]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - virt/kvm/kvm_main.c
KVM: s390: Do not report unusabled IDs via KVM_CAP_MAX_VCPU_ID
[mirror_ubuntu-bionic-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90 * Ordering of locks:
91 *
92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93 */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124
125 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
126
127 __visible bool kvm_rebooting;
128 EXPORT_SYMBOL_GPL(kvm_rebooting);
129
130 static bool largepages_enabled = true;
131
132 #define KVM_EVENT_CREATE_VM 0
133 #define KVM_EVENT_DESTROY_VM 1
134 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
135 static unsigned long long kvm_createvm_count;
136 static unsigned long long kvm_active_vms;
137
138 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
139 unsigned long start, unsigned long end)
140 {
141 }
142
143 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
144 {
145 if (pfn_valid(pfn))
146 return PageReserved(pfn_to_page(pfn));
147
148 return true;
149 }
150
151 /*
152 * Switches to specified vcpu, until a matching vcpu_put()
153 */
154 int vcpu_load(struct kvm_vcpu *vcpu)
155 {
156 int cpu;
157
158 if (mutex_lock_killable(&vcpu->mutex))
159 return -EINTR;
160 cpu = get_cpu();
161 preempt_notifier_register(&vcpu->preempt_notifier);
162 kvm_arch_vcpu_load(vcpu, cpu);
163 put_cpu();
164 return 0;
165 }
166 EXPORT_SYMBOL_GPL(vcpu_load);
167
168 void vcpu_put(struct kvm_vcpu *vcpu)
169 {
170 preempt_disable();
171 kvm_arch_vcpu_put(vcpu);
172 preempt_notifier_unregister(&vcpu->preempt_notifier);
173 preempt_enable();
174 mutex_unlock(&vcpu->mutex);
175 }
176 EXPORT_SYMBOL_GPL(vcpu_put);
177
178 /* TODO: merge with kvm_arch_vcpu_should_kick */
179 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
180 {
181 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
182
183 /*
184 * We need to wait for the VCPU to reenable interrupts and get out of
185 * READING_SHADOW_PAGE_TABLES mode.
186 */
187 if (req & KVM_REQUEST_WAIT)
188 return mode != OUTSIDE_GUEST_MODE;
189
190 /*
191 * Need to kick a running VCPU, but otherwise there is nothing to do.
192 */
193 return mode == IN_GUEST_MODE;
194 }
195
196 static void ack_flush(void *_completed)
197 {
198 }
199
200 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
201 {
202 if (unlikely(!cpus))
203 cpus = cpu_online_mask;
204
205 if (cpumask_empty(cpus))
206 return false;
207
208 smp_call_function_many(cpus, ack_flush, NULL, wait);
209 return true;
210 }
211
212 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
213 {
214 int i, cpu, me;
215 cpumask_var_t cpus;
216 bool called;
217 struct kvm_vcpu *vcpu;
218
219 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
220
221 me = get_cpu();
222 kvm_for_each_vcpu(i, vcpu, kvm) {
223 kvm_make_request(req, vcpu);
224 cpu = vcpu->cpu;
225
226 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
227 continue;
228
229 if (cpus != NULL && cpu != -1 && cpu != me &&
230 kvm_request_needs_ipi(vcpu, req))
231 __cpumask_set_cpu(cpu, cpus);
232 }
233 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
234 put_cpu();
235 free_cpumask_var(cpus);
236 return called;
237 }
238
239 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
240 void kvm_flush_remote_tlbs(struct kvm *kvm)
241 {
242 /*
243 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
244 * kvm_make_all_cpus_request.
245 */
246 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
247
248 /*
249 * We want to publish modifications to the page tables before reading
250 * mode. Pairs with a memory barrier in arch-specific code.
251 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
252 * and smp_mb in walk_shadow_page_lockless_begin/end.
253 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
254 *
255 * There is already an smp_mb__after_atomic() before
256 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
257 * barrier here.
258 */
259 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
260 ++kvm->stat.remote_tlb_flush;
261 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
262 }
263 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
264 #endif
265
266 void kvm_reload_remote_mmus(struct kvm *kvm)
267 {
268 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
269 }
270
271 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
272 {
273 struct page *page;
274 int r;
275
276 mutex_init(&vcpu->mutex);
277 vcpu->cpu = -1;
278 vcpu->kvm = kvm;
279 vcpu->vcpu_id = id;
280 vcpu->pid = NULL;
281 init_swait_queue_head(&vcpu->wq);
282 kvm_async_pf_vcpu_init(vcpu);
283
284 vcpu->pre_pcpu = -1;
285 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
286
287 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
288 if (!page) {
289 r = -ENOMEM;
290 goto fail;
291 }
292 vcpu->run = page_address(page);
293
294 kvm_vcpu_set_in_spin_loop(vcpu, false);
295 kvm_vcpu_set_dy_eligible(vcpu, false);
296 vcpu->preempted = false;
297
298 r = kvm_arch_vcpu_init(vcpu);
299 if (r < 0)
300 goto fail_free_run;
301 return 0;
302
303 fail_free_run:
304 free_page((unsigned long)vcpu->run);
305 fail:
306 return r;
307 }
308 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
309
310 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
311 {
312 /*
313 * no need for rcu_read_lock as VCPU_RUN is the only place that
314 * will change the vcpu->pid pointer and on uninit all file
315 * descriptors are already gone.
316 */
317 put_pid(rcu_dereference_protected(vcpu->pid, 1));
318 kvm_arch_vcpu_uninit(vcpu);
319 free_page((unsigned long)vcpu->run);
320 }
321 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
322
323 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
324 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
325 {
326 return container_of(mn, struct kvm, mmu_notifier);
327 }
328
329 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
330 struct mm_struct *mm,
331 unsigned long address,
332 pte_t pte)
333 {
334 struct kvm *kvm = mmu_notifier_to_kvm(mn);
335 int idx;
336
337 idx = srcu_read_lock(&kvm->srcu);
338 spin_lock(&kvm->mmu_lock);
339 kvm->mmu_notifier_seq++;
340 kvm_set_spte_hva(kvm, address, pte);
341 spin_unlock(&kvm->mmu_lock);
342 srcu_read_unlock(&kvm->srcu, idx);
343 }
344
345 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
346 struct mm_struct *mm,
347 unsigned long start,
348 unsigned long end)
349 {
350 struct kvm *kvm = mmu_notifier_to_kvm(mn);
351 int need_tlb_flush = 0, idx;
352
353 idx = srcu_read_lock(&kvm->srcu);
354 spin_lock(&kvm->mmu_lock);
355 /*
356 * The count increase must become visible at unlock time as no
357 * spte can be established without taking the mmu_lock and
358 * count is also read inside the mmu_lock critical section.
359 */
360 kvm->mmu_notifier_count++;
361 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
362 need_tlb_flush |= kvm->tlbs_dirty;
363 /* we've to flush the tlb before the pages can be freed */
364 if (need_tlb_flush)
365 kvm_flush_remote_tlbs(kvm);
366
367 spin_unlock(&kvm->mmu_lock);
368
369 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
370
371 srcu_read_unlock(&kvm->srcu, idx);
372 }
373
374 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
375 struct mm_struct *mm,
376 unsigned long start,
377 unsigned long end)
378 {
379 struct kvm *kvm = mmu_notifier_to_kvm(mn);
380
381 spin_lock(&kvm->mmu_lock);
382 /*
383 * This sequence increase will notify the kvm page fault that
384 * the page that is going to be mapped in the spte could have
385 * been freed.
386 */
387 kvm->mmu_notifier_seq++;
388 smp_wmb();
389 /*
390 * The above sequence increase must be visible before the
391 * below count decrease, which is ensured by the smp_wmb above
392 * in conjunction with the smp_rmb in mmu_notifier_retry().
393 */
394 kvm->mmu_notifier_count--;
395 spin_unlock(&kvm->mmu_lock);
396
397 BUG_ON(kvm->mmu_notifier_count < 0);
398 }
399
400 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
401 struct mm_struct *mm,
402 unsigned long start,
403 unsigned long end)
404 {
405 struct kvm *kvm = mmu_notifier_to_kvm(mn);
406 int young, idx;
407
408 idx = srcu_read_lock(&kvm->srcu);
409 spin_lock(&kvm->mmu_lock);
410
411 young = kvm_age_hva(kvm, start, end);
412 if (young)
413 kvm_flush_remote_tlbs(kvm);
414
415 spin_unlock(&kvm->mmu_lock);
416 srcu_read_unlock(&kvm->srcu, idx);
417
418 return young;
419 }
420
421 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
422 struct mm_struct *mm,
423 unsigned long start,
424 unsigned long end)
425 {
426 struct kvm *kvm = mmu_notifier_to_kvm(mn);
427 int young, idx;
428
429 idx = srcu_read_lock(&kvm->srcu);
430 spin_lock(&kvm->mmu_lock);
431 /*
432 * Even though we do not flush TLB, this will still adversely
433 * affect performance on pre-Haswell Intel EPT, where there is
434 * no EPT Access Bit to clear so that we have to tear down EPT
435 * tables instead. If we find this unacceptable, we can always
436 * add a parameter to kvm_age_hva so that it effectively doesn't
437 * do anything on clear_young.
438 *
439 * Also note that currently we never issue secondary TLB flushes
440 * from clear_young, leaving this job up to the regular system
441 * cadence. If we find this inaccurate, we might come up with a
442 * more sophisticated heuristic later.
443 */
444 young = kvm_age_hva(kvm, start, end);
445 spin_unlock(&kvm->mmu_lock);
446 srcu_read_unlock(&kvm->srcu, idx);
447
448 return young;
449 }
450
451 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
452 struct mm_struct *mm,
453 unsigned long address)
454 {
455 struct kvm *kvm = mmu_notifier_to_kvm(mn);
456 int young, idx;
457
458 idx = srcu_read_lock(&kvm->srcu);
459 spin_lock(&kvm->mmu_lock);
460 young = kvm_test_age_hva(kvm, address);
461 spin_unlock(&kvm->mmu_lock);
462 srcu_read_unlock(&kvm->srcu, idx);
463
464 return young;
465 }
466
467 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
468 struct mm_struct *mm)
469 {
470 struct kvm *kvm = mmu_notifier_to_kvm(mn);
471 int idx;
472
473 idx = srcu_read_lock(&kvm->srcu);
474 kvm_arch_flush_shadow_all(kvm);
475 srcu_read_unlock(&kvm->srcu, idx);
476 }
477
478 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
479 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
480 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
481 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
482 .clear_young = kvm_mmu_notifier_clear_young,
483 .test_young = kvm_mmu_notifier_test_young,
484 .change_pte = kvm_mmu_notifier_change_pte,
485 .release = kvm_mmu_notifier_release,
486 };
487
488 static int kvm_init_mmu_notifier(struct kvm *kvm)
489 {
490 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
491 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
492 }
493
494 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
495
496 static int kvm_init_mmu_notifier(struct kvm *kvm)
497 {
498 return 0;
499 }
500
501 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
502
503 static struct kvm_memslots *kvm_alloc_memslots(void)
504 {
505 int i;
506 struct kvm_memslots *slots;
507
508 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
509 if (!slots)
510 return NULL;
511
512 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
513 slots->id_to_index[i] = slots->memslots[i].id = i;
514
515 return slots;
516 }
517
518 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
519 {
520 if (!memslot->dirty_bitmap)
521 return;
522
523 kvfree(memslot->dirty_bitmap);
524 memslot->dirty_bitmap = NULL;
525 }
526
527 /*
528 * Free any memory in @free but not in @dont.
529 */
530 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
531 struct kvm_memory_slot *dont)
532 {
533 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
534 kvm_destroy_dirty_bitmap(free);
535
536 kvm_arch_free_memslot(kvm, free, dont);
537
538 free->npages = 0;
539 }
540
541 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
542 {
543 struct kvm_memory_slot *memslot;
544
545 if (!slots)
546 return;
547
548 kvm_for_each_memslot(memslot, slots)
549 kvm_free_memslot(kvm, memslot, NULL);
550
551 kvfree(slots);
552 }
553
554 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
555 {
556 int i;
557
558 if (!kvm->debugfs_dentry)
559 return;
560
561 debugfs_remove_recursive(kvm->debugfs_dentry);
562
563 if (kvm->debugfs_stat_data) {
564 for (i = 0; i < kvm_debugfs_num_entries; i++)
565 kfree(kvm->debugfs_stat_data[i]);
566 kfree(kvm->debugfs_stat_data);
567 }
568 }
569
570 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
571 {
572 char dir_name[ITOA_MAX_LEN * 2];
573 struct kvm_stat_data *stat_data;
574 struct kvm_stats_debugfs_item *p;
575
576 if (!debugfs_initialized())
577 return 0;
578
579 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
580 kvm->debugfs_dentry = debugfs_create_dir(dir_name,
581 kvm_debugfs_dir);
582 if (!kvm->debugfs_dentry)
583 return -ENOMEM;
584
585 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
586 sizeof(*kvm->debugfs_stat_data),
587 GFP_KERNEL);
588 if (!kvm->debugfs_stat_data)
589 return -ENOMEM;
590
591 for (p = debugfs_entries; p->name; p++) {
592 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
593 if (!stat_data)
594 return -ENOMEM;
595
596 stat_data->kvm = kvm;
597 stat_data->offset = p->offset;
598 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
599 if (!debugfs_create_file(p->name, 0644,
600 kvm->debugfs_dentry,
601 stat_data,
602 stat_fops_per_vm[p->kind]))
603 return -ENOMEM;
604 }
605 return 0;
606 }
607
608 static struct kvm *kvm_create_vm(unsigned long type)
609 {
610 int r, i;
611 struct kvm *kvm = kvm_arch_alloc_vm();
612
613 if (!kvm)
614 return ERR_PTR(-ENOMEM);
615
616 spin_lock_init(&kvm->mmu_lock);
617 mmgrab(current->mm);
618 kvm->mm = current->mm;
619 kvm_eventfd_init(kvm);
620 mutex_init(&kvm->lock);
621 mutex_init(&kvm->irq_lock);
622 mutex_init(&kvm->slots_lock);
623 refcount_set(&kvm->users_count, 1);
624 INIT_LIST_HEAD(&kvm->devices);
625
626 r = kvm_arch_init_vm(kvm, type);
627 if (r)
628 goto out_err_no_disable;
629
630 r = hardware_enable_all();
631 if (r)
632 goto out_err_no_disable;
633
634 #ifdef CONFIG_HAVE_KVM_IRQFD
635 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
636 #endif
637
638 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
639
640 r = -ENOMEM;
641 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
642 struct kvm_memslots *slots = kvm_alloc_memslots();
643 if (!slots)
644 goto out_err_no_srcu;
645 /*
646 * Generations must be different for each address space.
647 * Init kvm generation close to the maximum to easily test the
648 * code of handling generation number wrap-around.
649 */
650 slots->generation = i * 2 - 150;
651 rcu_assign_pointer(kvm->memslots[i], slots);
652 }
653
654 if (init_srcu_struct(&kvm->srcu))
655 goto out_err_no_srcu;
656 if (init_srcu_struct(&kvm->irq_srcu))
657 goto out_err_no_irq_srcu;
658 for (i = 0; i < KVM_NR_BUSES; i++) {
659 rcu_assign_pointer(kvm->buses[i],
660 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
661 if (!kvm->buses[i])
662 goto out_err;
663 }
664
665 r = kvm_init_mmu_notifier(kvm);
666 if (r)
667 goto out_err;
668
669 spin_lock(&kvm_lock);
670 list_add(&kvm->vm_list, &vm_list);
671 spin_unlock(&kvm_lock);
672
673 preempt_notifier_inc();
674
675 return kvm;
676
677 out_err:
678 cleanup_srcu_struct(&kvm->irq_srcu);
679 out_err_no_irq_srcu:
680 cleanup_srcu_struct(&kvm->srcu);
681 out_err_no_srcu:
682 hardware_disable_all();
683 out_err_no_disable:
684 refcount_set(&kvm->users_count, 0);
685 for (i = 0; i < KVM_NR_BUSES; i++)
686 kfree(kvm_get_bus(kvm, i));
687 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
688 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
689 kvm_arch_free_vm(kvm);
690 mmdrop(current->mm);
691 return ERR_PTR(r);
692 }
693
694 static void kvm_destroy_devices(struct kvm *kvm)
695 {
696 struct kvm_device *dev, *tmp;
697
698 /*
699 * We do not need to take the kvm->lock here, because nobody else
700 * has a reference to the struct kvm at this point and therefore
701 * cannot access the devices list anyhow.
702 */
703 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
704 list_del(&dev->vm_node);
705 dev->ops->destroy(dev);
706 }
707 }
708
709 static void kvm_destroy_vm(struct kvm *kvm)
710 {
711 int i;
712 struct mm_struct *mm = kvm->mm;
713
714 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
715 kvm_destroy_vm_debugfs(kvm);
716 kvm_arch_sync_events(kvm);
717 spin_lock(&kvm_lock);
718 list_del(&kvm->vm_list);
719 spin_unlock(&kvm_lock);
720 kvm_free_irq_routing(kvm);
721 for (i = 0; i < KVM_NR_BUSES; i++) {
722 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
723
724 if (bus)
725 kvm_io_bus_destroy(bus);
726 kvm->buses[i] = NULL;
727 }
728 kvm_coalesced_mmio_free(kvm);
729 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
730 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
731 #else
732 kvm_arch_flush_shadow_all(kvm);
733 #endif
734 kvm_arch_destroy_vm(kvm);
735 kvm_destroy_devices(kvm);
736 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
737 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
738 cleanup_srcu_struct(&kvm->irq_srcu);
739 cleanup_srcu_struct(&kvm->srcu);
740 kvm_arch_free_vm(kvm);
741 preempt_notifier_dec();
742 hardware_disable_all();
743 mmdrop(mm);
744 }
745
746 void kvm_get_kvm(struct kvm *kvm)
747 {
748 refcount_inc(&kvm->users_count);
749 }
750 EXPORT_SYMBOL_GPL(kvm_get_kvm);
751
752 void kvm_put_kvm(struct kvm *kvm)
753 {
754 if (refcount_dec_and_test(&kvm->users_count))
755 kvm_destroy_vm(kvm);
756 }
757 EXPORT_SYMBOL_GPL(kvm_put_kvm);
758
759
760 static int kvm_vm_release(struct inode *inode, struct file *filp)
761 {
762 struct kvm *kvm = filp->private_data;
763
764 kvm_irqfd_release(kvm);
765
766 kvm_put_kvm(kvm);
767 return 0;
768 }
769
770 /*
771 * Allocation size is twice as large as the actual dirty bitmap size.
772 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
773 */
774 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
775 {
776 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
777
778 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
779 if (!memslot->dirty_bitmap)
780 return -ENOMEM;
781
782 return 0;
783 }
784
785 /*
786 * Insert memslot and re-sort memslots based on their GFN,
787 * so binary search could be used to lookup GFN.
788 * Sorting algorithm takes advantage of having initially
789 * sorted array and known changed memslot position.
790 */
791 static void update_memslots(struct kvm_memslots *slots,
792 struct kvm_memory_slot *new)
793 {
794 int id = new->id;
795 int i = slots->id_to_index[id];
796 struct kvm_memory_slot *mslots = slots->memslots;
797
798 WARN_ON(mslots[i].id != id);
799 if (!new->npages) {
800 WARN_ON(!mslots[i].npages);
801 if (mslots[i].npages)
802 slots->used_slots--;
803 } else {
804 if (!mslots[i].npages)
805 slots->used_slots++;
806 }
807
808 while (i < KVM_MEM_SLOTS_NUM - 1 &&
809 new->base_gfn <= mslots[i + 1].base_gfn) {
810 if (!mslots[i + 1].npages)
811 break;
812 mslots[i] = mslots[i + 1];
813 slots->id_to_index[mslots[i].id] = i;
814 i++;
815 }
816
817 /*
818 * The ">=" is needed when creating a slot with base_gfn == 0,
819 * so that it moves before all those with base_gfn == npages == 0.
820 *
821 * On the other hand, if new->npages is zero, the above loop has
822 * already left i pointing to the beginning of the empty part of
823 * mslots, and the ">=" would move the hole backwards in this
824 * case---which is wrong. So skip the loop when deleting a slot.
825 */
826 if (new->npages) {
827 while (i > 0 &&
828 new->base_gfn >= mslots[i - 1].base_gfn) {
829 mslots[i] = mslots[i - 1];
830 slots->id_to_index[mslots[i].id] = i;
831 i--;
832 }
833 } else
834 WARN_ON_ONCE(i != slots->used_slots);
835
836 mslots[i] = *new;
837 slots->id_to_index[mslots[i].id] = i;
838 }
839
840 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
841 {
842 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
843
844 #ifdef __KVM_HAVE_READONLY_MEM
845 valid_flags |= KVM_MEM_READONLY;
846 #endif
847
848 if (mem->flags & ~valid_flags)
849 return -EINVAL;
850
851 return 0;
852 }
853
854 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
855 int as_id, struct kvm_memslots *slots)
856 {
857 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
858 u64 gen;
859
860 /*
861 * Set the low bit in the generation, which disables SPTE caching
862 * until the end of synchronize_srcu_expedited.
863 */
864 WARN_ON(old_memslots->generation & 1);
865 slots->generation = old_memslots->generation + 1;
866
867 rcu_assign_pointer(kvm->memslots[as_id], slots);
868 synchronize_srcu_expedited(&kvm->srcu);
869
870 /*
871 * Increment the new memslot generation a second time. This prevents
872 * vm exits that race with memslot updates from caching a memslot
873 * generation that will (potentially) be valid forever.
874 *
875 * Generations must be unique even across address spaces. We do not need
876 * a global counter for that, instead the generation space is evenly split
877 * across address spaces. For example, with two address spaces, address
878 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
879 * use generations 2, 6, 10, 14, ...
880 */
881 gen = slots->generation + KVM_ADDRESS_SPACE_NUM * 2 - 1;
882
883 kvm_arch_memslots_updated(kvm, gen);
884
885 slots->generation = gen;
886
887 return old_memslots;
888 }
889
890 /*
891 * Allocate some memory and give it an address in the guest physical address
892 * space.
893 *
894 * Discontiguous memory is allowed, mostly for framebuffers.
895 *
896 * Must be called holding kvm->slots_lock for write.
897 */
898 int __kvm_set_memory_region(struct kvm *kvm,
899 const struct kvm_userspace_memory_region *mem)
900 {
901 int r;
902 gfn_t base_gfn;
903 unsigned long npages;
904 struct kvm_memory_slot *slot;
905 struct kvm_memory_slot old, new;
906 struct kvm_memslots *slots = NULL, *old_memslots;
907 int as_id, id;
908 enum kvm_mr_change change;
909
910 r = check_memory_region_flags(mem);
911 if (r)
912 goto out;
913
914 r = -EINVAL;
915 as_id = mem->slot >> 16;
916 id = (u16)mem->slot;
917
918 /* General sanity checks */
919 if (mem->memory_size & (PAGE_SIZE - 1))
920 goto out;
921 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
922 goto out;
923 /* We can read the guest memory with __xxx_user() later on. */
924 if ((id < KVM_USER_MEM_SLOTS) &&
925 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
926 !access_ok(VERIFY_WRITE,
927 (void __user *)(unsigned long)mem->userspace_addr,
928 mem->memory_size)))
929 goto out;
930 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
931 goto out;
932 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
933 goto out;
934
935 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
936 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
937 npages = mem->memory_size >> PAGE_SHIFT;
938
939 if (npages > KVM_MEM_MAX_NR_PAGES)
940 goto out;
941
942 new = old = *slot;
943
944 new.id = id;
945 new.base_gfn = base_gfn;
946 new.npages = npages;
947 new.flags = mem->flags;
948
949 if (npages) {
950 if (!old.npages)
951 change = KVM_MR_CREATE;
952 else { /* Modify an existing slot. */
953 if ((mem->userspace_addr != old.userspace_addr) ||
954 (npages != old.npages) ||
955 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
956 goto out;
957
958 if (base_gfn != old.base_gfn)
959 change = KVM_MR_MOVE;
960 else if (new.flags != old.flags)
961 change = KVM_MR_FLAGS_ONLY;
962 else { /* Nothing to change. */
963 r = 0;
964 goto out;
965 }
966 }
967 } else {
968 if (!old.npages)
969 goto out;
970
971 change = KVM_MR_DELETE;
972 new.base_gfn = 0;
973 new.flags = 0;
974 }
975
976 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
977 /* Check for overlaps */
978 r = -EEXIST;
979 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
980 if (slot->id == id)
981 continue;
982 if (!((base_gfn + npages <= slot->base_gfn) ||
983 (base_gfn >= slot->base_gfn + slot->npages)))
984 goto out;
985 }
986 }
987
988 /* Free page dirty bitmap if unneeded */
989 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
990 new.dirty_bitmap = NULL;
991
992 r = -ENOMEM;
993 if (change == KVM_MR_CREATE) {
994 new.userspace_addr = mem->userspace_addr;
995
996 if (kvm_arch_create_memslot(kvm, &new, npages))
997 goto out_free;
998 }
999
1000 /* Allocate page dirty bitmap if needed */
1001 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1002 if (kvm_create_dirty_bitmap(&new) < 0)
1003 goto out_free;
1004 }
1005
1006 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1007 if (!slots)
1008 goto out_free;
1009 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1010
1011 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1012 slot = id_to_memslot(slots, id);
1013 slot->flags |= KVM_MEMSLOT_INVALID;
1014
1015 old_memslots = install_new_memslots(kvm, as_id, slots);
1016
1017 /* From this point no new shadow pages pointing to a deleted,
1018 * or moved, memslot will be created.
1019 *
1020 * validation of sp->gfn happens in:
1021 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1022 * - kvm_is_visible_gfn (mmu_check_roots)
1023 */
1024 kvm_arch_flush_shadow_memslot(kvm, slot);
1025
1026 /*
1027 * We can re-use the old_memslots from above, the only difference
1028 * from the currently installed memslots is the invalid flag. This
1029 * will get overwritten by update_memslots anyway.
1030 */
1031 slots = old_memslots;
1032 }
1033
1034 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1035 if (r)
1036 goto out_slots;
1037
1038 /* actual memory is freed via old in kvm_free_memslot below */
1039 if (change == KVM_MR_DELETE) {
1040 new.dirty_bitmap = NULL;
1041 memset(&new.arch, 0, sizeof(new.arch));
1042 }
1043
1044 update_memslots(slots, &new);
1045 old_memslots = install_new_memslots(kvm, as_id, slots);
1046
1047 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1048
1049 kvm_free_memslot(kvm, &old, &new);
1050 kvfree(old_memslots);
1051 return 0;
1052
1053 out_slots:
1054 kvfree(slots);
1055 out_free:
1056 kvm_free_memslot(kvm, &new, &old);
1057 out:
1058 return r;
1059 }
1060 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1061
1062 int kvm_set_memory_region(struct kvm *kvm,
1063 const struct kvm_userspace_memory_region *mem)
1064 {
1065 int r;
1066
1067 mutex_lock(&kvm->slots_lock);
1068 r = __kvm_set_memory_region(kvm, mem);
1069 mutex_unlock(&kvm->slots_lock);
1070 return r;
1071 }
1072 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1073
1074 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1075 struct kvm_userspace_memory_region *mem)
1076 {
1077 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1078 return -EINVAL;
1079
1080 return kvm_set_memory_region(kvm, mem);
1081 }
1082
1083 int kvm_get_dirty_log(struct kvm *kvm,
1084 struct kvm_dirty_log *log, int *is_dirty)
1085 {
1086 struct kvm_memslots *slots;
1087 struct kvm_memory_slot *memslot;
1088 int i, as_id, id;
1089 unsigned long n;
1090 unsigned long any = 0;
1091
1092 as_id = log->slot >> 16;
1093 id = (u16)log->slot;
1094 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1095 return -EINVAL;
1096
1097 slots = __kvm_memslots(kvm, as_id);
1098 memslot = id_to_memslot(slots, id);
1099 if (!memslot->dirty_bitmap)
1100 return -ENOENT;
1101
1102 n = kvm_dirty_bitmap_bytes(memslot);
1103
1104 for (i = 0; !any && i < n/sizeof(long); ++i)
1105 any = memslot->dirty_bitmap[i];
1106
1107 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1108 return -EFAULT;
1109
1110 if (any)
1111 *is_dirty = 1;
1112 return 0;
1113 }
1114 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1115
1116 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1117 /**
1118 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1119 * are dirty write protect them for next write.
1120 * @kvm: pointer to kvm instance
1121 * @log: slot id and address to which we copy the log
1122 * @is_dirty: flag set if any page is dirty
1123 *
1124 * We need to keep it in mind that VCPU threads can write to the bitmap
1125 * concurrently. So, to avoid losing track of dirty pages we keep the
1126 * following order:
1127 *
1128 * 1. Take a snapshot of the bit and clear it if needed.
1129 * 2. Write protect the corresponding page.
1130 * 3. Copy the snapshot to the userspace.
1131 * 4. Upon return caller flushes TLB's if needed.
1132 *
1133 * Between 2 and 4, the guest may write to the page using the remaining TLB
1134 * entry. This is not a problem because the page is reported dirty using
1135 * the snapshot taken before and step 4 ensures that writes done after
1136 * exiting to userspace will be logged for the next call.
1137 *
1138 */
1139 int kvm_get_dirty_log_protect(struct kvm *kvm,
1140 struct kvm_dirty_log *log, bool *is_dirty)
1141 {
1142 struct kvm_memslots *slots;
1143 struct kvm_memory_slot *memslot;
1144 int i, as_id, id;
1145 unsigned long n;
1146 unsigned long *dirty_bitmap;
1147 unsigned long *dirty_bitmap_buffer;
1148
1149 as_id = log->slot >> 16;
1150 id = (u16)log->slot;
1151 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1152 return -EINVAL;
1153
1154 slots = __kvm_memslots(kvm, as_id);
1155 memslot = id_to_memslot(slots, id);
1156
1157 dirty_bitmap = memslot->dirty_bitmap;
1158 if (!dirty_bitmap)
1159 return -ENOENT;
1160
1161 n = kvm_dirty_bitmap_bytes(memslot);
1162
1163 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1164 memset(dirty_bitmap_buffer, 0, n);
1165
1166 spin_lock(&kvm->mmu_lock);
1167 *is_dirty = false;
1168 for (i = 0; i < n / sizeof(long); i++) {
1169 unsigned long mask;
1170 gfn_t offset;
1171
1172 if (!dirty_bitmap[i])
1173 continue;
1174
1175 *is_dirty = true;
1176
1177 mask = xchg(&dirty_bitmap[i], 0);
1178 dirty_bitmap_buffer[i] = mask;
1179
1180 if (mask) {
1181 offset = i * BITS_PER_LONG;
1182 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1183 offset, mask);
1184 }
1185 }
1186
1187 spin_unlock(&kvm->mmu_lock);
1188 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1189 return -EFAULT;
1190 return 0;
1191 }
1192 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1193 #endif
1194
1195 bool kvm_largepages_enabled(void)
1196 {
1197 return largepages_enabled;
1198 }
1199
1200 void kvm_disable_largepages(void)
1201 {
1202 largepages_enabled = false;
1203 }
1204 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1205
1206 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1207 {
1208 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1209 }
1210 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1211
1212 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1213 {
1214 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1215 }
1216
1217 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1218 {
1219 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1220
1221 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1222 memslot->flags & KVM_MEMSLOT_INVALID)
1223 return false;
1224
1225 return true;
1226 }
1227 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1228
1229 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1230 {
1231 struct vm_area_struct *vma;
1232 unsigned long addr, size;
1233
1234 size = PAGE_SIZE;
1235
1236 addr = gfn_to_hva(kvm, gfn);
1237 if (kvm_is_error_hva(addr))
1238 return PAGE_SIZE;
1239
1240 down_read(&current->mm->mmap_sem);
1241 vma = find_vma(current->mm, addr);
1242 if (!vma)
1243 goto out;
1244
1245 size = vma_kernel_pagesize(vma);
1246
1247 out:
1248 up_read(&current->mm->mmap_sem);
1249
1250 return size;
1251 }
1252
1253 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1254 {
1255 return slot->flags & KVM_MEM_READONLY;
1256 }
1257
1258 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1259 gfn_t *nr_pages, bool write)
1260 {
1261 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1262 return KVM_HVA_ERR_BAD;
1263
1264 if (memslot_is_readonly(slot) && write)
1265 return KVM_HVA_ERR_RO_BAD;
1266
1267 if (nr_pages)
1268 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1269
1270 return __gfn_to_hva_memslot(slot, gfn);
1271 }
1272
1273 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1274 gfn_t *nr_pages)
1275 {
1276 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1277 }
1278
1279 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1280 gfn_t gfn)
1281 {
1282 return gfn_to_hva_many(slot, gfn, NULL);
1283 }
1284 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1285
1286 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1287 {
1288 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1289 }
1290 EXPORT_SYMBOL_GPL(gfn_to_hva);
1291
1292 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1293 {
1294 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1295 }
1296 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1297
1298 /*
1299 * If writable is set to false, the hva returned by this function is only
1300 * allowed to be read.
1301 */
1302 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1303 gfn_t gfn, bool *writable)
1304 {
1305 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1306
1307 if (!kvm_is_error_hva(hva) && writable)
1308 *writable = !memslot_is_readonly(slot);
1309
1310 return hva;
1311 }
1312
1313 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1314 {
1315 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1316
1317 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1318 }
1319
1320 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1321 {
1322 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1323
1324 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1325 }
1326
1327 static int get_user_page_nowait(unsigned long start, int write,
1328 struct page **page)
1329 {
1330 int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1331
1332 if (write)
1333 flags |= FOLL_WRITE;
1334
1335 return get_user_pages(start, 1, flags, page, NULL);
1336 }
1337
1338 static inline int check_user_page_hwpoison(unsigned long addr)
1339 {
1340 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1341
1342 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1343 return rc == -EHWPOISON;
1344 }
1345
1346 /*
1347 * The atomic path to get the writable pfn which will be stored in @pfn,
1348 * true indicates success, otherwise false is returned.
1349 */
1350 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1351 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1352 {
1353 struct page *page[1];
1354 int npages;
1355
1356 if (!(async || atomic))
1357 return false;
1358
1359 /*
1360 * Fast pin a writable pfn only if it is a write fault request
1361 * or the caller allows to map a writable pfn for a read fault
1362 * request.
1363 */
1364 if (!(write_fault || writable))
1365 return false;
1366
1367 npages = __get_user_pages_fast(addr, 1, 1, page);
1368 if (npages == 1) {
1369 *pfn = page_to_pfn(page[0]);
1370
1371 if (writable)
1372 *writable = true;
1373 return true;
1374 }
1375
1376 return false;
1377 }
1378
1379 /*
1380 * The slow path to get the pfn of the specified host virtual address,
1381 * 1 indicates success, -errno is returned if error is detected.
1382 */
1383 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1384 bool *writable, kvm_pfn_t *pfn)
1385 {
1386 struct page *page[1];
1387 int npages = 0;
1388
1389 might_sleep();
1390
1391 if (writable)
1392 *writable = write_fault;
1393
1394 if (async) {
1395 down_read(&current->mm->mmap_sem);
1396 npages = get_user_page_nowait(addr, write_fault, page);
1397 up_read(&current->mm->mmap_sem);
1398 } else {
1399 unsigned int flags = FOLL_HWPOISON;
1400
1401 if (write_fault)
1402 flags |= FOLL_WRITE;
1403
1404 npages = get_user_pages_unlocked(addr, 1, page, flags);
1405 }
1406 if (npages != 1)
1407 return npages;
1408
1409 /* map read fault as writable if possible */
1410 if (unlikely(!write_fault) && writable) {
1411 struct page *wpage[1];
1412
1413 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1414 if (npages == 1) {
1415 *writable = true;
1416 put_page(page[0]);
1417 page[0] = wpage[0];
1418 }
1419
1420 npages = 1;
1421 }
1422 *pfn = page_to_pfn(page[0]);
1423 return npages;
1424 }
1425
1426 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1427 {
1428 if (unlikely(!(vma->vm_flags & VM_READ)))
1429 return false;
1430
1431 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1432 return false;
1433
1434 return true;
1435 }
1436
1437 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1438 unsigned long addr, bool *async,
1439 bool write_fault, bool *writable,
1440 kvm_pfn_t *p_pfn)
1441 {
1442 unsigned long pfn;
1443 int r;
1444
1445 r = follow_pfn(vma, addr, &pfn);
1446 if (r) {
1447 /*
1448 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1449 * not call the fault handler, so do it here.
1450 */
1451 bool unlocked = false;
1452 r = fixup_user_fault(current, current->mm, addr,
1453 (write_fault ? FAULT_FLAG_WRITE : 0),
1454 &unlocked);
1455 if (unlocked)
1456 return -EAGAIN;
1457 if (r)
1458 return r;
1459
1460 r = follow_pfn(vma, addr, &pfn);
1461 if (r)
1462 return r;
1463
1464 }
1465
1466 if (writable)
1467 *writable = true;
1468
1469 /*
1470 * Get a reference here because callers of *hva_to_pfn* and
1471 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1472 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1473 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1474 * simply do nothing for reserved pfns.
1475 *
1476 * Whoever called remap_pfn_range is also going to call e.g.
1477 * unmap_mapping_range before the underlying pages are freed,
1478 * causing a call to our MMU notifier.
1479 */
1480 kvm_get_pfn(pfn);
1481
1482 *p_pfn = pfn;
1483 return 0;
1484 }
1485
1486 /*
1487 * Pin guest page in memory and return its pfn.
1488 * @addr: host virtual address which maps memory to the guest
1489 * @atomic: whether this function can sleep
1490 * @async: whether this function need to wait IO complete if the
1491 * host page is not in the memory
1492 * @write_fault: whether we should get a writable host page
1493 * @writable: whether it allows to map a writable host page for !@write_fault
1494 *
1495 * The function will map a writable host page for these two cases:
1496 * 1): @write_fault = true
1497 * 2): @write_fault = false && @writable, @writable will tell the caller
1498 * whether the mapping is writable.
1499 */
1500 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1501 bool write_fault, bool *writable)
1502 {
1503 struct vm_area_struct *vma;
1504 kvm_pfn_t pfn = 0;
1505 int npages, r;
1506
1507 /* we can do it either atomically or asynchronously, not both */
1508 BUG_ON(atomic && async);
1509
1510 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1511 return pfn;
1512
1513 if (atomic)
1514 return KVM_PFN_ERR_FAULT;
1515
1516 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1517 if (npages == 1)
1518 return pfn;
1519
1520 down_read(&current->mm->mmap_sem);
1521 if (npages == -EHWPOISON ||
1522 (!async && check_user_page_hwpoison(addr))) {
1523 pfn = KVM_PFN_ERR_HWPOISON;
1524 goto exit;
1525 }
1526
1527 retry:
1528 vma = find_vma_intersection(current->mm, addr, addr + 1);
1529
1530 if (vma == NULL)
1531 pfn = KVM_PFN_ERR_FAULT;
1532 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1533 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1534 if (r == -EAGAIN)
1535 goto retry;
1536 if (r < 0)
1537 pfn = KVM_PFN_ERR_FAULT;
1538 } else {
1539 if (async && vma_is_valid(vma, write_fault))
1540 *async = true;
1541 pfn = KVM_PFN_ERR_FAULT;
1542 }
1543 exit:
1544 up_read(&current->mm->mmap_sem);
1545 return pfn;
1546 }
1547
1548 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1549 bool atomic, bool *async, bool write_fault,
1550 bool *writable)
1551 {
1552 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1553
1554 if (addr == KVM_HVA_ERR_RO_BAD) {
1555 if (writable)
1556 *writable = false;
1557 return KVM_PFN_ERR_RO_FAULT;
1558 }
1559
1560 if (kvm_is_error_hva(addr)) {
1561 if (writable)
1562 *writable = false;
1563 return KVM_PFN_NOSLOT;
1564 }
1565
1566 /* Do not map writable pfn in the readonly memslot. */
1567 if (writable && memslot_is_readonly(slot)) {
1568 *writable = false;
1569 writable = NULL;
1570 }
1571
1572 return hva_to_pfn(addr, atomic, async, write_fault,
1573 writable);
1574 }
1575 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1576
1577 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1578 bool *writable)
1579 {
1580 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1581 write_fault, writable);
1582 }
1583 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1584
1585 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1586 {
1587 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1588 }
1589 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1590
1591 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1592 {
1593 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1594 }
1595 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1596
1597 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1598 {
1599 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1600 }
1601 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1602
1603 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1604 {
1605 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1606 }
1607 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1608
1609 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1610 {
1611 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1612 }
1613 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1614
1615 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1616 {
1617 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1618 }
1619 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1620
1621 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1622 struct page **pages, int nr_pages)
1623 {
1624 unsigned long addr;
1625 gfn_t entry = 0;
1626
1627 addr = gfn_to_hva_many(slot, gfn, &entry);
1628 if (kvm_is_error_hva(addr))
1629 return -1;
1630
1631 if (entry < nr_pages)
1632 return 0;
1633
1634 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1635 }
1636 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1637
1638 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1639 {
1640 if (is_error_noslot_pfn(pfn))
1641 return KVM_ERR_PTR_BAD_PAGE;
1642
1643 if (kvm_is_reserved_pfn(pfn)) {
1644 WARN_ON(1);
1645 return KVM_ERR_PTR_BAD_PAGE;
1646 }
1647
1648 return pfn_to_page(pfn);
1649 }
1650
1651 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1652 {
1653 kvm_pfn_t pfn;
1654
1655 pfn = gfn_to_pfn(kvm, gfn);
1656
1657 return kvm_pfn_to_page(pfn);
1658 }
1659 EXPORT_SYMBOL_GPL(gfn_to_page);
1660
1661 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1662 {
1663 kvm_pfn_t pfn;
1664
1665 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1666
1667 return kvm_pfn_to_page(pfn);
1668 }
1669 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1670
1671 void kvm_release_page_clean(struct page *page)
1672 {
1673 WARN_ON(is_error_page(page));
1674
1675 kvm_release_pfn_clean(page_to_pfn(page));
1676 }
1677 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1678
1679 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1680 {
1681 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1682 put_page(pfn_to_page(pfn));
1683 }
1684 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1685
1686 void kvm_release_page_dirty(struct page *page)
1687 {
1688 WARN_ON(is_error_page(page));
1689
1690 kvm_release_pfn_dirty(page_to_pfn(page));
1691 }
1692 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1693
1694 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1695 {
1696 kvm_set_pfn_dirty(pfn);
1697 kvm_release_pfn_clean(pfn);
1698 }
1699 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1700
1701 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1702 {
1703 if (!kvm_is_reserved_pfn(pfn)) {
1704 struct page *page = pfn_to_page(pfn);
1705
1706 if (!PageReserved(page))
1707 SetPageDirty(page);
1708 }
1709 }
1710 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1711
1712 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1713 {
1714 if (!kvm_is_reserved_pfn(pfn))
1715 mark_page_accessed(pfn_to_page(pfn));
1716 }
1717 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1718
1719 void kvm_get_pfn(kvm_pfn_t pfn)
1720 {
1721 if (!kvm_is_reserved_pfn(pfn))
1722 get_page(pfn_to_page(pfn));
1723 }
1724 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1725
1726 static int next_segment(unsigned long len, int offset)
1727 {
1728 if (len > PAGE_SIZE - offset)
1729 return PAGE_SIZE - offset;
1730 else
1731 return len;
1732 }
1733
1734 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1735 void *data, int offset, int len)
1736 {
1737 int r;
1738 unsigned long addr;
1739
1740 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1741 if (kvm_is_error_hva(addr))
1742 return -EFAULT;
1743 r = __copy_from_user(data, (void __user *)addr + offset, len);
1744 if (r)
1745 return -EFAULT;
1746 return 0;
1747 }
1748
1749 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1750 int len)
1751 {
1752 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1753
1754 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1755 }
1756 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1757
1758 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1759 int offset, int len)
1760 {
1761 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1762
1763 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1764 }
1765 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1766
1767 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1768 {
1769 gfn_t gfn = gpa >> PAGE_SHIFT;
1770 int seg;
1771 int offset = offset_in_page(gpa);
1772 int ret;
1773
1774 while ((seg = next_segment(len, offset)) != 0) {
1775 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1776 if (ret < 0)
1777 return ret;
1778 offset = 0;
1779 len -= seg;
1780 data += seg;
1781 ++gfn;
1782 }
1783 return 0;
1784 }
1785 EXPORT_SYMBOL_GPL(kvm_read_guest);
1786
1787 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1788 {
1789 gfn_t gfn = gpa >> PAGE_SHIFT;
1790 int seg;
1791 int offset = offset_in_page(gpa);
1792 int ret;
1793
1794 while ((seg = next_segment(len, offset)) != 0) {
1795 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1796 if (ret < 0)
1797 return ret;
1798 offset = 0;
1799 len -= seg;
1800 data += seg;
1801 ++gfn;
1802 }
1803 return 0;
1804 }
1805 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1806
1807 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1808 void *data, int offset, unsigned long len)
1809 {
1810 int r;
1811 unsigned long addr;
1812
1813 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1814 if (kvm_is_error_hva(addr))
1815 return -EFAULT;
1816 pagefault_disable();
1817 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1818 pagefault_enable();
1819 if (r)
1820 return -EFAULT;
1821 return 0;
1822 }
1823
1824 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1825 unsigned long len)
1826 {
1827 gfn_t gfn = gpa >> PAGE_SHIFT;
1828 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1829 int offset = offset_in_page(gpa);
1830
1831 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1832 }
1833 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1834
1835 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1836 void *data, unsigned long len)
1837 {
1838 gfn_t gfn = gpa >> PAGE_SHIFT;
1839 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1840 int offset = offset_in_page(gpa);
1841
1842 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1843 }
1844 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1845
1846 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1847 const void *data, int offset, int len)
1848 {
1849 int r;
1850 unsigned long addr;
1851
1852 addr = gfn_to_hva_memslot(memslot, gfn);
1853 if (kvm_is_error_hva(addr))
1854 return -EFAULT;
1855 r = __copy_to_user((void __user *)addr + offset, data, len);
1856 if (r)
1857 return -EFAULT;
1858 mark_page_dirty_in_slot(memslot, gfn);
1859 return 0;
1860 }
1861
1862 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1863 const void *data, int offset, int len)
1864 {
1865 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1866
1867 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1868 }
1869 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1870
1871 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1872 const void *data, int offset, int len)
1873 {
1874 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1875
1876 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1877 }
1878 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1879
1880 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1881 unsigned long len)
1882 {
1883 gfn_t gfn = gpa >> PAGE_SHIFT;
1884 int seg;
1885 int offset = offset_in_page(gpa);
1886 int ret;
1887
1888 while ((seg = next_segment(len, offset)) != 0) {
1889 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1890 if (ret < 0)
1891 return ret;
1892 offset = 0;
1893 len -= seg;
1894 data += seg;
1895 ++gfn;
1896 }
1897 return 0;
1898 }
1899 EXPORT_SYMBOL_GPL(kvm_write_guest);
1900
1901 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1902 unsigned long len)
1903 {
1904 gfn_t gfn = gpa >> PAGE_SHIFT;
1905 int seg;
1906 int offset = offset_in_page(gpa);
1907 int ret;
1908
1909 while ((seg = next_segment(len, offset)) != 0) {
1910 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1911 if (ret < 0)
1912 return ret;
1913 offset = 0;
1914 len -= seg;
1915 data += seg;
1916 ++gfn;
1917 }
1918 return 0;
1919 }
1920 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1921
1922 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1923 struct gfn_to_hva_cache *ghc,
1924 gpa_t gpa, unsigned long len)
1925 {
1926 int offset = offset_in_page(gpa);
1927 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1928 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1929 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1930 gfn_t nr_pages_avail;
1931
1932 ghc->gpa = gpa;
1933 ghc->generation = slots->generation;
1934 ghc->len = len;
1935 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1936 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1937 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1938 ghc->hva += offset;
1939 } else {
1940 /*
1941 * If the requested region crosses two memslots, we still
1942 * verify that the entire region is valid here.
1943 */
1944 while (start_gfn <= end_gfn) {
1945 nr_pages_avail = 0;
1946 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1947 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1948 &nr_pages_avail);
1949 if (kvm_is_error_hva(ghc->hva))
1950 return -EFAULT;
1951 start_gfn += nr_pages_avail;
1952 }
1953 /* Use the slow path for cross page reads and writes. */
1954 ghc->memslot = NULL;
1955 }
1956 return 0;
1957 }
1958
1959 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1960 gpa_t gpa, unsigned long len)
1961 {
1962 struct kvm_memslots *slots = kvm_memslots(kvm);
1963 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1964 }
1965 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1966
1967 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1968 void *data, unsigned int offset,
1969 unsigned long len)
1970 {
1971 struct kvm_memslots *slots = kvm_memslots(kvm);
1972 int r;
1973 gpa_t gpa = ghc->gpa + offset;
1974
1975 BUG_ON(len + offset > ghc->len);
1976
1977 if (slots->generation != ghc->generation)
1978 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1979
1980 if (unlikely(!ghc->memslot))
1981 return kvm_write_guest(kvm, gpa, data, len);
1982
1983 if (kvm_is_error_hva(ghc->hva))
1984 return -EFAULT;
1985
1986 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1987 if (r)
1988 return -EFAULT;
1989 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1990
1991 return 0;
1992 }
1993 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1994
1995 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1996 void *data, unsigned long len)
1997 {
1998 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1999 }
2000 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2001
2002 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2003 void *data, unsigned long len)
2004 {
2005 struct kvm_memslots *slots = kvm_memslots(kvm);
2006 int r;
2007
2008 BUG_ON(len > ghc->len);
2009
2010 if (slots->generation != ghc->generation)
2011 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2012
2013 if (unlikely(!ghc->memslot))
2014 return kvm_read_guest(kvm, ghc->gpa, data, len);
2015
2016 if (kvm_is_error_hva(ghc->hva))
2017 return -EFAULT;
2018
2019 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2020 if (r)
2021 return -EFAULT;
2022
2023 return 0;
2024 }
2025 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2026
2027 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2028 {
2029 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2030
2031 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2032 }
2033 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2034
2035 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2036 {
2037 gfn_t gfn = gpa >> PAGE_SHIFT;
2038 int seg;
2039 int offset = offset_in_page(gpa);
2040 int ret;
2041
2042 while ((seg = next_segment(len, offset)) != 0) {
2043 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2044 if (ret < 0)
2045 return ret;
2046 offset = 0;
2047 len -= seg;
2048 ++gfn;
2049 }
2050 return 0;
2051 }
2052 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2053
2054 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2055 gfn_t gfn)
2056 {
2057 if (memslot && memslot->dirty_bitmap) {
2058 unsigned long rel_gfn = gfn - memslot->base_gfn;
2059
2060 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2061 }
2062 }
2063
2064 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2065 {
2066 struct kvm_memory_slot *memslot;
2067
2068 memslot = gfn_to_memslot(kvm, gfn);
2069 mark_page_dirty_in_slot(memslot, gfn);
2070 }
2071 EXPORT_SYMBOL_GPL(mark_page_dirty);
2072
2073 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2074 {
2075 struct kvm_memory_slot *memslot;
2076
2077 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2078 mark_page_dirty_in_slot(memslot, gfn);
2079 }
2080 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2081
2082 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2083 {
2084 if (!vcpu->sigset_active)
2085 return;
2086
2087 /*
2088 * This does a lockless modification of ->real_blocked, which is fine
2089 * because, only current can change ->real_blocked and all readers of
2090 * ->real_blocked don't care as long ->real_blocked is always a subset
2091 * of ->blocked.
2092 */
2093 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2094 }
2095
2096 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2097 {
2098 if (!vcpu->sigset_active)
2099 return;
2100
2101 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2102 sigemptyset(&current->real_blocked);
2103 }
2104
2105 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2106 {
2107 unsigned int old, val, grow;
2108
2109 old = val = vcpu->halt_poll_ns;
2110 grow = READ_ONCE(halt_poll_ns_grow);
2111 /* 10us base */
2112 if (val == 0 && grow)
2113 val = 10000;
2114 else
2115 val *= grow;
2116
2117 if (val > halt_poll_ns)
2118 val = halt_poll_ns;
2119
2120 vcpu->halt_poll_ns = val;
2121 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2122 }
2123
2124 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2125 {
2126 unsigned int old, val, shrink;
2127
2128 old = val = vcpu->halt_poll_ns;
2129 shrink = READ_ONCE(halt_poll_ns_shrink);
2130 if (shrink == 0)
2131 val = 0;
2132 else
2133 val /= shrink;
2134
2135 vcpu->halt_poll_ns = val;
2136 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2137 }
2138
2139 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2140 {
2141 if (kvm_arch_vcpu_runnable(vcpu)) {
2142 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2143 return -EINTR;
2144 }
2145 if (kvm_cpu_has_pending_timer(vcpu))
2146 return -EINTR;
2147 if (signal_pending(current))
2148 return -EINTR;
2149
2150 return 0;
2151 }
2152
2153 /*
2154 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2155 */
2156 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2157 {
2158 ktime_t start, cur;
2159 DECLARE_SWAITQUEUE(wait);
2160 bool waited = false;
2161 u64 block_ns;
2162
2163 start = cur = ktime_get();
2164 if (vcpu->halt_poll_ns) {
2165 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2166
2167 ++vcpu->stat.halt_attempted_poll;
2168 do {
2169 /*
2170 * This sets KVM_REQ_UNHALT if an interrupt
2171 * arrives.
2172 */
2173 if (kvm_vcpu_check_block(vcpu) < 0) {
2174 ++vcpu->stat.halt_successful_poll;
2175 if (!vcpu_valid_wakeup(vcpu))
2176 ++vcpu->stat.halt_poll_invalid;
2177 goto out;
2178 }
2179 cur = ktime_get();
2180 } while (single_task_running() && ktime_before(cur, stop));
2181 }
2182
2183 kvm_arch_vcpu_blocking(vcpu);
2184
2185 for (;;) {
2186 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2187
2188 if (kvm_vcpu_check_block(vcpu) < 0)
2189 break;
2190
2191 waited = true;
2192 schedule();
2193 }
2194
2195 finish_swait(&vcpu->wq, &wait);
2196 cur = ktime_get();
2197
2198 kvm_arch_vcpu_unblocking(vcpu);
2199 out:
2200 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2201
2202 if (!vcpu_valid_wakeup(vcpu))
2203 shrink_halt_poll_ns(vcpu);
2204 else if (halt_poll_ns) {
2205 if (block_ns <= vcpu->halt_poll_ns)
2206 ;
2207 /* we had a long block, shrink polling */
2208 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2209 shrink_halt_poll_ns(vcpu);
2210 /* we had a short halt and our poll time is too small */
2211 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2212 block_ns < halt_poll_ns)
2213 grow_halt_poll_ns(vcpu);
2214 } else
2215 vcpu->halt_poll_ns = 0;
2216
2217 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2218 kvm_arch_vcpu_block_finish(vcpu);
2219 }
2220 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2221
2222 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2223 {
2224 struct swait_queue_head *wqp;
2225
2226 wqp = kvm_arch_vcpu_wq(vcpu);
2227 if (swq_has_sleeper(wqp)) {
2228 swake_up(wqp);
2229 ++vcpu->stat.halt_wakeup;
2230 return true;
2231 }
2232
2233 return false;
2234 }
2235 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2236
2237 #ifndef CONFIG_S390
2238 /*
2239 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2240 */
2241 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2242 {
2243 int me;
2244 int cpu = vcpu->cpu;
2245
2246 if (kvm_vcpu_wake_up(vcpu))
2247 return;
2248
2249 me = get_cpu();
2250 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2251 if (kvm_arch_vcpu_should_kick(vcpu))
2252 smp_send_reschedule(cpu);
2253 put_cpu();
2254 }
2255 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2256 #endif /* !CONFIG_S390 */
2257
2258 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2259 {
2260 struct pid *pid;
2261 struct task_struct *task = NULL;
2262 int ret = 0;
2263
2264 rcu_read_lock();
2265 pid = rcu_dereference(target->pid);
2266 if (pid)
2267 task = get_pid_task(pid, PIDTYPE_PID);
2268 rcu_read_unlock();
2269 if (!task)
2270 return ret;
2271 ret = yield_to(task, 1);
2272 put_task_struct(task);
2273
2274 return ret;
2275 }
2276 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2277
2278 /*
2279 * Helper that checks whether a VCPU is eligible for directed yield.
2280 * Most eligible candidate to yield is decided by following heuristics:
2281 *
2282 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2283 * (preempted lock holder), indicated by @in_spin_loop.
2284 * Set at the beiginning and cleared at the end of interception/PLE handler.
2285 *
2286 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2287 * chance last time (mostly it has become eligible now since we have probably
2288 * yielded to lockholder in last iteration. This is done by toggling
2289 * @dy_eligible each time a VCPU checked for eligibility.)
2290 *
2291 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2292 * to preempted lock-holder could result in wrong VCPU selection and CPU
2293 * burning. Giving priority for a potential lock-holder increases lock
2294 * progress.
2295 *
2296 * Since algorithm is based on heuristics, accessing another VCPU data without
2297 * locking does not harm. It may result in trying to yield to same VCPU, fail
2298 * and continue with next VCPU and so on.
2299 */
2300 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2301 {
2302 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2303 bool eligible;
2304
2305 eligible = !vcpu->spin_loop.in_spin_loop ||
2306 vcpu->spin_loop.dy_eligible;
2307
2308 if (vcpu->spin_loop.in_spin_loop)
2309 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2310
2311 return eligible;
2312 #else
2313 return true;
2314 #endif
2315 }
2316
2317 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2318 {
2319 struct kvm *kvm = me->kvm;
2320 struct kvm_vcpu *vcpu;
2321 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2322 int yielded = 0;
2323 int try = 3;
2324 int pass;
2325 int i;
2326
2327 kvm_vcpu_set_in_spin_loop(me, true);
2328 /*
2329 * We boost the priority of a VCPU that is runnable but not
2330 * currently running, because it got preempted by something
2331 * else and called schedule in __vcpu_run. Hopefully that
2332 * VCPU is holding the lock that we need and will release it.
2333 * We approximate round-robin by starting at the last boosted VCPU.
2334 */
2335 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2336 kvm_for_each_vcpu(i, vcpu, kvm) {
2337 if (!pass && i <= last_boosted_vcpu) {
2338 i = last_boosted_vcpu;
2339 continue;
2340 } else if (pass && i > last_boosted_vcpu)
2341 break;
2342 if (!READ_ONCE(vcpu->preempted))
2343 continue;
2344 if (vcpu == me)
2345 continue;
2346 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2347 continue;
2348 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2349 continue;
2350 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2351 continue;
2352
2353 yielded = kvm_vcpu_yield_to(vcpu);
2354 if (yielded > 0) {
2355 kvm->last_boosted_vcpu = i;
2356 break;
2357 } else if (yielded < 0) {
2358 try--;
2359 if (!try)
2360 break;
2361 }
2362 }
2363 }
2364 kvm_vcpu_set_in_spin_loop(me, false);
2365
2366 /* Ensure vcpu is not eligible during next spinloop */
2367 kvm_vcpu_set_dy_eligible(me, false);
2368 }
2369 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2370
2371 static int kvm_vcpu_fault(struct vm_fault *vmf)
2372 {
2373 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2374 struct page *page;
2375
2376 if (vmf->pgoff == 0)
2377 page = virt_to_page(vcpu->run);
2378 #ifdef CONFIG_X86
2379 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2380 page = virt_to_page(vcpu->arch.pio_data);
2381 #endif
2382 #ifdef CONFIG_KVM_MMIO
2383 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2384 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2385 #endif
2386 else
2387 return kvm_arch_vcpu_fault(vcpu, vmf);
2388 get_page(page);
2389 vmf->page = page;
2390 return 0;
2391 }
2392
2393 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2394 .fault = kvm_vcpu_fault,
2395 };
2396
2397 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2398 {
2399 vma->vm_ops = &kvm_vcpu_vm_ops;
2400 return 0;
2401 }
2402
2403 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2404 {
2405 struct kvm_vcpu *vcpu = filp->private_data;
2406
2407 debugfs_remove_recursive(vcpu->debugfs_dentry);
2408 kvm_put_kvm(vcpu->kvm);
2409 return 0;
2410 }
2411
2412 static struct file_operations kvm_vcpu_fops = {
2413 .release = kvm_vcpu_release,
2414 .unlocked_ioctl = kvm_vcpu_ioctl,
2415 #ifdef CONFIG_KVM_COMPAT
2416 .compat_ioctl = kvm_vcpu_compat_ioctl,
2417 #endif
2418 .mmap = kvm_vcpu_mmap,
2419 .llseek = noop_llseek,
2420 };
2421
2422 /*
2423 * Allocates an inode for the vcpu.
2424 */
2425 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2426 {
2427 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2428 }
2429
2430 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2431 {
2432 char dir_name[ITOA_MAX_LEN * 2];
2433 int ret;
2434
2435 if (!kvm_arch_has_vcpu_debugfs())
2436 return 0;
2437
2438 if (!debugfs_initialized())
2439 return 0;
2440
2441 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2442 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2443 vcpu->kvm->debugfs_dentry);
2444 if (!vcpu->debugfs_dentry)
2445 return -ENOMEM;
2446
2447 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2448 if (ret < 0) {
2449 debugfs_remove_recursive(vcpu->debugfs_dentry);
2450 return ret;
2451 }
2452
2453 return 0;
2454 }
2455
2456 /*
2457 * Creates some virtual cpus. Good luck creating more than one.
2458 */
2459 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2460 {
2461 int r;
2462 struct kvm_vcpu *vcpu;
2463
2464 if (id >= KVM_MAX_VCPU_ID)
2465 return -EINVAL;
2466
2467 mutex_lock(&kvm->lock);
2468 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2469 mutex_unlock(&kvm->lock);
2470 return -EINVAL;
2471 }
2472
2473 kvm->created_vcpus++;
2474 mutex_unlock(&kvm->lock);
2475
2476 vcpu = kvm_arch_vcpu_create(kvm, id);
2477 if (IS_ERR(vcpu)) {
2478 r = PTR_ERR(vcpu);
2479 goto vcpu_decrement;
2480 }
2481
2482 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2483
2484 r = kvm_arch_vcpu_setup(vcpu);
2485 if (r)
2486 goto vcpu_destroy;
2487
2488 r = kvm_create_vcpu_debugfs(vcpu);
2489 if (r)
2490 goto vcpu_destroy;
2491
2492 mutex_lock(&kvm->lock);
2493 if (kvm_get_vcpu_by_id(kvm, id)) {
2494 r = -EEXIST;
2495 goto unlock_vcpu_destroy;
2496 }
2497
2498 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2499
2500 /* Now it's all set up, let userspace reach it */
2501 kvm_get_kvm(kvm);
2502 r = create_vcpu_fd(vcpu);
2503 if (r < 0) {
2504 kvm_put_kvm(kvm);
2505 goto unlock_vcpu_destroy;
2506 }
2507
2508 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2509
2510 /*
2511 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2512 * before kvm->online_vcpu's incremented value.
2513 */
2514 smp_wmb();
2515 atomic_inc(&kvm->online_vcpus);
2516
2517 mutex_unlock(&kvm->lock);
2518 kvm_arch_vcpu_postcreate(vcpu);
2519 return r;
2520
2521 unlock_vcpu_destroy:
2522 mutex_unlock(&kvm->lock);
2523 debugfs_remove_recursive(vcpu->debugfs_dentry);
2524 vcpu_destroy:
2525 kvm_arch_vcpu_destroy(vcpu);
2526 vcpu_decrement:
2527 mutex_lock(&kvm->lock);
2528 kvm->created_vcpus--;
2529 mutex_unlock(&kvm->lock);
2530 return r;
2531 }
2532
2533 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2534 {
2535 if (sigset) {
2536 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2537 vcpu->sigset_active = 1;
2538 vcpu->sigset = *sigset;
2539 } else
2540 vcpu->sigset_active = 0;
2541 return 0;
2542 }
2543
2544 static long kvm_vcpu_ioctl(struct file *filp,
2545 unsigned int ioctl, unsigned long arg)
2546 {
2547 struct kvm_vcpu *vcpu = filp->private_data;
2548 void __user *argp = (void __user *)arg;
2549 int r;
2550 struct kvm_fpu *fpu = NULL;
2551 struct kvm_sregs *kvm_sregs = NULL;
2552
2553 if (vcpu->kvm->mm != current->mm)
2554 return -EIO;
2555
2556 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2557 return -EINVAL;
2558
2559 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2560 /*
2561 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2562 * so vcpu_load() would break it.
2563 */
2564 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2565 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2566 #endif
2567
2568
2569 r = vcpu_load(vcpu);
2570 if (r)
2571 return r;
2572 switch (ioctl) {
2573 case KVM_RUN: {
2574 struct pid *oldpid;
2575 r = -EINVAL;
2576 if (arg)
2577 goto out;
2578 oldpid = rcu_access_pointer(vcpu->pid);
2579 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2580 /* The thread running this VCPU changed. */
2581 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2582
2583 rcu_assign_pointer(vcpu->pid, newpid);
2584 if (oldpid)
2585 synchronize_rcu();
2586 put_pid(oldpid);
2587 }
2588 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2589 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2590 break;
2591 }
2592 case KVM_GET_REGS: {
2593 struct kvm_regs *kvm_regs;
2594
2595 r = -ENOMEM;
2596 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2597 if (!kvm_regs)
2598 goto out;
2599 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2600 if (r)
2601 goto out_free1;
2602 r = -EFAULT;
2603 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2604 goto out_free1;
2605 r = 0;
2606 out_free1:
2607 kfree(kvm_regs);
2608 break;
2609 }
2610 case KVM_SET_REGS: {
2611 struct kvm_regs *kvm_regs;
2612
2613 r = -ENOMEM;
2614 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2615 if (IS_ERR(kvm_regs)) {
2616 r = PTR_ERR(kvm_regs);
2617 goto out;
2618 }
2619 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2620 kfree(kvm_regs);
2621 break;
2622 }
2623 case KVM_GET_SREGS: {
2624 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2625 r = -ENOMEM;
2626 if (!kvm_sregs)
2627 goto out;
2628 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2629 if (r)
2630 goto out;
2631 r = -EFAULT;
2632 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2633 goto out;
2634 r = 0;
2635 break;
2636 }
2637 case KVM_SET_SREGS: {
2638 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2639 if (IS_ERR(kvm_sregs)) {
2640 r = PTR_ERR(kvm_sregs);
2641 kvm_sregs = NULL;
2642 goto out;
2643 }
2644 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2645 break;
2646 }
2647 case KVM_GET_MP_STATE: {
2648 struct kvm_mp_state mp_state;
2649
2650 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2651 if (r)
2652 goto out;
2653 r = -EFAULT;
2654 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2655 goto out;
2656 r = 0;
2657 break;
2658 }
2659 case KVM_SET_MP_STATE: {
2660 struct kvm_mp_state mp_state;
2661
2662 r = -EFAULT;
2663 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2664 goto out;
2665 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2666 break;
2667 }
2668 case KVM_TRANSLATE: {
2669 struct kvm_translation tr;
2670
2671 r = -EFAULT;
2672 if (copy_from_user(&tr, argp, sizeof(tr)))
2673 goto out;
2674 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2675 if (r)
2676 goto out;
2677 r = -EFAULT;
2678 if (copy_to_user(argp, &tr, sizeof(tr)))
2679 goto out;
2680 r = 0;
2681 break;
2682 }
2683 case KVM_SET_GUEST_DEBUG: {
2684 struct kvm_guest_debug dbg;
2685
2686 r = -EFAULT;
2687 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2688 goto out;
2689 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2690 break;
2691 }
2692 case KVM_SET_SIGNAL_MASK: {
2693 struct kvm_signal_mask __user *sigmask_arg = argp;
2694 struct kvm_signal_mask kvm_sigmask;
2695 sigset_t sigset, *p;
2696
2697 p = NULL;
2698 if (argp) {
2699 r = -EFAULT;
2700 if (copy_from_user(&kvm_sigmask, argp,
2701 sizeof(kvm_sigmask)))
2702 goto out;
2703 r = -EINVAL;
2704 if (kvm_sigmask.len != sizeof(sigset))
2705 goto out;
2706 r = -EFAULT;
2707 if (copy_from_user(&sigset, sigmask_arg->sigset,
2708 sizeof(sigset)))
2709 goto out;
2710 p = &sigset;
2711 }
2712 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2713 break;
2714 }
2715 case KVM_GET_FPU: {
2716 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2717 r = -ENOMEM;
2718 if (!fpu)
2719 goto out;
2720 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2721 if (r)
2722 goto out;
2723 r = -EFAULT;
2724 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2725 goto out;
2726 r = 0;
2727 break;
2728 }
2729 case KVM_SET_FPU: {
2730 fpu = memdup_user(argp, sizeof(*fpu));
2731 if (IS_ERR(fpu)) {
2732 r = PTR_ERR(fpu);
2733 fpu = NULL;
2734 goto out;
2735 }
2736 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2737 break;
2738 }
2739 default:
2740 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2741 }
2742 out:
2743 vcpu_put(vcpu);
2744 kfree(fpu);
2745 kfree(kvm_sregs);
2746 return r;
2747 }
2748
2749 #ifdef CONFIG_KVM_COMPAT
2750 static long kvm_vcpu_compat_ioctl(struct file *filp,
2751 unsigned int ioctl, unsigned long arg)
2752 {
2753 struct kvm_vcpu *vcpu = filp->private_data;
2754 void __user *argp = compat_ptr(arg);
2755 int r;
2756
2757 if (vcpu->kvm->mm != current->mm)
2758 return -EIO;
2759
2760 switch (ioctl) {
2761 case KVM_SET_SIGNAL_MASK: {
2762 struct kvm_signal_mask __user *sigmask_arg = argp;
2763 struct kvm_signal_mask kvm_sigmask;
2764 sigset_t sigset;
2765
2766 if (argp) {
2767 r = -EFAULT;
2768 if (copy_from_user(&kvm_sigmask, argp,
2769 sizeof(kvm_sigmask)))
2770 goto out;
2771 r = -EINVAL;
2772 if (kvm_sigmask.len != sizeof(compat_sigset_t))
2773 goto out;
2774 r = -EFAULT;
2775 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2776 goto out;
2777 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2778 } else
2779 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2780 break;
2781 }
2782 default:
2783 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2784 }
2785
2786 out:
2787 return r;
2788 }
2789 #endif
2790
2791 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2792 int (*accessor)(struct kvm_device *dev,
2793 struct kvm_device_attr *attr),
2794 unsigned long arg)
2795 {
2796 struct kvm_device_attr attr;
2797
2798 if (!accessor)
2799 return -EPERM;
2800
2801 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2802 return -EFAULT;
2803
2804 return accessor(dev, &attr);
2805 }
2806
2807 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2808 unsigned long arg)
2809 {
2810 struct kvm_device *dev = filp->private_data;
2811
2812 if (dev->kvm->mm != current->mm)
2813 return -EIO;
2814
2815 switch (ioctl) {
2816 case KVM_SET_DEVICE_ATTR:
2817 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2818 case KVM_GET_DEVICE_ATTR:
2819 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2820 case KVM_HAS_DEVICE_ATTR:
2821 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2822 default:
2823 if (dev->ops->ioctl)
2824 return dev->ops->ioctl(dev, ioctl, arg);
2825
2826 return -ENOTTY;
2827 }
2828 }
2829
2830 static int kvm_device_release(struct inode *inode, struct file *filp)
2831 {
2832 struct kvm_device *dev = filp->private_data;
2833 struct kvm *kvm = dev->kvm;
2834
2835 kvm_put_kvm(kvm);
2836 return 0;
2837 }
2838
2839 static const struct file_operations kvm_device_fops = {
2840 .unlocked_ioctl = kvm_device_ioctl,
2841 #ifdef CONFIG_KVM_COMPAT
2842 .compat_ioctl = kvm_device_ioctl,
2843 #endif
2844 .release = kvm_device_release,
2845 };
2846
2847 struct kvm_device *kvm_device_from_filp(struct file *filp)
2848 {
2849 if (filp->f_op != &kvm_device_fops)
2850 return NULL;
2851
2852 return filp->private_data;
2853 }
2854
2855 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2856 #ifdef CONFIG_KVM_MPIC
2857 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2858 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2859 #endif
2860 };
2861
2862 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2863 {
2864 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2865 return -ENOSPC;
2866
2867 if (kvm_device_ops_table[type] != NULL)
2868 return -EEXIST;
2869
2870 kvm_device_ops_table[type] = ops;
2871 return 0;
2872 }
2873
2874 void kvm_unregister_device_ops(u32 type)
2875 {
2876 if (kvm_device_ops_table[type] != NULL)
2877 kvm_device_ops_table[type] = NULL;
2878 }
2879
2880 static int kvm_ioctl_create_device(struct kvm *kvm,
2881 struct kvm_create_device *cd)
2882 {
2883 struct kvm_device_ops *ops = NULL;
2884 struct kvm_device *dev;
2885 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2886 int type;
2887 int ret;
2888
2889 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2890 return -ENODEV;
2891
2892 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
2893 ops = kvm_device_ops_table[type];
2894 if (ops == NULL)
2895 return -ENODEV;
2896
2897 if (test)
2898 return 0;
2899
2900 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2901 if (!dev)
2902 return -ENOMEM;
2903
2904 dev->ops = ops;
2905 dev->kvm = kvm;
2906
2907 mutex_lock(&kvm->lock);
2908 ret = ops->create(dev, type);
2909 if (ret < 0) {
2910 mutex_unlock(&kvm->lock);
2911 kfree(dev);
2912 return ret;
2913 }
2914 list_add(&dev->vm_node, &kvm->devices);
2915 mutex_unlock(&kvm->lock);
2916
2917 if (ops->init)
2918 ops->init(dev);
2919
2920 kvm_get_kvm(kvm);
2921 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2922 if (ret < 0) {
2923 kvm_put_kvm(kvm);
2924 mutex_lock(&kvm->lock);
2925 list_del(&dev->vm_node);
2926 mutex_unlock(&kvm->lock);
2927 ops->destroy(dev);
2928 return ret;
2929 }
2930
2931 cd->fd = ret;
2932 return 0;
2933 }
2934
2935 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2936 {
2937 switch (arg) {
2938 case KVM_CAP_USER_MEMORY:
2939 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2940 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2941 case KVM_CAP_INTERNAL_ERROR_DATA:
2942 #ifdef CONFIG_HAVE_KVM_MSI
2943 case KVM_CAP_SIGNAL_MSI:
2944 #endif
2945 #ifdef CONFIG_HAVE_KVM_IRQFD
2946 case KVM_CAP_IRQFD:
2947 case KVM_CAP_IRQFD_RESAMPLE:
2948 #endif
2949 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2950 case KVM_CAP_CHECK_EXTENSION_VM:
2951 return 1;
2952 #ifdef CONFIG_KVM_MMIO
2953 case KVM_CAP_COALESCED_MMIO:
2954 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2955 #endif
2956 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2957 case KVM_CAP_IRQ_ROUTING:
2958 return KVM_MAX_IRQ_ROUTES;
2959 #endif
2960 #if KVM_ADDRESS_SPACE_NUM > 1
2961 case KVM_CAP_MULTI_ADDRESS_SPACE:
2962 return KVM_ADDRESS_SPACE_NUM;
2963 #endif
2964 default:
2965 break;
2966 }
2967 return kvm_vm_ioctl_check_extension(kvm, arg);
2968 }
2969
2970 static long kvm_vm_ioctl(struct file *filp,
2971 unsigned int ioctl, unsigned long arg)
2972 {
2973 struct kvm *kvm = filp->private_data;
2974 void __user *argp = (void __user *)arg;
2975 int r;
2976
2977 if (kvm->mm != current->mm)
2978 return -EIO;
2979 switch (ioctl) {
2980 case KVM_CREATE_VCPU:
2981 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2982 break;
2983 case KVM_SET_USER_MEMORY_REGION: {
2984 struct kvm_userspace_memory_region kvm_userspace_mem;
2985
2986 r = -EFAULT;
2987 if (copy_from_user(&kvm_userspace_mem, argp,
2988 sizeof(kvm_userspace_mem)))
2989 goto out;
2990
2991 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2992 break;
2993 }
2994 case KVM_GET_DIRTY_LOG: {
2995 struct kvm_dirty_log log;
2996
2997 r = -EFAULT;
2998 if (copy_from_user(&log, argp, sizeof(log)))
2999 goto out;
3000 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3001 break;
3002 }
3003 #ifdef CONFIG_KVM_MMIO
3004 case KVM_REGISTER_COALESCED_MMIO: {
3005 struct kvm_coalesced_mmio_zone zone;
3006
3007 r = -EFAULT;
3008 if (copy_from_user(&zone, argp, sizeof(zone)))
3009 goto out;
3010 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3011 break;
3012 }
3013 case KVM_UNREGISTER_COALESCED_MMIO: {
3014 struct kvm_coalesced_mmio_zone zone;
3015
3016 r = -EFAULT;
3017 if (copy_from_user(&zone, argp, sizeof(zone)))
3018 goto out;
3019 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3020 break;
3021 }
3022 #endif
3023 case KVM_IRQFD: {
3024 struct kvm_irqfd data;
3025
3026 r = -EFAULT;
3027 if (copy_from_user(&data, argp, sizeof(data)))
3028 goto out;
3029 r = kvm_irqfd(kvm, &data);
3030 break;
3031 }
3032 case KVM_IOEVENTFD: {
3033 struct kvm_ioeventfd data;
3034
3035 r = -EFAULT;
3036 if (copy_from_user(&data, argp, sizeof(data)))
3037 goto out;
3038 r = kvm_ioeventfd(kvm, &data);
3039 break;
3040 }
3041 #ifdef CONFIG_HAVE_KVM_MSI
3042 case KVM_SIGNAL_MSI: {
3043 struct kvm_msi msi;
3044
3045 r = -EFAULT;
3046 if (copy_from_user(&msi, argp, sizeof(msi)))
3047 goto out;
3048 r = kvm_send_userspace_msi(kvm, &msi);
3049 break;
3050 }
3051 #endif
3052 #ifdef __KVM_HAVE_IRQ_LINE
3053 case KVM_IRQ_LINE_STATUS:
3054 case KVM_IRQ_LINE: {
3055 struct kvm_irq_level irq_event;
3056
3057 r = -EFAULT;
3058 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3059 goto out;
3060
3061 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3062 ioctl == KVM_IRQ_LINE_STATUS);
3063 if (r)
3064 goto out;
3065
3066 r = -EFAULT;
3067 if (ioctl == KVM_IRQ_LINE_STATUS) {
3068 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3069 goto out;
3070 }
3071
3072 r = 0;
3073 break;
3074 }
3075 #endif
3076 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3077 case KVM_SET_GSI_ROUTING: {
3078 struct kvm_irq_routing routing;
3079 struct kvm_irq_routing __user *urouting;
3080 struct kvm_irq_routing_entry *entries = NULL;
3081
3082 r = -EFAULT;
3083 if (copy_from_user(&routing, argp, sizeof(routing)))
3084 goto out;
3085 r = -EINVAL;
3086 if (!kvm_arch_can_set_irq_routing(kvm))
3087 goto out;
3088 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3089 goto out;
3090 if (routing.flags)
3091 goto out;
3092 if (routing.nr) {
3093 r = -ENOMEM;
3094 entries = vmalloc(routing.nr * sizeof(*entries));
3095 if (!entries)
3096 goto out;
3097 r = -EFAULT;
3098 urouting = argp;
3099 if (copy_from_user(entries, urouting->entries,
3100 routing.nr * sizeof(*entries)))
3101 goto out_free_irq_routing;
3102 }
3103 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3104 routing.flags);
3105 out_free_irq_routing:
3106 vfree(entries);
3107 break;
3108 }
3109 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3110 case KVM_CREATE_DEVICE: {
3111 struct kvm_create_device cd;
3112
3113 r = -EFAULT;
3114 if (copy_from_user(&cd, argp, sizeof(cd)))
3115 goto out;
3116
3117 r = kvm_ioctl_create_device(kvm, &cd);
3118 if (r)
3119 goto out;
3120
3121 r = -EFAULT;
3122 if (copy_to_user(argp, &cd, sizeof(cd)))
3123 goto out;
3124
3125 r = 0;
3126 break;
3127 }
3128 case KVM_CHECK_EXTENSION:
3129 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3130 break;
3131 default:
3132 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3133 }
3134 out:
3135 return r;
3136 }
3137
3138 #ifdef CONFIG_KVM_COMPAT
3139 struct compat_kvm_dirty_log {
3140 __u32 slot;
3141 __u32 padding1;
3142 union {
3143 compat_uptr_t dirty_bitmap; /* one bit per page */
3144 __u64 padding2;
3145 };
3146 };
3147
3148 static long kvm_vm_compat_ioctl(struct file *filp,
3149 unsigned int ioctl, unsigned long arg)
3150 {
3151 struct kvm *kvm = filp->private_data;
3152 int r;
3153
3154 if (kvm->mm != current->mm)
3155 return -EIO;
3156 switch (ioctl) {
3157 case KVM_GET_DIRTY_LOG: {
3158 struct compat_kvm_dirty_log compat_log;
3159 struct kvm_dirty_log log;
3160
3161 if (copy_from_user(&compat_log, (void __user *)arg,
3162 sizeof(compat_log)))
3163 return -EFAULT;
3164 log.slot = compat_log.slot;
3165 log.padding1 = compat_log.padding1;
3166 log.padding2 = compat_log.padding2;
3167 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3168
3169 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3170 break;
3171 }
3172 default:
3173 r = kvm_vm_ioctl(filp, ioctl, arg);
3174 }
3175 return r;
3176 }
3177 #endif
3178
3179 static struct file_operations kvm_vm_fops = {
3180 .release = kvm_vm_release,
3181 .unlocked_ioctl = kvm_vm_ioctl,
3182 #ifdef CONFIG_KVM_COMPAT
3183 .compat_ioctl = kvm_vm_compat_ioctl,
3184 #endif
3185 .llseek = noop_llseek,
3186 };
3187
3188 static int kvm_dev_ioctl_create_vm(unsigned long type)
3189 {
3190 int r;
3191 struct kvm *kvm;
3192 struct file *file;
3193
3194 kvm = kvm_create_vm(type);
3195 if (IS_ERR(kvm))
3196 return PTR_ERR(kvm);
3197 #ifdef CONFIG_KVM_MMIO
3198 r = kvm_coalesced_mmio_init(kvm);
3199 if (r < 0) {
3200 kvm_put_kvm(kvm);
3201 return r;
3202 }
3203 #endif
3204 r = get_unused_fd_flags(O_CLOEXEC);
3205 if (r < 0) {
3206 kvm_put_kvm(kvm);
3207 return r;
3208 }
3209 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3210 if (IS_ERR(file)) {
3211 put_unused_fd(r);
3212 kvm_put_kvm(kvm);
3213 return PTR_ERR(file);
3214 }
3215
3216 /*
3217 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3218 * already set, with ->release() being kvm_vm_release(). In error
3219 * cases it will be called by the final fput(file) and will take
3220 * care of doing kvm_put_kvm(kvm).
3221 */
3222 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3223 put_unused_fd(r);
3224 fput(file);
3225 return -ENOMEM;
3226 }
3227 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3228
3229 fd_install(r, file);
3230 return r;
3231 }
3232
3233 static long kvm_dev_ioctl(struct file *filp,
3234 unsigned int ioctl, unsigned long arg)
3235 {
3236 long r = -EINVAL;
3237
3238 switch (ioctl) {
3239 case KVM_GET_API_VERSION:
3240 if (arg)
3241 goto out;
3242 r = KVM_API_VERSION;
3243 break;
3244 case KVM_CREATE_VM:
3245 r = kvm_dev_ioctl_create_vm(arg);
3246 break;
3247 case KVM_CHECK_EXTENSION:
3248 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3249 break;
3250 case KVM_GET_VCPU_MMAP_SIZE:
3251 if (arg)
3252 goto out;
3253 r = PAGE_SIZE; /* struct kvm_run */
3254 #ifdef CONFIG_X86
3255 r += PAGE_SIZE; /* pio data page */
3256 #endif
3257 #ifdef CONFIG_KVM_MMIO
3258 r += PAGE_SIZE; /* coalesced mmio ring page */
3259 #endif
3260 break;
3261 case KVM_TRACE_ENABLE:
3262 case KVM_TRACE_PAUSE:
3263 case KVM_TRACE_DISABLE:
3264 r = -EOPNOTSUPP;
3265 break;
3266 default:
3267 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3268 }
3269 out:
3270 return r;
3271 }
3272
3273 static struct file_operations kvm_chardev_ops = {
3274 .unlocked_ioctl = kvm_dev_ioctl,
3275 .compat_ioctl = kvm_dev_ioctl,
3276 .llseek = noop_llseek,
3277 };
3278
3279 static struct miscdevice kvm_dev = {
3280 KVM_MINOR,
3281 "kvm",
3282 &kvm_chardev_ops,
3283 };
3284
3285 static void hardware_enable_nolock(void *junk)
3286 {
3287 int cpu = raw_smp_processor_id();
3288 int r;
3289
3290 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3291 return;
3292
3293 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3294
3295 r = kvm_arch_hardware_enable();
3296
3297 if (r) {
3298 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3299 atomic_inc(&hardware_enable_failed);
3300 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3301 }
3302 }
3303
3304 static int kvm_starting_cpu(unsigned int cpu)
3305 {
3306 raw_spin_lock(&kvm_count_lock);
3307 if (kvm_usage_count)
3308 hardware_enable_nolock(NULL);
3309 raw_spin_unlock(&kvm_count_lock);
3310 return 0;
3311 }
3312
3313 static void hardware_disable_nolock(void *junk)
3314 {
3315 int cpu = raw_smp_processor_id();
3316
3317 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3318 return;
3319 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3320 kvm_arch_hardware_disable();
3321 }
3322
3323 static int kvm_dying_cpu(unsigned int cpu)
3324 {
3325 raw_spin_lock(&kvm_count_lock);
3326 if (kvm_usage_count)
3327 hardware_disable_nolock(NULL);
3328 raw_spin_unlock(&kvm_count_lock);
3329 return 0;
3330 }
3331
3332 static void hardware_disable_all_nolock(void)
3333 {
3334 BUG_ON(!kvm_usage_count);
3335
3336 kvm_usage_count--;
3337 if (!kvm_usage_count)
3338 on_each_cpu(hardware_disable_nolock, NULL, 1);
3339 }
3340
3341 static void hardware_disable_all(void)
3342 {
3343 raw_spin_lock(&kvm_count_lock);
3344 hardware_disable_all_nolock();
3345 raw_spin_unlock(&kvm_count_lock);
3346 }
3347
3348 static int hardware_enable_all(void)
3349 {
3350 int r = 0;
3351
3352 raw_spin_lock(&kvm_count_lock);
3353
3354 kvm_usage_count++;
3355 if (kvm_usage_count == 1) {
3356 atomic_set(&hardware_enable_failed, 0);
3357 on_each_cpu(hardware_enable_nolock, NULL, 1);
3358
3359 if (atomic_read(&hardware_enable_failed)) {
3360 hardware_disable_all_nolock();
3361 r = -EBUSY;
3362 }
3363 }
3364
3365 raw_spin_unlock(&kvm_count_lock);
3366
3367 return r;
3368 }
3369
3370 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3371 void *v)
3372 {
3373 /*
3374 * Some (well, at least mine) BIOSes hang on reboot if
3375 * in vmx root mode.
3376 *
3377 * And Intel TXT required VMX off for all cpu when system shutdown.
3378 */
3379 pr_info("kvm: exiting hardware virtualization\n");
3380 kvm_rebooting = true;
3381 on_each_cpu(hardware_disable_nolock, NULL, 1);
3382 return NOTIFY_OK;
3383 }
3384
3385 static struct notifier_block kvm_reboot_notifier = {
3386 .notifier_call = kvm_reboot,
3387 .priority = 0,
3388 };
3389
3390 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3391 {
3392 int i;
3393
3394 for (i = 0; i < bus->dev_count; i++) {
3395 struct kvm_io_device *pos = bus->range[i].dev;
3396
3397 kvm_iodevice_destructor(pos);
3398 }
3399 kfree(bus);
3400 }
3401
3402 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3403 const struct kvm_io_range *r2)
3404 {
3405 gpa_t addr1 = r1->addr;
3406 gpa_t addr2 = r2->addr;
3407
3408 if (addr1 < addr2)
3409 return -1;
3410
3411 /* If r2->len == 0, match the exact address. If r2->len != 0,
3412 * accept any overlapping write. Any order is acceptable for
3413 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3414 * we process all of them.
3415 */
3416 if (r2->len) {
3417 addr1 += r1->len;
3418 addr2 += r2->len;
3419 }
3420
3421 if (addr1 > addr2)
3422 return 1;
3423
3424 return 0;
3425 }
3426
3427 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3428 {
3429 return kvm_io_bus_cmp(p1, p2);
3430 }
3431
3432 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3433 gpa_t addr, int len)
3434 {
3435 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3436 .addr = addr,
3437 .len = len,
3438 .dev = dev,
3439 };
3440
3441 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3442 kvm_io_bus_sort_cmp, NULL);
3443
3444 return 0;
3445 }
3446
3447 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3448 gpa_t addr, int len)
3449 {
3450 struct kvm_io_range *range, key;
3451 int off;
3452
3453 key = (struct kvm_io_range) {
3454 .addr = addr,
3455 .len = len,
3456 };
3457
3458 range = bsearch(&key, bus->range, bus->dev_count,
3459 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3460 if (range == NULL)
3461 return -ENOENT;
3462
3463 off = range - bus->range;
3464
3465 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3466 off--;
3467
3468 return off;
3469 }
3470
3471 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3472 struct kvm_io_range *range, const void *val)
3473 {
3474 int idx;
3475
3476 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3477 if (idx < 0)
3478 return -EOPNOTSUPP;
3479
3480 while (idx < bus->dev_count &&
3481 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3482 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3483 range->len, val))
3484 return idx;
3485 idx++;
3486 }
3487
3488 return -EOPNOTSUPP;
3489 }
3490
3491 /* kvm_io_bus_write - called under kvm->slots_lock */
3492 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3493 int len, const void *val)
3494 {
3495 struct kvm_io_bus *bus;
3496 struct kvm_io_range range;
3497 int r;
3498
3499 range = (struct kvm_io_range) {
3500 .addr = addr,
3501 .len = len,
3502 };
3503
3504 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3505 if (!bus)
3506 return -ENOMEM;
3507 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3508 return r < 0 ? r : 0;
3509 }
3510
3511 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3512 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3513 gpa_t addr, int len, const void *val, long cookie)
3514 {
3515 struct kvm_io_bus *bus;
3516 struct kvm_io_range range;
3517
3518 range = (struct kvm_io_range) {
3519 .addr = addr,
3520 .len = len,
3521 };
3522
3523 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3524 if (!bus)
3525 return -ENOMEM;
3526
3527 /* First try the device referenced by cookie. */
3528 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3529 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3530 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3531 val))
3532 return cookie;
3533
3534 /*
3535 * cookie contained garbage; fall back to search and return the
3536 * correct cookie value.
3537 */
3538 return __kvm_io_bus_write(vcpu, bus, &range, val);
3539 }
3540
3541 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3542 struct kvm_io_range *range, void *val)
3543 {
3544 int idx;
3545
3546 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3547 if (idx < 0)
3548 return -EOPNOTSUPP;
3549
3550 while (idx < bus->dev_count &&
3551 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3552 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3553 range->len, val))
3554 return idx;
3555 idx++;
3556 }
3557
3558 return -EOPNOTSUPP;
3559 }
3560 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3561
3562 /* kvm_io_bus_read - called under kvm->slots_lock */
3563 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3564 int len, void *val)
3565 {
3566 struct kvm_io_bus *bus;
3567 struct kvm_io_range range;
3568 int r;
3569
3570 range = (struct kvm_io_range) {
3571 .addr = addr,
3572 .len = len,
3573 };
3574
3575 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3576 if (!bus)
3577 return -ENOMEM;
3578 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3579 return r < 0 ? r : 0;
3580 }
3581
3582
3583 /* Caller must hold slots_lock. */
3584 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3585 int len, struct kvm_io_device *dev)
3586 {
3587 struct kvm_io_bus *new_bus, *bus;
3588
3589 bus = kvm_get_bus(kvm, bus_idx);
3590 if (!bus)
3591 return -ENOMEM;
3592
3593 /* exclude ioeventfd which is limited by maximum fd */
3594 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3595 return -ENOSPC;
3596
3597 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3598 sizeof(struct kvm_io_range)), GFP_KERNEL);
3599 if (!new_bus)
3600 return -ENOMEM;
3601 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3602 sizeof(struct kvm_io_range)));
3603 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3604 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3605 synchronize_srcu_expedited(&kvm->srcu);
3606 kfree(bus);
3607
3608 return 0;
3609 }
3610
3611 /* Caller must hold slots_lock. */
3612 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3613 struct kvm_io_device *dev)
3614 {
3615 int i;
3616 struct kvm_io_bus *new_bus, *bus;
3617
3618 bus = kvm_get_bus(kvm, bus_idx);
3619 if (!bus)
3620 return;
3621
3622 for (i = 0; i < bus->dev_count; i++)
3623 if (bus->range[i].dev == dev) {
3624 break;
3625 }
3626
3627 if (i == bus->dev_count)
3628 return;
3629
3630 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3631 sizeof(struct kvm_io_range)), GFP_KERNEL);
3632 if (!new_bus) {
3633 pr_err("kvm: failed to shrink bus, removing it completely\n");
3634 goto broken;
3635 }
3636
3637 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3638 new_bus->dev_count--;
3639 memcpy(new_bus->range + i, bus->range + i + 1,
3640 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3641
3642 broken:
3643 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3644 synchronize_srcu_expedited(&kvm->srcu);
3645 kfree(bus);
3646 return;
3647 }
3648
3649 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3650 gpa_t addr)
3651 {
3652 struct kvm_io_bus *bus;
3653 int dev_idx, srcu_idx;
3654 struct kvm_io_device *iodev = NULL;
3655
3656 srcu_idx = srcu_read_lock(&kvm->srcu);
3657
3658 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3659 if (!bus)
3660 goto out_unlock;
3661
3662 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3663 if (dev_idx < 0)
3664 goto out_unlock;
3665
3666 iodev = bus->range[dev_idx].dev;
3667
3668 out_unlock:
3669 srcu_read_unlock(&kvm->srcu, srcu_idx);
3670
3671 return iodev;
3672 }
3673 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3674
3675 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3676 int (*get)(void *, u64 *), int (*set)(void *, u64),
3677 const char *fmt)
3678 {
3679 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3680 inode->i_private;
3681
3682 /* The debugfs files are a reference to the kvm struct which
3683 * is still valid when kvm_destroy_vm is called.
3684 * To avoid the race between open and the removal of the debugfs
3685 * directory we test against the users count.
3686 */
3687 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3688 return -ENOENT;
3689
3690 if (simple_attr_open(inode, file, get, set, fmt)) {
3691 kvm_put_kvm(stat_data->kvm);
3692 return -ENOMEM;
3693 }
3694
3695 return 0;
3696 }
3697
3698 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3699 {
3700 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3701 inode->i_private;
3702
3703 simple_attr_release(inode, file);
3704 kvm_put_kvm(stat_data->kvm);
3705
3706 return 0;
3707 }
3708
3709 static int vm_stat_get_per_vm(void *data, u64 *val)
3710 {
3711 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3712
3713 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3714
3715 return 0;
3716 }
3717
3718 static int vm_stat_clear_per_vm(void *data, u64 val)
3719 {
3720 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3721
3722 if (val)
3723 return -EINVAL;
3724
3725 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3726
3727 return 0;
3728 }
3729
3730 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3731 {
3732 __simple_attr_check_format("%llu\n", 0ull);
3733 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3734 vm_stat_clear_per_vm, "%llu\n");
3735 }
3736
3737 static const struct file_operations vm_stat_get_per_vm_fops = {
3738 .owner = THIS_MODULE,
3739 .open = vm_stat_get_per_vm_open,
3740 .release = kvm_debugfs_release,
3741 .read = simple_attr_read,
3742 .write = simple_attr_write,
3743 .llseek = no_llseek,
3744 };
3745
3746 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3747 {
3748 int i;
3749 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3750 struct kvm_vcpu *vcpu;
3751
3752 *val = 0;
3753
3754 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3755 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3756
3757 return 0;
3758 }
3759
3760 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3761 {
3762 int i;
3763 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3764 struct kvm_vcpu *vcpu;
3765
3766 if (val)
3767 return -EINVAL;
3768
3769 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3770 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3771
3772 return 0;
3773 }
3774
3775 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3776 {
3777 __simple_attr_check_format("%llu\n", 0ull);
3778 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3779 vcpu_stat_clear_per_vm, "%llu\n");
3780 }
3781
3782 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3783 .owner = THIS_MODULE,
3784 .open = vcpu_stat_get_per_vm_open,
3785 .release = kvm_debugfs_release,
3786 .read = simple_attr_read,
3787 .write = simple_attr_write,
3788 .llseek = no_llseek,
3789 };
3790
3791 static const struct file_operations *stat_fops_per_vm[] = {
3792 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3793 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3794 };
3795
3796 static int vm_stat_get(void *_offset, u64 *val)
3797 {
3798 unsigned offset = (long)_offset;
3799 struct kvm *kvm;
3800 struct kvm_stat_data stat_tmp = {.offset = offset};
3801 u64 tmp_val;
3802
3803 *val = 0;
3804 spin_lock(&kvm_lock);
3805 list_for_each_entry(kvm, &vm_list, vm_list) {
3806 stat_tmp.kvm = kvm;
3807 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3808 *val += tmp_val;
3809 }
3810 spin_unlock(&kvm_lock);
3811 return 0;
3812 }
3813
3814 static int vm_stat_clear(void *_offset, u64 val)
3815 {
3816 unsigned offset = (long)_offset;
3817 struct kvm *kvm;
3818 struct kvm_stat_data stat_tmp = {.offset = offset};
3819
3820 if (val)
3821 return -EINVAL;
3822
3823 spin_lock(&kvm_lock);
3824 list_for_each_entry(kvm, &vm_list, vm_list) {
3825 stat_tmp.kvm = kvm;
3826 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3827 }
3828 spin_unlock(&kvm_lock);
3829
3830 return 0;
3831 }
3832
3833 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3834
3835 static int vcpu_stat_get(void *_offset, u64 *val)
3836 {
3837 unsigned offset = (long)_offset;
3838 struct kvm *kvm;
3839 struct kvm_stat_data stat_tmp = {.offset = offset};
3840 u64 tmp_val;
3841
3842 *val = 0;
3843 spin_lock(&kvm_lock);
3844 list_for_each_entry(kvm, &vm_list, vm_list) {
3845 stat_tmp.kvm = kvm;
3846 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3847 *val += tmp_val;
3848 }
3849 spin_unlock(&kvm_lock);
3850 return 0;
3851 }
3852
3853 static int vcpu_stat_clear(void *_offset, u64 val)
3854 {
3855 unsigned offset = (long)_offset;
3856 struct kvm *kvm;
3857 struct kvm_stat_data stat_tmp = {.offset = offset};
3858
3859 if (val)
3860 return -EINVAL;
3861
3862 spin_lock(&kvm_lock);
3863 list_for_each_entry(kvm, &vm_list, vm_list) {
3864 stat_tmp.kvm = kvm;
3865 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3866 }
3867 spin_unlock(&kvm_lock);
3868
3869 return 0;
3870 }
3871
3872 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3873 "%llu\n");
3874
3875 static const struct file_operations *stat_fops[] = {
3876 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3877 [KVM_STAT_VM] = &vm_stat_fops,
3878 };
3879
3880 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3881 {
3882 struct kobj_uevent_env *env;
3883 unsigned long long created, active;
3884
3885 if (!kvm_dev.this_device || !kvm)
3886 return;
3887
3888 spin_lock(&kvm_lock);
3889 if (type == KVM_EVENT_CREATE_VM) {
3890 kvm_createvm_count++;
3891 kvm_active_vms++;
3892 } else if (type == KVM_EVENT_DESTROY_VM) {
3893 kvm_active_vms--;
3894 }
3895 created = kvm_createvm_count;
3896 active = kvm_active_vms;
3897 spin_unlock(&kvm_lock);
3898
3899 env = kzalloc(sizeof(*env), GFP_KERNEL);
3900 if (!env)
3901 return;
3902
3903 add_uevent_var(env, "CREATED=%llu", created);
3904 add_uevent_var(env, "COUNT=%llu", active);
3905
3906 if (type == KVM_EVENT_CREATE_VM) {
3907 add_uevent_var(env, "EVENT=create");
3908 kvm->userspace_pid = task_pid_nr(current);
3909 } else if (type == KVM_EVENT_DESTROY_VM) {
3910 add_uevent_var(env, "EVENT=destroy");
3911 }
3912 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3913
3914 if (kvm->debugfs_dentry) {
3915 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3916
3917 if (p) {
3918 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3919 if (!IS_ERR(tmp))
3920 add_uevent_var(env, "STATS_PATH=%s", tmp);
3921 kfree(p);
3922 }
3923 }
3924 /* no need for checks, since we are adding at most only 5 keys */
3925 env->envp[env->envp_idx++] = NULL;
3926 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3927 kfree(env);
3928 }
3929
3930 static int kvm_init_debug(void)
3931 {
3932 int r = -EEXIST;
3933 struct kvm_stats_debugfs_item *p;
3934
3935 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3936 if (kvm_debugfs_dir == NULL)
3937 goto out;
3938
3939 kvm_debugfs_num_entries = 0;
3940 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3941 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3942 (void *)(long)p->offset,
3943 stat_fops[p->kind]))
3944 goto out_dir;
3945 }
3946
3947 return 0;
3948
3949 out_dir:
3950 debugfs_remove_recursive(kvm_debugfs_dir);
3951 out:
3952 return r;
3953 }
3954
3955 static int kvm_suspend(void)
3956 {
3957 if (kvm_usage_count)
3958 hardware_disable_nolock(NULL);
3959 return 0;
3960 }
3961
3962 static void kvm_resume(void)
3963 {
3964 if (kvm_usage_count) {
3965 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3966 hardware_enable_nolock(NULL);
3967 }
3968 }
3969
3970 static struct syscore_ops kvm_syscore_ops = {
3971 .suspend = kvm_suspend,
3972 .resume = kvm_resume,
3973 };
3974
3975 static inline
3976 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3977 {
3978 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3979 }
3980
3981 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3982 {
3983 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3984
3985 if (vcpu->preempted)
3986 vcpu->preempted = false;
3987
3988 kvm_arch_sched_in(vcpu, cpu);
3989
3990 kvm_arch_vcpu_load(vcpu, cpu);
3991 }
3992
3993 static void kvm_sched_out(struct preempt_notifier *pn,
3994 struct task_struct *next)
3995 {
3996 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3997
3998 if (current->state == TASK_RUNNING)
3999 vcpu->preempted = true;
4000 kvm_arch_vcpu_put(vcpu);
4001 }
4002
4003 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4004 struct module *module)
4005 {
4006 int r;
4007 int cpu;
4008
4009 r = kvm_arch_init(opaque);
4010 if (r)
4011 goto out_fail;
4012
4013 /*
4014 * kvm_arch_init makes sure there's at most one caller
4015 * for architectures that support multiple implementations,
4016 * like intel and amd on x86.
4017 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4018 * conflicts in case kvm is already setup for another implementation.
4019 */
4020 r = kvm_irqfd_init();
4021 if (r)
4022 goto out_irqfd;
4023
4024 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4025 r = -ENOMEM;
4026 goto out_free_0;
4027 }
4028
4029 r = kvm_arch_hardware_setup();
4030 if (r < 0)
4031 goto out_free_0a;
4032
4033 for_each_online_cpu(cpu) {
4034 smp_call_function_single(cpu,
4035 kvm_arch_check_processor_compat,
4036 &r, 1);
4037 if (r < 0)
4038 goto out_free_1;
4039 }
4040
4041 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4042 kvm_starting_cpu, kvm_dying_cpu);
4043 if (r)
4044 goto out_free_2;
4045 register_reboot_notifier(&kvm_reboot_notifier);
4046
4047 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4048 if (!vcpu_align)
4049 vcpu_align = __alignof__(struct kvm_vcpu);
4050 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
4051 SLAB_ACCOUNT, NULL);
4052 if (!kvm_vcpu_cache) {
4053 r = -ENOMEM;
4054 goto out_free_3;
4055 }
4056
4057 r = kvm_async_pf_init();
4058 if (r)
4059 goto out_free;
4060
4061 kvm_chardev_ops.owner = module;
4062 kvm_vm_fops.owner = module;
4063 kvm_vcpu_fops.owner = module;
4064
4065 r = misc_register(&kvm_dev);
4066 if (r) {
4067 pr_err("kvm: misc device register failed\n");
4068 goto out_unreg;
4069 }
4070
4071 register_syscore_ops(&kvm_syscore_ops);
4072
4073 kvm_preempt_ops.sched_in = kvm_sched_in;
4074 kvm_preempt_ops.sched_out = kvm_sched_out;
4075
4076 r = kvm_init_debug();
4077 if (r) {
4078 pr_err("kvm: create debugfs files failed\n");
4079 goto out_undebugfs;
4080 }
4081
4082 r = kvm_vfio_ops_init();
4083 WARN_ON(r);
4084
4085 return 0;
4086
4087 out_undebugfs:
4088 unregister_syscore_ops(&kvm_syscore_ops);
4089 misc_deregister(&kvm_dev);
4090 out_unreg:
4091 kvm_async_pf_deinit();
4092 out_free:
4093 kmem_cache_destroy(kvm_vcpu_cache);
4094 out_free_3:
4095 unregister_reboot_notifier(&kvm_reboot_notifier);
4096 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4097 out_free_2:
4098 out_free_1:
4099 kvm_arch_hardware_unsetup();
4100 out_free_0a:
4101 free_cpumask_var(cpus_hardware_enabled);
4102 out_free_0:
4103 kvm_irqfd_exit();
4104 out_irqfd:
4105 kvm_arch_exit();
4106 out_fail:
4107 return r;
4108 }
4109 EXPORT_SYMBOL_GPL(kvm_init);
4110
4111 void kvm_exit(void)
4112 {
4113 debugfs_remove_recursive(kvm_debugfs_dir);
4114 misc_deregister(&kvm_dev);
4115 kmem_cache_destroy(kvm_vcpu_cache);
4116 kvm_async_pf_deinit();
4117 unregister_syscore_ops(&kvm_syscore_ops);
4118 unregister_reboot_notifier(&kvm_reboot_notifier);
4119 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4120 on_each_cpu(hardware_disable_nolock, NULL, 1);
4121 kvm_arch_hardware_unsetup();
4122 kvm_arch_exit();
4123 kvm_irqfd_exit();
4124 free_cpumask_var(cpus_hardware_enabled);
4125 kvm_vfio_ops_exit();
4126 }
4127 EXPORT_SYMBOL_GPL(kvm_exit);