]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - virt/kvm/kvm_main.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm...
[mirror_ubuntu-jammy-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 /*
68 * Ordering of locks:
69 *
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71 */
72
73 DEFINE_SPINLOCK(kvm_lock);
74 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
75 LIST_HEAD(vm_list);
76
77 static cpumask_var_t cpus_hardware_enabled;
78 static int kvm_usage_count = 0;
79 static atomic_t hardware_enable_failed;
80
81 struct kmem_cache *kvm_vcpu_cache;
82 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
83
84 static __read_mostly struct preempt_ops kvm_preempt_ops;
85
86 struct dentry *kvm_debugfs_dir;
87
88 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
89 unsigned long arg);
90 #ifdef CONFIG_COMPAT
91 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
92 unsigned long arg);
93 #endif
94 static int hardware_enable_all(void);
95 static void hardware_disable_all(void);
96
97 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
98 static void update_memslots(struct kvm_memslots *slots,
99 struct kvm_memory_slot *new, u64 last_generation);
100
101 static void kvm_release_pfn_dirty(pfn_t pfn);
102 static void mark_page_dirty_in_slot(struct kvm *kvm,
103 struct kvm_memory_slot *memslot, gfn_t gfn);
104
105 __visible bool kvm_rebooting;
106 EXPORT_SYMBOL_GPL(kvm_rebooting);
107
108 static bool largepages_enabled = true;
109
110 bool kvm_is_mmio_pfn(pfn_t pfn)
111 {
112 if (pfn_valid(pfn))
113 return PageReserved(pfn_to_page(pfn));
114
115 return true;
116 }
117
118 /*
119 * Switches to specified vcpu, until a matching vcpu_put()
120 */
121 int vcpu_load(struct kvm_vcpu *vcpu)
122 {
123 int cpu;
124
125 if (mutex_lock_killable(&vcpu->mutex))
126 return -EINTR;
127 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
128 /* The thread running this VCPU changed. */
129 struct pid *oldpid = vcpu->pid;
130 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
131 rcu_assign_pointer(vcpu->pid, newpid);
132 synchronize_rcu();
133 put_pid(oldpid);
134 }
135 cpu = get_cpu();
136 preempt_notifier_register(&vcpu->preempt_notifier);
137 kvm_arch_vcpu_load(vcpu, cpu);
138 put_cpu();
139 return 0;
140 }
141
142 void vcpu_put(struct kvm_vcpu *vcpu)
143 {
144 preempt_disable();
145 kvm_arch_vcpu_put(vcpu);
146 preempt_notifier_unregister(&vcpu->preempt_notifier);
147 preempt_enable();
148 mutex_unlock(&vcpu->mutex);
149 }
150
151 static void ack_flush(void *_completed)
152 {
153 }
154
155 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
156 {
157 int i, cpu, me;
158 cpumask_var_t cpus;
159 bool called = true;
160 struct kvm_vcpu *vcpu;
161
162 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
163
164 me = get_cpu();
165 kvm_for_each_vcpu(i, vcpu, kvm) {
166 kvm_make_request(req, vcpu);
167 cpu = vcpu->cpu;
168
169 /* Set ->requests bit before we read ->mode */
170 smp_mb();
171
172 if (cpus != NULL && cpu != -1 && cpu != me &&
173 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
174 cpumask_set_cpu(cpu, cpus);
175 }
176 if (unlikely(cpus == NULL))
177 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
178 else if (!cpumask_empty(cpus))
179 smp_call_function_many(cpus, ack_flush, NULL, 1);
180 else
181 called = false;
182 put_cpu();
183 free_cpumask_var(cpus);
184 return called;
185 }
186
187 void kvm_flush_remote_tlbs(struct kvm *kvm)
188 {
189 long dirty_count = kvm->tlbs_dirty;
190
191 smp_mb();
192 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
193 ++kvm->stat.remote_tlb_flush;
194 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
195 }
196 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
197
198 void kvm_reload_remote_mmus(struct kvm *kvm)
199 {
200 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
201 }
202
203 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
204 {
205 make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
206 }
207
208 void kvm_make_scan_ioapic_request(struct kvm *kvm)
209 {
210 make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
211 }
212
213 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
214 {
215 struct page *page;
216 int r;
217
218 mutex_init(&vcpu->mutex);
219 vcpu->cpu = -1;
220 vcpu->kvm = kvm;
221 vcpu->vcpu_id = id;
222 vcpu->pid = NULL;
223 init_waitqueue_head(&vcpu->wq);
224 kvm_async_pf_vcpu_init(vcpu);
225
226 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
227 if (!page) {
228 r = -ENOMEM;
229 goto fail;
230 }
231 vcpu->run = page_address(page);
232
233 kvm_vcpu_set_in_spin_loop(vcpu, false);
234 kvm_vcpu_set_dy_eligible(vcpu, false);
235 vcpu->preempted = false;
236
237 r = kvm_arch_vcpu_init(vcpu);
238 if (r < 0)
239 goto fail_free_run;
240 return 0;
241
242 fail_free_run:
243 free_page((unsigned long)vcpu->run);
244 fail:
245 return r;
246 }
247 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
248
249 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
250 {
251 put_pid(vcpu->pid);
252 kvm_arch_vcpu_uninit(vcpu);
253 free_page((unsigned long)vcpu->run);
254 }
255 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
256
257 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
258 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
259 {
260 return container_of(mn, struct kvm, mmu_notifier);
261 }
262
263 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
264 struct mm_struct *mm,
265 unsigned long address)
266 {
267 struct kvm *kvm = mmu_notifier_to_kvm(mn);
268 int need_tlb_flush, idx;
269
270 /*
271 * When ->invalidate_page runs, the linux pte has been zapped
272 * already but the page is still allocated until
273 * ->invalidate_page returns. So if we increase the sequence
274 * here the kvm page fault will notice if the spte can't be
275 * established because the page is going to be freed. If
276 * instead the kvm page fault establishes the spte before
277 * ->invalidate_page runs, kvm_unmap_hva will release it
278 * before returning.
279 *
280 * The sequence increase only need to be seen at spin_unlock
281 * time, and not at spin_lock time.
282 *
283 * Increasing the sequence after the spin_unlock would be
284 * unsafe because the kvm page fault could then establish the
285 * pte after kvm_unmap_hva returned, without noticing the page
286 * is going to be freed.
287 */
288 idx = srcu_read_lock(&kvm->srcu);
289 spin_lock(&kvm->mmu_lock);
290
291 kvm->mmu_notifier_seq++;
292 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
293 /* we've to flush the tlb before the pages can be freed */
294 if (need_tlb_flush)
295 kvm_flush_remote_tlbs(kvm);
296
297 spin_unlock(&kvm->mmu_lock);
298 srcu_read_unlock(&kvm->srcu, idx);
299 }
300
301 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
302 struct mm_struct *mm,
303 unsigned long address,
304 pte_t pte)
305 {
306 struct kvm *kvm = mmu_notifier_to_kvm(mn);
307 int idx;
308
309 idx = srcu_read_lock(&kvm->srcu);
310 spin_lock(&kvm->mmu_lock);
311 kvm->mmu_notifier_seq++;
312 kvm_set_spte_hva(kvm, address, pte);
313 spin_unlock(&kvm->mmu_lock);
314 srcu_read_unlock(&kvm->srcu, idx);
315 }
316
317 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
318 struct mm_struct *mm,
319 unsigned long start,
320 unsigned long end)
321 {
322 struct kvm *kvm = mmu_notifier_to_kvm(mn);
323 int need_tlb_flush = 0, idx;
324
325 idx = srcu_read_lock(&kvm->srcu);
326 spin_lock(&kvm->mmu_lock);
327 /*
328 * The count increase must become visible at unlock time as no
329 * spte can be established without taking the mmu_lock and
330 * count is also read inside the mmu_lock critical section.
331 */
332 kvm->mmu_notifier_count++;
333 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
334 need_tlb_flush |= kvm->tlbs_dirty;
335 /* we've to flush the tlb before the pages can be freed */
336 if (need_tlb_flush)
337 kvm_flush_remote_tlbs(kvm);
338
339 spin_unlock(&kvm->mmu_lock);
340 srcu_read_unlock(&kvm->srcu, idx);
341 }
342
343 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
344 struct mm_struct *mm,
345 unsigned long start,
346 unsigned long end)
347 {
348 struct kvm *kvm = mmu_notifier_to_kvm(mn);
349
350 spin_lock(&kvm->mmu_lock);
351 /*
352 * This sequence increase will notify the kvm page fault that
353 * the page that is going to be mapped in the spte could have
354 * been freed.
355 */
356 kvm->mmu_notifier_seq++;
357 smp_wmb();
358 /*
359 * The above sequence increase must be visible before the
360 * below count decrease, which is ensured by the smp_wmb above
361 * in conjunction with the smp_rmb in mmu_notifier_retry().
362 */
363 kvm->mmu_notifier_count--;
364 spin_unlock(&kvm->mmu_lock);
365
366 BUG_ON(kvm->mmu_notifier_count < 0);
367 }
368
369 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
370 struct mm_struct *mm,
371 unsigned long address)
372 {
373 struct kvm *kvm = mmu_notifier_to_kvm(mn);
374 int young, idx;
375
376 idx = srcu_read_lock(&kvm->srcu);
377 spin_lock(&kvm->mmu_lock);
378
379 young = kvm_age_hva(kvm, address);
380 if (young)
381 kvm_flush_remote_tlbs(kvm);
382
383 spin_unlock(&kvm->mmu_lock);
384 srcu_read_unlock(&kvm->srcu, idx);
385
386 return young;
387 }
388
389 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
390 struct mm_struct *mm,
391 unsigned long address)
392 {
393 struct kvm *kvm = mmu_notifier_to_kvm(mn);
394 int young, idx;
395
396 idx = srcu_read_lock(&kvm->srcu);
397 spin_lock(&kvm->mmu_lock);
398 young = kvm_test_age_hva(kvm, address);
399 spin_unlock(&kvm->mmu_lock);
400 srcu_read_unlock(&kvm->srcu, idx);
401
402 return young;
403 }
404
405 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
406 struct mm_struct *mm)
407 {
408 struct kvm *kvm = mmu_notifier_to_kvm(mn);
409 int idx;
410
411 idx = srcu_read_lock(&kvm->srcu);
412 kvm_arch_flush_shadow_all(kvm);
413 srcu_read_unlock(&kvm->srcu, idx);
414 }
415
416 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
417 .invalidate_page = kvm_mmu_notifier_invalidate_page,
418 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
419 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
420 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
421 .test_young = kvm_mmu_notifier_test_young,
422 .change_pte = kvm_mmu_notifier_change_pte,
423 .release = kvm_mmu_notifier_release,
424 };
425
426 static int kvm_init_mmu_notifier(struct kvm *kvm)
427 {
428 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
429 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
430 }
431
432 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
433
434 static int kvm_init_mmu_notifier(struct kvm *kvm)
435 {
436 return 0;
437 }
438
439 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
440
441 static void kvm_init_memslots_id(struct kvm *kvm)
442 {
443 int i;
444 struct kvm_memslots *slots = kvm->memslots;
445
446 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
447 slots->id_to_index[i] = slots->memslots[i].id = i;
448 }
449
450 static struct kvm *kvm_create_vm(unsigned long type)
451 {
452 int r, i;
453 struct kvm *kvm = kvm_arch_alloc_vm();
454
455 if (!kvm)
456 return ERR_PTR(-ENOMEM);
457
458 r = kvm_arch_init_vm(kvm, type);
459 if (r)
460 goto out_err_no_disable;
461
462 r = hardware_enable_all();
463 if (r)
464 goto out_err_no_disable;
465
466 #ifdef CONFIG_HAVE_KVM_IRQCHIP
467 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
468 #endif
469 #ifdef CONFIG_HAVE_KVM_IRQFD
470 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
471 #endif
472
473 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
474
475 r = -ENOMEM;
476 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
477 if (!kvm->memslots)
478 goto out_err_no_srcu;
479 kvm_init_memslots_id(kvm);
480 if (init_srcu_struct(&kvm->srcu))
481 goto out_err_no_srcu;
482 if (init_srcu_struct(&kvm->irq_srcu))
483 goto out_err_no_irq_srcu;
484 for (i = 0; i < KVM_NR_BUSES; i++) {
485 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
486 GFP_KERNEL);
487 if (!kvm->buses[i])
488 goto out_err;
489 }
490
491 spin_lock_init(&kvm->mmu_lock);
492 kvm->mm = current->mm;
493 atomic_inc(&kvm->mm->mm_count);
494 kvm_eventfd_init(kvm);
495 mutex_init(&kvm->lock);
496 mutex_init(&kvm->irq_lock);
497 mutex_init(&kvm->slots_lock);
498 atomic_set(&kvm->users_count, 1);
499 INIT_LIST_HEAD(&kvm->devices);
500
501 r = kvm_init_mmu_notifier(kvm);
502 if (r)
503 goto out_err;
504
505 spin_lock(&kvm_lock);
506 list_add(&kvm->vm_list, &vm_list);
507 spin_unlock(&kvm_lock);
508
509 return kvm;
510
511 out_err:
512 cleanup_srcu_struct(&kvm->irq_srcu);
513 out_err_no_irq_srcu:
514 cleanup_srcu_struct(&kvm->srcu);
515 out_err_no_srcu:
516 hardware_disable_all();
517 out_err_no_disable:
518 for (i = 0; i < KVM_NR_BUSES; i++)
519 kfree(kvm->buses[i]);
520 kfree(kvm->memslots);
521 kvm_arch_free_vm(kvm);
522 return ERR_PTR(r);
523 }
524
525 /*
526 * Avoid using vmalloc for a small buffer.
527 * Should not be used when the size is statically known.
528 */
529 void *kvm_kvzalloc(unsigned long size)
530 {
531 if (size > PAGE_SIZE)
532 return vzalloc(size);
533 else
534 return kzalloc(size, GFP_KERNEL);
535 }
536
537 void kvm_kvfree(const void *addr)
538 {
539 if (is_vmalloc_addr(addr))
540 vfree(addr);
541 else
542 kfree(addr);
543 }
544
545 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
546 {
547 if (!memslot->dirty_bitmap)
548 return;
549
550 kvm_kvfree(memslot->dirty_bitmap);
551 memslot->dirty_bitmap = NULL;
552 }
553
554 /*
555 * Free any memory in @free but not in @dont.
556 */
557 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
558 struct kvm_memory_slot *dont)
559 {
560 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
561 kvm_destroy_dirty_bitmap(free);
562
563 kvm_arch_free_memslot(kvm, free, dont);
564
565 free->npages = 0;
566 }
567
568 static void kvm_free_physmem(struct kvm *kvm)
569 {
570 struct kvm_memslots *slots = kvm->memslots;
571 struct kvm_memory_slot *memslot;
572
573 kvm_for_each_memslot(memslot, slots)
574 kvm_free_physmem_slot(kvm, memslot, NULL);
575
576 kfree(kvm->memslots);
577 }
578
579 static void kvm_destroy_devices(struct kvm *kvm)
580 {
581 struct list_head *node, *tmp;
582
583 list_for_each_safe(node, tmp, &kvm->devices) {
584 struct kvm_device *dev =
585 list_entry(node, struct kvm_device, vm_node);
586
587 list_del(node);
588 dev->ops->destroy(dev);
589 }
590 }
591
592 static void kvm_destroy_vm(struct kvm *kvm)
593 {
594 int i;
595 struct mm_struct *mm = kvm->mm;
596
597 kvm_arch_sync_events(kvm);
598 spin_lock(&kvm_lock);
599 list_del(&kvm->vm_list);
600 spin_unlock(&kvm_lock);
601 kvm_free_irq_routing(kvm);
602 for (i = 0; i < KVM_NR_BUSES; i++)
603 kvm_io_bus_destroy(kvm->buses[i]);
604 kvm_coalesced_mmio_free(kvm);
605 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
606 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
607 #else
608 kvm_arch_flush_shadow_all(kvm);
609 #endif
610 kvm_arch_destroy_vm(kvm);
611 kvm_destroy_devices(kvm);
612 kvm_free_physmem(kvm);
613 cleanup_srcu_struct(&kvm->irq_srcu);
614 cleanup_srcu_struct(&kvm->srcu);
615 kvm_arch_free_vm(kvm);
616 hardware_disable_all();
617 mmdrop(mm);
618 }
619
620 void kvm_get_kvm(struct kvm *kvm)
621 {
622 atomic_inc(&kvm->users_count);
623 }
624 EXPORT_SYMBOL_GPL(kvm_get_kvm);
625
626 void kvm_put_kvm(struct kvm *kvm)
627 {
628 if (atomic_dec_and_test(&kvm->users_count))
629 kvm_destroy_vm(kvm);
630 }
631 EXPORT_SYMBOL_GPL(kvm_put_kvm);
632
633
634 static int kvm_vm_release(struct inode *inode, struct file *filp)
635 {
636 struct kvm *kvm = filp->private_data;
637
638 kvm_irqfd_release(kvm);
639
640 kvm_put_kvm(kvm);
641 return 0;
642 }
643
644 /*
645 * Allocation size is twice as large as the actual dirty bitmap size.
646 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
647 */
648 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
649 {
650 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
651
652 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
653 if (!memslot->dirty_bitmap)
654 return -ENOMEM;
655
656 return 0;
657 }
658
659 static int cmp_memslot(const void *slot1, const void *slot2)
660 {
661 struct kvm_memory_slot *s1, *s2;
662
663 s1 = (struct kvm_memory_slot *)slot1;
664 s2 = (struct kvm_memory_slot *)slot2;
665
666 if (s1->npages < s2->npages)
667 return 1;
668 if (s1->npages > s2->npages)
669 return -1;
670
671 return 0;
672 }
673
674 /*
675 * Sort the memslots base on its size, so the larger slots
676 * will get better fit.
677 */
678 static void sort_memslots(struct kvm_memslots *slots)
679 {
680 int i;
681
682 sort(slots->memslots, KVM_MEM_SLOTS_NUM,
683 sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
684
685 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
686 slots->id_to_index[slots->memslots[i].id] = i;
687 }
688
689 static void update_memslots(struct kvm_memslots *slots,
690 struct kvm_memory_slot *new,
691 u64 last_generation)
692 {
693 if (new) {
694 int id = new->id;
695 struct kvm_memory_slot *old = id_to_memslot(slots, id);
696 unsigned long npages = old->npages;
697
698 *old = *new;
699 if (new->npages != npages)
700 sort_memslots(slots);
701 }
702
703 slots->generation = last_generation + 1;
704 }
705
706 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
707 {
708 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
709
710 #ifdef KVM_CAP_READONLY_MEM
711 valid_flags |= KVM_MEM_READONLY;
712 #endif
713
714 if (mem->flags & ~valid_flags)
715 return -EINVAL;
716
717 return 0;
718 }
719
720 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
721 struct kvm_memslots *slots, struct kvm_memory_slot *new)
722 {
723 struct kvm_memslots *old_memslots = kvm->memslots;
724
725 update_memslots(slots, new, kvm->memslots->generation);
726 rcu_assign_pointer(kvm->memslots, slots);
727 synchronize_srcu_expedited(&kvm->srcu);
728
729 kvm_arch_memslots_updated(kvm);
730
731 return old_memslots;
732 }
733
734 /*
735 * Allocate some memory and give it an address in the guest physical address
736 * space.
737 *
738 * Discontiguous memory is allowed, mostly for framebuffers.
739 *
740 * Must be called holding mmap_sem for write.
741 */
742 int __kvm_set_memory_region(struct kvm *kvm,
743 struct kvm_userspace_memory_region *mem)
744 {
745 int r;
746 gfn_t base_gfn;
747 unsigned long npages;
748 struct kvm_memory_slot *slot;
749 struct kvm_memory_slot old, new;
750 struct kvm_memslots *slots = NULL, *old_memslots;
751 enum kvm_mr_change change;
752
753 r = check_memory_region_flags(mem);
754 if (r)
755 goto out;
756
757 r = -EINVAL;
758 /* General sanity checks */
759 if (mem->memory_size & (PAGE_SIZE - 1))
760 goto out;
761 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
762 goto out;
763 /* We can read the guest memory with __xxx_user() later on. */
764 if ((mem->slot < KVM_USER_MEM_SLOTS) &&
765 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
766 !access_ok(VERIFY_WRITE,
767 (void __user *)(unsigned long)mem->userspace_addr,
768 mem->memory_size)))
769 goto out;
770 if (mem->slot >= KVM_MEM_SLOTS_NUM)
771 goto out;
772 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
773 goto out;
774
775 slot = id_to_memslot(kvm->memslots, mem->slot);
776 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
777 npages = mem->memory_size >> PAGE_SHIFT;
778
779 r = -EINVAL;
780 if (npages > KVM_MEM_MAX_NR_PAGES)
781 goto out;
782
783 if (!npages)
784 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
785
786 new = old = *slot;
787
788 new.id = mem->slot;
789 new.base_gfn = base_gfn;
790 new.npages = npages;
791 new.flags = mem->flags;
792
793 r = -EINVAL;
794 if (npages) {
795 if (!old.npages)
796 change = KVM_MR_CREATE;
797 else { /* Modify an existing slot. */
798 if ((mem->userspace_addr != old.userspace_addr) ||
799 (npages != old.npages) ||
800 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
801 goto out;
802
803 if (base_gfn != old.base_gfn)
804 change = KVM_MR_MOVE;
805 else if (new.flags != old.flags)
806 change = KVM_MR_FLAGS_ONLY;
807 else { /* Nothing to change. */
808 r = 0;
809 goto out;
810 }
811 }
812 } else if (old.npages) {
813 change = KVM_MR_DELETE;
814 } else /* Modify a non-existent slot: disallowed. */
815 goto out;
816
817 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
818 /* Check for overlaps */
819 r = -EEXIST;
820 kvm_for_each_memslot(slot, kvm->memslots) {
821 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
822 (slot->id == mem->slot))
823 continue;
824 if (!((base_gfn + npages <= slot->base_gfn) ||
825 (base_gfn >= slot->base_gfn + slot->npages)))
826 goto out;
827 }
828 }
829
830 /* Free page dirty bitmap if unneeded */
831 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
832 new.dirty_bitmap = NULL;
833
834 r = -ENOMEM;
835 if (change == KVM_MR_CREATE) {
836 new.userspace_addr = mem->userspace_addr;
837
838 if (kvm_arch_create_memslot(kvm, &new, npages))
839 goto out_free;
840 }
841
842 /* Allocate page dirty bitmap if needed */
843 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
844 if (kvm_create_dirty_bitmap(&new) < 0)
845 goto out_free;
846 }
847
848 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
849 r = -ENOMEM;
850 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
851 GFP_KERNEL);
852 if (!slots)
853 goto out_free;
854 slot = id_to_memslot(slots, mem->slot);
855 slot->flags |= KVM_MEMSLOT_INVALID;
856
857 old_memslots = install_new_memslots(kvm, slots, NULL);
858
859 /* slot was deleted or moved, clear iommu mapping */
860 kvm_iommu_unmap_pages(kvm, &old);
861 /* From this point no new shadow pages pointing to a deleted,
862 * or moved, memslot will be created.
863 *
864 * validation of sp->gfn happens in:
865 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
866 * - kvm_is_visible_gfn (mmu_check_roots)
867 */
868 kvm_arch_flush_shadow_memslot(kvm, slot);
869 slots = old_memslots;
870 }
871
872 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
873 if (r)
874 goto out_slots;
875
876 r = -ENOMEM;
877 /*
878 * We can re-use the old_memslots from above, the only difference
879 * from the currently installed memslots is the invalid flag. This
880 * will get overwritten by update_memslots anyway.
881 */
882 if (!slots) {
883 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
884 GFP_KERNEL);
885 if (!slots)
886 goto out_free;
887 }
888
889 /* actual memory is freed via old in kvm_free_physmem_slot below */
890 if (change == KVM_MR_DELETE) {
891 new.dirty_bitmap = NULL;
892 memset(&new.arch, 0, sizeof(new.arch));
893 }
894
895 old_memslots = install_new_memslots(kvm, slots, &new);
896
897 kvm_arch_commit_memory_region(kvm, mem, &old, change);
898
899 kvm_free_physmem_slot(kvm, &old, &new);
900 kfree(old_memslots);
901
902 /*
903 * IOMMU mapping: New slots need to be mapped. Old slots need to be
904 * un-mapped and re-mapped if their base changes. Since base change
905 * unmapping is handled above with slot deletion, mapping alone is
906 * needed here. Anything else the iommu might care about for existing
907 * slots (size changes, userspace addr changes and read-only flag
908 * changes) is disallowed above, so any other attribute changes getting
909 * here can be skipped.
910 */
911 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
912 r = kvm_iommu_map_pages(kvm, &new);
913 return r;
914 }
915
916 return 0;
917
918 out_slots:
919 kfree(slots);
920 out_free:
921 kvm_free_physmem_slot(kvm, &new, &old);
922 out:
923 return r;
924 }
925 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
926
927 int kvm_set_memory_region(struct kvm *kvm,
928 struct kvm_userspace_memory_region *mem)
929 {
930 int r;
931
932 mutex_lock(&kvm->slots_lock);
933 r = __kvm_set_memory_region(kvm, mem);
934 mutex_unlock(&kvm->slots_lock);
935 return r;
936 }
937 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
938
939 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
940 struct kvm_userspace_memory_region *mem)
941 {
942 if (mem->slot >= KVM_USER_MEM_SLOTS)
943 return -EINVAL;
944 return kvm_set_memory_region(kvm, mem);
945 }
946
947 int kvm_get_dirty_log(struct kvm *kvm,
948 struct kvm_dirty_log *log, int *is_dirty)
949 {
950 struct kvm_memory_slot *memslot;
951 int r, i;
952 unsigned long n;
953 unsigned long any = 0;
954
955 r = -EINVAL;
956 if (log->slot >= KVM_USER_MEM_SLOTS)
957 goto out;
958
959 memslot = id_to_memslot(kvm->memslots, log->slot);
960 r = -ENOENT;
961 if (!memslot->dirty_bitmap)
962 goto out;
963
964 n = kvm_dirty_bitmap_bytes(memslot);
965
966 for (i = 0; !any && i < n/sizeof(long); ++i)
967 any = memslot->dirty_bitmap[i];
968
969 r = -EFAULT;
970 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
971 goto out;
972
973 if (any)
974 *is_dirty = 1;
975
976 r = 0;
977 out:
978 return r;
979 }
980 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
981
982 bool kvm_largepages_enabled(void)
983 {
984 return largepages_enabled;
985 }
986
987 void kvm_disable_largepages(void)
988 {
989 largepages_enabled = false;
990 }
991 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
992
993 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
994 {
995 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
996 }
997 EXPORT_SYMBOL_GPL(gfn_to_memslot);
998
999 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1000 {
1001 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1002
1003 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1004 memslot->flags & KVM_MEMSLOT_INVALID)
1005 return 0;
1006
1007 return 1;
1008 }
1009 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1010
1011 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1012 {
1013 struct vm_area_struct *vma;
1014 unsigned long addr, size;
1015
1016 size = PAGE_SIZE;
1017
1018 addr = gfn_to_hva(kvm, gfn);
1019 if (kvm_is_error_hva(addr))
1020 return PAGE_SIZE;
1021
1022 down_read(&current->mm->mmap_sem);
1023 vma = find_vma(current->mm, addr);
1024 if (!vma)
1025 goto out;
1026
1027 size = vma_kernel_pagesize(vma);
1028
1029 out:
1030 up_read(&current->mm->mmap_sem);
1031
1032 return size;
1033 }
1034
1035 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1036 {
1037 return slot->flags & KVM_MEM_READONLY;
1038 }
1039
1040 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1041 gfn_t *nr_pages, bool write)
1042 {
1043 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1044 return KVM_HVA_ERR_BAD;
1045
1046 if (memslot_is_readonly(slot) && write)
1047 return KVM_HVA_ERR_RO_BAD;
1048
1049 if (nr_pages)
1050 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1051
1052 return __gfn_to_hva_memslot(slot, gfn);
1053 }
1054
1055 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1056 gfn_t *nr_pages)
1057 {
1058 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1059 }
1060
1061 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1062 gfn_t gfn)
1063 {
1064 return gfn_to_hva_many(slot, gfn, NULL);
1065 }
1066 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1067
1068 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1069 {
1070 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1071 }
1072 EXPORT_SYMBOL_GPL(gfn_to_hva);
1073
1074 /*
1075 * If writable is set to false, the hva returned by this function is only
1076 * allowed to be read.
1077 */
1078 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1079 {
1080 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1081 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1082
1083 if (!kvm_is_error_hva(hva) && writable)
1084 *writable = !memslot_is_readonly(slot);
1085
1086 return hva;
1087 }
1088
1089 static int kvm_read_hva(void *data, void __user *hva, int len)
1090 {
1091 return __copy_from_user(data, hva, len);
1092 }
1093
1094 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1095 {
1096 return __copy_from_user_inatomic(data, hva, len);
1097 }
1098
1099 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1100 unsigned long start, int write, struct page **page)
1101 {
1102 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1103
1104 if (write)
1105 flags |= FOLL_WRITE;
1106
1107 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1108 }
1109
1110 static inline int check_user_page_hwpoison(unsigned long addr)
1111 {
1112 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1113
1114 rc = __get_user_pages(current, current->mm, addr, 1,
1115 flags, NULL, NULL, NULL);
1116 return rc == -EHWPOISON;
1117 }
1118
1119 /*
1120 * The atomic path to get the writable pfn which will be stored in @pfn,
1121 * true indicates success, otherwise false is returned.
1122 */
1123 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1124 bool write_fault, bool *writable, pfn_t *pfn)
1125 {
1126 struct page *page[1];
1127 int npages;
1128
1129 if (!(async || atomic))
1130 return false;
1131
1132 /*
1133 * Fast pin a writable pfn only if it is a write fault request
1134 * or the caller allows to map a writable pfn for a read fault
1135 * request.
1136 */
1137 if (!(write_fault || writable))
1138 return false;
1139
1140 npages = __get_user_pages_fast(addr, 1, 1, page);
1141 if (npages == 1) {
1142 *pfn = page_to_pfn(page[0]);
1143
1144 if (writable)
1145 *writable = true;
1146 return true;
1147 }
1148
1149 return false;
1150 }
1151
1152 /*
1153 * The slow path to get the pfn of the specified host virtual address,
1154 * 1 indicates success, -errno is returned if error is detected.
1155 */
1156 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1157 bool *writable, pfn_t *pfn)
1158 {
1159 struct page *page[1];
1160 int npages = 0;
1161
1162 might_sleep();
1163
1164 if (writable)
1165 *writable = write_fault;
1166
1167 if (async) {
1168 down_read(&current->mm->mmap_sem);
1169 npages = get_user_page_nowait(current, current->mm,
1170 addr, write_fault, page);
1171 up_read(&current->mm->mmap_sem);
1172 } else
1173 npages = get_user_pages_fast(addr, 1, write_fault,
1174 page);
1175 if (npages != 1)
1176 return npages;
1177
1178 /* map read fault as writable if possible */
1179 if (unlikely(!write_fault) && writable) {
1180 struct page *wpage[1];
1181
1182 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1183 if (npages == 1) {
1184 *writable = true;
1185 put_page(page[0]);
1186 page[0] = wpage[0];
1187 }
1188
1189 npages = 1;
1190 }
1191 *pfn = page_to_pfn(page[0]);
1192 return npages;
1193 }
1194
1195 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1196 {
1197 if (unlikely(!(vma->vm_flags & VM_READ)))
1198 return false;
1199
1200 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1201 return false;
1202
1203 return true;
1204 }
1205
1206 /*
1207 * Pin guest page in memory and return its pfn.
1208 * @addr: host virtual address which maps memory to the guest
1209 * @atomic: whether this function can sleep
1210 * @async: whether this function need to wait IO complete if the
1211 * host page is not in the memory
1212 * @write_fault: whether we should get a writable host page
1213 * @writable: whether it allows to map a writable host page for !@write_fault
1214 *
1215 * The function will map a writable host page for these two cases:
1216 * 1): @write_fault = true
1217 * 2): @write_fault = false && @writable, @writable will tell the caller
1218 * whether the mapping is writable.
1219 */
1220 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1221 bool write_fault, bool *writable)
1222 {
1223 struct vm_area_struct *vma;
1224 pfn_t pfn = 0;
1225 int npages;
1226
1227 /* we can do it either atomically or asynchronously, not both */
1228 BUG_ON(atomic && async);
1229
1230 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1231 return pfn;
1232
1233 if (atomic)
1234 return KVM_PFN_ERR_FAULT;
1235
1236 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1237 if (npages == 1)
1238 return pfn;
1239
1240 down_read(&current->mm->mmap_sem);
1241 if (npages == -EHWPOISON ||
1242 (!async && check_user_page_hwpoison(addr))) {
1243 pfn = KVM_PFN_ERR_HWPOISON;
1244 goto exit;
1245 }
1246
1247 vma = find_vma_intersection(current->mm, addr, addr + 1);
1248
1249 if (vma == NULL)
1250 pfn = KVM_PFN_ERR_FAULT;
1251 else if ((vma->vm_flags & VM_PFNMAP)) {
1252 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1253 vma->vm_pgoff;
1254 BUG_ON(!kvm_is_mmio_pfn(pfn));
1255 } else {
1256 if (async && vma_is_valid(vma, write_fault))
1257 *async = true;
1258 pfn = KVM_PFN_ERR_FAULT;
1259 }
1260 exit:
1261 up_read(&current->mm->mmap_sem);
1262 return pfn;
1263 }
1264
1265 static pfn_t
1266 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1267 bool *async, bool write_fault, bool *writable)
1268 {
1269 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1270
1271 if (addr == KVM_HVA_ERR_RO_BAD)
1272 return KVM_PFN_ERR_RO_FAULT;
1273
1274 if (kvm_is_error_hva(addr))
1275 return KVM_PFN_NOSLOT;
1276
1277 /* Do not map writable pfn in the readonly memslot. */
1278 if (writable && memslot_is_readonly(slot)) {
1279 *writable = false;
1280 writable = NULL;
1281 }
1282
1283 return hva_to_pfn(addr, atomic, async, write_fault,
1284 writable);
1285 }
1286
1287 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1288 bool write_fault, bool *writable)
1289 {
1290 struct kvm_memory_slot *slot;
1291
1292 if (async)
1293 *async = false;
1294
1295 slot = gfn_to_memslot(kvm, gfn);
1296
1297 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1298 writable);
1299 }
1300
1301 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1302 {
1303 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1304 }
1305 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1306
1307 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1308 bool write_fault, bool *writable)
1309 {
1310 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1311 }
1312 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1313
1314 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1315 {
1316 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1317 }
1318 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1319
1320 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1321 bool *writable)
1322 {
1323 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1324 }
1325 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1326
1327 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1328 {
1329 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1330 }
1331
1332 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1333 {
1334 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1335 }
1336 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1337
1338 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1339 int nr_pages)
1340 {
1341 unsigned long addr;
1342 gfn_t entry;
1343
1344 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1345 if (kvm_is_error_hva(addr))
1346 return -1;
1347
1348 if (entry < nr_pages)
1349 return 0;
1350
1351 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1352 }
1353 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1354
1355 static struct page *kvm_pfn_to_page(pfn_t pfn)
1356 {
1357 if (is_error_noslot_pfn(pfn))
1358 return KVM_ERR_PTR_BAD_PAGE;
1359
1360 if (kvm_is_mmio_pfn(pfn)) {
1361 WARN_ON(1);
1362 return KVM_ERR_PTR_BAD_PAGE;
1363 }
1364
1365 return pfn_to_page(pfn);
1366 }
1367
1368 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1369 {
1370 pfn_t pfn;
1371
1372 pfn = gfn_to_pfn(kvm, gfn);
1373
1374 return kvm_pfn_to_page(pfn);
1375 }
1376
1377 EXPORT_SYMBOL_GPL(gfn_to_page);
1378
1379 void kvm_release_page_clean(struct page *page)
1380 {
1381 WARN_ON(is_error_page(page));
1382
1383 kvm_release_pfn_clean(page_to_pfn(page));
1384 }
1385 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1386
1387 void kvm_release_pfn_clean(pfn_t pfn)
1388 {
1389 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1390 put_page(pfn_to_page(pfn));
1391 }
1392 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1393
1394 void kvm_release_page_dirty(struct page *page)
1395 {
1396 WARN_ON(is_error_page(page));
1397
1398 kvm_release_pfn_dirty(page_to_pfn(page));
1399 }
1400 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1401
1402 static void kvm_release_pfn_dirty(pfn_t pfn)
1403 {
1404 kvm_set_pfn_dirty(pfn);
1405 kvm_release_pfn_clean(pfn);
1406 }
1407
1408 void kvm_set_pfn_dirty(pfn_t pfn)
1409 {
1410 if (!kvm_is_mmio_pfn(pfn)) {
1411 struct page *page = pfn_to_page(pfn);
1412 if (!PageReserved(page))
1413 SetPageDirty(page);
1414 }
1415 }
1416 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1417
1418 void kvm_set_pfn_accessed(pfn_t pfn)
1419 {
1420 if (!kvm_is_mmio_pfn(pfn))
1421 mark_page_accessed(pfn_to_page(pfn));
1422 }
1423 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1424
1425 void kvm_get_pfn(pfn_t pfn)
1426 {
1427 if (!kvm_is_mmio_pfn(pfn))
1428 get_page(pfn_to_page(pfn));
1429 }
1430 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1431
1432 static int next_segment(unsigned long len, int offset)
1433 {
1434 if (len > PAGE_SIZE - offset)
1435 return PAGE_SIZE - offset;
1436 else
1437 return len;
1438 }
1439
1440 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1441 int len)
1442 {
1443 int r;
1444 unsigned long addr;
1445
1446 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1447 if (kvm_is_error_hva(addr))
1448 return -EFAULT;
1449 r = kvm_read_hva(data, (void __user *)addr + offset, len);
1450 if (r)
1451 return -EFAULT;
1452 return 0;
1453 }
1454 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1455
1456 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1457 {
1458 gfn_t gfn = gpa >> PAGE_SHIFT;
1459 int seg;
1460 int offset = offset_in_page(gpa);
1461 int ret;
1462
1463 while ((seg = next_segment(len, offset)) != 0) {
1464 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1465 if (ret < 0)
1466 return ret;
1467 offset = 0;
1468 len -= seg;
1469 data += seg;
1470 ++gfn;
1471 }
1472 return 0;
1473 }
1474 EXPORT_SYMBOL_GPL(kvm_read_guest);
1475
1476 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1477 unsigned long len)
1478 {
1479 int r;
1480 unsigned long addr;
1481 gfn_t gfn = gpa >> PAGE_SHIFT;
1482 int offset = offset_in_page(gpa);
1483
1484 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1485 if (kvm_is_error_hva(addr))
1486 return -EFAULT;
1487 pagefault_disable();
1488 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1489 pagefault_enable();
1490 if (r)
1491 return -EFAULT;
1492 return 0;
1493 }
1494 EXPORT_SYMBOL(kvm_read_guest_atomic);
1495
1496 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1497 int offset, int len)
1498 {
1499 int r;
1500 unsigned long addr;
1501
1502 addr = gfn_to_hva(kvm, gfn);
1503 if (kvm_is_error_hva(addr))
1504 return -EFAULT;
1505 r = __copy_to_user((void __user *)addr + offset, data, len);
1506 if (r)
1507 return -EFAULT;
1508 mark_page_dirty(kvm, gfn);
1509 return 0;
1510 }
1511 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1512
1513 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1514 unsigned long len)
1515 {
1516 gfn_t gfn = gpa >> PAGE_SHIFT;
1517 int seg;
1518 int offset = offset_in_page(gpa);
1519 int ret;
1520
1521 while ((seg = next_segment(len, offset)) != 0) {
1522 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1523 if (ret < 0)
1524 return ret;
1525 offset = 0;
1526 len -= seg;
1527 data += seg;
1528 ++gfn;
1529 }
1530 return 0;
1531 }
1532
1533 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1534 gpa_t gpa, unsigned long len)
1535 {
1536 struct kvm_memslots *slots = kvm_memslots(kvm);
1537 int offset = offset_in_page(gpa);
1538 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1539 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1540 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1541 gfn_t nr_pages_avail;
1542
1543 ghc->gpa = gpa;
1544 ghc->generation = slots->generation;
1545 ghc->len = len;
1546 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1547 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1548 if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1549 ghc->hva += offset;
1550 } else {
1551 /*
1552 * If the requested region crosses two memslots, we still
1553 * verify that the entire region is valid here.
1554 */
1555 while (start_gfn <= end_gfn) {
1556 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1557 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1558 &nr_pages_avail);
1559 if (kvm_is_error_hva(ghc->hva))
1560 return -EFAULT;
1561 start_gfn += nr_pages_avail;
1562 }
1563 /* Use the slow path for cross page reads and writes. */
1564 ghc->memslot = NULL;
1565 }
1566 return 0;
1567 }
1568 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1569
1570 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1571 void *data, unsigned long len)
1572 {
1573 struct kvm_memslots *slots = kvm_memslots(kvm);
1574 int r;
1575
1576 BUG_ON(len > ghc->len);
1577
1578 if (slots->generation != ghc->generation)
1579 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1580
1581 if (unlikely(!ghc->memslot))
1582 return kvm_write_guest(kvm, ghc->gpa, data, len);
1583
1584 if (kvm_is_error_hva(ghc->hva))
1585 return -EFAULT;
1586
1587 r = __copy_to_user((void __user *)ghc->hva, data, len);
1588 if (r)
1589 return -EFAULT;
1590 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1591
1592 return 0;
1593 }
1594 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1595
1596 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1597 void *data, unsigned long len)
1598 {
1599 struct kvm_memslots *slots = kvm_memslots(kvm);
1600 int r;
1601
1602 BUG_ON(len > ghc->len);
1603
1604 if (slots->generation != ghc->generation)
1605 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1606
1607 if (unlikely(!ghc->memslot))
1608 return kvm_read_guest(kvm, ghc->gpa, data, len);
1609
1610 if (kvm_is_error_hva(ghc->hva))
1611 return -EFAULT;
1612
1613 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1614 if (r)
1615 return -EFAULT;
1616
1617 return 0;
1618 }
1619 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1620
1621 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1622 {
1623 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1624
1625 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1626 }
1627 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1628
1629 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1630 {
1631 gfn_t gfn = gpa >> PAGE_SHIFT;
1632 int seg;
1633 int offset = offset_in_page(gpa);
1634 int ret;
1635
1636 while ((seg = next_segment(len, offset)) != 0) {
1637 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1638 if (ret < 0)
1639 return ret;
1640 offset = 0;
1641 len -= seg;
1642 ++gfn;
1643 }
1644 return 0;
1645 }
1646 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1647
1648 static void mark_page_dirty_in_slot(struct kvm *kvm,
1649 struct kvm_memory_slot *memslot,
1650 gfn_t gfn)
1651 {
1652 if (memslot && memslot->dirty_bitmap) {
1653 unsigned long rel_gfn = gfn - memslot->base_gfn;
1654
1655 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1656 }
1657 }
1658
1659 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1660 {
1661 struct kvm_memory_slot *memslot;
1662
1663 memslot = gfn_to_memslot(kvm, gfn);
1664 mark_page_dirty_in_slot(kvm, memslot, gfn);
1665 }
1666 EXPORT_SYMBOL_GPL(mark_page_dirty);
1667
1668 /*
1669 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1670 */
1671 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1672 {
1673 DEFINE_WAIT(wait);
1674
1675 for (;;) {
1676 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1677
1678 if (kvm_arch_vcpu_runnable(vcpu)) {
1679 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1680 break;
1681 }
1682 if (kvm_cpu_has_pending_timer(vcpu))
1683 break;
1684 if (signal_pending(current))
1685 break;
1686
1687 schedule();
1688 }
1689
1690 finish_wait(&vcpu->wq, &wait);
1691 }
1692 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1693
1694 #ifndef CONFIG_S390
1695 /*
1696 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1697 */
1698 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1699 {
1700 int me;
1701 int cpu = vcpu->cpu;
1702 wait_queue_head_t *wqp;
1703
1704 wqp = kvm_arch_vcpu_wq(vcpu);
1705 if (waitqueue_active(wqp)) {
1706 wake_up_interruptible(wqp);
1707 ++vcpu->stat.halt_wakeup;
1708 }
1709
1710 me = get_cpu();
1711 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1712 if (kvm_arch_vcpu_should_kick(vcpu))
1713 smp_send_reschedule(cpu);
1714 put_cpu();
1715 }
1716 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1717 #endif /* !CONFIG_S390 */
1718
1719 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1720 {
1721 struct pid *pid;
1722 struct task_struct *task = NULL;
1723 int ret = 0;
1724
1725 rcu_read_lock();
1726 pid = rcu_dereference(target->pid);
1727 if (pid)
1728 task = get_pid_task(target->pid, PIDTYPE_PID);
1729 rcu_read_unlock();
1730 if (!task)
1731 return ret;
1732 if (task->flags & PF_VCPU) {
1733 put_task_struct(task);
1734 return ret;
1735 }
1736 ret = yield_to(task, 1);
1737 put_task_struct(task);
1738
1739 return ret;
1740 }
1741 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1742
1743 /*
1744 * Helper that checks whether a VCPU is eligible for directed yield.
1745 * Most eligible candidate to yield is decided by following heuristics:
1746 *
1747 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1748 * (preempted lock holder), indicated by @in_spin_loop.
1749 * Set at the beiginning and cleared at the end of interception/PLE handler.
1750 *
1751 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1752 * chance last time (mostly it has become eligible now since we have probably
1753 * yielded to lockholder in last iteration. This is done by toggling
1754 * @dy_eligible each time a VCPU checked for eligibility.)
1755 *
1756 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1757 * to preempted lock-holder could result in wrong VCPU selection and CPU
1758 * burning. Giving priority for a potential lock-holder increases lock
1759 * progress.
1760 *
1761 * Since algorithm is based on heuristics, accessing another VCPU data without
1762 * locking does not harm. It may result in trying to yield to same VCPU, fail
1763 * and continue with next VCPU and so on.
1764 */
1765 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1766 {
1767 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1768 bool eligible;
1769
1770 eligible = !vcpu->spin_loop.in_spin_loop ||
1771 (vcpu->spin_loop.in_spin_loop &&
1772 vcpu->spin_loop.dy_eligible);
1773
1774 if (vcpu->spin_loop.in_spin_loop)
1775 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1776
1777 return eligible;
1778 #else
1779 return true;
1780 #endif
1781 }
1782
1783 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1784 {
1785 struct kvm *kvm = me->kvm;
1786 struct kvm_vcpu *vcpu;
1787 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1788 int yielded = 0;
1789 int try = 3;
1790 int pass;
1791 int i;
1792
1793 kvm_vcpu_set_in_spin_loop(me, true);
1794 /*
1795 * We boost the priority of a VCPU that is runnable but not
1796 * currently running, because it got preempted by something
1797 * else and called schedule in __vcpu_run. Hopefully that
1798 * VCPU is holding the lock that we need and will release it.
1799 * We approximate round-robin by starting at the last boosted VCPU.
1800 */
1801 for (pass = 0; pass < 2 && !yielded && try; pass++) {
1802 kvm_for_each_vcpu(i, vcpu, kvm) {
1803 if (!pass && i <= last_boosted_vcpu) {
1804 i = last_boosted_vcpu;
1805 continue;
1806 } else if (pass && i > last_boosted_vcpu)
1807 break;
1808 if (!ACCESS_ONCE(vcpu->preempted))
1809 continue;
1810 if (vcpu == me)
1811 continue;
1812 if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
1813 continue;
1814 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1815 continue;
1816
1817 yielded = kvm_vcpu_yield_to(vcpu);
1818 if (yielded > 0) {
1819 kvm->last_boosted_vcpu = i;
1820 break;
1821 } else if (yielded < 0) {
1822 try--;
1823 if (!try)
1824 break;
1825 }
1826 }
1827 }
1828 kvm_vcpu_set_in_spin_loop(me, false);
1829
1830 /* Ensure vcpu is not eligible during next spinloop */
1831 kvm_vcpu_set_dy_eligible(me, false);
1832 }
1833 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1834
1835 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1836 {
1837 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1838 struct page *page;
1839
1840 if (vmf->pgoff == 0)
1841 page = virt_to_page(vcpu->run);
1842 #ifdef CONFIG_X86
1843 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1844 page = virt_to_page(vcpu->arch.pio_data);
1845 #endif
1846 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1847 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1848 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1849 #endif
1850 else
1851 return kvm_arch_vcpu_fault(vcpu, vmf);
1852 get_page(page);
1853 vmf->page = page;
1854 return 0;
1855 }
1856
1857 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1858 .fault = kvm_vcpu_fault,
1859 };
1860
1861 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1862 {
1863 vma->vm_ops = &kvm_vcpu_vm_ops;
1864 return 0;
1865 }
1866
1867 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1868 {
1869 struct kvm_vcpu *vcpu = filp->private_data;
1870
1871 kvm_put_kvm(vcpu->kvm);
1872 return 0;
1873 }
1874
1875 static struct file_operations kvm_vcpu_fops = {
1876 .release = kvm_vcpu_release,
1877 .unlocked_ioctl = kvm_vcpu_ioctl,
1878 #ifdef CONFIG_COMPAT
1879 .compat_ioctl = kvm_vcpu_compat_ioctl,
1880 #endif
1881 .mmap = kvm_vcpu_mmap,
1882 .llseek = noop_llseek,
1883 };
1884
1885 /*
1886 * Allocates an inode for the vcpu.
1887 */
1888 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1889 {
1890 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1891 }
1892
1893 /*
1894 * Creates some virtual cpus. Good luck creating more than one.
1895 */
1896 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1897 {
1898 int r;
1899 struct kvm_vcpu *vcpu, *v;
1900
1901 if (id >= KVM_MAX_VCPUS)
1902 return -EINVAL;
1903
1904 vcpu = kvm_arch_vcpu_create(kvm, id);
1905 if (IS_ERR(vcpu))
1906 return PTR_ERR(vcpu);
1907
1908 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1909
1910 r = kvm_arch_vcpu_setup(vcpu);
1911 if (r)
1912 goto vcpu_destroy;
1913
1914 mutex_lock(&kvm->lock);
1915 if (!kvm_vcpu_compatible(vcpu)) {
1916 r = -EINVAL;
1917 goto unlock_vcpu_destroy;
1918 }
1919 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1920 r = -EINVAL;
1921 goto unlock_vcpu_destroy;
1922 }
1923
1924 kvm_for_each_vcpu(r, v, kvm)
1925 if (v->vcpu_id == id) {
1926 r = -EEXIST;
1927 goto unlock_vcpu_destroy;
1928 }
1929
1930 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1931
1932 /* Now it's all set up, let userspace reach it */
1933 kvm_get_kvm(kvm);
1934 r = create_vcpu_fd(vcpu);
1935 if (r < 0) {
1936 kvm_put_kvm(kvm);
1937 goto unlock_vcpu_destroy;
1938 }
1939
1940 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1941 smp_wmb();
1942 atomic_inc(&kvm->online_vcpus);
1943
1944 mutex_unlock(&kvm->lock);
1945 kvm_arch_vcpu_postcreate(vcpu);
1946 return r;
1947
1948 unlock_vcpu_destroy:
1949 mutex_unlock(&kvm->lock);
1950 vcpu_destroy:
1951 kvm_arch_vcpu_destroy(vcpu);
1952 return r;
1953 }
1954
1955 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1956 {
1957 if (sigset) {
1958 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1959 vcpu->sigset_active = 1;
1960 vcpu->sigset = *sigset;
1961 } else
1962 vcpu->sigset_active = 0;
1963 return 0;
1964 }
1965
1966 static long kvm_vcpu_ioctl(struct file *filp,
1967 unsigned int ioctl, unsigned long arg)
1968 {
1969 struct kvm_vcpu *vcpu = filp->private_data;
1970 void __user *argp = (void __user *)arg;
1971 int r;
1972 struct kvm_fpu *fpu = NULL;
1973 struct kvm_sregs *kvm_sregs = NULL;
1974
1975 if (vcpu->kvm->mm != current->mm)
1976 return -EIO;
1977
1978 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
1979 /*
1980 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1981 * so vcpu_load() would break it.
1982 */
1983 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1984 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1985 #endif
1986
1987
1988 r = vcpu_load(vcpu);
1989 if (r)
1990 return r;
1991 switch (ioctl) {
1992 case KVM_RUN:
1993 r = -EINVAL;
1994 if (arg)
1995 goto out;
1996 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1997 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1998 break;
1999 case KVM_GET_REGS: {
2000 struct kvm_regs *kvm_regs;
2001
2002 r = -ENOMEM;
2003 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2004 if (!kvm_regs)
2005 goto out;
2006 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2007 if (r)
2008 goto out_free1;
2009 r = -EFAULT;
2010 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2011 goto out_free1;
2012 r = 0;
2013 out_free1:
2014 kfree(kvm_regs);
2015 break;
2016 }
2017 case KVM_SET_REGS: {
2018 struct kvm_regs *kvm_regs;
2019
2020 r = -ENOMEM;
2021 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2022 if (IS_ERR(kvm_regs)) {
2023 r = PTR_ERR(kvm_regs);
2024 goto out;
2025 }
2026 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2027 kfree(kvm_regs);
2028 break;
2029 }
2030 case KVM_GET_SREGS: {
2031 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2032 r = -ENOMEM;
2033 if (!kvm_sregs)
2034 goto out;
2035 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2036 if (r)
2037 goto out;
2038 r = -EFAULT;
2039 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2040 goto out;
2041 r = 0;
2042 break;
2043 }
2044 case KVM_SET_SREGS: {
2045 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2046 if (IS_ERR(kvm_sregs)) {
2047 r = PTR_ERR(kvm_sregs);
2048 kvm_sregs = NULL;
2049 goto out;
2050 }
2051 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2052 break;
2053 }
2054 case KVM_GET_MP_STATE: {
2055 struct kvm_mp_state mp_state;
2056
2057 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2058 if (r)
2059 goto out;
2060 r = -EFAULT;
2061 if (copy_to_user(argp, &mp_state, sizeof mp_state))
2062 goto out;
2063 r = 0;
2064 break;
2065 }
2066 case KVM_SET_MP_STATE: {
2067 struct kvm_mp_state mp_state;
2068
2069 r = -EFAULT;
2070 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2071 goto out;
2072 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2073 break;
2074 }
2075 case KVM_TRANSLATE: {
2076 struct kvm_translation tr;
2077
2078 r = -EFAULT;
2079 if (copy_from_user(&tr, argp, sizeof tr))
2080 goto out;
2081 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2082 if (r)
2083 goto out;
2084 r = -EFAULT;
2085 if (copy_to_user(argp, &tr, sizeof tr))
2086 goto out;
2087 r = 0;
2088 break;
2089 }
2090 case KVM_SET_GUEST_DEBUG: {
2091 struct kvm_guest_debug dbg;
2092
2093 r = -EFAULT;
2094 if (copy_from_user(&dbg, argp, sizeof dbg))
2095 goto out;
2096 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2097 break;
2098 }
2099 case KVM_SET_SIGNAL_MASK: {
2100 struct kvm_signal_mask __user *sigmask_arg = argp;
2101 struct kvm_signal_mask kvm_sigmask;
2102 sigset_t sigset, *p;
2103
2104 p = NULL;
2105 if (argp) {
2106 r = -EFAULT;
2107 if (copy_from_user(&kvm_sigmask, argp,
2108 sizeof kvm_sigmask))
2109 goto out;
2110 r = -EINVAL;
2111 if (kvm_sigmask.len != sizeof sigset)
2112 goto out;
2113 r = -EFAULT;
2114 if (copy_from_user(&sigset, sigmask_arg->sigset,
2115 sizeof sigset))
2116 goto out;
2117 p = &sigset;
2118 }
2119 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2120 break;
2121 }
2122 case KVM_GET_FPU: {
2123 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2124 r = -ENOMEM;
2125 if (!fpu)
2126 goto out;
2127 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2128 if (r)
2129 goto out;
2130 r = -EFAULT;
2131 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2132 goto out;
2133 r = 0;
2134 break;
2135 }
2136 case KVM_SET_FPU: {
2137 fpu = memdup_user(argp, sizeof(*fpu));
2138 if (IS_ERR(fpu)) {
2139 r = PTR_ERR(fpu);
2140 fpu = NULL;
2141 goto out;
2142 }
2143 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2144 break;
2145 }
2146 default:
2147 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2148 }
2149 out:
2150 vcpu_put(vcpu);
2151 kfree(fpu);
2152 kfree(kvm_sregs);
2153 return r;
2154 }
2155
2156 #ifdef CONFIG_COMPAT
2157 static long kvm_vcpu_compat_ioctl(struct file *filp,
2158 unsigned int ioctl, unsigned long arg)
2159 {
2160 struct kvm_vcpu *vcpu = filp->private_data;
2161 void __user *argp = compat_ptr(arg);
2162 int r;
2163
2164 if (vcpu->kvm->mm != current->mm)
2165 return -EIO;
2166
2167 switch (ioctl) {
2168 case KVM_SET_SIGNAL_MASK: {
2169 struct kvm_signal_mask __user *sigmask_arg = argp;
2170 struct kvm_signal_mask kvm_sigmask;
2171 compat_sigset_t csigset;
2172 sigset_t sigset;
2173
2174 if (argp) {
2175 r = -EFAULT;
2176 if (copy_from_user(&kvm_sigmask, argp,
2177 sizeof kvm_sigmask))
2178 goto out;
2179 r = -EINVAL;
2180 if (kvm_sigmask.len != sizeof csigset)
2181 goto out;
2182 r = -EFAULT;
2183 if (copy_from_user(&csigset, sigmask_arg->sigset,
2184 sizeof csigset))
2185 goto out;
2186 sigset_from_compat(&sigset, &csigset);
2187 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2188 } else
2189 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2190 break;
2191 }
2192 default:
2193 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2194 }
2195
2196 out:
2197 return r;
2198 }
2199 #endif
2200
2201 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2202 int (*accessor)(struct kvm_device *dev,
2203 struct kvm_device_attr *attr),
2204 unsigned long arg)
2205 {
2206 struct kvm_device_attr attr;
2207
2208 if (!accessor)
2209 return -EPERM;
2210
2211 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2212 return -EFAULT;
2213
2214 return accessor(dev, &attr);
2215 }
2216
2217 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2218 unsigned long arg)
2219 {
2220 struct kvm_device *dev = filp->private_data;
2221
2222 switch (ioctl) {
2223 case KVM_SET_DEVICE_ATTR:
2224 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2225 case KVM_GET_DEVICE_ATTR:
2226 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2227 case KVM_HAS_DEVICE_ATTR:
2228 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2229 default:
2230 if (dev->ops->ioctl)
2231 return dev->ops->ioctl(dev, ioctl, arg);
2232
2233 return -ENOTTY;
2234 }
2235 }
2236
2237 static int kvm_device_release(struct inode *inode, struct file *filp)
2238 {
2239 struct kvm_device *dev = filp->private_data;
2240 struct kvm *kvm = dev->kvm;
2241
2242 kvm_put_kvm(kvm);
2243 return 0;
2244 }
2245
2246 static const struct file_operations kvm_device_fops = {
2247 .unlocked_ioctl = kvm_device_ioctl,
2248 #ifdef CONFIG_COMPAT
2249 .compat_ioctl = kvm_device_ioctl,
2250 #endif
2251 .release = kvm_device_release,
2252 };
2253
2254 struct kvm_device *kvm_device_from_filp(struct file *filp)
2255 {
2256 if (filp->f_op != &kvm_device_fops)
2257 return NULL;
2258
2259 return filp->private_data;
2260 }
2261
2262 static int kvm_ioctl_create_device(struct kvm *kvm,
2263 struct kvm_create_device *cd)
2264 {
2265 struct kvm_device_ops *ops = NULL;
2266 struct kvm_device *dev;
2267 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2268 int ret;
2269
2270 switch (cd->type) {
2271 #ifdef CONFIG_KVM_MPIC
2272 case KVM_DEV_TYPE_FSL_MPIC_20:
2273 case KVM_DEV_TYPE_FSL_MPIC_42:
2274 ops = &kvm_mpic_ops;
2275 break;
2276 #endif
2277 #ifdef CONFIG_KVM_XICS
2278 case KVM_DEV_TYPE_XICS:
2279 ops = &kvm_xics_ops;
2280 break;
2281 #endif
2282 #ifdef CONFIG_KVM_VFIO
2283 case KVM_DEV_TYPE_VFIO:
2284 ops = &kvm_vfio_ops;
2285 break;
2286 #endif
2287 #ifdef CONFIG_KVM_ARM_VGIC
2288 case KVM_DEV_TYPE_ARM_VGIC_V2:
2289 ops = &kvm_arm_vgic_v2_ops;
2290 break;
2291 #endif
2292 #ifdef CONFIG_S390
2293 case KVM_DEV_TYPE_FLIC:
2294 ops = &kvm_flic_ops;
2295 break;
2296 #endif
2297 default:
2298 return -ENODEV;
2299 }
2300
2301 if (test)
2302 return 0;
2303
2304 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2305 if (!dev)
2306 return -ENOMEM;
2307
2308 dev->ops = ops;
2309 dev->kvm = kvm;
2310
2311 ret = ops->create(dev, cd->type);
2312 if (ret < 0) {
2313 kfree(dev);
2314 return ret;
2315 }
2316
2317 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2318 if (ret < 0) {
2319 ops->destroy(dev);
2320 return ret;
2321 }
2322
2323 list_add(&dev->vm_node, &kvm->devices);
2324 kvm_get_kvm(kvm);
2325 cd->fd = ret;
2326 return 0;
2327 }
2328
2329 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2330 {
2331 switch (arg) {
2332 case KVM_CAP_USER_MEMORY:
2333 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2334 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2335 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2336 case KVM_CAP_SET_BOOT_CPU_ID:
2337 #endif
2338 case KVM_CAP_INTERNAL_ERROR_DATA:
2339 #ifdef CONFIG_HAVE_KVM_MSI
2340 case KVM_CAP_SIGNAL_MSI:
2341 #endif
2342 #ifdef CONFIG_HAVE_KVM_IRQFD
2343 case KVM_CAP_IRQFD_RESAMPLE:
2344 #endif
2345 case KVM_CAP_CHECK_EXTENSION_VM:
2346 return 1;
2347 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2348 case KVM_CAP_IRQ_ROUTING:
2349 return KVM_MAX_IRQ_ROUTES;
2350 #endif
2351 default:
2352 break;
2353 }
2354 return kvm_vm_ioctl_check_extension(kvm, arg);
2355 }
2356
2357 static long kvm_vm_ioctl(struct file *filp,
2358 unsigned int ioctl, unsigned long arg)
2359 {
2360 struct kvm *kvm = filp->private_data;
2361 void __user *argp = (void __user *)arg;
2362 int r;
2363
2364 if (kvm->mm != current->mm)
2365 return -EIO;
2366 switch (ioctl) {
2367 case KVM_CREATE_VCPU:
2368 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2369 break;
2370 case KVM_SET_USER_MEMORY_REGION: {
2371 struct kvm_userspace_memory_region kvm_userspace_mem;
2372
2373 r = -EFAULT;
2374 if (copy_from_user(&kvm_userspace_mem, argp,
2375 sizeof kvm_userspace_mem))
2376 goto out;
2377
2378 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2379 break;
2380 }
2381 case KVM_GET_DIRTY_LOG: {
2382 struct kvm_dirty_log log;
2383
2384 r = -EFAULT;
2385 if (copy_from_user(&log, argp, sizeof log))
2386 goto out;
2387 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2388 break;
2389 }
2390 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2391 case KVM_REGISTER_COALESCED_MMIO: {
2392 struct kvm_coalesced_mmio_zone zone;
2393 r = -EFAULT;
2394 if (copy_from_user(&zone, argp, sizeof zone))
2395 goto out;
2396 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2397 break;
2398 }
2399 case KVM_UNREGISTER_COALESCED_MMIO: {
2400 struct kvm_coalesced_mmio_zone zone;
2401 r = -EFAULT;
2402 if (copy_from_user(&zone, argp, sizeof zone))
2403 goto out;
2404 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2405 break;
2406 }
2407 #endif
2408 case KVM_IRQFD: {
2409 struct kvm_irqfd data;
2410
2411 r = -EFAULT;
2412 if (copy_from_user(&data, argp, sizeof data))
2413 goto out;
2414 r = kvm_irqfd(kvm, &data);
2415 break;
2416 }
2417 case KVM_IOEVENTFD: {
2418 struct kvm_ioeventfd data;
2419
2420 r = -EFAULT;
2421 if (copy_from_user(&data, argp, sizeof data))
2422 goto out;
2423 r = kvm_ioeventfd(kvm, &data);
2424 break;
2425 }
2426 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2427 case KVM_SET_BOOT_CPU_ID:
2428 r = 0;
2429 mutex_lock(&kvm->lock);
2430 if (atomic_read(&kvm->online_vcpus) != 0)
2431 r = -EBUSY;
2432 else
2433 kvm->bsp_vcpu_id = arg;
2434 mutex_unlock(&kvm->lock);
2435 break;
2436 #endif
2437 #ifdef CONFIG_HAVE_KVM_MSI
2438 case KVM_SIGNAL_MSI: {
2439 struct kvm_msi msi;
2440
2441 r = -EFAULT;
2442 if (copy_from_user(&msi, argp, sizeof msi))
2443 goto out;
2444 r = kvm_send_userspace_msi(kvm, &msi);
2445 break;
2446 }
2447 #endif
2448 #ifdef __KVM_HAVE_IRQ_LINE
2449 case KVM_IRQ_LINE_STATUS:
2450 case KVM_IRQ_LINE: {
2451 struct kvm_irq_level irq_event;
2452
2453 r = -EFAULT;
2454 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2455 goto out;
2456
2457 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2458 ioctl == KVM_IRQ_LINE_STATUS);
2459 if (r)
2460 goto out;
2461
2462 r = -EFAULT;
2463 if (ioctl == KVM_IRQ_LINE_STATUS) {
2464 if (copy_to_user(argp, &irq_event, sizeof irq_event))
2465 goto out;
2466 }
2467
2468 r = 0;
2469 break;
2470 }
2471 #endif
2472 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2473 case KVM_SET_GSI_ROUTING: {
2474 struct kvm_irq_routing routing;
2475 struct kvm_irq_routing __user *urouting;
2476 struct kvm_irq_routing_entry *entries;
2477
2478 r = -EFAULT;
2479 if (copy_from_user(&routing, argp, sizeof(routing)))
2480 goto out;
2481 r = -EINVAL;
2482 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2483 goto out;
2484 if (routing.flags)
2485 goto out;
2486 r = -ENOMEM;
2487 entries = vmalloc(routing.nr * sizeof(*entries));
2488 if (!entries)
2489 goto out;
2490 r = -EFAULT;
2491 urouting = argp;
2492 if (copy_from_user(entries, urouting->entries,
2493 routing.nr * sizeof(*entries)))
2494 goto out_free_irq_routing;
2495 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2496 routing.flags);
2497 out_free_irq_routing:
2498 vfree(entries);
2499 break;
2500 }
2501 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2502 case KVM_CREATE_DEVICE: {
2503 struct kvm_create_device cd;
2504
2505 r = -EFAULT;
2506 if (copy_from_user(&cd, argp, sizeof(cd)))
2507 goto out;
2508
2509 r = kvm_ioctl_create_device(kvm, &cd);
2510 if (r)
2511 goto out;
2512
2513 r = -EFAULT;
2514 if (copy_to_user(argp, &cd, sizeof(cd)))
2515 goto out;
2516
2517 r = 0;
2518 break;
2519 }
2520 case KVM_CHECK_EXTENSION:
2521 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2522 break;
2523 default:
2524 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2525 if (r == -ENOTTY)
2526 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2527 }
2528 out:
2529 return r;
2530 }
2531
2532 #ifdef CONFIG_COMPAT
2533 struct compat_kvm_dirty_log {
2534 __u32 slot;
2535 __u32 padding1;
2536 union {
2537 compat_uptr_t dirty_bitmap; /* one bit per page */
2538 __u64 padding2;
2539 };
2540 };
2541
2542 static long kvm_vm_compat_ioctl(struct file *filp,
2543 unsigned int ioctl, unsigned long arg)
2544 {
2545 struct kvm *kvm = filp->private_data;
2546 int r;
2547
2548 if (kvm->mm != current->mm)
2549 return -EIO;
2550 switch (ioctl) {
2551 case KVM_GET_DIRTY_LOG: {
2552 struct compat_kvm_dirty_log compat_log;
2553 struct kvm_dirty_log log;
2554
2555 r = -EFAULT;
2556 if (copy_from_user(&compat_log, (void __user *)arg,
2557 sizeof(compat_log)))
2558 goto out;
2559 log.slot = compat_log.slot;
2560 log.padding1 = compat_log.padding1;
2561 log.padding2 = compat_log.padding2;
2562 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2563
2564 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2565 break;
2566 }
2567 default:
2568 r = kvm_vm_ioctl(filp, ioctl, arg);
2569 }
2570
2571 out:
2572 return r;
2573 }
2574 #endif
2575
2576 static struct file_operations kvm_vm_fops = {
2577 .release = kvm_vm_release,
2578 .unlocked_ioctl = kvm_vm_ioctl,
2579 #ifdef CONFIG_COMPAT
2580 .compat_ioctl = kvm_vm_compat_ioctl,
2581 #endif
2582 .llseek = noop_llseek,
2583 };
2584
2585 static int kvm_dev_ioctl_create_vm(unsigned long type)
2586 {
2587 int r;
2588 struct kvm *kvm;
2589
2590 kvm = kvm_create_vm(type);
2591 if (IS_ERR(kvm))
2592 return PTR_ERR(kvm);
2593 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2594 r = kvm_coalesced_mmio_init(kvm);
2595 if (r < 0) {
2596 kvm_put_kvm(kvm);
2597 return r;
2598 }
2599 #endif
2600 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2601 if (r < 0)
2602 kvm_put_kvm(kvm);
2603
2604 return r;
2605 }
2606
2607 static long kvm_dev_ioctl(struct file *filp,
2608 unsigned int ioctl, unsigned long arg)
2609 {
2610 long r = -EINVAL;
2611
2612 switch (ioctl) {
2613 case KVM_GET_API_VERSION:
2614 r = -EINVAL;
2615 if (arg)
2616 goto out;
2617 r = KVM_API_VERSION;
2618 break;
2619 case KVM_CREATE_VM:
2620 r = kvm_dev_ioctl_create_vm(arg);
2621 break;
2622 case KVM_CHECK_EXTENSION:
2623 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2624 break;
2625 case KVM_GET_VCPU_MMAP_SIZE:
2626 r = -EINVAL;
2627 if (arg)
2628 goto out;
2629 r = PAGE_SIZE; /* struct kvm_run */
2630 #ifdef CONFIG_X86
2631 r += PAGE_SIZE; /* pio data page */
2632 #endif
2633 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2634 r += PAGE_SIZE; /* coalesced mmio ring page */
2635 #endif
2636 break;
2637 case KVM_TRACE_ENABLE:
2638 case KVM_TRACE_PAUSE:
2639 case KVM_TRACE_DISABLE:
2640 r = -EOPNOTSUPP;
2641 break;
2642 default:
2643 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2644 }
2645 out:
2646 return r;
2647 }
2648
2649 static struct file_operations kvm_chardev_ops = {
2650 .unlocked_ioctl = kvm_dev_ioctl,
2651 .compat_ioctl = kvm_dev_ioctl,
2652 .llseek = noop_llseek,
2653 };
2654
2655 static struct miscdevice kvm_dev = {
2656 KVM_MINOR,
2657 "kvm",
2658 &kvm_chardev_ops,
2659 };
2660
2661 static void hardware_enable_nolock(void *junk)
2662 {
2663 int cpu = raw_smp_processor_id();
2664 int r;
2665
2666 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2667 return;
2668
2669 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2670
2671 r = kvm_arch_hardware_enable(NULL);
2672
2673 if (r) {
2674 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2675 atomic_inc(&hardware_enable_failed);
2676 printk(KERN_INFO "kvm: enabling virtualization on "
2677 "CPU%d failed\n", cpu);
2678 }
2679 }
2680
2681 static void hardware_enable(void)
2682 {
2683 raw_spin_lock(&kvm_count_lock);
2684 if (kvm_usage_count)
2685 hardware_enable_nolock(NULL);
2686 raw_spin_unlock(&kvm_count_lock);
2687 }
2688
2689 static void hardware_disable_nolock(void *junk)
2690 {
2691 int cpu = raw_smp_processor_id();
2692
2693 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2694 return;
2695 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2696 kvm_arch_hardware_disable(NULL);
2697 }
2698
2699 static void hardware_disable(void)
2700 {
2701 raw_spin_lock(&kvm_count_lock);
2702 if (kvm_usage_count)
2703 hardware_disable_nolock(NULL);
2704 raw_spin_unlock(&kvm_count_lock);
2705 }
2706
2707 static void hardware_disable_all_nolock(void)
2708 {
2709 BUG_ON(!kvm_usage_count);
2710
2711 kvm_usage_count--;
2712 if (!kvm_usage_count)
2713 on_each_cpu(hardware_disable_nolock, NULL, 1);
2714 }
2715
2716 static void hardware_disable_all(void)
2717 {
2718 raw_spin_lock(&kvm_count_lock);
2719 hardware_disable_all_nolock();
2720 raw_spin_unlock(&kvm_count_lock);
2721 }
2722
2723 static int hardware_enable_all(void)
2724 {
2725 int r = 0;
2726
2727 raw_spin_lock(&kvm_count_lock);
2728
2729 kvm_usage_count++;
2730 if (kvm_usage_count == 1) {
2731 atomic_set(&hardware_enable_failed, 0);
2732 on_each_cpu(hardware_enable_nolock, NULL, 1);
2733
2734 if (atomic_read(&hardware_enable_failed)) {
2735 hardware_disable_all_nolock();
2736 r = -EBUSY;
2737 }
2738 }
2739
2740 raw_spin_unlock(&kvm_count_lock);
2741
2742 return r;
2743 }
2744
2745 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2746 void *v)
2747 {
2748 int cpu = (long)v;
2749
2750 val &= ~CPU_TASKS_FROZEN;
2751 switch (val) {
2752 case CPU_DYING:
2753 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2754 cpu);
2755 hardware_disable();
2756 break;
2757 case CPU_STARTING:
2758 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2759 cpu);
2760 hardware_enable();
2761 break;
2762 }
2763 return NOTIFY_OK;
2764 }
2765
2766 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2767 void *v)
2768 {
2769 /*
2770 * Some (well, at least mine) BIOSes hang on reboot if
2771 * in vmx root mode.
2772 *
2773 * And Intel TXT required VMX off for all cpu when system shutdown.
2774 */
2775 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2776 kvm_rebooting = true;
2777 on_each_cpu(hardware_disable_nolock, NULL, 1);
2778 return NOTIFY_OK;
2779 }
2780
2781 static struct notifier_block kvm_reboot_notifier = {
2782 .notifier_call = kvm_reboot,
2783 .priority = 0,
2784 };
2785
2786 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2787 {
2788 int i;
2789
2790 for (i = 0; i < bus->dev_count; i++) {
2791 struct kvm_io_device *pos = bus->range[i].dev;
2792
2793 kvm_iodevice_destructor(pos);
2794 }
2795 kfree(bus);
2796 }
2797
2798 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2799 const struct kvm_io_range *r2)
2800 {
2801 if (r1->addr < r2->addr)
2802 return -1;
2803 if (r1->addr + r1->len > r2->addr + r2->len)
2804 return 1;
2805 return 0;
2806 }
2807
2808 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2809 {
2810 return kvm_io_bus_cmp(p1, p2);
2811 }
2812
2813 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2814 gpa_t addr, int len)
2815 {
2816 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2817 .addr = addr,
2818 .len = len,
2819 .dev = dev,
2820 };
2821
2822 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2823 kvm_io_bus_sort_cmp, NULL);
2824
2825 return 0;
2826 }
2827
2828 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2829 gpa_t addr, int len)
2830 {
2831 struct kvm_io_range *range, key;
2832 int off;
2833
2834 key = (struct kvm_io_range) {
2835 .addr = addr,
2836 .len = len,
2837 };
2838
2839 range = bsearch(&key, bus->range, bus->dev_count,
2840 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2841 if (range == NULL)
2842 return -ENOENT;
2843
2844 off = range - bus->range;
2845
2846 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2847 off--;
2848
2849 return off;
2850 }
2851
2852 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2853 struct kvm_io_range *range, const void *val)
2854 {
2855 int idx;
2856
2857 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2858 if (idx < 0)
2859 return -EOPNOTSUPP;
2860
2861 while (idx < bus->dev_count &&
2862 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2863 if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2864 range->len, val))
2865 return idx;
2866 idx++;
2867 }
2868
2869 return -EOPNOTSUPP;
2870 }
2871
2872 /* kvm_io_bus_write - called under kvm->slots_lock */
2873 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2874 int len, const void *val)
2875 {
2876 struct kvm_io_bus *bus;
2877 struct kvm_io_range range;
2878 int r;
2879
2880 range = (struct kvm_io_range) {
2881 .addr = addr,
2882 .len = len,
2883 };
2884
2885 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2886 r = __kvm_io_bus_write(bus, &range, val);
2887 return r < 0 ? r : 0;
2888 }
2889
2890 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2891 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2892 int len, const void *val, long cookie)
2893 {
2894 struct kvm_io_bus *bus;
2895 struct kvm_io_range range;
2896
2897 range = (struct kvm_io_range) {
2898 .addr = addr,
2899 .len = len,
2900 };
2901
2902 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2903
2904 /* First try the device referenced by cookie. */
2905 if ((cookie >= 0) && (cookie < bus->dev_count) &&
2906 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2907 if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2908 val))
2909 return cookie;
2910
2911 /*
2912 * cookie contained garbage; fall back to search and return the
2913 * correct cookie value.
2914 */
2915 return __kvm_io_bus_write(bus, &range, val);
2916 }
2917
2918 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2919 void *val)
2920 {
2921 int idx;
2922
2923 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2924 if (idx < 0)
2925 return -EOPNOTSUPP;
2926
2927 while (idx < bus->dev_count &&
2928 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2929 if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
2930 range->len, val))
2931 return idx;
2932 idx++;
2933 }
2934
2935 return -EOPNOTSUPP;
2936 }
2937 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
2938
2939 /* kvm_io_bus_read - called under kvm->slots_lock */
2940 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2941 int len, void *val)
2942 {
2943 struct kvm_io_bus *bus;
2944 struct kvm_io_range range;
2945 int r;
2946
2947 range = (struct kvm_io_range) {
2948 .addr = addr,
2949 .len = len,
2950 };
2951
2952 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2953 r = __kvm_io_bus_read(bus, &range, val);
2954 return r < 0 ? r : 0;
2955 }
2956
2957
2958 /* Caller must hold slots_lock. */
2959 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2960 int len, struct kvm_io_device *dev)
2961 {
2962 struct kvm_io_bus *new_bus, *bus;
2963
2964 bus = kvm->buses[bus_idx];
2965 /* exclude ioeventfd which is limited by maximum fd */
2966 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
2967 return -ENOSPC;
2968
2969 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2970 sizeof(struct kvm_io_range)), GFP_KERNEL);
2971 if (!new_bus)
2972 return -ENOMEM;
2973 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2974 sizeof(struct kvm_io_range)));
2975 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2976 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2977 synchronize_srcu_expedited(&kvm->srcu);
2978 kfree(bus);
2979
2980 return 0;
2981 }
2982
2983 /* Caller must hold slots_lock. */
2984 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2985 struct kvm_io_device *dev)
2986 {
2987 int i, r;
2988 struct kvm_io_bus *new_bus, *bus;
2989
2990 bus = kvm->buses[bus_idx];
2991 r = -ENOENT;
2992 for (i = 0; i < bus->dev_count; i++)
2993 if (bus->range[i].dev == dev) {
2994 r = 0;
2995 break;
2996 }
2997
2998 if (r)
2999 return r;
3000
3001 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3002 sizeof(struct kvm_io_range)), GFP_KERNEL);
3003 if (!new_bus)
3004 return -ENOMEM;
3005
3006 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3007 new_bus->dev_count--;
3008 memcpy(new_bus->range + i, bus->range + i + 1,
3009 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3010
3011 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3012 synchronize_srcu_expedited(&kvm->srcu);
3013 kfree(bus);
3014 return r;
3015 }
3016
3017 static struct notifier_block kvm_cpu_notifier = {
3018 .notifier_call = kvm_cpu_hotplug,
3019 };
3020
3021 static int vm_stat_get(void *_offset, u64 *val)
3022 {
3023 unsigned offset = (long)_offset;
3024 struct kvm *kvm;
3025
3026 *val = 0;
3027 spin_lock(&kvm_lock);
3028 list_for_each_entry(kvm, &vm_list, vm_list)
3029 *val += *(u32 *)((void *)kvm + offset);
3030 spin_unlock(&kvm_lock);
3031 return 0;
3032 }
3033
3034 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3035
3036 static int vcpu_stat_get(void *_offset, u64 *val)
3037 {
3038 unsigned offset = (long)_offset;
3039 struct kvm *kvm;
3040 struct kvm_vcpu *vcpu;
3041 int i;
3042
3043 *val = 0;
3044 spin_lock(&kvm_lock);
3045 list_for_each_entry(kvm, &vm_list, vm_list)
3046 kvm_for_each_vcpu(i, vcpu, kvm)
3047 *val += *(u32 *)((void *)vcpu + offset);
3048
3049 spin_unlock(&kvm_lock);
3050 return 0;
3051 }
3052
3053 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3054
3055 static const struct file_operations *stat_fops[] = {
3056 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3057 [KVM_STAT_VM] = &vm_stat_fops,
3058 };
3059
3060 static int kvm_init_debug(void)
3061 {
3062 int r = -EEXIST;
3063 struct kvm_stats_debugfs_item *p;
3064
3065 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3066 if (kvm_debugfs_dir == NULL)
3067 goto out;
3068
3069 for (p = debugfs_entries; p->name; ++p) {
3070 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3071 (void *)(long)p->offset,
3072 stat_fops[p->kind]);
3073 if (p->dentry == NULL)
3074 goto out_dir;
3075 }
3076
3077 return 0;
3078
3079 out_dir:
3080 debugfs_remove_recursive(kvm_debugfs_dir);
3081 out:
3082 return r;
3083 }
3084
3085 static void kvm_exit_debug(void)
3086 {
3087 struct kvm_stats_debugfs_item *p;
3088
3089 for (p = debugfs_entries; p->name; ++p)
3090 debugfs_remove(p->dentry);
3091 debugfs_remove(kvm_debugfs_dir);
3092 }
3093
3094 static int kvm_suspend(void)
3095 {
3096 if (kvm_usage_count)
3097 hardware_disable_nolock(NULL);
3098 return 0;
3099 }
3100
3101 static void kvm_resume(void)
3102 {
3103 if (kvm_usage_count) {
3104 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3105 hardware_enable_nolock(NULL);
3106 }
3107 }
3108
3109 static struct syscore_ops kvm_syscore_ops = {
3110 .suspend = kvm_suspend,
3111 .resume = kvm_resume,
3112 };
3113
3114 static inline
3115 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3116 {
3117 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3118 }
3119
3120 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3121 {
3122 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3123 if (vcpu->preempted)
3124 vcpu->preempted = false;
3125
3126 kvm_arch_vcpu_load(vcpu, cpu);
3127 }
3128
3129 static void kvm_sched_out(struct preempt_notifier *pn,
3130 struct task_struct *next)
3131 {
3132 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3133
3134 if (current->state == TASK_RUNNING)
3135 vcpu->preempted = true;
3136 kvm_arch_vcpu_put(vcpu);
3137 }
3138
3139 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3140 struct module *module)
3141 {
3142 int r;
3143 int cpu;
3144
3145 r = kvm_arch_init(opaque);
3146 if (r)
3147 goto out_fail;
3148
3149 /*
3150 * kvm_arch_init makes sure there's at most one caller
3151 * for architectures that support multiple implementations,
3152 * like intel and amd on x86.
3153 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3154 * conflicts in case kvm is already setup for another implementation.
3155 */
3156 r = kvm_irqfd_init();
3157 if (r)
3158 goto out_irqfd;
3159
3160 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3161 r = -ENOMEM;
3162 goto out_free_0;
3163 }
3164
3165 r = kvm_arch_hardware_setup();
3166 if (r < 0)
3167 goto out_free_0a;
3168
3169 for_each_online_cpu(cpu) {
3170 smp_call_function_single(cpu,
3171 kvm_arch_check_processor_compat,
3172 &r, 1);
3173 if (r < 0)
3174 goto out_free_1;
3175 }
3176
3177 r = register_cpu_notifier(&kvm_cpu_notifier);
3178 if (r)
3179 goto out_free_2;
3180 register_reboot_notifier(&kvm_reboot_notifier);
3181
3182 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3183 if (!vcpu_align)
3184 vcpu_align = __alignof__(struct kvm_vcpu);
3185 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3186 0, NULL);
3187 if (!kvm_vcpu_cache) {
3188 r = -ENOMEM;
3189 goto out_free_3;
3190 }
3191
3192 r = kvm_async_pf_init();
3193 if (r)
3194 goto out_free;
3195
3196 kvm_chardev_ops.owner = module;
3197 kvm_vm_fops.owner = module;
3198 kvm_vcpu_fops.owner = module;
3199
3200 r = misc_register(&kvm_dev);
3201 if (r) {
3202 printk(KERN_ERR "kvm: misc device register failed\n");
3203 goto out_unreg;
3204 }
3205
3206 register_syscore_ops(&kvm_syscore_ops);
3207
3208 kvm_preempt_ops.sched_in = kvm_sched_in;
3209 kvm_preempt_ops.sched_out = kvm_sched_out;
3210
3211 r = kvm_init_debug();
3212 if (r) {
3213 printk(KERN_ERR "kvm: create debugfs files failed\n");
3214 goto out_undebugfs;
3215 }
3216
3217 return 0;
3218
3219 out_undebugfs:
3220 unregister_syscore_ops(&kvm_syscore_ops);
3221 misc_deregister(&kvm_dev);
3222 out_unreg:
3223 kvm_async_pf_deinit();
3224 out_free:
3225 kmem_cache_destroy(kvm_vcpu_cache);
3226 out_free_3:
3227 unregister_reboot_notifier(&kvm_reboot_notifier);
3228 unregister_cpu_notifier(&kvm_cpu_notifier);
3229 out_free_2:
3230 out_free_1:
3231 kvm_arch_hardware_unsetup();
3232 out_free_0a:
3233 free_cpumask_var(cpus_hardware_enabled);
3234 out_free_0:
3235 kvm_irqfd_exit();
3236 out_irqfd:
3237 kvm_arch_exit();
3238 out_fail:
3239 return r;
3240 }
3241 EXPORT_SYMBOL_GPL(kvm_init);
3242
3243 void kvm_exit(void)
3244 {
3245 kvm_exit_debug();
3246 misc_deregister(&kvm_dev);
3247 kmem_cache_destroy(kvm_vcpu_cache);
3248 kvm_async_pf_deinit();
3249 unregister_syscore_ops(&kvm_syscore_ops);
3250 unregister_reboot_notifier(&kvm_reboot_notifier);
3251 unregister_cpu_notifier(&kvm_cpu_notifier);
3252 on_each_cpu(hardware_disable_nolock, NULL, 1);
3253 kvm_arch_hardware_unsetup();
3254 kvm_arch_exit();
3255 kvm_irqfd_exit();
3256 free_cpumask_var(cpus_hardware_enabled);
3257 }
3258 EXPORT_SYMBOL_GPL(kvm_exit);