]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - virt/kvm/kvm_main.c
KVM: ARM: vgic: register kvm_device_ops dynamically
[mirror_ubuntu-jammy-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 /*
68 * Ordering of locks:
69 *
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71 */
72
73 DEFINE_SPINLOCK(kvm_lock);
74 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
75 LIST_HEAD(vm_list);
76
77 static cpumask_var_t cpus_hardware_enabled;
78 static int kvm_usage_count = 0;
79 static atomic_t hardware_enable_failed;
80
81 struct kmem_cache *kvm_vcpu_cache;
82 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
83
84 static __read_mostly struct preempt_ops kvm_preempt_ops;
85
86 struct dentry *kvm_debugfs_dir;
87
88 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
89 unsigned long arg);
90 #ifdef CONFIG_COMPAT
91 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
92 unsigned long arg);
93 #endif
94 static int hardware_enable_all(void);
95 static void hardware_disable_all(void);
96
97 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
98
99 static void kvm_release_pfn_dirty(pfn_t pfn);
100 static void mark_page_dirty_in_slot(struct kvm *kvm,
101 struct kvm_memory_slot *memslot, gfn_t gfn);
102
103 __visible bool kvm_rebooting;
104 EXPORT_SYMBOL_GPL(kvm_rebooting);
105
106 static bool largepages_enabled = true;
107
108 bool kvm_is_mmio_pfn(pfn_t pfn)
109 {
110 if (pfn_valid(pfn))
111 return PageReserved(pfn_to_page(pfn));
112
113 return true;
114 }
115
116 /*
117 * Switches to specified vcpu, until a matching vcpu_put()
118 */
119 int vcpu_load(struct kvm_vcpu *vcpu)
120 {
121 int cpu;
122
123 if (mutex_lock_killable(&vcpu->mutex))
124 return -EINTR;
125 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
126 /* The thread running this VCPU changed. */
127 struct pid *oldpid = vcpu->pid;
128 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
129 rcu_assign_pointer(vcpu->pid, newpid);
130 if (oldpid)
131 synchronize_rcu();
132 put_pid(oldpid);
133 }
134 cpu = get_cpu();
135 preempt_notifier_register(&vcpu->preempt_notifier);
136 kvm_arch_vcpu_load(vcpu, cpu);
137 put_cpu();
138 return 0;
139 }
140
141 void vcpu_put(struct kvm_vcpu *vcpu)
142 {
143 preempt_disable();
144 kvm_arch_vcpu_put(vcpu);
145 preempt_notifier_unregister(&vcpu->preempt_notifier);
146 preempt_enable();
147 mutex_unlock(&vcpu->mutex);
148 }
149
150 static void ack_flush(void *_completed)
151 {
152 }
153
154 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
155 {
156 int i, cpu, me;
157 cpumask_var_t cpus;
158 bool called = true;
159 struct kvm_vcpu *vcpu;
160
161 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
162
163 me = get_cpu();
164 kvm_for_each_vcpu(i, vcpu, kvm) {
165 kvm_make_request(req, vcpu);
166 cpu = vcpu->cpu;
167
168 /* Set ->requests bit before we read ->mode */
169 smp_mb();
170
171 if (cpus != NULL && cpu != -1 && cpu != me &&
172 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
173 cpumask_set_cpu(cpu, cpus);
174 }
175 if (unlikely(cpus == NULL))
176 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
177 else if (!cpumask_empty(cpus))
178 smp_call_function_many(cpus, ack_flush, NULL, 1);
179 else
180 called = false;
181 put_cpu();
182 free_cpumask_var(cpus);
183 return called;
184 }
185
186 void kvm_flush_remote_tlbs(struct kvm *kvm)
187 {
188 long dirty_count = kvm->tlbs_dirty;
189
190 smp_mb();
191 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
192 ++kvm->stat.remote_tlb_flush;
193 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
194 }
195 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
196
197 void kvm_reload_remote_mmus(struct kvm *kvm)
198 {
199 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
200 }
201
202 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
203 {
204 make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
205 }
206
207 void kvm_make_scan_ioapic_request(struct kvm *kvm)
208 {
209 make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
210 }
211
212 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
213 {
214 struct page *page;
215 int r;
216
217 mutex_init(&vcpu->mutex);
218 vcpu->cpu = -1;
219 vcpu->kvm = kvm;
220 vcpu->vcpu_id = id;
221 vcpu->pid = NULL;
222 init_waitqueue_head(&vcpu->wq);
223 kvm_async_pf_vcpu_init(vcpu);
224
225 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
226 if (!page) {
227 r = -ENOMEM;
228 goto fail;
229 }
230 vcpu->run = page_address(page);
231
232 kvm_vcpu_set_in_spin_loop(vcpu, false);
233 kvm_vcpu_set_dy_eligible(vcpu, false);
234 vcpu->preempted = false;
235
236 r = kvm_arch_vcpu_init(vcpu);
237 if (r < 0)
238 goto fail_free_run;
239 return 0;
240
241 fail_free_run:
242 free_page((unsigned long)vcpu->run);
243 fail:
244 return r;
245 }
246 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
247
248 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
249 {
250 put_pid(vcpu->pid);
251 kvm_arch_vcpu_uninit(vcpu);
252 free_page((unsigned long)vcpu->run);
253 }
254 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
255
256 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
257 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
258 {
259 return container_of(mn, struct kvm, mmu_notifier);
260 }
261
262 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
263 struct mm_struct *mm,
264 unsigned long address)
265 {
266 struct kvm *kvm = mmu_notifier_to_kvm(mn);
267 int need_tlb_flush, idx;
268
269 /*
270 * When ->invalidate_page runs, the linux pte has been zapped
271 * already but the page is still allocated until
272 * ->invalidate_page returns. So if we increase the sequence
273 * here the kvm page fault will notice if the spte can't be
274 * established because the page is going to be freed. If
275 * instead the kvm page fault establishes the spte before
276 * ->invalidate_page runs, kvm_unmap_hva will release it
277 * before returning.
278 *
279 * The sequence increase only need to be seen at spin_unlock
280 * time, and not at spin_lock time.
281 *
282 * Increasing the sequence after the spin_unlock would be
283 * unsafe because the kvm page fault could then establish the
284 * pte after kvm_unmap_hva returned, without noticing the page
285 * is going to be freed.
286 */
287 idx = srcu_read_lock(&kvm->srcu);
288 spin_lock(&kvm->mmu_lock);
289
290 kvm->mmu_notifier_seq++;
291 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
292 /* we've to flush the tlb before the pages can be freed */
293 if (need_tlb_flush)
294 kvm_flush_remote_tlbs(kvm);
295
296 spin_unlock(&kvm->mmu_lock);
297 srcu_read_unlock(&kvm->srcu, idx);
298 }
299
300 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
301 struct mm_struct *mm,
302 unsigned long address,
303 pte_t pte)
304 {
305 struct kvm *kvm = mmu_notifier_to_kvm(mn);
306 int idx;
307
308 idx = srcu_read_lock(&kvm->srcu);
309 spin_lock(&kvm->mmu_lock);
310 kvm->mmu_notifier_seq++;
311 kvm_set_spte_hva(kvm, address, pte);
312 spin_unlock(&kvm->mmu_lock);
313 srcu_read_unlock(&kvm->srcu, idx);
314 }
315
316 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
317 struct mm_struct *mm,
318 unsigned long start,
319 unsigned long end)
320 {
321 struct kvm *kvm = mmu_notifier_to_kvm(mn);
322 int need_tlb_flush = 0, idx;
323
324 idx = srcu_read_lock(&kvm->srcu);
325 spin_lock(&kvm->mmu_lock);
326 /*
327 * The count increase must become visible at unlock time as no
328 * spte can be established without taking the mmu_lock and
329 * count is also read inside the mmu_lock critical section.
330 */
331 kvm->mmu_notifier_count++;
332 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
333 need_tlb_flush |= kvm->tlbs_dirty;
334 /* we've to flush the tlb before the pages can be freed */
335 if (need_tlb_flush)
336 kvm_flush_remote_tlbs(kvm);
337
338 spin_unlock(&kvm->mmu_lock);
339 srcu_read_unlock(&kvm->srcu, idx);
340 }
341
342 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
343 struct mm_struct *mm,
344 unsigned long start,
345 unsigned long end)
346 {
347 struct kvm *kvm = mmu_notifier_to_kvm(mn);
348
349 spin_lock(&kvm->mmu_lock);
350 /*
351 * This sequence increase will notify the kvm page fault that
352 * the page that is going to be mapped in the spte could have
353 * been freed.
354 */
355 kvm->mmu_notifier_seq++;
356 smp_wmb();
357 /*
358 * The above sequence increase must be visible before the
359 * below count decrease, which is ensured by the smp_wmb above
360 * in conjunction with the smp_rmb in mmu_notifier_retry().
361 */
362 kvm->mmu_notifier_count--;
363 spin_unlock(&kvm->mmu_lock);
364
365 BUG_ON(kvm->mmu_notifier_count < 0);
366 }
367
368 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
369 struct mm_struct *mm,
370 unsigned long address)
371 {
372 struct kvm *kvm = mmu_notifier_to_kvm(mn);
373 int young, idx;
374
375 idx = srcu_read_lock(&kvm->srcu);
376 spin_lock(&kvm->mmu_lock);
377
378 young = kvm_age_hva(kvm, address);
379 if (young)
380 kvm_flush_remote_tlbs(kvm);
381
382 spin_unlock(&kvm->mmu_lock);
383 srcu_read_unlock(&kvm->srcu, idx);
384
385 return young;
386 }
387
388 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
389 struct mm_struct *mm,
390 unsigned long address)
391 {
392 struct kvm *kvm = mmu_notifier_to_kvm(mn);
393 int young, idx;
394
395 idx = srcu_read_lock(&kvm->srcu);
396 spin_lock(&kvm->mmu_lock);
397 young = kvm_test_age_hva(kvm, address);
398 spin_unlock(&kvm->mmu_lock);
399 srcu_read_unlock(&kvm->srcu, idx);
400
401 return young;
402 }
403
404 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
405 struct mm_struct *mm)
406 {
407 struct kvm *kvm = mmu_notifier_to_kvm(mn);
408 int idx;
409
410 idx = srcu_read_lock(&kvm->srcu);
411 kvm_arch_flush_shadow_all(kvm);
412 srcu_read_unlock(&kvm->srcu, idx);
413 }
414
415 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
416 .invalidate_page = kvm_mmu_notifier_invalidate_page,
417 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
418 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
419 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
420 .test_young = kvm_mmu_notifier_test_young,
421 .change_pte = kvm_mmu_notifier_change_pte,
422 .release = kvm_mmu_notifier_release,
423 };
424
425 static int kvm_init_mmu_notifier(struct kvm *kvm)
426 {
427 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
428 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
429 }
430
431 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
432
433 static int kvm_init_mmu_notifier(struct kvm *kvm)
434 {
435 return 0;
436 }
437
438 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
439
440 static void kvm_init_memslots_id(struct kvm *kvm)
441 {
442 int i;
443 struct kvm_memslots *slots = kvm->memslots;
444
445 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
446 slots->id_to_index[i] = slots->memslots[i].id = i;
447 }
448
449 static struct kvm *kvm_create_vm(unsigned long type)
450 {
451 int r, i;
452 struct kvm *kvm = kvm_arch_alloc_vm();
453
454 if (!kvm)
455 return ERR_PTR(-ENOMEM);
456
457 r = kvm_arch_init_vm(kvm, type);
458 if (r)
459 goto out_err_no_disable;
460
461 r = hardware_enable_all();
462 if (r)
463 goto out_err_no_disable;
464
465 #ifdef CONFIG_HAVE_KVM_IRQCHIP
466 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
467 #endif
468 #ifdef CONFIG_HAVE_KVM_IRQFD
469 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
470 #endif
471
472 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
473
474 r = -ENOMEM;
475 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
476 if (!kvm->memslots)
477 goto out_err_no_srcu;
478
479 /*
480 * Init kvm generation close to the maximum to easily test the
481 * code of handling generation number wrap-around.
482 */
483 kvm->memslots->generation = -150;
484
485 kvm_init_memslots_id(kvm);
486 if (init_srcu_struct(&kvm->srcu))
487 goto out_err_no_srcu;
488 if (init_srcu_struct(&kvm->irq_srcu))
489 goto out_err_no_irq_srcu;
490 for (i = 0; i < KVM_NR_BUSES; i++) {
491 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
492 GFP_KERNEL);
493 if (!kvm->buses[i])
494 goto out_err;
495 }
496
497 spin_lock_init(&kvm->mmu_lock);
498 kvm->mm = current->mm;
499 atomic_inc(&kvm->mm->mm_count);
500 kvm_eventfd_init(kvm);
501 mutex_init(&kvm->lock);
502 mutex_init(&kvm->irq_lock);
503 mutex_init(&kvm->slots_lock);
504 atomic_set(&kvm->users_count, 1);
505 INIT_LIST_HEAD(&kvm->devices);
506
507 r = kvm_init_mmu_notifier(kvm);
508 if (r)
509 goto out_err;
510
511 spin_lock(&kvm_lock);
512 list_add(&kvm->vm_list, &vm_list);
513 spin_unlock(&kvm_lock);
514
515 return kvm;
516
517 out_err:
518 cleanup_srcu_struct(&kvm->irq_srcu);
519 out_err_no_irq_srcu:
520 cleanup_srcu_struct(&kvm->srcu);
521 out_err_no_srcu:
522 hardware_disable_all();
523 out_err_no_disable:
524 for (i = 0; i < KVM_NR_BUSES; i++)
525 kfree(kvm->buses[i]);
526 kfree(kvm->memslots);
527 kvm_arch_free_vm(kvm);
528 return ERR_PTR(r);
529 }
530
531 /*
532 * Avoid using vmalloc for a small buffer.
533 * Should not be used when the size is statically known.
534 */
535 void *kvm_kvzalloc(unsigned long size)
536 {
537 if (size > PAGE_SIZE)
538 return vzalloc(size);
539 else
540 return kzalloc(size, GFP_KERNEL);
541 }
542
543 void kvm_kvfree(const void *addr)
544 {
545 if (is_vmalloc_addr(addr))
546 vfree(addr);
547 else
548 kfree(addr);
549 }
550
551 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
552 {
553 if (!memslot->dirty_bitmap)
554 return;
555
556 kvm_kvfree(memslot->dirty_bitmap);
557 memslot->dirty_bitmap = NULL;
558 }
559
560 /*
561 * Free any memory in @free but not in @dont.
562 */
563 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
564 struct kvm_memory_slot *dont)
565 {
566 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
567 kvm_destroy_dirty_bitmap(free);
568
569 kvm_arch_free_memslot(kvm, free, dont);
570
571 free->npages = 0;
572 }
573
574 static void kvm_free_physmem(struct kvm *kvm)
575 {
576 struct kvm_memslots *slots = kvm->memslots;
577 struct kvm_memory_slot *memslot;
578
579 kvm_for_each_memslot(memslot, slots)
580 kvm_free_physmem_slot(kvm, memslot, NULL);
581
582 kfree(kvm->memslots);
583 }
584
585 static void kvm_destroy_devices(struct kvm *kvm)
586 {
587 struct list_head *node, *tmp;
588
589 list_for_each_safe(node, tmp, &kvm->devices) {
590 struct kvm_device *dev =
591 list_entry(node, struct kvm_device, vm_node);
592
593 list_del(node);
594 dev->ops->destroy(dev);
595 }
596 }
597
598 static void kvm_destroy_vm(struct kvm *kvm)
599 {
600 int i;
601 struct mm_struct *mm = kvm->mm;
602
603 kvm_arch_sync_events(kvm);
604 spin_lock(&kvm_lock);
605 list_del(&kvm->vm_list);
606 spin_unlock(&kvm_lock);
607 kvm_free_irq_routing(kvm);
608 for (i = 0; i < KVM_NR_BUSES; i++)
609 kvm_io_bus_destroy(kvm->buses[i]);
610 kvm_coalesced_mmio_free(kvm);
611 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
612 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
613 #else
614 kvm_arch_flush_shadow_all(kvm);
615 #endif
616 kvm_arch_destroy_vm(kvm);
617 kvm_destroy_devices(kvm);
618 kvm_free_physmem(kvm);
619 cleanup_srcu_struct(&kvm->irq_srcu);
620 cleanup_srcu_struct(&kvm->srcu);
621 kvm_arch_free_vm(kvm);
622 hardware_disable_all();
623 mmdrop(mm);
624 }
625
626 void kvm_get_kvm(struct kvm *kvm)
627 {
628 atomic_inc(&kvm->users_count);
629 }
630 EXPORT_SYMBOL_GPL(kvm_get_kvm);
631
632 void kvm_put_kvm(struct kvm *kvm)
633 {
634 if (atomic_dec_and_test(&kvm->users_count))
635 kvm_destroy_vm(kvm);
636 }
637 EXPORT_SYMBOL_GPL(kvm_put_kvm);
638
639
640 static int kvm_vm_release(struct inode *inode, struct file *filp)
641 {
642 struct kvm *kvm = filp->private_data;
643
644 kvm_irqfd_release(kvm);
645
646 kvm_put_kvm(kvm);
647 return 0;
648 }
649
650 /*
651 * Allocation size is twice as large as the actual dirty bitmap size.
652 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
653 */
654 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
655 {
656 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
657
658 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
659 if (!memslot->dirty_bitmap)
660 return -ENOMEM;
661
662 return 0;
663 }
664
665 static int cmp_memslot(const void *slot1, const void *slot2)
666 {
667 struct kvm_memory_slot *s1, *s2;
668
669 s1 = (struct kvm_memory_slot *)slot1;
670 s2 = (struct kvm_memory_slot *)slot2;
671
672 if (s1->npages < s2->npages)
673 return 1;
674 if (s1->npages > s2->npages)
675 return -1;
676
677 return 0;
678 }
679
680 /*
681 * Sort the memslots base on its size, so the larger slots
682 * will get better fit.
683 */
684 static void sort_memslots(struct kvm_memslots *slots)
685 {
686 int i;
687
688 sort(slots->memslots, KVM_MEM_SLOTS_NUM,
689 sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
690
691 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
692 slots->id_to_index[slots->memslots[i].id] = i;
693 }
694
695 static void update_memslots(struct kvm_memslots *slots,
696 struct kvm_memory_slot *new)
697 {
698 if (new) {
699 int id = new->id;
700 struct kvm_memory_slot *old = id_to_memslot(slots, id);
701 unsigned long npages = old->npages;
702
703 *old = *new;
704 if (new->npages != npages)
705 sort_memslots(slots);
706 }
707 }
708
709 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
710 {
711 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
712
713 #ifdef __KVM_HAVE_READONLY_MEM
714 valid_flags |= KVM_MEM_READONLY;
715 #endif
716
717 if (mem->flags & ~valid_flags)
718 return -EINVAL;
719
720 return 0;
721 }
722
723 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
724 struct kvm_memslots *slots, struct kvm_memory_slot *new)
725 {
726 struct kvm_memslots *old_memslots = kvm->memslots;
727
728 /*
729 * Set the low bit in the generation, which disables SPTE caching
730 * until the end of synchronize_srcu_expedited.
731 */
732 WARN_ON(old_memslots->generation & 1);
733 slots->generation = old_memslots->generation + 1;
734
735 update_memslots(slots, new);
736 rcu_assign_pointer(kvm->memslots, slots);
737 synchronize_srcu_expedited(&kvm->srcu);
738
739 /*
740 * Increment the new memslot generation a second time. This prevents
741 * vm exits that race with memslot updates from caching a memslot
742 * generation that will (potentially) be valid forever.
743 */
744 slots->generation++;
745
746 kvm_arch_memslots_updated(kvm);
747
748 return old_memslots;
749 }
750
751 /*
752 * Allocate some memory and give it an address in the guest physical address
753 * space.
754 *
755 * Discontiguous memory is allowed, mostly for framebuffers.
756 *
757 * Must be called holding mmap_sem for write.
758 */
759 int __kvm_set_memory_region(struct kvm *kvm,
760 struct kvm_userspace_memory_region *mem)
761 {
762 int r;
763 gfn_t base_gfn;
764 unsigned long npages;
765 struct kvm_memory_slot *slot;
766 struct kvm_memory_slot old, new;
767 struct kvm_memslots *slots = NULL, *old_memslots;
768 enum kvm_mr_change change;
769
770 r = check_memory_region_flags(mem);
771 if (r)
772 goto out;
773
774 r = -EINVAL;
775 /* General sanity checks */
776 if (mem->memory_size & (PAGE_SIZE - 1))
777 goto out;
778 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
779 goto out;
780 /* We can read the guest memory with __xxx_user() later on. */
781 if ((mem->slot < KVM_USER_MEM_SLOTS) &&
782 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
783 !access_ok(VERIFY_WRITE,
784 (void __user *)(unsigned long)mem->userspace_addr,
785 mem->memory_size)))
786 goto out;
787 if (mem->slot >= KVM_MEM_SLOTS_NUM)
788 goto out;
789 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
790 goto out;
791
792 slot = id_to_memslot(kvm->memslots, mem->slot);
793 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
794 npages = mem->memory_size >> PAGE_SHIFT;
795
796 if (npages > KVM_MEM_MAX_NR_PAGES)
797 goto out;
798
799 if (!npages)
800 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
801
802 new = old = *slot;
803
804 new.id = mem->slot;
805 new.base_gfn = base_gfn;
806 new.npages = npages;
807 new.flags = mem->flags;
808
809 if (npages) {
810 if (!old.npages)
811 change = KVM_MR_CREATE;
812 else { /* Modify an existing slot. */
813 if ((mem->userspace_addr != old.userspace_addr) ||
814 (npages != old.npages) ||
815 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
816 goto out;
817
818 if (base_gfn != old.base_gfn)
819 change = KVM_MR_MOVE;
820 else if (new.flags != old.flags)
821 change = KVM_MR_FLAGS_ONLY;
822 else { /* Nothing to change. */
823 r = 0;
824 goto out;
825 }
826 }
827 } else if (old.npages) {
828 change = KVM_MR_DELETE;
829 } else /* Modify a non-existent slot: disallowed. */
830 goto out;
831
832 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
833 /* Check for overlaps */
834 r = -EEXIST;
835 kvm_for_each_memslot(slot, kvm->memslots) {
836 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
837 (slot->id == mem->slot))
838 continue;
839 if (!((base_gfn + npages <= slot->base_gfn) ||
840 (base_gfn >= slot->base_gfn + slot->npages)))
841 goto out;
842 }
843 }
844
845 /* Free page dirty bitmap if unneeded */
846 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
847 new.dirty_bitmap = NULL;
848
849 r = -ENOMEM;
850 if (change == KVM_MR_CREATE) {
851 new.userspace_addr = mem->userspace_addr;
852
853 if (kvm_arch_create_memslot(kvm, &new, npages))
854 goto out_free;
855 }
856
857 /* Allocate page dirty bitmap if needed */
858 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
859 if (kvm_create_dirty_bitmap(&new) < 0)
860 goto out_free;
861 }
862
863 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
864 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
865 GFP_KERNEL);
866 if (!slots)
867 goto out_free;
868 slot = id_to_memslot(slots, mem->slot);
869 slot->flags |= KVM_MEMSLOT_INVALID;
870
871 old_memslots = install_new_memslots(kvm, slots, NULL);
872
873 /* slot was deleted or moved, clear iommu mapping */
874 kvm_iommu_unmap_pages(kvm, &old);
875 /* From this point no new shadow pages pointing to a deleted,
876 * or moved, memslot will be created.
877 *
878 * validation of sp->gfn happens in:
879 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
880 * - kvm_is_visible_gfn (mmu_check_roots)
881 */
882 kvm_arch_flush_shadow_memslot(kvm, slot);
883 slots = old_memslots;
884 }
885
886 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
887 if (r)
888 goto out_slots;
889
890 r = -ENOMEM;
891 /*
892 * We can re-use the old_memslots from above, the only difference
893 * from the currently installed memslots is the invalid flag. This
894 * will get overwritten by update_memslots anyway.
895 */
896 if (!slots) {
897 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
898 GFP_KERNEL);
899 if (!slots)
900 goto out_free;
901 }
902
903 /* actual memory is freed via old in kvm_free_physmem_slot below */
904 if (change == KVM_MR_DELETE) {
905 new.dirty_bitmap = NULL;
906 memset(&new.arch, 0, sizeof(new.arch));
907 }
908
909 old_memslots = install_new_memslots(kvm, slots, &new);
910
911 kvm_arch_commit_memory_region(kvm, mem, &old, change);
912
913 kvm_free_physmem_slot(kvm, &old, &new);
914 kfree(old_memslots);
915
916 /*
917 * IOMMU mapping: New slots need to be mapped. Old slots need to be
918 * un-mapped and re-mapped if their base changes. Since base change
919 * unmapping is handled above with slot deletion, mapping alone is
920 * needed here. Anything else the iommu might care about for existing
921 * slots (size changes, userspace addr changes and read-only flag
922 * changes) is disallowed above, so any other attribute changes getting
923 * here can be skipped.
924 */
925 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
926 r = kvm_iommu_map_pages(kvm, &new);
927 return r;
928 }
929
930 return 0;
931
932 out_slots:
933 kfree(slots);
934 out_free:
935 kvm_free_physmem_slot(kvm, &new, &old);
936 out:
937 return r;
938 }
939 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
940
941 int kvm_set_memory_region(struct kvm *kvm,
942 struct kvm_userspace_memory_region *mem)
943 {
944 int r;
945
946 mutex_lock(&kvm->slots_lock);
947 r = __kvm_set_memory_region(kvm, mem);
948 mutex_unlock(&kvm->slots_lock);
949 return r;
950 }
951 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
952
953 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
954 struct kvm_userspace_memory_region *mem)
955 {
956 if (mem->slot >= KVM_USER_MEM_SLOTS)
957 return -EINVAL;
958 return kvm_set_memory_region(kvm, mem);
959 }
960
961 int kvm_get_dirty_log(struct kvm *kvm,
962 struct kvm_dirty_log *log, int *is_dirty)
963 {
964 struct kvm_memory_slot *memslot;
965 int r, i;
966 unsigned long n;
967 unsigned long any = 0;
968
969 r = -EINVAL;
970 if (log->slot >= KVM_USER_MEM_SLOTS)
971 goto out;
972
973 memslot = id_to_memslot(kvm->memslots, log->slot);
974 r = -ENOENT;
975 if (!memslot->dirty_bitmap)
976 goto out;
977
978 n = kvm_dirty_bitmap_bytes(memslot);
979
980 for (i = 0; !any && i < n/sizeof(long); ++i)
981 any = memslot->dirty_bitmap[i];
982
983 r = -EFAULT;
984 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
985 goto out;
986
987 if (any)
988 *is_dirty = 1;
989
990 r = 0;
991 out:
992 return r;
993 }
994 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
995
996 bool kvm_largepages_enabled(void)
997 {
998 return largepages_enabled;
999 }
1000
1001 void kvm_disable_largepages(void)
1002 {
1003 largepages_enabled = false;
1004 }
1005 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1006
1007 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1008 {
1009 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1010 }
1011 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1012
1013 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1014 {
1015 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1016
1017 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1018 memslot->flags & KVM_MEMSLOT_INVALID)
1019 return 0;
1020
1021 return 1;
1022 }
1023 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1024
1025 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1026 {
1027 struct vm_area_struct *vma;
1028 unsigned long addr, size;
1029
1030 size = PAGE_SIZE;
1031
1032 addr = gfn_to_hva(kvm, gfn);
1033 if (kvm_is_error_hva(addr))
1034 return PAGE_SIZE;
1035
1036 down_read(&current->mm->mmap_sem);
1037 vma = find_vma(current->mm, addr);
1038 if (!vma)
1039 goto out;
1040
1041 size = vma_kernel_pagesize(vma);
1042
1043 out:
1044 up_read(&current->mm->mmap_sem);
1045
1046 return size;
1047 }
1048
1049 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1050 {
1051 return slot->flags & KVM_MEM_READONLY;
1052 }
1053
1054 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1055 gfn_t *nr_pages, bool write)
1056 {
1057 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1058 return KVM_HVA_ERR_BAD;
1059
1060 if (memslot_is_readonly(slot) && write)
1061 return KVM_HVA_ERR_RO_BAD;
1062
1063 if (nr_pages)
1064 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1065
1066 return __gfn_to_hva_memslot(slot, gfn);
1067 }
1068
1069 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1070 gfn_t *nr_pages)
1071 {
1072 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1073 }
1074
1075 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1076 gfn_t gfn)
1077 {
1078 return gfn_to_hva_many(slot, gfn, NULL);
1079 }
1080 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1081
1082 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1083 {
1084 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1085 }
1086 EXPORT_SYMBOL_GPL(gfn_to_hva);
1087
1088 /*
1089 * If writable is set to false, the hva returned by this function is only
1090 * allowed to be read.
1091 */
1092 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1093 {
1094 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1095 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1096
1097 if (!kvm_is_error_hva(hva) && writable)
1098 *writable = !memslot_is_readonly(slot);
1099
1100 return hva;
1101 }
1102
1103 static int kvm_read_hva(void *data, void __user *hva, int len)
1104 {
1105 return __copy_from_user(data, hva, len);
1106 }
1107
1108 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1109 {
1110 return __copy_from_user_inatomic(data, hva, len);
1111 }
1112
1113 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1114 unsigned long start, int write, struct page **page)
1115 {
1116 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1117
1118 if (write)
1119 flags |= FOLL_WRITE;
1120
1121 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1122 }
1123
1124 static inline int check_user_page_hwpoison(unsigned long addr)
1125 {
1126 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1127
1128 rc = __get_user_pages(current, current->mm, addr, 1,
1129 flags, NULL, NULL, NULL);
1130 return rc == -EHWPOISON;
1131 }
1132
1133 /*
1134 * The atomic path to get the writable pfn which will be stored in @pfn,
1135 * true indicates success, otherwise false is returned.
1136 */
1137 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1138 bool write_fault, bool *writable, pfn_t *pfn)
1139 {
1140 struct page *page[1];
1141 int npages;
1142
1143 if (!(async || atomic))
1144 return false;
1145
1146 /*
1147 * Fast pin a writable pfn only if it is a write fault request
1148 * or the caller allows to map a writable pfn for a read fault
1149 * request.
1150 */
1151 if (!(write_fault || writable))
1152 return false;
1153
1154 npages = __get_user_pages_fast(addr, 1, 1, page);
1155 if (npages == 1) {
1156 *pfn = page_to_pfn(page[0]);
1157
1158 if (writable)
1159 *writable = true;
1160 return true;
1161 }
1162
1163 return false;
1164 }
1165
1166 /*
1167 * The slow path to get the pfn of the specified host virtual address,
1168 * 1 indicates success, -errno is returned if error is detected.
1169 */
1170 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1171 bool *writable, pfn_t *pfn)
1172 {
1173 struct page *page[1];
1174 int npages = 0;
1175
1176 might_sleep();
1177
1178 if (writable)
1179 *writable = write_fault;
1180
1181 if (async) {
1182 down_read(&current->mm->mmap_sem);
1183 npages = get_user_page_nowait(current, current->mm,
1184 addr, write_fault, page);
1185 up_read(&current->mm->mmap_sem);
1186 } else
1187 npages = get_user_pages_fast(addr, 1, write_fault,
1188 page);
1189 if (npages != 1)
1190 return npages;
1191
1192 /* map read fault as writable if possible */
1193 if (unlikely(!write_fault) && writable) {
1194 struct page *wpage[1];
1195
1196 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1197 if (npages == 1) {
1198 *writable = true;
1199 put_page(page[0]);
1200 page[0] = wpage[0];
1201 }
1202
1203 npages = 1;
1204 }
1205 *pfn = page_to_pfn(page[0]);
1206 return npages;
1207 }
1208
1209 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1210 {
1211 if (unlikely(!(vma->vm_flags & VM_READ)))
1212 return false;
1213
1214 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1215 return false;
1216
1217 return true;
1218 }
1219
1220 /*
1221 * Pin guest page in memory and return its pfn.
1222 * @addr: host virtual address which maps memory to the guest
1223 * @atomic: whether this function can sleep
1224 * @async: whether this function need to wait IO complete if the
1225 * host page is not in the memory
1226 * @write_fault: whether we should get a writable host page
1227 * @writable: whether it allows to map a writable host page for !@write_fault
1228 *
1229 * The function will map a writable host page for these two cases:
1230 * 1): @write_fault = true
1231 * 2): @write_fault = false && @writable, @writable will tell the caller
1232 * whether the mapping is writable.
1233 */
1234 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1235 bool write_fault, bool *writable)
1236 {
1237 struct vm_area_struct *vma;
1238 pfn_t pfn = 0;
1239 int npages;
1240
1241 /* we can do it either atomically or asynchronously, not both */
1242 BUG_ON(atomic && async);
1243
1244 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1245 return pfn;
1246
1247 if (atomic)
1248 return KVM_PFN_ERR_FAULT;
1249
1250 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1251 if (npages == 1)
1252 return pfn;
1253
1254 down_read(&current->mm->mmap_sem);
1255 if (npages == -EHWPOISON ||
1256 (!async && check_user_page_hwpoison(addr))) {
1257 pfn = KVM_PFN_ERR_HWPOISON;
1258 goto exit;
1259 }
1260
1261 vma = find_vma_intersection(current->mm, addr, addr + 1);
1262
1263 if (vma == NULL)
1264 pfn = KVM_PFN_ERR_FAULT;
1265 else if ((vma->vm_flags & VM_PFNMAP)) {
1266 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1267 vma->vm_pgoff;
1268 BUG_ON(!kvm_is_mmio_pfn(pfn));
1269 } else {
1270 if (async && vma_is_valid(vma, write_fault))
1271 *async = true;
1272 pfn = KVM_PFN_ERR_FAULT;
1273 }
1274 exit:
1275 up_read(&current->mm->mmap_sem);
1276 return pfn;
1277 }
1278
1279 static pfn_t
1280 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1281 bool *async, bool write_fault, bool *writable)
1282 {
1283 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1284
1285 if (addr == KVM_HVA_ERR_RO_BAD)
1286 return KVM_PFN_ERR_RO_FAULT;
1287
1288 if (kvm_is_error_hva(addr))
1289 return KVM_PFN_NOSLOT;
1290
1291 /* Do not map writable pfn in the readonly memslot. */
1292 if (writable && memslot_is_readonly(slot)) {
1293 *writable = false;
1294 writable = NULL;
1295 }
1296
1297 return hva_to_pfn(addr, atomic, async, write_fault,
1298 writable);
1299 }
1300
1301 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1302 bool write_fault, bool *writable)
1303 {
1304 struct kvm_memory_slot *slot;
1305
1306 if (async)
1307 *async = false;
1308
1309 slot = gfn_to_memslot(kvm, gfn);
1310
1311 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1312 writable);
1313 }
1314
1315 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1316 {
1317 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1318 }
1319 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1320
1321 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1322 bool write_fault, bool *writable)
1323 {
1324 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1325 }
1326 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1327
1328 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1329 {
1330 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1331 }
1332 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1333
1334 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1335 bool *writable)
1336 {
1337 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1338 }
1339 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1340
1341 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1342 {
1343 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1344 }
1345
1346 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1347 {
1348 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1349 }
1350 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1351
1352 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1353 int nr_pages)
1354 {
1355 unsigned long addr;
1356 gfn_t entry;
1357
1358 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1359 if (kvm_is_error_hva(addr))
1360 return -1;
1361
1362 if (entry < nr_pages)
1363 return 0;
1364
1365 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1366 }
1367 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1368
1369 static struct page *kvm_pfn_to_page(pfn_t pfn)
1370 {
1371 if (is_error_noslot_pfn(pfn))
1372 return KVM_ERR_PTR_BAD_PAGE;
1373
1374 if (kvm_is_mmio_pfn(pfn)) {
1375 WARN_ON(1);
1376 return KVM_ERR_PTR_BAD_PAGE;
1377 }
1378
1379 return pfn_to_page(pfn);
1380 }
1381
1382 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1383 {
1384 pfn_t pfn;
1385
1386 pfn = gfn_to_pfn(kvm, gfn);
1387
1388 return kvm_pfn_to_page(pfn);
1389 }
1390
1391 EXPORT_SYMBOL_GPL(gfn_to_page);
1392
1393 void kvm_release_page_clean(struct page *page)
1394 {
1395 WARN_ON(is_error_page(page));
1396
1397 kvm_release_pfn_clean(page_to_pfn(page));
1398 }
1399 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1400
1401 void kvm_release_pfn_clean(pfn_t pfn)
1402 {
1403 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1404 put_page(pfn_to_page(pfn));
1405 }
1406 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1407
1408 void kvm_release_page_dirty(struct page *page)
1409 {
1410 WARN_ON(is_error_page(page));
1411
1412 kvm_release_pfn_dirty(page_to_pfn(page));
1413 }
1414 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1415
1416 static void kvm_release_pfn_dirty(pfn_t pfn)
1417 {
1418 kvm_set_pfn_dirty(pfn);
1419 kvm_release_pfn_clean(pfn);
1420 }
1421
1422 void kvm_set_pfn_dirty(pfn_t pfn)
1423 {
1424 if (!kvm_is_mmio_pfn(pfn)) {
1425 struct page *page = pfn_to_page(pfn);
1426 if (!PageReserved(page))
1427 SetPageDirty(page);
1428 }
1429 }
1430 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1431
1432 void kvm_set_pfn_accessed(pfn_t pfn)
1433 {
1434 if (!kvm_is_mmio_pfn(pfn))
1435 mark_page_accessed(pfn_to_page(pfn));
1436 }
1437 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1438
1439 void kvm_get_pfn(pfn_t pfn)
1440 {
1441 if (!kvm_is_mmio_pfn(pfn))
1442 get_page(pfn_to_page(pfn));
1443 }
1444 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1445
1446 static int next_segment(unsigned long len, int offset)
1447 {
1448 if (len > PAGE_SIZE - offset)
1449 return PAGE_SIZE - offset;
1450 else
1451 return len;
1452 }
1453
1454 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1455 int len)
1456 {
1457 int r;
1458 unsigned long addr;
1459
1460 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1461 if (kvm_is_error_hva(addr))
1462 return -EFAULT;
1463 r = kvm_read_hva(data, (void __user *)addr + offset, len);
1464 if (r)
1465 return -EFAULT;
1466 return 0;
1467 }
1468 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1469
1470 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1471 {
1472 gfn_t gfn = gpa >> PAGE_SHIFT;
1473 int seg;
1474 int offset = offset_in_page(gpa);
1475 int ret;
1476
1477 while ((seg = next_segment(len, offset)) != 0) {
1478 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1479 if (ret < 0)
1480 return ret;
1481 offset = 0;
1482 len -= seg;
1483 data += seg;
1484 ++gfn;
1485 }
1486 return 0;
1487 }
1488 EXPORT_SYMBOL_GPL(kvm_read_guest);
1489
1490 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1491 unsigned long len)
1492 {
1493 int r;
1494 unsigned long addr;
1495 gfn_t gfn = gpa >> PAGE_SHIFT;
1496 int offset = offset_in_page(gpa);
1497
1498 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1499 if (kvm_is_error_hva(addr))
1500 return -EFAULT;
1501 pagefault_disable();
1502 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1503 pagefault_enable();
1504 if (r)
1505 return -EFAULT;
1506 return 0;
1507 }
1508 EXPORT_SYMBOL(kvm_read_guest_atomic);
1509
1510 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1511 int offset, int len)
1512 {
1513 int r;
1514 unsigned long addr;
1515
1516 addr = gfn_to_hva(kvm, gfn);
1517 if (kvm_is_error_hva(addr))
1518 return -EFAULT;
1519 r = __copy_to_user((void __user *)addr + offset, data, len);
1520 if (r)
1521 return -EFAULT;
1522 mark_page_dirty(kvm, gfn);
1523 return 0;
1524 }
1525 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1526
1527 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1528 unsigned long len)
1529 {
1530 gfn_t gfn = gpa >> PAGE_SHIFT;
1531 int seg;
1532 int offset = offset_in_page(gpa);
1533 int ret;
1534
1535 while ((seg = next_segment(len, offset)) != 0) {
1536 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1537 if (ret < 0)
1538 return ret;
1539 offset = 0;
1540 len -= seg;
1541 data += seg;
1542 ++gfn;
1543 }
1544 return 0;
1545 }
1546
1547 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1548 gpa_t gpa, unsigned long len)
1549 {
1550 struct kvm_memslots *slots = kvm_memslots(kvm);
1551 int offset = offset_in_page(gpa);
1552 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1553 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1554 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1555 gfn_t nr_pages_avail;
1556
1557 ghc->gpa = gpa;
1558 ghc->generation = slots->generation;
1559 ghc->len = len;
1560 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1561 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1562 if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1563 ghc->hva += offset;
1564 } else {
1565 /*
1566 * If the requested region crosses two memslots, we still
1567 * verify that the entire region is valid here.
1568 */
1569 while (start_gfn <= end_gfn) {
1570 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1571 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1572 &nr_pages_avail);
1573 if (kvm_is_error_hva(ghc->hva))
1574 return -EFAULT;
1575 start_gfn += nr_pages_avail;
1576 }
1577 /* Use the slow path for cross page reads and writes. */
1578 ghc->memslot = NULL;
1579 }
1580 return 0;
1581 }
1582 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1583
1584 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1585 void *data, unsigned long len)
1586 {
1587 struct kvm_memslots *slots = kvm_memslots(kvm);
1588 int r;
1589
1590 BUG_ON(len > ghc->len);
1591
1592 if (slots->generation != ghc->generation)
1593 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1594
1595 if (unlikely(!ghc->memslot))
1596 return kvm_write_guest(kvm, ghc->gpa, data, len);
1597
1598 if (kvm_is_error_hva(ghc->hva))
1599 return -EFAULT;
1600
1601 r = __copy_to_user((void __user *)ghc->hva, data, len);
1602 if (r)
1603 return -EFAULT;
1604 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1605
1606 return 0;
1607 }
1608 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1609
1610 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1611 void *data, unsigned long len)
1612 {
1613 struct kvm_memslots *slots = kvm_memslots(kvm);
1614 int r;
1615
1616 BUG_ON(len > ghc->len);
1617
1618 if (slots->generation != ghc->generation)
1619 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1620
1621 if (unlikely(!ghc->memslot))
1622 return kvm_read_guest(kvm, ghc->gpa, data, len);
1623
1624 if (kvm_is_error_hva(ghc->hva))
1625 return -EFAULT;
1626
1627 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1628 if (r)
1629 return -EFAULT;
1630
1631 return 0;
1632 }
1633 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1634
1635 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1636 {
1637 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1638
1639 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1640 }
1641 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1642
1643 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1644 {
1645 gfn_t gfn = gpa >> PAGE_SHIFT;
1646 int seg;
1647 int offset = offset_in_page(gpa);
1648 int ret;
1649
1650 while ((seg = next_segment(len, offset)) != 0) {
1651 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1652 if (ret < 0)
1653 return ret;
1654 offset = 0;
1655 len -= seg;
1656 ++gfn;
1657 }
1658 return 0;
1659 }
1660 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1661
1662 static void mark_page_dirty_in_slot(struct kvm *kvm,
1663 struct kvm_memory_slot *memslot,
1664 gfn_t gfn)
1665 {
1666 if (memslot && memslot->dirty_bitmap) {
1667 unsigned long rel_gfn = gfn - memslot->base_gfn;
1668
1669 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1670 }
1671 }
1672
1673 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1674 {
1675 struct kvm_memory_slot *memslot;
1676
1677 memslot = gfn_to_memslot(kvm, gfn);
1678 mark_page_dirty_in_slot(kvm, memslot, gfn);
1679 }
1680 EXPORT_SYMBOL_GPL(mark_page_dirty);
1681
1682 /*
1683 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1684 */
1685 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1686 {
1687 DEFINE_WAIT(wait);
1688
1689 for (;;) {
1690 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1691
1692 if (kvm_arch_vcpu_runnable(vcpu)) {
1693 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1694 break;
1695 }
1696 if (kvm_cpu_has_pending_timer(vcpu))
1697 break;
1698 if (signal_pending(current))
1699 break;
1700
1701 schedule();
1702 }
1703
1704 finish_wait(&vcpu->wq, &wait);
1705 }
1706 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1707
1708 #ifndef CONFIG_S390
1709 /*
1710 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1711 */
1712 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1713 {
1714 int me;
1715 int cpu = vcpu->cpu;
1716 wait_queue_head_t *wqp;
1717
1718 wqp = kvm_arch_vcpu_wq(vcpu);
1719 if (waitqueue_active(wqp)) {
1720 wake_up_interruptible(wqp);
1721 ++vcpu->stat.halt_wakeup;
1722 }
1723
1724 me = get_cpu();
1725 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1726 if (kvm_arch_vcpu_should_kick(vcpu))
1727 smp_send_reschedule(cpu);
1728 put_cpu();
1729 }
1730 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1731 #endif /* !CONFIG_S390 */
1732
1733 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1734 {
1735 struct pid *pid;
1736 struct task_struct *task = NULL;
1737 int ret = 0;
1738
1739 rcu_read_lock();
1740 pid = rcu_dereference(target->pid);
1741 if (pid)
1742 task = get_pid_task(target->pid, PIDTYPE_PID);
1743 rcu_read_unlock();
1744 if (!task)
1745 return ret;
1746 if (task->flags & PF_VCPU) {
1747 put_task_struct(task);
1748 return ret;
1749 }
1750 ret = yield_to(task, 1);
1751 put_task_struct(task);
1752
1753 return ret;
1754 }
1755 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1756
1757 /*
1758 * Helper that checks whether a VCPU is eligible for directed yield.
1759 * Most eligible candidate to yield is decided by following heuristics:
1760 *
1761 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1762 * (preempted lock holder), indicated by @in_spin_loop.
1763 * Set at the beiginning and cleared at the end of interception/PLE handler.
1764 *
1765 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1766 * chance last time (mostly it has become eligible now since we have probably
1767 * yielded to lockholder in last iteration. This is done by toggling
1768 * @dy_eligible each time a VCPU checked for eligibility.)
1769 *
1770 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1771 * to preempted lock-holder could result in wrong VCPU selection and CPU
1772 * burning. Giving priority for a potential lock-holder increases lock
1773 * progress.
1774 *
1775 * Since algorithm is based on heuristics, accessing another VCPU data without
1776 * locking does not harm. It may result in trying to yield to same VCPU, fail
1777 * and continue with next VCPU and so on.
1778 */
1779 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1780 {
1781 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1782 bool eligible;
1783
1784 eligible = !vcpu->spin_loop.in_spin_loop ||
1785 vcpu->spin_loop.dy_eligible;
1786
1787 if (vcpu->spin_loop.in_spin_loop)
1788 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1789
1790 return eligible;
1791 #else
1792 return true;
1793 #endif
1794 }
1795
1796 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1797 {
1798 struct kvm *kvm = me->kvm;
1799 struct kvm_vcpu *vcpu;
1800 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1801 int yielded = 0;
1802 int try = 3;
1803 int pass;
1804 int i;
1805
1806 kvm_vcpu_set_in_spin_loop(me, true);
1807 /*
1808 * We boost the priority of a VCPU that is runnable but not
1809 * currently running, because it got preempted by something
1810 * else and called schedule in __vcpu_run. Hopefully that
1811 * VCPU is holding the lock that we need and will release it.
1812 * We approximate round-robin by starting at the last boosted VCPU.
1813 */
1814 for (pass = 0; pass < 2 && !yielded && try; pass++) {
1815 kvm_for_each_vcpu(i, vcpu, kvm) {
1816 if (!pass && i <= last_boosted_vcpu) {
1817 i = last_boosted_vcpu;
1818 continue;
1819 } else if (pass && i > last_boosted_vcpu)
1820 break;
1821 if (!ACCESS_ONCE(vcpu->preempted))
1822 continue;
1823 if (vcpu == me)
1824 continue;
1825 if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
1826 continue;
1827 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1828 continue;
1829
1830 yielded = kvm_vcpu_yield_to(vcpu);
1831 if (yielded > 0) {
1832 kvm->last_boosted_vcpu = i;
1833 break;
1834 } else if (yielded < 0) {
1835 try--;
1836 if (!try)
1837 break;
1838 }
1839 }
1840 }
1841 kvm_vcpu_set_in_spin_loop(me, false);
1842
1843 /* Ensure vcpu is not eligible during next spinloop */
1844 kvm_vcpu_set_dy_eligible(me, false);
1845 }
1846 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1847
1848 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1849 {
1850 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1851 struct page *page;
1852
1853 if (vmf->pgoff == 0)
1854 page = virt_to_page(vcpu->run);
1855 #ifdef CONFIG_X86
1856 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1857 page = virt_to_page(vcpu->arch.pio_data);
1858 #endif
1859 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1860 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1861 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1862 #endif
1863 else
1864 return kvm_arch_vcpu_fault(vcpu, vmf);
1865 get_page(page);
1866 vmf->page = page;
1867 return 0;
1868 }
1869
1870 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1871 .fault = kvm_vcpu_fault,
1872 };
1873
1874 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1875 {
1876 vma->vm_ops = &kvm_vcpu_vm_ops;
1877 return 0;
1878 }
1879
1880 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1881 {
1882 struct kvm_vcpu *vcpu = filp->private_data;
1883
1884 kvm_put_kvm(vcpu->kvm);
1885 return 0;
1886 }
1887
1888 static struct file_operations kvm_vcpu_fops = {
1889 .release = kvm_vcpu_release,
1890 .unlocked_ioctl = kvm_vcpu_ioctl,
1891 #ifdef CONFIG_COMPAT
1892 .compat_ioctl = kvm_vcpu_compat_ioctl,
1893 #endif
1894 .mmap = kvm_vcpu_mmap,
1895 .llseek = noop_llseek,
1896 };
1897
1898 /*
1899 * Allocates an inode for the vcpu.
1900 */
1901 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1902 {
1903 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1904 }
1905
1906 /*
1907 * Creates some virtual cpus. Good luck creating more than one.
1908 */
1909 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1910 {
1911 int r;
1912 struct kvm_vcpu *vcpu, *v;
1913
1914 if (id >= KVM_MAX_VCPUS)
1915 return -EINVAL;
1916
1917 vcpu = kvm_arch_vcpu_create(kvm, id);
1918 if (IS_ERR(vcpu))
1919 return PTR_ERR(vcpu);
1920
1921 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1922
1923 r = kvm_arch_vcpu_setup(vcpu);
1924 if (r)
1925 goto vcpu_destroy;
1926
1927 mutex_lock(&kvm->lock);
1928 if (!kvm_vcpu_compatible(vcpu)) {
1929 r = -EINVAL;
1930 goto unlock_vcpu_destroy;
1931 }
1932 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1933 r = -EINVAL;
1934 goto unlock_vcpu_destroy;
1935 }
1936
1937 kvm_for_each_vcpu(r, v, kvm)
1938 if (v->vcpu_id == id) {
1939 r = -EEXIST;
1940 goto unlock_vcpu_destroy;
1941 }
1942
1943 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1944
1945 /* Now it's all set up, let userspace reach it */
1946 kvm_get_kvm(kvm);
1947 r = create_vcpu_fd(vcpu);
1948 if (r < 0) {
1949 kvm_put_kvm(kvm);
1950 goto unlock_vcpu_destroy;
1951 }
1952
1953 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1954 smp_wmb();
1955 atomic_inc(&kvm->online_vcpus);
1956
1957 mutex_unlock(&kvm->lock);
1958 kvm_arch_vcpu_postcreate(vcpu);
1959 return r;
1960
1961 unlock_vcpu_destroy:
1962 mutex_unlock(&kvm->lock);
1963 vcpu_destroy:
1964 kvm_arch_vcpu_destroy(vcpu);
1965 return r;
1966 }
1967
1968 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1969 {
1970 if (sigset) {
1971 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1972 vcpu->sigset_active = 1;
1973 vcpu->sigset = *sigset;
1974 } else
1975 vcpu->sigset_active = 0;
1976 return 0;
1977 }
1978
1979 static long kvm_vcpu_ioctl(struct file *filp,
1980 unsigned int ioctl, unsigned long arg)
1981 {
1982 struct kvm_vcpu *vcpu = filp->private_data;
1983 void __user *argp = (void __user *)arg;
1984 int r;
1985 struct kvm_fpu *fpu = NULL;
1986 struct kvm_sregs *kvm_sregs = NULL;
1987
1988 if (vcpu->kvm->mm != current->mm)
1989 return -EIO;
1990
1991 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
1992 /*
1993 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1994 * so vcpu_load() would break it.
1995 */
1996 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1997 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1998 #endif
1999
2000
2001 r = vcpu_load(vcpu);
2002 if (r)
2003 return r;
2004 switch (ioctl) {
2005 case KVM_RUN:
2006 r = -EINVAL;
2007 if (arg)
2008 goto out;
2009 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2010 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2011 break;
2012 case KVM_GET_REGS: {
2013 struct kvm_regs *kvm_regs;
2014
2015 r = -ENOMEM;
2016 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2017 if (!kvm_regs)
2018 goto out;
2019 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2020 if (r)
2021 goto out_free1;
2022 r = -EFAULT;
2023 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2024 goto out_free1;
2025 r = 0;
2026 out_free1:
2027 kfree(kvm_regs);
2028 break;
2029 }
2030 case KVM_SET_REGS: {
2031 struct kvm_regs *kvm_regs;
2032
2033 r = -ENOMEM;
2034 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2035 if (IS_ERR(kvm_regs)) {
2036 r = PTR_ERR(kvm_regs);
2037 goto out;
2038 }
2039 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2040 kfree(kvm_regs);
2041 break;
2042 }
2043 case KVM_GET_SREGS: {
2044 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2045 r = -ENOMEM;
2046 if (!kvm_sregs)
2047 goto out;
2048 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2049 if (r)
2050 goto out;
2051 r = -EFAULT;
2052 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2053 goto out;
2054 r = 0;
2055 break;
2056 }
2057 case KVM_SET_SREGS: {
2058 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2059 if (IS_ERR(kvm_sregs)) {
2060 r = PTR_ERR(kvm_sregs);
2061 kvm_sregs = NULL;
2062 goto out;
2063 }
2064 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2065 break;
2066 }
2067 case KVM_GET_MP_STATE: {
2068 struct kvm_mp_state mp_state;
2069
2070 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2071 if (r)
2072 goto out;
2073 r = -EFAULT;
2074 if (copy_to_user(argp, &mp_state, sizeof mp_state))
2075 goto out;
2076 r = 0;
2077 break;
2078 }
2079 case KVM_SET_MP_STATE: {
2080 struct kvm_mp_state mp_state;
2081
2082 r = -EFAULT;
2083 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2084 goto out;
2085 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2086 break;
2087 }
2088 case KVM_TRANSLATE: {
2089 struct kvm_translation tr;
2090
2091 r = -EFAULT;
2092 if (copy_from_user(&tr, argp, sizeof tr))
2093 goto out;
2094 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2095 if (r)
2096 goto out;
2097 r = -EFAULT;
2098 if (copy_to_user(argp, &tr, sizeof tr))
2099 goto out;
2100 r = 0;
2101 break;
2102 }
2103 case KVM_SET_GUEST_DEBUG: {
2104 struct kvm_guest_debug dbg;
2105
2106 r = -EFAULT;
2107 if (copy_from_user(&dbg, argp, sizeof dbg))
2108 goto out;
2109 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2110 break;
2111 }
2112 case KVM_SET_SIGNAL_MASK: {
2113 struct kvm_signal_mask __user *sigmask_arg = argp;
2114 struct kvm_signal_mask kvm_sigmask;
2115 sigset_t sigset, *p;
2116
2117 p = NULL;
2118 if (argp) {
2119 r = -EFAULT;
2120 if (copy_from_user(&kvm_sigmask, argp,
2121 sizeof kvm_sigmask))
2122 goto out;
2123 r = -EINVAL;
2124 if (kvm_sigmask.len != sizeof sigset)
2125 goto out;
2126 r = -EFAULT;
2127 if (copy_from_user(&sigset, sigmask_arg->sigset,
2128 sizeof sigset))
2129 goto out;
2130 p = &sigset;
2131 }
2132 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2133 break;
2134 }
2135 case KVM_GET_FPU: {
2136 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2137 r = -ENOMEM;
2138 if (!fpu)
2139 goto out;
2140 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2141 if (r)
2142 goto out;
2143 r = -EFAULT;
2144 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2145 goto out;
2146 r = 0;
2147 break;
2148 }
2149 case KVM_SET_FPU: {
2150 fpu = memdup_user(argp, sizeof(*fpu));
2151 if (IS_ERR(fpu)) {
2152 r = PTR_ERR(fpu);
2153 fpu = NULL;
2154 goto out;
2155 }
2156 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2157 break;
2158 }
2159 default:
2160 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2161 }
2162 out:
2163 vcpu_put(vcpu);
2164 kfree(fpu);
2165 kfree(kvm_sregs);
2166 return r;
2167 }
2168
2169 #ifdef CONFIG_COMPAT
2170 static long kvm_vcpu_compat_ioctl(struct file *filp,
2171 unsigned int ioctl, unsigned long arg)
2172 {
2173 struct kvm_vcpu *vcpu = filp->private_data;
2174 void __user *argp = compat_ptr(arg);
2175 int r;
2176
2177 if (vcpu->kvm->mm != current->mm)
2178 return -EIO;
2179
2180 switch (ioctl) {
2181 case KVM_SET_SIGNAL_MASK: {
2182 struct kvm_signal_mask __user *sigmask_arg = argp;
2183 struct kvm_signal_mask kvm_sigmask;
2184 compat_sigset_t csigset;
2185 sigset_t sigset;
2186
2187 if (argp) {
2188 r = -EFAULT;
2189 if (copy_from_user(&kvm_sigmask, argp,
2190 sizeof kvm_sigmask))
2191 goto out;
2192 r = -EINVAL;
2193 if (kvm_sigmask.len != sizeof csigset)
2194 goto out;
2195 r = -EFAULT;
2196 if (copy_from_user(&csigset, sigmask_arg->sigset,
2197 sizeof csigset))
2198 goto out;
2199 sigset_from_compat(&sigset, &csigset);
2200 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2201 } else
2202 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2203 break;
2204 }
2205 default:
2206 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2207 }
2208
2209 out:
2210 return r;
2211 }
2212 #endif
2213
2214 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2215 int (*accessor)(struct kvm_device *dev,
2216 struct kvm_device_attr *attr),
2217 unsigned long arg)
2218 {
2219 struct kvm_device_attr attr;
2220
2221 if (!accessor)
2222 return -EPERM;
2223
2224 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2225 return -EFAULT;
2226
2227 return accessor(dev, &attr);
2228 }
2229
2230 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2231 unsigned long arg)
2232 {
2233 struct kvm_device *dev = filp->private_data;
2234
2235 switch (ioctl) {
2236 case KVM_SET_DEVICE_ATTR:
2237 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2238 case KVM_GET_DEVICE_ATTR:
2239 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2240 case KVM_HAS_DEVICE_ATTR:
2241 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2242 default:
2243 if (dev->ops->ioctl)
2244 return dev->ops->ioctl(dev, ioctl, arg);
2245
2246 return -ENOTTY;
2247 }
2248 }
2249
2250 static int kvm_device_release(struct inode *inode, struct file *filp)
2251 {
2252 struct kvm_device *dev = filp->private_data;
2253 struct kvm *kvm = dev->kvm;
2254
2255 kvm_put_kvm(kvm);
2256 return 0;
2257 }
2258
2259 static const struct file_operations kvm_device_fops = {
2260 .unlocked_ioctl = kvm_device_ioctl,
2261 #ifdef CONFIG_COMPAT
2262 .compat_ioctl = kvm_device_ioctl,
2263 #endif
2264 .release = kvm_device_release,
2265 };
2266
2267 struct kvm_device *kvm_device_from_filp(struct file *filp)
2268 {
2269 if (filp->f_op != &kvm_device_fops)
2270 return NULL;
2271
2272 return filp->private_data;
2273 }
2274
2275 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2276 #ifdef CONFIG_KVM_MPIC
2277 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2278 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2279 #endif
2280
2281 #ifdef CONFIG_KVM_XICS
2282 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2283 #endif
2284
2285 #ifdef CONFIG_KVM_VFIO
2286 [KVM_DEV_TYPE_VFIO] = &kvm_vfio_ops,
2287 #endif
2288
2289 #ifdef CONFIG_S390
2290 [KVM_DEV_TYPE_FLIC] = &kvm_flic_ops,
2291 #endif
2292 };
2293
2294 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2295 {
2296 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2297 return -ENOSPC;
2298
2299 if (kvm_device_ops_table[type] != NULL)
2300 return -EEXIST;
2301
2302 kvm_device_ops_table[type] = ops;
2303 return 0;
2304 }
2305
2306 static int kvm_ioctl_create_device(struct kvm *kvm,
2307 struct kvm_create_device *cd)
2308 {
2309 struct kvm_device_ops *ops = NULL;
2310 struct kvm_device *dev;
2311 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2312 int ret;
2313
2314 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2315 return -ENODEV;
2316
2317 ops = kvm_device_ops_table[cd->type];
2318 if (ops == NULL)
2319 return -ENODEV;
2320
2321 if (test)
2322 return 0;
2323
2324 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2325 if (!dev)
2326 return -ENOMEM;
2327
2328 dev->ops = ops;
2329 dev->kvm = kvm;
2330
2331 ret = ops->create(dev, cd->type);
2332 if (ret < 0) {
2333 kfree(dev);
2334 return ret;
2335 }
2336
2337 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2338 if (ret < 0) {
2339 ops->destroy(dev);
2340 return ret;
2341 }
2342
2343 list_add(&dev->vm_node, &kvm->devices);
2344 kvm_get_kvm(kvm);
2345 cd->fd = ret;
2346 return 0;
2347 }
2348
2349 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2350 {
2351 switch (arg) {
2352 case KVM_CAP_USER_MEMORY:
2353 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2354 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2355 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2356 case KVM_CAP_SET_BOOT_CPU_ID:
2357 #endif
2358 case KVM_CAP_INTERNAL_ERROR_DATA:
2359 #ifdef CONFIG_HAVE_KVM_MSI
2360 case KVM_CAP_SIGNAL_MSI:
2361 #endif
2362 #ifdef CONFIG_HAVE_KVM_IRQFD
2363 case KVM_CAP_IRQFD_RESAMPLE:
2364 #endif
2365 case KVM_CAP_CHECK_EXTENSION_VM:
2366 return 1;
2367 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2368 case KVM_CAP_IRQ_ROUTING:
2369 return KVM_MAX_IRQ_ROUTES;
2370 #endif
2371 default:
2372 break;
2373 }
2374 return kvm_vm_ioctl_check_extension(kvm, arg);
2375 }
2376
2377 static long kvm_vm_ioctl(struct file *filp,
2378 unsigned int ioctl, unsigned long arg)
2379 {
2380 struct kvm *kvm = filp->private_data;
2381 void __user *argp = (void __user *)arg;
2382 int r;
2383
2384 if (kvm->mm != current->mm)
2385 return -EIO;
2386 switch (ioctl) {
2387 case KVM_CREATE_VCPU:
2388 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2389 break;
2390 case KVM_SET_USER_MEMORY_REGION: {
2391 struct kvm_userspace_memory_region kvm_userspace_mem;
2392
2393 r = -EFAULT;
2394 if (copy_from_user(&kvm_userspace_mem, argp,
2395 sizeof kvm_userspace_mem))
2396 goto out;
2397
2398 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2399 break;
2400 }
2401 case KVM_GET_DIRTY_LOG: {
2402 struct kvm_dirty_log log;
2403
2404 r = -EFAULT;
2405 if (copy_from_user(&log, argp, sizeof log))
2406 goto out;
2407 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2408 break;
2409 }
2410 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2411 case KVM_REGISTER_COALESCED_MMIO: {
2412 struct kvm_coalesced_mmio_zone zone;
2413 r = -EFAULT;
2414 if (copy_from_user(&zone, argp, sizeof zone))
2415 goto out;
2416 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2417 break;
2418 }
2419 case KVM_UNREGISTER_COALESCED_MMIO: {
2420 struct kvm_coalesced_mmio_zone zone;
2421 r = -EFAULT;
2422 if (copy_from_user(&zone, argp, sizeof zone))
2423 goto out;
2424 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2425 break;
2426 }
2427 #endif
2428 case KVM_IRQFD: {
2429 struct kvm_irqfd data;
2430
2431 r = -EFAULT;
2432 if (copy_from_user(&data, argp, sizeof data))
2433 goto out;
2434 r = kvm_irqfd(kvm, &data);
2435 break;
2436 }
2437 case KVM_IOEVENTFD: {
2438 struct kvm_ioeventfd data;
2439
2440 r = -EFAULT;
2441 if (copy_from_user(&data, argp, sizeof data))
2442 goto out;
2443 r = kvm_ioeventfd(kvm, &data);
2444 break;
2445 }
2446 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2447 case KVM_SET_BOOT_CPU_ID:
2448 r = 0;
2449 mutex_lock(&kvm->lock);
2450 if (atomic_read(&kvm->online_vcpus) != 0)
2451 r = -EBUSY;
2452 else
2453 kvm->bsp_vcpu_id = arg;
2454 mutex_unlock(&kvm->lock);
2455 break;
2456 #endif
2457 #ifdef CONFIG_HAVE_KVM_MSI
2458 case KVM_SIGNAL_MSI: {
2459 struct kvm_msi msi;
2460
2461 r = -EFAULT;
2462 if (copy_from_user(&msi, argp, sizeof msi))
2463 goto out;
2464 r = kvm_send_userspace_msi(kvm, &msi);
2465 break;
2466 }
2467 #endif
2468 #ifdef __KVM_HAVE_IRQ_LINE
2469 case KVM_IRQ_LINE_STATUS:
2470 case KVM_IRQ_LINE: {
2471 struct kvm_irq_level irq_event;
2472
2473 r = -EFAULT;
2474 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2475 goto out;
2476
2477 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2478 ioctl == KVM_IRQ_LINE_STATUS);
2479 if (r)
2480 goto out;
2481
2482 r = -EFAULT;
2483 if (ioctl == KVM_IRQ_LINE_STATUS) {
2484 if (copy_to_user(argp, &irq_event, sizeof irq_event))
2485 goto out;
2486 }
2487
2488 r = 0;
2489 break;
2490 }
2491 #endif
2492 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2493 case KVM_SET_GSI_ROUTING: {
2494 struct kvm_irq_routing routing;
2495 struct kvm_irq_routing __user *urouting;
2496 struct kvm_irq_routing_entry *entries;
2497
2498 r = -EFAULT;
2499 if (copy_from_user(&routing, argp, sizeof(routing)))
2500 goto out;
2501 r = -EINVAL;
2502 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2503 goto out;
2504 if (routing.flags)
2505 goto out;
2506 r = -ENOMEM;
2507 entries = vmalloc(routing.nr * sizeof(*entries));
2508 if (!entries)
2509 goto out;
2510 r = -EFAULT;
2511 urouting = argp;
2512 if (copy_from_user(entries, urouting->entries,
2513 routing.nr * sizeof(*entries)))
2514 goto out_free_irq_routing;
2515 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2516 routing.flags);
2517 out_free_irq_routing:
2518 vfree(entries);
2519 break;
2520 }
2521 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2522 case KVM_CREATE_DEVICE: {
2523 struct kvm_create_device cd;
2524
2525 r = -EFAULT;
2526 if (copy_from_user(&cd, argp, sizeof(cd)))
2527 goto out;
2528
2529 r = kvm_ioctl_create_device(kvm, &cd);
2530 if (r)
2531 goto out;
2532
2533 r = -EFAULT;
2534 if (copy_to_user(argp, &cd, sizeof(cd)))
2535 goto out;
2536
2537 r = 0;
2538 break;
2539 }
2540 case KVM_CHECK_EXTENSION:
2541 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2542 break;
2543 default:
2544 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2545 if (r == -ENOTTY)
2546 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2547 }
2548 out:
2549 return r;
2550 }
2551
2552 #ifdef CONFIG_COMPAT
2553 struct compat_kvm_dirty_log {
2554 __u32 slot;
2555 __u32 padding1;
2556 union {
2557 compat_uptr_t dirty_bitmap; /* one bit per page */
2558 __u64 padding2;
2559 };
2560 };
2561
2562 static long kvm_vm_compat_ioctl(struct file *filp,
2563 unsigned int ioctl, unsigned long arg)
2564 {
2565 struct kvm *kvm = filp->private_data;
2566 int r;
2567
2568 if (kvm->mm != current->mm)
2569 return -EIO;
2570 switch (ioctl) {
2571 case KVM_GET_DIRTY_LOG: {
2572 struct compat_kvm_dirty_log compat_log;
2573 struct kvm_dirty_log log;
2574
2575 r = -EFAULT;
2576 if (copy_from_user(&compat_log, (void __user *)arg,
2577 sizeof(compat_log)))
2578 goto out;
2579 log.slot = compat_log.slot;
2580 log.padding1 = compat_log.padding1;
2581 log.padding2 = compat_log.padding2;
2582 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2583
2584 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2585 break;
2586 }
2587 default:
2588 r = kvm_vm_ioctl(filp, ioctl, arg);
2589 }
2590
2591 out:
2592 return r;
2593 }
2594 #endif
2595
2596 static struct file_operations kvm_vm_fops = {
2597 .release = kvm_vm_release,
2598 .unlocked_ioctl = kvm_vm_ioctl,
2599 #ifdef CONFIG_COMPAT
2600 .compat_ioctl = kvm_vm_compat_ioctl,
2601 #endif
2602 .llseek = noop_llseek,
2603 };
2604
2605 static int kvm_dev_ioctl_create_vm(unsigned long type)
2606 {
2607 int r;
2608 struct kvm *kvm;
2609
2610 kvm = kvm_create_vm(type);
2611 if (IS_ERR(kvm))
2612 return PTR_ERR(kvm);
2613 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2614 r = kvm_coalesced_mmio_init(kvm);
2615 if (r < 0) {
2616 kvm_put_kvm(kvm);
2617 return r;
2618 }
2619 #endif
2620 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2621 if (r < 0)
2622 kvm_put_kvm(kvm);
2623
2624 return r;
2625 }
2626
2627 static long kvm_dev_ioctl(struct file *filp,
2628 unsigned int ioctl, unsigned long arg)
2629 {
2630 long r = -EINVAL;
2631
2632 switch (ioctl) {
2633 case KVM_GET_API_VERSION:
2634 if (arg)
2635 goto out;
2636 r = KVM_API_VERSION;
2637 break;
2638 case KVM_CREATE_VM:
2639 r = kvm_dev_ioctl_create_vm(arg);
2640 break;
2641 case KVM_CHECK_EXTENSION:
2642 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2643 break;
2644 case KVM_GET_VCPU_MMAP_SIZE:
2645 if (arg)
2646 goto out;
2647 r = PAGE_SIZE; /* struct kvm_run */
2648 #ifdef CONFIG_X86
2649 r += PAGE_SIZE; /* pio data page */
2650 #endif
2651 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2652 r += PAGE_SIZE; /* coalesced mmio ring page */
2653 #endif
2654 break;
2655 case KVM_TRACE_ENABLE:
2656 case KVM_TRACE_PAUSE:
2657 case KVM_TRACE_DISABLE:
2658 r = -EOPNOTSUPP;
2659 break;
2660 default:
2661 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2662 }
2663 out:
2664 return r;
2665 }
2666
2667 static struct file_operations kvm_chardev_ops = {
2668 .unlocked_ioctl = kvm_dev_ioctl,
2669 .compat_ioctl = kvm_dev_ioctl,
2670 .llseek = noop_llseek,
2671 };
2672
2673 static struct miscdevice kvm_dev = {
2674 KVM_MINOR,
2675 "kvm",
2676 &kvm_chardev_ops,
2677 };
2678
2679 static void hardware_enable_nolock(void *junk)
2680 {
2681 int cpu = raw_smp_processor_id();
2682 int r;
2683
2684 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2685 return;
2686
2687 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2688
2689 r = kvm_arch_hardware_enable();
2690
2691 if (r) {
2692 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2693 atomic_inc(&hardware_enable_failed);
2694 printk(KERN_INFO "kvm: enabling virtualization on "
2695 "CPU%d failed\n", cpu);
2696 }
2697 }
2698
2699 static void hardware_enable(void)
2700 {
2701 raw_spin_lock(&kvm_count_lock);
2702 if (kvm_usage_count)
2703 hardware_enable_nolock(NULL);
2704 raw_spin_unlock(&kvm_count_lock);
2705 }
2706
2707 static void hardware_disable_nolock(void *junk)
2708 {
2709 int cpu = raw_smp_processor_id();
2710
2711 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2712 return;
2713 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2714 kvm_arch_hardware_disable();
2715 }
2716
2717 static void hardware_disable(void)
2718 {
2719 raw_spin_lock(&kvm_count_lock);
2720 if (kvm_usage_count)
2721 hardware_disable_nolock(NULL);
2722 raw_spin_unlock(&kvm_count_lock);
2723 }
2724
2725 static void hardware_disable_all_nolock(void)
2726 {
2727 BUG_ON(!kvm_usage_count);
2728
2729 kvm_usage_count--;
2730 if (!kvm_usage_count)
2731 on_each_cpu(hardware_disable_nolock, NULL, 1);
2732 }
2733
2734 static void hardware_disable_all(void)
2735 {
2736 raw_spin_lock(&kvm_count_lock);
2737 hardware_disable_all_nolock();
2738 raw_spin_unlock(&kvm_count_lock);
2739 }
2740
2741 static int hardware_enable_all(void)
2742 {
2743 int r = 0;
2744
2745 raw_spin_lock(&kvm_count_lock);
2746
2747 kvm_usage_count++;
2748 if (kvm_usage_count == 1) {
2749 atomic_set(&hardware_enable_failed, 0);
2750 on_each_cpu(hardware_enable_nolock, NULL, 1);
2751
2752 if (atomic_read(&hardware_enable_failed)) {
2753 hardware_disable_all_nolock();
2754 r = -EBUSY;
2755 }
2756 }
2757
2758 raw_spin_unlock(&kvm_count_lock);
2759
2760 return r;
2761 }
2762
2763 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2764 void *v)
2765 {
2766 int cpu = (long)v;
2767
2768 val &= ~CPU_TASKS_FROZEN;
2769 switch (val) {
2770 case CPU_DYING:
2771 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2772 cpu);
2773 hardware_disable();
2774 break;
2775 case CPU_STARTING:
2776 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2777 cpu);
2778 hardware_enable();
2779 break;
2780 }
2781 return NOTIFY_OK;
2782 }
2783
2784 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2785 void *v)
2786 {
2787 /*
2788 * Some (well, at least mine) BIOSes hang on reboot if
2789 * in vmx root mode.
2790 *
2791 * And Intel TXT required VMX off for all cpu when system shutdown.
2792 */
2793 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2794 kvm_rebooting = true;
2795 on_each_cpu(hardware_disable_nolock, NULL, 1);
2796 return NOTIFY_OK;
2797 }
2798
2799 static struct notifier_block kvm_reboot_notifier = {
2800 .notifier_call = kvm_reboot,
2801 .priority = 0,
2802 };
2803
2804 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2805 {
2806 int i;
2807
2808 for (i = 0; i < bus->dev_count; i++) {
2809 struct kvm_io_device *pos = bus->range[i].dev;
2810
2811 kvm_iodevice_destructor(pos);
2812 }
2813 kfree(bus);
2814 }
2815
2816 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2817 const struct kvm_io_range *r2)
2818 {
2819 if (r1->addr < r2->addr)
2820 return -1;
2821 if (r1->addr + r1->len > r2->addr + r2->len)
2822 return 1;
2823 return 0;
2824 }
2825
2826 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2827 {
2828 return kvm_io_bus_cmp(p1, p2);
2829 }
2830
2831 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2832 gpa_t addr, int len)
2833 {
2834 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2835 .addr = addr,
2836 .len = len,
2837 .dev = dev,
2838 };
2839
2840 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2841 kvm_io_bus_sort_cmp, NULL);
2842
2843 return 0;
2844 }
2845
2846 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2847 gpa_t addr, int len)
2848 {
2849 struct kvm_io_range *range, key;
2850 int off;
2851
2852 key = (struct kvm_io_range) {
2853 .addr = addr,
2854 .len = len,
2855 };
2856
2857 range = bsearch(&key, bus->range, bus->dev_count,
2858 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2859 if (range == NULL)
2860 return -ENOENT;
2861
2862 off = range - bus->range;
2863
2864 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2865 off--;
2866
2867 return off;
2868 }
2869
2870 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2871 struct kvm_io_range *range, const void *val)
2872 {
2873 int idx;
2874
2875 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2876 if (idx < 0)
2877 return -EOPNOTSUPP;
2878
2879 while (idx < bus->dev_count &&
2880 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2881 if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2882 range->len, val))
2883 return idx;
2884 idx++;
2885 }
2886
2887 return -EOPNOTSUPP;
2888 }
2889
2890 /* kvm_io_bus_write - called under kvm->slots_lock */
2891 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2892 int len, const void *val)
2893 {
2894 struct kvm_io_bus *bus;
2895 struct kvm_io_range range;
2896 int r;
2897
2898 range = (struct kvm_io_range) {
2899 .addr = addr,
2900 .len = len,
2901 };
2902
2903 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2904 r = __kvm_io_bus_write(bus, &range, val);
2905 return r < 0 ? r : 0;
2906 }
2907
2908 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2909 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2910 int len, const void *val, long cookie)
2911 {
2912 struct kvm_io_bus *bus;
2913 struct kvm_io_range range;
2914
2915 range = (struct kvm_io_range) {
2916 .addr = addr,
2917 .len = len,
2918 };
2919
2920 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2921
2922 /* First try the device referenced by cookie. */
2923 if ((cookie >= 0) && (cookie < bus->dev_count) &&
2924 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2925 if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2926 val))
2927 return cookie;
2928
2929 /*
2930 * cookie contained garbage; fall back to search and return the
2931 * correct cookie value.
2932 */
2933 return __kvm_io_bus_write(bus, &range, val);
2934 }
2935
2936 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2937 void *val)
2938 {
2939 int idx;
2940
2941 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2942 if (idx < 0)
2943 return -EOPNOTSUPP;
2944
2945 while (idx < bus->dev_count &&
2946 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2947 if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
2948 range->len, val))
2949 return idx;
2950 idx++;
2951 }
2952
2953 return -EOPNOTSUPP;
2954 }
2955 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
2956
2957 /* kvm_io_bus_read - called under kvm->slots_lock */
2958 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2959 int len, void *val)
2960 {
2961 struct kvm_io_bus *bus;
2962 struct kvm_io_range range;
2963 int r;
2964
2965 range = (struct kvm_io_range) {
2966 .addr = addr,
2967 .len = len,
2968 };
2969
2970 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2971 r = __kvm_io_bus_read(bus, &range, val);
2972 return r < 0 ? r : 0;
2973 }
2974
2975
2976 /* Caller must hold slots_lock. */
2977 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2978 int len, struct kvm_io_device *dev)
2979 {
2980 struct kvm_io_bus *new_bus, *bus;
2981
2982 bus = kvm->buses[bus_idx];
2983 /* exclude ioeventfd which is limited by maximum fd */
2984 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
2985 return -ENOSPC;
2986
2987 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2988 sizeof(struct kvm_io_range)), GFP_KERNEL);
2989 if (!new_bus)
2990 return -ENOMEM;
2991 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2992 sizeof(struct kvm_io_range)));
2993 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2994 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2995 synchronize_srcu_expedited(&kvm->srcu);
2996 kfree(bus);
2997
2998 return 0;
2999 }
3000
3001 /* Caller must hold slots_lock. */
3002 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3003 struct kvm_io_device *dev)
3004 {
3005 int i, r;
3006 struct kvm_io_bus *new_bus, *bus;
3007
3008 bus = kvm->buses[bus_idx];
3009 r = -ENOENT;
3010 for (i = 0; i < bus->dev_count; i++)
3011 if (bus->range[i].dev == dev) {
3012 r = 0;
3013 break;
3014 }
3015
3016 if (r)
3017 return r;
3018
3019 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3020 sizeof(struct kvm_io_range)), GFP_KERNEL);
3021 if (!new_bus)
3022 return -ENOMEM;
3023
3024 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3025 new_bus->dev_count--;
3026 memcpy(new_bus->range + i, bus->range + i + 1,
3027 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3028
3029 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3030 synchronize_srcu_expedited(&kvm->srcu);
3031 kfree(bus);
3032 return r;
3033 }
3034
3035 static struct notifier_block kvm_cpu_notifier = {
3036 .notifier_call = kvm_cpu_hotplug,
3037 };
3038
3039 static int vm_stat_get(void *_offset, u64 *val)
3040 {
3041 unsigned offset = (long)_offset;
3042 struct kvm *kvm;
3043
3044 *val = 0;
3045 spin_lock(&kvm_lock);
3046 list_for_each_entry(kvm, &vm_list, vm_list)
3047 *val += *(u32 *)((void *)kvm + offset);
3048 spin_unlock(&kvm_lock);
3049 return 0;
3050 }
3051
3052 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3053
3054 static int vcpu_stat_get(void *_offset, u64 *val)
3055 {
3056 unsigned offset = (long)_offset;
3057 struct kvm *kvm;
3058 struct kvm_vcpu *vcpu;
3059 int i;
3060
3061 *val = 0;
3062 spin_lock(&kvm_lock);
3063 list_for_each_entry(kvm, &vm_list, vm_list)
3064 kvm_for_each_vcpu(i, vcpu, kvm)
3065 *val += *(u32 *)((void *)vcpu + offset);
3066
3067 spin_unlock(&kvm_lock);
3068 return 0;
3069 }
3070
3071 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3072
3073 static const struct file_operations *stat_fops[] = {
3074 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3075 [KVM_STAT_VM] = &vm_stat_fops,
3076 };
3077
3078 static int kvm_init_debug(void)
3079 {
3080 int r = -EEXIST;
3081 struct kvm_stats_debugfs_item *p;
3082
3083 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3084 if (kvm_debugfs_dir == NULL)
3085 goto out;
3086
3087 for (p = debugfs_entries; p->name; ++p) {
3088 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3089 (void *)(long)p->offset,
3090 stat_fops[p->kind]);
3091 if (p->dentry == NULL)
3092 goto out_dir;
3093 }
3094
3095 return 0;
3096
3097 out_dir:
3098 debugfs_remove_recursive(kvm_debugfs_dir);
3099 out:
3100 return r;
3101 }
3102
3103 static void kvm_exit_debug(void)
3104 {
3105 struct kvm_stats_debugfs_item *p;
3106
3107 for (p = debugfs_entries; p->name; ++p)
3108 debugfs_remove(p->dentry);
3109 debugfs_remove(kvm_debugfs_dir);
3110 }
3111
3112 static int kvm_suspend(void)
3113 {
3114 if (kvm_usage_count)
3115 hardware_disable_nolock(NULL);
3116 return 0;
3117 }
3118
3119 static void kvm_resume(void)
3120 {
3121 if (kvm_usage_count) {
3122 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3123 hardware_enable_nolock(NULL);
3124 }
3125 }
3126
3127 static struct syscore_ops kvm_syscore_ops = {
3128 .suspend = kvm_suspend,
3129 .resume = kvm_resume,
3130 };
3131
3132 static inline
3133 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3134 {
3135 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3136 }
3137
3138 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3139 {
3140 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3141 if (vcpu->preempted)
3142 vcpu->preempted = false;
3143
3144 kvm_arch_sched_in(vcpu, cpu);
3145
3146 kvm_arch_vcpu_load(vcpu, cpu);
3147 }
3148
3149 static void kvm_sched_out(struct preempt_notifier *pn,
3150 struct task_struct *next)
3151 {
3152 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3153
3154 if (current->state == TASK_RUNNING)
3155 vcpu->preempted = true;
3156 kvm_arch_vcpu_put(vcpu);
3157 }
3158
3159 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3160 struct module *module)
3161 {
3162 int r;
3163 int cpu;
3164
3165 r = kvm_arch_init(opaque);
3166 if (r)
3167 goto out_fail;
3168
3169 /*
3170 * kvm_arch_init makes sure there's at most one caller
3171 * for architectures that support multiple implementations,
3172 * like intel and amd on x86.
3173 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3174 * conflicts in case kvm is already setup for another implementation.
3175 */
3176 r = kvm_irqfd_init();
3177 if (r)
3178 goto out_irqfd;
3179
3180 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3181 r = -ENOMEM;
3182 goto out_free_0;
3183 }
3184
3185 r = kvm_arch_hardware_setup();
3186 if (r < 0)
3187 goto out_free_0a;
3188
3189 for_each_online_cpu(cpu) {
3190 smp_call_function_single(cpu,
3191 kvm_arch_check_processor_compat,
3192 &r, 1);
3193 if (r < 0)
3194 goto out_free_1;
3195 }
3196
3197 r = register_cpu_notifier(&kvm_cpu_notifier);
3198 if (r)
3199 goto out_free_2;
3200 register_reboot_notifier(&kvm_reboot_notifier);
3201
3202 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3203 if (!vcpu_align)
3204 vcpu_align = __alignof__(struct kvm_vcpu);
3205 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3206 0, NULL);
3207 if (!kvm_vcpu_cache) {
3208 r = -ENOMEM;
3209 goto out_free_3;
3210 }
3211
3212 r = kvm_async_pf_init();
3213 if (r)
3214 goto out_free;
3215
3216 kvm_chardev_ops.owner = module;
3217 kvm_vm_fops.owner = module;
3218 kvm_vcpu_fops.owner = module;
3219
3220 r = misc_register(&kvm_dev);
3221 if (r) {
3222 printk(KERN_ERR "kvm: misc device register failed\n");
3223 goto out_unreg;
3224 }
3225
3226 register_syscore_ops(&kvm_syscore_ops);
3227
3228 kvm_preempt_ops.sched_in = kvm_sched_in;
3229 kvm_preempt_ops.sched_out = kvm_sched_out;
3230
3231 r = kvm_init_debug();
3232 if (r) {
3233 printk(KERN_ERR "kvm: create debugfs files failed\n");
3234 goto out_undebugfs;
3235 }
3236
3237 return 0;
3238
3239 out_undebugfs:
3240 unregister_syscore_ops(&kvm_syscore_ops);
3241 misc_deregister(&kvm_dev);
3242 out_unreg:
3243 kvm_async_pf_deinit();
3244 out_free:
3245 kmem_cache_destroy(kvm_vcpu_cache);
3246 out_free_3:
3247 unregister_reboot_notifier(&kvm_reboot_notifier);
3248 unregister_cpu_notifier(&kvm_cpu_notifier);
3249 out_free_2:
3250 out_free_1:
3251 kvm_arch_hardware_unsetup();
3252 out_free_0a:
3253 free_cpumask_var(cpus_hardware_enabled);
3254 out_free_0:
3255 kvm_irqfd_exit();
3256 out_irqfd:
3257 kvm_arch_exit();
3258 out_fail:
3259 return r;
3260 }
3261 EXPORT_SYMBOL_GPL(kvm_init);
3262
3263 void kvm_exit(void)
3264 {
3265 kvm_exit_debug();
3266 misc_deregister(&kvm_dev);
3267 kmem_cache_destroy(kvm_vcpu_cache);
3268 kvm_async_pf_deinit();
3269 unregister_syscore_ops(&kvm_syscore_ops);
3270 unregister_reboot_notifier(&kvm_reboot_notifier);
3271 unregister_cpu_notifier(&kvm_cpu_notifier);
3272 on_each_cpu(hardware_disable_nolock, NULL, 1);
3273 kvm_arch_hardware_unsetup();
3274 kvm_arch_exit();
3275 kvm_irqfd_exit();
3276 free_cpumask_var(cpus_hardware_enabled);
3277 }
3278 EXPORT_SYMBOL_GPL(kvm_exit);