443 static void kvm_init_memslots_id(struct kvm *kvm)
444 {
445 int i;
446 struct kvm_memslots *slots = kvm->memslots;
447
448 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
449 slots->id_to_index[i] = slots->memslots[i].id = i;
450 }
451
452 static struct kvm *kvm_create_vm(unsigned long type)
453 {
454 int r, i;
455 struct kvm *kvm = kvm_arch_alloc_vm();
456
457 if (!kvm)
458 return ERR_PTR(-ENOMEM);
459
460 r = kvm_arch_init_vm(kvm, type);
461 if (r)
462 goto out_err_no_disable;
463
464 r = hardware_enable_all();
465 if (r)
466 goto out_err_no_disable;
467
468 #ifdef CONFIG_HAVE_KVM_IRQCHIP
469 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
470 #endif
471 #ifdef CONFIG_HAVE_KVM_IRQFD
472 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
473 #endif
474
475 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
476
477 r = -ENOMEM;
478 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
479 if (!kvm->memslots)
480 goto out_err_no_srcu;
481
482 /*
483 * Init kvm generation close to the maximum to easily test the
484 * code of handling generation number wrap-around.
485 */
486 kvm->memslots->generation = -150;
487
488 kvm_init_memslots_id(kvm);
489 if (init_srcu_struct(&kvm->srcu))
490 goto out_err_no_srcu;
491 if (init_srcu_struct(&kvm->irq_srcu))
492 goto out_err_no_irq_srcu;
493 for (i = 0; i < KVM_NR_BUSES; i++) {
494 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
495 GFP_KERNEL);
496 if (!kvm->buses[i])
497 goto out_err;
498 }
499
500 spin_lock_init(&kvm->mmu_lock);
501 kvm->mm = current->mm;
502 atomic_inc(&kvm->mm->mm_count);
503 kvm_eventfd_init(kvm);
504 mutex_init(&kvm->lock);
505 mutex_init(&kvm->irq_lock);
506 mutex_init(&kvm->slots_lock);
507 atomic_set(&kvm->users_count, 1);
508 INIT_LIST_HEAD(&kvm->devices);
509
510 r = kvm_init_mmu_notifier(kvm);
511 if (r)
512 goto out_err;
513
514 spin_lock(&kvm_lock);
515 list_add(&kvm->vm_list, &vm_list);
516 spin_unlock(&kvm_lock);
517
518 return kvm;
519
520 out_err:
521 cleanup_srcu_struct(&kvm->irq_srcu);
522 out_err_no_irq_srcu:
523 cleanup_srcu_struct(&kvm->srcu);
524 out_err_no_srcu:
525 hardware_disable_all();
526 out_err_no_disable:
527 for (i = 0; i < KVM_NR_BUSES; i++)
528 kfree(kvm->buses[i]);
529 kfree(kvm->memslots);
530 kvm_arch_free_vm(kvm);
531 return ERR_PTR(r);
532 }
533
534 /*
535 * Avoid using vmalloc for a small buffer.
536 * Should not be used when the size is statically known.
537 */
538 void *kvm_kvzalloc(unsigned long size)
539 {
540 if (size > PAGE_SIZE)
541 return vzalloc(size);
542 else
543 return kzalloc(size, GFP_KERNEL);
544 }
545
546 void kvm_kvfree(const void *addr)
547 {
548 if (is_vmalloc_addr(addr))
549 vfree(addr);
550 else
551 kfree(addr);
552 }
553
554 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
555 {
556 if (!memslot->dirty_bitmap)
557 return;
558
559 kvm_kvfree(memslot->dirty_bitmap);
560 memslot->dirty_bitmap = NULL;
561 }
562
563 /*
564 * Free any memory in @free but not in @dont.
565 */
566 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
567 struct kvm_memory_slot *dont)
568 {
569 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
570 kvm_destroy_dirty_bitmap(free);
571
572 kvm_arch_free_memslot(kvm, free, dont);
573
574 free->npages = 0;
575 }
576
577 static void kvm_free_physmem(struct kvm *kvm)
578 {
579 struct kvm_memslots *slots = kvm->memslots;
580 struct kvm_memory_slot *memslot;
581
582 kvm_for_each_memslot(memslot, slots)
583 kvm_free_physmem_slot(kvm, memslot, NULL);
584
585 kfree(kvm->memslots);
586 }
587
588 static void kvm_destroy_devices(struct kvm *kvm)
589 {
590 struct list_head *node, *tmp;
591
592 list_for_each_safe(node, tmp, &kvm->devices) {
593 struct kvm_device *dev =
594 list_entry(node, struct kvm_device, vm_node);
595
596 list_del(node);
597 dev->ops->destroy(dev);
598 }
599 }
600
601 static void kvm_destroy_vm(struct kvm *kvm)
602 {
603 int i;
604 struct mm_struct *mm = kvm->mm;
605
606 kvm_arch_sync_events(kvm);
607 spin_lock(&kvm_lock);
608 list_del(&kvm->vm_list);
609 spin_unlock(&kvm_lock);
610 kvm_free_irq_routing(kvm);
611 for (i = 0; i < KVM_NR_BUSES; i++)
612 kvm_io_bus_destroy(kvm->buses[i]);
613 kvm_coalesced_mmio_free(kvm);
614 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
615 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
616 #else
617 kvm_arch_flush_shadow_all(kvm);
618 #endif
619 kvm_arch_destroy_vm(kvm);
620 kvm_destroy_devices(kvm);
621 kvm_free_physmem(kvm);
622 cleanup_srcu_struct(&kvm->irq_srcu);
623 cleanup_srcu_struct(&kvm->srcu);
624 kvm_arch_free_vm(kvm);
625 hardware_disable_all();
626 mmdrop(mm);
627 }
628
629 void kvm_get_kvm(struct kvm *kvm)
630 {
631 atomic_inc(&kvm->users_count);
632 }
633 EXPORT_SYMBOL_GPL(kvm_get_kvm);
634
635 void kvm_put_kvm(struct kvm *kvm)
636 {
637 if (atomic_dec_and_test(&kvm->users_count))
638 kvm_destroy_vm(kvm);
639 }
640 EXPORT_SYMBOL_GPL(kvm_put_kvm);
641
642
643 static int kvm_vm_release(struct inode *inode, struct file *filp)
644 {
645 struct kvm *kvm = filp->private_data;
646
647 kvm_irqfd_release(kvm);
648
649 kvm_put_kvm(kvm);
650 return 0;
651 }
652
653 /*
654 * Allocation size is twice as large as the actual dirty bitmap size.
655 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
656 */
657 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
658 {
659 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
660
661 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
662 if (!memslot->dirty_bitmap)
663 return -ENOMEM;
664
665 return 0;
666 }
667
668 static int cmp_memslot(const void *slot1, const void *slot2)
669 {
670 struct kvm_memory_slot *s1, *s2;
671
672 s1 = (struct kvm_memory_slot *)slot1;
673 s2 = (struct kvm_memory_slot *)slot2;
674
675 if (s1->npages < s2->npages)
676 return 1;
677 if (s1->npages > s2->npages)
678 return -1;
679
680 return 0;
681 }
682
683 /*
684 * Sort the memslots base on its size, so the larger slots
685 * will get better fit.
686 */
687 static void sort_memslots(struct kvm_memslots *slots)
688 {
689 int i;
690
691 sort(slots->memslots, KVM_MEM_SLOTS_NUM,
692 sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
693
694 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
695 slots->id_to_index[slots->memslots[i].id] = i;
696 }
697
698 static void update_memslots(struct kvm_memslots *slots,
699 struct kvm_memory_slot *new)
700 {
701 if (new) {
702 int id = new->id;
703 struct kvm_memory_slot *old = id_to_memslot(slots, id);
704 unsigned long npages = old->npages;
705
706 *old = *new;
707 if (new->npages != npages)
708 sort_memslots(slots);
709 }
710 }
711
712 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
713 {
714 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
715
716 #ifdef __KVM_HAVE_READONLY_MEM
717 valid_flags |= KVM_MEM_READONLY;
718 #endif
719
720 if (mem->flags & ~valid_flags)
721 return -EINVAL;
722
723 return 0;
724 }
725
726 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
727 struct kvm_memslots *slots, struct kvm_memory_slot *new)
728 {
729 struct kvm_memslots *old_memslots = kvm->memslots;
730
731 /*
732 * Set the low bit in the generation, which disables SPTE caching
733 * until the end of synchronize_srcu_expedited.
734 */
735 WARN_ON(old_memslots->generation & 1);
736 slots->generation = old_memslots->generation + 1;
737
738 update_memslots(slots, new);
739 rcu_assign_pointer(kvm->memslots, slots);
740 synchronize_srcu_expedited(&kvm->srcu);
741
742 /*
743 * Increment the new memslot generation a second time. This prevents
744 * vm exits that race with memslot updates from caching a memslot
745 * generation that will (potentially) be valid forever.
746 */
747 slots->generation++;
748
749 kvm_arch_memslots_updated(kvm);
750
751 return old_memslots;
752 }
753
754 /*
755 * Allocate some memory and give it an address in the guest physical address
756 * space.
757 *
758 * Discontiguous memory is allowed, mostly for framebuffers.
759 *
760 * Must be called holding mmap_sem for write.
761 */
762 int __kvm_set_memory_region(struct kvm *kvm,
763 struct kvm_userspace_memory_region *mem)
764 {
765 int r;
766 gfn_t base_gfn;
767 unsigned long npages;
768 struct kvm_memory_slot *slot;
769 struct kvm_memory_slot old, new;
770 struct kvm_memslots *slots = NULL, *old_memslots;
771 enum kvm_mr_change change;
772
773 r = check_memory_region_flags(mem);
774 if (r)
775 goto out;
776
777 r = -EINVAL;
778 /* General sanity checks */
779 if (mem->memory_size & (PAGE_SIZE - 1))
780 goto out;
781 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
782 goto out;
783 /* We can read the guest memory with __xxx_user() later on. */
784 if ((mem->slot < KVM_USER_MEM_SLOTS) &&
785 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
786 !access_ok(VERIFY_WRITE,
787 (void __user *)(unsigned long)mem->userspace_addr,
788 mem->memory_size)))
789 goto out;
790 if (mem->slot >= KVM_MEM_SLOTS_NUM)
791 goto out;
792 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
793 goto out;
794
795 slot = id_to_memslot(kvm->memslots, mem->slot);
796 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
797 npages = mem->memory_size >> PAGE_SHIFT;
798
799 if (npages > KVM_MEM_MAX_NR_PAGES)
800 goto out;
801
802 if (!npages)
803 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
804
805 new = old = *slot;
806
807 new.id = mem->slot;
808 new.base_gfn = base_gfn;
809 new.npages = npages;
810 new.flags = mem->flags;
811
812 if (npages) {
813 if (!old.npages)
814 change = KVM_MR_CREATE;
815 else { /* Modify an existing slot. */
816 if ((mem->userspace_addr != old.userspace_addr) ||
817 (npages != old.npages) ||
818 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
819 goto out;
820
821 if (base_gfn != old.base_gfn)
822 change = KVM_MR_MOVE;
823 else if (new.flags != old.flags)
824 change = KVM_MR_FLAGS_ONLY;
825 else { /* Nothing to change. */
826 r = 0;
827 goto out;
828 }
829 }
830 } else if (old.npages) {
831 change = KVM_MR_DELETE;
832 } else /* Modify a non-existent slot: disallowed. */
833 goto out;
834
835 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
836 /* Check for overlaps */
837 r = -EEXIST;
838 kvm_for_each_memslot(slot, kvm->memslots) {
839 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
840 (slot->id == mem->slot))
841 continue;
842 if (!((base_gfn + npages <= slot->base_gfn) ||
843 (base_gfn >= slot->base_gfn + slot->npages)))
844 goto out;
845 }
846 }
847
848 /* Free page dirty bitmap if unneeded */
849 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
850 new.dirty_bitmap = NULL;
851
852 r = -ENOMEM;
853 if (change == KVM_MR_CREATE) {
854 new.userspace_addr = mem->userspace_addr;
855
856 if (kvm_arch_create_memslot(kvm, &new, npages))
857 goto out_free;
858 }
859
860 /* Allocate page dirty bitmap if needed */
861 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
862 if (kvm_create_dirty_bitmap(&new) < 0)
863 goto out_free;
864 }
865
866 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
867 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
868 GFP_KERNEL);
869 if (!slots)
870 goto out_free;
871 slot = id_to_memslot(slots, mem->slot);
872 slot->flags |= KVM_MEMSLOT_INVALID;
873
874 old_memslots = install_new_memslots(kvm, slots, NULL);
875
876 /* slot was deleted or moved, clear iommu mapping */
877 kvm_iommu_unmap_pages(kvm, &old);
878 /* From this point no new shadow pages pointing to a deleted,
879 * or moved, memslot will be created.
880 *
881 * validation of sp->gfn happens in:
882 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
883 * - kvm_is_visible_gfn (mmu_check_roots)
884 */
885 kvm_arch_flush_shadow_memslot(kvm, slot);
886 slots = old_memslots;
887 }
888
889 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
890 if (r)
891 goto out_slots;
892
893 r = -ENOMEM;
894 /*
895 * We can re-use the old_memslots from above, the only difference
896 * from the currently installed memslots is the invalid flag. This
897 * will get overwritten by update_memslots anyway.
898 */
899 if (!slots) {
900 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
901 GFP_KERNEL);
902 if (!slots)
903 goto out_free;
904 }
905
906 /* actual memory is freed via old in kvm_free_physmem_slot below */
907 if (change == KVM_MR_DELETE) {
908 new.dirty_bitmap = NULL;
909 memset(&new.arch, 0, sizeof(new.arch));
910 }
911
912 old_memslots = install_new_memslots(kvm, slots, &new);
913
914 kvm_arch_commit_memory_region(kvm, mem, &old, change);
915
916 kvm_free_physmem_slot(kvm, &old, &new);
917 kfree(old_memslots);
918
919 /*
920 * IOMMU mapping: New slots need to be mapped. Old slots need to be
921 * un-mapped and re-mapped if their base changes. Since base change
922 * unmapping is handled above with slot deletion, mapping alone is
923 * needed here. Anything else the iommu might care about for existing
924 * slots (size changes, userspace addr changes and read-only flag
925 * changes) is disallowed above, so any other attribute changes getting
926 * here can be skipped.
927 */
928 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
929 r = kvm_iommu_map_pages(kvm, &new);
930 return r;
931 }
932
933 return 0;
934
935 out_slots:
936 kfree(slots);
937 out_free:
938 kvm_free_physmem_slot(kvm, &new, &old);
939 out:
940 return r;
941 }
942 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
943
944 int kvm_set_memory_region(struct kvm *kvm,
945 struct kvm_userspace_memory_region *mem)
946 {
947 int r;
948
949 mutex_lock(&kvm->slots_lock);
950 r = __kvm_set_memory_region(kvm, mem);
951 mutex_unlock(&kvm->slots_lock);
952 return r;
953 }
954 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
955
956 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
957 struct kvm_userspace_memory_region *mem)
958 {
959 if (mem->slot >= KVM_USER_MEM_SLOTS)
960 return -EINVAL;
961 return kvm_set_memory_region(kvm, mem);
962 }
963
964 int kvm_get_dirty_log(struct kvm *kvm,
965 struct kvm_dirty_log *log, int *is_dirty)
966 {
967 struct kvm_memory_slot *memslot;
968 int r, i;
969 unsigned long n;
970 unsigned long any = 0;
971
972 r = -EINVAL;
973 if (log->slot >= KVM_USER_MEM_SLOTS)
974 goto out;
975
976 memslot = id_to_memslot(kvm->memslots, log->slot);
977 r = -ENOENT;
978 if (!memslot->dirty_bitmap)
979 goto out;
980
981 n = kvm_dirty_bitmap_bytes(memslot);
982
983 for (i = 0; !any && i < n/sizeof(long); ++i)
984 any = memslot->dirty_bitmap[i];
985
986 r = -EFAULT;
987 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
988 goto out;
989
990 if (any)
991 *is_dirty = 1;
992
993 r = 0;
994 out:
995 return r;
996 }
997 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
998
999 bool kvm_largepages_enabled(void)
1000 {
1001 return largepages_enabled;
1002 }
1003
1004 void kvm_disable_largepages(void)
1005 {
1006 largepages_enabled = false;
1007 }
1008 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1009
1010 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1011 {
1012 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1013 }
1014 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1015
1016 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1017 {
1018 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1019
1020 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1021 memslot->flags & KVM_MEMSLOT_INVALID)
1022 return 0;
1023
1024 return 1;
1025 }
1026 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1027
1028 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1029 {
1030 struct vm_area_struct *vma;
1031 unsigned long addr, size;
1032
1033 size = PAGE_SIZE;
1034
1035 addr = gfn_to_hva(kvm, gfn);
1036 if (kvm_is_error_hva(addr))
1037 return PAGE_SIZE;
1038
1039 down_read(&current->mm->mmap_sem);
1040 vma = find_vma(current->mm, addr);
1041 if (!vma)
1042 goto out;
1043
1044 size = vma_kernel_pagesize(vma);
1045
1046 out:
1047 up_read(&current->mm->mmap_sem);
1048
1049 return size;
1050 }
1051
1052 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1053 {
1054 return slot->flags & KVM_MEM_READONLY;
1055 }
1056
1057 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1058 gfn_t *nr_pages, bool write)
1059 {
1060 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1061 return KVM_HVA_ERR_BAD;
1062
1063 if (memslot_is_readonly(slot) && write)
1064 return KVM_HVA_ERR_RO_BAD;
1065
1066 if (nr_pages)
1067 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1068
1069 return __gfn_to_hva_memslot(slot, gfn);
1070 }
1071
1072 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1073 gfn_t *nr_pages)
1074 {
1075 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1076 }
1077
1078 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1079 gfn_t gfn)
1080 {
1081 return gfn_to_hva_many(slot, gfn, NULL);
1082 }
1083 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1084
1085 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1086 {
1087 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1088 }
1089 EXPORT_SYMBOL_GPL(gfn_to_hva);
1090
1091 /*
1092 * If writable is set to false, the hva returned by this function is only
1093 * allowed to be read.
1094 */
1095 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1096 {
1097 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1098 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1099
1100 if (!kvm_is_error_hva(hva) && writable)
1101 *writable = !memslot_is_readonly(slot);
1102
1103 return hva;
1104 }
1105
1106 static int kvm_read_hva(void *data, void __user *hva, int len)
1107 {
1108 return __copy_from_user(data, hva, len);
1109 }
1110
1111 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1112 {
1113 return __copy_from_user_inatomic(data, hva, len);
1114 }
1115
1116 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1117 unsigned long start, int write, struct page **page)
1118 {
1119 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1120
1121 if (write)
1122 flags |= FOLL_WRITE;
1123
1124 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1125 }
1126
1127 int kvm_get_user_page_io(struct task_struct *tsk, struct mm_struct *mm,
1128 unsigned long addr, bool write_fault,
1129 struct page **pagep)
1130 {
1131 int npages;
1132 int locked = 1;
1133 int flags = FOLL_TOUCH | FOLL_HWPOISON |
1134 (pagep ? FOLL_GET : 0) |
1135 (write_fault ? FOLL_WRITE : 0);
1136
1137 /*
1138 * If retrying the fault, we get here *not* having allowed the filemap
1139 * to wait on the page lock. We should now allow waiting on the IO with
1140 * the mmap semaphore released.
1141 */
1142 down_read(&mm->mmap_sem);
1143 npages = __get_user_pages(tsk, mm, addr, 1, flags, pagep, NULL,
1144 &locked);
1145 if (!locked) {
1146 VM_BUG_ON(npages != -EBUSY);
1147
1148 if (!pagep)
1149 return 0;
1150
1151 /*
1152 * The previous call has now waited on the IO. Now we can
1153 * retry and complete. Pass TRIED to ensure we do not re
1154 * schedule async IO (see e.g. filemap_fault).
1155 */
1156 down_read(&mm->mmap_sem);
1157 npages = __get_user_pages(tsk, mm, addr, 1, flags | FOLL_TRIED,
1158 pagep, NULL, NULL);
1159 }
1160 up_read(&mm->mmap_sem);
1161 return npages;
1162 }
1163
1164 static inline int check_user_page_hwpoison(unsigned long addr)
1165 {
1166 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1167
1168 rc = __get_user_pages(current, current->mm, addr, 1,
1169 flags, NULL, NULL, NULL);
1170 return rc == -EHWPOISON;
1171 }
1172
1173 /*
1174 * The atomic path to get the writable pfn which will be stored in @pfn,
1175 * true indicates success, otherwise false is returned.
1176 */
1177 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1178 bool write_fault, bool *writable, pfn_t *pfn)
1179 {
1180 struct page *page[1];
1181 int npages;
1182
1183 if (!(async || atomic))
1184 return false;
1185
1186 /*
1187 * Fast pin a writable pfn only if it is a write fault request
1188 * or the caller allows to map a writable pfn for a read fault
1189 * request.
1190 */
1191 if (!(write_fault || writable))
1192 return false;
1193
1194 npages = __get_user_pages_fast(addr, 1, 1, page);
1195 if (npages == 1) {
1196 *pfn = page_to_pfn(page[0]);
1197
1198 if (writable)
1199 *writable = true;
1200 return true;
1201 }
1202
1203 return false;
1204 }
1205
1206 /*
1207 * The slow path to get the pfn of the specified host virtual address,
1208 * 1 indicates success, -errno is returned if error is detected.
1209 */
1210 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1211 bool *writable, pfn_t *pfn)
1212 {
1213 struct page *page[1];
1214 int npages = 0;
1215
1216 might_sleep();
1217
1218 if (writable)
1219 *writable = write_fault;
1220
1221 if (async) {
1222 down_read(&current->mm->mmap_sem);
1223 npages = get_user_page_nowait(current, current->mm,
1224 addr, write_fault, page);
1225 up_read(&current->mm->mmap_sem);
1226 } else {
1227 /*
1228 * By now we have tried gup_fast, and possibly async_pf, and we
1229 * are certainly not atomic. Time to retry the gup, allowing
1230 * mmap semaphore to be relinquished in the case of IO.
1231 */
1232 npages = kvm_get_user_page_io(current, current->mm, addr,
1233 write_fault, page);
1234 }
1235 if (npages != 1)
1236 return npages;
1237
1238 /* map read fault as writable if possible */
1239 if (unlikely(!write_fault) && writable) {
1240 struct page *wpage[1];
1241
1242 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1243 if (npages == 1) {
1244 *writable = true;
1245 put_page(page[0]);
1246 page[0] = wpage[0];
1247 }
1248
1249 npages = 1;
1250 }
1251 *pfn = page_to_pfn(page[0]);
1252 return npages;
1253 }
1254
1255 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1256 {
1257 if (unlikely(!(vma->vm_flags & VM_READ)))
1258 return false;
1259
1260 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1261 return false;
1262
1263 return true;
1264 }
1265
1266 /*
1267 * Pin guest page in memory and return its pfn.
1268 * @addr: host virtual address which maps memory to the guest
1269 * @atomic: whether this function can sleep
1270 * @async: whether this function need to wait IO complete if the
1271 * host page is not in the memory
1272 * @write_fault: whether we should get a writable host page
1273 * @writable: whether it allows to map a writable host page for !@write_fault
1274 *
1275 * The function will map a writable host page for these two cases:
1276 * 1): @write_fault = true
1277 * 2): @write_fault = false && @writable, @writable will tell the caller
1278 * whether the mapping is writable.
1279 */
1280 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1281 bool write_fault, bool *writable)
1282 {
1283 struct vm_area_struct *vma;
1284 pfn_t pfn = 0;
1285 int npages;
1286
1287 /* we can do it either atomically or asynchronously, not both */
1288 BUG_ON(atomic && async);
1289
1290 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1291 return pfn;
1292
1293 if (atomic)
1294 return KVM_PFN_ERR_FAULT;
1295
1296 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1297 if (npages == 1)
1298 return pfn;
1299
1300 down_read(&current->mm->mmap_sem);
1301 if (npages == -EHWPOISON ||
1302 (!async && check_user_page_hwpoison(addr))) {
1303 pfn = KVM_PFN_ERR_HWPOISON;
1304 goto exit;
1305 }
1306
1307 vma = find_vma_intersection(current->mm, addr, addr + 1);
1308
1309 if (vma == NULL)
1310 pfn = KVM_PFN_ERR_FAULT;
1311 else if ((vma->vm_flags & VM_PFNMAP)) {
1312 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1313 vma->vm_pgoff;
1314 BUG_ON(!kvm_is_mmio_pfn(pfn));
1315 } else {
1316 if (async && vma_is_valid(vma, write_fault))
1317 *async = true;
1318 pfn = KVM_PFN_ERR_FAULT;
1319 }
1320 exit:
1321 up_read(&current->mm->mmap_sem);
1322 return pfn;
1323 }
1324
1325 static pfn_t
1326 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1327 bool *async, bool write_fault, bool *writable)
1328 {
1329 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1330
1331 if (addr == KVM_HVA_ERR_RO_BAD)
1332 return KVM_PFN_ERR_RO_FAULT;
1333
1334 if (kvm_is_error_hva(addr))
1335 return KVM_PFN_NOSLOT;
1336
1337 /* Do not map writable pfn in the readonly memslot. */
1338 if (writable && memslot_is_readonly(slot)) {
1339 *writable = false;
1340 writable = NULL;
1341 }
1342
1343 return hva_to_pfn(addr, atomic, async, write_fault,
1344 writable);
1345 }
1346
1347 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1348 bool write_fault, bool *writable)
1349 {
1350 struct kvm_memory_slot *slot;
1351
1352 if (async)
1353 *async = false;
1354
1355 slot = gfn_to_memslot(kvm, gfn);
1356
1357 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1358 writable);
1359 }
1360
1361 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1362 {
1363 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1364 }
1365 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1366
1367 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1368 bool write_fault, bool *writable)
1369 {
1370 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1371 }
1372 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1373
1374 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1375 {
1376 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1377 }
1378 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1379
1380 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1381 bool *writable)
1382 {
1383 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1384 }
1385 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1386
1387 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1388 {
1389 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1390 }
1391
1392 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1393 {
1394 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1395 }
1396 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1397
1398 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1399 int nr_pages)
1400 {
1401 unsigned long addr;
1402 gfn_t entry;
1403
1404 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1405 if (kvm_is_error_hva(addr))
1406 return -1;
1407
1408 if (entry < nr_pages)
1409 return 0;
1410
1411 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1412 }
1413 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1414
1415 static struct page *kvm_pfn_to_page(pfn_t pfn)
1416 {
1417 if (is_error_noslot_pfn(pfn))
1418 return KVM_ERR_PTR_BAD_PAGE;
1419
1420 if (kvm_is_mmio_pfn(pfn)) {
1421 WARN_ON(1);
1422 return KVM_ERR_PTR_BAD_PAGE;
1423 }
1424
1425 return pfn_to_page(pfn);
1426 }
1427
1428 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1429 {
1430 pfn_t pfn;
1431
1432 pfn = gfn_to_pfn(kvm, gfn);
1433
1434 return kvm_pfn_to_page(pfn);
1435 }
1436
1437 EXPORT_SYMBOL_GPL(gfn_to_page);
1438
1439 void kvm_release_page_clean(struct page *page)
1440 {
1441 WARN_ON(is_error_page(page));
1442
1443 kvm_release_pfn_clean(page_to_pfn(page));
1444 }
1445 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1446
1447 void kvm_release_pfn_clean(pfn_t pfn)
1448 {
1449 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1450 put_page(pfn_to_page(pfn));
1451 }
1452 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1453
1454 void kvm_release_page_dirty(struct page *page)
1455 {
1456 WARN_ON(is_error_page(page));
1457
1458 kvm_release_pfn_dirty(page_to_pfn(page));
1459 }
1460 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1461
1462 static void kvm_release_pfn_dirty(pfn_t pfn)
1463 {
1464 kvm_set_pfn_dirty(pfn);
1465 kvm_release_pfn_clean(pfn);
1466 }
1467
1468 void kvm_set_pfn_dirty(pfn_t pfn)
1469 {
1470 if (!kvm_is_mmio_pfn(pfn)) {
1471 struct page *page = pfn_to_page(pfn);
1472 if (!PageReserved(page))
1473 SetPageDirty(page);
1474 }
1475 }
1476 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1477
1478 void kvm_set_pfn_accessed(pfn_t pfn)
1479 {
1480 if (!kvm_is_mmio_pfn(pfn))
1481 mark_page_accessed(pfn_to_page(pfn));
1482 }
1483 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1484
1485 void kvm_get_pfn(pfn_t pfn)
1486 {
1487 if (!kvm_is_mmio_pfn(pfn))
1488 get_page(pfn_to_page(pfn));
1489 }
1490 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1491
1492 static int next_segment(unsigned long len, int offset)
1493 {
1494 if (len > PAGE_SIZE - offset)
1495 return PAGE_SIZE - offset;
1496 else
1497 return len;
1498 }
1499
1500 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1501 int len)
1502 {
1503 int r;
1504 unsigned long addr;
1505
1506 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1507 if (kvm_is_error_hva(addr))
1508 return -EFAULT;
1509 r = kvm_read_hva(data, (void __user *)addr + offset, len);
1510 if (r)
1511 return -EFAULT;
1512 return 0;
1513 }
1514 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1515
1516 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1517 {
1518 gfn_t gfn = gpa >> PAGE_SHIFT;
1519 int seg;
1520 int offset = offset_in_page(gpa);
1521 int ret;
1522
1523 while ((seg = next_segment(len, offset)) != 0) {
1524 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1525 if (ret < 0)
1526 return ret;
1527 offset = 0;
1528 len -= seg;
1529 data += seg;
1530 ++gfn;
1531 }
1532 return 0;
1533 }
1534 EXPORT_SYMBOL_GPL(kvm_read_guest);
1535
1536 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1537 unsigned long len)
1538 {
1539 int r;
1540 unsigned long addr;
1541 gfn_t gfn = gpa >> PAGE_SHIFT;
1542 int offset = offset_in_page(gpa);
1543
1544 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1545 if (kvm_is_error_hva(addr))
1546 return -EFAULT;
1547 pagefault_disable();
1548 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1549 pagefault_enable();
1550 if (r)
1551 return -EFAULT;
1552 return 0;
1553 }
1554 EXPORT_SYMBOL(kvm_read_guest_atomic);
1555
1556 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1557 int offset, int len)
1558 {
1559 int r;
1560 unsigned long addr;
1561
1562 addr = gfn_to_hva(kvm, gfn);
1563 if (kvm_is_error_hva(addr))
1564 return -EFAULT;
1565 r = __copy_to_user((void __user *)addr + offset, data, len);
1566 if (r)
1567 return -EFAULT;
1568 mark_page_dirty(kvm, gfn);
1569 return 0;
1570 }
1571 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1572
1573 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1574 unsigned long len)
1575 {
1576 gfn_t gfn = gpa >> PAGE_SHIFT;
1577 int seg;
1578 int offset = offset_in_page(gpa);
1579 int ret;
1580
1581 while ((seg = next_segment(len, offset)) != 0) {
1582 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1583 if (ret < 0)
1584 return ret;
1585 offset = 0;
1586 len -= seg;
1587 data += seg;
1588 ++gfn;
1589 }
1590 return 0;
1591 }
1592
1593 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1594 gpa_t gpa, unsigned long len)
1595 {
1596 struct kvm_memslots *slots = kvm_memslots(kvm);
1597 int offset = offset_in_page(gpa);
1598 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1599 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1600 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1601 gfn_t nr_pages_avail;
1602
1603 ghc->gpa = gpa;
1604 ghc->generation = slots->generation;
1605 ghc->len = len;
1606 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1607 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1608 if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1609 ghc->hva += offset;
1610 } else {
1611 /*
1612 * If the requested region crosses two memslots, we still
1613 * verify that the entire region is valid here.
1614 */
1615 while (start_gfn <= end_gfn) {
1616 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1617 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1618 &nr_pages_avail);
1619 if (kvm_is_error_hva(ghc->hva))
1620 return -EFAULT;
1621 start_gfn += nr_pages_avail;
1622 }
1623 /* Use the slow path for cross page reads and writes. */
1624 ghc->memslot = NULL;
1625 }
1626 return 0;
1627 }
1628 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1629
1630 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1631 void *data, unsigned long len)
1632 {
1633 struct kvm_memslots *slots = kvm_memslots(kvm);
1634 int r;
1635
1636 BUG_ON(len > ghc->len);
1637
1638 if (slots->generation != ghc->generation)
1639 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1640
1641 if (unlikely(!ghc->memslot))
1642 return kvm_write_guest(kvm, ghc->gpa, data, len);
1643
1644 if (kvm_is_error_hva(ghc->hva))
1645 return -EFAULT;
1646
1647 r = __copy_to_user((void __user *)ghc->hva, data, len);
1648 if (r)
1649 return -EFAULT;
1650 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1651
1652 return 0;
1653 }
1654 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1655
1656 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1657 void *data, unsigned long len)
1658 {
1659 struct kvm_memslots *slots = kvm_memslots(kvm);
1660 int r;
1661
1662 BUG_ON(len > ghc->len);
1663
1664 if (slots->generation != ghc->generation)
1665 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1666
1667 if (unlikely(!ghc->memslot))
1668 return kvm_read_guest(kvm, ghc->gpa, data, len);
1669
1670 if (kvm_is_error_hva(ghc->hva))
1671 return -EFAULT;
1672
1673 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1674 if (r)
1675 return -EFAULT;
1676
1677 return 0;
1678 }
1679 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1680
1681 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1682 {
1683 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1684
1685 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1686 }
1687 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1688
1689 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1690 {
1691 gfn_t gfn = gpa >> PAGE_SHIFT;
1692 int seg;
1693 int offset = offset_in_page(gpa);
1694 int ret;
1695
1696 while ((seg = next_segment(len, offset)) != 0) {
1697 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1698 if (ret < 0)
1699 return ret;
1700 offset = 0;
1701 len -= seg;
1702 ++gfn;
1703 }
1704 return 0;
1705 }
1706 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1707
1708 static void mark_page_dirty_in_slot(struct kvm *kvm,
1709 struct kvm_memory_slot *memslot,
1710 gfn_t gfn)
1711 {
1712 if (memslot && memslot->dirty_bitmap) {
1713 unsigned long rel_gfn = gfn - memslot->base_gfn;
1714
1715 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1716 }
1717 }
1718
1719 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1720 {
1721 struct kvm_memory_slot *memslot;
1722
1723 memslot = gfn_to_memslot(kvm, gfn);
1724 mark_page_dirty_in_slot(kvm, memslot, gfn);
1725 }
1726 EXPORT_SYMBOL_GPL(mark_page_dirty);
1727
1728 /*
1729 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1730 */
1731 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1732 {
1733 DEFINE_WAIT(wait);
1734
1735 for (;;) {
1736 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1737
1738 if (kvm_arch_vcpu_runnable(vcpu)) {
1739 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1740 break;
1741 }
1742 if (kvm_cpu_has_pending_timer(vcpu))
1743 break;
1744 if (signal_pending(current))
1745 break;
1746
1747 schedule();
1748 }
1749
1750 finish_wait(&vcpu->wq, &wait);
1751 }
1752 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1753
1754 #ifndef CONFIG_S390
1755 /*
1756 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1757 */
1758 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1759 {
1760 int me;
1761 int cpu = vcpu->cpu;
1762 wait_queue_head_t *wqp;
1763
1764 wqp = kvm_arch_vcpu_wq(vcpu);
1765 if (waitqueue_active(wqp)) {
1766 wake_up_interruptible(wqp);
1767 ++vcpu->stat.halt_wakeup;
1768 }
1769
1770 me = get_cpu();
1771 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1772 if (kvm_arch_vcpu_should_kick(vcpu))
1773 smp_send_reschedule(cpu);
1774 put_cpu();
1775 }
1776 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1777 #endif /* !CONFIG_S390 */
1778
1779 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1780 {
1781 struct pid *pid;
1782 struct task_struct *task = NULL;
1783 int ret = 0;
1784
1785 rcu_read_lock();
1786 pid = rcu_dereference(target->pid);
1787 if (pid)
1788 task = get_pid_task(target->pid, PIDTYPE_PID);
1789 rcu_read_unlock();
1790 if (!task)
1791 return ret;
1792 if (task->flags & PF_VCPU) {
1793 put_task_struct(task);
1794 return ret;
1795 }
1796 ret = yield_to(task, 1);
1797 put_task_struct(task);
1798
1799 return ret;
1800 }
1801 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1802
1803 /*
1804 * Helper that checks whether a VCPU is eligible for directed yield.
1805 * Most eligible candidate to yield is decided by following heuristics:
1806 *
1807 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1808 * (preempted lock holder), indicated by @in_spin_loop.
1809 * Set at the beiginning and cleared at the end of interception/PLE handler.
1810 *
1811 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1812 * chance last time (mostly it has become eligible now since we have probably
1813 * yielded to lockholder in last iteration. This is done by toggling
1814 * @dy_eligible each time a VCPU checked for eligibility.)
1815 *
1816 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1817 * to preempted lock-holder could result in wrong VCPU selection and CPU
1818 * burning. Giving priority for a potential lock-holder increases lock
1819 * progress.
1820 *
1821 * Since algorithm is based on heuristics, accessing another VCPU data without
1822 * locking does not harm. It may result in trying to yield to same VCPU, fail
1823 * and continue with next VCPU and so on.
1824 */
1825 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1826 {
1827 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1828 bool eligible;
1829
1830 eligible = !vcpu->spin_loop.in_spin_loop ||
1831 vcpu->spin_loop.dy_eligible;
1832
1833 if (vcpu->spin_loop.in_spin_loop)
1834 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1835
1836 return eligible;
1837 #else
1838 return true;
1839 #endif
1840 }
1841
1842 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1843 {
1844 struct kvm *kvm = me->kvm;
1845 struct kvm_vcpu *vcpu;
1846 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1847 int yielded = 0;
1848 int try = 3;
1849 int pass;
1850 int i;
1851
1852 kvm_vcpu_set_in_spin_loop(me, true);
1853 /*
1854 * We boost the priority of a VCPU that is runnable but not
1855 * currently running, because it got preempted by something
1856 * else and called schedule in __vcpu_run. Hopefully that
1857 * VCPU is holding the lock that we need and will release it.
1858 * We approximate round-robin by starting at the last boosted VCPU.
1859 */
1860 for (pass = 0; pass < 2 && !yielded && try; pass++) {
1861 kvm_for_each_vcpu(i, vcpu, kvm) {
1862 if (!pass && i <= last_boosted_vcpu) {
1863 i = last_boosted_vcpu;
1864 continue;
1865 } else if (pass && i > last_boosted_vcpu)
1866 break;
1867 if (!ACCESS_ONCE(vcpu->preempted))
1868 continue;
1869 if (vcpu == me)
1870 continue;
1871 if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
1872 continue;
1873 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1874 continue;
1875
1876 yielded = kvm_vcpu_yield_to(vcpu);
1877 if (yielded > 0) {
1878 kvm->last_boosted_vcpu = i;
1879 break;
1880 } else if (yielded < 0) {
1881 try--;
1882 if (!try)
1883 break;
1884 }
1885 }
1886 }
1887 kvm_vcpu_set_in_spin_loop(me, false);
1888
1889 /* Ensure vcpu is not eligible during next spinloop */
1890 kvm_vcpu_set_dy_eligible(me, false);
1891 }
1892 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1893
1894 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1895 {
1896 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1897 struct page *page;
1898
1899 if (vmf->pgoff == 0)
1900 page = virt_to_page(vcpu->run);
1901 #ifdef CONFIG_X86
1902 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1903 page = virt_to_page(vcpu->arch.pio_data);
1904 #endif
1905 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1906 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1907 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1908 #endif
1909 else
1910 return kvm_arch_vcpu_fault(vcpu, vmf);
1911 get_page(page);
1912 vmf->page = page;
1913 return 0;
1914 }
1915
1916 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1917 .fault = kvm_vcpu_fault,
1918 };
1919
1920 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1921 {
1922 vma->vm_ops = &kvm_vcpu_vm_ops;
1923 return 0;
1924 }
1925
1926 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1927 {
1928 struct kvm_vcpu *vcpu = filp->private_data;
1929
1930 kvm_put_kvm(vcpu->kvm);
1931 return 0;
1932 }
1933
1934 static struct file_operations kvm_vcpu_fops = {
1935 .release = kvm_vcpu_release,
1936 .unlocked_ioctl = kvm_vcpu_ioctl,
1937 #ifdef CONFIG_COMPAT
1938 .compat_ioctl = kvm_vcpu_compat_ioctl,
1939 #endif
1940 .mmap = kvm_vcpu_mmap,
1941 .llseek = noop_llseek,
1942 };
1943
1944 /*
1945 * Allocates an inode for the vcpu.
1946 */
1947 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1948 {
1949 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1950 }
1951
1952 /*
1953 * Creates some virtual cpus. Good luck creating more than one.
1954 */
1955 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1956 {
1957 int r;
1958 struct kvm_vcpu *vcpu, *v;
1959
1960 if (id >= KVM_MAX_VCPUS)
1961 return -EINVAL;
1962
1963 vcpu = kvm_arch_vcpu_create(kvm, id);
1964 if (IS_ERR(vcpu))
1965 return PTR_ERR(vcpu);
1966
1967 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1968
1969 r = kvm_arch_vcpu_setup(vcpu);
1970 if (r)
1971 goto vcpu_destroy;
1972
1973 mutex_lock(&kvm->lock);
1974 if (!kvm_vcpu_compatible(vcpu)) {
1975 r = -EINVAL;
1976 goto unlock_vcpu_destroy;
1977 }
1978 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1979 r = -EINVAL;
1980 goto unlock_vcpu_destroy;
1981 }
1982
1983 kvm_for_each_vcpu(r, v, kvm)
1984 if (v->vcpu_id == id) {
1985 r = -EEXIST;
1986 goto unlock_vcpu_destroy;
1987 }
1988
1989 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1990
1991 /* Now it's all set up, let userspace reach it */
1992 kvm_get_kvm(kvm);
1993 r = create_vcpu_fd(vcpu);
1994 if (r < 0) {
1995 kvm_put_kvm(kvm);
1996 goto unlock_vcpu_destroy;
1997 }
1998
1999 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2000 smp_wmb();
2001 atomic_inc(&kvm->online_vcpus);
2002
2003 mutex_unlock(&kvm->lock);
2004 kvm_arch_vcpu_postcreate(vcpu);
2005 return r;
2006
2007 unlock_vcpu_destroy:
2008 mutex_unlock(&kvm->lock);
2009 vcpu_destroy:
2010 kvm_arch_vcpu_destroy(vcpu);
2011 return r;
2012 }
2013
2014 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2015 {
2016 if (sigset) {
2017 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2018 vcpu->sigset_active = 1;
2019 vcpu->sigset = *sigset;
2020 } else
2021 vcpu->sigset_active = 0;
2022 return 0;
2023 }
2024
2025 static long kvm_vcpu_ioctl(struct file *filp,
2026 unsigned int ioctl, unsigned long arg)
2027 {
2028 struct kvm_vcpu *vcpu = filp->private_data;
2029 void __user *argp = (void __user *)arg;
2030 int r;
2031 struct kvm_fpu *fpu = NULL;
2032 struct kvm_sregs *kvm_sregs = NULL;
2033
2034 if (vcpu->kvm->mm != current->mm)
2035 return -EIO;
2036
2037 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2038 return -EINVAL;
2039
2040 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2041 /*
2042 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2043 * so vcpu_load() would break it.
2044 */
2045 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
2046 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2047 #endif
2048
2049
2050 r = vcpu_load(vcpu);
2051 if (r)
2052 return r;
2053 switch (ioctl) {
2054 case KVM_RUN:
2055 r = -EINVAL;
2056 if (arg)
2057 goto out;
2058 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2059 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2060 break;
2061 case KVM_GET_REGS: {
2062 struct kvm_regs *kvm_regs;
2063
2064 r = -ENOMEM;
2065 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2066 if (!kvm_regs)
2067 goto out;
2068 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2069 if (r)
2070 goto out_free1;
2071 r = -EFAULT;
2072 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2073 goto out_free1;
2074 r = 0;
2075 out_free1:
2076 kfree(kvm_regs);
2077 break;
2078 }
2079 case KVM_SET_REGS: {
2080 struct kvm_regs *kvm_regs;
2081
2082 r = -ENOMEM;
2083 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2084 if (IS_ERR(kvm_regs)) {
2085 r = PTR_ERR(kvm_regs);
2086 goto out;
2087 }
2088 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2089 kfree(kvm_regs);
2090 break;
2091 }
2092 case KVM_GET_SREGS: {
2093 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2094 r = -ENOMEM;
2095 if (!kvm_sregs)
2096 goto out;
2097 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2098 if (r)
2099 goto out;
2100 r = -EFAULT;
2101 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2102 goto out;
2103 r = 0;
2104 break;
2105 }
2106 case KVM_SET_SREGS: {
2107 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2108 if (IS_ERR(kvm_sregs)) {
2109 r = PTR_ERR(kvm_sregs);
2110 kvm_sregs = NULL;
2111 goto out;
2112 }
2113 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2114 break;
2115 }
2116 case KVM_GET_MP_STATE: {
2117 struct kvm_mp_state mp_state;
2118
2119 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2120 if (r)
2121 goto out;
2122 r = -EFAULT;
2123 if (copy_to_user(argp, &mp_state, sizeof mp_state))
2124 goto out;
2125 r = 0;
2126 break;
2127 }
2128 case KVM_SET_MP_STATE: {
2129 struct kvm_mp_state mp_state;
2130
2131 r = -EFAULT;
2132 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2133 goto out;
2134 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2135 break;
2136 }
2137 case KVM_TRANSLATE: {
2138 struct kvm_translation tr;
2139
2140 r = -EFAULT;
2141 if (copy_from_user(&tr, argp, sizeof tr))
2142 goto out;
2143 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2144 if (r)
2145 goto out;
2146 r = -EFAULT;
2147 if (copy_to_user(argp, &tr, sizeof tr))
2148 goto out;
2149 r = 0;
2150 break;
2151 }
2152 case KVM_SET_GUEST_DEBUG: {
2153 struct kvm_guest_debug dbg;
2154
2155 r = -EFAULT;
2156 if (copy_from_user(&dbg, argp, sizeof dbg))
2157 goto out;
2158 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2159 break;
2160 }
2161 case KVM_SET_SIGNAL_MASK: {
2162 struct kvm_signal_mask __user *sigmask_arg = argp;
2163 struct kvm_signal_mask kvm_sigmask;
2164 sigset_t sigset, *p;
2165
2166 p = NULL;
2167 if (argp) {
2168 r = -EFAULT;
2169 if (copy_from_user(&kvm_sigmask, argp,
2170 sizeof kvm_sigmask))
2171 goto out;
2172 r = -EINVAL;
2173 if (kvm_sigmask.len != sizeof sigset)
2174 goto out;
2175 r = -EFAULT;
2176 if (copy_from_user(&sigset, sigmask_arg->sigset,
2177 sizeof sigset))
2178 goto out;
2179 p = &sigset;
2180 }
2181 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2182 break;
2183 }
2184 case KVM_GET_FPU: {
2185 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2186 r = -ENOMEM;
2187 if (!fpu)
2188 goto out;
2189 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2190 if (r)
2191 goto out;
2192 r = -EFAULT;
2193 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2194 goto out;
2195 r = 0;
2196 break;
2197 }
2198 case KVM_SET_FPU: {
2199 fpu = memdup_user(argp, sizeof(*fpu));
2200 if (IS_ERR(fpu)) {
2201 r = PTR_ERR(fpu);
2202 fpu = NULL;
2203 goto out;
2204 }
2205 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2206 break;
2207 }
2208 default:
2209 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2210 }
2211 out:
2212 vcpu_put(vcpu);
2213 kfree(fpu);
2214 kfree(kvm_sregs);
2215 return r;
2216 }
2217
2218 #ifdef CONFIG_COMPAT
2219 static long kvm_vcpu_compat_ioctl(struct file *filp,
2220 unsigned int ioctl, unsigned long arg)
2221 {
2222 struct kvm_vcpu *vcpu = filp->private_data;
2223 void __user *argp = compat_ptr(arg);
2224 int r;
2225
2226 if (vcpu->kvm->mm != current->mm)
2227 return -EIO;
2228
2229 switch (ioctl) {
2230 case KVM_SET_SIGNAL_MASK: {
2231 struct kvm_signal_mask __user *sigmask_arg = argp;
2232 struct kvm_signal_mask kvm_sigmask;
2233 compat_sigset_t csigset;
2234 sigset_t sigset;
2235
2236 if (argp) {
2237 r = -EFAULT;
2238 if (copy_from_user(&kvm_sigmask, argp,
2239 sizeof kvm_sigmask))
2240 goto out;
2241 r = -EINVAL;
2242 if (kvm_sigmask.len != sizeof csigset)
2243 goto out;
2244 r = -EFAULT;
2245 if (copy_from_user(&csigset, sigmask_arg->sigset,
2246 sizeof csigset))
2247 goto out;
2248 sigset_from_compat(&sigset, &csigset);
2249 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2250 } else
2251 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2252 break;
2253 }
2254 default:
2255 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2256 }
2257
2258 out:
2259 return r;
2260 }
2261 #endif
2262
2263 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2264 int (*accessor)(struct kvm_device *dev,
2265 struct kvm_device_attr *attr),
2266 unsigned long arg)
2267 {
2268 struct kvm_device_attr attr;
2269
2270 if (!accessor)
2271 return -EPERM;
2272
2273 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2274 return -EFAULT;
2275
2276 return accessor(dev, &attr);
2277 }
2278
2279 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2280 unsigned long arg)
2281 {
2282 struct kvm_device *dev = filp->private_data;
2283
2284 switch (ioctl) {
2285 case KVM_SET_DEVICE_ATTR:
2286 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2287 case KVM_GET_DEVICE_ATTR:
2288 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2289 case KVM_HAS_DEVICE_ATTR:
2290 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2291 default:
2292 if (dev->ops->ioctl)
2293 return dev->ops->ioctl(dev, ioctl, arg);
2294
2295 return -ENOTTY;
2296 }
2297 }
2298
2299 static int kvm_device_release(struct inode *inode, struct file *filp)
2300 {
2301 struct kvm_device *dev = filp->private_data;
2302 struct kvm *kvm = dev->kvm;
2303
2304 kvm_put_kvm(kvm);
2305 return 0;
2306 }
2307
2308 static const struct file_operations kvm_device_fops = {
2309 .unlocked_ioctl = kvm_device_ioctl,
2310 #ifdef CONFIG_COMPAT
2311 .compat_ioctl = kvm_device_ioctl,
2312 #endif
2313 .release = kvm_device_release,
2314 };
2315
2316 struct kvm_device *kvm_device_from_filp(struct file *filp)
2317 {
2318 if (filp->f_op != &kvm_device_fops)
2319 return NULL;
2320
2321 return filp->private_data;
2322 }
2323
2324 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2325 #ifdef CONFIG_KVM_MPIC
2326 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2327 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2328 #endif
2329
2330 #ifdef CONFIG_KVM_XICS
2331 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2332 #endif
2333 };
2334
2335 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2336 {
2337 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2338 return -ENOSPC;
2339
2340 if (kvm_device_ops_table[type] != NULL)
2341 return -EEXIST;
2342
2343 kvm_device_ops_table[type] = ops;
2344 return 0;
2345 }
2346
2347 static int kvm_ioctl_create_device(struct kvm *kvm,
2348 struct kvm_create_device *cd)
2349 {
2350 struct kvm_device_ops *ops = NULL;
2351 struct kvm_device *dev;
2352 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2353 int ret;
2354
2355 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2356 return -ENODEV;
2357
2358 ops = kvm_device_ops_table[cd->type];
2359 if (ops == NULL)
2360 return -ENODEV;
2361
2362 if (test)
2363 return 0;
2364
2365 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2366 if (!dev)
2367 return -ENOMEM;
2368
2369 dev->ops = ops;
2370 dev->kvm = kvm;
2371
2372 ret = ops->create(dev, cd->type);
2373 if (ret < 0) {
2374 kfree(dev);
2375 return ret;
2376 }
2377
2378 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2379 if (ret < 0) {
2380 ops->destroy(dev);
2381 return ret;
2382 }
2383
2384 list_add(&dev->vm_node, &kvm->devices);
2385 kvm_get_kvm(kvm);
2386 cd->fd = ret;
2387 return 0;
2388 }
2389
2390 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2391 {
2392 switch (arg) {
2393 case KVM_CAP_USER_MEMORY:
2394 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2395 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2396 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2397 case KVM_CAP_SET_BOOT_CPU_ID:
2398 #endif
2399 case KVM_CAP_INTERNAL_ERROR_DATA:
2400 #ifdef CONFIG_HAVE_KVM_MSI
2401 case KVM_CAP_SIGNAL_MSI:
2402 #endif
2403 #ifdef CONFIG_HAVE_KVM_IRQFD
2404 case KVM_CAP_IRQFD_RESAMPLE:
2405 #endif
2406 case KVM_CAP_CHECK_EXTENSION_VM:
2407 return 1;
2408 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2409 case KVM_CAP_IRQ_ROUTING:
2410 return KVM_MAX_IRQ_ROUTES;
2411 #endif
2412 default:
2413 break;
2414 }
2415 return kvm_vm_ioctl_check_extension(kvm, arg);
2416 }
2417
2418 static long kvm_vm_ioctl(struct file *filp,
2419 unsigned int ioctl, unsigned long arg)
2420 {
2421 struct kvm *kvm = filp->private_data;
2422 void __user *argp = (void __user *)arg;
2423 int r;
2424
2425 if (kvm->mm != current->mm)
2426 return -EIO;
2427 switch (ioctl) {
2428 case KVM_CREATE_VCPU:
2429 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2430 break;
2431 case KVM_SET_USER_MEMORY_REGION: {
2432 struct kvm_userspace_memory_region kvm_userspace_mem;
2433
2434 r = -EFAULT;
2435 if (copy_from_user(&kvm_userspace_mem, argp,
2436 sizeof kvm_userspace_mem))
2437 goto out;
2438
2439 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2440 break;
2441 }
2442 case KVM_GET_DIRTY_LOG: {
2443 struct kvm_dirty_log log;
2444
2445 r = -EFAULT;
2446 if (copy_from_user(&log, argp, sizeof log))
2447 goto out;
2448 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2449 break;
2450 }
2451 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2452 case KVM_REGISTER_COALESCED_MMIO: {
2453 struct kvm_coalesced_mmio_zone zone;
2454 r = -EFAULT;
2455 if (copy_from_user(&zone, argp, sizeof zone))
2456 goto out;
2457 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2458 break;
2459 }
2460 case KVM_UNREGISTER_COALESCED_MMIO: {
2461 struct kvm_coalesced_mmio_zone zone;
2462 r = -EFAULT;
2463 if (copy_from_user(&zone, argp, sizeof zone))
2464 goto out;
2465 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2466 break;
2467 }
2468 #endif
2469 case KVM_IRQFD: {
2470 struct kvm_irqfd data;
2471
2472 r = -EFAULT;
2473 if (copy_from_user(&data, argp, sizeof data))
2474 goto out;
2475 r = kvm_irqfd(kvm, &data);
2476 break;
2477 }
2478 case KVM_IOEVENTFD: {
2479 struct kvm_ioeventfd data;
2480
2481 r = -EFAULT;
2482 if (copy_from_user(&data, argp, sizeof data))
2483 goto out;
2484 r = kvm_ioeventfd(kvm, &data);
2485 break;
2486 }
2487 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2488 case KVM_SET_BOOT_CPU_ID:
2489 r = 0;
2490 mutex_lock(&kvm->lock);
2491 if (atomic_read(&kvm->online_vcpus) != 0)
2492 r = -EBUSY;
2493 else
2494 kvm->bsp_vcpu_id = arg;
2495 mutex_unlock(&kvm->lock);
2496 break;
2497 #endif
2498 #ifdef CONFIG_HAVE_KVM_MSI
2499 case KVM_SIGNAL_MSI: {
2500 struct kvm_msi msi;
2501
2502 r = -EFAULT;
2503 if (copy_from_user(&msi, argp, sizeof msi))
2504 goto out;
2505 r = kvm_send_userspace_msi(kvm, &msi);
2506 break;
2507 }
2508 #endif
2509 #ifdef __KVM_HAVE_IRQ_LINE
2510 case KVM_IRQ_LINE_STATUS:
2511 case KVM_IRQ_LINE: {
2512 struct kvm_irq_level irq_event;
2513
2514 r = -EFAULT;
2515 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2516 goto out;
2517
2518 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2519 ioctl == KVM_IRQ_LINE_STATUS);
2520 if (r)
2521 goto out;
2522
2523 r = -EFAULT;
2524 if (ioctl == KVM_IRQ_LINE_STATUS) {
2525 if (copy_to_user(argp, &irq_event, sizeof irq_event))
2526 goto out;
2527 }
2528
2529 r = 0;
2530 break;
2531 }
2532 #endif
2533 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2534 case KVM_SET_GSI_ROUTING: {
2535 struct kvm_irq_routing routing;
2536 struct kvm_irq_routing __user *urouting;
2537 struct kvm_irq_routing_entry *entries;
2538
2539 r = -EFAULT;
2540 if (copy_from_user(&routing, argp, sizeof(routing)))
2541 goto out;
2542 r = -EINVAL;
2543 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2544 goto out;
2545 if (routing.flags)
2546 goto out;
2547 r = -ENOMEM;
2548 entries = vmalloc(routing.nr * sizeof(*entries));
2549 if (!entries)
2550 goto out;
2551 r = -EFAULT;
2552 urouting = argp;
2553 if (copy_from_user(entries, urouting->entries,
2554 routing.nr * sizeof(*entries)))
2555 goto out_free_irq_routing;
2556 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2557 routing.flags);
2558 out_free_irq_routing:
2559 vfree(entries);
2560 break;
2561 }
2562 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2563 case KVM_CREATE_DEVICE: {
2564 struct kvm_create_device cd;
2565
2566 r = -EFAULT;
2567 if (copy_from_user(&cd, argp, sizeof(cd)))
2568 goto out;
2569
2570 r = kvm_ioctl_create_device(kvm, &cd);
2571 if (r)
2572 goto out;
2573
2574 r = -EFAULT;
2575 if (copy_to_user(argp, &cd, sizeof(cd)))
2576 goto out;
2577
2578 r = 0;
2579 break;
2580 }
2581 case KVM_CHECK_EXTENSION:
2582 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2583 break;
2584 default:
2585 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2586 if (r == -ENOTTY)
2587 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2588 }
2589 out:
2590 return r;
2591 }
2592
2593 #ifdef CONFIG_COMPAT
2594 struct compat_kvm_dirty_log {
2595 __u32 slot;
2596 __u32 padding1;
2597 union {
2598 compat_uptr_t dirty_bitmap; /* one bit per page */
2599 __u64 padding2;
2600 };
2601 };
2602
2603 static long kvm_vm_compat_ioctl(struct file *filp,
2604 unsigned int ioctl, unsigned long arg)
2605 {
2606 struct kvm *kvm = filp->private_data;
2607 int r;
2608
2609 if (kvm->mm != current->mm)
2610 return -EIO;
2611 switch (ioctl) {
2612 case KVM_GET_DIRTY_LOG: {
2613 struct compat_kvm_dirty_log compat_log;
2614 struct kvm_dirty_log log;
2615
2616 r = -EFAULT;
2617 if (copy_from_user(&compat_log, (void __user *)arg,
2618 sizeof(compat_log)))
2619 goto out;
2620 log.slot = compat_log.slot;
2621 log.padding1 = compat_log.padding1;
2622 log.padding2 = compat_log.padding2;
2623 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2624
2625 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2626 break;
2627 }
2628 default:
2629 r = kvm_vm_ioctl(filp, ioctl, arg);
2630 }
2631
2632 out:
2633 return r;
2634 }
2635 #endif
2636
2637 static struct file_operations kvm_vm_fops = {
2638 .release = kvm_vm_release,
2639 .unlocked_ioctl = kvm_vm_ioctl,
2640 #ifdef CONFIG_COMPAT
2641 .compat_ioctl = kvm_vm_compat_ioctl,
2642 #endif
2643 .llseek = noop_llseek,
2644 };
2645
2646 static int kvm_dev_ioctl_create_vm(unsigned long type)
2647 {
2648 int r;
2649 struct kvm *kvm;
2650
2651 kvm = kvm_create_vm(type);
2652 if (IS_ERR(kvm))
2653 return PTR_ERR(kvm);
2654 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2655 r = kvm_coalesced_mmio_init(kvm);
2656 if (r < 0) {
2657 kvm_put_kvm(kvm);
2658 return r;
2659 }
2660 #endif
2661 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2662 if (r < 0)
2663 kvm_put_kvm(kvm);
2664
2665 return r;
2666 }
2667
2668 static long kvm_dev_ioctl(struct file *filp,
2669 unsigned int ioctl, unsigned long arg)
2670 {
2671 long r = -EINVAL;
2672
2673 switch (ioctl) {
2674 case KVM_GET_API_VERSION:
2675 if (arg)
2676 goto out;
2677 r = KVM_API_VERSION;
2678 break;
2679 case KVM_CREATE_VM:
2680 r = kvm_dev_ioctl_create_vm(arg);
2681 break;
2682 case KVM_CHECK_EXTENSION:
2683 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2684 break;
2685 case KVM_GET_VCPU_MMAP_SIZE:
2686 if (arg)
2687 goto out;
2688 r = PAGE_SIZE; /* struct kvm_run */
2689 #ifdef CONFIG_X86
2690 r += PAGE_SIZE; /* pio data page */
2691 #endif
2692 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2693 r += PAGE_SIZE; /* coalesced mmio ring page */
2694 #endif
2695 break;
2696 case KVM_TRACE_ENABLE:
2697 case KVM_TRACE_PAUSE:
2698 case KVM_TRACE_DISABLE:
2699 r = -EOPNOTSUPP;
2700 break;
2701 default:
2702 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2703 }
2704 out:
2705 return r;
2706 }
2707
2708 static struct file_operations kvm_chardev_ops = {
2709 .unlocked_ioctl = kvm_dev_ioctl,
2710 .compat_ioctl = kvm_dev_ioctl,
2711 .llseek = noop_llseek,
2712 };
2713
2714 static struct miscdevice kvm_dev = {
2715 KVM_MINOR,
2716 "kvm",
2717 &kvm_chardev_ops,
2718 };
2719
2720 static void hardware_enable_nolock(void *junk)
2721 {
2722 int cpu = raw_smp_processor_id();
2723 int r;
2724
2725 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2726 return;
2727
2728 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2729
2730 r = kvm_arch_hardware_enable();
2731
2732 if (r) {
2733 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2734 atomic_inc(&hardware_enable_failed);
2735 printk(KERN_INFO "kvm: enabling virtualization on "
2736 "CPU%d failed\n", cpu);
2737 }
2738 }
2739
2740 static void hardware_enable(void)
2741 {
2742 raw_spin_lock(&kvm_count_lock);
2743 if (kvm_usage_count)
2744 hardware_enable_nolock(NULL);
2745 raw_spin_unlock(&kvm_count_lock);
2746 }
2747
2748 static void hardware_disable_nolock(void *junk)
2749 {
2750 int cpu = raw_smp_processor_id();
2751
2752 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2753 return;
2754 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2755 kvm_arch_hardware_disable();
2756 }
2757
2758 static void hardware_disable(void)
2759 {
2760 raw_spin_lock(&kvm_count_lock);
2761 if (kvm_usage_count)
2762 hardware_disable_nolock(NULL);
2763 raw_spin_unlock(&kvm_count_lock);
2764 }
2765
2766 static void hardware_disable_all_nolock(void)
2767 {
2768 BUG_ON(!kvm_usage_count);
2769
2770 kvm_usage_count--;
2771 if (!kvm_usage_count)
2772 on_each_cpu(hardware_disable_nolock, NULL, 1);
2773 }
2774
2775 static void hardware_disable_all(void)
2776 {
2777 raw_spin_lock(&kvm_count_lock);
2778 hardware_disable_all_nolock();
2779 raw_spin_unlock(&kvm_count_lock);
2780 }
2781
2782 static int hardware_enable_all(void)
2783 {
2784 int r = 0;
2785
2786 raw_spin_lock(&kvm_count_lock);
2787
2788 kvm_usage_count++;
2789 if (kvm_usage_count == 1) {
2790 atomic_set(&hardware_enable_failed, 0);
2791 on_each_cpu(hardware_enable_nolock, NULL, 1);
2792
2793 if (atomic_read(&hardware_enable_failed)) {
2794 hardware_disable_all_nolock();
2795 r = -EBUSY;
2796 }
2797 }
2798
2799 raw_spin_unlock(&kvm_count_lock);
2800
2801 return r;
2802 }
2803
2804 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2805 void *v)
2806 {
2807 int cpu = (long)v;
2808
2809 val &= ~CPU_TASKS_FROZEN;
2810 switch (val) {
2811 case CPU_DYING:
2812 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2813 cpu);
2814 hardware_disable();
2815 break;
2816 case CPU_STARTING:
2817 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2818 cpu);
2819 hardware_enable();
2820 break;
2821 }
2822 return NOTIFY_OK;
2823 }
2824
2825 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2826 void *v)
2827 {
2828 /*
2829 * Some (well, at least mine) BIOSes hang on reboot if
2830 * in vmx root mode.
2831 *
2832 * And Intel TXT required VMX off for all cpu when system shutdown.
2833 */
2834 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2835 kvm_rebooting = true;
2836 on_each_cpu(hardware_disable_nolock, NULL, 1);
2837 return NOTIFY_OK;
2838 }
2839
2840 static struct notifier_block kvm_reboot_notifier = {
2841 .notifier_call = kvm_reboot,
2842 .priority = 0,
2843 };
2844
2845 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2846 {
2847 int i;
2848
2849 for (i = 0; i < bus->dev_count; i++) {
2850 struct kvm_io_device *pos = bus->range[i].dev;
2851
2852 kvm_iodevice_destructor(pos);
2853 }
2854 kfree(bus);
2855 }
2856
2857 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2858 const struct kvm_io_range *r2)
2859 {
2860 if (r1->addr < r2->addr)
2861 return -1;
2862 if (r1->addr + r1->len > r2->addr + r2->len)
2863 return 1;
2864 return 0;
2865 }
2866
2867 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2868 {
2869 return kvm_io_bus_cmp(p1, p2);
2870 }
2871
2872 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2873 gpa_t addr, int len)
2874 {
2875 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2876 .addr = addr,
2877 .len = len,
2878 .dev = dev,
2879 };
2880
2881 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2882 kvm_io_bus_sort_cmp, NULL);
2883
2884 return 0;
2885 }
2886
2887 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2888 gpa_t addr, int len)
2889 {
2890 struct kvm_io_range *range, key;
2891 int off;
2892
2893 key = (struct kvm_io_range) {
2894 .addr = addr,
2895 .len = len,
2896 };
2897
2898 range = bsearch(&key, bus->range, bus->dev_count,
2899 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2900 if (range == NULL)
2901 return -ENOENT;
2902
2903 off = range - bus->range;
2904
2905 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2906 off--;
2907
2908 return off;
2909 }
2910
2911 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2912 struct kvm_io_range *range, const void *val)
2913 {
2914 int idx;
2915
2916 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2917 if (idx < 0)
2918 return -EOPNOTSUPP;
2919
2920 while (idx < bus->dev_count &&
2921 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2922 if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2923 range->len, val))
2924 return idx;
2925 idx++;
2926 }
2927
2928 return -EOPNOTSUPP;
2929 }
2930
2931 /* kvm_io_bus_write - called under kvm->slots_lock */
2932 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2933 int len, const void *val)
2934 {
2935 struct kvm_io_bus *bus;
2936 struct kvm_io_range range;
2937 int r;
2938
2939 range = (struct kvm_io_range) {
2940 .addr = addr,
2941 .len = len,
2942 };
2943
2944 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2945 r = __kvm_io_bus_write(bus, &range, val);
2946 return r < 0 ? r : 0;
2947 }
2948
2949 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2950 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2951 int len, const void *val, long cookie)
2952 {
2953 struct kvm_io_bus *bus;
2954 struct kvm_io_range range;
2955
2956 range = (struct kvm_io_range) {
2957 .addr = addr,
2958 .len = len,
2959 };
2960
2961 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2962
2963 /* First try the device referenced by cookie. */
2964 if ((cookie >= 0) && (cookie < bus->dev_count) &&
2965 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2966 if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2967 val))
2968 return cookie;
2969
2970 /*
2971 * cookie contained garbage; fall back to search and return the
2972 * correct cookie value.
2973 */
2974 return __kvm_io_bus_write(bus, &range, val);
2975 }
2976
2977 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2978 void *val)
2979 {
2980 int idx;
2981
2982 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2983 if (idx < 0)
2984 return -EOPNOTSUPP;
2985
2986 while (idx < bus->dev_count &&
2987 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2988 if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
2989 range->len, val))
2990 return idx;
2991 idx++;
2992 }
2993
2994 return -EOPNOTSUPP;
2995 }
2996 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
2997
2998 /* kvm_io_bus_read - called under kvm->slots_lock */
2999 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3000 int len, void *val)
3001 {
3002 struct kvm_io_bus *bus;
3003 struct kvm_io_range range;
3004 int r;
3005
3006 range = (struct kvm_io_range) {
3007 .addr = addr,
3008 .len = len,
3009 };
3010
3011 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3012 r = __kvm_io_bus_read(bus, &range, val);
3013 return r < 0 ? r : 0;
3014 }
3015
3016
3017 /* Caller must hold slots_lock. */
3018 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3019 int len, struct kvm_io_device *dev)
3020 {
3021 struct kvm_io_bus *new_bus, *bus;
3022
3023 bus = kvm->buses[bus_idx];
3024 /* exclude ioeventfd which is limited by maximum fd */
3025 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3026 return -ENOSPC;
3027
3028 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3029 sizeof(struct kvm_io_range)), GFP_KERNEL);
3030 if (!new_bus)
3031 return -ENOMEM;
3032 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3033 sizeof(struct kvm_io_range)));
3034 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3035 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3036 synchronize_srcu_expedited(&kvm->srcu);
3037 kfree(bus);
3038
3039 return 0;
3040 }
3041
3042 /* Caller must hold slots_lock. */
3043 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3044 struct kvm_io_device *dev)
3045 {
3046 int i, r;
3047 struct kvm_io_bus *new_bus, *bus;
3048
3049 bus = kvm->buses[bus_idx];
3050 r = -ENOENT;
3051 for (i = 0; i < bus->dev_count; i++)
3052 if (bus->range[i].dev == dev) {
3053 r = 0;
3054 break;
3055 }
3056
3057 if (r)
3058 return r;
3059
3060 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3061 sizeof(struct kvm_io_range)), GFP_KERNEL);
3062 if (!new_bus)
3063 return -ENOMEM;
3064
3065 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3066 new_bus->dev_count--;
3067 memcpy(new_bus->range + i, bus->range + i + 1,
3068 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3069
3070 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3071 synchronize_srcu_expedited(&kvm->srcu);
3072 kfree(bus);
3073 return r;
3074 }
3075
3076 static struct notifier_block kvm_cpu_notifier = {
3077 .notifier_call = kvm_cpu_hotplug,
3078 };
3079
3080 static int vm_stat_get(void *_offset, u64 *val)
3081 {
3082 unsigned offset = (long)_offset;
3083 struct kvm *kvm;
3084
3085 *val = 0;
3086 spin_lock(&kvm_lock);
3087 list_for_each_entry(kvm, &vm_list, vm_list)
3088 *val += *(u32 *)((void *)kvm + offset);
3089 spin_unlock(&kvm_lock);
3090 return 0;
3091 }
3092
3093 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3094
3095 static int vcpu_stat_get(void *_offset, u64 *val)
3096 {
3097 unsigned offset = (long)_offset;
3098 struct kvm *kvm;
3099 struct kvm_vcpu *vcpu;
3100 int i;
3101
3102 *val = 0;
3103 spin_lock(&kvm_lock);
3104 list_for_each_entry(kvm, &vm_list, vm_list)
3105 kvm_for_each_vcpu(i, vcpu, kvm)
3106 *val += *(u32 *)((void *)vcpu + offset);
3107
3108 spin_unlock(&kvm_lock);
3109 return 0;
3110 }
3111
3112 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3113
3114 static const struct file_operations *stat_fops[] = {
3115 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3116 [KVM_STAT_VM] = &vm_stat_fops,
3117 };
3118
3119 static int kvm_init_debug(void)
3120 {
3121 int r = -EEXIST;
3122 struct kvm_stats_debugfs_item *p;
3123
3124 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3125 if (kvm_debugfs_dir == NULL)
3126 goto out;
3127
3128 for (p = debugfs_entries; p->name; ++p) {
3129 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3130 (void *)(long)p->offset,
3131 stat_fops[p->kind]);
3132 if (p->dentry == NULL)
3133 goto out_dir;
3134 }
3135
3136 return 0;
3137
3138 out_dir:
3139 debugfs_remove_recursive(kvm_debugfs_dir);
3140 out:
3141 return r;
3142 }
3143
3144 static void kvm_exit_debug(void)
3145 {
3146 struct kvm_stats_debugfs_item *p;
3147
3148 for (p = debugfs_entries; p->name; ++p)
3149 debugfs_remove(p->dentry);
3150 debugfs_remove(kvm_debugfs_dir);
3151 }
3152
3153 static int kvm_suspend(void)
3154 {
3155 if (kvm_usage_count)
3156 hardware_disable_nolock(NULL);
3157 return 0;
3158 }
3159
3160 static void kvm_resume(void)
3161 {
3162 if (kvm_usage_count) {
3163 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3164 hardware_enable_nolock(NULL);
3165 }
3166 }
3167
3168 static struct syscore_ops kvm_syscore_ops = {
3169 .suspend = kvm_suspend,
3170 .resume = kvm_resume,
3171 };
3172
3173 static inline
3174 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3175 {
3176 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3177 }
3178
3179 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3180 {
3181 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3182 if (vcpu->preempted)
3183 vcpu->preempted = false;
3184
3185 kvm_arch_sched_in(vcpu, cpu);
3186
3187 kvm_arch_vcpu_load(vcpu, cpu);
3188 }
3189
3190 static void kvm_sched_out(struct preempt_notifier *pn,
3191 struct task_struct *next)
3192 {
3193 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3194
3195 if (current->state == TASK_RUNNING)
3196 vcpu->preempted = true;
3197 kvm_arch_vcpu_put(vcpu);
3198 }
3199
3200 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3201 struct module *module)
3202 {
3203 int r;
3204 int cpu;
3205
3206 r = kvm_arch_init(opaque);
3207 if (r)
3208 goto out_fail;
3209
3210 /*
3211 * kvm_arch_init makes sure there's at most one caller
3212 * for architectures that support multiple implementations,
3213 * like intel and amd on x86.
3214 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3215 * conflicts in case kvm is already setup for another implementation.
3216 */
3217 r = kvm_irqfd_init();
3218 if (r)
3219 goto out_irqfd;
3220
3221 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3222 r = -ENOMEM;
3223 goto out_free_0;
3224 }
3225
3226 r = kvm_arch_hardware_setup();
3227 if (r < 0)
3228 goto out_free_0a;
3229
3230 for_each_online_cpu(cpu) {
3231 smp_call_function_single(cpu,
3232 kvm_arch_check_processor_compat,
3233 &r, 1);
3234 if (r < 0)
3235 goto out_free_1;
3236 }
3237
3238 r = register_cpu_notifier(&kvm_cpu_notifier);
3239 if (r)
3240 goto out_free_2;
3241 register_reboot_notifier(&kvm_reboot_notifier);
3242
3243 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3244 if (!vcpu_align)
3245 vcpu_align = __alignof__(struct kvm_vcpu);
3246 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3247 0, NULL);
3248 if (!kvm_vcpu_cache) {
3249 r = -ENOMEM;
3250 goto out_free_3;
3251 }
3252
3253 r = kvm_async_pf_init();
3254 if (r)
3255 goto out_free;
3256
3257 kvm_chardev_ops.owner = module;
3258 kvm_vm_fops.owner = module;
3259 kvm_vcpu_fops.owner = module;
3260
3261 r = misc_register(&kvm_dev);
3262 if (r) {
3263 printk(KERN_ERR "kvm: misc device register failed\n");
3264 goto out_unreg;
3265 }
3266
3267 register_syscore_ops(&kvm_syscore_ops);
3268
3269 kvm_preempt_ops.sched_in = kvm_sched_in;
3270 kvm_preempt_ops.sched_out = kvm_sched_out;
3271
3272 r = kvm_init_debug();
3273 if (r) {
3274 printk(KERN_ERR "kvm: create debugfs files failed\n");
3275 goto out_undebugfs;
3276 }
3277
3278 r = kvm_vfio_ops_init();
3279 WARN_ON(r);
3280
3281 return 0;
3282
3283 out_undebugfs:
3284 unregister_syscore_ops(&kvm_syscore_ops);
3285 misc_deregister(&kvm_dev);
3286 out_unreg:
3287 kvm_async_pf_deinit();
3288 out_free:
3289 kmem_cache_destroy(kvm_vcpu_cache);
3290 out_free_3:
3291 unregister_reboot_notifier(&kvm_reboot_notifier);
3292 unregister_cpu_notifier(&kvm_cpu_notifier);
3293 out_free_2:
3294 out_free_1:
3295 kvm_arch_hardware_unsetup();
3296 out_free_0a:
3297 free_cpumask_var(cpus_hardware_enabled);
3298 out_free_0:
3299 kvm_irqfd_exit();
3300 out_irqfd:
3301 kvm_arch_exit();
3302 out_fail:
3303 return r;
3304 }
3305 EXPORT_SYMBOL_GPL(kvm_init);
3306
3307 void kvm_exit(void)
3308 {
3309 kvm_exit_debug();
3310 misc_deregister(&kvm_dev);
3311 kmem_cache_destroy(kvm_vcpu_cache);
3312 kvm_async_pf_deinit();
3313 unregister_syscore_ops(&kvm_syscore_ops);
3314 unregister_reboot_notifier(&kvm_reboot_notifier);
3315 unregister_cpu_notifier(&kvm_cpu_notifier);
3316 on_each_cpu(hardware_disable_nolock, NULL, 1);
3317 kvm_arch_hardware_unsetup();
3318 kvm_arch_exit();
3319 kvm_irqfd_exit();
3320 free_cpumask_var(cpus_hardware_enabled);
3321 }
3322 EXPORT_SYMBOL_GPL(kvm_exit);