]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - virt/kvm/kvm_main.c
Merge branch 'thinkpad' into release
[mirror_ubuntu-bionic-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46
47 #include <asm/processor.h>
48 #include <asm/io.h>
49 #include <asm/uaccess.h>
50 #include <asm/pgtable.h>
51
52 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
53 #include "coalesced_mmio.h"
54 #endif
55
56 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
57 #include <linux/pci.h>
58 #include <linux/interrupt.h>
59 #include "irq.h"
60 #endif
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/kvm.h>
64
65 MODULE_AUTHOR("Qumranet");
66 MODULE_LICENSE("GPL");
67
68 /*
69 * Ordering of locks:
70 *
71 * kvm->slots_lock --> kvm->lock --> kvm->irq_lock
72 */
73
74 DEFINE_SPINLOCK(kvm_lock);
75 LIST_HEAD(vm_list);
76
77 static cpumask_var_t cpus_hardware_enabled;
78
79 struct kmem_cache *kvm_vcpu_cache;
80 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
81
82 static __read_mostly struct preempt_ops kvm_preempt_ops;
83
84 struct dentry *kvm_debugfs_dir;
85
86 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
87 unsigned long arg);
88
89 static bool kvm_rebooting;
90
91 static bool largepages_enabled = true;
92
93 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
94 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
95 int assigned_dev_id)
96 {
97 struct list_head *ptr;
98 struct kvm_assigned_dev_kernel *match;
99
100 list_for_each(ptr, head) {
101 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
102 if (match->assigned_dev_id == assigned_dev_id)
103 return match;
104 }
105 return NULL;
106 }
107
108 static int find_index_from_host_irq(struct kvm_assigned_dev_kernel
109 *assigned_dev, int irq)
110 {
111 int i, index;
112 struct msix_entry *host_msix_entries;
113
114 host_msix_entries = assigned_dev->host_msix_entries;
115
116 index = -1;
117 for (i = 0; i < assigned_dev->entries_nr; i++)
118 if (irq == host_msix_entries[i].vector) {
119 index = i;
120 break;
121 }
122 if (index < 0) {
123 printk(KERN_WARNING "Fail to find correlated MSI-X entry!\n");
124 return 0;
125 }
126
127 return index;
128 }
129
130 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
131 {
132 struct kvm_assigned_dev_kernel *assigned_dev;
133 struct kvm *kvm;
134 int i;
135
136 assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
137 interrupt_work);
138 kvm = assigned_dev->kvm;
139
140 mutex_lock(&kvm->irq_lock);
141 spin_lock_irq(&assigned_dev->assigned_dev_lock);
142 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
143 struct kvm_guest_msix_entry *guest_entries =
144 assigned_dev->guest_msix_entries;
145 for (i = 0; i < assigned_dev->entries_nr; i++) {
146 if (!(guest_entries[i].flags &
147 KVM_ASSIGNED_MSIX_PENDING))
148 continue;
149 guest_entries[i].flags &= ~KVM_ASSIGNED_MSIX_PENDING;
150 kvm_set_irq(assigned_dev->kvm,
151 assigned_dev->irq_source_id,
152 guest_entries[i].vector, 1);
153 }
154 } else
155 kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id,
156 assigned_dev->guest_irq, 1);
157
158 spin_unlock_irq(&assigned_dev->assigned_dev_lock);
159 mutex_unlock(&assigned_dev->kvm->irq_lock);
160 }
161
162 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
163 {
164 unsigned long flags;
165 struct kvm_assigned_dev_kernel *assigned_dev =
166 (struct kvm_assigned_dev_kernel *) dev_id;
167
168 spin_lock_irqsave(&assigned_dev->assigned_dev_lock, flags);
169 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
170 int index = find_index_from_host_irq(assigned_dev, irq);
171 if (index < 0)
172 goto out;
173 assigned_dev->guest_msix_entries[index].flags |=
174 KVM_ASSIGNED_MSIX_PENDING;
175 }
176
177 schedule_work(&assigned_dev->interrupt_work);
178
179 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_GUEST_INTX) {
180 disable_irq_nosync(irq);
181 assigned_dev->host_irq_disabled = true;
182 }
183
184 out:
185 spin_unlock_irqrestore(&assigned_dev->assigned_dev_lock, flags);
186 return IRQ_HANDLED;
187 }
188
189 /* Ack the irq line for an assigned device */
190 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
191 {
192 struct kvm_assigned_dev_kernel *dev;
193 unsigned long flags;
194
195 if (kian->gsi == -1)
196 return;
197
198 dev = container_of(kian, struct kvm_assigned_dev_kernel,
199 ack_notifier);
200
201 kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
202
203 /* The guest irq may be shared so this ack may be
204 * from another device.
205 */
206 spin_lock_irqsave(&dev->assigned_dev_lock, flags);
207 if (dev->host_irq_disabled) {
208 enable_irq(dev->host_irq);
209 dev->host_irq_disabled = false;
210 }
211 spin_unlock_irqrestore(&dev->assigned_dev_lock, flags);
212 }
213
214 static void deassign_guest_irq(struct kvm *kvm,
215 struct kvm_assigned_dev_kernel *assigned_dev)
216 {
217 kvm_unregister_irq_ack_notifier(kvm, &assigned_dev->ack_notifier);
218 assigned_dev->ack_notifier.gsi = -1;
219
220 if (assigned_dev->irq_source_id != -1)
221 kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
222 assigned_dev->irq_source_id = -1;
223 assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_GUEST_MASK);
224 }
225
226 /* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
227 static void deassign_host_irq(struct kvm *kvm,
228 struct kvm_assigned_dev_kernel *assigned_dev)
229 {
230 /*
231 * In kvm_free_device_irq, cancel_work_sync return true if:
232 * 1. work is scheduled, and then cancelled.
233 * 2. work callback is executed.
234 *
235 * The first one ensured that the irq is disabled and no more events
236 * would happen. But for the second one, the irq may be enabled (e.g.
237 * for MSI). So we disable irq here to prevent further events.
238 *
239 * Notice this maybe result in nested disable if the interrupt type is
240 * INTx, but it's OK for we are going to free it.
241 *
242 * If this function is a part of VM destroy, please ensure that till
243 * now, the kvm state is still legal for probably we also have to wait
244 * interrupt_work done.
245 */
246 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
247 int i;
248 for (i = 0; i < assigned_dev->entries_nr; i++)
249 disable_irq_nosync(assigned_dev->
250 host_msix_entries[i].vector);
251
252 cancel_work_sync(&assigned_dev->interrupt_work);
253
254 for (i = 0; i < assigned_dev->entries_nr; i++)
255 free_irq(assigned_dev->host_msix_entries[i].vector,
256 (void *)assigned_dev);
257
258 assigned_dev->entries_nr = 0;
259 kfree(assigned_dev->host_msix_entries);
260 kfree(assigned_dev->guest_msix_entries);
261 pci_disable_msix(assigned_dev->dev);
262 } else {
263 /* Deal with MSI and INTx */
264 disable_irq_nosync(assigned_dev->host_irq);
265 cancel_work_sync(&assigned_dev->interrupt_work);
266
267 free_irq(assigned_dev->host_irq, (void *)assigned_dev);
268
269 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSI)
270 pci_disable_msi(assigned_dev->dev);
271 }
272
273 assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_HOST_MASK);
274 }
275
276 static int kvm_deassign_irq(struct kvm *kvm,
277 struct kvm_assigned_dev_kernel *assigned_dev,
278 unsigned long irq_requested_type)
279 {
280 unsigned long guest_irq_type, host_irq_type;
281
282 if (!irqchip_in_kernel(kvm))
283 return -EINVAL;
284 /* no irq assignment to deassign */
285 if (!assigned_dev->irq_requested_type)
286 return -ENXIO;
287
288 host_irq_type = irq_requested_type & KVM_DEV_IRQ_HOST_MASK;
289 guest_irq_type = irq_requested_type & KVM_DEV_IRQ_GUEST_MASK;
290
291 if (host_irq_type)
292 deassign_host_irq(kvm, assigned_dev);
293 if (guest_irq_type)
294 deassign_guest_irq(kvm, assigned_dev);
295
296 return 0;
297 }
298
299 static void kvm_free_assigned_irq(struct kvm *kvm,
300 struct kvm_assigned_dev_kernel *assigned_dev)
301 {
302 kvm_deassign_irq(kvm, assigned_dev, assigned_dev->irq_requested_type);
303 }
304
305 static void kvm_free_assigned_device(struct kvm *kvm,
306 struct kvm_assigned_dev_kernel
307 *assigned_dev)
308 {
309 kvm_free_assigned_irq(kvm, assigned_dev);
310
311 pci_reset_function(assigned_dev->dev);
312
313 pci_release_regions(assigned_dev->dev);
314 pci_disable_device(assigned_dev->dev);
315 pci_dev_put(assigned_dev->dev);
316
317 list_del(&assigned_dev->list);
318 kfree(assigned_dev);
319 }
320
321 void kvm_free_all_assigned_devices(struct kvm *kvm)
322 {
323 struct list_head *ptr, *ptr2;
324 struct kvm_assigned_dev_kernel *assigned_dev;
325
326 list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
327 assigned_dev = list_entry(ptr,
328 struct kvm_assigned_dev_kernel,
329 list);
330
331 kvm_free_assigned_device(kvm, assigned_dev);
332 }
333 }
334
335 static int assigned_device_enable_host_intx(struct kvm *kvm,
336 struct kvm_assigned_dev_kernel *dev)
337 {
338 dev->host_irq = dev->dev->irq;
339 /* Even though this is PCI, we don't want to use shared
340 * interrupts. Sharing host devices with guest-assigned devices
341 * on the same interrupt line is not a happy situation: there
342 * are going to be long delays in accepting, acking, etc.
343 */
344 if (request_irq(dev->host_irq, kvm_assigned_dev_intr,
345 0, "kvm_assigned_intx_device", (void *)dev))
346 return -EIO;
347 return 0;
348 }
349
350 #ifdef __KVM_HAVE_MSI
351 static int assigned_device_enable_host_msi(struct kvm *kvm,
352 struct kvm_assigned_dev_kernel *dev)
353 {
354 int r;
355
356 if (!dev->dev->msi_enabled) {
357 r = pci_enable_msi(dev->dev);
358 if (r)
359 return r;
360 }
361
362 dev->host_irq = dev->dev->irq;
363 if (request_irq(dev->host_irq, kvm_assigned_dev_intr, 0,
364 "kvm_assigned_msi_device", (void *)dev)) {
365 pci_disable_msi(dev->dev);
366 return -EIO;
367 }
368
369 return 0;
370 }
371 #endif
372
373 #ifdef __KVM_HAVE_MSIX
374 static int assigned_device_enable_host_msix(struct kvm *kvm,
375 struct kvm_assigned_dev_kernel *dev)
376 {
377 int i, r = -EINVAL;
378
379 /* host_msix_entries and guest_msix_entries should have been
380 * initialized */
381 if (dev->entries_nr == 0)
382 return r;
383
384 r = pci_enable_msix(dev->dev, dev->host_msix_entries, dev->entries_nr);
385 if (r)
386 return r;
387
388 for (i = 0; i < dev->entries_nr; i++) {
389 r = request_irq(dev->host_msix_entries[i].vector,
390 kvm_assigned_dev_intr, 0,
391 "kvm_assigned_msix_device",
392 (void *)dev);
393 /* FIXME: free requested_irq's on failure */
394 if (r)
395 return r;
396 }
397
398 return 0;
399 }
400
401 #endif
402
403 static int assigned_device_enable_guest_intx(struct kvm *kvm,
404 struct kvm_assigned_dev_kernel *dev,
405 struct kvm_assigned_irq *irq)
406 {
407 dev->guest_irq = irq->guest_irq;
408 dev->ack_notifier.gsi = irq->guest_irq;
409 return 0;
410 }
411
412 #ifdef __KVM_HAVE_MSI
413 static int assigned_device_enable_guest_msi(struct kvm *kvm,
414 struct kvm_assigned_dev_kernel *dev,
415 struct kvm_assigned_irq *irq)
416 {
417 dev->guest_irq = irq->guest_irq;
418 dev->ack_notifier.gsi = -1;
419 dev->host_irq_disabled = false;
420 return 0;
421 }
422 #endif
423 #ifdef __KVM_HAVE_MSIX
424 static int assigned_device_enable_guest_msix(struct kvm *kvm,
425 struct kvm_assigned_dev_kernel *dev,
426 struct kvm_assigned_irq *irq)
427 {
428 dev->guest_irq = irq->guest_irq;
429 dev->ack_notifier.gsi = -1;
430 dev->host_irq_disabled = false;
431 return 0;
432 }
433 #endif
434
435 static int assign_host_irq(struct kvm *kvm,
436 struct kvm_assigned_dev_kernel *dev,
437 __u32 host_irq_type)
438 {
439 int r = -EEXIST;
440
441 if (dev->irq_requested_type & KVM_DEV_IRQ_HOST_MASK)
442 return r;
443
444 switch (host_irq_type) {
445 case KVM_DEV_IRQ_HOST_INTX:
446 r = assigned_device_enable_host_intx(kvm, dev);
447 break;
448 #ifdef __KVM_HAVE_MSI
449 case KVM_DEV_IRQ_HOST_MSI:
450 r = assigned_device_enable_host_msi(kvm, dev);
451 break;
452 #endif
453 #ifdef __KVM_HAVE_MSIX
454 case KVM_DEV_IRQ_HOST_MSIX:
455 r = assigned_device_enable_host_msix(kvm, dev);
456 break;
457 #endif
458 default:
459 r = -EINVAL;
460 }
461
462 if (!r)
463 dev->irq_requested_type |= host_irq_type;
464
465 return r;
466 }
467
468 static int assign_guest_irq(struct kvm *kvm,
469 struct kvm_assigned_dev_kernel *dev,
470 struct kvm_assigned_irq *irq,
471 unsigned long guest_irq_type)
472 {
473 int id;
474 int r = -EEXIST;
475
476 if (dev->irq_requested_type & KVM_DEV_IRQ_GUEST_MASK)
477 return r;
478
479 id = kvm_request_irq_source_id(kvm);
480 if (id < 0)
481 return id;
482
483 dev->irq_source_id = id;
484
485 switch (guest_irq_type) {
486 case KVM_DEV_IRQ_GUEST_INTX:
487 r = assigned_device_enable_guest_intx(kvm, dev, irq);
488 break;
489 #ifdef __KVM_HAVE_MSI
490 case KVM_DEV_IRQ_GUEST_MSI:
491 r = assigned_device_enable_guest_msi(kvm, dev, irq);
492 break;
493 #endif
494 #ifdef __KVM_HAVE_MSIX
495 case KVM_DEV_IRQ_GUEST_MSIX:
496 r = assigned_device_enable_guest_msix(kvm, dev, irq);
497 break;
498 #endif
499 default:
500 r = -EINVAL;
501 }
502
503 if (!r) {
504 dev->irq_requested_type |= guest_irq_type;
505 kvm_register_irq_ack_notifier(kvm, &dev->ack_notifier);
506 } else
507 kvm_free_irq_source_id(kvm, dev->irq_source_id);
508
509 return r;
510 }
511
512 /* TODO Deal with KVM_DEV_IRQ_ASSIGNED_MASK_MSIX */
513 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
514 struct kvm_assigned_irq *assigned_irq)
515 {
516 int r = -EINVAL;
517 struct kvm_assigned_dev_kernel *match;
518 unsigned long host_irq_type, guest_irq_type;
519
520 if (!capable(CAP_SYS_RAWIO))
521 return -EPERM;
522
523 if (!irqchip_in_kernel(kvm))
524 return r;
525
526 mutex_lock(&kvm->lock);
527 r = -ENODEV;
528 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
529 assigned_irq->assigned_dev_id);
530 if (!match)
531 goto out;
532
533 host_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_HOST_MASK);
534 guest_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_GUEST_MASK);
535
536 r = -EINVAL;
537 /* can only assign one type at a time */
538 if (hweight_long(host_irq_type) > 1)
539 goto out;
540 if (hweight_long(guest_irq_type) > 1)
541 goto out;
542 if (host_irq_type == 0 && guest_irq_type == 0)
543 goto out;
544
545 r = 0;
546 if (host_irq_type)
547 r = assign_host_irq(kvm, match, host_irq_type);
548 if (r)
549 goto out;
550
551 if (guest_irq_type)
552 r = assign_guest_irq(kvm, match, assigned_irq, guest_irq_type);
553 out:
554 mutex_unlock(&kvm->lock);
555 return r;
556 }
557
558 static int kvm_vm_ioctl_deassign_dev_irq(struct kvm *kvm,
559 struct kvm_assigned_irq
560 *assigned_irq)
561 {
562 int r = -ENODEV;
563 struct kvm_assigned_dev_kernel *match;
564
565 mutex_lock(&kvm->lock);
566
567 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
568 assigned_irq->assigned_dev_id);
569 if (!match)
570 goto out;
571
572 r = kvm_deassign_irq(kvm, match, assigned_irq->flags);
573 out:
574 mutex_unlock(&kvm->lock);
575 return r;
576 }
577
578 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
579 struct kvm_assigned_pci_dev *assigned_dev)
580 {
581 int r = 0;
582 struct kvm_assigned_dev_kernel *match;
583 struct pci_dev *dev;
584
585 down_read(&kvm->slots_lock);
586 mutex_lock(&kvm->lock);
587
588 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
589 assigned_dev->assigned_dev_id);
590 if (match) {
591 /* device already assigned */
592 r = -EEXIST;
593 goto out;
594 }
595
596 match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
597 if (match == NULL) {
598 printk(KERN_INFO "%s: Couldn't allocate memory\n",
599 __func__);
600 r = -ENOMEM;
601 goto out;
602 }
603 dev = pci_get_bus_and_slot(assigned_dev->busnr,
604 assigned_dev->devfn);
605 if (!dev) {
606 printk(KERN_INFO "%s: host device not found\n", __func__);
607 r = -EINVAL;
608 goto out_free;
609 }
610 if (pci_enable_device(dev)) {
611 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
612 r = -EBUSY;
613 goto out_put;
614 }
615 r = pci_request_regions(dev, "kvm_assigned_device");
616 if (r) {
617 printk(KERN_INFO "%s: Could not get access to device regions\n",
618 __func__);
619 goto out_disable;
620 }
621
622 pci_reset_function(dev);
623
624 match->assigned_dev_id = assigned_dev->assigned_dev_id;
625 match->host_busnr = assigned_dev->busnr;
626 match->host_devfn = assigned_dev->devfn;
627 match->flags = assigned_dev->flags;
628 match->dev = dev;
629 spin_lock_init(&match->assigned_dev_lock);
630 match->irq_source_id = -1;
631 match->kvm = kvm;
632 match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
633 INIT_WORK(&match->interrupt_work,
634 kvm_assigned_dev_interrupt_work_handler);
635
636 list_add(&match->list, &kvm->arch.assigned_dev_head);
637
638 if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
639 if (!kvm->arch.iommu_domain) {
640 r = kvm_iommu_map_guest(kvm);
641 if (r)
642 goto out_list_del;
643 }
644 r = kvm_assign_device(kvm, match);
645 if (r)
646 goto out_list_del;
647 }
648
649 out:
650 mutex_unlock(&kvm->lock);
651 up_read(&kvm->slots_lock);
652 return r;
653 out_list_del:
654 list_del(&match->list);
655 pci_release_regions(dev);
656 out_disable:
657 pci_disable_device(dev);
658 out_put:
659 pci_dev_put(dev);
660 out_free:
661 kfree(match);
662 mutex_unlock(&kvm->lock);
663 up_read(&kvm->slots_lock);
664 return r;
665 }
666 #endif
667
668 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
669 static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
670 struct kvm_assigned_pci_dev *assigned_dev)
671 {
672 int r = 0;
673 struct kvm_assigned_dev_kernel *match;
674
675 mutex_lock(&kvm->lock);
676
677 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
678 assigned_dev->assigned_dev_id);
679 if (!match) {
680 printk(KERN_INFO "%s: device hasn't been assigned before, "
681 "so cannot be deassigned\n", __func__);
682 r = -EINVAL;
683 goto out;
684 }
685
686 if (match->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
687 kvm_deassign_device(kvm, match);
688
689 kvm_free_assigned_device(kvm, match);
690
691 out:
692 mutex_unlock(&kvm->lock);
693 return r;
694 }
695 #endif
696
697 inline int kvm_is_mmio_pfn(pfn_t pfn)
698 {
699 if (pfn_valid(pfn)) {
700 struct page *page = compound_head(pfn_to_page(pfn));
701 return PageReserved(page);
702 }
703
704 return true;
705 }
706
707 /*
708 * Switches to specified vcpu, until a matching vcpu_put()
709 */
710 void vcpu_load(struct kvm_vcpu *vcpu)
711 {
712 int cpu;
713
714 mutex_lock(&vcpu->mutex);
715 cpu = get_cpu();
716 preempt_notifier_register(&vcpu->preempt_notifier);
717 kvm_arch_vcpu_load(vcpu, cpu);
718 put_cpu();
719 }
720
721 void vcpu_put(struct kvm_vcpu *vcpu)
722 {
723 preempt_disable();
724 kvm_arch_vcpu_put(vcpu);
725 preempt_notifier_unregister(&vcpu->preempt_notifier);
726 preempt_enable();
727 mutex_unlock(&vcpu->mutex);
728 }
729
730 static void ack_flush(void *_completed)
731 {
732 }
733
734 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
735 {
736 int i, cpu, me;
737 cpumask_var_t cpus;
738 bool called = true;
739 struct kvm_vcpu *vcpu;
740
741 if (alloc_cpumask_var(&cpus, GFP_ATOMIC))
742 cpumask_clear(cpus);
743
744 spin_lock(&kvm->requests_lock);
745 me = smp_processor_id();
746 kvm_for_each_vcpu(i, vcpu, kvm) {
747 if (test_and_set_bit(req, &vcpu->requests))
748 continue;
749 cpu = vcpu->cpu;
750 if (cpus != NULL && cpu != -1 && cpu != me)
751 cpumask_set_cpu(cpu, cpus);
752 }
753 if (unlikely(cpus == NULL))
754 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
755 else if (!cpumask_empty(cpus))
756 smp_call_function_many(cpus, ack_flush, NULL, 1);
757 else
758 called = false;
759 spin_unlock(&kvm->requests_lock);
760 free_cpumask_var(cpus);
761 return called;
762 }
763
764 void kvm_flush_remote_tlbs(struct kvm *kvm)
765 {
766 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
767 ++kvm->stat.remote_tlb_flush;
768 }
769
770 void kvm_reload_remote_mmus(struct kvm *kvm)
771 {
772 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
773 }
774
775 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
776 {
777 struct page *page;
778 int r;
779
780 mutex_init(&vcpu->mutex);
781 vcpu->cpu = -1;
782 vcpu->kvm = kvm;
783 vcpu->vcpu_id = id;
784 init_waitqueue_head(&vcpu->wq);
785
786 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
787 if (!page) {
788 r = -ENOMEM;
789 goto fail;
790 }
791 vcpu->run = page_address(page);
792
793 r = kvm_arch_vcpu_init(vcpu);
794 if (r < 0)
795 goto fail_free_run;
796 return 0;
797
798 fail_free_run:
799 free_page((unsigned long)vcpu->run);
800 fail:
801 return r;
802 }
803 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
804
805 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
806 {
807 kvm_arch_vcpu_uninit(vcpu);
808 free_page((unsigned long)vcpu->run);
809 }
810 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
811
812 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
813 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
814 {
815 return container_of(mn, struct kvm, mmu_notifier);
816 }
817
818 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
819 struct mm_struct *mm,
820 unsigned long address)
821 {
822 struct kvm *kvm = mmu_notifier_to_kvm(mn);
823 int need_tlb_flush;
824
825 /*
826 * When ->invalidate_page runs, the linux pte has been zapped
827 * already but the page is still allocated until
828 * ->invalidate_page returns. So if we increase the sequence
829 * here the kvm page fault will notice if the spte can't be
830 * established because the page is going to be freed. If
831 * instead the kvm page fault establishes the spte before
832 * ->invalidate_page runs, kvm_unmap_hva will release it
833 * before returning.
834 *
835 * The sequence increase only need to be seen at spin_unlock
836 * time, and not at spin_lock time.
837 *
838 * Increasing the sequence after the spin_unlock would be
839 * unsafe because the kvm page fault could then establish the
840 * pte after kvm_unmap_hva returned, without noticing the page
841 * is going to be freed.
842 */
843 spin_lock(&kvm->mmu_lock);
844 kvm->mmu_notifier_seq++;
845 need_tlb_flush = kvm_unmap_hva(kvm, address);
846 spin_unlock(&kvm->mmu_lock);
847
848 /* we've to flush the tlb before the pages can be freed */
849 if (need_tlb_flush)
850 kvm_flush_remote_tlbs(kvm);
851
852 }
853
854 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
855 struct mm_struct *mm,
856 unsigned long start,
857 unsigned long end)
858 {
859 struct kvm *kvm = mmu_notifier_to_kvm(mn);
860 int need_tlb_flush = 0;
861
862 spin_lock(&kvm->mmu_lock);
863 /*
864 * The count increase must become visible at unlock time as no
865 * spte can be established without taking the mmu_lock and
866 * count is also read inside the mmu_lock critical section.
867 */
868 kvm->mmu_notifier_count++;
869 for (; start < end; start += PAGE_SIZE)
870 need_tlb_flush |= kvm_unmap_hva(kvm, start);
871 spin_unlock(&kvm->mmu_lock);
872
873 /* we've to flush the tlb before the pages can be freed */
874 if (need_tlb_flush)
875 kvm_flush_remote_tlbs(kvm);
876 }
877
878 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
879 struct mm_struct *mm,
880 unsigned long start,
881 unsigned long end)
882 {
883 struct kvm *kvm = mmu_notifier_to_kvm(mn);
884
885 spin_lock(&kvm->mmu_lock);
886 /*
887 * This sequence increase will notify the kvm page fault that
888 * the page that is going to be mapped in the spte could have
889 * been freed.
890 */
891 kvm->mmu_notifier_seq++;
892 /*
893 * The above sequence increase must be visible before the
894 * below count decrease but both values are read by the kvm
895 * page fault under mmu_lock spinlock so we don't need to add
896 * a smb_wmb() here in between the two.
897 */
898 kvm->mmu_notifier_count--;
899 spin_unlock(&kvm->mmu_lock);
900
901 BUG_ON(kvm->mmu_notifier_count < 0);
902 }
903
904 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
905 struct mm_struct *mm,
906 unsigned long address)
907 {
908 struct kvm *kvm = mmu_notifier_to_kvm(mn);
909 int young;
910
911 spin_lock(&kvm->mmu_lock);
912 young = kvm_age_hva(kvm, address);
913 spin_unlock(&kvm->mmu_lock);
914
915 if (young)
916 kvm_flush_remote_tlbs(kvm);
917
918 return young;
919 }
920
921 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
922 struct mm_struct *mm)
923 {
924 struct kvm *kvm = mmu_notifier_to_kvm(mn);
925 kvm_arch_flush_shadow(kvm);
926 }
927
928 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
929 .invalidate_page = kvm_mmu_notifier_invalidate_page,
930 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
931 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
932 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
933 .release = kvm_mmu_notifier_release,
934 };
935 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
936
937 static struct kvm *kvm_create_vm(void)
938 {
939 struct kvm *kvm = kvm_arch_create_vm();
940 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
941 struct page *page;
942 #endif
943
944 if (IS_ERR(kvm))
945 goto out;
946 #ifdef CONFIG_HAVE_KVM_IRQCHIP
947 INIT_LIST_HEAD(&kvm->irq_routing);
948 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
949 #endif
950
951 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
952 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
953 if (!page) {
954 kfree(kvm);
955 return ERR_PTR(-ENOMEM);
956 }
957 kvm->coalesced_mmio_ring =
958 (struct kvm_coalesced_mmio_ring *)page_address(page);
959 #endif
960
961 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
962 {
963 int err;
964 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
965 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
966 if (err) {
967 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
968 put_page(page);
969 #endif
970 kfree(kvm);
971 return ERR_PTR(err);
972 }
973 }
974 #endif
975
976 kvm->mm = current->mm;
977 atomic_inc(&kvm->mm->mm_count);
978 spin_lock_init(&kvm->mmu_lock);
979 spin_lock_init(&kvm->requests_lock);
980 kvm_io_bus_init(&kvm->pio_bus);
981 kvm_eventfd_init(kvm);
982 mutex_init(&kvm->lock);
983 mutex_init(&kvm->irq_lock);
984 kvm_io_bus_init(&kvm->mmio_bus);
985 init_rwsem(&kvm->slots_lock);
986 atomic_set(&kvm->users_count, 1);
987 spin_lock(&kvm_lock);
988 list_add(&kvm->vm_list, &vm_list);
989 spin_unlock(&kvm_lock);
990 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
991 kvm_coalesced_mmio_init(kvm);
992 #endif
993 out:
994 return kvm;
995 }
996
997 /*
998 * Free any memory in @free but not in @dont.
999 */
1000 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
1001 struct kvm_memory_slot *dont)
1002 {
1003 int i;
1004
1005 if (!dont || free->rmap != dont->rmap)
1006 vfree(free->rmap);
1007
1008 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
1009 vfree(free->dirty_bitmap);
1010
1011
1012 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
1013 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
1014 vfree(free->lpage_info[i]);
1015 free->lpage_info[i] = NULL;
1016 }
1017 }
1018
1019 free->npages = 0;
1020 free->dirty_bitmap = NULL;
1021 free->rmap = NULL;
1022 }
1023
1024 void kvm_free_physmem(struct kvm *kvm)
1025 {
1026 int i;
1027
1028 for (i = 0; i < kvm->nmemslots; ++i)
1029 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
1030 }
1031
1032 static void kvm_destroy_vm(struct kvm *kvm)
1033 {
1034 struct mm_struct *mm = kvm->mm;
1035
1036 kvm_arch_sync_events(kvm);
1037 spin_lock(&kvm_lock);
1038 list_del(&kvm->vm_list);
1039 spin_unlock(&kvm_lock);
1040 kvm_free_irq_routing(kvm);
1041 kvm_io_bus_destroy(&kvm->pio_bus);
1042 kvm_io_bus_destroy(&kvm->mmio_bus);
1043 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1044 if (kvm->coalesced_mmio_ring != NULL)
1045 free_page((unsigned long)kvm->coalesced_mmio_ring);
1046 #endif
1047 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1048 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1049 #else
1050 kvm_arch_flush_shadow(kvm);
1051 #endif
1052 kvm_arch_destroy_vm(kvm);
1053 mmdrop(mm);
1054 }
1055
1056 void kvm_get_kvm(struct kvm *kvm)
1057 {
1058 atomic_inc(&kvm->users_count);
1059 }
1060 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1061
1062 void kvm_put_kvm(struct kvm *kvm)
1063 {
1064 if (atomic_dec_and_test(&kvm->users_count))
1065 kvm_destroy_vm(kvm);
1066 }
1067 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1068
1069
1070 static int kvm_vm_release(struct inode *inode, struct file *filp)
1071 {
1072 struct kvm *kvm = filp->private_data;
1073
1074 kvm_irqfd_release(kvm);
1075
1076 kvm_put_kvm(kvm);
1077 return 0;
1078 }
1079
1080 /*
1081 * Allocate some memory and give it an address in the guest physical address
1082 * space.
1083 *
1084 * Discontiguous memory is allowed, mostly for framebuffers.
1085 *
1086 * Must be called holding mmap_sem for write.
1087 */
1088 int __kvm_set_memory_region(struct kvm *kvm,
1089 struct kvm_userspace_memory_region *mem,
1090 int user_alloc)
1091 {
1092 int r;
1093 gfn_t base_gfn;
1094 unsigned long npages;
1095 unsigned long i;
1096 struct kvm_memory_slot *memslot;
1097 struct kvm_memory_slot old, new;
1098
1099 r = -EINVAL;
1100 /* General sanity checks */
1101 if (mem->memory_size & (PAGE_SIZE - 1))
1102 goto out;
1103 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1104 goto out;
1105 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
1106 goto out;
1107 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
1108 goto out;
1109 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1110 goto out;
1111
1112 memslot = &kvm->memslots[mem->slot];
1113 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1114 npages = mem->memory_size >> PAGE_SHIFT;
1115
1116 if (!npages)
1117 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1118
1119 new = old = *memslot;
1120
1121 new.base_gfn = base_gfn;
1122 new.npages = npages;
1123 new.flags = mem->flags;
1124
1125 /* Disallow changing a memory slot's size. */
1126 r = -EINVAL;
1127 if (npages && old.npages && npages != old.npages)
1128 goto out_free;
1129
1130 /* Check for overlaps */
1131 r = -EEXIST;
1132 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1133 struct kvm_memory_slot *s = &kvm->memslots[i];
1134
1135 if (s == memslot || !s->npages)
1136 continue;
1137 if (!((base_gfn + npages <= s->base_gfn) ||
1138 (base_gfn >= s->base_gfn + s->npages)))
1139 goto out_free;
1140 }
1141
1142 /* Free page dirty bitmap if unneeded */
1143 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1144 new.dirty_bitmap = NULL;
1145
1146 r = -ENOMEM;
1147
1148 /* Allocate if a slot is being created */
1149 #ifndef CONFIG_S390
1150 if (npages && !new.rmap) {
1151 new.rmap = vmalloc(npages * sizeof(struct page *));
1152
1153 if (!new.rmap)
1154 goto out_free;
1155
1156 memset(new.rmap, 0, npages * sizeof(*new.rmap));
1157
1158 new.user_alloc = user_alloc;
1159 /*
1160 * hva_to_rmmap() serialzies with the mmu_lock and to be
1161 * safe it has to ignore memslots with !user_alloc &&
1162 * !userspace_addr.
1163 */
1164 if (user_alloc)
1165 new.userspace_addr = mem->userspace_addr;
1166 else
1167 new.userspace_addr = 0;
1168 }
1169 if (!npages)
1170 goto skip_lpage;
1171
1172 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
1173 unsigned long ugfn;
1174 unsigned long j;
1175 int lpages;
1176 int level = i + 2;
1177
1178 /* Avoid unused variable warning if no large pages */
1179 (void)level;
1180
1181 if (new.lpage_info[i])
1182 continue;
1183
1184 lpages = 1 + (base_gfn + npages - 1) /
1185 KVM_PAGES_PER_HPAGE(level);
1186 lpages -= base_gfn / KVM_PAGES_PER_HPAGE(level);
1187
1188 new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
1189
1190 if (!new.lpage_info[i])
1191 goto out_free;
1192
1193 memset(new.lpage_info[i], 0,
1194 lpages * sizeof(*new.lpage_info[i]));
1195
1196 if (base_gfn % KVM_PAGES_PER_HPAGE(level))
1197 new.lpage_info[i][0].write_count = 1;
1198 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE(level))
1199 new.lpage_info[i][lpages - 1].write_count = 1;
1200 ugfn = new.userspace_addr >> PAGE_SHIFT;
1201 /*
1202 * If the gfn and userspace address are not aligned wrt each
1203 * other, or if explicitly asked to, disable large page
1204 * support for this slot
1205 */
1206 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
1207 !largepages_enabled)
1208 for (j = 0; j < lpages; ++j)
1209 new.lpage_info[i][j].write_count = 1;
1210 }
1211
1212 skip_lpage:
1213
1214 /* Allocate page dirty bitmap if needed */
1215 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1216 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
1217
1218 new.dirty_bitmap = vmalloc(dirty_bytes);
1219 if (!new.dirty_bitmap)
1220 goto out_free;
1221 memset(new.dirty_bitmap, 0, dirty_bytes);
1222 if (old.npages)
1223 kvm_arch_flush_shadow(kvm);
1224 }
1225 #else /* not defined CONFIG_S390 */
1226 new.user_alloc = user_alloc;
1227 if (user_alloc)
1228 new.userspace_addr = mem->userspace_addr;
1229 #endif /* not defined CONFIG_S390 */
1230
1231 if (!npages)
1232 kvm_arch_flush_shadow(kvm);
1233
1234 spin_lock(&kvm->mmu_lock);
1235 if (mem->slot >= kvm->nmemslots)
1236 kvm->nmemslots = mem->slot + 1;
1237
1238 *memslot = new;
1239 spin_unlock(&kvm->mmu_lock);
1240
1241 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
1242 if (r) {
1243 spin_lock(&kvm->mmu_lock);
1244 *memslot = old;
1245 spin_unlock(&kvm->mmu_lock);
1246 goto out_free;
1247 }
1248
1249 kvm_free_physmem_slot(&old, npages ? &new : NULL);
1250 /* Slot deletion case: we have to update the current slot */
1251 spin_lock(&kvm->mmu_lock);
1252 if (!npages)
1253 *memslot = old;
1254 spin_unlock(&kvm->mmu_lock);
1255 #ifdef CONFIG_DMAR
1256 /* map the pages in iommu page table */
1257 r = kvm_iommu_map_pages(kvm, base_gfn, npages);
1258 if (r)
1259 goto out;
1260 #endif
1261 return 0;
1262
1263 out_free:
1264 kvm_free_physmem_slot(&new, &old);
1265 out:
1266 return r;
1267
1268 }
1269 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1270
1271 int kvm_set_memory_region(struct kvm *kvm,
1272 struct kvm_userspace_memory_region *mem,
1273 int user_alloc)
1274 {
1275 int r;
1276
1277 down_write(&kvm->slots_lock);
1278 r = __kvm_set_memory_region(kvm, mem, user_alloc);
1279 up_write(&kvm->slots_lock);
1280 return r;
1281 }
1282 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1283
1284 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1285 struct
1286 kvm_userspace_memory_region *mem,
1287 int user_alloc)
1288 {
1289 if (mem->slot >= KVM_MEMORY_SLOTS)
1290 return -EINVAL;
1291 return kvm_set_memory_region(kvm, mem, user_alloc);
1292 }
1293
1294 int kvm_get_dirty_log(struct kvm *kvm,
1295 struct kvm_dirty_log *log, int *is_dirty)
1296 {
1297 struct kvm_memory_slot *memslot;
1298 int r, i;
1299 int n;
1300 unsigned long any = 0;
1301
1302 r = -EINVAL;
1303 if (log->slot >= KVM_MEMORY_SLOTS)
1304 goto out;
1305
1306 memslot = &kvm->memslots[log->slot];
1307 r = -ENOENT;
1308 if (!memslot->dirty_bitmap)
1309 goto out;
1310
1311 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1312
1313 for (i = 0; !any && i < n/sizeof(long); ++i)
1314 any = memslot->dirty_bitmap[i];
1315
1316 r = -EFAULT;
1317 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1318 goto out;
1319
1320 if (any)
1321 *is_dirty = 1;
1322
1323 r = 0;
1324 out:
1325 return r;
1326 }
1327
1328 void kvm_disable_largepages(void)
1329 {
1330 largepages_enabled = false;
1331 }
1332 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1333
1334 int is_error_page(struct page *page)
1335 {
1336 return page == bad_page;
1337 }
1338 EXPORT_SYMBOL_GPL(is_error_page);
1339
1340 int is_error_pfn(pfn_t pfn)
1341 {
1342 return pfn == bad_pfn;
1343 }
1344 EXPORT_SYMBOL_GPL(is_error_pfn);
1345
1346 static inline unsigned long bad_hva(void)
1347 {
1348 return PAGE_OFFSET;
1349 }
1350
1351 int kvm_is_error_hva(unsigned long addr)
1352 {
1353 return addr == bad_hva();
1354 }
1355 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
1356
1357 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
1358 {
1359 int i;
1360
1361 for (i = 0; i < kvm->nmemslots; ++i) {
1362 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1363
1364 if (gfn >= memslot->base_gfn
1365 && gfn < memslot->base_gfn + memslot->npages)
1366 return memslot;
1367 }
1368 return NULL;
1369 }
1370 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
1371
1372 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1373 {
1374 gfn = unalias_gfn(kvm, gfn);
1375 return gfn_to_memslot_unaliased(kvm, gfn);
1376 }
1377
1378 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1379 {
1380 int i;
1381
1382 gfn = unalias_gfn(kvm, gfn);
1383 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1384 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1385
1386 if (gfn >= memslot->base_gfn
1387 && gfn < memslot->base_gfn + memslot->npages)
1388 return 1;
1389 }
1390 return 0;
1391 }
1392 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1393
1394 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1395 {
1396 struct kvm_memory_slot *slot;
1397
1398 gfn = unalias_gfn(kvm, gfn);
1399 slot = gfn_to_memslot_unaliased(kvm, gfn);
1400 if (!slot)
1401 return bad_hva();
1402 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
1403 }
1404 EXPORT_SYMBOL_GPL(gfn_to_hva);
1405
1406 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1407 {
1408 struct page *page[1];
1409 unsigned long addr;
1410 int npages;
1411 pfn_t pfn;
1412
1413 might_sleep();
1414
1415 addr = gfn_to_hva(kvm, gfn);
1416 if (kvm_is_error_hva(addr)) {
1417 get_page(bad_page);
1418 return page_to_pfn(bad_page);
1419 }
1420
1421 npages = get_user_pages_fast(addr, 1, 1, page);
1422
1423 if (unlikely(npages != 1)) {
1424 struct vm_area_struct *vma;
1425
1426 down_read(&current->mm->mmap_sem);
1427 vma = find_vma(current->mm, addr);
1428
1429 if (vma == NULL || addr < vma->vm_start ||
1430 !(vma->vm_flags & VM_PFNMAP)) {
1431 up_read(&current->mm->mmap_sem);
1432 get_page(bad_page);
1433 return page_to_pfn(bad_page);
1434 }
1435
1436 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1437 up_read(&current->mm->mmap_sem);
1438 BUG_ON(!kvm_is_mmio_pfn(pfn));
1439 } else
1440 pfn = page_to_pfn(page[0]);
1441
1442 return pfn;
1443 }
1444
1445 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1446
1447 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1448 {
1449 pfn_t pfn;
1450
1451 pfn = gfn_to_pfn(kvm, gfn);
1452 if (!kvm_is_mmio_pfn(pfn))
1453 return pfn_to_page(pfn);
1454
1455 WARN_ON(kvm_is_mmio_pfn(pfn));
1456
1457 get_page(bad_page);
1458 return bad_page;
1459 }
1460
1461 EXPORT_SYMBOL_GPL(gfn_to_page);
1462
1463 void kvm_release_page_clean(struct page *page)
1464 {
1465 kvm_release_pfn_clean(page_to_pfn(page));
1466 }
1467 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1468
1469 void kvm_release_pfn_clean(pfn_t pfn)
1470 {
1471 if (!kvm_is_mmio_pfn(pfn))
1472 put_page(pfn_to_page(pfn));
1473 }
1474 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1475
1476 void kvm_release_page_dirty(struct page *page)
1477 {
1478 kvm_release_pfn_dirty(page_to_pfn(page));
1479 }
1480 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1481
1482 void kvm_release_pfn_dirty(pfn_t pfn)
1483 {
1484 kvm_set_pfn_dirty(pfn);
1485 kvm_release_pfn_clean(pfn);
1486 }
1487 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1488
1489 void kvm_set_page_dirty(struct page *page)
1490 {
1491 kvm_set_pfn_dirty(page_to_pfn(page));
1492 }
1493 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1494
1495 void kvm_set_pfn_dirty(pfn_t pfn)
1496 {
1497 if (!kvm_is_mmio_pfn(pfn)) {
1498 struct page *page = pfn_to_page(pfn);
1499 if (!PageReserved(page))
1500 SetPageDirty(page);
1501 }
1502 }
1503 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1504
1505 void kvm_set_pfn_accessed(pfn_t pfn)
1506 {
1507 if (!kvm_is_mmio_pfn(pfn))
1508 mark_page_accessed(pfn_to_page(pfn));
1509 }
1510 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1511
1512 void kvm_get_pfn(pfn_t pfn)
1513 {
1514 if (!kvm_is_mmio_pfn(pfn))
1515 get_page(pfn_to_page(pfn));
1516 }
1517 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1518
1519 static int next_segment(unsigned long len, int offset)
1520 {
1521 if (len > PAGE_SIZE - offset)
1522 return PAGE_SIZE - offset;
1523 else
1524 return len;
1525 }
1526
1527 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1528 int len)
1529 {
1530 int r;
1531 unsigned long addr;
1532
1533 addr = gfn_to_hva(kvm, gfn);
1534 if (kvm_is_error_hva(addr))
1535 return -EFAULT;
1536 r = copy_from_user(data, (void __user *)addr + offset, len);
1537 if (r)
1538 return -EFAULT;
1539 return 0;
1540 }
1541 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1542
1543 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1544 {
1545 gfn_t gfn = gpa >> PAGE_SHIFT;
1546 int seg;
1547 int offset = offset_in_page(gpa);
1548 int ret;
1549
1550 while ((seg = next_segment(len, offset)) != 0) {
1551 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1552 if (ret < 0)
1553 return ret;
1554 offset = 0;
1555 len -= seg;
1556 data += seg;
1557 ++gfn;
1558 }
1559 return 0;
1560 }
1561 EXPORT_SYMBOL_GPL(kvm_read_guest);
1562
1563 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1564 unsigned long len)
1565 {
1566 int r;
1567 unsigned long addr;
1568 gfn_t gfn = gpa >> PAGE_SHIFT;
1569 int offset = offset_in_page(gpa);
1570
1571 addr = gfn_to_hva(kvm, gfn);
1572 if (kvm_is_error_hva(addr))
1573 return -EFAULT;
1574 pagefault_disable();
1575 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1576 pagefault_enable();
1577 if (r)
1578 return -EFAULT;
1579 return 0;
1580 }
1581 EXPORT_SYMBOL(kvm_read_guest_atomic);
1582
1583 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1584 int offset, int len)
1585 {
1586 int r;
1587 unsigned long addr;
1588
1589 addr = gfn_to_hva(kvm, gfn);
1590 if (kvm_is_error_hva(addr))
1591 return -EFAULT;
1592 r = copy_to_user((void __user *)addr + offset, data, len);
1593 if (r)
1594 return -EFAULT;
1595 mark_page_dirty(kvm, gfn);
1596 return 0;
1597 }
1598 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1599
1600 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1601 unsigned long len)
1602 {
1603 gfn_t gfn = gpa >> PAGE_SHIFT;
1604 int seg;
1605 int offset = offset_in_page(gpa);
1606 int ret;
1607
1608 while ((seg = next_segment(len, offset)) != 0) {
1609 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1610 if (ret < 0)
1611 return ret;
1612 offset = 0;
1613 len -= seg;
1614 data += seg;
1615 ++gfn;
1616 }
1617 return 0;
1618 }
1619
1620 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1621 {
1622 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1623 }
1624 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1625
1626 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1627 {
1628 gfn_t gfn = gpa >> PAGE_SHIFT;
1629 int seg;
1630 int offset = offset_in_page(gpa);
1631 int ret;
1632
1633 while ((seg = next_segment(len, offset)) != 0) {
1634 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1635 if (ret < 0)
1636 return ret;
1637 offset = 0;
1638 len -= seg;
1639 ++gfn;
1640 }
1641 return 0;
1642 }
1643 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1644
1645 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1646 {
1647 struct kvm_memory_slot *memslot;
1648
1649 gfn = unalias_gfn(kvm, gfn);
1650 memslot = gfn_to_memslot_unaliased(kvm, gfn);
1651 if (memslot && memslot->dirty_bitmap) {
1652 unsigned long rel_gfn = gfn - memslot->base_gfn;
1653
1654 /* avoid RMW */
1655 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1656 set_bit(rel_gfn, memslot->dirty_bitmap);
1657 }
1658 }
1659
1660 /*
1661 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1662 */
1663 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1664 {
1665 DEFINE_WAIT(wait);
1666
1667 for (;;) {
1668 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1669
1670 if (kvm_arch_vcpu_runnable(vcpu)) {
1671 set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1672 break;
1673 }
1674 if (kvm_cpu_has_pending_timer(vcpu))
1675 break;
1676 if (signal_pending(current))
1677 break;
1678
1679 vcpu_put(vcpu);
1680 schedule();
1681 vcpu_load(vcpu);
1682 }
1683
1684 finish_wait(&vcpu->wq, &wait);
1685 }
1686
1687 void kvm_resched(struct kvm_vcpu *vcpu)
1688 {
1689 if (!need_resched())
1690 return;
1691 cond_resched();
1692 }
1693 EXPORT_SYMBOL_GPL(kvm_resched);
1694
1695 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1696 {
1697 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1698 struct page *page;
1699
1700 if (vmf->pgoff == 0)
1701 page = virt_to_page(vcpu->run);
1702 #ifdef CONFIG_X86
1703 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1704 page = virt_to_page(vcpu->arch.pio_data);
1705 #endif
1706 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1707 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1708 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1709 #endif
1710 else
1711 return VM_FAULT_SIGBUS;
1712 get_page(page);
1713 vmf->page = page;
1714 return 0;
1715 }
1716
1717 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1718 .fault = kvm_vcpu_fault,
1719 };
1720
1721 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1722 {
1723 vma->vm_ops = &kvm_vcpu_vm_ops;
1724 return 0;
1725 }
1726
1727 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1728 {
1729 struct kvm_vcpu *vcpu = filp->private_data;
1730
1731 kvm_put_kvm(vcpu->kvm);
1732 return 0;
1733 }
1734
1735 static struct file_operations kvm_vcpu_fops = {
1736 .release = kvm_vcpu_release,
1737 .unlocked_ioctl = kvm_vcpu_ioctl,
1738 .compat_ioctl = kvm_vcpu_ioctl,
1739 .mmap = kvm_vcpu_mmap,
1740 };
1741
1742 /*
1743 * Allocates an inode for the vcpu.
1744 */
1745 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1746 {
1747 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1748 }
1749
1750 /*
1751 * Creates some virtual cpus. Good luck creating more than one.
1752 */
1753 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1754 {
1755 int r;
1756 struct kvm_vcpu *vcpu, *v;
1757
1758 vcpu = kvm_arch_vcpu_create(kvm, id);
1759 if (IS_ERR(vcpu))
1760 return PTR_ERR(vcpu);
1761
1762 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1763
1764 r = kvm_arch_vcpu_setup(vcpu);
1765 if (r)
1766 return r;
1767
1768 mutex_lock(&kvm->lock);
1769 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1770 r = -EINVAL;
1771 goto vcpu_destroy;
1772 }
1773
1774 kvm_for_each_vcpu(r, v, kvm)
1775 if (v->vcpu_id == id) {
1776 r = -EEXIST;
1777 goto vcpu_destroy;
1778 }
1779
1780 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1781
1782 /* Now it's all set up, let userspace reach it */
1783 kvm_get_kvm(kvm);
1784 r = create_vcpu_fd(vcpu);
1785 if (r < 0) {
1786 kvm_put_kvm(kvm);
1787 goto vcpu_destroy;
1788 }
1789
1790 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1791 smp_wmb();
1792 atomic_inc(&kvm->online_vcpus);
1793
1794 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1795 if (kvm->bsp_vcpu_id == id)
1796 kvm->bsp_vcpu = vcpu;
1797 #endif
1798 mutex_unlock(&kvm->lock);
1799 return r;
1800
1801 vcpu_destroy:
1802 mutex_unlock(&kvm->lock);
1803 kvm_arch_vcpu_destroy(vcpu);
1804 return r;
1805 }
1806
1807 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1808 {
1809 if (sigset) {
1810 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1811 vcpu->sigset_active = 1;
1812 vcpu->sigset = *sigset;
1813 } else
1814 vcpu->sigset_active = 0;
1815 return 0;
1816 }
1817
1818 #ifdef __KVM_HAVE_MSIX
1819 static int kvm_vm_ioctl_set_msix_nr(struct kvm *kvm,
1820 struct kvm_assigned_msix_nr *entry_nr)
1821 {
1822 int r = 0;
1823 struct kvm_assigned_dev_kernel *adev;
1824
1825 mutex_lock(&kvm->lock);
1826
1827 adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1828 entry_nr->assigned_dev_id);
1829 if (!adev) {
1830 r = -EINVAL;
1831 goto msix_nr_out;
1832 }
1833
1834 if (adev->entries_nr == 0) {
1835 adev->entries_nr = entry_nr->entry_nr;
1836 if (adev->entries_nr == 0 ||
1837 adev->entries_nr >= KVM_MAX_MSIX_PER_DEV) {
1838 r = -EINVAL;
1839 goto msix_nr_out;
1840 }
1841
1842 adev->host_msix_entries = kzalloc(sizeof(struct msix_entry) *
1843 entry_nr->entry_nr,
1844 GFP_KERNEL);
1845 if (!adev->host_msix_entries) {
1846 r = -ENOMEM;
1847 goto msix_nr_out;
1848 }
1849 adev->guest_msix_entries = kzalloc(
1850 sizeof(struct kvm_guest_msix_entry) *
1851 entry_nr->entry_nr, GFP_KERNEL);
1852 if (!adev->guest_msix_entries) {
1853 kfree(adev->host_msix_entries);
1854 r = -ENOMEM;
1855 goto msix_nr_out;
1856 }
1857 } else /* Not allowed set MSI-X number twice */
1858 r = -EINVAL;
1859 msix_nr_out:
1860 mutex_unlock(&kvm->lock);
1861 return r;
1862 }
1863
1864 static int kvm_vm_ioctl_set_msix_entry(struct kvm *kvm,
1865 struct kvm_assigned_msix_entry *entry)
1866 {
1867 int r = 0, i;
1868 struct kvm_assigned_dev_kernel *adev;
1869
1870 mutex_lock(&kvm->lock);
1871
1872 adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1873 entry->assigned_dev_id);
1874
1875 if (!adev) {
1876 r = -EINVAL;
1877 goto msix_entry_out;
1878 }
1879
1880 for (i = 0; i < adev->entries_nr; i++)
1881 if (adev->guest_msix_entries[i].vector == 0 ||
1882 adev->guest_msix_entries[i].entry == entry->entry) {
1883 adev->guest_msix_entries[i].entry = entry->entry;
1884 adev->guest_msix_entries[i].vector = entry->gsi;
1885 adev->host_msix_entries[i].entry = entry->entry;
1886 break;
1887 }
1888 if (i == adev->entries_nr) {
1889 r = -ENOSPC;
1890 goto msix_entry_out;
1891 }
1892
1893 msix_entry_out:
1894 mutex_unlock(&kvm->lock);
1895
1896 return r;
1897 }
1898 #endif
1899
1900 static long kvm_vcpu_ioctl(struct file *filp,
1901 unsigned int ioctl, unsigned long arg)
1902 {
1903 struct kvm_vcpu *vcpu = filp->private_data;
1904 void __user *argp = (void __user *)arg;
1905 int r;
1906 struct kvm_fpu *fpu = NULL;
1907 struct kvm_sregs *kvm_sregs = NULL;
1908
1909 if (vcpu->kvm->mm != current->mm)
1910 return -EIO;
1911 switch (ioctl) {
1912 case KVM_RUN:
1913 r = -EINVAL;
1914 if (arg)
1915 goto out;
1916 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1917 break;
1918 case KVM_GET_REGS: {
1919 struct kvm_regs *kvm_regs;
1920
1921 r = -ENOMEM;
1922 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1923 if (!kvm_regs)
1924 goto out;
1925 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1926 if (r)
1927 goto out_free1;
1928 r = -EFAULT;
1929 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1930 goto out_free1;
1931 r = 0;
1932 out_free1:
1933 kfree(kvm_regs);
1934 break;
1935 }
1936 case KVM_SET_REGS: {
1937 struct kvm_regs *kvm_regs;
1938
1939 r = -ENOMEM;
1940 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1941 if (!kvm_regs)
1942 goto out;
1943 r = -EFAULT;
1944 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1945 goto out_free2;
1946 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1947 if (r)
1948 goto out_free2;
1949 r = 0;
1950 out_free2:
1951 kfree(kvm_regs);
1952 break;
1953 }
1954 case KVM_GET_SREGS: {
1955 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1956 r = -ENOMEM;
1957 if (!kvm_sregs)
1958 goto out;
1959 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1960 if (r)
1961 goto out;
1962 r = -EFAULT;
1963 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1964 goto out;
1965 r = 0;
1966 break;
1967 }
1968 case KVM_SET_SREGS: {
1969 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1970 r = -ENOMEM;
1971 if (!kvm_sregs)
1972 goto out;
1973 r = -EFAULT;
1974 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1975 goto out;
1976 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1977 if (r)
1978 goto out;
1979 r = 0;
1980 break;
1981 }
1982 case KVM_GET_MP_STATE: {
1983 struct kvm_mp_state mp_state;
1984
1985 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1986 if (r)
1987 goto out;
1988 r = -EFAULT;
1989 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1990 goto out;
1991 r = 0;
1992 break;
1993 }
1994 case KVM_SET_MP_STATE: {
1995 struct kvm_mp_state mp_state;
1996
1997 r = -EFAULT;
1998 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1999 goto out;
2000 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2001 if (r)
2002 goto out;
2003 r = 0;
2004 break;
2005 }
2006 case KVM_TRANSLATE: {
2007 struct kvm_translation tr;
2008
2009 r = -EFAULT;
2010 if (copy_from_user(&tr, argp, sizeof tr))
2011 goto out;
2012 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2013 if (r)
2014 goto out;
2015 r = -EFAULT;
2016 if (copy_to_user(argp, &tr, sizeof tr))
2017 goto out;
2018 r = 0;
2019 break;
2020 }
2021 case KVM_SET_GUEST_DEBUG: {
2022 struct kvm_guest_debug dbg;
2023
2024 r = -EFAULT;
2025 if (copy_from_user(&dbg, argp, sizeof dbg))
2026 goto out;
2027 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2028 if (r)
2029 goto out;
2030 r = 0;
2031 break;
2032 }
2033 case KVM_SET_SIGNAL_MASK: {
2034 struct kvm_signal_mask __user *sigmask_arg = argp;
2035 struct kvm_signal_mask kvm_sigmask;
2036 sigset_t sigset, *p;
2037
2038 p = NULL;
2039 if (argp) {
2040 r = -EFAULT;
2041 if (copy_from_user(&kvm_sigmask, argp,
2042 sizeof kvm_sigmask))
2043 goto out;
2044 r = -EINVAL;
2045 if (kvm_sigmask.len != sizeof sigset)
2046 goto out;
2047 r = -EFAULT;
2048 if (copy_from_user(&sigset, sigmask_arg->sigset,
2049 sizeof sigset))
2050 goto out;
2051 p = &sigset;
2052 }
2053 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2054 break;
2055 }
2056 case KVM_GET_FPU: {
2057 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2058 r = -ENOMEM;
2059 if (!fpu)
2060 goto out;
2061 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2062 if (r)
2063 goto out;
2064 r = -EFAULT;
2065 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2066 goto out;
2067 r = 0;
2068 break;
2069 }
2070 case KVM_SET_FPU: {
2071 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2072 r = -ENOMEM;
2073 if (!fpu)
2074 goto out;
2075 r = -EFAULT;
2076 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
2077 goto out;
2078 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2079 if (r)
2080 goto out;
2081 r = 0;
2082 break;
2083 }
2084 default:
2085 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2086 }
2087 out:
2088 kfree(fpu);
2089 kfree(kvm_sregs);
2090 return r;
2091 }
2092
2093 static long kvm_vm_ioctl(struct file *filp,
2094 unsigned int ioctl, unsigned long arg)
2095 {
2096 struct kvm *kvm = filp->private_data;
2097 void __user *argp = (void __user *)arg;
2098 int r;
2099
2100 if (kvm->mm != current->mm)
2101 return -EIO;
2102 switch (ioctl) {
2103 case KVM_CREATE_VCPU:
2104 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2105 if (r < 0)
2106 goto out;
2107 break;
2108 case KVM_SET_USER_MEMORY_REGION: {
2109 struct kvm_userspace_memory_region kvm_userspace_mem;
2110
2111 r = -EFAULT;
2112 if (copy_from_user(&kvm_userspace_mem, argp,
2113 sizeof kvm_userspace_mem))
2114 goto out;
2115
2116 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2117 if (r)
2118 goto out;
2119 break;
2120 }
2121 case KVM_GET_DIRTY_LOG: {
2122 struct kvm_dirty_log log;
2123
2124 r = -EFAULT;
2125 if (copy_from_user(&log, argp, sizeof log))
2126 goto out;
2127 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2128 if (r)
2129 goto out;
2130 break;
2131 }
2132 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2133 case KVM_REGISTER_COALESCED_MMIO: {
2134 struct kvm_coalesced_mmio_zone zone;
2135 r = -EFAULT;
2136 if (copy_from_user(&zone, argp, sizeof zone))
2137 goto out;
2138 r = -ENXIO;
2139 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2140 if (r)
2141 goto out;
2142 r = 0;
2143 break;
2144 }
2145 case KVM_UNREGISTER_COALESCED_MMIO: {
2146 struct kvm_coalesced_mmio_zone zone;
2147 r = -EFAULT;
2148 if (copy_from_user(&zone, argp, sizeof zone))
2149 goto out;
2150 r = -ENXIO;
2151 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2152 if (r)
2153 goto out;
2154 r = 0;
2155 break;
2156 }
2157 #endif
2158 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
2159 case KVM_ASSIGN_PCI_DEVICE: {
2160 struct kvm_assigned_pci_dev assigned_dev;
2161
2162 r = -EFAULT;
2163 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2164 goto out;
2165 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
2166 if (r)
2167 goto out;
2168 break;
2169 }
2170 case KVM_ASSIGN_IRQ: {
2171 r = -EOPNOTSUPP;
2172 break;
2173 }
2174 #ifdef KVM_CAP_ASSIGN_DEV_IRQ
2175 case KVM_ASSIGN_DEV_IRQ: {
2176 struct kvm_assigned_irq assigned_irq;
2177
2178 r = -EFAULT;
2179 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2180 goto out;
2181 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
2182 if (r)
2183 goto out;
2184 break;
2185 }
2186 case KVM_DEASSIGN_DEV_IRQ: {
2187 struct kvm_assigned_irq assigned_irq;
2188
2189 r = -EFAULT;
2190 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2191 goto out;
2192 r = kvm_vm_ioctl_deassign_dev_irq(kvm, &assigned_irq);
2193 if (r)
2194 goto out;
2195 break;
2196 }
2197 #endif
2198 #endif
2199 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
2200 case KVM_DEASSIGN_PCI_DEVICE: {
2201 struct kvm_assigned_pci_dev assigned_dev;
2202
2203 r = -EFAULT;
2204 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2205 goto out;
2206 r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
2207 if (r)
2208 goto out;
2209 break;
2210 }
2211 #endif
2212 #ifdef KVM_CAP_IRQ_ROUTING
2213 case KVM_SET_GSI_ROUTING: {
2214 struct kvm_irq_routing routing;
2215 struct kvm_irq_routing __user *urouting;
2216 struct kvm_irq_routing_entry *entries;
2217
2218 r = -EFAULT;
2219 if (copy_from_user(&routing, argp, sizeof(routing)))
2220 goto out;
2221 r = -EINVAL;
2222 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2223 goto out;
2224 if (routing.flags)
2225 goto out;
2226 r = -ENOMEM;
2227 entries = vmalloc(routing.nr * sizeof(*entries));
2228 if (!entries)
2229 goto out;
2230 r = -EFAULT;
2231 urouting = argp;
2232 if (copy_from_user(entries, urouting->entries,
2233 routing.nr * sizeof(*entries)))
2234 goto out_free_irq_routing;
2235 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2236 routing.flags);
2237 out_free_irq_routing:
2238 vfree(entries);
2239 break;
2240 }
2241 #endif /* KVM_CAP_IRQ_ROUTING */
2242 #ifdef __KVM_HAVE_MSIX
2243 case KVM_ASSIGN_SET_MSIX_NR: {
2244 struct kvm_assigned_msix_nr entry_nr;
2245 r = -EFAULT;
2246 if (copy_from_user(&entry_nr, argp, sizeof entry_nr))
2247 goto out;
2248 r = kvm_vm_ioctl_set_msix_nr(kvm, &entry_nr);
2249 if (r)
2250 goto out;
2251 break;
2252 }
2253 case KVM_ASSIGN_SET_MSIX_ENTRY: {
2254 struct kvm_assigned_msix_entry entry;
2255 r = -EFAULT;
2256 if (copy_from_user(&entry, argp, sizeof entry))
2257 goto out;
2258 r = kvm_vm_ioctl_set_msix_entry(kvm, &entry);
2259 if (r)
2260 goto out;
2261 break;
2262 }
2263 #endif
2264 case KVM_IRQFD: {
2265 struct kvm_irqfd data;
2266
2267 r = -EFAULT;
2268 if (copy_from_user(&data, argp, sizeof data))
2269 goto out;
2270 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
2271 break;
2272 }
2273 case KVM_IOEVENTFD: {
2274 struct kvm_ioeventfd data;
2275
2276 r = -EFAULT;
2277 if (copy_from_user(&data, argp, sizeof data))
2278 goto out;
2279 r = kvm_ioeventfd(kvm, &data);
2280 break;
2281 }
2282 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2283 case KVM_SET_BOOT_CPU_ID:
2284 r = 0;
2285 mutex_lock(&kvm->lock);
2286 if (atomic_read(&kvm->online_vcpus) != 0)
2287 r = -EBUSY;
2288 else
2289 kvm->bsp_vcpu_id = arg;
2290 mutex_unlock(&kvm->lock);
2291 break;
2292 #endif
2293 default:
2294 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2295 }
2296 out:
2297 return r;
2298 }
2299
2300 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2301 {
2302 struct page *page[1];
2303 unsigned long addr;
2304 int npages;
2305 gfn_t gfn = vmf->pgoff;
2306 struct kvm *kvm = vma->vm_file->private_data;
2307
2308 addr = gfn_to_hva(kvm, gfn);
2309 if (kvm_is_error_hva(addr))
2310 return VM_FAULT_SIGBUS;
2311
2312 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2313 NULL);
2314 if (unlikely(npages != 1))
2315 return VM_FAULT_SIGBUS;
2316
2317 vmf->page = page[0];
2318 return 0;
2319 }
2320
2321 static struct vm_operations_struct kvm_vm_vm_ops = {
2322 .fault = kvm_vm_fault,
2323 };
2324
2325 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2326 {
2327 vma->vm_ops = &kvm_vm_vm_ops;
2328 return 0;
2329 }
2330
2331 static struct file_operations kvm_vm_fops = {
2332 .release = kvm_vm_release,
2333 .unlocked_ioctl = kvm_vm_ioctl,
2334 .compat_ioctl = kvm_vm_ioctl,
2335 .mmap = kvm_vm_mmap,
2336 };
2337
2338 static int kvm_dev_ioctl_create_vm(void)
2339 {
2340 int fd;
2341 struct kvm *kvm;
2342
2343 kvm = kvm_create_vm();
2344 if (IS_ERR(kvm))
2345 return PTR_ERR(kvm);
2346 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
2347 if (fd < 0)
2348 kvm_put_kvm(kvm);
2349
2350 return fd;
2351 }
2352
2353 static long kvm_dev_ioctl_check_extension_generic(long arg)
2354 {
2355 switch (arg) {
2356 case KVM_CAP_USER_MEMORY:
2357 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2358 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2359 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2360 case KVM_CAP_SET_BOOT_CPU_ID:
2361 #endif
2362 return 1;
2363 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2364 case KVM_CAP_IRQ_ROUTING:
2365 return KVM_MAX_IRQ_ROUTES;
2366 #endif
2367 default:
2368 break;
2369 }
2370 return kvm_dev_ioctl_check_extension(arg);
2371 }
2372
2373 static long kvm_dev_ioctl(struct file *filp,
2374 unsigned int ioctl, unsigned long arg)
2375 {
2376 long r = -EINVAL;
2377
2378 switch (ioctl) {
2379 case KVM_GET_API_VERSION:
2380 r = -EINVAL;
2381 if (arg)
2382 goto out;
2383 r = KVM_API_VERSION;
2384 break;
2385 case KVM_CREATE_VM:
2386 r = -EINVAL;
2387 if (arg)
2388 goto out;
2389 r = kvm_dev_ioctl_create_vm();
2390 break;
2391 case KVM_CHECK_EXTENSION:
2392 r = kvm_dev_ioctl_check_extension_generic(arg);
2393 break;
2394 case KVM_GET_VCPU_MMAP_SIZE:
2395 r = -EINVAL;
2396 if (arg)
2397 goto out;
2398 r = PAGE_SIZE; /* struct kvm_run */
2399 #ifdef CONFIG_X86
2400 r += PAGE_SIZE; /* pio data page */
2401 #endif
2402 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2403 r += PAGE_SIZE; /* coalesced mmio ring page */
2404 #endif
2405 break;
2406 case KVM_TRACE_ENABLE:
2407 case KVM_TRACE_PAUSE:
2408 case KVM_TRACE_DISABLE:
2409 r = -EOPNOTSUPP;
2410 break;
2411 default:
2412 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2413 }
2414 out:
2415 return r;
2416 }
2417
2418 static struct file_operations kvm_chardev_ops = {
2419 .unlocked_ioctl = kvm_dev_ioctl,
2420 .compat_ioctl = kvm_dev_ioctl,
2421 };
2422
2423 static struct miscdevice kvm_dev = {
2424 KVM_MINOR,
2425 "kvm",
2426 &kvm_chardev_ops,
2427 };
2428
2429 static void hardware_enable(void *junk)
2430 {
2431 int cpu = raw_smp_processor_id();
2432
2433 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2434 return;
2435 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2436 kvm_arch_hardware_enable(NULL);
2437 }
2438
2439 static void hardware_disable(void *junk)
2440 {
2441 int cpu = raw_smp_processor_id();
2442
2443 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2444 return;
2445 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2446 kvm_arch_hardware_disable(NULL);
2447 }
2448
2449 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2450 void *v)
2451 {
2452 int cpu = (long)v;
2453
2454 val &= ~CPU_TASKS_FROZEN;
2455 switch (val) {
2456 case CPU_DYING:
2457 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2458 cpu);
2459 hardware_disable(NULL);
2460 break;
2461 case CPU_UP_CANCELED:
2462 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2463 cpu);
2464 smp_call_function_single(cpu, hardware_disable, NULL, 1);
2465 break;
2466 case CPU_ONLINE:
2467 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2468 cpu);
2469 smp_call_function_single(cpu, hardware_enable, NULL, 1);
2470 break;
2471 }
2472 return NOTIFY_OK;
2473 }
2474
2475
2476 asmlinkage void kvm_handle_fault_on_reboot(void)
2477 {
2478 if (kvm_rebooting)
2479 /* spin while reset goes on */
2480 while (true)
2481 ;
2482 /* Fault while not rebooting. We want the trace. */
2483 BUG();
2484 }
2485 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
2486
2487 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2488 void *v)
2489 {
2490 /*
2491 * Some (well, at least mine) BIOSes hang on reboot if
2492 * in vmx root mode.
2493 *
2494 * And Intel TXT required VMX off for all cpu when system shutdown.
2495 */
2496 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2497 kvm_rebooting = true;
2498 on_each_cpu(hardware_disable, NULL, 1);
2499 return NOTIFY_OK;
2500 }
2501
2502 static struct notifier_block kvm_reboot_notifier = {
2503 .notifier_call = kvm_reboot,
2504 .priority = 0,
2505 };
2506
2507 void kvm_io_bus_init(struct kvm_io_bus *bus)
2508 {
2509 memset(bus, 0, sizeof(*bus));
2510 }
2511
2512 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2513 {
2514 int i;
2515
2516 for (i = 0; i < bus->dev_count; i++) {
2517 struct kvm_io_device *pos = bus->devs[i];
2518
2519 kvm_iodevice_destructor(pos);
2520 }
2521 }
2522
2523 /* kvm_io_bus_write - called under kvm->slots_lock */
2524 int kvm_io_bus_write(struct kvm_io_bus *bus, gpa_t addr,
2525 int len, const void *val)
2526 {
2527 int i;
2528 for (i = 0; i < bus->dev_count; i++)
2529 if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
2530 return 0;
2531 return -EOPNOTSUPP;
2532 }
2533
2534 /* kvm_io_bus_read - called under kvm->slots_lock */
2535 int kvm_io_bus_read(struct kvm_io_bus *bus, gpa_t addr, int len, void *val)
2536 {
2537 int i;
2538 for (i = 0; i < bus->dev_count; i++)
2539 if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
2540 return 0;
2541 return -EOPNOTSUPP;
2542 }
2543
2544 int kvm_io_bus_register_dev(struct kvm *kvm, struct kvm_io_bus *bus,
2545 struct kvm_io_device *dev)
2546 {
2547 int ret;
2548
2549 down_write(&kvm->slots_lock);
2550 ret = __kvm_io_bus_register_dev(bus, dev);
2551 up_write(&kvm->slots_lock);
2552
2553 return ret;
2554 }
2555
2556 /* An unlocked version. Caller must have write lock on slots_lock. */
2557 int __kvm_io_bus_register_dev(struct kvm_io_bus *bus,
2558 struct kvm_io_device *dev)
2559 {
2560 if (bus->dev_count > NR_IOBUS_DEVS-1)
2561 return -ENOSPC;
2562
2563 bus->devs[bus->dev_count++] = dev;
2564
2565 return 0;
2566 }
2567
2568 void kvm_io_bus_unregister_dev(struct kvm *kvm,
2569 struct kvm_io_bus *bus,
2570 struct kvm_io_device *dev)
2571 {
2572 down_write(&kvm->slots_lock);
2573 __kvm_io_bus_unregister_dev(bus, dev);
2574 up_write(&kvm->slots_lock);
2575 }
2576
2577 /* An unlocked version. Caller must have write lock on slots_lock. */
2578 void __kvm_io_bus_unregister_dev(struct kvm_io_bus *bus,
2579 struct kvm_io_device *dev)
2580 {
2581 int i;
2582
2583 for (i = 0; i < bus->dev_count; i++)
2584 if (bus->devs[i] == dev) {
2585 bus->devs[i] = bus->devs[--bus->dev_count];
2586 break;
2587 }
2588 }
2589
2590 static struct notifier_block kvm_cpu_notifier = {
2591 .notifier_call = kvm_cpu_hotplug,
2592 .priority = 20, /* must be > scheduler priority */
2593 };
2594
2595 static int vm_stat_get(void *_offset, u64 *val)
2596 {
2597 unsigned offset = (long)_offset;
2598 struct kvm *kvm;
2599
2600 *val = 0;
2601 spin_lock(&kvm_lock);
2602 list_for_each_entry(kvm, &vm_list, vm_list)
2603 *val += *(u32 *)((void *)kvm + offset);
2604 spin_unlock(&kvm_lock);
2605 return 0;
2606 }
2607
2608 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2609
2610 static int vcpu_stat_get(void *_offset, u64 *val)
2611 {
2612 unsigned offset = (long)_offset;
2613 struct kvm *kvm;
2614 struct kvm_vcpu *vcpu;
2615 int i;
2616
2617 *val = 0;
2618 spin_lock(&kvm_lock);
2619 list_for_each_entry(kvm, &vm_list, vm_list)
2620 kvm_for_each_vcpu(i, vcpu, kvm)
2621 *val += *(u32 *)((void *)vcpu + offset);
2622
2623 spin_unlock(&kvm_lock);
2624 return 0;
2625 }
2626
2627 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2628
2629 static struct file_operations *stat_fops[] = {
2630 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2631 [KVM_STAT_VM] = &vm_stat_fops,
2632 };
2633
2634 static void kvm_init_debug(void)
2635 {
2636 struct kvm_stats_debugfs_item *p;
2637
2638 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2639 for (p = debugfs_entries; p->name; ++p)
2640 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2641 (void *)(long)p->offset,
2642 stat_fops[p->kind]);
2643 }
2644
2645 static void kvm_exit_debug(void)
2646 {
2647 struct kvm_stats_debugfs_item *p;
2648
2649 for (p = debugfs_entries; p->name; ++p)
2650 debugfs_remove(p->dentry);
2651 debugfs_remove(kvm_debugfs_dir);
2652 }
2653
2654 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2655 {
2656 hardware_disable(NULL);
2657 return 0;
2658 }
2659
2660 static int kvm_resume(struct sys_device *dev)
2661 {
2662 hardware_enable(NULL);
2663 return 0;
2664 }
2665
2666 static struct sysdev_class kvm_sysdev_class = {
2667 .name = "kvm",
2668 .suspend = kvm_suspend,
2669 .resume = kvm_resume,
2670 };
2671
2672 static struct sys_device kvm_sysdev = {
2673 .id = 0,
2674 .cls = &kvm_sysdev_class,
2675 };
2676
2677 struct page *bad_page;
2678 pfn_t bad_pfn;
2679
2680 static inline
2681 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2682 {
2683 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2684 }
2685
2686 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2687 {
2688 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2689
2690 kvm_arch_vcpu_load(vcpu, cpu);
2691 }
2692
2693 static void kvm_sched_out(struct preempt_notifier *pn,
2694 struct task_struct *next)
2695 {
2696 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2697
2698 kvm_arch_vcpu_put(vcpu);
2699 }
2700
2701 int kvm_init(void *opaque, unsigned int vcpu_size,
2702 struct module *module)
2703 {
2704 int r;
2705 int cpu;
2706
2707 kvm_init_debug();
2708
2709 r = kvm_arch_init(opaque);
2710 if (r)
2711 goto out_fail;
2712
2713 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2714
2715 if (bad_page == NULL) {
2716 r = -ENOMEM;
2717 goto out;
2718 }
2719
2720 bad_pfn = page_to_pfn(bad_page);
2721
2722 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2723 r = -ENOMEM;
2724 goto out_free_0;
2725 }
2726
2727 r = kvm_arch_hardware_setup();
2728 if (r < 0)
2729 goto out_free_0a;
2730
2731 for_each_online_cpu(cpu) {
2732 smp_call_function_single(cpu,
2733 kvm_arch_check_processor_compat,
2734 &r, 1);
2735 if (r < 0)
2736 goto out_free_1;
2737 }
2738
2739 on_each_cpu(hardware_enable, NULL, 1);
2740 r = register_cpu_notifier(&kvm_cpu_notifier);
2741 if (r)
2742 goto out_free_2;
2743 register_reboot_notifier(&kvm_reboot_notifier);
2744
2745 r = sysdev_class_register(&kvm_sysdev_class);
2746 if (r)
2747 goto out_free_3;
2748
2749 r = sysdev_register(&kvm_sysdev);
2750 if (r)
2751 goto out_free_4;
2752
2753 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2754 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2755 __alignof__(struct kvm_vcpu),
2756 0, NULL);
2757 if (!kvm_vcpu_cache) {
2758 r = -ENOMEM;
2759 goto out_free_5;
2760 }
2761
2762 kvm_chardev_ops.owner = module;
2763 kvm_vm_fops.owner = module;
2764 kvm_vcpu_fops.owner = module;
2765
2766 r = misc_register(&kvm_dev);
2767 if (r) {
2768 printk(KERN_ERR "kvm: misc device register failed\n");
2769 goto out_free;
2770 }
2771
2772 kvm_preempt_ops.sched_in = kvm_sched_in;
2773 kvm_preempt_ops.sched_out = kvm_sched_out;
2774
2775 return 0;
2776
2777 out_free:
2778 kmem_cache_destroy(kvm_vcpu_cache);
2779 out_free_5:
2780 sysdev_unregister(&kvm_sysdev);
2781 out_free_4:
2782 sysdev_class_unregister(&kvm_sysdev_class);
2783 out_free_3:
2784 unregister_reboot_notifier(&kvm_reboot_notifier);
2785 unregister_cpu_notifier(&kvm_cpu_notifier);
2786 out_free_2:
2787 on_each_cpu(hardware_disable, NULL, 1);
2788 out_free_1:
2789 kvm_arch_hardware_unsetup();
2790 out_free_0a:
2791 free_cpumask_var(cpus_hardware_enabled);
2792 out_free_0:
2793 __free_page(bad_page);
2794 out:
2795 kvm_arch_exit();
2796 out_fail:
2797 kvm_exit_debug();
2798 return r;
2799 }
2800 EXPORT_SYMBOL_GPL(kvm_init);
2801
2802 void kvm_exit(void)
2803 {
2804 tracepoint_synchronize_unregister();
2805 misc_deregister(&kvm_dev);
2806 kmem_cache_destroy(kvm_vcpu_cache);
2807 sysdev_unregister(&kvm_sysdev);
2808 sysdev_class_unregister(&kvm_sysdev_class);
2809 unregister_reboot_notifier(&kvm_reboot_notifier);
2810 unregister_cpu_notifier(&kvm_cpu_notifier);
2811 on_each_cpu(hardware_disable, NULL, 1);
2812 kvm_arch_hardware_unsetup();
2813 kvm_arch_exit();
2814 kvm_exit_debug();
2815 free_cpumask_var(cpus_hardware_enabled);
2816 __free_page(bad_page);
2817 }
2818 EXPORT_SYMBOL_GPL(kvm_exit);