]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - virt/kvm/kvm_main.c
Merge tag 'vfio-v5.8-rc1' of git://github.com/awilliam/linux-vfio
[mirror_ubuntu-kernels.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 #include <asm/pgtable.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "vfio.h"
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66
67 /* Worst case buffer size needed for holding an integer. */
68 #define ITOA_MAX_LEN 12
69
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72
73 /* Architectures should define their poll value according to the halt latency */
74 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
75 module_param(halt_poll_ns, uint, 0644);
76 EXPORT_SYMBOL_GPL(halt_poll_ns);
77
78 /* Default doubles per-vcpu halt_poll_ns. */
79 unsigned int halt_poll_ns_grow = 2;
80 module_param(halt_poll_ns_grow, uint, 0644);
81 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
82
83 /* The start value to grow halt_poll_ns from */
84 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
85 module_param(halt_poll_ns_grow_start, uint, 0644);
86 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
87
88 /* Default resets per-vcpu halt_poll_ns . */
89 unsigned int halt_poll_ns_shrink;
90 module_param(halt_poll_ns_shrink, uint, 0644);
91 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
92
93 /*
94 * Ordering of locks:
95 *
96 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
97 */
98
99 DEFINE_MUTEX(kvm_lock);
100 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
101 LIST_HEAD(vm_list);
102
103 static cpumask_var_t cpus_hardware_enabled;
104 static int kvm_usage_count;
105 static atomic_t hardware_enable_failed;
106
107 static struct kmem_cache *kvm_vcpu_cache;
108
109 static __read_mostly struct preempt_ops kvm_preempt_ops;
110 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
111
112 struct dentry *kvm_debugfs_dir;
113 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
114
115 static int kvm_debugfs_num_entries;
116 static const struct file_operations stat_fops_per_vm;
117
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119 unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122 unsigned long arg);
123 #define KVM_COMPAT(c) .compat_ioctl = (c)
124 #else
125 /*
126 * For architectures that don't implement a compat infrastructure,
127 * adopt a double line of defense:
128 * - Prevent a compat task from opening /dev/kvm
129 * - If the open has been done by a 64bit task, and the KVM fd
130 * passed to a compat task, let the ioctls fail.
131 */
132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133 unsigned long arg) { return -EINVAL; }
134
135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
136 {
137 return is_compat_task() ? -ENODEV : 0;
138 }
139 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
140 .open = kvm_no_compat_open
141 #endif
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
144
145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146
147 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
148
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157
158 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
159 unsigned long start, unsigned long end, bool blockable)
160 {
161 return 0;
162 }
163
164 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
165 {
166 /*
167 * The metadata used by is_zone_device_page() to determine whether or
168 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
169 * the device has been pinned, e.g. by get_user_pages(). WARN if the
170 * page_count() is zero to help detect bad usage of this helper.
171 */
172 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
173 return false;
174
175 return is_zone_device_page(pfn_to_page(pfn));
176 }
177
178 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
179 {
180 /*
181 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
182 * perspective they are "normal" pages, albeit with slightly different
183 * usage rules.
184 */
185 if (pfn_valid(pfn))
186 return PageReserved(pfn_to_page(pfn)) &&
187 !is_zero_pfn(pfn) &&
188 !kvm_is_zone_device_pfn(pfn);
189
190 return true;
191 }
192
193 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
194 {
195 struct page *page = pfn_to_page(pfn);
196
197 if (!PageTransCompoundMap(page))
198 return false;
199
200 return is_transparent_hugepage(compound_head(page));
201 }
202
203 /*
204 * Switches to specified vcpu, until a matching vcpu_put()
205 */
206 void vcpu_load(struct kvm_vcpu *vcpu)
207 {
208 int cpu = get_cpu();
209
210 __this_cpu_write(kvm_running_vcpu, vcpu);
211 preempt_notifier_register(&vcpu->preempt_notifier);
212 kvm_arch_vcpu_load(vcpu, cpu);
213 put_cpu();
214 }
215 EXPORT_SYMBOL_GPL(vcpu_load);
216
217 void vcpu_put(struct kvm_vcpu *vcpu)
218 {
219 preempt_disable();
220 kvm_arch_vcpu_put(vcpu);
221 preempt_notifier_unregister(&vcpu->preempt_notifier);
222 __this_cpu_write(kvm_running_vcpu, NULL);
223 preempt_enable();
224 }
225 EXPORT_SYMBOL_GPL(vcpu_put);
226
227 /* TODO: merge with kvm_arch_vcpu_should_kick */
228 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
229 {
230 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
231
232 /*
233 * We need to wait for the VCPU to reenable interrupts and get out of
234 * READING_SHADOW_PAGE_TABLES mode.
235 */
236 if (req & KVM_REQUEST_WAIT)
237 return mode != OUTSIDE_GUEST_MODE;
238
239 /*
240 * Need to kick a running VCPU, but otherwise there is nothing to do.
241 */
242 return mode == IN_GUEST_MODE;
243 }
244
245 static void ack_flush(void *_completed)
246 {
247 }
248
249 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
250 {
251 if (unlikely(!cpus))
252 cpus = cpu_online_mask;
253
254 if (cpumask_empty(cpus))
255 return false;
256
257 smp_call_function_many(cpus, ack_flush, NULL, wait);
258 return true;
259 }
260
261 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
262 struct kvm_vcpu *except,
263 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
264 {
265 int i, cpu, me;
266 struct kvm_vcpu *vcpu;
267 bool called;
268
269 me = get_cpu();
270
271 kvm_for_each_vcpu(i, vcpu, kvm) {
272 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
273 vcpu == except)
274 continue;
275
276 kvm_make_request(req, vcpu);
277 cpu = vcpu->cpu;
278
279 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
280 continue;
281
282 if (tmp != NULL && cpu != -1 && cpu != me &&
283 kvm_request_needs_ipi(vcpu, req))
284 __cpumask_set_cpu(cpu, tmp);
285 }
286
287 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
288 put_cpu();
289
290 return called;
291 }
292
293 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
294 struct kvm_vcpu *except)
295 {
296 cpumask_var_t cpus;
297 bool called;
298
299 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
300
301 called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
302
303 free_cpumask_var(cpus);
304 return called;
305 }
306
307 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
308 {
309 return kvm_make_all_cpus_request_except(kvm, req, NULL);
310 }
311
312 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
313 void kvm_flush_remote_tlbs(struct kvm *kvm)
314 {
315 /*
316 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
317 * kvm_make_all_cpus_request.
318 */
319 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
320
321 /*
322 * We want to publish modifications to the page tables before reading
323 * mode. Pairs with a memory barrier in arch-specific code.
324 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
325 * and smp_mb in walk_shadow_page_lockless_begin/end.
326 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
327 *
328 * There is already an smp_mb__after_atomic() before
329 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
330 * barrier here.
331 */
332 if (!kvm_arch_flush_remote_tlb(kvm)
333 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
334 ++kvm->stat.remote_tlb_flush;
335 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
336 }
337 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
338 #endif
339
340 void kvm_reload_remote_mmus(struct kvm *kvm)
341 {
342 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
343 }
344
345 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
346 {
347 mutex_init(&vcpu->mutex);
348 vcpu->cpu = -1;
349 vcpu->kvm = kvm;
350 vcpu->vcpu_id = id;
351 vcpu->pid = NULL;
352 rcuwait_init(&vcpu->wait);
353 kvm_async_pf_vcpu_init(vcpu);
354
355 vcpu->pre_pcpu = -1;
356 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
357
358 kvm_vcpu_set_in_spin_loop(vcpu, false);
359 kvm_vcpu_set_dy_eligible(vcpu, false);
360 vcpu->preempted = false;
361 vcpu->ready = false;
362 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
363 }
364
365 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
366 {
367 kvm_arch_vcpu_destroy(vcpu);
368
369 /*
370 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
371 * the vcpu->pid pointer, and at destruction time all file descriptors
372 * are already gone.
373 */
374 put_pid(rcu_dereference_protected(vcpu->pid, 1));
375
376 free_page((unsigned long)vcpu->run);
377 kmem_cache_free(kvm_vcpu_cache, vcpu);
378 }
379 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
380
381 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
382 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
383 {
384 return container_of(mn, struct kvm, mmu_notifier);
385 }
386
387 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
388 struct mm_struct *mm,
389 unsigned long address,
390 pte_t pte)
391 {
392 struct kvm *kvm = mmu_notifier_to_kvm(mn);
393 int idx;
394
395 idx = srcu_read_lock(&kvm->srcu);
396 spin_lock(&kvm->mmu_lock);
397 kvm->mmu_notifier_seq++;
398
399 if (kvm_set_spte_hva(kvm, address, pte))
400 kvm_flush_remote_tlbs(kvm);
401
402 spin_unlock(&kvm->mmu_lock);
403 srcu_read_unlock(&kvm->srcu, idx);
404 }
405
406 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
407 const struct mmu_notifier_range *range)
408 {
409 struct kvm *kvm = mmu_notifier_to_kvm(mn);
410 int need_tlb_flush = 0, idx;
411 int ret;
412
413 idx = srcu_read_lock(&kvm->srcu);
414 spin_lock(&kvm->mmu_lock);
415 /*
416 * The count increase must become visible at unlock time as no
417 * spte can be established without taking the mmu_lock and
418 * count is also read inside the mmu_lock critical section.
419 */
420 kvm->mmu_notifier_count++;
421 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
422 need_tlb_flush |= kvm->tlbs_dirty;
423 /* we've to flush the tlb before the pages can be freed */
424 if (need_tlb_flush)
425 kvm_flush_remote_tlbs(kvm);
426
427 spin_unlock(&kvm->mmu_lock);
428
429 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
430 range->end,
431 mmu_notifier_range_blockable(range));
432
433 srcu_read_unlock(&kvm->srcu, idx);
434
435 return ret;
436 }
437
438 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
439 const struct mmu_notifier_range *range)
440 {
441 struct kvm *kvm = mmu_notifier_to_kvm(mn);
442
443 spin_lock(&kvm->mmu_lock);
444 /*
445 * This sequence increase will notify the kvm page fault that
446 * the page that is going to be mapped in the spte could have
447 * been freed.
448 */
449 kvm->mmu_notifier_seq++;
450 smp_wmb();
451 /*
452 * The above sequence increase must be visible before the
453 * below count decrease, which is ensured by the smp_wmb above
454 * in conjunction with the smp_rmb in mmu_notifier_retry().
455 */
456 kvm->mmu_notifier_count--;
457 spin_unlock(&kvm->mmu_lock);
458
459 BUG_ON(kvm->mmu_notifier_count < 0);
460 }
461
462 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
463 struct mm_struct *mm,
464 unsigned long start,
465 unsigned long end)
466 {
467 struct kvm *kvm = mmu_notifier_to_kvm(mn);
468 int young, idx;
469
470 idx = srcu_read_lock(&kvm->srcu);
471 spin_lock(&kvm->mmu_lock);
472
473 young = kvm_age_hva(kvm, start, end);
474 if (young)
475 kvm_flush_remote_tlbs(kvm);
476
477 spin_unlock(&kvm->mmu_lock);
478 srcu_read_unlock(&kvm->srcu, idx);
479
480 return young;
481 }
482
483 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
484 struct mm_struct *mm,
485 unsigned long start,
486 unsigned long end)
487 {
488 struct kvm *kvm = mmu_notifier_to_kvm(mn);
489 int young, idx;
490
491 idx = srcu_read_lock(&kvm->srcu);
492 spin_lock(&kvm->mmu_lock);
493 /*
494 * Even though we do not flush TLB, this will still adversely
495 * affect performance on pre-Haswell Intel EPT, where there is
496 * no EPT Access Bit to clear so that we have to tear down EPT
497 * tables instead. If we find this unacceptable, we can always
498 * add a parameter to kvm_age_hva so that it effectively doesn't
499 * do anything on clear_young.
500 *
501 * Also note that currently we never issue secondary TLB flushes
502 * from clear_young, leaving this job up to the regular system
503 * cadence. If we find this inaccurate, we might come up with a
504 * more sophisticated heuristic later.
505 */
506 young = kvm_age_hva(kvm, start, end);
507 spin_unlock(&kvm->mmu_lock);
508 srcu_read_unlock(&kvm->srcu, idx);
509
510 return young;
511 }
512
513 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
514 struct mm_struct *mm,
515 unsigned long address)
516 {
517 struct kvm *kvm = mmu_notifier_to_kvm(mn);
518 int young, idx;
519
520 idx = srcu_read_lock(&kvm->srcu);
521 spin_lock(&kvm->mmu_lock);
522 young = kvm_test_age_hva(kvm, address);
523 spin_unlock(&kvm->mmu_lock);
524 srcu_read_unlock(&kvm->srcu, idx);
525
526 return young;
527 }
528
529 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
530 struct mm_struct *mm)
531 {
532 struct kvm *kvm = mmu_notifier_to_kvm(mn);
533 int idx;
534
535 idx = srcu_read_lock(&kvm->srcu);
536 kvm_arch_flush_shadow_all(kvm);
537 srcu_read_unlock(&kvm->srcu, idx);
538 }
539
540 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
541 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
542 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
543 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
544 .clear_young = kvm_mmu_notifier_clear_young,
545 .test_young = kvm_mmu_notifier_test_young,
546 .change_pte = kvm_mmu_notifier_change_pte,
547 .release = kvm_mmu_notifier_release,
548 };
549
550 static int kvm_init_mmu_notifier(struct kvm *kvm)
551 {
552 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
553 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
554 }
555
556 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
557
558 static int kvm_init_mmu_notifier(struct kvm *kvm)
559 {
560 return 0;
561 }
562
563 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
564
565 static struct kvm_memslots *kvm_alloc_memslots(void)
566 {
567 int i;
568 struct kvm_memslots *slots;
569
570 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
571 if (!slots)
572 return NULL;
573
574 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
575 slots->id_to_index[i] = -1;
576
577 return slots;
578 }
579
580 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
581 {
582 if (!memslot->dirty_bitmap)
583 return;
584
585 kvfree(memslot->dirty_bitmap);
586 memslot->dirty_bitmap = NULL;
587 }
588
589 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
590 {
591 kvm_destroy_dirty_bitmap(slot);
592
593 kvm_arch_free_memslot(kvm, slot);
594
595 slot->flags = 0;
596 slot->npages = 0;
597 }
598
599 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
600 {
601 struct kvm_memory_slot *memslot;
602
603 if (!slots)
604 return;
605
606 kvm_for_each_memslot(memslot, slots)
607 kvm_free_memslot(kvm, memslot);
608
609 kvfree(slots);
610 }
611
612 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
613 {
614 int i;
615
616 if (!kvm->debugfs_dentry)
617 return;
618
619 debugfs_remove_recursive(kvm->debugfs_dentry);
620
621 if (kvm->debugfs_stat_data) {
622 for (i = 0; i < kvm_debugfs_num_entries; i++)
623 kfree(kvm->debugfs_stat_data[i]);
624 kfree(kvm->debugfs_stat_data);
625 }
626 }
627
628 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
629 {
630 char dir_name[ITOA_MAX_LEN * 2];
631 struct kvm_stat_data *stat_data;
632 struct kvm_stats_debugfs_item *p;
633
634 if (!debugfs_initialized())
635 return 0;
636
637 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
638 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
639
640 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
641 sizeof(*kvm->debugfs_stat_data),
642 GFP_KERNEL_ACCOUNT);
643 if (!kvm->debugfs_stat_data)
644 return -ENOMEM;
645
646 for (p = debugfs_entries; p->name; p++) {
647 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
648 if (!stat_data)
649 return -ENOMEM;
650
651 stat_data->kvm = kvm;
652 stat_data->dbgfs_item = p;
653 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
654 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
655 kvm->debugfs_dentry, stat_data,
656 &stat_fops_per_vm);
657 }
658 return 0;
659 }
660
661 /*
662 * Called after the VM is otherwise initialized, but just before adding it to
663 * the vm_list.
664 */
665 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
666 {
667 return 0;
668 }
669
670 /*
671 * Called just after removing the VM from the vm_list, but before doing any
672 * other destruction.
673 */
674 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
675 {
676 }
677
678 static struct kvm *kvm_create_vm(unsigned long type)
679 {
680 struct kvm *kvm = kvm_arch_alloc_vm();
681 int r = -ENOMEM;
682 int i;
683
684 if (!kvm)
685 return ERR_PTR(-ENOMEM);
686
687 spin_lock_init(&kvm->mmu_lock);
688 mmgrab(current->mm);
689 kvm->mm = current->mm;
690 kvm_eventfd_init(kvm);
691 mutex_init(&kvm->lock);
692 mutex_init(&kvm->irq_lock);
693 mutex_init(&kvm->slots_lock);
694 INIT_LIST_HEAD(&kvm->devices);
695
696 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
697
698 if (init_srcu_struct(&kvm->srcu))
699 goto out_err_no_srcu;
700 if (init_srcu_struct(&kvm->irq_srcu))
701 goto out_err_no_irq_srcu;
702
703 refcount_set(&kvm->users_count, 1);
704 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
705 struct kvm_memslots *slots = kvm_alloc_memslots();
706
707 if (!slots)
708 goto out_err_no_arch_destroy_vm;
709 /* Generations must be different for each address space. */
710 slots->generation = i;
711 rcu_assign_pointer(kvm->memslots[i], slots);
712 }
713
714 for (i = 0; i < KVM_NR_BUSES; i++) {
715 rcu_assign_pointer(kvm->buses[i],
716 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
717 if (!kvm->buses[i])
718 goto out_err_no_arch_destroy_vm;
719 }
720
721 kvm->max_halt_poll_ns = halt_poll_ns;
722
723 r = kvm_arch_init_vm(kvm, type);
724 if (r)
725 goto out_err_no_arch_destroy_vm;
726
727 r = hardware_enable_all();
728 if (r)
729 goto out_err_no_disable;
730
731 #ifdef CONFIG_HAVE_KVM_IRQFD
732 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
733 #endif
734
735 r = kvm_init_mmu_notifier(kvm);
736 if (r)
737 goto out_err_no_mmu_notifier;
738
739 r = kvm_arch_post_init_vm(kvm);
740 if (r)
741 goto out_err;
742
743 mutex_lock(&kvm_lock);
744 list_add(&kvm->vm_list, &vm_list);
745 mutex_unlock(&kvm_lock);
746
747 preempt_notifier_inc();
748
749 return kvm;
750
751 out_err:
752 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
753 if (kvm->mmu_notifier.ops)
754 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
755 #endif
756 out_err_no_mmu_notifier:
757 hardware_disable_all();
758 out_err_no_disable:
759 kvm_arch_destroy_vm(kvm);
760 out_err_no_arch_destroy_vm:
761 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
762 for (i = 0; i < KVM_NR_BUSES; i++)
763 kfree(kvm_get_bus(kvm, i));
764 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
765 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
766 cleanup_srcu_struct(&kvm->irq_srcu);
767 out_err_no_irq_srcu:
768 cleanup_srcu_struct(&kvm->srcu);
769 out_err_no_srcu:
770 kvm_arch_free_vm(kvm);
771 mmdrop(current->mm);
772 return ERR_PTR(r);
773 }
774
775 static void kvm_destroy_devices(struct kvm *kvm)
776 {
777 struct kvm_device *dev, *tmp;
778
779 /*
780 * We do not need to take the kvm->lock here, because nobody else
781 * has a reference to the struct kvm at this point and therefore
782 * cannot access the devices list anyhow.
783 */
784 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
785 list_del(&dev->vm_node);
786 dev->ops->destroy(dev);
787 }
788 }
789
790 static void kvm_destroy_vm(struct kvm *kvm)
791 {
792 int i;
793 struct mm_struct *mm = kvm->mm;
794
795 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
796 kvm_destroy_vm_debugfs(kvm);
797 kvm_arch_sync_events(kvm);
798 mutex_lock(&kvm_lock);
799 list_del(&kvm->vm_list);
800 mutex_unlock(&kvm_lock);
801 kvm_arch_pre_destroy_vm(kvm);
802
803 kvm_free_irq_routing(kvm);
804 for (i = 0; i < KVM_NR_BUSES; i++) {
805 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
806
807 if (bus)
808 kvm_io_bus_destroy(bus);
809 kvm->buses[i] = NULL;
810 }
811 kvm_coalesced_mmio_free(kvm);
812 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
813 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
814 #else
815 kvm_arch_flush_shadow_all(kvm);
816 #endif
817 kvm_arch_destroy_vm(kvm);
818 kvm_destroy_devices(kvm);
819 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
820 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
821 cleanup_srcu_struct(&kvm->irq_srcu);
822 cleanup_srcu_struct(&kvm->srcu);
823 kvm_arch_free_vm(kvm);
824 preempt_notifier_dec();
825 hardware_disable_all();
826 mmdrop(mm);
827 }
828
829 void kvm_get_kvm(struct kvm *kvm)
830 {
831 refcount_inc(&kvm->users_count);
832 }
833 EXPORT_SYMBOL_GPL(kvm_get_kvm);
834
835 void kvm_put_kvm(struct kvm *kvm)
836 {
837 if (refcount_dec_and_test(&kvm->users_count))
838 kvm_destroy_vm(kvm);
839 }
840 EXPORT_SYMBOL_GPL(kvm_put_kvm);
841
842 /*
843 * Used to put a reference that was taken on behalf of an object associated
844 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
845 * of the new file descriptor fails and the reference cannot be transferred to
846 * its final owner. In such cases, the caller is still actively using @kvm and
847 * will fail miserably if the refcount unexpectedly hits zero.
848 */
849 void kvm_put_kvm_no_destroy(struct kvm *kvm)
850 {
851 WARN_ON(refcount_dec_and_test(&kvm->users_count));
852 }
853 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
854
855 static int kvm_vm_release(struct inode *inode, struct file *filp)
856 {
857 struct kvm *kvm = filp->private_data;
858
859 kvm_irqfd_release(kvm);
860
861 kvm_put_kvm(kvm);
862 return 0;
863 }
864
865 /*
866 * Allocation size is twice as large as the actual dirty bitmap size.
867 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
868 */
869 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
870 {
871 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
872
873 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
874 if (!memslot->dirty_bitmap)
875 return -ENOMEM;
876
877 return 0;
878 }
879
880 /*
881 * Delete a memslot by decrementing the number of used slots and shifting all
882 * other entries in the array forward one spot.
883 */
884 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
885 struct kvm_memory_slot *memslot)
886 {
887 struct kvm_memory_slot *mslots = slots->memslots;
888 int i;
889
890 if (WARN_ON(slots->id_to_index[memslot->id] == -1))
891 return;
892
893 slots->used_slots--;
894
895 if (atomic_read(&slots->lru_slot) >= slots->used_slots)
896 atomic_set(&slots->lru_slot, 0);
897
898 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
899 mslots[i] = mslots[i + 1];
900 slots->id_to_index[mslots[i].id] = i;
901 }
902 mslots[i] = *memslot;
903 slots->id_to_index[memslot->id] = -1;
904 }
905
906 /*
907 * "Insert" a new memslot by incrementing the number of used slots. Returns
908 * the new slot's initial index into the memslots array.
909 */
910 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
911 {
912 return slots->used_slots++;
913 }
914
915 /*
916 * Move a changed memslot backwards in the array by shifting existing slots
917 * with a higher GFN toward the front of the array. Note, the changed memslot
918 * itself is not preserved in the array, i.e. not swapped at this time, only
919 * its new index into the array is tracked. Returns the changed memslot's
920 * current index into the memslots array.
921 */
922 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
923 struct kvm_memory_slot *memslot)
924 {
925 struct kvm_memory_slot *mslots = slots->memslots;
926 int i;
927
928 if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
929 WARN_ON_ONCE(!slots->used_slots))
930 return -1;
931
932 /*
933 * Move the target memslot backward in the array by shifting existing
934 * memslots with a higher GFN (than the target memslot) towards the
935 * front of the array.
936 */
937 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
938 if (memslot->base_gfn > mslots[i + 1].base_gfn)
939 break;
940
941 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
942
943 /* Shift the next memslot forward one and update its index. */
944 mslots[i] = mslots[i + 1];
945 slots->id_to_index[mslots[i].id] = i;
946 }
947 return i;
948 }
949
950 /*
951 * Move a changed memslot forwards in the array by shifting existing slots with
952 * a lower GFN toward the back of the array. Note, the changed memslot itself
953 * is not preserved in the array, i.e. not swapped at this time, only its new
954 * index into the array is tracked. Returns the changed memslot's final index
955 * into the memslots array.
956 */
957 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
958 struct kvm_memory_slot *memslot,
959 int start)
960 {
961 struct kvm_memory_slot *mslots = slots->memslots;
962 int i;
963
964 for (i = start; i > 0; i--) {
965 if (memslot->base_gfn < mslots[i - 1].base_gfn)
966 break;
967
968 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
969
970 /* Shift the next memslot back one and update its index. */
971 mslots[i] = mslots[i - 1];
972 slots->id_to_index[mslots[i].id] = i;
973 }
974 return i;
975 }
976
977 /*
978 * Re-sort memslots based on their GFN to account for an added, deleted, or
979 * moved memslot. Sorting memslots by GFN allows using a binary search during
980 * memslot lookup.
981 *
982 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! I.e. the entry
983 * at memslots[0] has the highest GFN.
984 *
985 * The sorting algorithm takes advantage of having initially sorted memslots
986 * and knowing the position of the changed memslot. Sorting is also optimized
987 * by not swapping the updated memslot and instead only shifting other memslots
988 * and tracking the new index for the update memslot. Only once its final
989 * index is known is the updated memslot copied into its position in the array.
990 *
991 * - When deleting a memslot, the deleted memslot simply needs to be moved to
992 * the end of the array.
993 *
994 * - When creating a memslot, the algorithm "inserts" the new memslot at the
995 * end of the array and then it forward to its correct location.
996 *
997 * - When moving a memslot, the algorithm first moves the updated memslot
998 * backward to handle the scenario where the memslot's GFN was changed to a
999 * lower value. update_memslots() then falls through and runs the same flow
1000 * as creating a memslot to move the memslot forward to handle the scenario
1001 * where its GFN was changed to a higher value.
1002 *
1003 * Note, slots are sorted from highest->lowest instead of lowest->highest for
1004 * historical reasons. Originally, invalid memslots where denoted by having
1005 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1006 * to the end of the array. The current algorithm uses dedicated logic to
1007 * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1008 *
1009 * The other historical motiviation for highest->lowest was to improve the
1010 * performance of memslot lookup. KVM originally used a linear search starting
1011 * at memslots[0]. On x86, the largest memslot usually has one of the highest,
1012 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1013 * single memslot above the 4gb boundary. As the largest memslot is also the
1014 * most likely to be referenced, sorting it to the front of the array was
1015 * advantageous. The current binary search starts from the middle of the array
1016 * and uses an LRU pointer to improve performance for all memslots and GFNs.
1017 */
1018 static void update_memslots(struct kvm_memslots *slots,
1019 struct kvm_memory_slot *memslot,
1020 enum kvm_mr_change change)
1021 {
1022 int i;
1023
1024 if (change == KVM_MR_DELETE) {
1025 kvm_memslot_delete(slots, memslot);
1026 } else {
1027 if (change == KVM_MR_CREATE)
1028 i = kvm_memslot_insert_back(slots);
1029 else
1030 i = kvm_memslot_move_backward(slots, memslot);
1031 i = kvm_memslot_move_forward(slots, memslot, i);
1032
1033 /*
1034 * Copy the memslot to its new position in memslots and update
1035 * its index accordingly.
1036 */
1037 slots->memslots[i] = *memslot;
1038 slots->id_to_index[memslot->id] = i;
1039 }
1040 }
1041
1042 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1043 {
1044 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1045
1046 #ifdef __KVM_HAVE_READONLY_MEM
1047 valid_flags |= KVM_MEM_READONLY;
1048 #endif
1049
1050 if (mem->flags & ~valid_flags)
1051 return -EINVAL;
1052
1053 return 0;
1054 }
1055
1056 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1057 int as_id, struct kvm_memslots *slots)
1058 {
1059 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1060 u64 gen = old_memslots->generation;
1061
1062 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1063 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1064
1065 rcu_assign_pointer(kvm->memslots[as_id], slots);
1066 synchronize_srcu_expedited(&kvm->srcu);
1067
1068 /*
1069 * Increment the new memslot generation a second time, dropping the
1070 * update in-progress flag and incrementing the generation based on
1071 * the number of address spaces. This provides a unique and easily
1072 * identifiable generation number while the memslots are in flux.
1073 */
1074 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1075
1076 /*
1077 * Generations must be unique even across address spaces. We do not need
1078 * a global counter for that, instead the generation space is evenly split
1079 * across address spaces. For example, with two address spaces, address
1080 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1081 * use generations 1, 3, 5, ...
1082 */
1083 gen += KVM_ADDRESS_SPACE_NUM;
1084
1085 kvm_arch_memslots_updated(kvm, gen);
1086
1087 slots->generation = gen;
1088
1089 return old_memslots;
1090 }
1091
1092 /*
1093 * Note, at a minimum, the current number of used slots must be allocated, even
1094 * when deleting a memslot, as we need a complete duplicate of the memslots for
1095 * use when invalidating a memslot prior to deleting/moving the memslot.
1096 */
1097 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1098 enum kvm_mr_change change)
1099 {
1100 struct kvm_memslots *slots;
1101 size_t old_size, new_size;
1102
1103 old_size = sizeof(struct kvm_memslots) +
1104 (sizeof(struct kvm_memory_slot) * old->used_slots);
1105
1106 if (change == KVM_MR_CREATE)
1107 new_size = old_size + sizeof(struct kvm_memory_slot);
1108 else
1109 new_size = old_size;
1110
1111 slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1112 if (likely(slots))
1113 memcpy(slots, old, old_size);
1114
1115 return slots;
1116 }
1117
1118 static int kvm_set_memslot(struct kvm *kvm,
1119 const struct kvm_userspace_memory_region *mem,
1120 struct kvm_memory_slot *old,
1121 struct kvm_memory_slot *new, int as_id,
1122 enum kvm_mr_change change)
1123 {
1124 struct kvm_memory_slot *slot;
1125 struct kvm_memslots *slots;
1126 int r;
1127
1128 slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1129 if (!slots)
1130 return -ENOMEM;
1131
1132 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1133 /*
1134 * Note, the INVALID flag needs to be in the appropriate entry
1135 * in the freshly allocated memslots, not in @old or @new.
1136 */
1137 slot = id_to_memslot(slots, old->id);
1138 slot->flags |= KVM_MEMSLOT_INVALID;
1139
1140 /*
1141 * We can re-use the old memslots, the only difference from the
1142 * newly installed memslots is the invalid flag, which will get
1143 * dropped by update_memslots anyway. We'll also revert to the
1144 * old memslots if preparing the new memory region fails.
1145 */
1146 slots = install_new_memslots(kvm, as_id, slots);
1147
1148 /* From this point no new shadow pages pointing to a deleted,
1149 * or moved, memslot will be created.
1150 *
1151 * validation of sp->gfn happens in:
1152 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1153 * - kvm_is_visible_gfn (mmu_check_root)
1154 */
1155 kvm_arch_flush_shadow_memslot(kvm, slot);
1156 }
1157
1158 r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1159 if (r)
1160 goto out_slots;
1161
1162 update_memslots(slots, new, change);
1163 slots = install_new_memslots(kvm, as_id, slots);
1164
1165 kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1166
1167 kvfree(slots);
1168 return 0;
1169
1170 out_slots:
1171 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1172 slots = install_new_memslots(kvm, as_id, slots);
1173 kvfree(slots);
1174 return r;
1175 }
1176
1177 static int kvm_delete_memslot(struct kvm *kvm,
1178 const struct kvm_userspace_memory_region *mem,
1179 struct kvm_memory_slot *old, int as_id)
1180 {
1181 struct kvm_memory_slot new;
1182 int r;
1183
1184 if (!old->npages)
1185 return -EINVAL;
1186
1187 memset(&new, 0, sizeof(new));
1188 new.id = old->id;
1189
1190 r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1191 if (r)
1192 return r;
1193
1194 kvm_free_memslot(kvm, old);
1195 return 0;
1196 }
1197
1198 /*
1199 * Allocate some memory and give it an address in the guest physical address
1200 * space.
1201 *
1202 * Discontiguous memory is allowed, mostly for framebuffers.
1203 *
1204 * Must be called holding kvm->slots_lock for write.
1205 */
1206 int __kvm_set_memory_region(struct kvm *kvm,
1207 const struct kvm_userspace_memory_region *mem)
1208 {
1209 struct kvm_memory_slot old, new;
1210 struct kvm_memory_slot *tmp;
1211 enum kvm_mr_change change;
1212 int as_id, id;
1213 int r;
1214
1215 r = check_memory_region_flags(mem);
1216 if (r)
1217 return r;
1218
1219 as_id = mem->slot >> 16;
1220 id = (u16)mem->slot;
1221
1222 /* General sanity checks */
1223 if (mem->memory_size & (PAGE_SIZE - 1))
1224 return -EINVAL;
1225 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1226 return -EINVAL;
1227 /* We can read the guest memory with __xxx_user() later on. */
1228 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1229 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1230 mem->memory_size))
1231 return -EINVAL;
1232 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1233 return -EINVAL;
1234 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1235 return -EINVAL;
1236
1237 /*
1238 * Make a full copy of the old memslot, the pointer will become stale
1239 * when the memslots are re-sorted by update_memslots(), and the old
1240 * memslot needs to be referenced after calling update_memslots(), e.g.
1241 * to free its resources and for arch specific behavior.
1242 */
1243 tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1244 if (tmp) {
1245 old = *tmp;
1246 tmp = NULL;
1247 } else {
1248 memset(&old, 0, sizeof(old));
1249 old.id = id;
1250 }
1251
1252 if (!mem->memory_size)
1253 return kvm_delete_memslot(kvm, mem, &old, as_id);
1254
1255 new.id = id;
1256 new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1257 new.npages = mem->memory_size >> PAGE_SHIFT;
1258 new.flags = mem->flags;
1259 new.userspace_addr = mem->userspace_addr;
1260
1261 if (new.npages > KVM_MEM_MAX_NR_PAGES)
1262 return -EINVAL;
1263
1264 if (!old.npages) {
1265 change = KVM_MR_CREATE;
1266 new.dirty_bitmap = NULL;
1267 memset(&new.arch, 0, sizeof(new.arch));
1268 } else { /* Modify an existing slot. */
1269 if ((new.userspace_addr != old.userspace_addr) ||
1270 (new.npages != old.npages) ||
1271 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1272 return -EINVAL;
1273
1274 if (new.base_gfn != old.base_gfn)
1275 change = KVM_MR_MOVE;
1276 else if (new.flags != old.flags)
1277 change = KVM_MR_FLAGS_ONLY;
1278 else /* Nothing to change. */
1279 return 0;
1280
1281 /* Copy dirty_bitmap and arch from the current memslot. */
1282 new.dirty_bitmap = old.dirty_bitmap;
1283 memcpy(&new.arch, &old.arch, sizeof(new.arch));
1284 }
1285
1286 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1287 /* Check for overlaps */
1288 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1289 if (tmp->id == id)
1290 continue;
1291 if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1292 (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1293 return -EEXIST;
1294 }
1295 }
1296
1297 /* Allocate/free page dirty bitmap as needed */
1298 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1299 new.dirty_bitmap = NULL;
1300 else if (!new.dirty_bitmap) {
1301 r = kvm_alloc_dirty_bitmap(&new);
1302 if (r)
1303 return r;
1304
1305 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1306 bitmap_set(new.dirty_bitmap, 0, new.npages);
1307 }
1308
1309 r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1310 if (r)
1311 goto out_bitmap;
1312
1313 if (old.dirty_bitmap && !new.dirty_bitmap)
1314 kvm_destroy_dirty_bitmap(&old);
1315 return 0;
1316
1317 out_bitmap:
1318 if (new.dirty_bitmap && !old.dirty_bitmap)
1319 kvm_destroy_dirty_bitmap(&new);
1320 return r;
1321 }
1322 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1323
1324 int kvm_set_memory_region(struct kvm *kvm,
1325 const struct kvm_userspace_memory_region *mem)
1326 {
1327 int r;
1328
1329 mutex_lock(&kvm->slots_lock);
1330 r = __kvm_set_memory_region(kvm, mem);
1331 mutex_unlock(&kvm->slots_lock);
1332 return r;
1333 }
1334 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1335
1336 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1337 struct kvm_userspace_memory_region *mem)
1338 {
1339 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1340 return -EINVAL;
1341
1342 return kvm_set_memory_region(kvm, mem);
1343 }
1344
1345 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1346 /**
1347 * kvm_get_dirty_log - get a snapshot of dirty pages
1348 * @kvm: pointer to kvm instance
1349 * @log: slot id and address to which we copy the log
1350 * @is_dirty: set to '1' if any dirty pages were found
1351 * @memslot: set to the associated memslot, always valid on success
1352 */
1353 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1354 int *is_dirty, struct kvm_memory_slot **memslot)
1355 {
1356 struct kvm_memslots *slots;
1357 int i, as_id, id;
1358 unsigned long n;
1359 unsigned long any = 0;
1360
1361 *memslot = NULL;
1362 *is_dirty = 0;
1363
1364 as_id = log->slot >> 16;
1365 id = (u16)log->slot;
1366 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1367 return -EINVAL;
1368
1369 slots = __kvm_memslots(kvm, as_id);
1370 *memslot = id_to_memslot(slots, id);
1371 if (!(*memslot) || !(*memslot)->dirty_bitmap)
1372 return -ENOENT;
1373
1374 kvm_arch_sync_dirty_log(kvm, *memslot);
1375
1376 n = kvm_dirty_bitmap_bytes(*memslot);
1377
1378 for (i = 0; !any && i < n/sizeof(long); ++i)
1379 any = (*memslot)->dirty_bitmap[i];
1380
1381 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1382 return -EFAULT;
1383
1384 if (any)
1385 *is_dirty = 1;
1386 return 0;
1387 }
1388 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1389
1390 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1391 /**
1392 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1393 * and reenable dirty page tracking for the corresponding pages.
1394 * @kvm: pointer to kvm instance
1395 * @log: slot id and address to which we copy the log
1396 *
1397 * We need to keep it in mind that VCPU threads can write to the bitmap
1398 * concurrently. So, to avoid losing track of dirty pages we keep the
1399 * following order:
1400 *
1401 * 1. Take a snapshot of the bit and clear it if needed.
1402 * 2. Write protect the corresponding page.
1403 * 3. Copy the snapshot to the userspace.
1404 * 4. Upon return caller flushes TLB's if needed.
1405 *
1406 * Between 2 and 4, the guest may write to the page using the remaining TLB
1407 * entry. This is not a problem because the page is reported dirty using
1408 * the snapshot taken before and step 4 ensures that writes done after
1409 * exiting to userspace will be logged for the next call.
1410 *
1411 */
1412 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1413 {
1414 struct kvm_memslots *slots;
1415 struct kvm_memory_slot *memslot;
1416 int i, as_id, id;
1417 unsigned long n;
1418 unsigned long *dirty_bitmap;
1419 unsigned long *dirty_bitmap_buffer;
1420 bool flush;
1421
1422 as_id = log->slot >> 16;
1423 id = (u16)log->slot;
1424 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1425 return -EINVAL;
1426
1427 slots = __kvm_memslots(kvm, as_id);
1428 memslot = id_to_memslot(slots, id);
1429 if (!memslot || !memslot->dirty_bitmap)
1430 return -ENOENT;
1431
1432 dirty_bitmap = memslot->dirty_bitmap;
1433
1434 kvm_arch_sync_dirty_log(kvm, memslot);
1435
1436 n = kvm_dirty_bitmap_bytes(memslot);
1437 flush = false;
1438 if (kvm->manual_dirty_log_protect) {
1439 /*
1440 * Unlike kvm_get_dirty_log, we always return false in *flush,
1441 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
1442 * is some code duplication between this function and
1443 * kvm_get_dirty_log, but hopefully all architecture
1444 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1445 * can be eliminated.
1446 */
1447 dirty_bitmap_buffer = dirty_bitmap;
1448 } else {
1449 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1450 memset(dirty_bitmap_buffer, 0, n);
1451
1452 spin_lock(&kvm->mmu_lock);
1453 for (i = 0; i < n / sizeof(long); i++) {
1454 unsigned long mask;
1455 gfn_t offset;
1456
1457 if (!dirty_bitmap[i])
1458 continue;
1459
1460 flush = true;
1461 mask = xchg(&dirty_bitmap[i], 0);
1462 dirty_bitmap_buffer[i] = mask;
1463
1464 offset = i * BITS_PER_LONG;
1465 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1466 offset, mask);
1467 }
1468 spin_unlock(&kvm->mmu_lock);
1469 }
1470
1471 if (flush)
1472 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1473
1474 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1475 return -EFAULT;
1476 return 0;
1477 }
1478
1479
1480 /**
1481 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1482 * @kvm: kvm instance
1483 * @log: slot id and address to which we copy the log
1484 *
1485 * Steps 1-4 below provide general overview of dirty page logging. See
1486 * kvm_get_dirty_log_protect() function description for additional details.
1487 *
1488 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1489 * always flush the TLB (step 4) even if previous step failed and the dirty
1490 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1491 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1492 * writes will be marked dirty for next log read.
1493 *
1494 * 1. Take a snapshot of the bit and clear it if needed.
1495 * 2. Write protect the corresponding page.
1496 * 3. Copy the snapshot to the userspace.
1497 * 4. Flush TLB's if needed.
1498 */
1499 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1500 struct kvm_dirty_log *log)
1501 {
1502 int r;
1503
1504 mutex_lock(&kvm->slots_lock);
1505
1506 r = kvm_get_dirty_log_protect(kvm, log);
1507
1508 mutex_unlock(&kvm->slots_lock);
1509 return r;
1510 }
1511
1512 /**
1513 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1514 * and reenable dirty page tracking for the corresponding pages.
1515 * @kvm: pointer to kvm instance
1516 * @log: slot id and address from which to fetch the bitmap of dirty pages
1517 */
1518 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1519 struct kvm_clear_dirty_log *log)
1520 {
1521 struct kvm_memslots *slots;
1522 struct kvm_memory_slot *memslot;
1523 int as_id, id;
1524 gfn_t offset;
1525 unsigned long i, n;
1526 unsigned long *dirty_bitmap;
1527 unsigned long *dirty_bitmap_buffer;
1528 bool flush;
1529
1530 as_id = log->slot >> 16;
1531 id = (u16)log->slot;
1532 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1533 return -EINVAL;
1534
1535 if (log->first_page & 63)
1536 return -EINVAL;
1537
1538 slots = __kvm_memslots(kvm, as_id);
1539 memslot = id_to_memslot(slots, id);
1540 if (!memslot || !memslot->dirty_bitmap)
1541 return -ENOENT;
1542
1543 dirty_bitmap = memslot->dirty_bitmap;
1544
1545 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1546
1547 if (log->first_page > memslot->npages ||
1548 log->num_pages > memslot->npages - log->first_page ||
1549 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1550 return -EINVAL;
1551
1552 kvm_arch_sync_dirty_log(kvm, memslot);
1553
1554 flush = false;
1555 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1556 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1557 return -EFAULT;
1558
1559 spin_lock(&kvm->mmu_lock);
1560 for (offset = log->first_page, i = offset / BITS_PER_LONG,
1561 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1562 i++, offset += BITS_PER_LONG) {
1563 unsigned long mask = *dirty_bitmap_buffer++;
1564 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1565 if (!mask)
1566 continue;
1567
1568 mask &= atomic_long_fetch_andnot(mask, p);
1569
1570 /*
1571 * mask contains the bits that really have been cleared. This
1572 * never includes any bits beyond the length of the memslot (if
1573 * the length is not aligned to 64 pages), therefore it is not
1574 * a problem if userspace sets them in log->dirty_bitmap.
1575 */
1576 if (mask) {
1577 flush = true;
1578 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1579 offset, mask);
1580 }
1581 }
1582 spin_unlock(&kvm->mmu_lock);
1583
1584 if (flush)
1585 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1586
1587 return 0;
1588 }
1589
1590 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1591 struct kvm_clear_dirty_log *log)
1592 {
1593 int r;
1594
1595 mutex_lock(&kvm->slots_lock);
1596
1597 r = kvm_clear_dirty_log_protect(kvm, log);
1598
1599 mutex_unlock(&kvm->slots_lock);
1600 return r;
1601 }
1602 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1603
1604 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1605 {
1606 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1607 }
1608 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1609
1610 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1611 {
1612 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1613 }
1614 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1615
1616 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1617 {
1618 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1619
1620 return kvm_is_visible_memslot(memslot);
1621 }
1622 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1623
1624 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1625 {
1626 struct vm_area_struct *vma;
1627 unsigned long addr, size;
1628
1629 size = PAGE_SIZE;
1630
1631 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1632 if (kvm_is_error_hva(addr))
1633 return PAGE_SIZE;
1634
1635 down_read(&current->mm->mmap_sem);
1636 vma = find_vma(current->mm, addr);
1637 if (!vma)
1638 goto out;
1639
1640 size = vma_kernel_pagesize(vma);
1641
1642 out:
1643 up_read(&current->mm->mmap_sem);
1644
1645 return size;
1646 }
1647
1648 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1649 {
1650 return slot->flags & KVM_MEM_READONLY;
1651 }
1652
1653 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1654 gfn_t *nr_pages, bool write)
1655 {
1656 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1657 return KVM_HVA_ERR_BAD;
1658
1659 if (memslot_is_readonly(slot) && write)
1660 return KVM_HVA_ERR_RO_BAD;
1661
1662 if (nr_pages)
1663 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1664
1665 return __gfn_to_hva_memslot(slot, gfn);
1666 }
1667
1668 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1669 gfn_t *nr_pages)
1670 {
1671 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1672 }
1673
1674 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1675 gfn_t gfn)
1676 {
1677 return gfn_to_hva_many(slot, gfn, NULL);
1678 }
1679 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1680
1681 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1682 {
1683 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1684 }
1685 EXPORT_SYMBOL_GPL(gfn_to_hva);
1686
1687 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1688 {
1689 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1690 }
1691 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1692
1693 /*
1694 * Return the hva of a @gfn and the R/W attribute if possible.
1695 *
1696 * @slot: the kvm_memory_slot which contains @gfn
1697 * @gfn: the gfn to be translated
1698 * @writable: used to return the read/write attribute of the @slot if the hva
1699 * is valid and @writable is not NULL
1700 */
1701 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1702 gfn_t gfn, bool *writable)
1703 {
1704 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1705
1706 if (!kvm_is_error_hva(hva) && writable)
1707 *writable = !memslot_is_readonly(slot);
1708
1709 return hva;
1710 }
1711
1712 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1713 {
1714 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1715
1716 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1717 }
1718
1719 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1720 {
1721 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1722
1723 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1724 }
1725
1726 static inline int check_user_page_hwpoison(unsigned long addr)
1727 {
1728 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1729
1730 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1731 return rc == -EHWPOISON;
1732 }
1733
1734 /*
1735 * The fast path to get the writable pfn which will be stored in @pfn,
1736 * true indicates success, otherwise false is returned. It's also the
1737 * only part that runs if we can in atomic context.
1738 */
1739 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1740 bool *writable, kvm_pfn_t *pfn)
1741 {
1742 struct page *page[1];
1743 int npages;
1744
1745 /*
1746 * Fast pin a writable pfn only if it is a write fault request
1747 * or the caller allows to map a writable pfn for a read fault
1748 * request.
1749 */
1750 if (!(write_fault || writable))
1751 return false;
1752
1753 npages = __get_user_pages_fast(addr, 1, 1, page);
1754 if (npages == 1) {
1755 *pfn = page_to_pfn(page[0]);
1756
1757 if (writable)
1758 *writable = true;
1759 return true;
1760 }
1761
1762 return false;
1763 }
1764
1765 /*
1766 * The slow path to get the pfn of the specified host virtual address,
1767 * 1 indicates success, -errno is returned if error is detected.
1768 */
1769 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1770 bool *writable, kvm_pfn_t *pfn)
1771 {
1772 unsigned int flags = FOLL_HWPOISON;
1773 struct page *page;
1774 int npages = 0;
1775
1776 might_sleep();
1777
1778 if (writable)
1779 *writable = write_fault;
1780
1781 if (write_fault)
1782 flags |= FOLL_WRITE;
1783 if (async)
1784 flags |= FOLL_NOWAIT;
1785
1786 npages = get_user_pages_unlocked(addr, 1, &page, flags);
1787 if (npages != 1)
1788 return npages;
1789
1790 /* map read fault as writable if possible */
1791 if (unlikely(!write_fault) && writable) {
1792 struct page *wpage;
1793
1794 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1795 *writable = true;
1796 put_page(page);
1797 page = wpage;
1798 }
1799 }
1800 *pfn = page_to_pfn(page);
1801 return npages;
1802 }
1803
1804 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1805 {
1806 if (unlikely(!(vma->vm_flags & VM_READ)))
1807 return false;
1808
1809 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1810 return false;
1811
1812 return true;
1813 }
1814
1815 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1816 unsigned long addr, bool *async,
1817 bool write_fault, bool *writable,
1818 kvm_pfn_t *p_pfn)
1819 {
1820 unsigned long pfn;
1821 int r;
1822
1823 r = follow_pfn(vma, addr, &pfn);
1824 if (r) {
1825 /*
1826 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1827 * not call the fault handler, so do it here.
1828 */
1829 bool unlocked = false;
1830 r = fixup_user_fault(current, current->mm, addr,
1831 (write_fault ? FAULT_FLAG_WRITE : 0),
1832 &unlocked);
1833 if (unlocked)
1834 return -EAGAIN;
1835 if (r)
1836 return r;
1837
1838 r = follow_pfn(vma, addr, &pfn);
1839 if (r)
1840 return r;
1841
1842 }
1843
1844 if (writable)
1845 *writable = true;
1846
1847 /*
1848 * Get a reference here because callers of *hva_to_pfn* and
1849 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1850 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1851 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1852 * simply do nothing for reserved pfns.
1853 *
1854 * Whoever called remap_pfn_range is also going to call e.g.
1855 * unmap_mapping_range before the underlying pages are freed,
1856 * causing a call to our MMU notifier.
1857 */
1858 kvm_get_pfn(pfn);
1859
1860 *p_pfn = pfn;
1861 return 0;
1862 }
1863
1864 /*
1865 * Pin guest page in memory and return its pfn.
1866 * @addr: host virtual address which maps memory to the guest
1867 * @atomic: whether this function can sleep
1868 * @async: whether this function need to wait IO complete if the
1869 * host page is not in the memory
1870 * @write_fault: whether we should get a writable host page
1871 * @writable: whether it allows to map a writable host page for !@write_fault
1872 *
1873 * The function will map a writable host page for these two cases:
1874 * 1): @write_fault = true
1875 * 2): @write_fault = false && @writable, @writable will tell the caller
1876 * whether the mapping is writable.
1877 */
1878 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1879 bool write_fault, bool *writable)
1880 {
1881 struct vm_area_struct *vma;
1882 kvm_pfn_t pfn = 0;
1883 int npages, r;
1884
1885 /* we can do it either atomically or asynchronously, not both */
1886 BUG_ON(atomic && async);
1887
1888 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1889 return pfn;
1890
1891 if (atomic)
1892 return KVM_PFN_ERR_FAULT;
1893
1894 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1895 if (npages == 1)
1896 return pfn;
1897
1898 down_read(&current->mm->mmap_sem);
1899 if (npages == -EHWPOISON ||
1900 (!async && check_user_page_hwpoison(addr))) {
1901 pfn = KVM_PFN_ERR_HWPOISON;
1902 goto exit;
1903 }
1904
1905 retry:
1906 vma = find_vma_intersection(current->mm, addr, addr + 1);
1907
1908 if (vma == NULL)
1909 pfn = KVM_PFN_ERR_FAULT;
1910 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1911 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1912 if (r == -EAGAIN)
1913 goto retry;
1914 if (r < 0)
1915 pfn = KVM_PFN_ERR_FAULT;
1916 } else {
1917 if (async && vma_is_valid(vma, write_fault))
1918 *async = true;
1919 pfn = KVM_PFN_ERR_FAULT;
1920 }
1921 exit:
1922 up_read(&current->mm->mmap_sem);
1923 return pfn;
1924 }
1925
1926 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1927 bool atomic, bool *async, bool write_fault,
1928 bool *writable)
1929 {
1930 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1931
1932 if (addr == KVM_HVA_ERR_RO_BAD) {
1933 if (writable)
1934 *writable = false;
1935 return KVM_PFN_ERR_RO_FAULT;
1936 }
1937
1938 if (kvm_is_error_hva(addr)) {
1939 if (writable)
1940 *writable = false;
1941 return KVM_PFN_NOSLOT;
1942 }
1943
1944 /* Do not map writable pfn in the readonly memslot. */
1945 if (writable && memslot_is_readonly(slot)) {
1946 *writable = false;
1947 writable = NULL;
1948 }
1949
1950 return hva_to_pfn(addr, atomic, async, write_fault,
1951 writable);
1952 }
1953 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1954
1955 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1956 bool *writable)
1957 {
1958 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1959 write_fault, writable);
1960 }
1961 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1962
1963 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1964 {
1965 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1966 }
1967 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1968
1969 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1970 {
1971 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1972 }
1973 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1974
1975 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1976 {
1977 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1978 }
1979 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1980
1981 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1982 {
1983 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1984 }
1985 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1986
1987 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1988 {
1989 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1990 }
1991 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1992
1993 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1994 struct page **pages, int nr_pages)
1995 {
1996 unsigned long addr;
1997 gfn_t entry = 0;
1998
1999 addr = gfn_to_hva_many(slot, gfn, &entry);
2000 if (kvm_is_error_hva(addr))
2001 return -1;
2002
2003 if (entry < nr_pages)
2004 return 0;
2005
2006 return __get_user_pages_fast(addr, nr_pages, 1, pages);
2007 }
2008 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2009
2010 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2011 {
2012 if (is_error_noslot_pfn(pfn))
2013 return KVM_ERR_PTR_BAD_PAGE;
2014
2015 if (kvm_is_reserved_pfn(pfn)) {
2016 WARN_ON(1);
2017 return KVM_ERR_PTR_BAD_PAGE;
2018 }
2019
2020 return pfn_to_page(pfn);
2021 }
2022
2023 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2024 {
2025 kvm_pfn_t pfn;
2026
2027 pfn = gfn_to_pfn(kvm, gfn);
2028
2029 return kvm_pfn_to_page(pfn);
2030 }
2031 EXPORT_SYMBOL_GPL(gfn_to_page);
2032
2033 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2034 {
2035 if (pfn == 0)
2036 return;
2037
2038 if (cache)
2039 cache->pfn = cache->gfn = 0;
2040
2041 if (dirty)
2042 kvm_release_pfn_dirty(pfn);
2043 else
2044 kvm_release_pfn_clean(pfn);
2045 }
2046
2047 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2048 struct gfn_to_pfn_cache *cache, u64 gen)
2049 {
2050 kvm_release_pfn(cache->pfn, cache->dirty, cache);
2051
2052 cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2053 cache->gfn = gfn;
2054 cache->dirty = false;
2055 cache->generation = gen;
2056 }
2057
2058 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2059 struct kvm_host_map *map,
2060 struct gfn_to_pfn_cache *cache,
2061 bool atomic)
2062 {
2063 kvm_pfn_t pfn;
2064 void *hva = NULL;
2065 struct page *page = KVM_UNMAPPED_PAGE;
2066 struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2067 u64 gen = slots->generation;
2068
2069 if (!map)
2070 return -EINVAL;
2071
2072 if (cache) {
2073 if (!cache->pfn || cache->gfn != gfn ||
2074 cache->generation != gen) {
2075 if (atomic)
2076 return -EAGAIN;
2077 kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2078 }
2079 pfn = cache->pfn;
2080 } else {
2081 if (atomic)
2082 return -EAGAIN;
2083 pfn = gfn_to_pfn_memslot(slot, gfn);
2084 }
2085 if (is_error_noslot_pfn(pfn))
2086 return -EINVAL;
2087
2088 if (pfn_valid(pfn)) {
2089 page = pfn_to_page(pfn);
2090 if (atomic)
2091 hva = kmap_atomic(page);
2092 else
2093 hva = kmap(page);
2094 #ifdef CONFIG_HAS_IOMEM
2095 } else if (!atomic) {
2096 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2097 } else {
2098 return -EINVAL;
2099 #endif
2100 }
2101
2102 if (!hva)
2103 return -EFAULT;
2104
2105 map->page = page;
2106 map->hva = hva;
2107 map->pfn = pfn;
2108 map->gfn = gfn;
2109
2110 return 0;
2111 }
2112
2113 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2114 struct gfn_to_pfn_cache *cache, bool atomic)
2115 {
2116 return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2117 cache, atomic);
2118 }
2119 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2120
2121 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2122 {
2123 return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2124 NULL, false);
2125 }
2126 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2127
2128 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
2129 struct kvm_host_map *map,
2130 struct gfn_to_pfn_cache *cache,
2131 bool dirty, bool atomic)
2132 {
2133 if (!map)
2134 return;
2135
2136 if (!map->hva)
2137 return;
2138
2139 if (map->page != KVM_UNMAPPED_PAGE) {
2140 if (atomic)
2141 kunmap_atomic(map->hva);
2142 else
2143 kunmap(map->page);
2144 }
2145 #ifdef CONFIG_HAS_IOMEM
2146 else if (!atomic)
2147 memunmap(map->hva);
2148 else
2149 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2150 #endif
2151
2152 if (dirty)
2153 mark_page_dirty_in_slot(memslot, map->gfn);
2154
2155 if (cache)
2156 cache->dirty |= dirty;
2157 else
2158 kvm_release_pfn(map->pfn, dirty, NULL);
2159
2160 map->hva = NULL;
2161 map->page = NULL;
2162 }
2163
2164 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2165 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2166 {
2167 __kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
2168 cache, dirty, atomic);
2169 return 0;
2170 }
2171 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2172
2173 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2174 {
2175 __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
2176 dirty, false);
2177 }
2178 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2179
2180 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2181 {
2182 kvm_pfn_t pfn;
2183
2184 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2185
2186 return kvm_pfn_to_page(pfn);
2187 }
2188 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2189
2190 void kvm_release_page_clean(struct page *page)
2191 {
2192 WARN_ON(is_error_page(page));
2193
2194 kvm_release_pfn_clean(page_to_pfn(page));
2195 }
2196 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2197
2198 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2199 {
2200 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2201 put_page(pfn_to_page(pfn));
2202 }
2203 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2204
2205 void kvm_release_page_dirty(struct page *page)
2206 {
2207 WARN_ON(is_error_page(page));
2208
2209 kvm_release_pfn_dirty(page_to_pfn(page));
2210 }
2211 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2212
2213 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2214 {
2215 kvm_set_pfn_dirty(pfn);
2216 kvm_release_pfn_clean(pfn);
2217 }
2218 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2219
2220 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2221 {
2222 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2223 SetPageDirty(pfn_to_page(pfn));
2224 }
2225 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2226
2227 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2228 {
2229 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2230 mark_page_accessed(pfn_to_page(pfn));
2231 }
2232 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2233
2234 void kvm_get_pfn(kvm_pfn_t pfn)
2235 {
2236 if (!kvm_is_reserved_pfn(pfn))
2237 get_page(pfn_to_page(pfn));
2238 }
2239 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2240
2241 static int next_segment(unsigned long len, int offset)
2242 {
2243 if (len > PAGE_SIZE - offset)
2244 return PAGE_SIZE - offset;
2245 else
2246 return len;
2247 }
2248
2249 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2250 void *data, int offset, int len)
2251 {
2252 int r;
2253 unsigned long addr;
2254
2255 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2256 if (kvm_is_error_hva(addr))
2257 return -EFAULT;
2258 r = __copy_from_user(data, (void __user *)addr + offset, len);
2259 if (r)
2260 return -EFAULT;
2261 return 0;
2262 }
2263
2264 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2265 int len)
2266 {
2267 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2268
2269 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2270 }
2271 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2272
2273 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2274 int offset, int len)
2275 {
2276 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2277
2278 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2279 }
2280 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2281
2282 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2283 {
2284 gfn_t gfn = gpa >> PAGE_SHIFT;
2285 int seg;
2286 int offset = offset_in_page(gpa);
2287 int ret;
2288
2289 while ((seg = next_segment(len, offset)) != 0) {
2290 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2291 if (ret < 0)
2292 return ret;
2293 offset = 0;
2294 len -= seg;
2295 data += seg;
2296 ++gfn;
2297 }
2298 return 0;
2299 }
2300 EXPORT_SYMBOL_GPL(kvm_read_guest);
2301
2302 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2303 {
2304 gfn_t gfn = gpa >> PAGE_SHIFT;
2305 int seg;
2306 int offset = offset_in_page(gpa);
2307 int ret;
2308
2309 while ((seg = next_segment(len, offset)) != 0) {
2310 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2311 if (ret < 0)
2312 return ret;
2313 offset = 0;
2314 len -= seg;
2315 data += seg;
2316 ++gfn;
2317 }
2318 return 0;
2319 }
2320 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2321
2322 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2323 void *data, int offset, unsigned long len)
2324 {
2325 int r;
2326 unsigned long addr;
2327
2328 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2329 if (kvm_is_error_hva(addr))
2330 return -EFAULT;
2331 pagefault_disable();
2332 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2333 pagefault_enable();
2334 if (r)
2335 return -EFAULT;
2336 return 0;
2337 }
2338
2339 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2340 void *data, unsigned long len)
2341 {
2342 gfn_t gfn = gpa >> PAGE_SHIFT;
2343 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2344 int offset = offset_in_page(gpa);
2345
2346 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2347 }
2348 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2349
2350 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2351 const void *data, int offset, int len)
2352 {
2353 int r;
2354 unsigned long addr;
2355
2356 addr = gfn_to_hva_memslot(memslot, gfn);
2357 if (kvm_is_error_hva(addr))
2358 return -EFAULT;
2359 r = __copy_to_user((void __user *)addr + offset, data, len);
2360 if (r)
2361 return -EFAULT;
2362 mark_page_dirty_in_slot(memslot, gfn);
2363 return 0;
2364 }
2365
2366 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2367 const void *data, int offset, int len)
2368 {
2369 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2370
2371 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2372 }
2373 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2374
2375 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2376 const void *data, int offset, int len)
2377 {
2378 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2379
2380 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2381 }
2382 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2383
2384 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2385 unsigned long len)
2386 {
2387 gfn_t gfn = gpa >> PAGE_SHIFT;
2388 int seg;
2389 int offset = offset_in_page(gpa);
2390 int ret;
2391
2392 while ((seg = next_segment(len, offset)) != 0) {
2393 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2394 if (ret < 0)
2395 return ret;
2396 offset = 0;
2397 len -= seg;
2398 data += seg;
2399 ++gfn;
2400 }
2401 return 0;
2402 }
2403 EXPORT_SYMBOL_GPL(kvm_write_guest);
2404
2405 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2406 unsigned long len)
2407 {
2408 gfn_t gfn = gpa >> PAGE_SHIFT;
2409 int seg;
2410 int offset = offset_in_page(gpa);
2411 int ret;
2412
2413 while ((seg = next_segment(len, offset)) != 0) {
2414 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2415 if (ret < 0)
2416 return ret;
2417 offset = 0;
2418 len -= seg;
2419 data += seg;
2420 ++gfn;
2421 }
2422 return 0;
2423 }
2424 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2425
2426 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2427 struct gfn_to_hva_cache *ghc,
2428 gpa_t gpa, unsigned long len)
2429 {
2430 int offset = offset_in_page(gpa);
2431 gfn_t start_gfn = gpa >> PAGE_SHIFT;
2432 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2433 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2434 gfn_t nr_pages_avail;
2435
2436 /* Update ghc->generation before performing any error checks. */
2437 ghc->generation = slots->generation;
2438
2439 if (start_gfn > end_gfn) {
2440 ghc->hva = KVM_HVA_ERR_BAD;
2441 return -EINVAL;
2442 }
2443
2444 /*
2445 * If the requested region crosses two memslots, we still
2446 * verify that the entire region is valid here.
2447 */
2448 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2449 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2450 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2451 &nr_pages_avail);
2452 if (kvm_is_error_hva(ghc->hva))
2453 return -EFAULT;
2454 }
2455
2456 /* Use the slow path for cross page reads and writes. */
2457 if (nr_pages_needed == 1)
2458 ghc->hva += offset;
2459 else
2460 ghc->memslot = NULL;
2461
2462 ghc->gpa = gpa;
2463 ghc->len = len;
2464 return 0;
2465 }
2466
2467 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2468 gpa_t gpa, unsigned long len)
2469 {
2470 struct kvm_memslots *slots = kvm_memslots(kvm);
2471 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2472 }
2473 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2474
2475 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2476 void *data, unsigned int offset,
2477 unsigned long len)
2478 {
2479 struct kvm_memslots *slots = kvm_memslots(kvm);
2480 int r;
2481 gpa_t gpa = ghc->gpa + offset;
2482
2483 BUG_ON(len + offset > ghc->len);
2484
2485 if (slots->generation != ghc->generation) {
2486 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2487 return -EFAULT;
2488 }
2489
2490 if (kvm_is_error_hva(ghc->hva))
2491 return -EFAULT;
2492
2493 if (unlikely(!ghc->memslot))
2494 return kvm_write_guest(kvm, gpa, data, len);
2495
2496 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2497 if (r)
2498 return -EFAULT;
2499 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2500
2501 return 0;
2502 }
2503 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2504
2505 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2506 void *data, unsigned long len)
2507 {
2508 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2509 }
2510 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2511
2512 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2513 void *data, unsigned int offset,
2514 unsigned long len)
2515 {
2516 struct kvm_memslots *slots = kvm_memslots(kvm);
2517 int r;
2518 gpa_t gpa = ghc->gpa + offset;
2519
2520 BUG_ON(len + offset > ghc->len);
2521
2522 if (slots->generation != ghc->generation) {
2523 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2524 return -EFAULT;
2525 }
2526
2527 if (kvm_is_error_hva(ghc->hva))
2528 return -EFAULT;
2529
2530 if (unlikely(!ghc->memslot))
2531 return kvm_read_guest(kvm, gpa, data, len);
2532
2533 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2534 if (r)
2535 return -EFAULT;
2536
2537 return 0;
2538 }
2539 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2540
2541 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2542 void *data, unsigned long len)
2543 {
2544 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2545 }
2546 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2547
2548 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2549 {
2550 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2551
2552 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2553 }
2554 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2555
2556 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2557 {
2558 gfn_t gfn = gpa >> PAGE_SHIFT;
2559 int seg;
2560 int offset = offset_in_page(gpa);
2561 int ret;
2562
2563 while ((seg = next_segment(len, offset)) != 0) {
2564 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2565 if (ret < 0)
2566 return ret;
2567 offset = 0;
2568 len -= seg;
2569 ++gfn;
2570 }
2571 return 0;
2572 }
2573 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2574
2575 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2576 gfn_t gfn)
2577 {
2578 if (memslot && memslot->dirty_bitmap) {
2579 unsigned long rel_gfn = gfn - memslot->base_gfn;
2580
2581 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2582 }
2583 }
2584
2585 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2586 {
2587 struct kvm_memory_slot *memslot;
2588
2589 memslot = gfn_to_memslot(kvm, gfn);
2590 mark_page_dirty_in_slot(memslot, gfn);
2591 }
2592 EXPORT_SYMBOL_GPL(mark_page_dirty);
2593
2594 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2595 {
2596 struct kvm_memory_slot *memslot;
2597
2598 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2599 mark_page_dirty_in_slot(memslot, gfn);
2600 }
2601 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2602
2603 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2604 {
2605 if (!vcpu->sigset_active)
2606 return;
2607
2608 /*
2609 * This does a lockless modification of ->real_blocked, which is fine
2610 * because, only current can change ->real_blocked and all readers of
2611 * ->real_blocked don't care as long ->real_blocked is always a subset
2612 * of ->blocked.
2613 */
2614 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2615 }
2616
2617 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2618 {
2619 if (!vcpu->sigset_active)
2620 return;
2621
2622 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2623 sigemptyset(&current->real_blocked);
2624 }
2625
2626 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2627 {
2628 unsigned int old, val, grow, grow_start;
2629
2630 old = val = vcpu->halt_poll_ns;
2631 grow_start = READ_ONCE(halt_poll_ns_grow_start);
2632 grow = READ_ONCE(halt_poll_ns_grow);
2633 if (!grow)
2634 goto out;
2635
2636 val *= grow;
2637 if (val < grow_start)
2638 val = grow_start;
2639
2640 if (val > halt_poll_ns)
2641 val = halt_poll_ns;
2642
2643 vcpu->halt_poll_ns = val;
2644 out:
2645 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2646 }
2647
2648 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2649 {
2650 unsigned int old, val, shrink;
2651
2652 old = val = vcpu->halt_poll_ns;
2653 shrink = READ_ONCE(halt_poll_ns_shrink);
2654 if (shrink == 0)
2655 val = 0;
2656 else
2657 val /= shrink;
2658
2659 vcpu->halt_poll_ns = val;
2660 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2661 }
2662
2663 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2664 {
2665 int ret = -EINTR;
2666 int idx = srcu_read_lock(&vcpu->kvm->srcu);
2667
2668 if (kvm_arch_vcpu_runnable(vcpu)) {
2669 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2670 goto out;
2671 }
2672 if (kvm_cpu_has_pending_timer(vcpu))
2673 goto out;
2674 if (signal_pending(current))
2675 goto out;
2676
2677 ret = 0;
2678 out:
2679 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2680 return ret;
2681 }
2682
2683 static inline void
2684 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
2685 {
2686 if (waited)
2687 vcpu->stat.halt_poll_fail_ns += poll_ns;
2688 else
2689 vcpu->stat.halt_poll_success_ns += poll_ns;
2690 }
2691
2692 /*
2693 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2694 */
2695 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2696 {
2697 ktime_t start, cur, poll_end;
2698 bool waited = false;
2699 u64 block_ns;
2700
2701 kvm_arch_vcpu_blocking(vcpu);
2702
2703 start = cur = poll_end = ktime_get();
2704 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2705 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2706
2707 ++vcpu->stat.halt_attempted_poll;
2708 do {
2709 /*
2710 * This sets KVM_REQ_UNHALT if an interrupt
2711 * arrives.
2712 */
2713 if (kvm_vcpu_check_block(vcpu) < 0) {
2714 ++vcpu->stat.halt_successful_poll;
2715 if (!vcpu_valid_wakeup(vcpu))
2716 ++vcpu->stat.halt_poll_invalid;
2717 goto out;
2718 }
2719 poll_end = cur = ktime_get();
2720 } while (single_task_running() && ktime_before(cur, stop));
2721 }
2722
2723 prepare_to_rcuwait(&vcpu->wait);
2724 for (;;) {
2725 set_current_state(TASK_INTERRUPTIBLE);
2726
2727 if (kvm_vcpu_check_block(vcpu) < 0)
2728 break;
2729
2730 waited = true;
2731 schedule();
2732 }
2733 finish_rcuwait(&vcpu->wait);
2734 cur = ktime_get();
2735 out:
2736 kvm_arch_vcpu_unblocking(vcpu);
2737 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2738
2739 update_halt_poll_stats(
2740 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
2741
2742 if (!kvm_arch_no_poll(vcpu)) {
2743 if (!vcpu_valid_wakeup(vcpu)) {
2744 shrink_halt_poll_ns(vcpu);
2745 } else if (vcpu->kvm->max_halt_poll_ns) {
2746 if (block_ns <= vcpu->halt_poll_ns)
2747 ;
2748 /* we had a long block, shrink polling */
2749 else if (vcpu->halt_poll_ns &&
2750 block_ns > vcpu->kvm->max_halt_poll_ns)
2751 shrink_halt_poll_ns(vcpu);
2752 /* we had a short halt and our poll time is too small */
2753 else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
2754 block_ns < vcpu->kvm->max_halt_poll_ns)
2755 grow_halt_poll_ns(vcpu);
2756 } else {
2757 vcpu->halt_poll_ns = 0;
2758 }
2759 }
2760
2761 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2762 kvm_arch_vcpu_block_finish(vcpu);
2763 }
2764 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2765
2766 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2767 {
2768 struct rcuwait *waitp;
2769
2770 waitp = kvm_arch_vcpu_get_wait(vcpu);
2771 if (rcuwait_wake_up(waitp)) {
2772 WRITE_ONCE(vcpu->ready, true);
2773 ++vcpu->stat.halt_wakeup;
2774 return true;
2775 }
2776
2777 return false;
2778 }
2779 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2780
2781 #ifndef CONFIG_S390
2782 /*
2783 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2784 */
2785 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2786 {
2787 int me;
2788 int cpu = vcpu->cpu;
2789
2790 if (kvm_vcpu_wake_up(vcpu))
2791 return;
2792
2793 me = get_cpu();
2794 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2795 if (kvm_arch_vcpu_should_kick(vcpu))
2796 smp_send_reschedule(cpu);
2797 put_cpu();
2798 }
2799 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2800 #endif /* !CONFIG_S390 */
2801
2802 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2803 {
2804 struct pid *pid;
2805 struct task_struct *task = NULL;
2806 int ret = 0;
2807
2808 rcu_read_lock();
2809 pid = rcu_dereference(target->pid);
2810 if (pid)
2811 task = get_pid_task(pid, PIDTYPE_PID);
2812 rcu_read_unlock();
2813 if (!task)
2814 return ret;
2815 ret = yield_to(task, 1);
2816 put_task_struct(task);
2817
2818 return ret;
2819 }
2820 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2821
2822 /*
2823 * Helper that checks whether a VCPU is eligible for directed yield.
2824 * Most eligible candidate to yield is decided by following heuristics:
2825 *
2826 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2827 * (preempted lock holder), indicated by @in_spin_loop.
2828 * Set at the beginning and cleared at the end of interception/PLE handler.
2829 *
2830 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2831 * chance last time (mostly it has become eligible now since we have probably
2832 * yielded to lockholder in last iteration. This is done by toggling
2833 * @dy_eligible each time a VCPU checked for eligibility.)
2834 *
2835 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2836 * to preempted lock-holder could result in wrong VCPU selection and CPU
2837 * burning. Giving priority for a potential lock-holder increases lock
2838 * progress.
2839 *
2840 * Since algorithm is based on heuristics, accessing another VCPU data without
2841 * locking does not harm. It may result in trying to yield to same VCPU, fail
2842 * and continue with next VCPU and so on.
2843 */
2844 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2845 {
2846 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2847 bool eligible;
2848
2849 eligible = !vcpu->spin_loop.in_spin_loop ||
2850 vcpu->spin_loop.dy_eligible;
2851
2852 if (vcpu->spin_loop.in_spin_loop)
2853 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2854
2855 return eligible;
2856 #else
2857 return true;
2858 #endif
2859 }
2860
2861 /*
2862 * Unlike kvm_arch_vcpu_runnable, this function is called outside
2863 * a vcpu_load/vcpu_put pair. However, for most architectures
2864 * kvm_arch_vcpu_runnable does not require vcpu_load.
2865 */
2866 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2867 {
2868 return kvm_arch_vcpu_runnable(vcpu);
2869 }
2870
2871 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2872 {
2873 if (kvm_arch_dy_runnable(vcpu))
2874 return true;
2875
2876 #ifdef CONFIG_KVM_ASYNC_PF
2877 if (!list_empty_careful(&vcpu->async_pf.done))
2878 return true;
2879 #endif
2880
2881 return false;
2882 }
2883
2884 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2885 {
2886 struct kvm *kvm = me->kvm;
2887 struct kvm_vcpu *vcpu;
2888 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2889 int yielded = 0;
2890 int try = 3;
2891 int pass;
2892 int i;
2893
2894 kvm_vcpu_set_in_spin_loop(me, true);
2895 /*
2896 * We boost the priority of a VCPU that is runnable but not
2897 * currently running, because it got preempted by something
2898 * else and called schedule in __vcpu_run. Hopefully that
2899 * VCPU is holding the lock that we need and will release it.
2900 * We approximate round-robin by starting at the last boosted VCPU.
2901 */
2902 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2903 kvm_for_each_vcpu(i, vcpu, kvm) {
2904 if (!pass && i <= last_boosted_vcpu) {
2905 i = last_boosted_vcpu;
2906 continue;
2907 } else if (pass && i > last_boosted_vcpu)
2908 break;
2909 if (!READ_ONCE(vcpu->ready))
2910 continue;
2911 if (vcpu == me)
2912 continue;
2913 if (rcuwait_active(&vcpu->wait) &&
2914 !vcpu_dy_runnable(vcpu))
2915 continue;
2916 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2917 !kvm_arch_vcpu_in_kernel(vcpu))
2918 continue;
2919 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2920 continue;
2921
2922 yielded = kvm_vcpu_yield_to(vcpu);
2923 if (yielded > 0) {
2924 kvm->last_boosted_vcpu = i;
2925 break;
2926 } else if (yielded < 0) {
2927 try--;
2928 if (!try)
2929 break;
2930 }
2931 }
2932 }
2933 kvm_vcpu_set_in_spin_loop(me, false);
2934
2935 /* Ensure vcpu is not eligible during next spinloop */
2936 kvm_vcpu_set_dy_eligible(me, false);
2937 }
2938 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2939
2940 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2941 {
2942 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2943 struct page *page;
2944
2945 if (vmf->pgoff == 0)
2946 page = virt_to_page(vcpu->run);
2947 #ifdef CONFIG_X86
2948 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2949 page = virt_to_page(vcpu->arch.pio_data);
2950 #endif
2951 #ifdef CONFIG_KVM_MMIO
2952 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2953 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2954 #endif
2955 else
2956 return kvm_arch_vcpu_fault(vcpu, vmf);
2957 get_page(page);
2958 vmf->page = page;
2959 return 0;
2960 }
2961
2962 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2963 .fault = kvm_vcpu_fault,
2964 };
2965
2966 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2967 {
2968 vma->vm_ops = &kvm_vcpu_vm_ops;
2969 return 0;
2970 }
2971
2972 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2973 {
2974 struct kvm_vcpu *vcpu = filp->private_data;
2975
2976 debugfs_remove_recursive(vcpu->debugfs_dentry);
2977 kvm_put_kvm(vcpu->kvm);
2978 return 0;
2979 }
2980
2981 static struct file_operations kvm_vcpu_fops = {
2982 .release = kvm_vcpu_release,
2983 .unlocked_ioctl = kvm_vcpu_ioctl,
2984 .mmap = kvm_vcpu_mmap,
2985 .llseek = noop_llseek,
2986 KVM_COMPAT(kvm_vcpu_compat_ioctl),
2987 };
2988
2989 /*
2990 * Allocates an inode for the vcpu.
2991 */
2992 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2993 {
2994 char name[8 + 1 + ITOA_MAX_LEN + 1];
2995
2996 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2997 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2998 }
2999
3000 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3001 {
3002 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3003 char dir_name[ITOA_MAX_LEN * 2];
3004
3005 if (!debugfs_initialized())
3006 return;
3007
3008 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3009 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
3010 vcpu->kvm->debugfs_dentry);
3011
3012 kvm_arch_create_vcpu_debugfs(vcpu);
3013 #endif
3014 }
3015
3016 /*
3017 * Creates some virtual cpus. Good luck creating more than one.
3018 */
3019 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3020 {
3021 int r;
3022 struct kvm_vcpu *vcpu;
3023 struct page *page;
3024
3025 if (id >= KVM_MAX_VCPU_ID)
3026 return -EINVAL;
3027
3028 mutex_lock(&kvm->lock);
3029 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3030 mutex_unlock(&kvm->lock);
3031 return -EINVAL;
3032 }
3033
3034 kvm->created_vcpus++;
3035 mutex_unlock(&kvm->lock);
3036
3037 r = kvm_arch_vcpu_precreate(kvm, id);
3038 if (r)
3039 goto vcpu_decrement;
3040
3041 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3042 if (!vcpu) {
3043 r = -ENOMEM;
3044 goto vcpu_decrement;
3045 }
3046
3047 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3048 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3049 if (!page) {
3050 r = -ENOMEM;
3051 goto vcpu_free;
3052 }
3053 vcpu->run = page_address(page);
3054
3055 kvm_vcpu_init(vcpu, kvm, id);
3056
3057 r = kvm_arch_vcpu_create(vcpu);
3058 if (r)
3059 goto vcpu_free_run_page;
3060
3061 mutex_lock(&kvm->lock);
3062 if (kvm_get_vcpu_by_id(kvm, id)) {
3063 r = -EEXIST;
3064 goto unlock_vcpu_destroy;
3065 }
3066
3067 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3068 BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3069
3070 /* Now it's all set up, let userspace reach it */
3071 kvm_get_kvm(kvm);
3072 r = create_vcpu_fd(vcpu);
3073 if (r < 0) {
3074 kvm_put_kvm_no_destroy(kvm);
3075 goto unlock_vcpu_destroy;
3076 }
3077
3078 kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3079
3080 /*
3081 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
3082 * before kvm->online_vcpu's incremented value.
3083 */
3084 smp_wmb();
3085 atomic_inc(&kvm->online_vcpus);
3086
3087 mutex_unlock(&kvm->lock);
3088 kvm_arch_vcpu_postcreate(vcpu);
3089 kvm_create_vcpu_debugfs(vcpu);
3090 return r;
3091
3092 unlock_vcpu_destroy:
3093 mutex_unlock(&kvm->lock);
3094 kvm_arch_vcpu_destroy(vcpu);
3095 vcpu_free_run_page:
3096 free_page((unsigned long)vcpu->run);
3097 vcpu_free:
3098 kmem_cache_free(kvm_vcpu_cache, vcpu);
3099 vcpu_decrement:
3100 mutex_lock(&kvm->lock);
3101 kvm->created_vcpus--;
3102 mutex_unlock(&kvm->lock);
3103 return r;
3104 }
3105
3106 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3107 {
3108 if (sigset) {
3109 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3110 vcpu->sigset_active = 1;
3111 vcpu->sigset = *sigset;
3112 } else
3113 vcpu->sigset_active = 0;
3114 return 0;
3115 }
3116
3117 static long kvm_vcpu_ioctl(struct file *filp,
3118 unsigned int ioctl, unsigned long arg)
3119 {
3120 struct kvm_vcpu *vcpu = filp->private_data;
3121 void __user *argp = (void __user *)arg;
3122 int r;
3123 struct kvm_fpu *fpu = NULL;
3124 struct kvm_sregs *kvm_sregs = NULL;
3125
3126 if (vcpu->kvm->mm != current->mm)
3127 return -EIO;
3128
3129 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3130 return -EINVAL;
3131
3132 /*
3133 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3134 * execution; mutex_lock() would break them.
3135 */
3136 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3137 if (r != -ENOIOCTLCMD)
3138 return r;
3139
3140 if (mutex_lock_killable(&vcpu->mutex))
3141 return -EINTR;
3142 switch (ioctl) {
3143 case KVM_RUN: {
3144 struct pid *oldpid;
3145 r = -EINVAL;
3146 if (arg)
3147 goto out;
3148 oldpid = rcu_access_pointer(vcpu->pid);
3149 if (unlikely(oldpid != task_pid(current))) {
3150 /* The thread running this VCPU changed. */
3151 struct pid *newpid;
3152
3153 r = kvm_arch_vcpu_run_pid_change(vcpu);
3154 if (r)
3155 break;
3156
3157 newpid = get_task_pid(current, PIDTYPE_PID);
3158 rcu_assign_pointer(vcpu->pid, newpid);
3159 if (oldpid)
3160 synchronize_rcu();
3161 put_pid(oldpid);
3162 }
3163 r = kvm_arch_vcpu_ioctl_run(vcpu);
3164 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3165 break;
3166 }
3167 case KVM_GET_REGS: {
3168 struct kvm_regs *kvm_regs;
3169
3170 r = -ENOMEM;
3171 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3172 if (!kvm_regs)
3173 goto out;
3174 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3175 if (r)
3176 goto out_free1;
3177 r = -EFAULT;
3178 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3179 goto out_free1;
3180 r = 0;
3181 out_free1:
3182 kfree(kvm_regs);
3183 break;
3184 }
3185 case KVM_SET_REGS: {
3186 struct kvm_regs *kvm_regs;
3187
3188 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3189 if (IS_ERR(kvm_regs)) {
3190 r = PTR_ERR(kvm_regs);
3191 goto out;
3192 }
3193 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3194 kfree(kvm_regs);
3195 break;
3196 }
3197 case KVM_GET_SREGS: {
3198 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3199 GFP_KERNEL_ACCOUNT);
3200 r = -ENOMEM;
3201 if (!kvm_sregs)
3202 goto out;
3203 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3204 if (r)
3205 goto out;
3206 r = -EFAULT;
3207 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3208 goto out;
3209 r = 0;
3210 break;
3211 }
3212 case KVM_SET_SREGS: {
3213 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3214 if (IS_ERR(kvm_sregs)) {
3215 r = PTR_ERR(kvm_sregs);
3216 kvm_sregs = NULL;
3217 goto out;
3218 }
3219 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3220 break;
3221 }
3222 case KVM_GET_MP_STATE: {
3223 struct kvm_mp_state mp_state;
3224
3225 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3226 if (r)
3227 goto out;
3228 r = -EFAULT;
3229 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3230 goto out;
3231 r = 0;
3232 break;
3233 }
3234 case KVM_SET_MP_STATE: {
3235 struct kvm_mp_state mp_state;
3236
3237 r = -EFAULT;
3238 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3239 goto out;
3240 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3241 break;
3242 }
3243 case KVM_TRANSLATE: {
3244 struct kvm_translation tr;
3245
3246 r = -EFAULT;
3247 if (copy_from_user(&tr, argp, sizeof(tr)))
3248 goto out;
3249 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3250 if (r)
3251 goto out;
3252 r = -EFAULT;
3253 if (copy_to_user(argp, &tr, sizeof(tr)))
3254 goto out;
3255 r = 0;
3256 break;
3257 }
3258 case KVM_SET_GUEST_DEBUG: {
3259 struct kvm_guest_debug dbg;
3260
3261 r = -EFAULT;
3262 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3263 goto out;
3264 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3265 break;
3266 }
3267 case KVM_SET_SIGNAL_MASK: {
3268 struct kvm_signal_mask __user *sigmask_arg = argp;
3269 struct kvm_signal_mask kvm_sigmask;
3270 sigset_t sigset, *p;
3271
3272 p = NULL;
3273 if (argp) {
3274 r = -EFAULT;
3275 if (copy_from_user(&kvm_sigmask, argp,
3276 sizeof(kvm_sigmask)))
3277 goto out;
3278 r = -EINVAL;
3279 if (kvm_sigmask.len != sizeof(sigset))
3280 goto out;
3281 r = -EFAULT;
3282 if (copy_from_user(&sigset, sigmask_arg->sigset,
3283 sizeof(sigset)))
3284 goto out;
3285 p = &sigset;
3286 }
3287 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3288 break;
3289 }
3290 case KVM_GET_FPU: {
3291 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3292 r = -ENOMEM;
3293 if (!fpu)
3294 goto out;
3295 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3296 if (r)
3297 goto out;
3298 r = -EFAULT;
3299 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3300 goto out;
3301 r = 0;
3302 break;
3303 }
3304 case KVM_SET_FPU: {
3305 fpu = memdup_user(argp, sizeof(*fpu));
3306 if (IS_ERR(fpu)) {
3307 r = PTR_ERR(fpu);
3308 fpu = NULL;
3309 goto out;
3310 }
3311 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3312 break;
3313 }
3314 default:
3315 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3316 }
3317 out:
3318 mutex_unlock(&vcpu->mutex);
3319 kfree(fpu);
3320 kfree(kvm_sregs);
3321 return r;
3322 }
3323
3324 #ifdef CONFIG_KVM_COMPAT
3325 static long kvm_vcpu_compat_ioctl(struct file *filp,
3326 unsigned int ioctl, unsigned long arg)
3327 {
3328 struct kvm_vcpu *vcpu = filp->private_data;
3329 void __user *argp = compat_ptr(arg);
3330 int r;
3331
3332 if (vcpu->kvm->mm != current->mm)
3333 return -EIO;
3334
3335 switch (ioctl) {
3336 case KVM_SET_SIGNAL_MASK: {
3337 struct kvm_signal_mask __user *sigmask_arg = argp;
3338 struct kvm_signal_mask kvm_sigmask;
3339 sigset_t sigset;
3340
3341 if (argp) {
3342 r = -EFAULT;
3343 if (copy_from_user(&kvm_sigmask, argp,
3344 sizeof(kvm_sigmask)))
3345 goto out;
3346 r = -EINVAL;
3347 if (kvm_sigmask.len != sizeof(compat_sigset_t))
3348 goto out;
3349 r = -EFAULT;
3350 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
3351 goto out;
3352 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3353 } else
3354 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3355 break;
3356 }
3357 default:
3358 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3359 }
3360
3361 out:
3362 return r;
3363 }
3364 #endif
3365
3366 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3367 {
3368 struct kvm_device *dev = filp->private_data;
3369
3370 if (dev->ops->mmap)
3371 return dev->ops->mmap(dev, vma);
3372
3373 return -ENODEV;
3374 }
3375
3376 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3377 int (*accessor)(struct kvm_device *dev,
3378 struct kvm_device_attr *attr),
3379 unsigned long arg)
3380 {
3381 struct kvm_device_attr attr;
3382
3383 if (!accessor)
3384 return -EPERM;
3385
3386 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3387 return -EFAULT;
3388
3389 return accessor(dev, &attr);
3390 }
3391
3392 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3393 unsigned long arg)
3394 {
3395 struct kvm_device *dev = filp->private_data;
3396
3397 if (dev->kvm->mm != current->mm)
3398 return -EIO;
3399
3400 switch (ioctl) {
3401 case KVM_SET_DEVICE_ATTR:
3402 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3403 case KVM_GET_DEVICE_ATTR:
3404 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3405 case KVM_HAS_DEVICE_ATTR:
3406 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3407 default:
3408 if (dev->ops->ioctl)
3409 return dev->ops->ioctl(dev, ioctl, arg);
3410
3411 return -ENOTTY;
3412 }
3413 }
3414
3415 static int kvm_device_release(struct inode *inode, struct file *filp)
3416 {
3417 struct kvm_device *dev = filp->private_data;
3418 struct kvm *kvm = dev->kvm;
3419
3420 if (dev->ops->release) {
3421 mutex_lock(&kvm->lock);
3422 list_del(&dev->vm_node);
3423 dev->ops->release(dev);
3424 mutex_unlock(&kvm->lock);
3425 }
3426
3427 kvm_put_kvm(kvm);
3428 return 0;
3429 }
3430
3431 static const struct file_operations kvm_device_fops = {
3432 .unlocked_ioctl = kvm_device_ioctl,
3433 .release = kvm_device_release,
3434 KVM_COMPAT(kvm_device_ioctl),
3435 .mmap = kvm_device_mmap,
3436 };
3437
3438 struct kvm_device *kvm_device_from_filp(struct file *filp)
3439 {
3440 if (filp->f_op != &kvm_device_fops)
3441 return NULL;
3442
3443 return filp->private_data;
3444 }
3445
3446 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3447 #ifdef CONFIG_KVM_MPIC
3448 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
3449 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
3450 #endif
3451 };
3452
3453 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3454 {
3455 if (type >= ARRAY_SIZE(kvm_device_ops_table))
3456 return -ENOSPC;
3457
3458 if (kvm_device_ops_table[type] != NULL)
3459 return -EEXIST;
3460
3461 kvm_device_ops_table[type] = ops;
3462 return 0;
3463 }
3464
3465 void kvm_unregister_device_ops(u32 type)
3466 {
3467 if (kvm_device_ops_table[type] != NULL)
3468 kvm_device_ops_table[type] = NULL;
3469 }
3470
3471 static int kvm_ioctl_create_device(struct kvm *kvm,
3472 struct kvm_create_device *cd)
3473 {
3474 const struct kvm_device_ops *ops = NULL;
3475 struct kvm_device *dev;
3476 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3477 int type;
3478 int ret;
3479
3480 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3481 return -ENODEV;
3482
3483 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3484 ops = kvm_device_ops_table[type];
3485 if (ops == NULL)
3486 return -ENODEV;
3487
3488 if (test)
3489 return 0;
3490
3491 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3492 if (!dev)
3493 return -ENOMEM;
3494
3495 dev->ops = ops;
3496 dev->kvm = kvm;
3497
3498 mutex_lock(&kvm->lock);
3499 ret = ops->create(dev, type);
3500 if (ret < 0) {
3501 mutex_unlock(&kvm->lock);
3502 kfree(dev);
3503 return ret;
3504 }
3505 list_add(&dev->vm_node, &kvm->devices);
3506 mutex_unlock(&kvm->lock);
3507
3508 if (ops->init)
3509 ops->init(dev);
3510
3511 kvm_get_kvm(kvm);
3512 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3513 if (ret < 0) {
3514 kvm_put_kvm_no_destroy(kvm);
3515 mutex_lock(&kvm->lock);
3516 list_del(&dev->vm_node);
3517 mutex_unlock(&kvm->lock);
3518 ops->destroy(dev);
3519 return ret;
3520 }
3521
3522 cd->fd = ret;
3523 return 0;
3524 }
3525
3526 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3527 {
3528 switch (arg) {
3529 case KVM_CAP_USER_MEMORY:
3530 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3531 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3532 case KVM_CAP_INTERNAL_ERROR_DATA:
3533 #ifdef CONFIG_HAVE_KVM_MSI
3534 case KVM_CAP_SIGNAL_MSI:
3535 #endif
3536 #ifdef CONFIG_HAVE_KVM_IRQFD
3537 case KVM_CAP_IRQFD:
3538 case KVM_CAP_IRQFD_RESAMPLE:
3539 #endif
3540 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3541 case KVM_CAP_CHECK_EXTENSION_VM:
3542 case KVM_CAP_ENABLE_CAP_VM:
3543 case KVM_CAP_HALT_POLL:
3544 return 1;
3545 #ifdef CONFIG_KVM_MMIO
3546 case KVM_CAP_COALESCED_MMIO:
3547 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3548 case KVM_CAP_COALESCED_PIO:
3549 return 1;
3550 #endif
3551 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3552 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3553 return KVM_DIRTY_LOG_MANUAL_CAPS;
3554 #endif
3555 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3556 case KVM_CAP_IRQ_ROUTING:
3557 return KVM_MAX_IRQ_ROUTES;
3558 #endif
3559 #if KVM_ADDRESS_SPACE_NUM > 1
3560 case KVM_CAP_MULTI_ADDRESS_SPACE:
3561 return KVM_ADDRESS_SPACE_NUM;
3562 #endif
3563 case KVM_CAP_NR_MEMSLOTS:
3564 return KVM_USER_MEM_SLOTS;
3565 default:
3566 break;
3567 }
3568 return kvm_vm_ioctl_check_extension(kvm, arg);
3569 }
3570
3571 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3572 struct kvm_enable_cap *cap)
3573 {
3574 return -EINVAL;
3575 }
3576
3577 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3578 struct kvm_enable_cap *cap)
3579 {
3580 switch (cap->cap) {
3581 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3582 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3583 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3584
3585 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3586 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3587
3588 if (cap->flags || (cap->args[0] & ~allowed_options))
3589 return -EINVAL;
3590 kvm->manual_dirty_log_protect = cap->args[0];
3591 return 0;
3592 }
3593 #endif
3594 case KVM_CAP_HALT_POLL: {
3595 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3596 return -EINVAL;
3597
3598 kvm->max_halt_poll_ns = cap->args[0];
3599 return 0;
3600 }
3601 default:
3602 return kvm_vm_ioctl_enable_cap(kvm, cap);
3603 }
3604 }
3605
3606 static long kvm_vm_ioctl(struct file *filp,
3607 unsigned int ioctl, unsigned long arg)
3608 {
3609 struct kvm *kvm = filp->private_data;
3610 void __user *argp = (void __user *)arg;
3611 int r;
3612
3613 if (kvm->mm != current->mm)
3614 return -EIO;
3615 switch (ioctl) {
3616 case KVM_CREATE_VCPU:
3617 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3618 break;
3619 case KVM_ENABLE_CAP: {
3620 struct kvm_enable_cap cap;
3621
3622 r = -EFAULT;
3623 if (copy_from_user(&cap, argp, sizeof(cap)))
3624 goto out;
3625 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3626 break;
3627 }
3628 case KVM_SET_USER_MEMORY_REGION: {
3629 struct kvm_userspace_memory_region kvm_userspace_mem;
3630
3631 r = -EFAULT;
3632 if (copy_from_user(&kvm_userspace_mem, argp,
3633 sizeof(kvm_userspace_mem)))
3634 goto out;
3635
3636 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3637 break;
3638 }
3639 case KVM_GET_DIRTY_LOG: {
3640 struct kvm_dirty_log log;
3641
3642 r = -EFAULT;
3643 if (copy_from_user(&log, argp, sizeof(log)))
3644 goto out;
3645 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3646 break;
3647 }
3648 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3649 case KVM_CLEAR_DIRTY_LOG: {
3650 struct kvm_clear_dirty_log log;
3651
3652 r = -EFAULT;
3653 if (copy_from_user(&log, argp, sizeof(log)))
3654 goto out;
3655 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3656 break;
3657 }
3658 #endif
3659 #ifdef CONFIG_KVM_MMIO
3660 case KVM_REGISTER_COALESCED_MMIO: {
3661 struct kvm_coalesced_mmio_zone zone;
3662
3663 r = -EFAULT;
3664 if (copy_from_user(&zone, argp, sizeof(zone)))
3665 goto out;
3666 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3667 break;
3668 }
3669 case KVM_UNREGISTER_COALESCED_MMIO: {
3670 struct kvm_coalesced_mmio_zone zone;
3671
3672 r = -EFAULT;
3673 if (copy_from_user(&zone, argp, sizeof(zone)))
3674 goto out;
3675 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3676 break;
3677 }
3678 #endif
3679 case KVM_IRQFD: {
3680 struct kvm_irqfd data;
3681
3682 r = -EFAULT;
3683 if (copy_from_user(&data, argp, sizeof(data)))
3684 goto out;
3685 r = kvm_irqfd(kvm, &data);
3686 break;
3687 }
3688 case KVM_IOEVENTFD: {
3689 struct kvm_ioeventfd data;
3690
3691 r = -EFAULT;
3692 if (copy_from_user(&data, argp, sizeof(data)))
3693 goto out;
3694 r = kvm_ioeventfd(kvm, &data);
3695 break;
3696 }
3697 #ifdef CONFIG_HAVE_KVM_MSI
3698 case KVM_SIGNAL_MSI: {
3699 struct kvm_msi msi;
3700
3701 r = -EFAULT;
3702 if (copy_from_user(&msi, argp, sizeof(msi)))
3703 goto out;
3704 r = kvm_send_userspace_msi(kvm, &msi);
3705 break;
3706 }
3707 #endif
3708 #ifdef __KVM_HAVE_IRQ_LINE
3709 case KVM_IRQ_LINE_STATUS:
3710 case KVM_IRQ_LINE: {
3711 struct kvm_irq_level irq_event;
3712
3713 r = -EFAULT;
3714 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3715 goto out;
3716
3717 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3718 ioctl == KVM_IRQ_LINE_STATUS);
3719 if (r)
3720 goto out;
3721
3722 r = -EFAULT;
3723 if (ioctl == KVM_IRQ_LINE_STATUS) {
3724 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3725 goto out;
3726 }
3727
3728 r = 0;
3729 break;
3730 }
3731 #endif
3732 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3733 case KVM_SET_GSI_ROUTING: {
3734 struct kvm_irq_routing routing;
3735 struct kvm_irq_routing __user *urouting;
3736 struct kvm_irq_routing_entry *entries = NULL;
3737
3738 r = -EFAULT;
3739 if (copy_from_user(&routing, argp, sizeof(routing)))
3740 goto out;
3741 r = -EINVAL;
3742 if (!kvm_arch_can_set_irq_routing(kvm))
3743 goto out;
3744 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3745 goto out;
3746 if (routing.flags)
3747 goto out;
3748 if (routing.nr) {
3749 r = -ENOMEM;
3750 entries = vmalloc(array_size(sizeof(*entries),
3751 routing.nr));
3752 if (!entries)
3753 goto out;
3754 r = -EFAULT;
3755 urouting = argp;
3756 if (copy_from_user(entries, urouting->entries,
3757 routing.nr * sizeof(*entries)))
3758 goto out_free_irq_routing;
3759 }
3760 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3761 routing.flags);
3762 out_free_irq_routing:
3763 vfree(entries);
3764 break;
3765 }
3766 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3767 case KVM_CREATE_DEVICE: {
3768 struct kvm_create_device cd;
3769
3770 r = -EFAULT;
3771 if (copy_from_user(&cd, argp, sizeof(cd)))
3772 goto out;
3773
3774 r = kvm_ioctl_create_device(kvm, &cd);
3775 if (r)
3776 goto out;
3777
3778 r = -EFAULT;
3779 if (copy_to_user(argp, &cd, sizeof(cd)))
3780 goto out;
3781
3782 r = 0;
3783 break;
3784 }
3785 case KVM_CHECK_EXTENSION:
3786 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3787 break;
3788 default:
3789 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3790 }
3791 out:
3792 return r;
3793 }
3794
3795 #ifdef CONFIG_KVM_COMPAT
3796 struct compat_kvm_dirty_log {
3797 __u32 slot;
3798 __u32 padding1;
3799 union {
3800 compat_uptr_t dirty_bitmap; /* one bit per page */
3801 __u64 padding2;
3802 };
3803 };
3804
3805 static long kvm_vm_compat_ioctl(struct file *filp,
3806 unsigned int ioctl, unsigned long arg)
3807 {
3808 struct kvm *kvm = filp->private_data;
3809 int r;
3810
3811 if (kvm->mm != current->mm)
3812 return -EIO;
3813 switch (ioctl) {
3814 case KVM_GET_DIRTY_LOG: {
3815 struct compat_kvm_dirty_log compat_log;
3816 struct kvm_dirty_log log;
3817
3818 if (copy_from_user(&compat_log, (void __user *)arg,
3819 sizeof(compat_log)))
3820 return -EFAULT;
3821 log.slot = compat_log.slot;
3822 log.padding1 = compat_log.padding1;
3823 log.padding2 = compat_log.padding2;
3824 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3825
3826 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3827 break;
3828 }
3829 default:
3830 r = kvm_vm_ioctl(filp, ioctl, arg);
3831 }
3832 return r;
3833 }
3834 #endif
3835
3836 static struct file_operations kvm_vm_fops = {
3837 .release = kvm_vm_release,
3838 .unlocked_ioctl = kvm_vm_ioctl,
3839 .llseek = noop_llseek,
3840 KVM_COMPAT(kvm_vm_compat_ioctl),
3841 };
3842
3843 static int kvm_dev_ioctl_create_vm(unsigned long type)
3844 {
3845 int r;
3846 struct kvm *kvm;
3847 struct file *file;
3848
3849 kvm = kvm_create_vm(type);
3850 if (IS_ERR(kvm))
3851 return PTR_ERR(kvm);
3852 #ifdef CONFIG_KVM_MMIO
3853 r = kvm_coalesced_mmio_init(kvm);
3854 if (r < 0)
3855 goto put_kvm;
3856 #endif
3857 r = get_unused_fd_flags(O_CLOEXEC);
3858 if (r < 0)
3859 goto put_kvm;
3860
3861 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3862 if (IS_ERR(file)) {
3863 put_unused_fd(r);
3864 r = PTR_ERR(file);
3865 goto put_kvm;
3866 }
3867
3868 /*
3869 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3870 * already set, with ->release() being kvm_vm_release(). In error
3871 * cases it will be called by the final fput(file) and will take
3872 * care of doing kvm_put_kvm(kvm).
3873 */
3874 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3875 put_unused_fd(r);
3876 fput(file);
3877 return -ENOMEM;
3878 }
3879 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3880
3881 fd_install(r, file);
3882 return r;
3883
3884 put_kvm:
3885 kvm_put_kvm(kvm);
3886 return r;
3887 }
3888
3889 static long kvm_dev_ioctl(struct file *filp,
3890 unsigned int ioctl, unsigned long arg)
3891 {
3892 long r = -EINVAL;
3893
3894 switch (ioctl) {
3895 case KVM_GET_API_VERSION:
3896 if (arg)
3897 goto out;
3898 r = KVM_API_VERSION;
3899 break;
3900 case KVM_CREATE_VM:
3901 r = kvm_dev_ioctl_create_vm(arg);
3902 break;
3903 case KVM_CHECK_EXTENSION:
3904 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3905 break;
3906 case KVM_GET_VCPU_MMAP_SIZE:
3907 if (arg)
3908 goto out;
3909 r = PAGE_SIZE; /* struct kvm_run */
3910 #ifdef CONFIG_X86
3911 r += PAGE_SIZE; /* pio data page */
3912 #endif
3913 #ifdef CONFIG_KVM_MMIO
3914 r += PAGE_SIZE; /* coalesced mmio ring page */
3915 #endif
3916 break;
3917 case KVM_TRACE_ENABLE:
3918 case KVM_TRACE_PAUSE:
3919 case KVM_TRACE_DISABLE:
3920 r = -EOPNOTSUPP;
3921 break;
3922 default:
3923 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3924 }
3925 out:
3926 return r;
3927 }
3928
3929 static struct file_operations kvm_chardev_ops = {
3930 .unlocked_ioctl = kvm_dev_ioctl,
3931 .llseek = noop_llseek,
3932 KVM_COMPAT(kvm_dev_ioctl),
3933 };
3934
3935 static struct miscdevice kvm_dev = {
3936 KVM_MINOR,
3937 "kvm",
3938 &kvm_chardev_ops,
3939 };
3940
3941 static void hardware_enable_nolock(void *junk)
3942 {
3943 int cpu = raw_smp_processor_id();
3944 int r;
3945
3946 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3947 return;
3948
3949 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3950
3951 r = kvm_arch_hardware_enable();
3952
3953 if (r) {
3954 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3955 atomic_inc(&hardware_enable_failed);
3956 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3957 }
3958 }
3959
3960 static int kvm_starting_cpu(unsigned int cpu)
3961 {
3962 raw_spin_lock(&kvm_count_lock);
3963 if (kvm_usage_count)
3964 hardware_enable_nolock(NULL);
3965 raw_spin_unlock(&kvm_count_lock);
3966 return 0;
3967 }
3968
3969 static void hardware_disable_nolock(void *junk)
3970 {
3971 int cpu = raw_smp_processor_id();
3972
3973 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3974 return;
3975 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3976 kvm_arch_hardware_disable();
3977 }
3978
3979 static int kvm_dying_cpu(unsigned int cpu)
3980 {
3981 raw_spin_lock(&kvm_count_lock);
3982 if (kvm_usage_count)
3983 hardware_disable_nolock(NULL);
3984 raw_spin_unlock(&kvm_count_lock);
3985 return 0;
3986 }
3987
3988 static void hardware_disable_all_nolock(void)
3989 {
3990 BUG_ON(!kvm_usage_count);
3991
3992 kvm_usage_count--;
3993 if (!kvm_usage_count)
3994 on_each_cpu(hardware_disable_nolock, NULL, 1);
3995 }
3996
3997 static void hardware_disable_all(void)
3998 {
3999 raw_spin_lock(&kvm_count_lock);
4000 hardware_disable_all_nolock();
4001 raw_spin_unlock(&kvm_count_lock);
4002 }
4003
4004 static int hardware_enable_all(void)
4005 {
4006 int r = 0;
4007
4008 raw_spin_lock(&kvm_count_lock);
4009
4010 kvm_usage_count++;
4011 if (kvm_usage_count == 1) {
4012 atomic_set(&hardware_enable_failed, 0);
4013 on_each_cpu(hardware_enable_nolock, NULL, 1);
4014
4015 if (atomic_read(&hardware_enable_failed)) {
4016 hardware_disable_all_nolock();
4017 r = -EBUSY;
4018 }
4019 }
4020
4021 raw_spin_unlock(&kvm_count_lock);
4022
4023 return r;
4024 }
4025
4026 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4027 void *v)
4028 {
4029 /*
4030 * Some (well, at least mine) BIOSes hang on reboot if
4031 * in vmx root mode.
4032 *
4033 * And Intel TXT required VMX off for all cpu when system shutdown.
4034 */
4035 pr_info("kvm: exiting hardware virtualization\n");
4036 kvm_rebooting = true;
4037 on_each_cpu(hardware_disable_nolock, NULL, 1);
4038 return NOTIFY_OK;
4039 }
4040
4041 static struct notifier_block kvm_reboot_notifier = {
4042 .notifier_call = kvm_reboot,
4043 .priority = 0,
4044 };
4045
4046 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4047 {
4048 int i;
4049
4050 for (i = 0; i < bus->dev_count; i++) {
4051 struct kvm_io_device *pos = bus->range[i].dev;
4052
4053 kvm_iodevice_destructor(pos);
4054 }
4055 kfree(bus);
4056 }
4057
4058 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4059 const struct kvm_io_range *r2)
4060 {
4061 gpa_t addr1 = r1->addr;
4062 gpa_t addr2 = r2->addr;
4063
4064 if (addr1 < addr2)
4065 return -1;
4066
4067 /* If r2->len == 0, match the exact address. If r2->len != 0,
4068 * accept any overlapping write. Any order is acceptable for
4069 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4070 * we process all of them.
4071 */
4072 if (r2->len) {
4073 addr1 += r1->len;
4074 addr2 += r2->len;
4075 }
4076
4077 if (addr1 > addr2)
4078 return 1;
4079
4080 return 0;
4081 }
4082
4083 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4084 {
4085 return kvm_io_bus_cmp(p1, p2);
4086 }
4087
4088 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4089 gpa_t addr, int len)
4090 {
4091 struct kvm_io_range *range, key;
4092 int off;
4093
4094 key = (struct kvm_io_range) {
4095 .addr = addr,
4096 .len = len,
4097 };
4098
4099 range = bsearch(&key, bus->range, bus->dev_count,
4100 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4101 if (range == NULL)
4102 return -ENOENT;
4103
4104 off = range - bus->range;
4105
4106 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4107 off--;
4108
4109 return off;
4110 }
4111
4112 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4113 struct kvm_io_range *range, const void *val)
4114 {
4115 int idx;
4116
4117 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4118 if (idx < 0)
4119 return -EOPNOTSUPP;
4120
4121 while (idx < bus->dev_count &&
4122 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4123 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4124 range->len, val))
4125 return idx;
4126 idx++;
4127 }
4128
4129 return -EOPNOTSUPP;
4130 }
4131
4132 /* kvm_io_bus_write - called under kvm->slots_lock */
4133 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4134 int len, const void *val)
4135 {
4136 struct kvm_io_bus *bus;
4137 struct kvm_io_range range;
4138 int r;
4139
4140 range = (struct kvm_io_range) {
4141 .addr = addr,
4142 .len = len,
4143 };
4144
4145 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4146 if (!bus)
4147 return -ENOMEM;
4148 r = __kvm_io_bus_write(vcpu, bus, &range, val);
4149 return r < 0 ? r : 0;
4150 }
4151 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4152
4153 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4154 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4155 gpa_t addr, int len, const void *val, long cookie)
4156 {
4157 struct kvm_io_bus *bus;
4158 struct kvm_io_range range;
4159
4160 range = (struct kvm_io_range) {
4161 .addr = addr,
4162 .len = len,
4163 };
4164
4165 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4166 if (!bus)
4167 return -ENOMEM;
4168
4169 /* First try the device referenced by cookie. */
4170 if ((cookie >= 0) && (cookie < bus->dev_count) &&
4171 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4172 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4173 val))
4174 return cookie;
4175
4176 /*
4177 * cookie contained garbage; fall back to search and return the
4178 * correct cookie value.
4179 */
4180 return __kvm_io_bus_write(vcpu, bus, &range, val);
4181 }
4182
4183 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4184 struct kvm_io_range *range, void *val)
4185 {
4186 int idx;
4187
4188 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4189 if (idx < 0)
4190 return -EOPNOTSUPP;
4191
4192 while (idx < bus->dev_count &&
4193 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4194 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4195 range->len, val))
4196 return idx;
4197 idx++;
4198 }
4199
4200 return -EOPNOTSUPP;
4201 }
4202
4203 /* kvm_io_bus_read - called under kvm->slots_lock */
4204 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4205 int len, void *val)
4206 {
4207 struct kvm_io_bus *bus;
4208 struct kvm_io_range range;
4209 int r;
4210
4211 range = (struct kvm_io_range) {
4212 .addr = addr,
4213 .len = len,
4214 };
4215
4216 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4217 if (!bus)
4218 return -ENOMEM;
4219 r = __kvm_io_bus_read(vcpu, bus, &range, val);
4220 return r < 0 ? r : 0;
4221 }
4222
4223 /* Caller must hold slots_lock. */
4224 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4225 int len, struct kvm_io_device *dev)
4226 {
4227 int i;
4228 struct kvm_io_bus *new_bus, *bus;
4229 struct kvm_io_range range;
4230
4231 bus = kvm_get_bus(kvm, bus_idx);
4232 if (!bus)
4233 return -ENOMEM;
4234
4235 /* exclude ioeventfd which is limited by maximum fd */
4236 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4237 return -ENOSPC;
4238
4239 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4240 GFP_KERNEL_ACCOUNT);
4241 if (!new_bus)
4242 return -ENOMEM;
4243
4244 range = (struct kvm_io_range) {
4245 .addr = addr,
4246 .len = len,
4247 .dev = dev,
4248 };
4249
4250 for (i = 0; i < bus->dev_count; i++)
4251 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4252 break;
4253
4254 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4255 new_bus->dev_count++;
4256 new_bus->range[i] = range;
4257 memcpy(new_bus->range + i + 1, bus->range + i,
4258 (bus->dev_count - i) * sizeof(struct kvm_io_range));
4259 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4260 synchronize_srcu_expedited(&kvm->srcu);
4261 kfree(bus);
4262
4263 return 0;
4264 }
4265
4266 /* Caller must hold slots_lock. */
4267 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4268 struct kvm_io_device *dev)
4269 {
4270 int i;
4271 struct kvm_io_bus *new_bus, *bus;
4272
4273 bus = kvm_get_bus(kvm, bus_idx);
4274 if (!bus)
4275 return;
4276
4277 for (i = 0; i < bus->dev_count; i++)
4278 if (bus->range[i].dev == dev) {
4279 break;
4280 }
4281
4282 if (i == bus->dev_count)
4283 return;
4284
4285 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4286 GFP_KERNEL_ACCOUNT);
4287 if (!new_bus) {
4288 pr_err("kvm: failed to shrink bus, removing it completely\n");
4289 goto broken;
4290 }
4291
4292 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4293 new_bus->dev_count--;
4294 memcpy(new_bus->range + i, bus->range + i + 1,
4295 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
4296
4297 broken:
4298 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4299 synchronize_srcu_expedited(&kvm->srcu);
4300 kfree(bus);
4301 return;
4302 }
4303
4304 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4305 gpa_t addr)
4306 {
4307 struct kvm_io_bus *bus;
4308 int dev_idx, srcu_idx;
4309 struct kvm_io_device *iodev = NULL;
4310
4311 srcu_idx = srcu_read_lock(&kvm->srcu);
4312
4313 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4314 if (!bus)
4315 goto out_unlock;
4316
4317 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4318 if (dev_idx < 0)
4319 goto out_unlock;
4320
4321 iodev = bus->range[dev_idx].dev;
4322
4323 out_unlock:
4324 srcu_read_unlock(&kvm->srcu, srcu_idx);
4325
4326 return iodev;
4327 }
4328 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4329
4330 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4331 int (*get)(void *, u64 *), int (*set)(void *, u64),
4332 const char *fmt)
4333 {
4334 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4335 inode->i_private;
4336
4337 /* The debugfs files are a reference to the kvm struct which
4338 * is still valid when kvm_destroy_vm is called.
4339 * To avoid the race between open and the removal of the debugfs
4340 * directory we test against the users count.
4341 */
4342 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4343 return -ENOENT;
4344
4345 if (simple_attr_open(inode, file, get,
4346 KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4347 ? set : NULL,
4348 fmt)) {
4349 kvm_put_kvm(stat_data->kvm);
4350 return -ENOMEM;
4351 }
4352
4353 return 0;
4354 }
4355
4356 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4357 {
4358 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4359 inode->i_private;
4360
4361 simple_attr_release(inode, file);
4362 kvm_put_kvm(stat_data->kvm);
4363
4364 return 0;
4365 }
4366
4367 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4368 {
4369 *val = *(ulong *)((void *)kvm + offset);
4370
4371 return 0;
4372 }
4373
4374 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4375 {
4376 *(ulong *)((void *)kvm + offset) = 0;
4377
4378 return 0;
4379 }
4380
4381 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4382 {
4383 int i;
4384 struct kvm_vcpu *vcpu;
4385
4386 *val = 0;
4387
4388 kvm_for_each_vcpu(i, vcpu, kvm)
4389 *val += *(u64 *)((void *)vcpu + offset);
4390
4391 return 0;
4392 }
4393
4394 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4395 {
4396 int i;
4397 struct kvm_vcpu *vcpu;
4398
4399 kvm_for_each_vcpu(i, vcpu, kvm)
4400 *(u64 *)((void *)vcpu + offset) = 0;
4401
4402 return 0;
4403 }
4404
4405 static int kvm_stat_data_get(void *data, u64 *val)
4406 {
4407 int r = -EFAULT;
4408 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4409
4410 switch (stat_data->dbgfs_item->kind) {
4411 case KVM_STAT_VM:
4412 r = kvm_get_stat_per_vm(stat_data->kvm,
4413 stat_data->dbgfs_item->offset, val);
4414 break;
4415 case KVM_STAT_VCPU:
4416 r = kvm_get_stat_per_vcpu(stat_data->kvm,
4417 stat_data->dbgfs_item->offset, val);
4418 break;
4419 }
4420
4421 return r;
4422 }
4423
4424 static int kvm_stat_data_clear(void *data, u64 val)
4425 {
4426 int r = -EFAULT;
4427 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4428
4429 if (val)
4430 return -EINVAL;
4431
4432 switch (stat_data->dbgfs_item->kind) {
4433 case KVM_STAT_VM:
4434 r = kvm_clear_stat_per_vm(stat_data->kvm,
4435 stat_data->dbgfs_item->offset);
4436 break;
4437 case KVM_STAT_VCPU:
4438 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4439 stat_data->dbgfs_item->offset);
4440 break;
4441 }
4442
4443 return r;
4444 }
4445
4446 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4447 {
4448 __simple_attr_check_format("%llu\n", 0ull);
4449 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4450 kvm_stat_data_clear, "%llu\n");
4451 }
4452
4453 static const struct file_operations stat_fops_per_vm = {
4454 .owner = THIS_MODULE,
4455 .open = kvm_stat_data_open,
4456 .release = kvm_debugfs_release,
4457 .read = simple_attr_read,
4458 .write = simple_attr_write,
4459 .llseek = no_llseek,
4460 };
4461
4462 static int vm_stat_get(void *_offset, u64 *val)
4463 {
4464 unsigned offset = (long)_offset;
4465 struct kvm *kvm;
4466 u64 tmp_val;
4467
4468 *val = 0;
4469 mutex_lock(&kvm_lock);
4470 list_for_each_entry(kvm, &vm_list, vm_list) {
4471 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4472 *val += tmp_val;
4473 }
4474 mutex_unlock(&kvm_lock);
4475 return 0;
4476 }
4477
4478 static int vm_stat_clear(void *_offset, u64 val)
4479 {
4480 unsigned offset = (long)_offset;
4481 struct kvm *kvm;
4482
4483 if (val)
4484 return -EINVAL;
4485
4486 mutex_lock(&kvm_lock);
4487 list_for_each_entry(kvm, &vm_list, vm_list) {
4488 kvm_clear_stat_per_vm(kvm, offset);
4489 }
4490 mutex_unlock(&kvm_lock);
4491
4492 return 0;
4493 }
4494
4495 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4496
4497 static int vcpu_stat_get(void *_offset, u64 *val)
4498 {
4499 unsigned offset = (long)_offset;
4500 struct kvm *kvm;
4501 u64 tmp_val;
4502
4503 *val = 0;
4504 mutex_lock(&kvm_lock);
4505 list_for_each_entry(kvm, &vm_list, vm_list) {
4506 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4507 *val += tmp_val;
4508 }
4509 mutex_unlock(&kvm_lock);
4510 return 0;
4511 }
4512
4513 static int vcpu_stat_clear(void *_offset, u64 val)
4514 {
4515 unsigned offset = (long)_offset;
4516 struct kvm *kvm;
4517
4518 if (val)
4519 return -EINVAL;
4520
4521 mutex_lock(&kvm_lock);
4522 list_for_each_entry(kvm, &vm_list, vm_list) {
4523 kvm_clear_stat_per_vcpu(kvm, offset);
4524 }
4525 mutex_unlock(&kvm_lock);
4526
4527 return 0;
4528 }
4529
4530 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4531 "%llu\n");
4532
4533 static const struct file_operations *stat_fops[] = {
4534 [KVM_STAT_VCPU] = &vcpu_stat_fops,
4535 [KVM_STAT_VM] = &vm_stat_fops,
4536 };
4537
4538 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4539 {
4540 struct kobj_uevent_env *env;
4541 unsigned long long created, active;
4542
4543 if (!kvm_dev.this_device || !kvm)
4544 return;
4545
4546 mutex_lock(&kvm_lock);
4547 if (type == KVM_EVENT_CREATE_VM) {
4548 kvm_createvm_count++;
4549 kvm_active_vms++;
4550 } else if (type == KVM_EVENT_DESTROY_VM) {
4551 kvm_active_vms--;
4552 }
4553 created = kvm_createvm_count;
4554 active = kvm_active_vms;
4555 mutex_unlock(&kvm_lock);
4556
4557 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4558 if (!env)
4559 return;
4560
4561 add_uevent_var(env, "CREATED=%llu", created);
4562 add_uevent_var(env, "COUNT=%llu", active);
4563
4564 if (type == KVM_EVENT_CREATE_VM) {
4565 add_uevent_var(env, "EVENT=create");
4566 kvm->userspace_pid = task_pid_nr(current);
4567 } else if (type == KVM_EVENT_DESTROY_VM) {
4568 add_uevent_var(env, "EVENT=destroy");
4569 }
4570 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4571
4572 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4573 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4574
4575 if (p) {
4576 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4577 if (!IS_ERR(tmp))
4578 add_uevent_var(env, "STATS_PATH=%s", tmp);
4579 kfree(p);
4580 }
4581 }
4582 /* no need for checks, since we are adding at most only 5 keys */
4583 env->envp[env->envp_idx++] = NULL;
4584 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4585 kfree(env);
4586 }
4587
4588 static void kvm_init_debug(void)
4589 {
4590 struct kvm_stats_debugfs_item *p;
4591
4592 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4593
4594 kvm_debugfs_num_entries = 0;
4595 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4596 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4597 kvm_debugfs_dir, (void *)(long)p->offset,
4598 stat_fops[p->kind]);
4599 }
4600 }
4601
4602 static int kvm_suspend(void)
4603 {
4604 if (kvm_usage_count)
4605 hardware_disable_nolock(NULL);
4606 return 0;
4607 }
4608
4609 static void kvm_resume(void)
4610 {
4611 if (kvm_usage_count) {
4612 #ifdef CONFIG_LOCKDEP
4613 WARN_ON(lockdep_is_held(&kvm_count_lock));
4614 #endif
4615 hardware_enable_nolock(NULL);
4616 }
4617 }
4618
4619 static struct syscore_ops kvm_syscore_ops = {
4620 .suspend = kvm_suspend,
4621 .resume = kvm_resume,
4622 };
4623
4624 static inline
4625 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4626 {
4627 return container_of(pn, struct kvm_vcpu, preempt_notifier);
4628 }
4629
4630 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4631 {
4632 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4633
4634 WRITE_ONCE(vcpu->preempted, false);
4635 WRITE_ONCE(vcpu->ready, false);
4636
4637 __this_cpu_write(kvm_running_vcpu, vcpu);
4638 kvm_arch_sched_in(vcpu, cpu);
4639 kvm_arch_vcpu_load(vcpu, cpu);
4640 }
4641
4642 static void kvm_sched_out(struct preempt_notifier *pn,
4643 struct task_struct *next)
4644 {
4645 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4646
4647 if (current->state == TASK_RUNNING) {
4648 WRITE_ONCE(vcpu->preempted, true);
4649 WRITE_ONCE(vcpu->ready, true);
4650 }
4651 kvm_arch_vcpu_put(vcpu);
4652 __this_cpu_write(kvm_running_vcpu, NULL);
4653 }
4654
4655 /**
4656 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4657 *
4658 * We can disable preemption locally around accessing the per-CPU variable,
4659 * and use the resolved vcpu pointer after enabling preemption again,
4660 * because even if the current thread is migrated to another CPU, reading
4661 * the per-CPU value later will give us the same value as we update the
4662 * per-CPU variable in the preempt notifier handlers.
4663 */
4664 struct kvm_vcpu *kvm_get_running_vcpu(void)
4665 {
4666 struct kvm_vcpu *vcpu;
4667
4668 preempt_disable();
4669 vcpu = __this_cpu_read(kvm_running_vcpu);
4670 preempt_enable();
4671
4672 return vcpu;
4673 }
4674 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
4675
4676 /**
4677 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4678 */
4679 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4680 {
4681 return &kvm_running_vcpu;
4682 }
4683
4684 struct kvm_cpu_compat_check {
4685 void *opaque;
4686 int *ret;
4687 };
4688
4689 static void check_processor_compat(void *data)
4690 {
4691 struct kvm_cpu_compat_check *c = data;
4692
4693 *c->ret = kvm_arch_check_processor_compat(c->opaque);
4694 }
4695
4696 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4697 struct module *module)
4698 {
4699 struct kvm_cpu_compat_check c;
4700 int r;
4701 int cpu;
4702
4703 r = kvm_arch_init(opaque);
4704 if (r)
4705 goto out_fail;
4706
4707 /*
4708 * kvm_arch_init makes sure there's at most one caller
4709 * for architectures that support multiple implementations,
4710 * like intel and amd on x86.
4711 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4712 * conflicts in case kvm is already setup for another implementation.
4713 */
4714 r = kvm_irqfd_init();
4715 if (r)
4716 goto out_irqfd;
4717
4718 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4719 r = -ENOMEM;
4720 goto out_free_0;
4721 }
4722
4723 r = kvm_arch_hardware_setup(opaque);
4724 if (r < 0)
4725 goto out_free_1;
4726
4727 c.ret = &r;
4728 c.opaque = opaque;
4729 for_each_online_cpu(cpu) {
4730 smp_call_function_single(cpu, check_processor_compat, &c, 1);
4731 if (r < 0)
4732 goto out_free_2;
4733 }
4734
4735 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4736 kvm_starting_cpu, kvm_dying_cpu);
4737 if (r)
4738 goto out_free_2;
4739 register_reboot_notifier(&kvm_reboot_notifier);
4740
4741 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4742 if (!vcpu_align)
4743 vcpu_align = __alignof__(struct kvm_vcpu);
4744 kvm_vcpu_cache =
4745 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4746 SLAB_ACCOUNT,
4747 offsetof(struct kvm_vcpu, arch),
4748 sizeof_field(struct kvm_vcpu, arch),
4749 NULL);
4750 if (!kvm_vcpu_cache) {
4751 r = -ENOMEM;
4752 goto out_free_3;
4753 }
4754
4755 r = kvm_async_pf_init();
4756 if (r)
4757 goto out_free;
4758
4759 kvm_chardev_ops.owner = module;
4760 kvm_vm_fops.owner = module;
4761 kvm_vcpu_fops.owner = module;
4762
4763 r = misc_register(&kvm_dev);
4764 if (r) {
4765 pr_err("kvm: misc device register failed\n");
4766 goto out_unreg;
4767 }
4768
4769 register_syscore_ops(&kvm_syscore_ops);
4770
4771 kvm_preempt_ops.sched_in = kvm_sched_in;
4772 kvm_preempt_ops.sched_out = kvm_sched_out;
4773
4774 kvm_init_debug();
4775
4776 r = kvm_vfio_ops_init();
4777 WARN_ON(r);
4778
4779 return 0;
4780
4781 out_unreg:
4782 kvm_async_pf_deinit();
4783 out_free:
4784 kmem_cache_destroy(kvm_vcpu_cache);
4785 out_free_3:
4786 unregister_reboot_notifier(&kvm_reboot_notifier);
4787 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4788 out_free_2:
4789 kvm_arch_hardware_unsetup();
4790 out_free_1:
4791 free_cpumask_var(cpus_hardware_enabled);
4792 out_free_0:
4793 kvm_irqfd_exit();
4794 out_irqfd:
4795 kvm_arch_exit();
4796 out_fail:
4797 return r;
4798 }
4799 EXPORT_SYMBOL_GPL(kvm_init);
4800
4801 void kvm_exit(void)
4802 {
4803 debugfs_remove_recursive(kvm_debugfs_dir);
4804 misc_deregister(&kvm_dev);
4805 kmem_cache_destroy(kvm_vcpu_cache);
4806 kvm_async_pf_deinit();
4807 unregister_syscore_ops(&kvm_syscore_ops);
4808 unregister_reboot_notifier(&kvm_reboot_notifier);
4809 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4810 on_each_cpu(hardware_disable_nolock, NULL, 1);
4811 kvm_arch_hardware_unsetup();
4812 kvm_arch_exit();
4813 kvm_irqfd_exit();
4814 free_cpumask_var(cpus_hardware_enabled);
4815 kvm_vfio_ops_exit();
4816 }
4817 EXPORT_SYMBOL_GPL(kvm_exit);
4818
4819 struct kvm_vm_worker_thread_context {
4820 struct kvm *kvm;
4821 struct task_struct *parent;
4822 struct completion init_done;
4823 kvm_vm_thread_fn_t thread_fn;
4824 uintptr_t data;
4825 int err;
4826 };
4827
4828 static int kvm_vm_worker_thread(void *context)
4829 {
4830 /*
4831 * The init_context is allocated on the stack of the parent thread, so
4832 * we have to locally copy anything that is needed beyond initialization
4833 */
4834 struct kvm_vm_worker_thread_context *init_context = context;
4835 struct kvm *kvm = init_context->kvm;
4836 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4837 uintptr_t data = init_context->data;
4838 int err;
4839
4840 err = kthread_park(current);
4841 /* kthread_park(current) is never supposed to return an error */
4842 WARN_ON(err != 0);
4843 if (err)
4844 goto init_complete;
4845
4846 err = cgroup_attach_task_all(init_context->parent, current);
4847 if (err) {
4848 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4849 __func__, err);
4850 goto init_complete;
4851 }
4852
4853 set_user_nice(current, task_nice(init_context->parent));
4854
4855 init_complete:
4856 init_context->err = err;
4857 complete(&init_context->init_done);
4858 init_context = NULL;
4859
4860 if (err)
4861 return err;
4862
4863 /* Wait to be woken up by the spawner before proceeding. */
4864 kthread_parkme();
4865
4866 if (!kthread_should_stop())
4867 err = thread_fn(kvm, data);
4868
4869 return err;
4870 }
4871
4872 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4873 uintptr_t data, const char *name,
4874 struct task_struct **thread_ptr)
4875 {
4876 struct kvm_vm_worker_thread_context init_context = {};
4877 struct task_struct *thread;
4878
4879 *thread_ptr = NULL;
4880 init_context.kvm = kvm;
4881 init_context.parent = current;
4882 init_context.thread_fn = thread_fn;
4883 init_context.data = data;
4884 init_completion(&init_context.init_done);
4885
4886 thread = kthread_run(kvm_vm_worker_thread, &init_context,
4887 "%s-%d", name, task_pid_nr(current));
4888 if (IS_ERR(thread))
4889 return PTR_ERR(thread);
4890
4891 /* kthread_run is never supposed to return NULL */
4892 WARN_ON(thread == NULL);
4893
4894 wait_for_completion(&init_context.init_done);
4895
4896 if (!init_context.err)
4897 *thread_ptr = thread;
4898
4899 return init_context.err;
4900 }