]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - virt/kvm/kvm_main.c
KVM: Write protect the updated slot only when dirty logging is enabled
[mirror_ubuntu-artful-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 /*
68 * Ordering of locks:
69 *
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71 */
72
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84
85 struct dentry *kvm_debugfs_dir;
86
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88 unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91 unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
100
101 static bool largepages_enabled = true;
102
103 bool kvm_is_mmio_pfn(pfn_t pfn)
104 {
105 if (pfn_valid(pfn)) {
106 int reserved;
107 struct page *tail = pfn_to_page(pfn);
108 struct page *head = compound_trans_head(tail);
109 reserved = PageReserved(head);
110 if (head != tail) {
111 /*
112 * "head" is not a dangling pointer
113 * (compound_trans_head takes care of that)
114 * but the hugepage may have been splitted
115 * from under us (and we may not hold a
116 * reference count on the head page so it can
117 * be reused before we run PageReferenced), so
118 * we've to check PageTail before returning
119 * what we just read.
120 */
121 smp_rmb();
122 if (PageTail(tail))
123 return reserved;
124 }
125 return PageReserved(tail);
126 }
127
128 return true;
129 }
130
131 /*
132 * Switches to specified vcpu, until a matching vcpu_put()
133 */
134 int vcpu_load(struct kvm_vcpu *vcpu)
135 {
136 int cpu;
137
138 if (mutex_lock_killable(&vcpu->mutex))
139 return -EINTR;
140 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
141 /* The thread running this VCPU changed. */
142 struct pid *oldpid = vcpu->pid;
143 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
144 rcu_assign_pointer(vcpu->pid, newpid);
145 synchronize_rcu();
146 put_pid(oldpid);
147 }
148 cpu = get_cpu();
149 preempt_notifier_register(&vcpu->preempt_notifier);
150 kvm_arch_vcpu_load(vcpu, cpu);
151 put_cpu();
152 return 0;
153 }
154
155 void vcpu_put(struct kvm_vcpu *vcpu)
156 {
157 preempt_disable();
158 kvm_arch_vcpu_put(vcpu);
159 preempt_notifier_unregister(&vcpu->preempt_notifier);
160 preempt_enable();
161 mutex_unlock(&vcpu->mutex);
162 }
163
164 static void ack_flush(void *_completed)
165 {
166 }
167
168 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
169 {
170 int i, cpu, me;
171 cpumask_var_t cpus;
172 bool called = true;
173 struct kvm_vcpu *vcpu;
174
175 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
176
177 me = get_cpu();
178 kvm_for_each_vcpu(i, vcpu, kvm) {
179 kvm_make_request(req, vcpu);
180 cpu = vcpu->cpu;
181
182 /* Set ->requests bit before we read ->mode */
183 smp_mb();
184
185 if (cpus != NULL && cpu != -1 && cpu != me &&
186 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
187 cpumask_set_cpu(cpu, cpus);
188 }
189 if (unlikely(cpus == NULL))
190 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
191 else if (!cpumask_empty(cpus))
192 smp_call_function_many(cpus, ack_flush, NULL, 1);
193 else
194 called = false;
195 put_cpu();
196 free_cpumask_var(cpus);
197 return called;
198 }
199
200 void kvm_flush_remote_tlbs(struct kvm *kvm)
201 {
202 long dirty_count = kvm->tlbs_dirty;
203
204 smp_mb();
205 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
206 ++kvm->stat.remote_tlb_flush;
207 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
208 }
209
210 void kvm_reload_remote_mmus(struct kvm *kvm)
211 {
212 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
213 }
214
215 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
216 {
217 make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
218 }
219
220 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
221 {
222 struct page *page;
223 int r;
224
225 mutex_init(&vcpu->mutex);
226 vcpu->cpu = -1;
227 vcpu->kvm = kvm;
228 vcpu->vcpu_id = id;
229 vcpu->pid = NULL;
230 init_waitqueue_head(&vcpu->wq);
231 kvm_async_pf_vcpu_init(vcpu);
232
233 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
234 if (!page) {
235 r = -ENOMEM;
236 goto fail;
237 }
238 vcpu->run = page_address(page);
239
240 kvm_vcpu_set_in_spin_loop(vcpu, false);
241 kvm_vcpu_set_dy_eligible(vcpu, false);
242
243 r = kvm_arch_vcpu_init(vcpu);
244 if (r < 0)
245 goto fail_free_run;
246 return 0;
247
248 fail_free_run:
249 free_page((unsigned long)vcpu->run);
250 fail:
251 return r;
252 }
253 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
254
255 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
256 {
257 put_pid(vcpu->pid);
258 kvm_arch_vcpu_uninit(vcpu);
259 free_page((unsigned long)vcpu->run);
260 }
261 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
262
263 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
264 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
265 {
266 return container_of(mn, struct kvm, mmu_notifier);
267 }
268
269 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
270 struct mm_struct *mm,
271 unsigned long address)
272 {
273 struct kvm *kvm = mmu_notifier_to_kvm(mn);
274 int need_tlb_flush, idx;
275
276 /*
277 * When ->invalidate_page runs, the linux pte has been zapped
278 * already but the page is still allocated until
279 * ->invalidate_page returns. So if we increase the sequence
280 * here the kvm page fault will notice if the spte can't be
281 * established because the page is going to be freed. If
282 * instead the kvm page fault establishes the spte before
283 * ->invalidate_page runs, kvm_unmap_hva will release it
284 * before returning.
285 *
286 * The sequence increase only need to be seen at spin_unlock
287 * time, and not at spin_lock time.
288 *
289 * Increasing the sequence after the spin_unlock would be
290 * unsafe because the kvm page fault could then establish the
291 * pte after kvm_unmap_hva returned, without noticing the page
292 * is going to be freed.
293 */
294 idx = srcu_read_lock(&kvm->srcu);
295 spin_lock(&kvm->mmu_lock);
296
297 kvm->mmu_notifier_seq++;
298 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
299 /* we've to flush the tlb before the pages can be freed */
300 if (need_tlb_flush)
301 kvm_flush_remote_tlbs(kvm);
302
303 spin_unlock(&kvm->mmu_lock);
304 srcu_read_unlock(&kvm->srcu, idx);
305 }
306
307 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
308 struct mm_struct *mm,
309 unsigned long address,
310 pte_t pte)
311 {
312 struct kvm *kvm = mmu_notifier_to_kvm(mn);
313 int idx;
314
315 idx = srcu_read_lock(&kvm->srcu);
316 spin_lock(&kvm->mmu_lock);
317 kvm->mmu_notifier_seq++;
318 kvm_set_spte_hva(kvm, address, pte);
319 spin_unlock(&kvm->mmu_lock);
320 srcu_read_unlock(&kvm->srcu, idx);
321 }
322
323 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
324 struct mm_struct *mm,
325 unsigned long start,
326 unsigned long end)
327 {
328 struct kvm *kvm = mmu_notifier_to_kvm(mn);
329 int need_tlb_flush = 0, idx;
330
331 idx = srcu_read_lock(&kvm->srcu);
332 spin_lock(&kvm->mmu_lock);
333 /*
334 * The count increase must become visible at unlock time as no
335 * spte can be established without taking the mmu_lock and
336 * count is also read inside the mmu_lock critical section.
337 */
338 kvm->mmu_notifier_count++;
339 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
340 need_tlb_flush |= kvm->tlbs_dirty;
341 /* we've to flush the tlb before the pages can be freed */
342 if (need_tlb_flush)
343 kvm_flush_remote_tlbs(kvm);
344
345 spin_unlock(&kvm->mmu_lock);
346 srcu_read_unlock(&kvm->srcu, idx);
347 }
348
349 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
350 struct mm_struct *mm,
351 unsigned long start,
352 unsigned long end)
353 {
354 struct kvm *kvm = mmu_notifier_to_kvm(mn);
355
356 spin_lock(&kvm->mmu_lock);
357 /*
358 * This sequence increase will notify the kvm page fault that
359 * the page that is going to be mapped in the spte could have
360 * been freed.
361 */
362 kvm->mmu_notifier_seq++;
363 smp_wmb();
364 /*
365 * The above sequence increase must be visible before the
366 * below count decrease, which is ensured by the smp_wmb above
367 * in conjunction with the smp_rmb in mmu_notifier_retry().
368 */
369 kvm->mmu_notifier_count--;
370 spin_unlock(&kvm->mmu_lock);
371
372 BUG_ON(kvm->mmu_notifier_count < 0);
373 }
374
375 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
376 struct mm_struct *mm,
377 unsigned long address)
378 {
379 struct kvm *kvm = mmu_notifier_to_kvm(mn);
380 int young, idx;
381
382 idx = srcu_read_lock(&kvm->srcu);
383 spin_lock(&kvm->mmu_lock);
384
385 young = kvm_age_hva(kvm, address);
386 if (young)
387 kvm_flush_remote_tlbs(kvm);
388
389 spin_unlock(&kvm->mmu_lock);
390 srcu_read_unlock(&kvm->srcu, idx);
391
392 return young;
393 }
394
395 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
396 struct mm_struct *mm,
397 unsigned long address)
398 {
399 struct kvm *kvm = mmu_notifier_to_kvm(mn);
400 int young, idx;
401
402 idx = srcu_read_lock(&kvm->srcu);
403 spin_lock(&kvm->mmu_lock);
404 young = kvm_test_age_hva(kvm, address);
405 spin_unlock(&kvm->mmu_lock);
406 srcu_read_unlock(&kvm->srcu, idx);
407
408 return young;
409 }
410
411 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
412 struct mm_struct *mm)
413 {
414 struct kvm *kvm = mmu_notifier_to_kvm(mn);
415 int idx;
416
417 idx = srcu_read_lock(&kvm->srcu);
418 kvm_arch_flush_shadow_all(kvm);
419 srcu_read_unlock(&kvm->srcu, idx);
420 }
421
422 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
423 .invalidate_page = kvm_mmu_notifier_invalidate_page,
424 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
425 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
426 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
427 .test_young = kvm_mmu_notifier_test_young,
428 .change_pte = kvm_mmu_notifier_change_pte,
429 .release = kvm_mmu_notifier_release,
430 };
431
432 static int kvm_init_mmu_notifier(struct kvm *kvm)
433 {
434 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
435 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
436 }
437
438 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
439
440 static int kvm_init_mmu_notifier(struct kvm *kvm)
441 {
442 return 0;
443 }
444
445 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
446
447 static void kvm_init_memslots_id(struct kvm *kvm)
448 {
449 int i;
450 struct kvm_memslots *slots = kvm->memslots;
451
452 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
453 slots->id_to_index[i] = slots->memslots[i].id = i;
454 }
455
456 static struct kvm *kvm_create_vm(unsigned long type)
457 {
458 int r, i;
459 struct kvm *kvm = kvm_arch_alloc_vm();
460
461 if (!kvm)
462 return ERR_PTR(-ENOMEM);
463
464 r = kvm_arch_init_vm(kvm, type);
465 if (r)
466 goto out_err_nodisable;
467
468 r = hardware_enable_all();
469 if (r)
470 goto out_err_nodisable;
471
472 #ifdef CONFIG_HAVE_KVM_IRQCHIP
473 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
474 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
475 #endif
476
477 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
478
479 r = -ENOMEM;
480 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
481 if (!kvm->memslots)
482 goto out_err_nosrcu;
483 kvm_init_memslots_id(kvm);
484 if (init_srcu_struct(&kvm->srcu))
485 goto out_err_nosrcu;
486 for (i = 0; i < KVM_NR_BUSES; i++) {
487 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
488 GFP_KERNEL);
489 if (!kvm->buses[i])
490 goto out_err;
491 }
492
493 spin_lock_init(&kvm->mmu_lock);
494 kvm->mm = current->mm;
495 atomic_inc(&kvm->mm->mm_count);
496 kvm_eventfd_init(kvm);
497 mutex_init(&kvm->lock);
498 mutex_init(&kvm->irq_lock);
499 mutex_init(&kvm->slots_lock);
500 atomic_set(&kvm->users_count, 1);
501
502 r = kvm_init_mmu_notifier(kvm);
503 if (r)
504 goto out_err;
505
506 raw_spin_lock(&kvm_lock);
507 list_add(&kvm->vm_list, &vm_list);
508 raw_spin_unlock(&kvm_lock);
509
510 return kvm;
511
512 out_err:
513 cleanup_srcu_struct(&kvm->srcu);
514 out_err_nosrcu:
515 hardware_disable_all();
516 out_err_nodisable:
517 for (i = 0; i < KVM_NR_BUSES; i++)
518 kfree(kvm->buses[i]);
519 kfree(kvm->memslots);
520 kvm_arch_free_vm(kvm);
521 return ERR_PTR(r);
522 }
523
524 /*
525 * Avoid using vmalloc for a small buffer.
526 * Should not be used when the size is statically known.
527 */
528 void *kvm_kvzalloc(unsigned long size)
529 {
530 if (size > PAGE_SIZE)
531 return vzalloc(size);
532 else
533 return kzalloc(size, GFP_KERNEL);
534 }
535
536 void kvm_kvfree(const void *addr)
537 {
538 if (is_vmalloc_addr(addr))
539 vfree(addr);
540 else
541 kfree(addr);
542 }
543
544 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
545 {
546 if (!memslot->dirty_bitmap)
547 return;
548
549 kvm_kvfree(memslot->dirty_bitmap);
550 memslot->dirty_bitmap = NULL;
551 }
552
553 /*
554 * Free any memory in @free but not in @dont.
555 */
556 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
557 struct kvm_memory_slot *dont)
558 {
559 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
560 kvm_destroy_dirty_bitmap(free);
561
562 kvm_arch_free_memslot(free, dont);
563
564 free->npages = 0;
565 }
566
567 void kvm_free_physmem(struct kvm *kvm)
568 {
569 struct kvm_memslots *slots = kvm->memslots;
570 struct kvm_memory_slot *memslot;
571
572 kvm_for_each_memslot(memslot, slots)
573 kvm_free_physmem_slot(memslot, NULL);
574
575 kfree(kvm->memslots);
576 }
577
578 static void kvm_destroy_vm(struct kvm *kvm)
579 {
580 int i;
581 struct mm_struct *mm = kvm->mm;
582
583 kvm_arch_sync_events(kvm);
584 raw_spin_lock(&kvm_lock);
585 list_del(&kvm->vm_list);
586 raw_spin_unlock(&kvm_lock);
587 kvm_free_irq_routing(kvm);
588 for (i = 0; i < KVM_NR_BUSES; i++)
589 kvm_io_bus_destroy(kvm->buses[i]);
590 kvm_coalesced_mmio_free(kvm);
591 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
592 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
593 #else
594 kvm_arch_flush_shadow_all(kvm);
595 #endif
596 kvm_arch_destroy_vm(kvm);
597 kvm_free_physmem(kvm);
598 cleanup_srcu_struct(&kvm->srcu);
599 kvm_arch_free_vm(kvm);
600 hardware_disable_all();
601 mmdrop(mm);
602 }
603
604 void kvm_get_kvm(struct kvm *kvm)
605 {
606 atomic_inc(&kvm->users_count);
607 }
608 EXPORT_SYMBOL_GPL(kvm_get_kvm);
609
610 void kvm_put_kvm(struct kvm *kvm)
611 {
612 if (atomic_dec_and_test(&kvm->users_count))
613 kvm_destroy_vm(kvm);
614 }
615 EXPORT_SYMBOL_GPL(kvm_put_kvm);
616
617
618 static int kvm_vm_release(struct inode *inode, struct file *filp)
619 {
620 struct kvm *kvm = filp->private_data;
621
622 kvm_irqfd_release(kvm);
623
624 kvm_put_kvm(kvm);
625 return 0;
626 }
627
628 /*
629 * Allocation size is twice as large as the actual dirty bitmap size.
630 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
631 */
632 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
633 {
634 #ifndef CONFIG_S390
635 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
636
637 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
638 if (!memslot->dirty_bitmap)
639 return -ENOMEM;
640
641 #endif /* !CONFIG_S390 */
642 return 0;
643 }
644
645 static int cmp_memslot(const void *slot1, const void *slot2)
646 {
647 struct kvm_memory_slot *s1, *s2;
648
649 s1 = (struct kvm_memory_slot *)slot1;
650 s2 = (struct kvm_memory_slot *)slot2;
651
652 if (s1->npages < s2->npages)
653 return 1;
654 if (s1->npages > s2->npages)
655 return -1;
656
657 return 0;
658 }
659
660 /*
661 * Sort the memslots base on its size, so the larger slots
662 * will get better fit.
663 */
664 static void sort_memslots(struct kvm_memslots *slots)
665 {
666 int i;
667
668 sort(slots->memslots, KVM_MEM_SLOTS_NUM,
669 sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
670
671 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
672 slots->id_to_index[slots->memslots[i].id] = i;
673 }
674
675 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new,
676 u64 last_generation)
677 {
678 if (new) {
679 int id = new->id;
680 struct kvm_memory_slot *old = id_to_memslot(slots, id);
681 unsigned long npages = old->npages;
682
683 *old = *new;
684 if (new->npages != npages)
685 sort_memslots(slots);
686 }
687
688 slots->generation = last_generation + 1;
689 }
690
691 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
692 {
693 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
694
695 #ifdef KVM_CAP_READONLY_MEM
696 valid_flags |= KVM_MEM_READONLY;
697 #endif
698
699 if (mem->flags & ~valid_flags)
700 return -EINVAL;
701
702 return 0;
703 }
704
705 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
706 struct kvm_memslots *slots, struct kvm_memory_slot *new)
707 {
708 struct kvm_memslots *old_memslots = kvm->memslots;
709
710 update_memslots(slots, new, kvm->memslots->generation);
711 rcu_assign_pointer(kvm->memslots, slots);
712 synchronize_srcu_expedited(&kvm->srcu);
713 return old_memslots;
714 }
715
716 /*
717 * Allocate some memory and give it an address in the guest physical address
718 * space.
719 *
720 * Discontiguous memory is allowed, mostly for framebuffers.
721 *
722 * Must be called holding mmap_sem for write.
723 */
724 int __kvm_set_memory_region(struct kvm *kvm,
725 struct kvm_userspace_memory_region *mem,
726 bool user_alloc)
727 {
728 int r;
729 gfn_t base_gfn;
730 unsigned long npages;
731 struct kvm_memory_slot *memslot, *slot;
732 struct kvm_memory_slot old, new;
733 struct kvm_memslots *slots = NULL, *old_memslots;
734
735 r = check_memory_region_flags(mem);
736 if (r)
737 goto out;
738
739 r = -EINVAL;
740 /* General sanity checks */
741 if (mem->memory_size & (PAGE_SIZE - 1))
742 goto out;
743 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
744 goto out;
745 /* We can read the guest memory with __xxx_user() later on. */
746 if (user_alloc &&
747 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
748 !access_ok(VERIFY_WRITE,
749 (void __user *)(unsigned long)mem->userspace_addr,
750 mem->memory_size)))
751 goto out;
752 if (mem->slot >= KVM_MEM_SLOTS_NUM)
753 goto out;
754 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
755 goto out;
756
757 memslot = id_to_memslot(kvm->memslots, mem->slot);
758 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
759 npages = mem->memory_size >> PAGE_SHIFT;
760
761 r = -EINVAL;
762 if (npages > KVM_MEM_MAX_NR_PAGES)
763 goto out;
764
765 if (!npages)
766 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
767
768 new = old = *memslot;
769
770 new.id = mem->slot;
771 new.base_gfn = base_gfn;
772 new.npages = npages;
773 new.flags = mem->flags;
774
775 /*
776 * Disallow changing a memory slot's size or changing anything about
777 * zero sized slots that doesn't involve making them non-zero.
778 */
779 r = -EINVAL;
780 if (npages && old.npages && npages != old.npages)
781 goto out_free;
782 if (!npages && !old.npages)
783 goto out_free;
784
785 /* Check for overlaps */
786 r = -EEXIST;
787 kvm_for_each_memslot(slot, kvm->memslots) {
788 if (slot->id >= KVM_USER_MEM_SLOTS || slot == memslot)
789 continue;
790 if (!((base_gfn + npages <= slot->base_gfn) ||
791 (base_gfn >= slot->base_gfn + slot->npages)))
792 goto out_free;
793 }
794
795 /* Free page dirty bitmap if unneeded */
796 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
797 new.dirty_bitmap = NULL;
798
799 r = -ENOMEM;
800
801 /*
802 * Allocate if a slot is being created. If modifying a slot,
803 * the userspace_addr cannot change.
804 */
805 if (!old.npages) {
806 new.user_alloc = user_alloc;
807 new.userspace_addr = mem->userspace_addr;
808
809 if (kvm_arch_create_memslot(&new, npages))
810 goto out_free;
811 } else if (npages && mem->userspace_addr != old.userspace_addr) {
812 r = -EINVAL;
813 goto out_free;
814 }
815
816 /* Allocate page dirty bitmap if needed */
817 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
818 if (kvm_create_dirty_bitmap(&new) < 0)
819 goto out_free;
820 }
821
822 if (!npages || base_gfn != old.base_gfn) {
823 struct kvm_memory_slot *slot;
824
825 r = -ENOMEM;
826 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
827 GFP_KERNEL);
828 if (!slots)
829 goto out_free;
830 slot = id_to_memslot(slots, mem->slot);
831 slot->flags |= KVM_MEMSLOT_INVALID;
832
833 old_memslots = install_new_memslots(kvm, slots, NULL);
834
835 /* slot was deleted or moved, clear iommu mapping */
836 kvm_iommu_unmap_pages(kvm, &old);
837 /* From this point no new shadow pages pointing to a deleted,
838 * or moved, memslot will be created.
839 *
840 * validation of sp->gfn happens in:
841 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
842 * - kvm_is_visible_gfn (mmu_check_roots)
843 */
844 kvm_arch_flush_shadow_memslot(kvm, slot);
845 slots = old_memslots;
846 }
847
848 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
849 if (r)
850 goto out_slots;
851
852 r = -ENOMEM;
853 /*
854 * We can re-use the old_memslots from above, the only difference
855 * from the currently installed memslots is the invalid flag. This
856 * will get overwritten by update_memslots anyway.
857 */
858 if (!slots) {
859 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
860 GFP_KERNEL);
861 if (!slots)
862 goto out_free;
863 }
864
865 /* map new memory slot into the iommu */
866 if (npages) {
867 r = kvm_iommu_map_pages(kvm, &new);
868 if (r)
869 goto out_slots;
870 }
871
872 /* actual memory is freed via old in kvm_free_physmem_slot below */
873 if (!npages) {
874 new.dirty_bitmap = NULL;
875 memset(&new.arch, 0, sizeof(new.arch));
876 }
877
878 old_memslots = install_new_memslots(kvm, slots, &new);
879
880 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
881
882 kvm_free_physmem_slot(&old, &new);
883 kfree(old_memslots);
884
885 return 0;
886
887 out_slots:
888 kfree(slots);
889 out_free:
890 kvm_free_physmem_slot(&new, &old);
891 out:
892 return r;
893
894 }
895 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
896
897 int kvm_set_memory_region(struct kvm *kvm,
898 struct kvm_userspace_memory_region *mem,
899 bool user_alloc)
900 {
901 int r;
902
903 mutex_lock(&kvm->slots_lock);
904 r = __kvm_set_memory_region(kvm, mem, user_alloc);
905 mutex_unlock(&kvm->slots_lock);
906 return r;
907 }
908 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
909
910 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
911 struct
912 kvm_userspace_memory_region *mem,
913 bool user_alloc)
914 {
915 if (mem->slot >= KVM_USER_MEM_SLOTS)
916 return -EINVAL;
917 return kvm_set_memory_region(kvm, mem, user_alloc);
918 }
919
920 int kvm_get_dirty_log(struct kvm *kvm,
921 struct kvm_dirty_log *log, int *is_dirty)
922 {
923 struct kvm_memory_slot *memslot;
924 int r, i;
925 unsigned long n;
926 unsigned long any = 0;
927
928 r = -EINVAL;
929 if (log->slot >= KVM_USER_MEM_SLOTS)
930 goto out;
931
932 memslot = id_to_memslot(kvm->memslots, log->slot);
933 r = -ENOENT;
934 if (!memslot->dirty_bitmap)
935 goto out;
936
937 n = kvm_dirty_bitmap_bytes(memslot);
938
939 for (i = 0; !any && i < n/sizeof(long); ++i)
940 any = memslot->dirty_bitmap[i];
941
942 r = -EFAULT;
943 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
944 goto out;
945
946 if (any)
947 *is_dirty = 1;
948
949 r = 0;
950 out:
951 return r;
952 }
953
954 bool kvm_largepages_enabled(void)
955 {
956 return largepages_enabled;
957 }
958
959 void kvm_disable_largepages(void)
960 {
961 largepages_enabled = false;
962 }
963 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
964
965 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
966 {
967 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
968 }
969 EXPORT_SYMBOL_GPL(gfn_to_memslot);
970
971 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
972 {
973 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
974
975 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
976 memslot->flags & KVM_MEMSLOT_INVALID)
977 return 0;
978
979 return 1;
980 }
981 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
982
983 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
984 {
985 struct vm_area_struct *vma;
986 unsigned long addr, size;
987
988 size = PAGE_SIZE;
989
990 addr = gfn_to_hva(kvm, gfn);
991 if (kvm_is_error_hva(addr))
992 return PAGE_SIZE;
993
994 down_read(&current->mm->mmap_sem);
995 vma = find_vma(current->mm, addr);
996 if (!vma)
997 goto out;
998
999 size = vma_kernel_pagesize(vma);
1000
1001 out:
1002 up_read(&current->mm->mmap_sem);
1003
1004 return size;
1005 }
1006
1007 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1008 {
1009 return slot->flags & KVM_MEM_READONLY;
1010 }
1011
1012 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1013 gfn_t *nr_pages, bool write)
1014 {
1015 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1016 return KVM_HVA_ERR_BAD;
1017
1018 if (memslot_is_readonly(slot) && write)
1019 return KVM_HVA_ERR_RO_BAD;
1020
1021 if (nr_pages)
1022 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1023
1024 return __gfn_to_hva_memslot(slot, gfn);
1025 }
1026
1027 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1028 gfn_t *nr_pages)
1029 {
1030 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1031 }
1032
1033 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1034 gfn_t gfn)
1035 {
1036 return gfn_to_hva_many(slot, gfn, NULL);
1037 }
1038 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1039
1040 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1041 {
1042 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1043 }
1044 EXPORT_SYMBOL_GPL(gfn_to_hva);
1045
1046 /*
1047 * The hva returned by this function is only allowed to be read.
1048 * It should pair with kvm_read_hva() or kvm_read_hva_atomic().
1049 */
1050 static unsigned long gfn_to_hva_read(struct kvm *kvm, gfn_t gfn)
1051 {
1052 return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false);
1053 }
1054
1055 static int kvm_read_hva(void *data, void __user *hva, int len)
1056 {
1057 return __copy_from_user(data, hva, len);
1058 }
1059
1060 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1061 {
1062 return __copy_from_user_inatomic(data, hva, len);
1063 }
1064
1065 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1066 unsigned long start, int write, struct page **page)
1067 {
1068 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1069
1070 if (write)
1071 flags |= FOLL_WRITE;
1072
1073 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1074 }
1075
1076 static inline int check_user_page_hwpoison(unsigned long addr)
1077 {
1078 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1079
1080 rc = __get_user_pages(current, current->mm, addr, 1,
1081 flags, NULL, NULL, NULL);
1082 return rc == -EHWPOISON;
1083 }
1084
1085 /*
1086 * The atomic path to get the writable pfn which will be stored in @pfn,
1087 * true indicates success, otherwise false is returned.
1088 */
1089 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1090 bool write_fault, bool *writable, pfn_t *pfn)
1091 {
1092 struct page *page[1];
1093 int npages;
1094
1095 if (!(async || atomic))
1096 return false;
1097
1098 /*
1099 * Fast pin a writable pfn only if it is a write fault request
1100 * or the caller allows to map a writable pfn for a read fault
1101 * request.
1102 */
1103 if (!(write_fault || writable))
1104 return false;
1105
1106 npages = __get_user_pages_fast(addr, 1, 1, page);
1107 if (npages == 1) {
1108 *pfn = page_to_pfn(page[0]);
1109
1110 if (writable)
1111 *writable = true;
1112 return true;
1113 }
1114
1115 return false;
1116 }
1117
1118 /*
1119 * The slow path to get the pfn of the specified host virtual address,
1120 * 1 indicates success, -errno is returned if error is detected.
1121 */
1122 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1123 bool *writable, pfn_t *pfn)
1124 {
1125 struct page *page[1];
1126 int npages = 0;
1127
1128 might_sleep();
1129
1130 if (writable)
1131 *writable = write_fault;
1132
1133 if (async) {
1134 down_read(&current->mm->mmap_sem);
1135 npages = get_user_page_nowait(current, current->mm,
1136 addr, write_fault, page);
1137 up_read(&current->mm->mmap_sem);
1138 } else
1139 npages = get_user_pages_fast(addr, 1, write_fault,
1140 page);
1141 if (npages != 1)
1142 return npages;
1143
1144 /* map read fault as writable if possible */
1145 if (unlikely(!write_fault) && writable) {
1146 struct page *wpage[1];
1147
1148 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1149 if (npages == 1) {
1150 *writable = true;
1151 put_page(page[0]);
1152 page[0] = wpage[0];
1153 }
1154
1155 npages = 1;
1156 }
1157 *pfn = page_to_pfn(page[0]);
1158 return npages;
1159 }
1160
1161 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1162 {
1163 if (unlikely(!(vma->vm_flags & VM_READ)))
1164 return false;
1165
1166 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1167 return false;
1168
1169 return true;
1170 }
1171
1172 /*
1173 * Pin guest page in memory and return its pfn.
1174 * @addr: host virtual address which maps memory to the guest
1175 * @atomic: whether this function can sleep
1176 * @async: whether this function need to wait IO complete if the
1177 * host page is not in the memory
1178 * @write_fault: whether we should get a writable host page
1179 * @writable: whether it allows to map a writable host page for !@write_fault
1180 *
1181 * The function will map a writable host page for these two cases:
1182 * 1): @write_fault = true
1183 * 2): @write_fault = false && @writable, @writable will tell the caller
1184 * whether the mapping is writable.
1185 */
1186 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1187 bool write_fault, bool *writable)
1188 {
1189 struct vm_area_struct *vma;
1190 pfn_t pfn = 0;
1191 int npages;
1192
1193 /* we can do it either atomically or asynchronously, not both */
1194 BUG_ON(atomic && async);
1195
1196 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1197 return pfn;
1198
1199 if (atomic)
1200 return KVM_PFN_ERR_FAULT;
1201
1202 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1203 if (npages == 1)
1204 return pfn;
1205
1206 down_read(&current->mm->mmap_sem);
1207 if (npages == -EHWPOISON ||
1208 (!async && check_user_page_hwpoison(addr))) {
1209 pfn = KVM_PFN_ERR_HWPOISON;
1210 goto exit;
1211 }
1212
1213 vma = find_vma_intersection(current->mm, addr, addr + 1);
1214
1215 if (vma == NULL)
1216 pfn = KVM_PFN_ERR_FAULT;
1217 else if ((vma->vm_flags & VM_PFNMAP)) {
1218 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1219 vma->vm_pgoff;
1220 BUG_ON(!kvm_is_mmio_pfn(pfn));
1221 } else {
1222 if (async && vma_is_valid(vma, write_fault))
1223 *async = true;
1224 pfn = KVM_PFN_ERR_FAULT;
1225 }
1226 exit:
1227 up_read(&current->mm->mmap_sem);
1228 return pfn;
1229 }
1230
1231 static pfn_t
1232 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1233 bool *async, bool write_fault, bool *writable)
1234 {
1235 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1236
1237 if (addr == KVM_HVA_ERR_RO_BAD)
1238 return KVM_PFN_ERR_RO_FAULT;
1239
1240 if (kvm_is_error_hva(addr))
1241 return KVM_PFN_NOSLOT;
1242
1243 /* Do not map writable pfn in the readonly memslot. */
1244 if (writable && memslot_is_readonly(slot)) {
1245 *writable = false;
1246 writable = NULL;
1247 }
1248
1249 return hva_to_pfn(addr, atomic, async, write_fault,
1250 writable);
1251 }
1252
1253 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1254 bool write_fault, bool *writable)
1255 {
1256 struct kvm_memory_slot *slot;
1257
1258 if (async)
1259 *async = false;
1260
1261 slot = gfn_to_memslot(kvm, gfn);
1262
1263 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1264 writable);
1265 }
1266
1267 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1268 {
1269 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1270 }
1271 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1272
1273 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1274 bool write_fault, bool *writable)
1275 {
1276 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1277 }
1278 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1279
1280 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1281 {
1282 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1283 }
1284 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1285
1286 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1287 bool *writable)
1288 {
1289 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1290 }
1291 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1292
1293 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1294 {
1295 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1296 }
1297
1298 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1299 {
1300 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1301 }
1302 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1303
1304 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1305 int nr_pages)
1306 {
1307 unsigned long addr;
1308 gfn_t entry;
1309
1310 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1311 if (kvm_is_error_hva(addr))
1312 return -1;
1313
1314 if (entry < nr_pages)
1315 return 0;
1316
1317 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1318 }
1319 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1320
1321 static struct page *kvm_pfn_to_page(pfn_t pfn)
1322 {
1323 if (is_error_noslot_pfn(pfn))
1324 return KVM_ERR_PTR_BAD_PAGE;
1325
1326 if (kvm_is_mmio_pfn(pfn)) {
1327 WARN_ON(1);
1328 return KVM_ERR_PTR_BAD_PAGE;
1329 }
1330
1331 return pfn_to_page(pfn);
1332 }
1333
1334 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1335 {
1336 pfn_t pfn;
1337
1338 pfn = gfn_to_pfn(kvm, gfn);
1339
1340 return kvm_pfn_to_page(pfn);
1341 }
1342
1343 EXPORT_SYMBOL_GPL(gfn_to_page);
1344
1345 void kvm_release_page_clean(struct page *page)
1346 {
1347 WARN_ON(is_error_page(page));
1348
1349 kvm_release_pfn_clean(page_to_pfn(page));
1350 }
1351 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1352
1353 void kvm_release_pfn_clean(pfn_t pfn)
1354 {
1355 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1356 put_page(pfn_to_page(pfn));
1357 }
1358 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1359
1360 void kvm_release_page_dirty(struct page *page)
1361 {
1362 WARN_ON(is_error_page(page));
1363
1364 kvm_release_pfn_dirty(page_to_pfn(page));
1365 }
1366 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1367
1368 void kvm_release_pfn_dirty(pfn_t pfn)
1369 {
1370 kvm_set_pfn_dirty(pfn);
1371 kvm_release_pfn_clean(pfn);
1372 }
1373 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1374
1375 void kvm_set_page_dirty(struct page *page)
1376 {
1377 kvm_set_pfn_dirty(page_to_pfn(page));
1378 }
1379 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1380
1381 void kvm_set_pfn_dirty(pfn_t pfn)
1382 {
1383 if (!kvm_is_mmio_pfn(pfn)) {
1384 struct page *page = pfn_to_page(pfn);
1385 if (!PageReserved(page))
1386 SetPageDirty(page);
1387 }
1388 }
1389 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1390
1391 void kvm_set_pfn_accessed(pfn_t pfn)
1392 {
1393 if (!kvm_is_mmio_pfn(pfn))
1394 mark_page_accessed(pfn_to_page(pfn));
1395 }
1396 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1397
1398 void kvm_get_pfn(pfn_t pfn)
1399 {
1400 if (!kvm_is_mmio_pfn(pfn))
1401 get_page(pfn_to_page(pfn));
1402 }
1403 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1404
1405 static int next_segment(unsigned long len, int offset)
1406 {
1407 if (len > PAGE_SIZE - offset)
1408 return PAGE_SIZE - offset;
1409 else
1410 return len;
1411 }
1412
1413 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1414 int len)
1415 {
1416 int r;
1417 unsigned long addr;
1418
1419 addr = gfn_to_hva_read(kvm, gfn);
1420 if (kvm_is_error_hva(addr))
1421 return -EFAULT;
1422 r = kvm_read_hva(data, (void __user *)addr + offset, len);
1423 if (r)
1424 return -EFAULT;
1425 return 0;
1426 }
1427 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1428
1429 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1430 {
1431 gfn_t gfn = gpa >> PAGE_SHIFT;
1432 int seg;
1433 int offset = offset_in_page(gpa);
1434 int ret;
1435
1436 while ((seg = next_segment(len, offset)) != 0) {
1437 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1438 if (ret < 0)
1439 return ret;
1440 offset = 0;
1441 len -= seg;
1442 data += seg;
1443 ++gfn;
1444 }
1445 return 0;
1446 }
1447 EXPORT_SYMBOL_GPL(kvm_read_guest);
1448
1449 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1450 unsigned long len)
1451 {
1452 int r;
1453 unsigned long addr;
1454 gfn_t gfn = gpa >> PAGE_SHIFT;
1455 int offset = offset_in_page(gpa);
1456
1457 addr = gfn_to_hva_read(kvm, gfn);
1458 if (kvm_is_error_hva(addr))
1459 return -EFAULT;
1460 pagefault_disable();
1461 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1462 pagefault_enable();
1463 if (r)
1464 return -EFAULT;
1465 return 0;
1466 }
1467 EXPORT_SYMBOL(kvm_read_guest_atomic);
1468
1469 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1470 int offset, int len)
1471 {
1472 int r;
1473 unsigned long addr;
1474
1475 addr = gfn_to_hva(kvm, gfn);
1476 if (kvm_is_error_hva(addr))
1477 return -EFAULT;
1478 r = __copy_to_user((void __user *)addr + offset, data, len);
1479 if (r)
1480 return -EFAULT;
1481 mark_page_dirty(kvm, gfn);
1482 return 0;
1483 }
1484 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1485
1486 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1487 unsigned long len)
1488 {
1489 gfn_t gfn = gpa >> PAGE_SHIFT;
1490 int seg;
1491 int offset = offset_in_page(gpa);
1492 int ret;
1493
1494 while ((seg = next_segment(len, offset)) != 0) {
1495 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1496 if (ret < 0)
1497 return ret;
1498 offset = 0;
1499 len -= seg;
1500 data += seg;
1501 ++gfn;
1502 }
1503 return 0;
1504 }
1505
1506 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1507 gpa_t gpa)
1508 {
1509 struct kvm_memslots *slots = kvm_memslots(kvm);
1510 int offset = offset_in_page(gpa);
1511 gfn_t gfn = gpa >> PAGE_SHIFT;
1512
1513 ghc->gpa = gpa;
1514 ghc->generation = slots->generation;
1515 ghc->memslot = gfn_to_memslot(kvm, gfn);
1516 ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1517 if (!kvm_is_error_hva(ghc->hva))
1518 ghc->hva += offset;
1519 else
1520 return -EFAULT;
1521
1522 return 0;
1523 }
1524 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1525
1526 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1527 void *data, unsigned long len)
1528 {
1529 struct kvm_memslots *slots = kvm_memslots(kvm);
1530 int r;
1531
1532 if (slots->generation != ghc->generation)
1533 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1534
1535 if (kvm_is_error_hva(ghc->hva))
1536 return -EFAULT;
1537
1538 r = __copy_to_user((void __user *)ghc->hva, data, len);
1539 if (r)
1540 return -EFAULT;
1541 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1542
1543 return 0;
1544 }
1545 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1546
1547 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1548 void *data, unsigned long len)
1549 {
1550 struct kvm_memslots *slots = kvm_memslots(kvm);
1551 int r;
1552
1553 if (slots->generation != ghc->generation)
1554 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1555
1556 if (kvm_is_error_hva(ghc->hva))
1557 return -EFAULT;
1558
1559 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1560 if (r)
1561 return -EFAULT;
1562
1563 return 0;
1564 }
1565 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1566
1567 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1568 {
1569 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1570 offset, len);
1571 }
1572 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1573
1574 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1575 {
1576 gfn_t gfn = gpa >> PAGE_SHIFT;
1577 int seg;
1578 int offset = offset_in_page(gpa);
1579 int ret;
1580
1581 while ((seg = next_segment(len, offset)) != 0) {
1582 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1583 if (ret < 0)
1584 return ret;
1585 offset = 0;
1586 len -= seg;
1587 ++gfn;
1588 }
1589 return 0;
1590 }
1591 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1592
1593 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1594 gfn_t gfn)
1595 {
1596 if (memslot && memslot->dirty_bitmap) {
1597 unsigned long rel_gfn = gfn - memslot->base_gfn;
1598
1599 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1600 }
1601 }
1602
1603 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1604 {
1605 struct kvm_memory_slot *memslot;
1606
1607 memslot = gfn_to_memslot(kvm, gfn);
1608 mark_page_dirty_in_slot(kvm, memslot, gfn);
1609 }
1610
1611 /*
1612 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1613 */
1614 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1615 {
1616 DEFINE_WAIT(wait);
1617
1618 for (;;) {
1619 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1620
1621 if (kvm_arch_vcpu_runnable(vcpu)) {
1622 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1623 break;
1624 }
1625 if (kvm_cpu_has_pending_timer(vcpu))
1626 break;
1627 if (signal_pending(current))
1628 break;
1629
1630 schedule();
1631 }
1632
1633 finish_wait(&vcpu->wq, &wait);
1634 }
1635
1636 #ifndef CONFIG_S390
1637 /*
1638 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1639 */
1640 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1641 {
1642 int me;
1643 int cpu = vcpu->cpu;
1644 wait_queue_head_t *wqp;
1645
1646 wqp = kvm_arch_vcpu_wq(vcpu);
1647 if (waitqueue_active(wqp)) {
1648 wake_up_interruptible(wqp);
1649 ++vcpu->stat.halt_wakeup;
1650 }
1651
1652 me = get_cpu();
1653 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1654 if (kvm_arch_vcpu_should_kick(vcpu))
1655 smp_send_reschedule(cpu);
1656 put_cpu();
1657 }
1658 #endif /* !CONFIG_S390 */
1659
1660 void kvm_resched(struct kvm_vcpu *vcpu)
1661 {
1662 if (!need_resched())
1663 return;
1664 cond_resched();
1665 }
1666 EXPORT_SYMBOL_GPL(kvm_resched);
1667
1668 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1669 {
1670 struct pid *pid;
1671 struct task_struct *task = NULL;
1672
1673 rcu_read_lock();
1674 pid = rcu_dereference(target->pid);
1675 if (pid)
1676 task = get_pid_task(target->pid, PIDTYPE_PID);
1677 rcu_read_unlock();
1678 if (!task)
1679 return false;
1680 if (task->flags & PF_VCPU) {
1681 put_task_struct(task);
1682 return false;
1683 }
1684 if (yield_to(task, 1)) {
1685 put_task_struct(task);
1686 return true;
1687 }
1688 put_task_struct(task);
1689 return false;
1690 }
1691 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1692
1693 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1694 /*
1695 * Helper that checks whether a VCPU is eligible for directed yield.
1696 * Most eligible candidate to yield is decided by following heuristics:
1697 *
1698 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1699 * (preempted lock holder), indicated by @in_spin_loop.
1700 * Set at the beiginning and cleared at the end of interception/PLE handler.
1701 *
1702 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1703 * chance last time (mostly it has become eligible now since we have probably
1704 * yielded to lockholder in last iteration. This is done by toggling
1705 * @dy_eligible each time a VCPU checked for eligibility.)
1706 *
1707 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1708 * to preempted lock-holder could result in wrong VCPU selection and CPU
1709 * burning. Giving priority for a potential lock-holder increases lock
1710 * progress.
1711 *
1712 * Since algorithm is based on heuristics, accessing another VCPU data without
1713 * locking does not harm. It may result in trying to yield to same VCPU, fail
1714 * and continue with next VCPU and so on.
1715 */
1716 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1717 {
1718 bool eligible;
1719
1720 eligible = !vcpu->spin_loop.in_spin_loop ||
1721 (vcpu->spin_loop.in_spin_loop &&
1722 vcpu->spin_loop.dy_eligible);
1723
1724 if (vcpu->spin_loop.in_spin_loop)
1725 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1726
1727 return eligible;
1728 }
1729 #endif
1730 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1731 {
1732 struct kvm *kvm = me->kvm;
1733 struct kvm_vcpu *vcpu;
1734 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1735 int yielded = 0;
1736 int pass;
1737 int i;
1738
1739 kvm_vcpu_set_in_spin_loop(me, true);
1740 /*
1741 * We boost the priority of a VCPU that is runnable but not
1742 * currently running, because it got preempted by something
1743 * else and called schedule in __vcpu_run. Hopefully that
1744 * VCPU is holding the lock that we need and will release it.
1745 * We approximate round-robin by starting at the last boosted VCPU.
1746 */
1747 for (pass = 0; pass < 2 && !yielded; pass++) {
1748 kvm_for_each_vcpu(i, vcpu, kvm) {
1749 if (!pass && i <= last_boosted_vcpu) {
1750 i = last_boosted_vcpu;
1751 continue;
1752 } else if (pass && i > last_boosted_vcpu)
1753 break;
1754 if (vcpu == me)
1755 continue;
1756 if (waitqueue_active(&vcpu->wq))
1757 continue;
1758 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1759 continue;
1760 if (kvm_vcpu_yield_to(vcpu)) {
1761 kvm->last_boosted_vcpu = i;
1762 yielded = 1;
1763 break;
1764 }
1765 }
1766 }
1767 kvm_vcpu_set_in_spin_loop(me, false);
1768
1769 /* Ensure vcpu is not eligible during next spinloop */
1770 kvm_vcpu_set_dy_eligible(me, false);
1771 }
1772 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1773
1774 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1775 {
1776 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1777 struct page *page;
1778
1779 if (vmf->pgoff == 0)
1780 page = virt_to_page(vcpu->run);
1781 #ifdef CONFIG_X86
1782 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1783 page = virt_to_page(vcpu->arch.pio_data);
1784 #endif
1785 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1786 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1787 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1788 #endif
1789 else
1790 return kvm_arch_vcpu_fault(vcpu, vmf);
1791 get_page(page);
1792 vmf->page = page;
1793 return 0;
1794 }
1795
1796 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1797 .fault = kvm_vcpu_fault,
1798 };
1799
1800 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1801 {
1802 vma->vm_ops = &kvm_vcpu_vm_ops;
1803 return 0;
1804 }
1805
1806 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1807 {
1808 struct kvm_vcpu *vcpu = filp->private_data;
1809
1810 kvm_put_kvm(vcpu->kvm);
1811 return 0;
1812 }
1813
1814 static struct file_operations kvm_vcpu_fops = {
1815 .release = kvm_vcpu_release,
1816 .unlocked_ioctl = kvm_vcpu_ioctl,
1817 #ifdef CONFIG_COMPAT
1818 .compat_ioctl = kvm_vcpu_compat_ioctl,
1819 #endif
1820 .mmap = kvm_vcpu_mmap,
1821 .llseek = noop_llseek,
1822 };
1823
1824 /*
1825 * Allocates an inode for the vcpu.
1826 */
1827 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1828 {
1829 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1830 }
1831
1832 /*
1833 * Creates some virtual cpus. Good luck creating more than one.
1834 */
1835 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1836 {
1837 int r;
1838 struct kvm_vcpu *vcpu, *v;
1839
1840 vcpu = kvm_arch_vcpu_create(kvm, id);
1841 if (IS_ERR(vcpu))
1842 return PTR_ERR(vcpu);
1843
1844 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1845
1846 r = kvm_arch_vcpu_setup(vcpu);
1847 if (r)
1848 goto vcpu_destroy;
1849
1850 mutex_lock(&kvm->lock);
1851 if (!kvm_vcpu_compatible(vcpu)) {
1852 r = -EINVAL;
1853 goto unlock_vcpu_destroy;
1854 }
1855 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1856 r = -EINVAL;
1857 goto unlock_vcpu_destroy;
1858 }
1859
1860 kvm_for_each_vcpu(r, v, kvm)
1861 if (v->vcpu_id == id) {
1862 r = -EEXIST;
1863 goto unlock_vcpu_destroy;
1864 }
1865
1866 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1867
1868 /* Now it's all set up, let userspace reach it */
1869 kvm_get_kvm(kvm);
1870 r = create_vcpu_fd(vcpu);
1871 if (r < 0) {
1872 kvm_put_kvm(kvm);
1873 goto unlock_vcpu_destroy;
1874 }
1875
1876 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1877 smp_wmb();
1878 atomic_inc(&kvm->online_vcpus);
1879
1880 mutex_unlock(&kvm->lock);
1881 kvm_arch_vcpu_postcreate(vcpu);
1882 return r;
1883
1884 unlock_vcpu_destroy:
1885 mutex_unlock(&kvm->lock);
1886 vcpu_destroy:
1887 kvm_arch_vcpu_destroy(vcpu);
1888 return r;
1889 }
1890
1891 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1892 {
1893 if (sigset) {
1894 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1895 vcpu->sigset_active = 1;
1896 vcpu->sigset = *sigset;
1897 } else
1898 vcpu->sigset_active = 0;
1899 return 0;
1900 }
1901
1902 static long kvm_vcpu_ioctl(struct file *filp,
1903 unsigned int ioctl, unsigned long arg)
1904 {
1905 struct kvm_vcpu *vcpu = filp->private_data;
1906 void __user *argp = (void __user *)arg;
1907 int r;
1908 struct kvm_fpu *fpu = NULL;
1909 struct kvm_sregs *kvm_sregs = NULL;
1910
1911 if (vcpu->kvm->mm != current->mm)
1912 return -EIO;
1913
1914 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1915 /*
1916 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1917 * so vcpu_load() would break it.
1918 */
1919 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1920 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1921 #endif
1922
1923
1924 r = vcpu_load(vcpu);
1925 if (r)
1926 return r;
1927 switch (ioctl) {
1928 case KVM_RUN:
1929 r = -EINVAL;
1930 if (arg)
1931 goto out;
1932 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1933 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1934 break;
1935 case KVM_GET_REGS: {
1936 struct kvm_regs *kvm_regs;
1937
1938 r = -ENOMEM;
1939 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1940 if (!kvm_regs)
1941 goto out;
1942 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1943 if (r)
1944 goto out_free1;
1945 r = -EFAULT;
1946 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1947 goto out_free1;
1948 r = 0;
1949 out_free1:
1950 kfree(kvm_regs);
1951 break;
1952 }
1953 case KVM_SET_REGS: {
1954 struct kvm_regs *kvm_regs;
1955
1956 r = -ENOMEM;
1957 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
1958 if (IS_ERR(kvm_regs)) {
1959 r = PTR_ERR(kvm_regs);
1960 goto out;
1961 }
1962 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1963 kfree(kvm_regs);
1964 break;
1965 }
1966 case KVM_GET_SREGS: {
1967 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1968 r = -ENOMEM;
1969 if (!kvm_sregs)
1970 goto out;
1971 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1972 if (r)
1973 goto out;
1974 r = -EFAULT;
1975 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1976 goto out;
1977 r = 0;
1978 break;
1979 }
1980 case KVM_SET_SREGS: {
1981 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
1982 if (IS_ERR(kvm_sregs)) {
1983 r = PTR_ERR(kvm_sregs);
1984 kvm_sregs = NULL;
1985 goto out;
1986 }
1987 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1988 break;
1989 }
1990 case KVM_GET_MP_STATE: {
1991 struct kvm_mp_state mp_state;
1992
1993 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1994 if (r)
1995 goto out;
1996 r = -EFAULT;
1997 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1998 goto out;
1999 r = 0;
2000 break;
2001 }
2002 case KVM_SET_MP_STATE: {
2003 struct kvm_mp_state mp_state;
2004
2005 r = -EFAULT;
2006 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2007 goto out;
2008 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2009 break;
2010 }
2011 case KVM_TRANSLATE: {
2012 struct kvm_translation tr;
2013
2014 r = -EFAULT;
2015 if (copy_from_user(&tr, argp, sizeof tr))
2016 goto out;
2017 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2018 if (r)
2019 goto out;
2020 r = -EFAULT;
2021 if (copy_to_user(argp, &tr, sizeof tr))
2022 goto out;
2023 r = 0;
2024 break;
2025 }
2026 case KVM_SET_GUEST_DEBUG: {
2027 struct kvm_guest_debug dbg;
2028
2029 r = -EFAULT;
2030 if (copy_from_user(&dbg, argp, sizeof dbg))
2031 goto out;
2032 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2033 break;
2034 }
2035 case KVM_SET_SIGNAL_MASK: {
2036 struct kvm_signal_mask __user *sigmask_arg = argp;
2037 struct kvm_signal_mask kvm_sigmask;
2038 sigset_t sigset, *p;
2039
2040 p = NULL;
2041 if (argp) {
2042 r = -EFAULT;
2043 if (copy_from_user(&kvm_sigmask, argp,
2044 sizeof kvm_sigmask))
2045 goto out;
2046 r = -EINVAL;
2047 if (kvm_sigmask.len != sizeof sigset)
2048 goto out;
2049 r = -EFAULT;
2050 if (copy_from_user(&sigset, sigmask_arg->sigset,
2051 sizeof sigset))
2052 goto out;
2053 p = &sigset;
2054 }
2055 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2056 break;
2057 }
2058 case KVM_GET_FPU: {
2059 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2060 r = -ENOMEM;
2061 if (!fpu)
2062 goto out;
2063 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2064 if (r)
2065 goto out;
2066 r = -EFAULT;
2067 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2068 goto out;
2069 r = 0;
2070 break;
2071 }
2072 case KVM_SET_FPU: {
2073 fpu = memdup_user(argp, sizeof(*fpu));
2074 if (IS_ERR(fpu)) {
2075 r = PTR_ERR(fpu);
2076 fpu = NULL;
2077 goto out;
2078 }
2079 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2080 break;
2081 }
2082 default:
2083 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2084 }
2085 out:
2086 vcpu_put(vcpu);
2087 kfree(fpu);
2088 kfree(kvm_sregs);
2089 return r;
2090 }
2091
2092 #ifdef CONFIG_COMPAT
2093 static long kvm_vcpu_compat_ioctl(struct file *filp,
2094 unsigned int ioctl, unsigned long arg)
2095 {
2096 struct kvm_vcpu *vcpu = filp->private_data;
2097 void __user *argp = compat_ptr(arg);
2098 int r;
2099
2100 if (vcpu->kvm->mm != current->mm)
2101 return -EIO;
2102
2103 switch (ioctl) {
2104 case KVM_SET_SIGNAL_MASK: {
2105 struct kvm_signal_mask __user *sigmask_arg = argp;
2106 struct kvm_signal_mask kvm_sigmask;
2107 compat_sigset_t csigset;
2108 sigset_t sigset;
2109
2110 if (argp) {
2111 r = -EFAULT;
2112 if (copy_from_user(&kvm_sigmask, argp,
2113 sizeof kvm_sigmask))
2114 goto out;
2115 r = -EINVAL;
2116 if (kvm_sigmask.len != sizeof csigset)
2117 goto out;
2118 r = -EFAULT;
2119 if (copy_from_user(&csigset, sigmask_arg->sigset,
2120 sizeof csigset))
2121 goto out;
2122 sigset_from_compat(&sigset, &csigset);
2123 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2124 } else
2125 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2126 break;
2127 }
2128 default:
2129 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2130 }
2131
2132 out:
2133 return r;
2134 }
2135 #endif
2136
2137 static long kvm_vm_ioctl(struct file *filp,
2138 unsigned int ioctl, unsigned long arg)
2139 {
2140 struct kvm *kvm = filp->private_data;
2141 void __user *argp = (void __user *)arg;
2142 int r;
2143
2144 if (kvm->mm != current->mm)
2145 return -EIO;
2146 switch (ioctl) {
2147 case KVM_CREATE_VCPU:
2148 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2149 break;
2150 case KVM_SET_USER_MEMORY_REGION: {
2151 struct kvm_userspace_memory_region kvm_userspace_mem;
2152
2153 r = -EFAULT;
2154 if (copy_from_user(&kvm_userspace_mem, argp,
2155 sizeof kvm_userspace_mem))
2156 goto out;
2157
2158 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, true);
2159 break;
2160 }
2161 case KVM_GET_DIRTY_LOG: {
2162 struct kvm_dirty_log log;
2163
2164 r = -EFAULT;
2165 if (copy_from_user(&log, argp, sizeof log))
2166 goto out;
2167 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2168 break;
2169 }
2170 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2171 case KVM_REGISTER_COALESCED_MMIO: {
2172 struct kvm_coalesced_mmio_zone zone;
2173 r = -EFAULT;
2174 if (copy_from_user(&zone, argp, sizeof zone))
2175 goto out;
2176 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2177 break;
2178 }
2179 case KVM_UNREGISTER_COALESCED_MMIO: {
2180 struct kvm_coalesced_mmio_zone zone;
2181 r = -EFAULT;
2182 if (copy_from_user(&zone, argp, sizeof zone))
2183 goto out;
2184 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2185 break;
2186 }
2187 #endif
2188 case KVM_IRQFD: {
2189 struct kvm_irqfd data;
2190
2191 r = -EFAULT;
2192 if (copy_from_user(&data, argp, sizeof data))
2193 goto out;
2194 r = kvm_irqfd(kvm, &data);
2195 break;
2196 }
2197 case KVM_IOEVENTFD: {
2198 struct kvm_ioeventfd data;
2199
2200 r = -EFAULT;
2201 if (copy_from_user(&data, argp, sizeof data))
2202 goto out;
2203 r = kvm_ioeventfd(kvm, &data);
2204 break;
2205 }
2206 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2207 case KVM_SET_BOOT_CPU_ID:
2208 r = 0;
2209 mutex_lock(&kvm->lock);
2210 if (atomic_read(&kvm->online_vcpus) != 0)
2211 r = -EBUSY;
2212 else
2213 kvm->bsp_vcpu_id = arg;
2214 mutex_unlock(&kvm->lock);
2215 break;
2216 #endif
2217 #ifdef CONFIG_HAVE_KVM_MSI
2218 case KVM_SIGNAL_MSI: {
2219 struct kvm_msi msi;
2220
2221 r = -EFAULT;
2222 if (copy_from_user(&msi, argp, sizeof msi))
2223 goto out;
2224 r = kvm_send_userspace_msi(kvm, &msi);
2225 break;
2226 }
2227 #endif
2228 #ifdef __KVM_HAVE_IRQ_LINE
2229 case KVM_IRQ_LINE_STATUS:
2230 case KVM_IRQ_LINE: {
2231 struct kvm_irq_level irq_event;
2232
2233 r = -EFAULT;
2234 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2235 goto out;
2236
2237 r = kvm_vm_ioctl_irq_line(kvm, &irq_event);
2238 if (r)
2239 goto out;
2240
2241 r = -EFAULT;
2242 if (ioctl == KVM_IRQ_LINE_STATUS) {
2243 if (copy_to_user(argp, &irq_event, sizeof irq_event))
2244 goto out;
2245 }
2246
2247 r = 0;
2248 break;
2249 }
2250 #endif
2251 default:
2252 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2253 if (r == -ENOTTY)
2254 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2255 }
2256 out:
2257 return r;
2258 }
2259
2260 #ifdef CONFIG_COMPAT
2261 struct compat_kvm_dirty_log {
2262 __u32 slot;
2263 __u32 padding1;
2264 union {
2265 compat_uptr_t dirty_bitmap; /* one bit per page */
2266 __u64 padding2;
2267 };
2268 };
2269
2270 static long kvm_vm_compat_ioctl(struct file *filp,
2271 unsigned int ioctl, unsigned long arg)
2272 {
2273 struct kvm *kvm = filp->private_data;
2274 int r;
2275
2276 if (kvm->mm != current->mm)
2277 return -EIO;
2278 switch (ioctl) {
2279 case KVM_GET_DIRTY_LOG: {
2280 struct compat_kvm_dirty_log compat_log;
2281 struct kvm_dirty_log log;
2282
2283 r = -EFAULT;
2284 if (copy_from_user(&compat_log, (void __user *)arg,
2285 sizeof(compat_log)))
2286 goto out;
2287 log.slot = compat_log.slot;
2288 log.padding1 = compat_log.padding1;
2289 log.padding2 = compat_log.padding2;
2290 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2291
2292 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2293 break;
2294 }
2295 default:
2296 r = kvm_vm_ioctl(filp, ioctl, arg);
2297 }
2298
2299 out:
2300 return r;
2301 }
2302 #endif
2303
2304 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2305 {
2306 struct page *page[1];
2307 unsigned long addr;
2308 int npages;
2309 gfn_t gfn = vmf->pgoff;
2310 struct kvm *kvm = vma->vm_file->private_data;
2311
2312 addr = gfn_to_hva(kvm, gfn);
2313 if (kvm_is_error_hva(addr))
2314 return VM_FAULT_SIGBUS;
2315
2316 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2317 NULL);
2318 if (unlikely(npages != 1))
2319 return VM_FAULT_SIGBUS;
2320
2321 vmf->page = page[0];
2322 return 0;
2323 }
2324
2325 static const struct vm_operations_struct kvm_vm_vm_ops = {
2326 .fault = kvm_vm_fault,
2327 };
2328
2329 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2330 {
2331 vma->vm_ops = &kvm_vm_vm_ops;
2332 return 0;
2333 }
2334
2335 static struct file_operations kvm_vm_fops = {
2336 .release = kvm_vm_release,
2337 .unlocked_ioctl = kvm_vm_ioctl,
2338 #ifdef CONFIG_COMPAT
2339 .compat_ioctl = kvm_vm_compat_ioctl,
2340 #endif
2341 .mmap = kvm_vm_mmap,
2342 .llseek = noop_llseek,
2343 };
2344
2345 static int kvm_dev_ioctl_create_vm(unsigned long type)
2346 {
2347 int r;
2348 struct kvm *kvm;
2349
2350 kvm = kvm_create_vm(type);
2351 if (IS_ERR(kvm))
2352 return PTR_ERR(kvm);
2353 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2354 r = kvm_coalesced_mmio_init(kvm);
2355 if (r < 0) {
2356 kvm_put_kvm(kvm);
2357 return r;
2358 }
2359 #endif
2360 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2361 if (r < 0)
2362 kvm_put_kvm(kvm);
2363
2364 return r;
2365 }
2366
2367 static long kvm_dev_ioctl_check_extension_generic(long arg)
2368 {
2369 switch (arg) {
2370 case KVM_CAP_USER_MEMORY:
2371 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2372 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2373 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2374 case KVM_CAP_SET_BOOT_CPU_ID:
2375 #endif
2376 case KVM_CAP_INTERNAL_ERROR_DATA:
2377 #ifdef CONFIG_HAVE_KVM_MSI
2378 case KVM_CAP_SIGNAL_MSI:
2379 #endif
2380 return 1;
2381 #ifdef KVM_CAP_IRQ_ROUTING
2382 case KVM_CAP_IRQ_ROUTING:
2383 return KVM_MAX_IRQ_ROUTES;
2384 #endif
2385 default:
2386 break;
2387 }
2388 return kvm_dev_ioctl_check_extension(arg);
2389 }
2390
2391 static long kvm_dev_ioctl(struct file *filp,
2392 unsigned int ioctl, unsigned long arg)
2393 {
2394 long r = -EINVAL;
2395
2396 switch (ioctl) {
2397 case KVM_GET_API_VERSION:
2398 r = -EINVAL;
2399 if (arg)
2400 goto out;
2401 r = KVM_API_VERSION;
2402 break;
2403 case KVM_CREATE_VM:
2404 r = kvm_dev_ioctl_create_vm(arg);
2405 break;
2406 case KVM_CHECK_EXTENSION:
2407 r = kvm_dev_ioctl_check_extension_generic(arg);
2408 break;
2409 case KVM_GET_VCPU_MMAP_SIZE:
2410 r = -EINVAL;
2411 if (arg)
2412 goto out;
2413 r = PAGE_SIZE; /* struct kvm_run */
2414 #ifdef CONFIG_X86
2415 r += PAGE_SIZE; /* pio data page */
2416 #endif
2417 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2418 r += PAGE_SIZE; /* coalesced mmio ring page */
2419 #endif
2420 break;
2421 case KVM_TRACE_ENABLE:
2422 case KVM_TRACE_PAUSE:
2423 case KVM_TRACE_DISABLE:
2424 r = -EOPNOTSUPP;
2425 break;
2426 default:
2427 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2428 }
2429 out:
2430 return r;
2431 }
2432
2433 static struct file_operations kvm_chardev_ops = {
2434 .unlocked_ioctl = kvm_dev_ioctl,
2435 .compat_ioctl = kvm_dev_ioctl,
2436 .llseek = noop_llseek,
2437 };
2438
2439 static struct miscdevice kvm_dev = {
2440 KVM_MINOR,
2441 "kvm",
2442 &kvm_chardev_ops,
2443 };
2444
2445 static void hardware_enable_nolock(void *junk)
2446 {
2447 int cpu = raw_smp_processor_id();
2448 int r;
2449
2450 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2451 return;
2452
2453 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2454
2455 r = kvm_arch_hardware_enable(NULL);
2456
2457 if (r) {
2458 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2459 atomic_inc(&hardware_enable_failed);
2460 printk(KERN_INFO "kvm: enabling virtualization on "
2461 "CPU%d failed\n", cpu);
2462 }
2463 }
2464
2465 static void hardware_enable(void *junk)
2466 {
2467 raw_spin_lock(&kvm_lock);
2468 hardware_enable_nolock(junk);
2469 raw_spin_unlock(&kvm_lock);
2470 }
2471
2472 static void hardware_disable_nolock(void *junk)
2473 {
2474 int cpu = raw_smp_processor_id();
2475
2476 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2477 return;
2478 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2479 kvm_arch_hardware_disable(NULL);
2480 }
2481
2482 static void hardware_disable(void *junk)
2483 {
2484 raw_spin_lock(&kvm_lock);
2485 hardware_disable_nolock(junk);
2486 raw_spin_unlock(&kvm_lock);
2487 }
2488
2489 static void hardware_disable_all_nolock(void)
2490 {
2491 BUG_ON(!kvm_usage_count);
2492
2493 kvm_usage_count--;
2494 if (!kvm_usage_count)
2495 on_each_cpu(hardware_disable_nolock, NULL, 1);
2496 }
2497
2498 static void hardware_disable_all(void)
2499 {
2500 raw_spin_lock(&kvm_lock);
2501 hardware_disable_all_nolock();
2502 raw_spin_unlock(&kvm_lock);
2503 }
2504
2505 static int hardware_enable_all(void)
2506 {
2507 int r = 0;
2508
2509 raw_spin_lock(&kvm_lock);
2510
2511 kvm_usage_count++;
2512 if (kvm_usage_count == 1) {
2513 atomic_set(&hardware_enable_failed, 0);
2514 on_each_cpu(hardware_enable_nolock, NULL, 1);
2515
2516 if (atomic_read(&hardware_enable_failed)) {
2517 hardware_disable_all_nolock();
2518 r = -EBUSY;
2519 }
2520 }
2521
2522 raw_spin_unlock(&kvm_lock);
2523
2524 return r;
2525 }
2526
2527 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2528 void *v)
2529 {
2530 int cpu = (long)v;
2531
2532 if (!kvm_usage_count)
2533 return NOTIFY_OK;
2534
2535 val &= ~CPU_TASKS_FROZEN;
2536 switch (val) {
2537 case CPU_DYING:
2538 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2539 cpu);
2540 hardware_disable(NULL);
2541 break;
2542 case CPU_STARTING:
2543 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2544 cpu);
2545 hardware_enable(NULL);
2546 break;
2547 }
2548 return NOTIFY_OK;
2549 }
2550
2551
2552 asmlinkage void kvm_spurious_fault(void)
2553 {
2554 /* Fault while not rebooting. We want the trace. */
2555 BUG();
2556 }
2557 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2558
2559 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2560 void *v)
2561 {
2562 /*
2563 * Some (well, at least mine) BIOSes hang on reboot if
2564 * in vmx root mode.
2565 *
2566 * And Intel TXT required VMX off for all cpu when system shutdown.
2567 */
2568 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2569 kvm_rebooting = true;
2570 on_each_cpu(hardware_disable_nolock, NULL, 1);
2571 return NOTIFY_OK;
2572 }
2573
2574 static struct notifier_block kvm_reboot_notifier = {
2575 .notifier_call = kvm_reboot,
2576 .priority = 0,
2577 };
2578
2579 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2580 {
2581 int i;
2582
2583 for (i = 0; i < bus->dev_count; i++) {
2584 struct kvm_io_device *pos = bus->range[i].dev;
2585
2586 kvm_iodevice_destructor(pos);
2587 }
2588 kfree(bus);
2589 }
2590
2591 int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2592 {
2593 const struct kvm_io_range *r1 = p1;
2594 const struct kvm_io_range *r2 = p2;
2595
2596 if (r1->addr < r2->addr)
2597 return -1;
2598 if (r1->addr + r1->len > r2->addr + r2->len)
2599 return 1;
2600 return 0;
2601 }
2602
2603 int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2604 gpa_t addr, int len)
2605 {
2606 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2607 .addr = addr,
2608 .len = len,
2609 .dev = dev,
2610 };
2611
2612 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2613 kvm_io_bus_sort_cmp, NULL);
2614
2615 return 0;
2616 }
2617
2618 int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2619 gpa_t addr, int len)
2620 {
2621 struct kvm_io_range *range, key;
2622 int off;
2623
2624 key = (struct kvm_io_range) {
2625 .addr = addr,
2626 .len = len,
2627 };
2628
2629 range = bsearch(&key, bus->range, bus->dev_count,
2630 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2631 if (range == NULL)
2632 return -ENOENT;
2633
2634 off = range - bus->range;
2635
2636 while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2637 off--;
2638
2639 return off;
2640 }
2641
2642 /* kvm_io_bus_write - called under kvm->slots_lock */
2643 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2644 int len, const void *val)
2645 {
2646 int idx;
2647 struct kvm_io_bus *bus;
2648 struct kvm_io_range range;
2649
2650 range = (struct kvm_io_range) {
2651 .addr = addr,
2652 .len = len,
2653 };
2654
2655 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2656 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2657 if (idx < 0)
2658 return -EOPNOTSUPP;
2659
2660 while (idx < bus->dev_count &&
2661 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2662 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2663 return 0;
2664 idx++;
2665 }
2666
2667 return -EOPNOTSUPP;
2668 }
2669
2670 /* kvm_io_bus_read - called under kvm->slots_lock */
2671 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2672 int len, void *val)
2673 {
2674 int idx;
2675 struct kvm_io_bus *bus;
2676 struct kvm_io_range range;
2677
2678 range = (struct kvm_io_range) {
2679 .addr = addr,
2680 .len = len,
2681 };
2682
2683 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2684 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2685 if (idx < 0)
2686 return -EOPNOTSUPP;
2687
2688 while (idx < bus->dev_count &&
2689 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2690 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2691 return 0;
2692 idx++;
2693 }
2694
2695 return -EOPNOTSUPP;
2696 }
2697
2698 /* Caller must hold slots_lock. */
2699 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2700 int len, struct kvm_io_device *dev)
2701 {
2702 struct kvm_io_bus *new_bus, *bus;
2703
2704 bus = kvm->buses[bus_idx];
2705 if (bus->dev_count > NR_IOBUS_DEVS - 1)
2706 return -ENOSPC;
2707
2708 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2709 sizeof(struct kvm_io_range)), GFP_KERNEL);
2710 if (!new_bus)
2711 return -ENOMEM;
2712 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2713 sizeof(struct kvm_io_range)));
2714 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2715 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2716 synchronize_srcu_expedited(&kvm->srcu);
2717 kfree(bus);
2718
2719 return 0;
2720 }
2721
2722 /* Caller must hold slots_lock. */
2723 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2724 struct kvm_io_device *dev)
2725 {
2726 int i, r;
2727 struct kvm_io_bus *new_bus, *bus;
2728
2729 bus = kvm->buses[bus_idx];
2730 r = -ENOENT;
2731 for (i = 0; i < bus->dev_count; i++)
2732 if (bus->range[i].dev == dev) {
2733 r = 0;
2734 break;
2735 }
2736
2737 if (r)
2738 return r;
2739
2740 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2741 sizeof(struct kvm_io_range)), GFP_KERNEL);
2742 if (!new_bus)
2743 return -ENOMEM;
2744
2745 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2746 new_bus->dev_count--;
2747 memcpy(new_bus->range + i, bus->range + i + 1,
2748 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
2749
2750 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2751 synchronize_srcu_expedited(&kvm->srcu);
2752 kfree(bus);
2753 return r;
2754 }
2755
2756 static struct notifier_block kvm_cpu_notifier = {
2757 .notifier_call = kvm_cpu_hotplug,
2758 };
2759
2760 static int vm_stat_get(void *_offset, u64 *val)
2761 {
2762 unsigned offset = (long)_offset;
2763 struct kvm *kvm;
2764
2765 *val = 0;
2766 raw_spin_lock(&kvm_lock);
2767 list_for_each_entry(kvm, &vm_list, vm_list)
2768 *val += *(u32 *)((void *)kvm + offset);
2769 raw_spin_unlock(&kvm_lock);
2770 return 0;
2771 }
2772
2773 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2774
2775 static int vcpu_stat_get(void *_offset, u64 *val)
2776 {
2777 unsigned offset = (long)_offset;
2778 struct kvm *kvm;
2779 struct kvm_vcpu *vcpu;
2780 int i;
2781
2782 *val = 0;
2783 raw_spin_lock(&kvm_lock);
2784 list_for_each_entry(kvm, &vm_list, vm_list)
2785 kvm_for_each_vcpu(i, vcpu, kvm)
2786 *val += *(u32 *)((void *)vcpu + offset);
2787
2788 raw_spin_unlock(&kvm_lock);
2789 return 0;
2790 }
2791
2792 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2793
2794 static const struct file_operations *stat_fops[] = {
2795 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2796 [KVM_STAT_VM] = &vm_stat_fops,
2797 };
2798
2799 static int kvm_init_debug(void)
2800 {
2801 int r = -EFAULT;
2802 struct kvm_stats_debugfs_item *p;
2803
2804 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2805 if (kvm_debugfs_dir == NULL)
2806 goto out;
2807
2808 for (p = debugfs_entries; p->name; ++p) {
2809 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2810 (void *)(long)p->offset,
2811 stat_fops[p->kind]);
2812 if (p->dentry == NULL)
2813 goto out_dir;
2814 }
2815
2816 return 0;
2817
2818 out_dir:
2819 debugfs_remove_recursive(kvm_debugfs_dir);
2820 out:
2821 return r;
2822 }
2823
2824 static void kvm_exit_debug(void)
2825 {
2826 struct kvm_stats_debugfs_item *p;
2827
2828 for (p = debugfs_entries; p->name; ++p)
2829 debugfs_remove(p->dentry);
2830 debugfs_remove(kvm_debugfs_dir);
2831 }
2832
2833 static int kvm_suspend(void)
2834 {
2835 if (kvm_usage_count)
2836 hardware_disable_nolock(NULL);
2837 return 0;
2838 }
2839
2840 static void kvm_resume(void)
2841 {
2842 if (kvm_usage_count) {
2843 WARN_ON(raw_spin_is_locked(&kvm_lock));
2844 hardware_enable_nolock(NULL);
2845 }
2846 }
2847
2848 static struct syscore_ops kvm_syscore_ops = {
2849 .suspend = kvm_suspend,
2850 .resume = kvm_resume,
2851 };
2852
2853 static inline
2854 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2855 {
2856 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2857 }
2858
2859 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2860 {
2861 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2862
2863 kvm_arch_vcpu_load(vcpu, cpu);
2864 }
2865
2866 static void kvm_sched_out(struct preempt_notifier *pn,
2867 struct task_struct *next)
2868 {
2869 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2870
2871 kvm_arch_vcpu_put(vcpu);
2872 }
2873
2874 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2875 struct module *module)
2876 {
2877 int r;
2878 int cpu;
2879
2880 r = kvm_arch_init(opaque);
2881 if (r)
2882 goto out_fail;
2883
2884 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2885 r = -ENOMEM;
2886 goto out_free_0;
2887 }
2888
2889 r = kvm_arch_hardware_setup();
2890 if (r < 0)
2891 goto out_free_0a;
2892
2893 for_each_online_cpu(cpu) {
2894 smp_call_function_single(cpu,
2895 kvm_arch_check_processor_compat,
2896 &r, 1);
2897 if (r < 0)
2898 goto out_free_1;
2899 }
2900
2901 r = register_cpu_notifier(&kvm_cpu_notifier);
2902 if (r)
2903 goto out_free_2;
2904 register_reboot_notifier(&kvm_reboot_notifier);
2905
2906 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2907 if (!vcpu_align)
2908 vcpu_align = __alignof__(struct kvm_vcpu);
2909 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2910 0, NULL);
2911 if (!kvm_vcpu_cache) {
2912 r = -ENOMEM;
2913 goto out_free_3;
2914 }
2915
2916 r = kvm_async_pf_init();
2917 if (r)
2918 goto out_free;
2919
2920 kvm_chardev_ops.owner = module;
2921 kvm_vm_fops.owner = module;
2922 kvm_vcpu_fops.owner = module;
2923
2924 r = misc_register(&kvm_dev);
2925 if (r) {
2926 printk(KERN_ERR "kvm: misc device register failed\n");
2927 goto out_unreg;
2928 }
2929
2930 register_syscore_ops(&kvm_syscore_ops);
2931
2932 kvm_preempt_ops.sched_in = kvm_sched_in;
2933 kvm_preempt_ops.sched_out = kvm_sched_out;
2934
2935 r = kvm_init_debug();
2936 if (r) {
2937 printk(KERN_ERR "kvm: create debugfs files failed\n");
2938 goto out_undebugfs;
2939 }
2940
2941 return 0;
2942
2943 out_undebugfs:
2944 unregister_syscore_ops(&kvm_syscore_ops);
2945 out_unreg:
2946 kvm_async_pf_deinit();
2947 out_free:
2948 kmem_cache_destroy(kvm_vcpu_cache);
2949 out_free_3:
2950 unregister_reboot_notifier(&kvm_reboot_notifier);
2951 unregister_cpu_notifier(&kvm_cpu_notifier);
2952 out_free_2:
2953 out_free_1:
2954 kvm_arch_hardware_unsetup();
2955 out_free_0a:
2956 free_cpumask_var(cpus_hardware_enabled);
2957 out_free_0:
2958 kvm_arch_exit();
2959 out_fail:
2960 return r;
2961 }
2962 EXPORT_SYMBOL_GPL(kvm_init);
2963
2964 void kvm_exit(void)
2965 {
2966 kvm_exit_debug();
2967 misc_deregister(&kvm_dev);
2968 kmem_cache_destroy(kvm_vcpu_cache);
2969 kvm_async_pf_deinit();
2970 unregister_syscore_ops(&kvm_syscore_ops);
2971 unregister_reboot_notifier(&kvm_reboot_notifier);
2972 unregister_cpu_notifier(&kvm_cpu_notifier);
2973 on_each_cpu(hardware_disable_nolock, NULL, 1);
2974 kvm_arch_hardware_unsetup();
2975 kvm_arch_exit();
2976 free_cpumask_var(cpus_hardware_enabled);
2977 }
2978 EXPORT_SYMBOL_GPL(kvm_exit);