]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - virt/kvm/kvm_main.c
Merge tag 'gpio-v4.5-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw/linux...
[mirror_ubuntu-artful-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 /* Architectures should define their poll value according to the halt latency */
70 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
71 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
72
73 /* Default doubles per-vcpu halt_poll_ns. */
74 static unsigned int halt_poll_ns_grow = 2;
75 module_param(halt_poll_ns_grow, int, S_IRUGO);
76
77 /* Default resets per-vcpu halt_poll_ns . */
78 static unsigned int halt_poll_ns_shrink;
79 module_param(halt_poll_ns_shrink, int, S_IRUGO);
80
81 /*
82 * Ordering of locks:
83 *
84 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
85 */
86
87 DEFINE_SPINLOCK(kvm_lock);
88 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
89 LIST_HEAD(vm_list);
90
91 static cpumask_var_t cpus_hardware_enabled;
92 static int kvm_usage_count;
93 static atomic_t hardware_enable_failed;
94
95 struct kmem_cache *kvm_vcpu_cache;
96 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
97
98 static __read_mostly struct preempt_ops kvm_preempt_ops;
99
100 struct dentry *kvm_debugfs_dir;
101 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
102
103 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
104 unsigned long arg);
105 #ifdef CONFIG_KVM_COMPAT
106 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
107 unsigned long arg);
108 #endif
109 static int hardware_enable_all(void);
110 static void hardware_disable_all(void);
111
112 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
113
114 static void kvm_release_pfn_dirty(pfn_t pfn);
115 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
116
117 __visible bool kvm_rebooting;
118 EXPORT_SYMBOL_GPL(kvm_rebooting);
119
120 static bool largepages_enabled = true;
121
122 bool kvm_is_reserved_pfn(pfn_t pfn)
123 {
124 if (pfn_valid(pfn))
125 return PageReserved(pfn_to_page(pfn));
126
127 return true;
128 }
129
130 /*
131 * Switches to specified vcpu, until a matching vcpu_put()
132 */
133 int vcpu_load(struct kvm_vcpu *vcpu)
134 {
135 int cpu;
136
137 if (mutex_lock_killable(&vcpu->mutex))
138 return -EINTR;
139 cpu = get_cpu();
140 preempt_notifier_register(&vcpu->preempt_notifier);
141 kvm_arch_vcpu_load(vcpu, cpu);
142 put_cpu();
143 return 0;
144 }
145
146 void vcpu_put(struct kvm_vcpu *vcpu)
147 {
148 preempt_disable();
149 kvm_arch_vcpu_put(vcpu);
150 preempt_notifier_unregister(&vcpu->preempt_notifier);
151 preempt_enable();
152 mutex_unlock(&vcpu->mutex);
153 }
154
155 static void ack_flush(void *_completed)
156 {
157 }
158
159 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
160 {
161 int i, cpu, me;
162 cpumask_var_t cpus;
163 bool called = true;
164 struct kvm_vcpu *vcpu;
165
166 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
167
168 me = get_cpu();
169 kvm_for_each_vcpu(i, vcpu, kvm) {
170 kvm_make_request(req, vcpu);
171 cpu = vcpu->cpu;
172
173 /* Set ->requests bit before we read ->mode */
174 smp_mb();
175
176 if (cpus != NULL && cpu != -1 && cpu != me &&
177 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
178 cpumask_set_cpu(cpu, cpus);
179 }
180 if (unlikely(cpus == NULL))
181 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
182 else if (!cpumask_empty(cpus))
183 smp_call_function_many(cpus, ack_flush, NULL, 1);
184 else
185 called = false;
186 put_cpu();
187 free_cpumask_var(cpus);
188 return called;
189 }
190
191 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
192 void kvm_flush_remote_tlbs(struct kvm *kvm)
193 {
194 long dirty_count = kvm->tlbs_dirty;
195
196 smp_mb();
197 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
198 ++kvm->stat.remote_tlb_flush;
199 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
200 }
201 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
202 #endif
203
204 void kvm_reload_remote_mmus(struct kvm *kvm)
205 {
206 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
207 }
208
209 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
210 {
211 struct page *page;
212 int r;
213
214 mutex_init(&vcpu->mutex);
215 vcpu->cpu = -1;
216 vcpu->kvm = kvm;
217 vcpu->vcpu_id = id;
218 vcpu->pid = NULL;
219 vcpu->halt_poll_ns = 0;
220 init_waitqueue_head(&vcpu->wq);
221 kvm_async_pf_vcpu_init(vcpu);
222
223 vcpu->pre_pcpu = -1;
224 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
225
226 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
227 if (!page) {
228 r = -ENOMEM;
229 goto fail;
230 }
231 vcpu->run = page_address(page);
232
233 kvm_vcpu_set_in_spin_loop(vcpu, false);
234 kvm_vcpu_set_dy_eligible(vcpu, false);
235 vcpu->preempted = false;
236
237 r = kvm_arch_vcpu_init(vcpu);
238 if (r < 0)
239 goto fail_free_run;
240 return 0;
241
242 fail_free_run:
243 free_page((unsigned long)vcpu->run);
244 fail:
245 return r;
246 }
247 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
248
249 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
250 {
251 put_pid(vcpu->pid);
252 kvm_arch_vcpu_uninit(vcpu);
253 free_page((unsigned long)vcpu->run);
254 }
255 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
256
257 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
258 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
259 {
260 return container_of(mn, struct kvm, mmu_notifier);
261 }
262
263 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
264 struct mm_struct *mm,
265 unsigned long address)
266 {
267 struct kvm *kvm = mmu_notifier_to_kvm(mn);
268 int need_tlb_flush, idx;
269
270 /*
271 * When ->invalidate_page runs, the linux pte has been zapped
272 * already but the page is still allocated until
273 * ->invalidate_page returns. So if we increase the sequence
274 * here the kvm page fault will notice if the spte can't be
275 * established because the page is going to be freed. If
276 * instead the kvm page fault establishes the spte before
277 * ->invalidate_page runs, kvm_unmap_hva will release it
278 * before returning.
279 *
280 * The sequence increase only need to be seen at spin_unlock
281 * time, and not at spin_lock time.
282 *
283 * Increasing the sequence after the spin_unlock would be
284 * unsafe because the kvm page fault could then establish the
285 * pte after kvm_unmap_hva returned, without noticing the page
286 * is going to be freed.
287 */
288 idx = srcu_read_lock(&kvm->srcu);
289 spin_lock(&kvm->mmu_lock);
290
291 kvm->mmu_notifier_seq++;
292 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
293 /* we've to flush the tlb before the pages can be freed */
294 if (need_tlb_flush)
295 kvm_flush_remote_tlbs(kvm);
296
297 spin_unlock(&kvm->mmu_lock);
298
299 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
300
301 srcu_read_unlock(&kvm->srcu, idx);
302 }
303
304 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
305 struct mm_struct *mm,
306 unsigned long address,
307 pte_t pte)
308 {
309 struct kvm *kvm = mmu_notifier_to_kvm(mn);
310 int idx;
311
312 idx = srcu_read_lock(&kvm->srcu);
313 spin_lock(&kvm->mmu_lock);
314 kvm->mmu_notifier_seq++;
315 kvm_set_spte_hva(kvm, address, pte);
316 spin_unlock(&kvm->mmu_lock);
317 srcu_read_unlock(&kvm->srcu, idx);
318 }
319
320 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
321 struct mm_struct *mm,
322 unsigned long start,
323 unsigned long end)
324 {
325 struct kvm *kvm = mmu_notifier_to_kvm(mn);
326 int need_tlb_flush = 0, idx;
327
328 idx = srcu_read_lock(&kvm->srcu);
329 spin_lock(&kvm->mmu_lock);
330 /*
331 * The count increase must become visible at unlock time as no
332 * spte can be established without taking the mmu_lock and
333 * count is also read inside the mmu_lock critical section.
334 */
335 kvm->mmu_notifier_count++;
336 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
337 need_tlb_flush |= kvm->tlbs_dirty;
338 /* we've to flush the tlb before the pages can be freed */
339 if (need_tlb_flush)
340 kvm_flush_remote_tlbs(kvm);
341
342 spin_unlock(&kvm->mmu_lock);
343 srcu_read_unlock(&kvm->srcu, idx);
344 }
345
346 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
347 struct mm_struct *mm,
348 unsigned long start,
349 unsigned long end)
350 {
351 struct kvm *kvm = mmu_notifier_to_kvm(mn);
352
353 spin_lock(&kvm->mmu_lock);
354 /*
355 * This sequence increase will notify the kvm page fault that
356 * the page that is going to be mapped in the spte could have
357 * been freed.
358 */
359 kvm->mmu_notifier_seq++;
360 smp_wmb();
361 /*
362 * The above sequence increase must be visible before the
363 * below count decrease, which is ensured by the smp_wmb above
364 * in conjunction with the smp_rmb in mmu_notifier_retry().
365 */
366 kvm->mmu_notifier_count--;
367 spin_unlock(&kvm->mmu_lock);
368
369 BUG_ON(kvm->mmu_notifier_count < 0);
370 }
371
372 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
373 struct mm_struct *mm,
374 unsigned long start,
375 unsigned long end)
376 {
377 struct kvm *kvm = mmu_notifier_to_kvm(mn);
378 int young, idx;
379
380 idx = srcu_read_lock(&kvm->srcu);
381 spin_lock(&kvm->mmu_lock);
382
383 young = kvm_age_hva(kvm, start, end);
384 if (young)
385 kvm_flush_remote_tlbs(kvm);
386
387 spin_unlock(&kvm->mmu_lock);
388 srcu_read_unlock(&kvm->srcu, idx);
389
390 return young;
391 }
392
393 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
394 struct mm_struct *mm,
395 unsigned long start,
396 unsigned long end)
397 {
398 struct kvm *kvm = mmu_notifier_to_kvm(mn);
399 int young, idx;
400
401 idx = srcu_read_lock(&kvm->srcu);
402 spin_lock(&kvm->mmu_lock);
403 /*
404 * Even though we do not flush TLB, this will still adversely
405 * affect performance on pre-Haswell Intel EPT, where there is
406 * no EPT Access Bit to clear so that we have to tear down EPT
407 * tables instead. If we find this unacceptable, we can always
408 * add a parameter to kvm_age_hva so that it effectively doesn't
409 * do anything on clear_young.
410 *
411 * Also note that currently we never issue secondary TLB flushes
412 * from clear_young, leaving this job up to the regular system
413 * cadence. If we find this inaccurate, we might come up with a
414 * more sophisticated heuristic later.
415 */
416 young = kvm_age_hva(kvm, start, end);
417 spin_unlock(&kvm->mmu_lock);
418 srcu_read_unlock(&kvm->srcu, idx);
419
420 return young;
421 }
422
423 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
424 struct mm_struct *mm,
425 unsigned long address)
426 {
427 struct kvm *kvm = mmu_notifier_to_kvm(mn);
428 int young, idx;
429
430 idx = srcu_read_lock(&kvm->srcu);
431 spin_lock(&kvm->mmu_lock);
432 young = kvm_test_age_hva(kvm, address);
433 spin_unlock(&kvm->mmu_lock);
434 srcu_read_unlock(&kvm->srcu, idx);
435
436 return young;
437 }
438
439 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
440 struct mm_struct *mm)
441 {
442 struct kvm *kvm = mmu_notifier_to_kvm(mn);
443 int idx;
444
445 idx = srcu_read_lock(&kvm->srcu);
446 kvm_arch_flush_shadow_all(kvm);
447 srcu_read_unlock(&kvm->srcu, idx);
448 }
449
450 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
451 .invalidate_page = kvm_mmu_notifier_invalidate_page,
452 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
453 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
454 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
455 .clear_young = kvm_mmu_notifier_clear_young,
456 .test_young = kvm_mmu_notifier_test_young,
457 .change_pte = kvm_mmu_notifier_change_pte,
458 .release = kvm_mmu_notifier_release,
459 };
460
461 static int kvm_init_mmu_notifier(struct kvm *kvm)
462 {
463 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
464 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
465 }
466
467 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
468
469 static int kvm_init_mmu_notifier(struct kvm *kvm)
470 {
471 return 0;
472 }
473
474 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
475
476 static struct kvm_memslots *kvm_alloc_memslots(void)
477 {
478 int i;
479 struct kvm_memslots *slots;
480
481 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
482 if (!slots)
483 return NULL;
484
485 /*
486 * Init kvm generation close to the maximum to easily test the
487 * code of handling generation number wrap-around.
488 */
489 slots->generation = -150;
490 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
491 slots->id_to_index[i] = slots->memslots[i].id = i;
492
493 return slots;
494 }
495
496 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
497 {
498 if (!memslot->dirty_bitmap)
499 return;
500
501 kvfree(memslot->dirty_bitmap);
502 memslot->dirty_bitmap = NULL;
503 }
504
505 /*
506 * Free any memory in @free but not in @dont.
507 */
508 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
509 struct kvm_memory_slot *dont)
510 {
511 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
512 kvm_destroy_dirty_bitmap(free);
513
514 kvm_arch_free_memslot(kvm, free, dont);
515
516 free->npages = 0;
517 }
518
519 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
520 {
521 struct kvm_memory_slot *memslot;
522
523 if (!slots)
524 return;
525
526 kvm_for_each_memslot(memslot, slots)
527 kvm_free_memslot(kvm, memslot, NULL);
528
529 kvfree(slots);
530 }
531
532 static struct kvm *kvm_create_vm(unsigned long type)
533 {
534 int r, i;
535 struct kvm *kvm = kvm_arch_alloc_vm();
536
537 if (!kvm)
538 return ERR_PTR(-ENOMEM);
539
540 r = kvm_arch_init_vm(kvm, type);
541 if (r)
542 goto out_err_no_disable;
543
544 r = hardware_enable_all();
545 if (r)
546 goto out_err_no_disable;
547
548 #ifdef CONFIG_HAVE_KVM_IRQFD
549 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
550 #endif
551
552 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
553
554 r = -ENOMEM;
555 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
556 kvm->memslots[i] = kvm_alloc_memslots();
557 if (!kvm->memslots[i])
558 goto out_err_no_srcu;
559 }
560
561 if (init_srcu_struct(&kvm->srcu))
562 goto out_err_no_srcu;
563 if (init_srcu_struct(&kvm->irq_srcu))
564 goto out_err_no_irq_srcu;
565 for (i = 0; i < KVM_NR_BUSES; i++) {
566 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
567 GFP_KERNEL);
568 if (!kvm->buses[i])
569 goto out_err;
570 }
571
572 spin_lock_init(&kvm->mmu_lock);
573 kvm->mm = current->mm;
574 atomic_inc(&kvm->mm->mm_count);
575 kvm_eventfd_init(kvm);
576 mutex_init(&kvm->lock);
577 mutex_init(&kvm->irq_lock);
578 mutex_init(&kvm->slots_lock);
579 atomic_set(&kvm->users_count, 1);
580 INIT_LIST_HEAD(&kvm->devices);
581
582 r = kvm_init_mmu_notifier(kvm);
583 if (r)
584 goto out_err;
585
586 spin_lock(&kvm_lock);
587 list_add(&kvm->vm_list, &vm_list);
588 spin_unlock(&kvm_lock);
589
590 preempt_notifier_inc();
591
592 return kvm;
593
594 out_err:
595 cleanup_srcu_struct(&kvm->irq_srcu);
596 out_err_no_irq_srcu:
597 cleanup_srcu_struct(&kvm->srcu);
598 out_err_no_srcu:
599 hardware_disable_all();
600 out_err_no_disable:
601 for (i = 0; i < KVM_NR_BUSES; i++)
602 kfree(kvm->buses[i]);
603 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
604 kvm_free_memslots(kvm, kvm->memslots[i]);
605 kvm_arch_free_vm(kvm);
606 return ERR_PTR(r);
607 }
608
609 /*
610 * Avoid using vmalloc for a small buffer.
611 * Should not be used when the size is statically known.
612 */
613 void *kvm_kvzalloc(unsigned long size)
614 {
615 if (size > PAGE_SIZE)
616 return vzalloc(size);
617 else
618 return kzalloc(size, GFP_KERNEL);
619 }
620
621 static void kvm_destroy_devices(struct kvm *kvm)
622 {
623 struct list_head *node, *tmp;
624
625 list_for_each_safe(node, tmp, &kvm->devices) {
626 struct kvm_device *dev =
627 list_entry(node, struct kvm_device, vm_node);
628
629 list_del(node);
630 dev->ops->destroy(dev);
631 }
632 }
633
634 static void kvm_destroy_vm(struct kvm *kvm)
635 {
636 int i;
637 struct mm_struct *mm = kvm->mm;
638
639 kvm_arch_sync_events(kvm);
640 spin_lock(&kvm_lock);
641 list_del(&kvm->vm_list);
642 spin_unlock(&kvm_lock);
643 kvm_free_irq_routing(kvm);
644 for (i = 0; i < KVM_NR_BUSES; i++)
645 kvm_io_bus_destroy(kvm->buses[i]);
646 kvm_coalesced_mmio_free(kvm);
647 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
648 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
649 #else
650 kvm_arch_flush_shadow_all(kvm);
651 #endif
652 kvm_arch_destroy_vm(kvm);
653 kvm_destroy_devices(kvm);
654 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
655 kvm_free_memslots(kvm, kvm->memslots[i]);
656 cleanup_srcu_struct(&kvm->irq_srcu);
657 cleanup_srcu_struct(&kvm->srcu);
658 kvm_arch_free_vm(kvm);
659 preempt_notifier_dec();
660 hardware_disable_all();
661 mmdrop(mm);
662 }
663
664 void kvm_get_kvm(struct kvm *kvm)
665 {
666 atomic_inc(&kvm->users_count);
667 }
668 EXPORT_SYMBOL_GPL(kvm_get_kvm);
669
670 void kvm_put_kvm(struct kvm *kvm)
671 {
672 if (atomic_dec_and_test(&kvm->users_count))
673 kvm_destroy_vm(kvm);
674 }
675 EXPORT_SYMBOL_GPL(kvm_put_kvm);
676
677
678 static int kvm_vm_release(struct inode *inode, struct file *filp)
679 {
680 struct kvm *kvm = filp->private_data;
681
682 kvm_irqfd_release(kvm);
683
684 kvm_put_kvm(kvm);
685 return 0;
686 }
687
688 /*
689 * Allocation size is twice as large as the actual dirty bitmap size.
690 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
691 */
692 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
693 {
694 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
695
696 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
697 if (!memslot->dirty_bitmap)
698 return -ENOMEM;
699
700 return 0;
701 }
702
703 /*
704 * Insert memslot and re-sort memslots based on their GFN,
705 * so binary search could be used to lookup GFN.
706 * Sorting algorithm takes advantage of having initially
707 * sorted array and known changed memslot position.
708 */
709 static void update_memslots(struct kvm_memslots *slots,
710 struct kvm_memory_slot *new)
711 {
712 int id = new->id;
713 int i = slots->id_to_index[id];
714 struct kvm_memory_slot *mslots = slots->memslots;
715
716 WARN_ON(mslots[i].id != id);
717 if (!new->npages) {
718 WARN_ON(!mslots[i].npages);
719 if (mslots[i].npages)
720 slots->used_slots--;
721 } else {
722 if (!mslots[i].npages)
723 slots->used_slots++;
724 }
725
726 while (i < KVM_MEM_SLOTS_NUM - 1 &&
727 new->base_gfn <= mslots[i + 1].base_gfn) {
728 if (!mslots[i + 1].npages)
729 break;
730 mslots[i] = mslots[i + 1];
731 slots->id_to_index[mslots[i].id] = i;
732 i++;
733 }
734
735 /*
736 * The ">=" is needed when creating a slot with base_gfn == 0,
737 * so that it moves before all those with base_gfn == npages == 0.
738 *
739 * On the other hand, if new->npages is zero, the above loop has
740 * already left i pointing to the beginning of the empty part of
741 * mslots, and the ">=" would move the hole backwards in this
742 * case---which is wrong. So skip the loop when deleting a slot.
743 */
744 if (new->npages) {
745 while (i > 0 &&
746 new->base_gfn >= mslots[i - 1].base_gfn) {
747 mslots[i] = mslots[i - 1];
748 slots->id_to_index[mslots[i].id] = i;
749 i--;
750 }
751 } else
752 WARN_ON_ONCE(i != slots->used_slots);
753
754 mslots[i] = *new;
755 slots->id_to_index[mslots[i].id] = i;
756 }
757
758 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
759 {
760 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
761
762 #ifdef __KVM_HAVE_READONLY_MEM
763 valid_flags |= KVM_MEM_READONLY;
764 #endif
765
766 if (mem->flags & ~valid_flags)
767 return -EINVAL;
768
769 return 0;
770 }
771
772 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
773 int as_id, struct kvm_memslots *slots)
774 {
775 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
776
777 /*
778 * Set the low bit in the generation, which disables SPTE caching
779 * until the end of synchronize_srcu_expedited.
780 */
781 WARN_ON(old_memslots->generation & 1);
782 slots->generation = old_memslots->generation + 1;
783
784 rcu_assign_pointer(kvm->memslots[as_id], slots);
785 synchronize_srcu_expedited(&kvm->srcu);
786
787 /*
788 * Increment the new memslot generation a second time. This prevents
789 * vm exits that race with memslot updates from caching a memslot
790 * generation that will (potentially) be valid forever.
791 */
792 slots->generation++;
793
794 kvm_arch_memslots_updated(kvm, slots);
795
796 return old_memslots;
797 }
798
799 /*
800 * Allocate some memory and give it an address in the guest physical address
801 * space.
802 *
803 * Discontiguous memory is allowed, mostly for framebuffers.
804 *
805 * Must be called holding kvm->slots_lock for write.
806 */
807 int __kvm_set_memory_region(struct kvm *kvm,
808 const struct kvm_userspace_memory_region *mem)
809 {
810 int r;
811 gfn_t base_gfn;
812 unsigned long npages;
813 struct kvm_memory_slot *slot;
814 struct kvm_memory_slot old, new;
815 struct kvm_memslots *slots = NULL, *old_memslots;
816 int as_id, id;
817 enum kvm_mr_change change;
818
819 r = check_memory_region_flags(mem);
820 if (r)
821 goto out;
822
823 r = -EINVAL;
824 as_id = mem->slot >> 16;
825 id = (u16)mem->slot;
826
827 /* General sanity checks */
828 if (mem->memory_size & (PAGE_SIZE - 1))
829 goto out;
830 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
831 goto out;
832 /* We can read the guest memory with __xxx_user() later on. */
833 if ((id < KVM_USER_MEM_SLOTS) &&
834 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
835 !access_ok(VERIFY_WRITE,
836 (void __user *)(unsigned long)mem->userspace_addr,
837 mem->memory_size)))
838 goto out;
839 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
840 goto out;
841 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
842 goto out;
843
844 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
845 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
846 npages = mem->memory_size >> PAGE_SHIFT;
847
848 if (npages > KVM_MEM_MAX_NR_PAGES)
849 goto out;
850
851 new = old = *slot;
852
853 new.id = id;
854 new.base_gfn = base_gfn;
855 new.npages = npages;
856 new.flags = mem->flags;
857
858 if (npages) {
859 if (!old.npages)
860 change = KVM_MR_CREATE;
861 else { /* Modify an existing slot. */
862 if ((mem->userspace_addr != old.userspace_addr) ||
863 (npages != old.npages) ||
864 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
865 goto out;
866
867 if (base_gfn != old.base_gfn)
868 change = KVM_MR_MOVE;
869 else if (new.flags != old.flags)
870 change = KVM_MR_FLAGS_ONLY;
871 else { /* Nothing to change. */
872 r = 0;
873 goto out;
874 }
875 }
876 } else {
877 if (!old.npages)
878 goto out;
879
880 change = KVM_MR_DELETE;
881 new.base_gfn = 0;
882 new.flags = 0;
883 }
884
885 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
886 /* Check for overlaps */
887 r = -EEXIST;
888 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
889 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
890 (slot->id == id))
891 continue;
892 if (!((base_gfn + npages <= slot->base_gfn) ||
893 (base_gfn >= slot->base_gfn + slot->npages)))
894 goto out;
895 }
896 }
897
898 /* Free page dirty bitmap if unneeded */
899 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
900 new.dirty_bitmap = NULL;
901
902 r = -ENOMEM;
903 if (change == KVM_MR_CREATE) {
904 new.userspace_addr = mem->userspace_addr;
905
906 if (kvm_arch_create_memslot(kvm, &new, npages))
907 goto out_free;
908 }
909
910 /* Allocate page dirty bitmap if needed */
911 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
912 if (kvm_create_dirty_bitmap(&new) < 0)
913 goto out_free;
914 }
915
916 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
917 if (!slots)
918 goto out_free;
919 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
920
921 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
922 slot = id_to_memslot(slots, id);
923 slot->flags |= KVM_MEMSLOT_INVALID;
924
925 old_memslots = install_new_memslots(kvm, as_id, slots);
926
927 /* slot was deleted or moved, clear iommu mapping */
928 kvm_iommu_unmap_pages(kvm, &old);
929 /* From this point no new shadow pages pointing to a deleted,
930 * or moved, memslot will be created.
931 *
932 * validation of sp->gfn happens in:
933 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
934 * - kvm_is_visible_gfn (mmu_check_roots)
935 */
936 kvm_arch_flush_shadow_memslot(kvm, slot);
937
938 /*
939 * We can re-use the old_memslots from above, the only difference
940 * from the currently installed memslots is the invalid flag. This
941 * will get overwritten by update_memslots anyway.
942 */
943 slots = old_memslots;
944 }
945
946 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
947 if (r)
948 goto out_slots;
949
950 /* actual memory is freed via old in kvm_free_memslot below */
951 if (change == KVM_MR_DELETE) {
952 new.dirty_bitmap = NULL;
953 memset(&new.arch, 0, sizeof(new.arch));
954 }
955
956 update_memslots(slots, &new);
957 old_memslots = install_new_memslots(kvm, as_id, slots);
958
959 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
960
961 kvm_free_memslot(kvm, &old, &new);
962 kvfree(old_memslots);
963
964 /*
965 * IOMMU mapping: New slots need to be mapped. Old slots need to be
966 * un-mapped and re-mapped if their base changes. Since base change
967 * unmapping is handled above with slot deletion, mapping alone is
968 * needed here. Anything else the iommu might care about for existing
969 * slots (size changes, userspace addr changes and read-only flag
970 * changes) is disallowed above, so any other attribute changes getting
971 * here can be skipped.
972 */
973 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
974 r = kvm_iommu_map_pages(kvm, &new);
975 return r;
976 }
977
978 return 0;
979
980 out_slots:
981 kvfree(slots);
982 out_free:
983 kvm_free_memslot(kvm, &new, &old);
984 out:
985 return r;
986 }
987 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
988
989 int kvm_set_memory_region(struct kvm *kvm,
990 const struct kvm_userspace_memory_region *mem)
991 {
992 int r;
993
994 mutex_lock(&kvm->slots_lock);
995 r = __kvm_set_memory_region(kvm, mem);
996 mutex_unlock(&kvm->slots_lock);
997 return r;
998 }
999 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1000
1001 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1002 struct kvm_userspace_memory_region *mem)
1003 {
1004 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1005 return -EINVAL;
1006
1007 return kvm_set_memory_region(kvm, mem);
1008 }
1009
1010 int kvm_get_dirty_log(struct kvm *kvm,
1011 struct kvm_dirty_log *log, int *is_dirty)
1012 {
1013 struct kvm_memslots *slots;
1014 struct kvm_memory_slot *memslot;
1015 int r, i, as_id, id;
1016 unsigned long n;
1017 unsigned long any = 0;
1018
1019 r = -EINVAL;
1020 as_id = log->slot >> 16;
1021 id = (u16)log->slot;
1022 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1023 goto out;
1024
1025 slots = __kvm_memslots(kvm, as_id);
1026 memslot = id_to_memslot(slots, id);
1027 r = -ENOENT;
1028 if (!memslot->dirty_bitmap)
1029 goto out;
1030
1031 n = kvm_dirty_bitmap_bytes(memslot);
1032
1033 for (i = 0; !any && i < n/sizeof(long); ++i)
1034 any = memslot->dirty_bitmap[i];
1035
1036 r = -EFAULT;
1037 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1038 goto out;
1039
1040 if (any)
1041 *is_dirty = 1;
1042
1043 r = 0;
1044 out:
1045 return r;
1046 }
1047 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1048
1049 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1050 /**
1051 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1052 * are dirty write protect them for next write.
1053 * @kvm: pointer to kvm instance
1054 * @log: slot id and address to which we copy the log
1055 * @is_dirty: flag set if any page is dirty
1056 *
1057 * We need to keep it in mind that VCPU threads can write to the bitmap
1058 * concurrently. So, to avoid losing track of dirty pages we keep the
1059 * following order:
1060 *
1061 * 1. Take a snapshot of the bit and clear it if needed.
1062 * 2. Write protect the corresponding page.
1063 * 3. Copy the snapshot to the userspace.
1064 * 4. Upon return caller flushes TLB's if needed.
1065 *
1066 * Between 2 and 4, the guest may write to the page using the remaining TLB
1067 * entry. This is not a problem because the page is reported dirty using
1068 * the snapshot taken before and step 4 ensures that writes done after
1069 * exiting to userspace will be logged for the next call.
1070 *
1071 */
1072 int kvm_get_dirty_log_protect(struct kvm *kvm,
1073 struct kvm_dirty_log *log, bool *is_dirty)
1074 {
1075 struct kvm_memslots *slots;
1076 struct kvm_memory_slot *memslot;
1077 int r, i, as_id, id;
1078 unsigned long n;
1079 unsigned long *dirty_bitmap;
1080 unsigned long *dirty_bitmap_buffer;
1081
1082 r = -EINVAL;
1083 as_id = log->slot >> 16;
1084 id = (u16)log->slot;
1085 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1086 goto out;
1087
1088 slots = __kvm_memslots(kvm, as_id);
1089 memslot = id_to_memslot(slots, id);
1090
1091 dirty_bitmap = memslot->dirty_bitmap;
1092 r = -ENOENT;
1093 if (!dirty_bitmap)
1094 goto out;
1095
1096 n = kvm_dirty_bitmap_bytes(memslot);
1097
1098 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1099 memset(dirty_bitmap_buffer, 0, n);
1100
1101 spin_lock(&kvm->mmu_lock);
1102 *is_dirty = false;
1103 for (i = 0; i < n / sizeof(long); i++) {
1104 unsigned long mask;
1105 gfn_t offset;
1106
1107 if (!dirty_bitmap[i])
1108 continue;
1109
1110 *is_dirty = true;
1111
1112 mask = xchg(&dirty_bitmap[i], 0);
1113 dirty_bitmap_buffer[i] = mask;
1114
1115 if (mask) {
1116 offset = i * BITS_PER_LONG;
1117 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1118 offset, mask);
1119 }
1120 }
1121
1122 spin_unlock(&kvm->mmu_lock);
1123
1124 r = -EFAULT;
1125 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1126 goto out;
1127
1128 r = 0;
1129 out:
1130 return r;
1131 }
1132 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1133 #endif
1134
1135 bool kvm_largepages_enabled(void)
1136 {
1137 return largepages_enabled;
1138 }
1139
1140 void kvm_disable_largepages(void)
1141 {
1142 largepages_enabled = false;
1143 }
1144 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1145
1146 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1147 {
1148 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1149 }
1150 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1151
1152 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1153 {
1154 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1155 }
1156
1157 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1158 {
1159 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1160
1161 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1162 memslot->flags & KVM_MEMSLOT_INVALID)
1163 return false;
1164
1165 return true;
1166 }
1167 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1168
1169 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1170 {
1171 struct vm_area_struct *vma;
1172 unsigned long addr, size;
1173
1174 size = PAGE_SIZE;
1175
1176 addr = gfn_to_hva(kvm, gfn);
1177 if (kvm_is_error_hva(addr))
1178 return PAGE_SIZE;
1179
1180 down_read(&current->mm->mmap_sem);
1181 vma = find_vma(current->mm, addr);
1182 if (!vma)
1183 goto out;
1184
1185 size = vma_kernel_pagesize(vma);
1186
1187 out:
1188 up_read(&current->mm->mmap_sem);
1189
1190 return size;
1191 }
1192
1193 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1194 {
1195 return slot->flags & KVM_MEM_READONLY;
1196 }
1197
1198 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1199 gfn_t *nr_pages, bool write)
1200 {
1201 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1202 return KVM_HVA_ERR_BAD;
1203
1204 if (memslot_is_readonly(slot) && write)
1205 return KVM_HVA_ERR_RO_BAD;
1206
1207 if (nr_pages)
1208 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1209
1210 return __gfn_to_hva_memslot(slot, gfn);
1211 }
1212
1213 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1214 gfn_t *nr_pages)
1215 {
1216 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1217 }
1218
1219 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1220 gfn_t gfn)
1221 {
1222 return gfn_to_hva_many(slot, gfn, NULL);
1223 }
1224 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1225
1226 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1227 {
1228 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1229 }
1230 EXPORT_SYMBOL_GPL(gfn_to_hva);
1231
1232 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1233 {
1234 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1235 }
1236 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1237
1238 /*
1239 * If writable is set to false, the hva returned by this function is only
1240 * allowed to be read.
1241 */
1242 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1243 gfn_t gfn, bool *writable)
1244 {
1245 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1246
1247 if (!kvm_is_error_hva(hva) && writable)
1248 *writable = !memslot_is_readonly(slot);
1249
1250 return hva;
1251 }
1252
1253 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1254 {
1255 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1256
1257 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1258 }
1259
1260 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1261 {
1262 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1263
1264 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1265 }
1266
1267 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1268 unsigned long start, int write, struct page **page)
1269 {
1270 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1271
1272 if (write)
1273 flags |= FOLL_WRITE;
1274
1275 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1276 }
1277
1278 static inline int check_user_page_hwpoison(unsigned long addr)
1279 {
1280 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1281
1282 rc = __get_user_pages(current, current->mm, addr, 1,
1283 flags, NULL, NULL, NULL);
1284 return rc == -EHWPOISON;
1285 }
1286
1287 /*
1288 * The atomic path to get the writable pfn which will be stored in @pfn,
1289 * true indicates success, otherwise false is returned.
1290 */
1291 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1292 bool write_fault, bool *writable, pfn_t *pfn)
1293 {
1294 struct page *page[1];
1295 int npages;
1296
1297 if (!(async || atomic))
1298 return false;
1299
1300 /*
1301 * Fast pin a writable pfn only if it is a write fault request
1302 * or the caller allows to map a writable pfn for a read fault
1303 * request.
1304 */
1305 if (!(write_fault || writable))
1306 return false;
1307
1308 npages = __get_user_pages_fast(addr, 1, 1, page);
1309 if (npages == 1) {
1310 *pfn = page_to_pfn(page[0]);
1311
1312 if (writable)
1313 *writable = true;
1314 return true;
1315 }
1316
1317 return false;
1318 }
1319
1320 /*
1321 * The slow path to get the pfn of the specified host virtual address,
1322 * 1 indicates success, -errno is returned if error is detected.
1323 */
1324 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1325 bool *writable, pfn_t *pfn)
1326 {
1327 struct page *page[1];
1328 int npages = 0;
1329
1330 might_sleep();
1331
1332 if (writable)
1333 *writable = write_fault;
1334
1335 if (async) {
1336 down_read(&current->mm->mmap_sem);
1337 npages = get_user_page_nowait(current, current->mm,
1338 addr, write_fault, page);
1339 up_read(&current->mm->mmap_sem);
1340 } else
1341 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1342 write_fault, 0, page,
1343 FOLL_TOUCH|FOLL_HWPOISON);
1344 if (npages != 1)
1345 return npages;
1346
1347 /* map read fault as writable if possible */
1348 if (unlikely(!write_fault) && writable) {
1349 struct page *wpage[1];
1350
1351 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1352 if (npages == 1) {
1353 *writable = true;
1354 put_page(page[0]);
1355 page[0] = wpage[0];
1356 }
1357
1358 npages = 1;
1359 }
1360 *pfn = page_to_pfn(page[0]);
1361 return npages;
1362 }
1363
1364 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1365 {
1366 if (unlikely(!(vma->vm_flags & VM_READ)))
1367 return false;
1368
1369 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1370 return false;
1371
1372 return true;
1373 }
1374
1375 /*
1376 * Pin guest page in memory and return its pfn.
1377 * @addr: host virtual address which maps memory to the guest
1378 * @atomic: whether this function can sleep
1379 * @async: whether this function need to wait IO complete if the
1380 * host page is not in the memory
1381 * @write_fault: whether we should get a writable host page
1382 * @writable: whether it allows to map a writable host page for !@write_fault
1383 *
1384 * The function will map a writable host page for these two cases:
1385 * 1): @write_fault = true
1386 * 2): @write_fault = false && @writable, @writable will tell the caller
1387 * whether the mapping is writable.
1388 */
1389 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1390 bool write_fault, bool *writable)
1391 {
1392 struct vm_area_struct *vma;
1393 pfn_t pfn = 0;
1394 int npages;
1395
1396 /* we can do it either atomically or asynchronously, not both */
1397 BUG_ON(atomic && async);
1398
1399 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1400 return pfn;
1401
1402 if (atomic)
1403 return KVM_PFN_ERR_FAULT;
1404
1405 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1406 if (npages == 1)
1407 return pfn;
1408
1409 down_read(&current->mm->mmap_sem);
1410 if (npages == -EHWPOISON ||
1411 (!async && check_user_page_hwpoison(addr))) {
1412 pfn = KVM_PFN_ERR_HWPOISON;
1413 goto exit;
1414 }
1415
1416 vma = find_vma_intersection(current->mm, addr, addr + 1);
1417
1418 if (vma == NULL)
1419 pfn = KVM_PFN_ERR_FAULT;
1420 else if ((vma->vm_flags & VM_PFNMAP)) {
1421 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1422 vma->vm_pgoff;
1423 BUG_ON(!kvm_is_reserved_pfn(pfn));
1424 } else {
1425 if (async && vma_is_valid(vma, write_fault))
1426 *async = true;
1427 pfn = KVM_PFN_ERR_FAULT;
1428 }
1429 exit:
1430 up_read(&current->mm->mmap_sem);
1431 return pfn;
1432 }
1433
1434 pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1435 bool *async, bool write_fault, bool *writable)
1436 {
1437 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1438
1439 if (addr == KVM_HVA_ERR_RO_BAD)
1440 return KVM_PFN_ERR_RO_FAULT;
1441
1442 if (kvm_is_error_hva(addr))
1443 return KVM_PFN_NOSLOT;
1444
1445 /* Do not map writable pfn in the readonly memslot. */
1446 if (writable && memslot_is_readonly(slot)) {
1447 *writable = false;
1448 writable = NULL;
1449 }
1450
1451 return hva_to_pfn(addr, atomic, async, write_fault,
1452 writable);
1453 }
1454 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1455
1456 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1457 bool *writable)
1458 {
1459 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1460 write_fault, writable);
1461 }
1462 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1463
1464 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1465 {
1466 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1467 }
1468 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1469
1470 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1471 {
1472 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1473 }
1474 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1475
1476 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1477 {
1478 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1479 }
1480 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1481
1482 pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1483 {
1484 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1485 }
1486 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1487
1488 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1489 {
1490 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1491 }
1492 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1493
1494 pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1495 {
1496 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1497 }
1498 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1499
1500 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1501 struct page **pages, int nr_pages)
1502 {
1503 unsigned long addr;
1504 gfn_t entry;
1505
1506 addr = gfn_to_hva_many(slot, gfn, &entry);
1507 if (kvm_is_error_hva(addr))
1508 return -1;
1509
1510 if (entry < nr_pages)
1511 return 0;
1512
1513 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1514 }
1515 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1516
1517 static struct page *kvm_pfn_to_page(pfn_t pfn)
1518 {
1519 if (is_error_noslot_pfn(pfn))
1520 return KVM_ERR_PTR_BAD_PAGE;
1521
1522 if (kvm_is_reserved_pfn(pfn)) {
1523 WARN_ON(1);
1524 return KVM_ERR_PTR_BAD_PAGE;
1525 }
1526
1527 return pfn_to_page(pfn);
1528 }
1529
1530 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1531 {
1532 pfn_t pfn;
1533
1534 pfn = gfn_to_pfn(kvm, gfn);
1535
1536 return kvm_pfn_to_page(pfn);
1537 }
1538 EXPORT_SYMBOL_GPL(gfn_to_page);
1539
1540 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1541 {
1542 pfn_t pfn;
1543
1544 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1545
1546 return kvm_pfn_to_page(pfn);
1547 }
1548 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1549
1550 void kvm_release_page_clean(struct page *page)
1551 {
1552 WARN_ON(is_error_page(page));
1553
1554 kvm_release_pfn_clean(page_to_pfn(page));
1555 }
1556 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1557
1558 void kvm_release_pfn_clean(pfn_t pfn)
1559 {
1560 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1561 put_page(pfn_to_page(pfn));
1562 }
1563 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1564
1565 void kvm_release_page_dirty(struct page *page)
1566 {
1567 WARN_ON(is_error_page(page));
1568
1569 kvm_release_pfn_dirty(page_to_pfn(page));
1570 }
1571 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1572
1573 static void kvm_release_pfn_dirty(pfn_t pfn)
1574 {
1575 kvm_set_pfn_dirty(pfn);
1576 kvm_release_pfn_clean(pfn);
1577 }
1578
1579 void kvm_set_pfn_dirty(pfn_t pfn)
1580 {
1581 if (!kvm_is_reserved_pfn(pfn)) {
1582 struct page *page = pfn_to_page(pfn);
1583
1584 if (!PageReserved(page))
1585 SetPageDirty(page);
1586 }
1587 }
1588 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1589
1590 void kvm_set_pfn_accessed(pfn_t pfn)
1591 {
1592 if (!kvm_is_reserved_pfn(pfn))
1593 mark_page_accessed(pfn_to_page(pfn));
1594 }
1595 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1596
1597 void kvm_get_pfn(pfn_t pfn)
1598 {
1599 if (!kvm_is_reserved_pfn(pfn))
1600 get_page(pfn_to_page(pfn));
1601 }
1602 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1603
1604 static int next_segment(unsigned long len, int offset)
1605 {
1606 if (len > PAGE_SIZE - offset)
1607 return PAGE_SIZE - offset;
1608 else
1609 return len;
1610 }
1611
1612 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1613 void *data, int offset, int len)
1614 {
1615 int r;
1616 unsigned long addr;
1617
1618 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1619 if (kvm_is_error_hva(addr))
1620 return -EFAULT;
1621 r = __copy_from_user(data, (void __user *)addr + offset, len);
1622 if (r)
1623 return -EFAULT;
1624 return 0;
1625 }
1626
1627 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1628 int len)
1629 {
1630 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1631
1632 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1633 }
1634 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1635
1636 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1637 int offset, int len)
1638 {
1639 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1640
1641 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1642 }
1643 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1644
1645 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1646 {
1647 gfn_t gfn = gpa >> PAGE_SHIFT;
1648 int seg;
1649 int offset = offset_in_page(gpa);
1650 int ret;
1651
1652 while ((seg = next_segment(len, offset)) != 0) {
1653 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1654 if (ret < 0)
1655 return ret;
1656 offset = 0;
1657 len -= seg;
1658 data += seg;
1659 ++gfn;
1660 }
1661 return 0;
1662 }
1663 EXPORT_SYMBOL_GPL(kvm_read_guest);
1664
1665 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1666 {
1667 gfn_t gfn = gpa >> PAGE_SHIFT;
1668 int seg;
1669 int offset = offset_in_page(gpa);
1670 int ret;
1671
1672 while ((seg = next_segment(len, offset)) != 0) {
1673 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1674 if (ret < 0)
1675 return ret;
1676 offset = 0;
1677 len -= seg;
1678 data += seg;
1679 ++gfn;
1680 }
1681 return 0;
1682 }
1683 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1684
1685 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1686 void *data, int offset, unsigned long len)
1687 {
1688 int r;
1689 unsigned long addr;
1690
1691 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1692 if (kvm_is_error_hva(addr))
1693 return -EFAULT;
1694 pagefault_disable();
1695 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1696 pagefault_enable();
1697 if (r)
1698 return -EFAULT;
1699 return 0;
1700 }
1701
1702 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1703 unsigned long len)
1704 {
1705 gfn_t gfn = gpa >> PAGE_SHIFT;
1706 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1707 int offset = offset_in_page(gpa);
1708
1709 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1710 }
1711 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1712
1713 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1714 void *data, unsigned long len)
1715 {
1716 gfn_t gfn = gpa >> PAGE_SHIFT;
1717 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1718 int offset = offset_in_page(gpa);
1719
1720 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1721 }
1722 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1723
1724 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1725 const void *data, int offset, int len)
1726 {
1727 int r;
1728 unsigned long addr;
1729
1730 addr = gfn_to_hva_memslot(memslot, gfn);
1731 if (kvm_is_error_hva(addr))
1732 return -EFAULT;
1733 r = __copy_to_user((void __user *)addr + offset, data, len);
1734 if (r)
1735 return -EFAULT;
1736 mark_page_dirty_in_slot(memslot, gfn);
1737 return 0;
1738 }
1739
1740 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1741 const void *data, int offset, int len)
1742 {
1743 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1744
1745 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1746 }
1747 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1748
1749 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1750 const void *data, int offset, int len)
1751 {
1752 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1753
1754 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1755 }
1756 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1757
1758 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1759 unsigned long len)
1760 {
1761 gfn_t gfn = gpa >> PAGE_SHIFT;
1762 int seg;
1763 int offset = offset_in_page(gpa);
1764 int ret;
1765
1766 while ((seg = next_segment(len, offset)) != 0) {
1767 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1768 if (ret < 0)
1769 return ret;
1770 offset = 0;
1771 len -= seg;
1772 data += seg;
1773 ++gfn;
1774 }
1775 return 0;
1776 }
1777 EXPORT_SYMBOL_GPL(kvm_write_guest);
1778
1779 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1780 unsigned long len)
1781 {
1782 gfn_t gfn = gpa >> PAGE_SHIFT;
1783 int seg;
1784 int offset = offset_in_page(gpa);
1785 int ret;
1786
1787 while ((seg = next_segment(len, offset)) != 0) {
1788 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1789 if (ret < 0)
1790 return ret;
1791 offset = 0;
1792 len -= seg;
1793 data += seg;
1794 ++gfn;
1795 }
1796 return 0;
1797 }
1798 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1799
1800 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1801 gpa_t gpa, unsigned long len)
1802 {
1803 struct kvm_memslots *slots = kvm_memslots(kvm);
1804 int offset = offset_in_page(gpa);
1805 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1806 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1807 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1808 gfn_t nr_pages_avail;
1809
1810 ghc->gpa = gpa;
1811 ghc->generation = slots->generation;
1812 ghc->len = len;
1813 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1814 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1815 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1816 ghc->hva += offset;
1817 } else {
1818 /*
1819 * If the requested region crosses two memslots, we still
1820 * verify that the entire region is valid here.
1821 */
1822 while (start_gfn <= end_gfn) {
1823 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1824 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1825 &nr_pages_avail);
1826 if (kvm_is_error_hva(ghc->hva))
1827 return -EFAULT;
1828 start_gfn += nr_pages_avail;
1829 }
1830 /* Use the slow path for cross page reads and writes. */
1831 ghc->memslot = NULL;
1832 }
1833 return 0;
1834 }
1835 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1836
1837 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1838 void *data, unsigned long len)
1839 {
1840 struct kvm_memslots *slots = kvm_memslots(kvm);
1841 int r;
1842
1843 BUG_ON(len > ghc->len);
1844
1845 if (slots->generation != ghc->generation)
1846 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1847
1848 if (unlikely(!ghc->memslot))
1849 return kvm_write_guest(kvm, ghc->gpa, data, len);
1850
1851 if (kvm_is_error_hva(ghc->hva))
1852 return -EFAULT;
1853
1854 r = __copy_to_user((void __user *)ghc->hva, data, len);
1855 if (r)
1856 return -EFAULT;
1857 mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1858
1859 return 0;
1860 }
1861 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1862
1863 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1864 void *data, unsigned long len)
1865 {
1866 struct kvm_memslots *slots = kvm_memslots(kvm);
1867 int r;
1868
1869 BUG_ON(len > ghc->len);
1870
1871 if (slots->generation != ghc->generation)
1872 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1873
1874 if (unlikely(!ghc->memslot))
1875 return kvm_read_guest(kvm, ghc->gpa, data, len);
1876
1877 if (kvm_is_error_hva(ghc->hva))
1878 return -EFAULT;
1879
1880 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1881 if (r)
1882 return -EFAULT;
1883
1884 return 0;
1885 }
1886 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1887
1888 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1889 {
1890 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1891
1892 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1893 }
1894 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1895
1896 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1897 {
1898 gfn_t gfn = gpa >> PAGE_SHIFT;
1899 int seg;
1900 int offset = offset_in_page(gpa);
1901 int ret;
1902
1903 while ((seg = next_segment(len, offset)) != 0) {
1904 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1905 if (ret < 0)
1906 return ret;
1907 offset = 0;
1908 len -= seg;
1909 ++gfn;
1910 }
1911 return 0;
1912 }
1913 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1914
1915 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1916 gfn_t gfn)
1917 {
1918 if (memslot && memslot->dirty_bitmap) {
1919 unsigned long rel_gfn = gfn - memslot->base_gfn;
1920
1921 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1922 }
1923 }
1924
1925 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1926 {
1927 struct kvm_memory_slot *memslot;
1928
1929 memslot = gfn_to_memslot(kvm, gfn);
1930 mark_page_dirty_in_slot(memslot, gfn);
1931 }
1932 EXPORT_SYMBOL_GPL(mark_page_dirty);
1933
1934 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
1935 {
1936 struct kvm_memory_slot *memslot;
1937
1938 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1939 mark_page_dirty_in_slot(memslot, gfn);
1940 }
1941 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
1942
1943 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
1944 {
1945 int old, val;
1946
1947 old = val = vcpu->halt_poll_ns;
1948 /* 10us base */
1949 if (val == 0 && halt_poll_ns_grow)
1950 val = 10000;
1951 else
1952 val *= halt_poll_ns_grow;
1953
1954 vcpu->halt_poll_ns = val;
1955 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
1956 }
1957
1958 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
1959 {
1960 int old, val;
1961
1962 old = val = vcpu->halt_poll_ns;
1963 if (halt_poll_ns_shrink == 0)
1964 val = 0;
1965 else
1966 val /= halt_poll_ns_shrink;
1967
1968 vcpu->halt_poll_ns = val;
1969 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
1970 }
1971
1972 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1973 {
1974 if (kvm_arch_vcpu_runnable(vcpu)) {
1975 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1976 return -EINTR;
1977 }
1978 if (kvm_cpu_has_pending_timer(vcpu))
1979 return -EINTR;
1980 if (signal_pending(current))
1981 return -EINTR;
1982
1983 return 0;
1984 }
1985
1986 /*
1987 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1988 */
1989 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1990 {
1991 ktime_t start, cur;
1992 DEFINE_WAIT(wait);
1993 bool waited = false;
1994 u64 block_ns;
1995
1996 start = cur = ktime_get();
1997 if (vcpu->halt_poll_ns) {
1998 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
1999
2000 ++vcpu->stat.halt_attempted_poll;
2001 do {
2002 /*
2003 * This sets KVM_REQ_UNHALT if an interrupt
2004 * arrives.
2005 */
2006 if (kvm_vcpu_check_block(vcpu) < 0) {
2007 ++vcpu->stat.halt_successful_poll;
2008 goto out;
2009 }
2010 cur = ktime_get();
2011 } while (single_task_running() && ktime_before(cur, stop));
2012 }
2013
2014 kvm_arch_vcpu_blocking(vcpu);
2015
2016 for (;;) {
2017 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2018
2019 if (kvm_vcpu_check_block(vcpu) < 0)
2020 break;
2021
2022 waited = true;
2023 schedule();
2024 }
2025
2026 finish_wait(&vcpu->wq, &wait);
2027 cur = ktime_get();
2028
2029 kvm_arch_vcpu_unblocking(vcpu);
2030 out:
2031 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2032
2033 if (halt_poll_ns) {
2034 if (block_ns <= vcpu->halt_poll_ns)
2035 ;
2036 /* we had a long block, shrink polling */
2037 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2038 shrink_halt_poll_ns(vcpu);
2039 /* we had a short halt and our poll time is too small */
2040 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2041 block_ns < halt_poll_ns)
2042 grow_halt_poll_ns(vcpu);
2043 } else
2044 vcpu->halt_poll_ns = 0;
2045
2046 trace_kvm_vcpu_wakeup(block_ns, waited);
2047 }
2048 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2049
2050 #ifndef CONFIG_S390
2051 /*
2052 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2053 */
2054 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2055 {
2056 int me;
2057 int cpu = vcpu->cpu;
2058 wait_queue_head_t *wqp;
2059
2060 wqp = kvm_arch_vcpu_wq(vcpu);
2061 if (waitqueue_active(wqp)) {
2062 wake_up_interruptible(wqp);
2063 ++vcpu->stat.halt_wakeup;
2064 }
2065
2066 me = get_cpu();
2067 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2068 if (kvm_arch_vcpu_should_kick(vcpu))
2069 smp_send_reschedule(cpu);
2070 put_cpu();
2071 }
2072 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2073 #endif /* !CONFIG_S390 */
2074
2075 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2076 {
2077 struct pid *pid;
2078 struct task_struct *task = NULL;
2079 int ret = 0;
2080
2081 rcu_read_lock();
2082 pid = rcu_dereference(target->pid);
2083 if (pid)
2084 task = get_pid_task(pid, PIDTYPE_PID);
2085 rcu_read_unlock();
2086 if (!task)
2087 return ret;
2088 ret = yield_to(task, 1);
2089 put_task_struct(task);
2090
2091 return ret;
2092 }
2093 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2094
2095 /*
2096 * Helper that checks whether a VCPU is eligible for directed yield.
2097 * Most eligible candidate to yield is decided by following heuristics:
2098 *
2099 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2100 * (preempted lock holder), indicated by @in_spin_loop.
2101 * Set at the beiginning and cleared at the end of interception/PLE handler.
2102 *
2103 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2104 * chance last time (mostly it has become eligible now since we have probably
2105 * yielded to lockholder in last iteration. This is done by toggling
2106 * @dy_eligible each time a VCPU checked for eligibility.)
2107 *
2108 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2109 * to preempted lock-holder could result in wrong VCPU selection and CPU
2110 * burning. Giving priority for a potential lock-holder increases lock
2111 * progress.
2112 *
2113 * Since algorithm is based on heuristics, accessing another VCPU data without
2114 * locking does not harm. It may result in trying to yield to same VCPU, fail
2115 * and continue with next VCPU and so on.
2116 */
2117 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2118 {
2119 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2120 bool eligible;
2121
2122 eligible = !vcpu->spin_loop.in_spin_loop ||
2123 vcpu->spin_loop.dy_eligible;
2124
2125 if (vcpu->spin_loop.in_spin_loop)
2126 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2127
2128 return eligible;
2129 #else
2130 return true;
2131 #endif
2132 }
2133
2134 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2135 {
2136 struct kvm *kvm = me->kvm;
2137 struct kvm_vcpu *vcpu;
2138 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2139 int yielded = 0;
2140 int try = 3;
2141 int pass;
2142 int i;
2143
2144 kvm_vcpu_set_in_spin_loop(me, true);
2145 /*
2146 * We boost the priority of a VCPU that is runnable but not
2147 * currently running, because it got preempted by something
2148 * else and called schedule in __vcpu_run. Hopefully that
2149 * VCPU is holding the lock that we need and will release it.
2150 * We approximate round-robin by starting at the last boosted VCPU.
2151 */
2152 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2153 kvm_for_each_vcpu(i, vcpu, kvm) {
2154 if (!pass && i <= last_boosted_vcpu) {
2155 i = last_boosted_vcpu;
2156 continue;
2157 } else if (pass && i > last_boosted_vcpu)
2158 break;
2159 if (!ACCESS_ONCE(vcpu->preempted))
2160 continue;
2161 if (vcpu == me)
2162 continue;
2163 if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2164 continue;
2165 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2166 continue;
2167
2168 yielded = kvm_vcpu_yield_to(vcpu);
2169 if (yielded > 0) {
2170 kvm->last_boosted_vcpu = i;
2171 break;
2172 } else if (yielded < 0) {
2173 try--;
2174 if (!try)
2175 break;
2176 }
2177 }
2178 }
2179 kvm_vcpu_set_in_spin_loop(me, false);
2180
2181 /* Ensure vcpu is not eligible during next spinloop */
2182 kvm_vcpu_set_dy_eligible(me, false);
2183 }
2184 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2185
2186 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2187 {
2188 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2189 struct page *page;
2190
2191 if (vmf->pgoff == 0)
2192 page = virt_to_page(vcpu->run);
2193 #ifdef CONFIG_X86
2194 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2195 page = virt_to_page(vcpu->arch.pio_data);
2196 #endif
2197 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2198 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2199 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2200 #endif
2201 else
2202 return kvm_arch_vcpu_fault(vcpu, vmf);
2203 get_page(page);
2204 vmf->page = page;
2205 return 0;
2206 }
2207
2208 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2209 .fault = kvm_vcpu_fault,
2210 };
2211
2212 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2213 {
2214 vma->vm_ops = &kvm_vcpu_vm_ops;
2215 return 0;
2216 }
2217
2218 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2219 {
2220 struct kvm_vcpu *vcpu = filp->private_data;
2221
2222 kvm_put_kvm(vcpu->kvm);
2223 return 0;
2224 }
2225
2226 static struct file_operations kvm_vcpu_fops = {
2227 .release = kvm_vcpu_release,
2228 .unlocked_ioctl = kvm_vcpu_ioctl,
2229 #ifdef CONFIG_KVM_COMPAT
2230 .compat_ioctl = kvm_vcpu_compat_ioctl,
2231 #endif
2232 .mmap = kvm_vcpu_mmap,
2233 .llseek = noop_llseek,
2234 };
2235
2236 /*
2237 * Allocates an inode for the vcpu.
2238 */
2239 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2240 {
2241 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2242 }
2243
2244 /*
2245 * Creates some virtual cpus. Good luck creating more than one.
2246 */
2247 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2248 {
2249 int r;
2250 struct kvm_vcpu *vcpu;
2251
2252 if (id >= KVM_MAX_VCPUS)
2253 return -EINVAL;
2254
2255 vcpu = kvm_arch_vcpu_create(kvm, id);
2256 if (IS_ERR(vcpu))
2257 return PTR_ERR(vcpu);
2258
2259 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2260
2261 r = kvm_arch_vcpu_setup(vcpu);
2262 if (r)
2263 goto vcpu_destroy;
2264
2265 mutex_lock(&kvm->lock);
2266 if (!kvm_vcpu_compatible(vcpu)) {
2267 r = -EINVAL;
2268 goto unlock_vcpu_destroy;
2269 }
2270 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2271 r = -EINVAL;
2272 goto unlock_vcpu_destroy;
2273 }
2274 if (kvm_get_vcpu_by_id(kvm, id)) {
2275 r = -EEXIST;
2276 goto unlock_vcpu_destroy;
2277 }
2278
2279 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2280
2281 /* Now it's all set up, let userspace reach it */
2282 kvm_get_kvm(kvm);
2283 r = create_vcpu_fd(vcpu);
2284 if (r < 0) {
2285 kvm_put_kvm(kvm);
2286 goto unlock_vcpu_destroy;
2287 }
2288
2289 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2290
2291 /*
2292 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2293 * before kvm->online_vcpu's incremented value.
2294 */
2295 smp_wmb();
2296 atomic_inc(&kvm->online_vcpus);
2297
2298 mutex_unlock(&kvm->lock);
2299 kvm_arch_vcpu_postcreate(vcpu);
2300 return r;
2301
2302 unlock_vcpu_destroy:
2303 mutex_unlock(&kvm->lock);
2304 vcpu_destroy:
2305 kvm_arch_vcpu_destroy(vcpu);
2306 return r;
2307 }
2308
2309 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2310 {
2311 if (sigset) {
2312 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2313 vcpu->sigset_active = 1;
2314 vcpu->sigset = *sigset;
2315 } else
2316 vcpu->sigset_active = 0;
2317 return 0;
2318 }
2319
2320 static long kvm_vcpu_ioctl(struct file *filp,
2321 unsigned int ioctl, unsigned long arg)
2322 {
2323 struct kvm_vcpu *vcpu = filp->private_data;
2324 void __user *argp = (void __user *)arg;
2325 int r;
2326 struct kvm_fpu *fpu = NULL;
2327 struct kvm_sregs *kvm_sregs = NULL;
2328
2329 if (vcpu->kvm->mm != current->mm)
2330 return -EIO;
2331
2332 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2333 return -EINVAL;
2334
2335 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2336 /*
2337 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2338 * so vcpu_load() would break it.
2339 */
2340 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2341 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2342 #endif
2343
2344
2345 r = vcpu_load(vcpu);
2346 if (r)
2347 return r;
2348 switch (ioctl) {
2349 case KVM_RUN:
2350 r = -EINVAL;
2351 if (arg)
2352 goto out;
2353 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2354 /* The thread running this VCPU changed. */
2355 struct pid *oldpid = vcpu->pid;
2356 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2357
2358 rcu_assign_pointer(vcpu->pid, newpid);
2359 if (oldpid)
2360 synchronize_rcu();
2361 put_pid(oldpid);
2362 }
2363 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2364 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2365 break;
2366 case KVM_GET_REGS: {
2367 struct kvm_regs *kvm_regs;
2368
2369 r = -ENOMEM;
2370 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2371 if (!kvm_regs)
2372 goto out;
2373 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2374 if (r)
2375 goto out_free1;
2376 r = -EFAULT;
2377 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2378 goto out_free1;
2379 r = 0;
2380 out_free1:
2381 kfree(kvm_regs);
2382 break;
2383 }
2384 case KVM_SET_REGS: {
2385 struct kvm_regs *kvm_regs;
2386
2387 r = -ENOMEM;
2388 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2389 if (IS_ERR(kvm_regs)) {
2390 r = PTR_ERR(kvm_regs);
2391 goto out;
2392 }
2393 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2394 kfree(kvm_regs);
2395 break;
2396 }
2397 case KVM_GET_SREGS: {
2398 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2399 r = -ENOMEM;
2400 if (!kvm_sregs)
2401 goto out;
2402 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2403 if (r)
2404 goto out;
2405 r = -EFAULT;
2406 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2407 goto out;
2408 r = 0;
2409 break;
2410 }
2411 case KVM_SET_SREGS: {
2412 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2413 if (IS_ERR(kvm_sregs)) {
2414 r = PTR_ERR(kvm_sregs);
2415 kvm_sregs = NULL;
2416 goto out;
2417 }
2418 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2419 break;
2420 }
2421 case KVM_GET_MP_STATE: {
2422 struct kvm_mp_state mp_state;
2423
2424 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2425 if (r)
2426 goto out;
2427 r = -EFAULT;
2428 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2429 goto out;
2430 r = 0;
2431 break;
2432 }
2433 case KVM_SET_MP_STATE: {
2434 struct kvm_mp_state mp_state;
2435
2436 r = -EFAULT;
2437 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2438 goto out;
2439 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2440 break;
2441 }
2442 case KVM_TRANSLATE: {
2443 struct kvm_translation tr;
2444
2445 r = -EFAULT;
2446 if (copy_from_user(&tr, argp, sizeof(tr)))
2447 goto out;
2448 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2449 if (r)
2450 goto out;
2451 r = -EFAULT;
2452 if (copy_to_user(argp, &tr, sizeof(tr)))
2453 goto out;
2454 r = 0;
2455 break;
2456 }
2457 case KVM_SET_GUEST_DEBUG: {
2458 struct kvm_guest_debug dbg;
2459
2460 r = -EFAULT;
2461 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2462 goto out;
2463 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2464 break;
2465 }
2466 case KVM_SET_SIGNAL_MASK: {
2467 struct kvm_signal_mask __user *sigmask_arg = argp;
2468 struct kvm_signal_mask kvm_sigmask;
2469 sigset_t sigset, *p;
2470
2471 p = NULL;
2472 if (argp) {
2473 r = -EFAULT;
2474 if (copy_from_user(&kvm_sigmask, argp,
2475 sizeof(kvm_sigmask)))
2476 goto out;
2477 r = -EINVAL;
2478 if (kvm_sigmask.len != sizeof(sigset))
2479 goto out;
2480 r = -EFAULT;
2481 if (copy_from_user(&sigset, sigmask_arg->sigset,
2482 sizeof(sigset)))
2483 goto out;
2484 p = &sigset;
2485 }
2486 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2487 break;
2488 }
2489 case KVM_GET_FPU: {
2490 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2491 r = -ENOMEM;
2492 if (!fpu)
2493 goto out;
2494 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2495 if (r)
2496 goto out;
2497 r = -EFAULT;
2498 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2499 goto out;
2500 r = 0;
2501 break;
2502 }
2503 case KVM_SET_FPU: {
2504 fpu = memdup_user(argp, sizeof(*fpu));
2505 if (IS_ERR(fpu)) {
2506 r = PTR_ERR(fpu);
2507 fpu = NULL;
2508 goto out;
2509 }
2510 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2511 break;
2512 }
2513 default:
2514 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2515 }
2516 out:
2517 vcpu_put(vcpu);
2518 kfree(fpu);
2519 kfree(kvm_sregs);
2520 return r;
2521 }
2522
2523 #ifdef CONFIG_KVM_COMPAT
2524 static long kvm_vcpu_compat_ioctl(struct file *filp,
2525 unsigned int ioctl, unsigned long arg)
2526 {
2527 struct kvm_vcpu *vcpu = filp->private_data;
2528 void __user *argp = compat_ptr(arg);
2529 int r;
2530
2531 if (vcpu->kvm->mm != current->mm)
2532 return -EIO;
2533
2534 switch (ioctl) {
2535 case KVM_SET_SIGNAL_MASK: {
2536 struct kvm_signal_mask __user *sigmask_arg = argp;
2537 struct kvm_signal_mask kvm_sigmask;
2538 compat_sigset_t csigset;
2539 sigset_t sigset;
2540
2541 if (argp) {
2542 r = -EFAULT;
2543 if (copy_from_user(&kvm_sigmask, argp,
2544 sizeof(kvm_sigmask)))
2545 goto out;
2546 r = -EINVAL;
2547 if (kvm_sigmask.len != sizeof(csigset))
2548 goto out;
2549 r = -EFAULT;
2550 if (copy_from_user(&csigset, sigmask_arg->sigset,
2551 sizeof(csigset)))
2552 goto out;
2553 sigset_from_compat(&sigset, &csigset);
2554 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2555 } else
2556 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2557 break;
2558 }
2559 default:
2560 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2561 }
2562
2563 out:
2564 return r;
2565 }
2566 #endif
2567
2568 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2569 int (*accessor)(struct kvm_device *dev,
2570 struct kvm_device_attr *attr),
2571 unsigned long arg)
2572 {
2573 struct kvm_device_attr attr;
2574
2575 if (!accessor)
2576 return -EPERM;
2577
2578 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2579 return -EFAULT;
2580
2581 return accessor(dev, &attr);
2582 }
2583
2584 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2585 unsigned long arg)
2586 {
2587 struct kvm_device *dev = filp->private_data;
2588
2589 switch (ioctl) {
2590 case KVM_SET_DEVICE_ATTR:
2591 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2592 case KVM_GET_DEVICE_ATTR:
2593 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2594 case KVM_HAS_DEVICE_ATTR:
2595 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2596 default:
2597 if (dev->ops->ioctl)
2598 return dev->ops->ioctl(dev, ioctl, arg);
2599
2600 return -ENOTTY;
2601 }
2602 }
2603
2604 static int kvm_device_release(struct inode *inode, struct file *filp)
2605 {
2606 struct kvm_device *dev = filp->private_data;
2607 struct kvm *kvm = dev->kvm;
2608
2609 kvm_put_kvm(kvm);
2610 return 0;
2611 }
2612
2613 static const struct file_operations kvm_device_fops = {
2614 .unlocked_ioctl = kvm_device_ioctl,
2615 #ifdef CONFIG_KVM_COMPAT
2616 .compat_ioctl = kvm_device_ioctl,
2617 #endif
2618 .release = kvm_device_release,
2619 };
2620
2621 struct kvm_device *kvm_device_from_filp(struct file *filp)
2622 {
2623 if (filp->f_op != &kvm_device_fops)
2624 return NULL;
2625
2626 return filp->private_data;
2627 }
2628
2629 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2630 #ifdef CONFIG_KVM_MPIC
2631 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2632 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2633 #endif
2634
2635 #ifdef CONFIG_KVM_XICS
2636 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2637 #endif
2638 };
2639
2640 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2641 {
2642 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2643 return -ENOSPC;
2644
2645 if (kvm_device_ops_table[type] != NULL)
2646 return -EEXIST;
2647
2648 kvm_device_ops_table[type] = ops;
2649 return 0;
2650 }
2651
2652 void kvm_unregister_device_ops(u32 type)
2653 {
2654 if (kvm_device_ops_table[type] != NULL)
2655 kvm_device_ops_table[type] = NULL;
2656 }
2657
2658 static int kvm_ioctl_create_device(struct kvm *kvm,
2659 struct kvm_create_device *cd)
2660 {
2661 struct kvm_device_ops *ops = NULL;
2662 struct kvm_device *dev;
2663 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2664 int ret;
2665
2666 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2667 return -ENODEV;
2668
2669 ops = kvm_device_ops_table[cd->type];
2670 if (ops == NULL)
2671 return -ENODEV;
2672
2673 if (test)
2674 return 0;
2675
2676 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2677 if (!dev)
2678 return -ENOMEM;
2679
2680 dev->ops = ops;
2681 dev->kvm = kvm;
2682
2683 ret = ops->create(dev, cd->type);
2684 if (ret < 0) {
2685 kfree(dev);
2686 return ret;
2687 }
2688
2689 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2690 if (ret < 0) {
2691 ops->destroy(dev);
2692 return ret;
2693 }
2694
2695 list_add(&dev->vm_node, &kvm->devices);
2696 kvm_get_kvm(kvm);
2697 cd->fd = ret;
2698 return 0;
2699 }
2700
2701 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2702 {
2703 switch (arg) {
2704 case KVM_CAP_USER_MEMORY:
2705 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2706 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2707 case KVM_CAP_INTERNAL_ERROR_DATA:
2708 #ifdef CONFIG_HAVE_KVM_MSI
2709 case KVM_CAP_SIGNAL_MSI:
2710 #endif
2711 #ifdef CONFIG_HAVE_KVM_IRQFD
2712 case KVM_CAP_IRQFD:
2713 case KVM_CAP_IRQFD_RESAMPLE:
2714 #endif
2715 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2716 case KVM_CAP_CHECK_EXTENSION_VM:
2717 return 1;
2718 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2719 case KVM_CAP_IRQ_ROUTING:
2720 return KVM_MAX_IRQ_ROUTES;
2721 #endif
2722 #if KVM_ADDRESS_SPACE_NUM > 1
2723 case KVM_CAP_MULTI_ADDRESS_SPACE:
2724 return KVM_ADDRESS_SPACE_NUM;
2725 #endif
2726 default:
2727 break;
2728 }
2729 return kvm_vm_ioctl_check_extension(kvm, arg);
2730 }
2731
2732 static long kvm_vm_ioctl(struct file *filp,
2733 unsigned int ioctl, unsigned long arg)
2734 {
2735 struct kvm *kvm = filp->private_data;
2736 void __user *argp = (void __user *)arg;
2737 int r;
2738
2739 if (kvm->mm != current->mm)
2740 return -EIO;
2741 switch (ioctl) {
2742 case KVM_CREATE_VCPU:
2743 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2744 break;
2745 case KVM_SET_USER_MEMORY_REGION: {
2746 struct kvm_userspace_memory_region kvm_userspace_mem;
2747
2748 r = -EFAULT;
2749 if (copy_from_user(&kvm_userspace_mem, argp,
2750 sizeof(kvm_userspace_mem)))
2751 goto out;
2752
2753 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2754 break;
2755 }
2756 case KVM_GET_DIRTY_LOG: {
2757 struct kvm_dirty_log log;
2758
2759 r = -EFAULT;
2760 if (copy_from_user(&log, argp, sizeof(log)))
2761 goto out;
2762 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2763 break;
2764 }
2765 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2766 case KVM_REGISTER_COALESCED_MMIO: {
2767 struct kvm_coalesced_mmio_zone zone;
2768
2769 r = -EFAULT;
2770 if (copy_from_user(&zone, argp, sizeof(zone)))
2771 goto out;
2772 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2773 break;
2774 }
2775 case KVM_UNREGISTER_COALESCED_MMIO: {
2776 struct kvm_coalesced_mmio_zone zone;
2777
2778 r = -EFAULT;
2779 if (copy_from_user(&zone, argp, sizeof(zone)))
2780 goto out;
2781 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2782 break;
2783 }
2784 #endif
2785 case KVM_IRQFD: {
2786 struct kvm_irqfd data;
2787
2788 r = -EFAULT;
2789 if (copy_from_user(&data, argp, sizeof(data)))
2790 goto out;
2791 r = kvm_irqfd(kvm, &data);
2792 break;
2793 }
2794 case KVM_IOEVENTFD: {
2795 struct kvm_ioeventfd data;
2796
2797 r = -EFAULT;
2798 if (copy_from_user(&data, argp, sizeof(data)))
2799 goto out;
2800 r = kvm_ioeventfd(kvm, &data);
2801 break;
2802 }
2803 #ifdef CONFIG_HAVE_KVM_MSI
2804 case KVM_SIGNAL_MSI: {
2805 struct kvm_msi msi;
2806
2807 r = -EFAULT;
2808 if (copy_from_user(&msi, argp, sizeof(msi)))
2809 goto out;
2810 r = kvm_send_userspace_msi(kvm, &msi);
2811 break;
2812 }
2813 #endif
2814 #ifdef __KVM_HAVE_IRQ_LINE
2815 case KVM_IRQ_LINE_STATUS:
2816 case KVM_IRQ_LINE: {
2817 struct kvm_irq_level irq_event;
2818
2819 r = -EFAULT;
2820 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2821 goto out;
2822
2823 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2824 ioctl == KVM_IRQ_LINE_STATUS);
2825 if (r)
2826 goto out;
2827
2828 r = -EFAULT;
2829 if (ioctl == KVM_IRQ_LINE_STATUS) {
2830 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2831 goto out;
2832 }
2833
2834 r = 0;
2835 break;
2836 }
2837 #endif
2838 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2839 case KVM_SET_GSI_ROUTING: {
2840 struct kvm_irq_routing routing;
2841 struct kvm_irq_routing __user *urouting;
2842 struct kvm_irq_routing_entry *entries;
2843
2844 r = -EFAULT;
2845 if (copy_from_user(&routing, argp, sizeof(routing)))
2846 goto out;
2847 r = -EINVAL;
2848 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2849 goto out;
2850 if (routing.flags)
2851 goto out;
2852 r = -ENOMEM;
2853 entries = vmalloc(routing.nr * sizeof(*entries));
2854 if (!entries)
2855 goto out;
2856 r = -EFAULT;
2857 urouting = argp;
2858 if (copy_from_user(entries, urouting->entries,
2859 routing.nr * sizeof(*entries)))
2860 goto out_free_irq_routing;
2861 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2862 routing.flags);
2863 out_free_irq_routing:
2864 vfree(entries);
2865 break;
2866 }
2867 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2868 case KVM_CREATE_DEVICE: {
2869 struct kvm_create_device cd;
2870
2871 r = -EFAULT;
2872 if (copy_from_user(&cd, argp, sizeof(cd)))
2873 goto out;
2874
2875 r = kvm_ioctl_create_device(kvm, &cd);
2876 if (r)
2877 goto out;
2878
2879 r = -EFAULT;
2880 if (copy_to_user(argp, &cd, sizeof(cd)))
2881 goto out;
2882
2883 r = 0;
2884 break;
2885 }
2886 case KVM_CHECK_EXTENSION:
2887 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2888 break;
2889 default:
2890 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2891 }
2892 out:
2893 return r;
2894 }
2895
2896 #ifdef CONFIG_KVM_COMPAT
2897 struct compat_kvm_dirty_log {
2898 __u32 slot;
2899 __u32 padding1;
2900 union {
2901 compat_uptr_t dirty_bitmap; /* one bit per page */
2902 __u64 padding2;
2903 };
2904 };
2905
2906 static long kvm_vm_compat_ioctl(struct file *filp,
2907 unsigned int ioctl, unsigned long arg)
2908 {
2909 struct kvm *kvm = filp->private_data;
2910 int r;
2911
2912 if (kvm->mm != current->mm)
2913 return -EIO;
2914 switch (ioctl) {
2915 case KVM_GET_DIRTY_LOG: {
2916 struct compat_kvm_dirty_log compat_log;
2917 struct kvm_dirty_log log;
2918
2919 r = -EFAULT;
2920 if (copy_from_user(&compat_log, (void __user *)arg,
2921 sizeof(compat_log)))
2922 goto out;
2923 log.slot = compat_log.slot;
2924 log.padding1 = compat_log.padding1;
2925 log.padding2 = compat_log.padding2;
2926 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2927
2928 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2929 break;
2930 }
2931 default:
2932 r = kvm_vm_ioctl(filp, ioctl, arg);
2933 }
2934
2935 out:
2936 return r;
2937 }
2938 #endif
2939
2940 static struct file_operations kvm_vm_fops = {
2941 .release = kvm_vm_release,
2942 .unlocked_ioctl = kvm_vm_ioctl,
2943 #ifdef CONFIG_KVM_COMPAT
2944 .compat_ioctl = kvm_vm_compat_ioctl,
2945 #endif
2946 .llseek = noop_llseek,
2947 };
2948
2949 static int kvm_dev_ioctl_create_vm(unsigned long type)
2950 {
2951 int r;
2952 struct kvm *kvm;
2953
2954 kvm = kvm_create_vm(type);
2955 if (IS_ERR(kvm))
2956 return PTR_ERR(kvm);
2957 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2958 r = kvm_coalesced_mmio_init(kvm);
2959 if (r < 0) {
2960 kvm_put_kvm(kvm);
2961 return r;
2962 }
2963 #endif
2964 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2965 if (r < 0)
2966 kvm_put_kvm(kvm);
2967
2968 return r;
2969 }
2970
2971 static long kvm_dev_ioctl(struct file *filp,
2972 unsigned int ioctl, unsigned long arg)
2973 {
2974 long r = -EINVAL;
2975
2976 switch (ioctl) {
2977 case KVM_GET_API_VERSION:
2978 if (arg)
2979 goto out;
2980 r = KVM_API_VERSION;
2981 break;
2982 case KVM_CREATE_VM:
2983 r = kvm_dev_ioctl_create_vm(arg);
2984 break;
2985 case KVM_CHECK_EXTENSION:
2986 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2987 break;
2988 case KVM_GET_VCPU_MMAP_SIZE:
2989 if (arg)
2990 goto out;
2991 r = PAGE_SIZE; /* struct kvm_run */
2992 #ifdef CONFIG_X86
2993 r += PAGE_SIZE; /* pio data page */
2994 #endif
2995 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2996 r += PAGE_SIZE; /* coalesced mmio ring page */
2997 #endif
2998 break;
2999 case KVM_TRACE_ENABLE:
3000 case KVM_TRACE_PAUSE:
3001 case KVM_TRACE_DISABLE:
3002 r = -EOPNOTSUPP;
3003 break;
3004 default:
3005 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3006 }
3007 out:
3008 return r;
3009 }
3010
3011 static struct file_operations kvm_chardev_ops = {
3012 .unlocked_ioctl = kvm_dev_ioctl,
3013 .compat_ioctl = kvm_dev_ioctl,
3014 .llseek = noop_llseek,
3015 };
3016
3017 static struct miscdevice kvm_dev = {
3018 KVM_MINOR,
3019 "kvm",
3020 &kvm_chardev_ops,
3021 };
3022
3023 static void hardware_enable_nolock(void *junk)
3024 {
3025 int cpu = raw_smp_processor_id();
3026 int r;
3027
3028 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3029 return;
3030
3031 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3032
3033 r = kvm_arch_hardware_enable();
3034
3035 if (r) {
3036 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3037 atomic_inc(&hardware_enable_failed);
3038 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3039 }
3040 }
3041
3042 static void hardware_enable(void)
3043 {
3044 raw_spin_lock(&kvm_count_lock);
3045 if (kvm_usage_count)
3046 hardware_enable_nolock(NULL);
3047 raw_spin_unlock(&kvm_count_lock);
3048 }
3049
3050 static void hardware_disable_nolock(void *junk)
3051 {
3052 int cpu = raw_smp_processor_id();
3053
3054 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3055 return;
3056 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3057 kvm_arch_hardware_disable();
3058 }
3059
3060 static void hardware_disable(void)
3061 {
3062 raw_spin_lock(&kvm_count_lock);
3063 if (kvm_usage_count)
3064 hardware_disable_nolock(NULL);
3065 raw_spin_unlock(&kvm_count_lock);
3066 }
3067
3068 static void hardware_disable_all_nolock(void)
3069 {
3070 BUG_ON(!kvm_usage_count);
3071
3072 kvm_usage_count--;
3073 if (!kvm_usage_count)
3074 on_each_cpu(hardware_disable_nolock, NULL, 1);
3075 }
3076
3077 static void hardware_disable_all(void)
3078 {
3079 raw_spin_lock(&kvm_count_lock);
3080 hardware_disable_all_nolock();
3081 raw_spin_unlock(&kvm_count_lock);
3082 }
3083
3084 static int hardware_enable_all(void)
3085 {
3086 int r = 0;
3087
3088 raw_spin_lock(&kvm_count_lock);
3089
3090 kvm_usage_count++;
3091 if (kvm_usage_count == 1) {
3092 atomic_set(&hardware_enable_failed, 0);
3093 on_each_cpu(hardware_enable_nolock, NULL, 1);
3094
3095 if (atomic_read(&hardware_enable_failed)) {
3096 hardware_disable_all_nolock();
3097 r = -EBUSY;
3098 }
3099 }
3100
3101 raw_spin_unlock(&kvm_count_lock);
3102
3103 return r;
3104 }
3105
3106 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3107 void *v)
3108 {
3109 val &= ~CPU_TASKS_FROZEN;
3110 switch (val) {
3111 case CPU_DYING:
3112 hardware_disable();
3113 break;
3114 case CPU_STARTING:
3115 hardware_enable();
3116 break;
3117 }
3118 return NOTIFY_OK;
3119 }
3120
3121 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3122 void *v)
3123 {
3124 /*
3125 * Some (well, at least mine) BIOSes hang on reboot if
3126 * in vmx root mode.
3127 *
3128 * And Intel TXT required VMX off for all cpu when system shutdown.
3129 */
3130 pr_info("kvm: exiting hardware virtualization\n");
3131 kvm_rebooting = true;
3132 on_each_cpu(hardware_disable_nolock, NULL, 1);
3133 return NOTIFY_OK;
3134 }
3135
3136 static struct notifier_block kvm_reboot_notifier = {
3137 .notifier_call = kvm_reboot,
3138 .priority = 0,
3139 };
3140
3141 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3142 {
3143 int i;
3144
3145 for (i = 0; i < bus->dev_count; i++) {
3146 struct kvm_io_device *pos = bus->range[i].dev;
3147
3148 kvm_iodevice_destructor(pos);
3149 }
3150 kfree(bus);
3151 }
3152
3153 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3154 const struct kvm_io_range *r2)
3155 {
3156 gpa_t addr1 = r1->addr;
3157 gpa_t addr2 = r2->addr;
3158
3159 if (addr1 < addr2)
3160 return -1;
3161
3162 /* If r2->len == 0, match the exact address. If r2->len != 0,
3163 * accept any overlapping write. Any order is acceptable for
3164 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3165 * we process all of them.
3166 */
3167 if (r2->len) {
3168 addr1 += r1->len;
3169 addr2 += r2->len;
3170 }
3171
3172 if (addr1 > addr2)
3173 return 1;
3174
3175 return 0;
3176 }
3177
3178 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3179 {
3180 return kvm_io_bus_cmp(p1, p2);
3181 }
3182
3183 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3184 gpa_t addr, int len)
3185 {
3186 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3187 .addr = addr,
3188 .len = len,
3189 .dev = dev,
3190 };
3191
3192 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3193 kvm_io_bus_sort_cmp, NULL);
3194
3195 return 0;
3196 }
3197
3198 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3199 gpa_t addr, int len)
3200 {
3201 struct kvm_io_range *range, key;
3202 int off;
3203
3204 key = (struct kvm_io_range) {
3205 .addr = addr,
3206 .len = len,
3207 };
3208
3209 range = bsearch(&key, bus->range, bus->dev_count,
3210 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3211 if (range == NULL)
3212 return -ENOENT;
3213
3214 off = range - bus->range;
3215
3216 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3217 off--;
3218
3219 return off;
3220 }
3221
3222 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3223 struct kvm_io_range *range, const void *val)
3224 {
3225 int idx;
3226
3227 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3228 if (idx < 0)
3229 return -EOPNOTSUPP;
3230
3231 while (idx < bus->dev_count &&
3232 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3233 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3234 range->len, val))
3235 return idx;
3236 idx++;
3237 }
3238
3239 return -EOPNOTSUPP;
3240 }
3241
3242 /* kvm_io_bus_write - called under kvm->slots_lock */
3243 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3244 int len, const void *val)
3245 {
3246 struct kvm_io_bus *bus;
3247 struct kvm_io_range range;
3248 int r;
3249
3250 range = (struct kvm_io_range) {
3251 .addr = addr,
3252 .len = len,
3253 };
3254
3255 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3256 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3257 return r < 0 ? r : 0;
3258 }
3259
3260 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3261 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3262 gpa_t addr, int len, const void *val, long cookie)
3263 {
3264 struct kvm_io_bus *bus;
3265 struct kvm_io_range range;
3266
3267 range = (struct kvm_io_range) {
3268 .addr = addr,
3269 .len = len,
3270 };
3271
3272 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3273
3274 /* First try the device referenced by cookie. */
3275 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3276 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3277 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3278 val))
3279 return cookie;
3280
3281 /*
3282 * cookie contained garbage; fall back to search and return the
3283 * correct cookie value.
3284 */
3285 return __kvm_io_bus_write(vcpu, bus, &range, val);
3286 }
3287
3288 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3289 struct kvm_io_range *range, void *val)
3290 {
3291 int idx;
3292
3293 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3294 if (idx < 0)
3295 return -EOPNOTSUPP;
3296
3297 while (idx < bus->dev_count &&
3298 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3299 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3300 range->len, val))
3301 return idx;
3302 idx++;
3303 }
3304
3305 return -EOPNOTSUPP;
3306 }
3307 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3308
3309 /* kvm_io_bus_read - called under kvm->slots_lock */
3310 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3311 int len, void *val)
3312 {
3313 struct kvm_io_bus *bus;
3314 struct kvm_io_range range;
3315 int r;
3316
3317 range = (struct kvm_io_range) {
3318 .addr = addr,
3319 .len = len,
3320 };
3321
3322 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3323 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3324 return r < 0 ? r : 0;
3325 }
3326
3327
3328 /* Caller must hold slots_lock. */
3329 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3330 int len, struct kvm_io_device *dev)
3331 {
3332 struct kvm_io_bus *new_bus, *bus;
3333
3334 bus = kvm->buses[bus_idx];
3335 /* exclude ioeventfd which is limited by maximum fd */
3336 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3337 return -ENOSPC;
3338
3339 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3340 sizeof(struct kvm_io_range)), GFP_KERNEL);
3341 if (!new_bus)
3342 return -ENOMEM;
3343 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3344 sizeof(struct kvm_io_range)));
3345 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3346 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3347 synchronize_srcu_expedited(&kvm->srcu);
3348 kfree(bus);
3349
3350 return 0;
3351 }
3352
3353 /* Caller must hold slots_lock. */
3354 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3355 struct kvm_io_device *dev)
3356 {
3357 int i, r;
3358 struct kvm_io_bus *new_bus, *bus;
3359
3360 bus = kvm->buses[bus_idx];
3361 r = -ENOENT;
3362 for (i = 0; i < bus->dev_count; i++)
3363 if (bus->range[i].dev == dev) {
3364 r = 0;
3365 break;
3366 }
3367
3368 if (r)
3369 return r;
3370
3371 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3372 sizeof(struct kvm_io_range)), GFP_KERNEL);
3373 if (!new_bus)
3374 return -ENOMEM;
3375
3376 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3377 new_bus->dev_count--;
3378 memcpy(new_bus->range + i, bus->range + i + 1,
3379 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3380
3381 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3382 synchronize_srcu_expedited(&kvm->srcu);
3383 kfree(bus);
3384 return r;
3385 }
3386
3387 static struct notifier_block kvm_cpu_notifier = {
3388 .notifier_call = kvm_cpu_hotplug,
3389 };
3390
3391 static int vm_stat_get(void *_offset, u64 *val)
3392 {
3393 unsigned offset = (long)_offset;
3394 struct kvm *kvm;
3395
3396 *val = 0;
3397 spin_lock(&kvm_lock);
3398 list_for_each_entry(kvm, &vm_list, vm_list)
3399 *val += *(u32 *)((void *)kvm + offset);
3400 spin_unlock(&kvm_lock);
3401 return 0;
3402 }
3403
3404 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3405
3406 static int vcpu_stat_get(void *_offset, u64 *val)
3407 {
3408 unsigned offset = (long)_offset;
3409 struct kvm *kvm;
3410 struct kvm_vcpu *vcpu;
3411 int i;
3412
3413 *val = 0;
3414 spin_lock(&kvm_lock);
3415 list_for_each_entry(kvm, &vm_list, vm_list)
3416 kvm_for_each_vcpu(i, vcpu, kvm)
3417 *val += *(u32 *)((void *)vcpu + offset);
3418
3419 spin_unlock(&kvm_lock);
3420 return 0;
3421 }
3422
3423 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3424
3425 static const struct file_operations *stat_fops[] = {
3426 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3427 [KVM_STAT_VM] = &vm_stat_fops,
3428 };
3429
3430 static int kvm_init_debug(void)
3431 {
3432 int r = -EEXIST;
3433 struct kvm_stats_debugfs_item *p;
3434
3435 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3436 if (kvm_debugfs_dir == NULL)
3437 goto out;
3438
3439 for (p = debugfs_entries; p->name; ++p) {
3440 if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3441 (void *)(long)p->offset,
3442 stat_fops[p->kind]))
3443 goto out_dir;
3444 }
3445
3446 return 0;
3447
3448 out_dir:
3449 debugfs_remove_recursive(kvm_debugfs_dir);
3450 out:
3451 return r;
3452 }
3453
3454 static int kvm_suspend(void)
3455 {
3456 if (kvm_usage_count)
3457 hardware_disable_nolock(NULL);
3458 return 0;
3459 }
3460
3461 static void kvm_resume(void)
3462 {
3463 if (kvm_usage_count) {
3464 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3465 hardware_enable_nolock(NULL);
3466 }
3467 }
3468
3469 static struct syscore_ops kvm_syscore_ops = {
3470 .suspend = kvm_suspend,
3471 .resume = kvm_resume,
3472 };
3473
3474 static inline
3475 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3476 {
3477 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3478 }
3479
3480 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3481 {
3482 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3483
3484 if (vcpu->preempted)
3485 vcpu->preempted = false;
3486
3487 kvm_arch_sched_in(vcpu, cpu);
3488
3489 kvm_arch_vcpu_load(vcpu, cpu);
3490 }
3491
3492 static void kvm_sched_out(struct preempt_notifier *pn,
3493 struct task_struct *next)
3494 {
3495 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3496
3497 if (current->state == TASK_RUNNING)
3498 vcpu->preempted = true;
3499 kvm_arch_vcpu_put(vcpu);
3500 }
3501
3502 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3503 struct module *module)
3504 {
3505 int r;
3506 int cpu;
3507
3508 r = kvm_arch_init(opaque);
3509 if (r)
3510 goto out_fail;
3511
3512 /*
3513 * kvm_arch_init makes sure there's at most one caller
3514 * for architectures that support multiple implementations,
3515 * like intel and amd on x86.
3516 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3517 * conflicts in case kvm is already setup for another implementation.
3518 */
3519 r = kvm_irqfd_init();
3520 if (r)
3521 goto out_irqfd;
3522
3523 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3524 r = -ENOMEM;
3525 goto out_free_0;
3526 }
3527
3528 r = kvm_arch_hardware_setup();
3529 if (r < 0)
3530 goto out_free_0a;
3531
3532 for_each_online_cpu(cpu) {
3533 smp_call_function_single(cpu,
3534 kvm_arch_check_processor_compat,
3535 &r, 1);
3536 if (r < 0)
3537 goto out_free_1;
3538 }
3539
3540 r = register_cpu_notifier(&kvm_cpu_notifier);
3541 if (r)
3542 goto out_free_2;
3543 register_reboot_notifier(&kvm_reboot_notifier);
3544
3545 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3546 if (!vcpu_align)
3547 vcpu_align = __alignof__(struct kvm_vcpu);
3548 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3549 0, NULL);
3550 if (!kvm_vcpu_cache) {
3551 r = -ENOMEM;
3552 goto out_free_3;
3553 }
3554
3555 r = kvm_async_pf_init();
3556 if (r)
3557 goto out_free;
3558
3559 kvm_chardev_ops.owner = module;
3560 kvm_vm_fops.owner = module;
3561 kvm_vcpu_fops.owner = module;
3562
3563 r = misc_register(&kvm_dev);
3564 if (r) {
3565 pr_err("kvm: misc device register failed\n");
3566 goto out_unreg;
3567 }
3568
3569 register_syscore_ops(&kvm_syscore_ops);
3570
3571 kvm_preempt_ops.sched_in = kvm_sched_in;
3572 kvm_preempt_ops.sched_out = kvm_sched_out;
3573
3574 r = kvm_init_debug();
3575 if (r) {
3576 pr_err("kvm: create debugfs files failed\n");
3577 goto out_undebugfs;
3578 }
3579
3580 r = kvm_vfio_ops_init();
3581 WARN_ON(r);
3582
3583 return 0;
3584
3585 out_undebugfs:
3586 unregister_syscore_ops(&kvm_syscore_ops);
3587 misc_deregister(&kvm_dev);
3588 out_unreg:
3589 kvm_async_pf_deinit();
3590 out_free:
3591 kmem_cache_destroy(kvm_vcpu_cache);
3592 out_free_3:
3593 unregister_reboot_notifier(&kvm_reboot_notifier);
3594 unregister_cpu_notifier(&kvm_cpu_notifier);
3595 out_free_2:
3596 out_free_1:
3597 kvm_arch_hardware_unsetup();
3598 out_free_0a:
3599 free_cpumask_var(cpus_hardware_enabled);
3600 out_free_0:
3601 kvm_irqfd_exit();
3602 out_irqfd:
3603 kvm_arch_exit();
3604 out_fail:
3605 return r;
3606 }
3607 EXPORT_SYMBOL_GPL(kvm_init);
3608
3609 void kvm_exit(void)
3610 {
3611 debugfs_remove_recursive(kvm_debugfs_dir);
3612 misc_deregister(&kvm_dev);
3613 kmem_cache_destroy(kvm_vcpu_cache);
3614 kvm_async_pf_deinit();
3615 unregister_syscore_ops(&kvm_syscore_ops);
3616 unregister_reboot_notifier(&kvm_reboot_notifier);
3617 unregister_cpu_notifier(&kvm_cpu_notifier);
3618 on_each_cpu(hardware_disable_nolock, NULL, 1);
3619 kvm_arch_hardware_unsetup();
3620 kvm_arch_exit();
3621 kvm_irqfd_exit();
3622 free_cpumask_var(cpus_hardware_enabled);
3623 kvm_vfio_ops_exit();
3624 }
3625 EXPORT_SYMBOL_GPL(kvm_exit);