]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - virt/kvm/kvm_main.c
Merge tag 'spi-fix-v4.10-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/brooni...
[mirror_ubuntu-zesty-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <linux/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71
72 /* Architectures should define their poll value according to the halt latency */
73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
75 EXPORT_SYMBOL_GPL(halt_poll_ns);
76
77 /* Default doubles per-vcpu halt_poll_ns. */
78 unsigned int halt_poll_ns_grow = 2;
79 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
81
82 /* Default resets per-vcpu halt_poll_ns . */
83 unsigned int halt_poll_ns_shrink;
84 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
86
87 /*
88 * Ordering of locks:
89 *
90 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
91 */
92
93 DEFINE_SPINLOCK(kvm_lock);
94 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
95 LIST_HEAD(vm_list);
96
97 static cpumask_var_t cpus_hardware_enabled;
98 static int kvm_usage_count;
99 static atomic_t hardware_enable_failed;
100
101 struct kmem_cache *kvm_vcpu_cache;
102 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
103
104 static __read_mostly struct preempt_ops kvm_preempt_ops;
105
106 struct dentry *kvm_debugfs_dir;
107 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
108
109 static int kvm_debugfs_num_entries;
110 static const struct file_operations *stat_fops_per_vm[];
111
112 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
113 unsigned long arg);
114 #ifdef CONFIG_KVM_COMPAT
115 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
116 unsigned long arg);
117 #endif
118 static int hardware_enable_all(void);
119 static void hardware_disable_all(void);
120
121 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
122
123 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
124 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
125
126 __visible bool kvm_rebooting;
127 EXPORT_SYMBOL_GPL(kvm_rebooting);
128
129 static bool largepages_enabled = true;
130
131 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
132 {
133 if (pfn_valid(pfn))
134 return PageReserved(pfn_to_page(pfn));
135
136 return true;
137 }
138
139 /*
140 * Switches to specified vcpu, until a matching vcpu_put()
141 */
142 int vcpu_load(struct kvm_vcpu *vcpu)
143 {
144 int cpu;
145
146 if (mutex_lock_killable(&vcpu->mutex))
147 return -EINTR;
148 cpu = get_cpu();
149 preempt_notifier_register(&vcpu->preempt_notifier);
150 kvm_arch_vcpu_load(vcpu, cpu);
151 put_cpu();
152 return 0;
153 }
154 EXPORT_SYMBOL_GPL(vcpu_load);
155
156 void vcpu_put(struct kvm_vcpu *vcpu)
157 {
158 preempt_disable();
159 kvm_arch_vcpu_put(vcpu);
160 preempt_notifier_unregister(&vcpu->preempt_notifier);
161 preempt_enable();
162 mutex_unlock(&vcpu->mutex);
163 }
164 EXPORT_SYMBOL_GPL(vcpu_put);
165
166 static void ack_flush(void *_completed)
167 {
168 }
169
170 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
171 {
172 int i, cpu, me;
173 cpumask_var_t cpus;
174 bool called = true;
175 struct kvm_vcpu *vcpu;
176
177 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
178
179 me = get_cpu();
180 kvm_for_each_vcpu(i, vcpu, kvm) {
181 kvm_make_request(req, vcpu);
182 cpu = vcpu->cpu;
183
184 /* Set ->requests bit before we read ->mode. */
185 smp_mb__after_atomic();
186
187 if (cpus != NULL && cpu != -1 && cpu != me &&
188 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
189 cpumask_set_cpu(cpu, cpus);
190 }
191 if (unlikely(cpus == NULL))
192 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
193 else if (!cpumask_empty(cpus))
194 smp_call_function_many(cpus, ack_flush, NULL, 1);
195 else
196 called = false;
197 put_cpu();
198 free_cpumask_var(cpus);
199 return called;
200 }
201
202 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
203 void kvm_flush_remote_tlbs(struct kvm *kvm)
204 {
205 /*
206 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
207 * kvm_make_all_cpus_request.
208 */
209 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
210
211 /*
212 * We want to publish modifications to the page tables before reading
213 * mode. Pairs with a memory barrier in arch-specific code.
214 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
215 * and smp_mb in walk_shadow_page_lockless_begin/end.
216 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
217 *
218 * There is already an smp_mb__after_atomic() before
219 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
220 * barrier here.
221 */
222 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
223 ++kvm->stat.remote_tlb_flush;
224 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
225 }
226 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
227 #endif
228
229 void kvm_reload_remote_mmus(struct kvm *kvm)
230 {
231 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
232 }
233
234 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
235 {
236 struct page *page;
237 int r;
238
239 mutex_init(&vcpu->mutex);
240 vcpu->cpu = -1;
241 vcpu->kvm = kvm;
242 vcpu->vcpu_id = id;
243 vcpu->pid = NULL;
244 init_swait_queue_head(&vcpu->wq);
245 kvm_async_pf_vcpu_init(vcpu);
246
247 vcpu->pre_pcpu = -1;
248 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
249
250 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
251 if (!page) {
252 r = -ENOMEM;
253 goto fail;
254 }
255 vcpu->run = page_address(page);
256
257 kvm_vcpu_set_in_spin_loop(vcpu, false);
258 kvm_vcpu_set_dy_eligible(vcpu, false);
259 vcpu->preempted = false;
260
261 r = kvm_arch_vcpu_init(vcpu);
262 if (r < 0)
263 goto fail_free_run;
264 return 0;
265
266 fail_free_run:
267 free_page((unsigned long)vcpu->run);
268 fail:
269 return r;
270 }
271 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
272
273 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
274 {
275 put_pid(vcpu->pid);
276 kvm_arch_vcpu_uninit(vcpu);
277 free_page((unsigned long)vcpu->run);
278 }
279 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
280
281 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
282 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
283 {
284 return container_of(mn, struct kvm, mmu_notifier);
285 }
286
287 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
288 struct mm_struct *mm,
289 unsigned long address)
290 {
291 struct kvm *kvm = mmu_notifier_to_kvm(mn);
292 int need_tlb_flush, idx;
293
294 /*
295 * When ->invalidate_page runs, the linux pte has been zapped
296 * already but the page is still allocated until
297 * ->invalidate_page returns. So if we increase the sequence
298 * here the kvm page fault will notice if the spte can't be
299 * established because the page is going to be freed. If
300 * instead the kvm page fault establishes the spte before
301 * ->invalidate_page runs, kvm_unmap_hva will release it
302 * before returning.
303 *
304 * The sequence increase only need to be seen at spin_unlock
305 * time, and not at spin_lock time.
306 *
307 * Increasing the sequence after the spin_unlock would be
308 * unsafe because the kvm page fault could then establish the
309 * pte after kvm_unmap_hva returned, without noticing the page
310 * is going to be freed.
311 */
312 idx = srcu_read_lock(&kvm->srcu);
313 spin_lock(&kvm->mmu_lock);
314
315 kvm->mmu_notifier_seq++;
316 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
317 /* we've to flush the tlb before the pages can be freed */
318 if (need_tlb_flush)
319 kvm_flush_remote_tlbs(kvm);
320
321 spin_unlock(&kvm->mmu_lock);
322
323 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
324
325 srcu_read_unlock(&kvm->srcu, idx);
326 }
327
328 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
329 struct mm_struct *mm,
330 unsigned long address,
331 pte_t pte)
332 {
333 struct kvm *kvm = mmu_notifier_to_kvm(mn);
334 int idx;
335
336 idx = srcu_read_lock(&kvm->srcu);
337 spin_lock(&kvm->mmu_lock);
338 kvm->mmu_notifier_seq++;
339 kvm_set_spte_hva(kvm, address, pte);
340 spin_unlock(&kvm->mmu_lock);
341 srcu_read_unlock(&kvm->srcu, idx);
342 }
343
344 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
345 struct mm_struct *mm,
346 unsigned long start,
347 unsigned long end)
348 {
349 struct kvm *kvm = mmu_notifier_to_kvm(mn);
350 int need_tlb_flush = 0, idx;
351
352 idx = srcu_read_lock(&kvm->srcu);
353 spin_lock(&kvm->mmu_lock);
354 /*
355 * The count increase must become visible at unlock time as no
356 * spte can be established without taking the mmu_lock and
357 * count is also read inside the mmu_lock critical section.
358 */
359 kvm->mmu_notifier_count++;
360 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
361 need_tlb_flush |= kvm->tlbs_dirty;
362 /* we've to flush the tlb before the pages can be freed */
363 if (need_tlb_flush)
364 kvm_flush_remote_tlbs(kvm);
365
366 spin_unlock(&kvm->mmu_lock);
367 srcu_read_unlock(&kvm->srcu, idx);
368 }
369
370 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
371 struct mm_struct *mm,
372 unsigned long start,
373 unsigned long end)
374 {
375 struct kvm *kvm = mmu_notifier_to_kvm(mn);
376
377 spin_lock(&kvm->mmu_lock);
378 /*
379 * This sequence increase will notify the kvm page fault that
380 * the page that is going to be mapped in the spte could have
381 * been freed.
382 */
383 kvm->mmu_notifier_seq++;
384 smp_wmb();
385 /*
386 * The above sequence increase must be visible before the
387 * below count decrease, which is ensured by the smp_wmb above
388 * in conjunction with the smp_rmb in mmu_notifier_retry().
389 */
390 kvm->mmu_notifier_count--;
391 spin_unlock(&kvm->mmu_lock);
392
393 BUG_ON(kvm->mmu_notifier_count < 0);
394 }
395
396 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
397 struct mm_struct *mm,
398 unsigned long start,
399 unsigned long end)
400 {
401 struct kvm *kvm = mmu_notifier_to_kvm(mn);
402 int young, idx;
403
404 idx = srcu_read_lock(&kvm->srcu);
405 spin_lock(&kvm->mmu_lock);
406
407 young = kvm_age_hva(kvm, start, end);
408 if (young)
409 kvm_flush_remote_tlbs(kvm);
410
411 spin_unlock(&kvm->mmu_lock);
412 srcu_read_unlock(&kvm->srcu, idx);
413
414 return young;
415 }
416
417 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
418 struct mm_struct *mm,
419 unsigned long start,
420 unsigned long end)
421 {
422 struct kvm *kvm = mmu_notifier_to_kvm(mn);
423 int young, idx;
424
425 idx = srcu_read_lock(&kvm->srcu);
426 spin_lock(&kvm->mmu_lock);
427 /*
428 * Even though we do not flush TLB, this will still adversely
429 * affect performance on pre-Haswell Intel EPT, where there is
430 * no EPT Access Bit to clear so that we have to tear down EPT
431 * tables instead. If we find this unacceptable, we can always
432 * add a parameter to kvm_age_hva so that it effectively doesn't
433 * do anything on clear_young.
434 *
435 * Also note that currently we never issue secondary TLB flushes
436 * from clear_young, leaving this job up to the regular system
437 * cadence. If we find this inaccurate, we might come up with a
438 * more sophisticated heuristic later.
439 */
440 young = kvm_age_hva(kvm, start, end);
441 spin_unlock(&kvm->mmu_lock);
442 srcu_read_unlock(&kvm->srcu, idx);
443
444 return young;
445 }
446
447 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
448 struct mm_struct *mm,
449 unsigned long address)
450 {
451 struct kvm *kvm = mmu_notifier_to_kvm(mn);
452 int young, idx;
453
454 idx = srcu_read_lock(&kvm->srcu);
455 spin_lock(&kvm->mmu_lock);
456 young = kvm_test_age_hva(kvm, address);
457 spin_unlock(&kvm->mmu_lock);
458 srcu_read_unlock(&kvm->srcu, idx);
459
460 return young;
461 }
462
463 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
464 struct mm_struct *mm)
465 {
466 struct kvm *kvm = mmu_notifier_to_kvm(mn);
467 int idx;
468
469 idx = srcu_read_lock(&kvm->srcu);
470 kvm_arch_flush_shadow_all(kvm);
471 srcu_read_unlock(&kvm->srcu, idx);
472 }
473
474 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
475 .invalidate_page = kvm_mmu_notifier_invalidate_page,
476 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
477 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
478 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
479 .clear_young = kvm_mmu_notifier_clear_young,
480 .test_young = kvm_mmu_notifier_test_young,
481 .change_pte = kvm_mmu_notifier_change_pte,
482 .release = kvm_mmu_notifier_release,
483 };
484
485 static int kvm_init_mmu_notifier(struct kvm *kvm)
486 {
487 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
488 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
489 }
490
491 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
492
493 static int kvm_init_mmu_notifier(struct kvm *kvm)
494 {
495 return 0;
496 }
497
498 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
499
500 static struct kvm_memslots *kvm_alloc_memslots(void)
501 {
502 int i;
503 struct kvm_memslots *slots;
504
505 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
506 if (!slots)
507 return NULL;
508
509 /*
510 * Init kvm generation close to the maximum to easily test the
511 * code of handling generation number wrap-around.
512 */
513 slots->generation = -150;
514 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
515 slots->id_to_index[i] = slots->memslots[i].id = i;
516
517 return slots;
518 }
519
520 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
521 {
522 if (!memslot->dirty_bitmap)
523 return;
524
525 kvfree(memslot->dirty_bitmap);
526 memslot->dirty_bitmap = NULL;
527 }
528
529 /*
530 * Free any memory in @free but not in @dont.
531 */
532 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
533 struct kvm_memory_slot *dont)
534 {
535 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
536 kvm_destroy_dirty_bitmap(free);
537
538 kvm_arch_free_memslot(kvm, free, dont);
539
540 free->npages = 0;
541 }
542
543 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
544 {
545 struct kvm_memory_slot *memslot;
546
547 if (!slots)
548 return;
549
550 kvm_for_each_memslot(memslot, slots)
551 kvm_free_memslot(kvm, memslot, NULL);
552
553 kvfree(slots);
554 }
555
556 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
557 {
558 int i;
559
560 if (!kvm->debugfs_dentry)
561 return;
562
563 debugfs_remove_recursive(kvm->debugfs_dentry);
564
565 if (kvm->debugfs_stat_data) {
566 for (i = 0; i < kvm_debugfs_num_entries; i++)
567 kfree(kvm->debugfs_stat_data[i]);
568 kfree(kvm->debugfs_stat_data);
569 }
570 }
571
572 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
573 {
574 char dir_name[ITOA_MAX_LEN * 2];
575 struct kvm_stat_data *stat_data;
576 struct kvm_stats_debugfs_item *p;
577
578 if (!debugfs_initialized())
579 return 0;
580
581 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
582 kvm->debugfs_dentry = debugfs_create_dir(dir_name,
583 kvm_debugfs_dir);
584 if (!kvm->debugfs_dentry)
585 return -ENOMEM;
586
587 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
588 sizeof(*kvm->debugfs_stat_data),
589 GFP_KERNEL);
590 if (!kvm->debugfs_stat_data)
591 return -ENOMEM;
592
593 for (p = debugfs_entries; p->name; p++) {
594 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
595 if (!stat_data)
596 return -ENOMEM;
597
598 stat_data->kvm = kvm;
599 stat_data->offset = p->offset;
600 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
601 if (!debugfs_create_file(p->name, 0644,
602 kvm->debugfs_dentry,
603 stat_data,
604 stat_fops_per_vm[p->kind]))
605 return -ENOMEM;
606 }
607 return 0;
608 }
609
610 static struct kvm *kvm_create_vm(unsigned long type)
611 {
612 int r, i;
613 struct kvm *kvm = kvm_arch_alloc_vm();
614
615 if (!kvm)
616 return ERR_PTR(-ENOMEM);
617
618 spin_lock_init(&kvm->mmu_lock);
619 atomic_inc(&current->mm->mm_count);
620 kvm->mm = current->mm;
621 kvm_eventfd_init(kvm);
622 mutex_init(&kvm->lock);
623 mutex_init(&kvm->irq_lock);
624 mutex_init(&kvm->slots_lock);
625 atomic_set(&kvm->users_count, 1);
626 INIT_LIST_HEAD(&kvm->devices);
627
628 r = kvm_arch_init_vm(kvm, type);
629 if (r)
630 goto out_err_no_disable;
631
632 r = hardware_enable_all();
633 if (r)
634 goto out_err_no_disable;
635
636 #ifdef CONFIG_HAVE_KVM_IRQFD
637 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
638 #endif
639
640 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
641
642 r = -ENOMEM;
643 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
644 kvm->memslots[i] = kvm_alloc_memslots();
645 if (!kvm->memslots[i])
646 goto out_err_no_srcu;
647 }
648
649 if (init_srcu_struct(&kvm->srcu))
650 goto out_err_no_srcu;
651 if (init_srcu_struct(&kvm->irq_srcu))
652 goto out_err_no_irq_srcu;
653 for (i = 0; i < KVM_NR_BUSES; i++) {
654 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
655 GFP_KERNEL);
656 if (!kvm->buses[i])
657 goto out_err;
658 }
659
660 r = kvm_init_mmu_notifier(kvm);
661 if (r)
662 goto out_err;
663
664 spin_lock(&kvm_lock);
665 list_add(&kvm->vm_list, &vm_list);
666 spin_unlock(&kvm_lock);
667
668 preempt_notifier_inc();
669
670 return kvm;
671
672 out_err:
673 cleanup_srcu_struct(&kvm->irq_srcu);
674 out_err_no_irq_srcu:
675 cleanup_srcu_struct(&kvm->srcu);
676 out_err_no_srcu:
677 hardware_disable_all();
678 out_err_no_disable:
679 for (i = 0; i < KVM_NR_BUSES; i++)
680 kfree(kvm->buses[i]);
681 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
682 kvm_free_memslots(kvm, kvm->memslots[i]);
683 kvm_arch_free_vm(kvm);
684 mmdrop(current->mm);
685 return ERR_PTR(r);
686 }
687
688 /*
689 * Avoid using vmalloc for a small buffer.
690 * Should not be used when the size is statically known.
691 */
692 void *kvm_kvzalloc(unsigned long size)
693 {
694 if (size > PAGE_SIZE)
695 return vzalloc(size);
696 else
697 return kzalloc(size, GFP_KERNEL);
698 }
699
700 static void kvm_destroy_devices(struct kvm *kvm)
701 {
702 struct kvm_device *dev, *tmp;
703
704 /*
705 * We do not need to take the kvm->lock here, because nobody else
706 * has a reference to the struct kvm at this point and therefore
707 * cannot access the devices list anyhow.
708 */
709 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
710 list_del(&dev->vm_node);
711 dev->ops->destroy(dev);
712 }
713 }
714
715 static void kvm_destroy_vm(struct kvm *kvm)
716 {
717 int i;
718 struct mm_struct *mm = kvm->mm;
719
720 kvm_destroy_vm_debugfs(kvm);
721 kvm_arch_sync_events(kvm);
722 spin_lock(&kvm_lock);
723 list_del(&kvm->vm_list);
724 spin_unlock(&kvm_lock);
725 kvm_free_irq_routing(kvm);
726 for (i = 0; i < KVM_NR_BUSES; i++)
727 kvm_io_bus_destroy(kvm->buses[i]);
728 kvm_coalesced_mmio_free(kvm);
729 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
730 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
731 #else
732 kvm_arch_flush_shadow_all(kvm);
733 #endif
734 kvm_arch_destroy_vm(kvm);
735 kvm_destroy_devices(kvm);
736 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
737 kvm_free_memslots(kvm, kvm->memslots[i]);
738 cleanup_srcu_struct(&kvm->irq_srcu);
739 cleanup_srcu_struct(&kvm->srcu);
740 kvm_arch_free_vm(kvm);
741 preempt_notifier_dec();
742 hardware_disable_all();
743 mmdrop(mm);
744 }
745
746 void kvm_get_kvm(struct kvm *kvm)
747 {
748 atomic_inc(&kvm->users_count);
749 }
750 EXPORT_SYMBOL_GPL(kvm_get_kvm);
751
752 void kvm_put_kvm(struct kvm *kvm)
753 {
754 if (atomic_dec_and_test(&kvm->users_count))
755 kvm_destroy_vm(kvm);
756 }
757 EXPORT_SYMBOL_GPL(kvm_put_kvm);
758
759
760 static int kvm_vm_release(struct inode *inode, struct file *filp)
761 {
762 struct kvm *kvm = filp->private_data;
763
764 kvm_irqfd_release(kvm);
765
766 kvm_put_kvm(kvm);
767 return 0;
768 }
769
770 /*
771 * Allocation size is twice as large as the actual dirty bitmap size.
772 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
773 */
774 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
775 {
776 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
777
778 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
779 if (!memslot->dirty_bitmap)
780 return -ENOMEM;
781
782 return 0;
783 }
784
785 /*
786 * Insert memslot and re-sort memslots based on their GFN,
787 * so binary search could be used to lookup GFN.
788 * Sorting algorithm takes advantage of having initially
789 * sorted array and known changed memslot position.
790 */
791 static void update_memslots(struct kvm_memslots *slots,
792 struct kvm_memory_slot *new)
793 {
794 int id = new->id;
795 int i = slots->id_to_index[id];
796 struct kvm_memory_slot *mslots = slots->memslots;
797
798 WARN_ON(mslots[i].id != id);
799 if (!new->npages) {
800 WARN_ON(!mslots[i].npages);
801 if (mslots[i].npages)
802 slots->used_slots--;
803 } else {
804 if (!mslots[i].npages)
805 slots->used_slots++;
806 }
807
808 while (i < KVM_MEM_SLOTS_NUM - 1 &&
809 new->base_gfn <= mslots[i + 1].base_gfn) {
810 if (!mslots[i + 1].npages)
811 break;
812 mslots[i] = mslots[i + 1];
813 slots->id_to_index[mslots[i].id] = i;
814 i++;
815 }
816
817 /*
818 * The ">=" is needed when creating a slot with base_gfn == 0,
819 * so that it moves before all those with base_gfn == npages == 0.
820 *
821 * On the other hand, if new->npages is zero, the above loop has
822 * already left i pointing to the beginning of the empty part of
823 * mslots, and the ">=" would move the hole backwards in this
824 * case---which is wrong. So skip the loop when deleting a slot.
825 */
826 if (new->npages) {
827 while (i > 0 &&
828 new->base_gfn >= mslots[i - 1].base_gfn) {
829 mslots[i] = mslots[i - 1];
830 slots->id_to_index[mslots[i].id] = i;
831 i--;
832 }
833 } else
834 WARN_ON_ONCE(i != slots->used_slots);
835
836 mslots[i] = *new;
837 slots->id_to_index[mslots[i].id] = i;
838 }
839
840 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
841 {
842 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
843
844 #ifdef __KVM_HAVE_READONLY_MEM
845 valid_flags |= KVM_MEM_READONLY;
846 #endif
847
848 if (mem->flags & ~valid_flags)
849 return -EINVAL;
850
851 return 0;
852 }
853
854 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
855 int as_id, struct kvm_memslots *slots)
856 {
857 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
858
859 /*
860 * Set the low bit in the generation, which disables SPTE caching
861 * until the end of synchronize_srcu_expedited.
862 */
863 WARN_ON(old_memslots->generation & 1);
864 slots->generation = old_memslots->generation + 1;
865
866 rcu_assign_pointer(kvm->memslots[as_id], slots);
867 synchronize_srcu_expedited(&kvm->srcu);
868
869 /*
870 * Increment the new memslot generation a second time. This prevents
871 * vm exits that race with memslot updates from caching a memslot
872 * generation that will (potentially) be valid forever.
873 */
874 slots->generation++;
875
876 kvm_arch_memslots_updated(kvm, slots);
877
878 return old_memslots;
879 }
880
881 /*
882 * Allocate some memory and give it an address in the guest physical address
883 * space.
884 *
885 * Discontiguous memory is allowed, mostly for framebuffers.
886 *
887 * Must be called holding kvm->slots_lock for write.
888 */
889 int __kvm_set_memory_region(struct kvm *kvm,
890 const struct kvm_userspace_memory_region *mem)
891 {
892 int r;
893 gfn_t base_gfn;
894 unsigned long npages;
895 struct kvm_memory_slot *slot;
896 struct kvm_memory_slot old, new;
897 struct kvm_memslots *slots = NULL, *old_memslots;
898 int as_id, id;
899 enum kvm_mr_change change;
900
901 r = check_memory_region_flags(mem);
902 if (r)
903 goto out;
904
905 r = -EINVAL;
906 as_id = mem->slot >> 16;
907 id = (u16)mem->slot;
908
909 /* General sanity checks */
910 if (mem->memory_size & (PAGE_SIZE - 1))
911 goto out;
912 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
913 goto out;
914 /* We can read the guest memory with __xxx_user() later on. */
915 if ((id < KVM_USER_MEM_SLOTS) &&
916 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
917 !access_ok(VERIFY_WRITE,
918 (void __user *)(unsigned long)mem->userspace_addr,
919 mem->memory_size)))
920 goto out;
921 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
922 goto out;
923 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
924 goto out;
925
926 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
927 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
928 npages = mem->memory_size >> PAGE_SHIFT;
929
930 if (npages > KVM_MEM_MAX_NR_PAGES)
931 goto out;
932
933 new = old = *slot;
934
935 new.id = id;
936 new.base_gfn = base_gfn;
937 new.npages = npages;
938 new.flags = mem->flags;
939
940 if (npages) {
941 if (!old.npages)
942 change = KVM_MR_CREATE;
943 else { /* Modify an existing slot. */
944 if ((mem->userspace_addr != old.userspace_addr) ||
945 (npages != old.npages) ||
946 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
947 goto out;
948
949 if (base_gfn != old.base_gfn)
950 change = KVM_MR_MOVE;
951 else if (new.flags != old.flags)
952 change = KVM_MR_FLAGS_ONLY;
953 else { /* Nothing to change. */
954 r = 0;
955 goto out;
956 }
957 }
958 } else {
959 if (!old.npages)
960 goto out;
961
962 change = KVM_MR_DELETE;
963 new.base_gfn = 0;
964 new.flags = 0;
965 }
966
967 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
968 /* Check for overlaps */
969 r = -EEXIST;
970 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
971 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
972 (slot->id == id))
973 continue;
974 if (!((base_gfn + npages <= slot->base_gfn) ||
975 (base_gfn >= slot->base_gfn + slot->npages)))
976 goto out;
977 }
978 }
979
980 /* Free page dirty bitmap if unneeded */
981 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
982 new.dirty_bitmap = NULL;
983
984 r = -ENOMEM;
985 if (change == KVM_MR_CREATE) {
986 new.userspace_addr = mem->userspace_addr;
987
988 if (kvm_arch_create_memslot(kvm, &new, npages))
989 goto out_free;
990 }
991
992 /* Allocate page dirty bitmap if needed */
993 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
994 if (kvm_create_dirty_bitmap(&new) < 0)
995 goto out_free;
996 }
997
998 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
999 if (!slots)
1000 goto out_free;
1001 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1002
1003 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1004 slot = id_to_memslot(slots, id);
1005 slot->flags |= KVM_MEMSLOT_INVALID;
1006
1007 old_memslots = install_new_memslots(kvm, as_id, slots);
1008
1009 /* slot was deleted or moved, clear iommu mapping */
1010 kvm_iommu_unmap_pages(kvm, &old);
1011 /* From this point no new shadow pages pointing to a deleted,
1012 * or moved, memslot will be created.
1013 *
1014 * validation of sp->gfn happens in:
1015 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1016 * - kvm_is_visible_gfn (mmu_check_roots)
1017 */
1018 kvm_arch_flush_shadow_memslot(kvm, slot);
1019
1020 /*
1021 * We can re-use the old_memslots from above, the only difference
1022 * from the currently installed memslots is the invalid flag. This
1023 * will get overwritten by update_memslots anyway.
1024 */
1025 slots = old_memslots;
1026 }
1027
1028 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1029 if (r)
1030 goto out_slots;
1031
1032 /* actual memory is freed via old in kvm_free_memslot below */
1033 if (change == KVM_MR_DELETE) {
1034 new.dirty_bitmap = NULL;
1035 memset(&new.arch, 0, sizeof(new.arch));
1036 }
1037
1038 update_memslots(slots, &new);
1039 old_memslots = install_new_memslots(kvm, as_id, slots);
1040
1041 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1042
1043 kvm_free_memslot(kvm, &old, &new);
1044 kvfree(old_memslots);
1045
1046 /*
1047 * IOMMU mapping: New slots need to be mapped. Old slots need to be
1048 * un-mapped and re-mapped if their base changes. Since base change
1049 * unmapping is handled above with slot deletion, mapping alone is
1050 * needed here. Anything else the iommu might care about for existing
1051 * slots (size changes, userspace addr changes and read-only flag
1052 * changes) is disallowed above, so any other attribute changes getting
1053 * here can be skipped.
1054 */
1055 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1056 r = kvm_iommu_map_pages(kvm, &new);
1057 return r;
1058 }
1059
1060 return 0;
1061
1062 out_slots:
1063 kvfree(slots);
1064 out_free:
1065 kvm_free_memslot(kvm, &new, &old);
1066 out:
1067 return r;
1068 }
1069 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1070
1071 int kvm_set_memory_region(struct kvm *kvm,
1072 const struct kvm_userspace_memory_region *mem)
1073 {
1074 int r;
1075
1076 mutex_lock(&kvm->slots_lock);
1077 r = __kvm_set_memory_region(kvm, mem);
1078 mutex_unlock(&kvm->slots_lock);
1079 return r;
1080 }
1081 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1082
1083 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1084 struct kvm_userspace_memory_region *mem)
1085 {
1086 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1087 return -EINVAL;
1088
1089 return kvm_set_memory_region(kvm, mem);
1090 }
1091
1092 int kvm_get_dirty_log(struct kvm *kvm,
1093 struct kvm_dirty_log *log, int *is_dirty)
1094 {
1095 struct kvm_memslots *slots;
1096 struct kvm_memory_slot *memslot;
1097 int r, i, as_id, id;
1098 unsigned long n;
1099 unsigned long any = 0;
1100
1101 r = -EINVAL;
1102 as_id = log->slot >> 16;
1103 id = (u16)log->slot;
1104 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1105 goto out;
1106
1107 slots = __kvm_memslots(kvm, as_id);
1108 memslot = id_to_memslot(slots, id);
1109 r = -ENOENT;
1110 if (!memslot->dirty_bitmap)
1111 goto out;
1112
1113 n = kvm_dirty_bitmap_bytes(memslot);
1114
1115 for (i = 0; !any && i < n/sizeof(long); ++i)
1116 any = memslot->dirty_bitmap[i];
1117
1118 r = -EFAULT;
1119 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1120 goto out;
1121
1122 if (any)
1123 *is_dirty = 1;
1124
1125 r = 0;
1126 out:
1127 return r;
1128 }
1129 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1130
1131 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1132 /**
1133 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1134 * are dirty write protect them for next write.
1135 * @kvm: pointer to kvm instance
1136 * @log: slot id and address to which we copy the log
1137 * @is_dirty: flag set if any page is dirty
1138 *
1139 * We need to keep it in mind that VCPU threads can write to the bitmap
1140 * concurrently. So, to avoid losing track of dirty pages we keep the
1141 * following order:
1142 *
1143 * 1. Take a snapshot of the bit and clear it if needed.
1144 * 2. Write protect the corresponding page.
1145 * 3. Copy the snapshot to the userspace.
1146 * 4. Upon return caller flushes TLB's if needed.
1147 *
1148 * Between 2 and 4, the guest may write to the page using the remaining TLB
1149 * entry. This is not a problem because the page is reported dirty using
1150 * the snapshot taken before and step 4 ensures that writes done after
1151 * exiting to userspace will be logged for the next call.
1152 *
1153 */
1154 int kvm_get_dirty_log_protect(struct kvm *kvm,
1155 struct kvm_dirty_log *log, bool *is_dirty)
1156 {
1157 struct kvm_memslots *slots;
1158 struct kvm_memory_slot *memslot;
1159 int r, i, as_id, id;
1160 unsigned long n;
1161 unsigned long *dirty_bitmap;
1162 unsigned long *dirty_bitmap_buffer;
1163
1164 r = -EINVAL;
1165 as_id = log->slot >> 16;
1166 id = (u16)log->slot;
1167 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1168 goto out;
1169
1170 slots = __kvm_memslots(kvm, as_id);
1171 memslot = id_to_memslot(slots, id);
1172
1173 dirty_bitmap = memslot->dirty_bitmap;
1174 r = -ENOENT;
1175 if (!dirty_bitmap)
1176 goto out;
1177
1178 n = kvm_dirty_bitmap_bytes(memslot);
1179
1180 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1181 memset(dirty_bitmap_buffer, 0, n);
1182
1183 spin_lock(&kvm->mmu_lock);
1184 *is_dirty = false;
1185 for (i = 0; i < n / sizeof(long); i++) {
1186 unsigned long mask;
1187 gfn_t offset;
1188
1189 if (!dirty_bitmap[i])
1190 continue;
1191
1192 *is_dirty = true;
1193
1194 mask = xchg(&dirty_bitmap[i], 0);
1195 dirty_bitmap_buffer[i] = mask;
1196
1197 if (mask) {
1198 offset = i * BITS_PER_LONG;
1199 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1200 offset, mask);
1201 }
1202 }
1203
1204 spin_unlock(&kvm->mmu_lock);
1205
1206 r = -EFAULT;
1207 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1208 goto out;
1209
1210 r = 0;
1211 out:
1212 return r;
1213 }
1214 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1215 #endif
1216
1217 bool kvm_largepages_enabled(void)
1218 {
1219 return largepages_enabled;
1220 }
1221
1222 void kvm_disable_largepages(void)
1223 {
1224 largepages_enabled = false;
1225 }
1226 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1227
1228 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1229 {
1230 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1231 }
1232 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1233
1234 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1235 {
1236 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1237 }
1238
1239 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1240 {
1241 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1242
1243 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1244 memslot->flags & KVM_MEMSLOT_INVALID)
1245 return false;
1246
1247 return true;
1248 }
1249 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1250
1251 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1252 {
1253 struct vm_area_struct *vma;
1254 unsigned long addr, size;
1255
1256 size = PAGE_SIZE;
1257
1258 addr = gfn_to_hva(kvm, gfn);
1259 if (kvm_is_error_hva(addr))
1260 return PAGE_SIZE;
1261
1262 down_read(&current->mm->mmap_sem);
1263 vma = find_vma(current->mm, addr);
1264 if (!vma)
1265 goto out;
1266
1267 size = vma_kernel_pagesize(vma);
1268
1269 out:
1270 up_read(&current->mm->mmap_sem);
1271
1272 return size;
1273 }
1274
1275 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1276 {
1277 return slot->flags & KVM_MEM_READONLY;
1278 }
1279
1280 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1281 gfn_t *nr_pages, bool write)
1282 {
1283 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1284 return KVM_HVA_ERR_BAD;
1285
1286 if (memslot_is_readonly(slot) && write)
1287 return KVM_HVA_ERR_RO_BAD;
1288
1289 if (nr_pages)
1290 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1291
1292 return __gfn_to_hva_memslot(slot, gfn);
1293 }
1294
1295 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1296 gfn_t *nr_pages)
1297 {
1298 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1299 }
1300
1301 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1302 gfn_t gfn)
1303 {
1304 return gfn_to_hva_many(slot, gfn, NULL);
1305 }
1306 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1307
1308 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1309 {
1310 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1311 }
1312 EXPORT_SYMBOL_GPL(gfn_to_hva);
1313
1314 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1315 {
1316 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1317 }
1318 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1319
1320 /*
1321 * If writable is set to false, the hva returned by this function is only
1322 * allowed to be read.
1323 */
1324 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1325 gfn_t gfn, bool *writable)
1326 {
1327 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1328
1329 if (!kvm_is_error_hva(hva) && writable)
1330 *writable = !memslot_is_readonly(slot);
1331
1332 return hva;
1333 }
1334
1335 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1336 {
1337 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1338
1339 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1340 }
1341
1342 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1343 {
1344 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1345
1346 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1347 }
1348
1349 static int get_user_page_nowait(unsigned long start, int write,
1350 struct page **page)
1351 {
1352 int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1353
1354 if (write)
1355 flags |= FOLL_WRITE;
1356
1357 return get_user_pages(start, 1, flags, page, NULL);
1358 }
1359
1360 static inline int check_user_page_hwpoison(unsigned long addr)
1361 {
1362 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1363
1364 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1365 return rc == -EHWPOISON;
1366 }
1367
1368 /*
1369 * The atomic path to get the writable pfn which will be stored in @pfn,
1370 * true indicates success, otherwise false is returned.
1371 */
1372 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1373 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1374 {
1375 struct page *page[1];
1376 int npages;
1377
1378 if (!(async || atomic))
1379 return false;
1380
1381 /*
1382 * Fast pin a writable pfn only if it is a write fault request
1383 * or the caller allows to map a writable pfn for a read fault
1384 * request.
1385 */
1386 if (!(write_fault || writable))
1387 return false;
1388
1389 npages = __get_user_pages_fast(addr, 1, 1, page);
1390 if (npages == 1) {
1391 *pfn = page_to_pfn(page[0]);
1392
1393 if (writable)
1394 *writable = true;
1395 return true;
1396 }
1397
1398 return false;
1399 }
1400
1401 /*
1402 * The slow path to get the pfn of the specified host virtual address,
1403 * 1 indicates success, -errno is returned if error is detected.
1404 */
1405 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1406 bool *writable, kvm_pfn_t *pfn)
1407 {
1408 struct page *page[1];
1409 int npages = 0;
1410
1411 might_sleep();
1412
1413 if (writable)
1414 *writable = write_fault;
1415
1416 if (async) {
1417 down_read(&current->mm->mmap_sem);
1418 npages = get_user_page_nowait(addr, write_fault, page);
1419 up_read(&current->mm->mmap_sem);
1420 } else {
1421 unsigned int flags = FOLL_HWPOISON;
1422
1423 if (write_fault)
1424 flags |= FOLL_WRITE;
1425
1426 npages = get_user_pages_unlocked(addr, 1, page, flags);
1427 }
1428 if (npages != 1)
1429 return npages;
1430
1431 /* map read fault as writable if possible */
1432 if (unlikely(!write_fault) && writable) {
1433 struct page *wpage[1];
1434
1435 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1436 if (npages == 1) {
1437 *writable = true;
1438 put_page(page[0]);
1439 page[0] = wpage[0];
1440 }
1441
1442 npages = 1;
1443 }
1444 *pfn = page_to_pfn(page[0]);
1445 return npages;
1446 }
1447
1448 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1449 {
1450 if (unlikely(!(vma->vm_flags & VM_READ)))
1451 return false;
1452
1453 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1454 return false;
1455
1456 return true;
1457 }
1458
1459 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1460 unsigned long addr, bool *async,
1461 bool write_fault, kvm_pfn_t *p_pfn)
1462 {
1463 unsigned long pfn;
1464 int r;
1465
1466 r = follow_pfn(vma, addr, &pfn);
1467 if (r) {
1468 /*
1469 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1470 * not call the fault handler, so do it here.
1471 */
1472 bool unlocked = false;
1473 r = fixup_user_fault(current, current->mm, addr,
1474 (write_fault ? FAULT_FLAG_WRITE : 0),
1475 &unlocked);
1476 if (unlocked)
1477 return -EAGAIN;
1478 if (r)
1479 return r;
1480
1481 r = follow_pfn(vma, addr, &pfn);
1482 if (r)
1483 return r;
1484
1485 }
1486
1487
1488 /*
1489 * Get a reference here because callers of *hva_to_pfn* and
1490 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1491 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1492 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1493 * simply do nothing for reserved pfns.
1494 *
1495 * Whoever called remap_pfn_range is also going to call e.g.
1496 * unmap_mapping_range before the underlying pages are freed,
1497 * causing a call to our MMU notifier.
1498 */
1499 kvm_get_pfn(pfn);
1500
1501 *p_pfn = pfn;
1502 return 0;
1503 }
1504
1505 /*
1506 * Pin guest page in memory and return its pfn.
1507 * @addr: host virtual address which maps memory to the guest
1508 * @atomic: whether this function can sleep
1509 * @async: whether this function need to wait IO complete if the
1510 * host page is not in the memory
1511 * @write_fault: whether we should get a writable host page
1512 * @writable: whether it allows to map a writable host page for !@write_fault
1513 *
1514 * The function will map a writable host page for these two cases:
1515 * 1): @write_fault = true
1516 * 2): @write_fault = false && @writable, @writable will tell the caller
1517 * whether the mapping is writable.
1518 */
1519 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1520 bool write_fault, bool *writable)
1521 {
1522 struct vm_area_struct *vma;
1523 kvm_pfn_t pfn = 0;
1524 int npages, r;
1525
1526 /* we can do it either atomically or asynchronously, not both */
1527 BUG_ON(atomic && async);
1528
1529 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1530 return pfn;
1531
1532 if (atomic)
1533 return KVM_PFN_ERR_FAULT;
1534
1535 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1536 if (npages == 1)
1537 return pfn;
1538
1539 down_read(&current->mm->mmap_sem);
1540 if (npages == -EHWPOISON ||
1541 (!async && check_user_page_hwpoison(addr))) {
1542 pfn = KVM_PFN_ERR_HWPOISON;
1543 goto exit;
1544 }
1545
1546 retry:
1547 vma = find_vma_intersection(current->mm, addr, addr + 1);
1548
1549 if (vma == NULL)
1550 pfn = KVM_PFN_ERR_FAULT;
1551 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1552 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1553 if (r == -EAGAIN)
1554 goto retry;
1555 if (r < 0)
1556 pfn = KVM_PFN_ERR_FAULT;
1557 } else {
1558 if (async && vma_is_valid(vma, write_fault))
1559 *async = true;
1560 pfn = KVM_PFN_ERR_FAULT;
1561 }
1562 exit:
1563 up_read(&current->mm->mmap_sem);
1564 return pfn;
1565 }
1566
1567 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1568 bool atomic, bool *async, bool write_fault,
1569 bool *writable)
1570 {
1571 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1572
1573 if (addr == KVM_HVA_ERR_RO_BAD) {
1574 if (writable)
1575 *writable = false;
1576 return KVM_PFN_ERR_RO_FAULT;
1577 }
1578
1579 if (kvm_is_error_hva(addr)) {
1580 if (writable)
1581 *writable = false;
1582 return KVM_PFN_NOSLOT;
1583 }
1584
1585 /* Do not map writable pfn in the readonly memslot. */
1586 if (writable && memslot_is_readonly(slot)) {
1587 *writable = false;
1588 writable = NULL;
1589 }
1590
1591 return hva_to_pfn(addr, atomic, async, write_fault,
1592 writable);
1593 }
1594 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1595
1596 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1597 bool *writable)
1598 {
1599 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1600 write_fault, writable);
1601 }
1602 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1603
1604 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1605 {
1606 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1607 }
1608 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1609
1610 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1611 {
1612 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1613 }
1614 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1615
1616 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1617 {
1618 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1619 }
1620 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1621
1622 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1623 {
1624 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1625 }
1626 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1627
1628 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1629 {
1630 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1631 }
1632 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1633
1634 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1635 {
1636 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1637 }
1638 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1639
1640 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1641 struct page **pages, int nr_pages)
1642 {
1643 unsigned long addr;
1644 gfn_t entry;
1645
1646 addr = gfn_to_hva_many(slot, gfn, &entry);
1647 if (kvm_is_error_hva(addr))
1648 return -1;
1649
1650 if (entry < nr_pages)
1651 return 0;
1652
1653 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1654 }
1655 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1656
1657 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1658 {
1659 if (is_error_noslot_pfn(pfn))
1660 return KVM_ERR_PTR_BAD_PAGE;
1661
1662 if (kvm_is_reserved_pfn(pfn)) {
1663 WARN_ON(1);
1664 return KVM_ERR_PTR_BAD_PAGE;
1665 }
1666
1667 return pfn_to_page(pfn);
1668 }
1669
1670 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1671 {
1672 kvm_pfn_t pfn;
1673
1674 pfn = gfn_to_pfn(kvm, gfn);
1675
1676 return kvm_pfn_to_page(pfn);
1677 }
1678 EXPORT_SYMBOL_GPL(gfn_to_page);
1679
1680 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1681 {
1682 kvm_pfn_t pfn;
1683
1684 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1685
1686 return kvm_pfn_to_page(pfn);
1687 }
1688 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1689
1690 void kvm_release_page_clean(struct page *page)
1691 {
1692 WARN_ON(is_error_page(page));
1693
1694 kvm_release_pfn_clean(page_to_pfn(page));
1695 }
1696 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1697
1698 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1699 {
1700 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1701 put_page(pfn_to_page(pfn));
1702 }
1703 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1704
1705 void kvm_release_page_dirty(struct page *page)
1706 {
1707 WARN_ON(is_error_page(page));
1708
1709 kvm_release_pfn_dirty(page_to_pfn(page));
1710 }
1711 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1712
1713 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1714 {
1715 kvm_set_pfn_dirty(pfn);
1716 kvm_release_pfn_clean(pfn);
1717 }
1718
1719 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1720 {
1721 if (!kvm_is_reserved_pfn(pfn)) {
1722 struct page *page = pfn_to_page(pfn);
1723
1724 if (!PageReserved(page))
1725 SetPageDirty(page);
1726 }
1727 }
1728 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1729
1730 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1731 {
1732 if (!kvm_is_reserved_pfn(pfn))
1733 mark_page_accessed(pfn_to_page(pfn));
1734 }
1735 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1736
1737 void kvm_get_pfn(kvm_pfn_t pfn)
1738 {
1739 if (!kvm_is_reserved_pfn(pfn))
1740 get_page(pfn_to_page(pfn));
1741 }
1742 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1743
1744 static int next_segment(unsigned long len, int offset)
1745 {
1746 if (len > PAGE_SIZE - offset)
1747 return PAGE_SIZE - offset;
1748 else
1749 return len;
1750 }
1751
1752 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1753 void *data, int offset, int len)
1754 {
1755 int r;
1756 unsigned long addr;
1757
1758 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1759 if (kvm_is_error_hva(addr))
1760 return -EFAULT;
1761 r = __copy_from_user(data, (void __user *)addr + offset, len);
1762 if (r)
1763 return -EFAULT;
1764 return 0;
1765 }
1766
1767 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1768 int len)
1769 {
1770 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1771
1772 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1773 }
1774 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1775
1776 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1777 int offset, int len)
1778 {
1779 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1780
1781 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1782 }
1783 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1784
1785 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1786 {
1787 gfn_t gfn = gpa >> PAGE_SHIFT;
1788 int seg;
1789 int offset = offset_in_page(gpa);
1790 int ret;
1791
1792 while ((seg = next_segment(len, offset)) != 0) {
1793 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1794 if (ret < 0)
1795 return ret;
1796 offset = 0;
1797 len -= seg;
1798 data += seg;
1799 ++gfn;
1800 }
1801 return 0;
1802 }
1803 EXPORT_SYMBOL_GPL(kvm_read_guest);
1804
1805 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1806 {
1807 gfn_t gfn = gpa >> PAGE_SHIFT;
1808 int seg;
1809 int offset = offset_in_page(gpa);
1810 int ret;
1811
1812 while ((seg = next_segment(len, offset)) != 0) {
1813 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1814 if (ret < 0)
1815 return ret;
1816 offset = 0;
1817 len -= seg;
1818 data += seg;
1819 ++gfn;
1820 }
1821 return 0;
1822 }
1823 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1824
1825 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1826 void *data, int offset, unsigned long len)
1827 {
1828 int r;
1829 unsigned long addr;
1830
1831 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1832 if (kvm_is_error_hva(addr))
1833 return -EFAULT;
1834 pagefault_disable();
1835 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1836 pagefault_enable();
1837 if (r)
1838 return -EFAULT;
1839 return 0;
1840 }
1841
1842 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1843 unsigned long len)
1844 {
1845 gfn_t gfn = gpa >> PAGE_SHIFT;
1846 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1847 int offset = offset_in_page(gpa);
1848
1849 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1850 }
1851 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1852
1853 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1854 void *data, unsigned long len)
1855 {
1856 gfn_t gfn = gpa >> PAGE_SHIFT;
1857 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1858 int offset = offset_in_page(gpa);
1859
1860 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1861 }
1862 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1863
1864 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1865 const void *data, int offset, int len)
1866 {
1867 int r;
1868 unsigned long addr;
1869
1870 addr = gfn_to_hva_memslot(memslot, gfn);
1871 if (kvm_is_error_hva(addr))
1872 return -EFAULT;
1873 r = __copy_to_user((void __user *)addr + offset, data, len);
1874 if (r)
1875 return -EFAULT;
1876 mark_page_dirty_in_slot(memslot, gfn);
1877 return 0;
1878 }
1879
1880 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1881 const void *data, int offset, int len)
1882 {
1883 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1884
1885 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1886 }
1887 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1888
1889 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1890 const void *data, int offset, int len)
1891 {
1892 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1893
1894 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1895 }
1896 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1897
1898 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1899 unsigned long len)
1900 {
1901 gfn_t gfn = gpa >> PAGE_SHIFT;
1902 int seg;
1903 int offset = offset_in_page(gpa);
1904 int ret;
1905
1906 while ((seg = next_segment(len, offset)) != 0) {
1907 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1908 if (ret < 0)
1909 return ret;
1910 offset = 0;
1911 len -= seg;
1912 data += seg;
1913 ++gfn;
1914 }
1915 return 0;
1916 }
1917 EXPORT_SYMBOL_GPL(kvm_write_guest);
1918
1919 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1920 unsigned long len)
1921 {
1922 gfn_t gfn = gpa >> PAGE_SHIFT;
1923 int seg;
1924 int offset = offset_in_page(gpa);
1925 int ret;
1926
1927 while ((seg = next_segment(len, offset)) != 0) {
1928 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1929 if (ret < 0)
1930 return ret;
1931 offset = 0;
1932 len -= seg;
1933 data += seg;
1934 ++gfn;
1935 }
1936 return 0;
1937 }
1938 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1939
1940 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1941 gpa_t gpa, unsigned long len)
1942 {
1943 struct kvm_memslots *slots = kvm_memslots(kvm);
1944 int offset = offset_in_page(gpa);
1945 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1946 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1947 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1948 gfn_t nr_pages_avail;
1949
1950 ghc->gpa = gpa;
1951 ghc->generation = slots->generation;
1952 ghc->len = len;
1953 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1954 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1955 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1956 ghc->hva += offset;
1957 } else {
1958 /*
1959 * If the requested region crosses two memslots, we still
1960 * verify that the entire region is valid here.
1961 */
1962 while (start_gfn <= end_gfn) {
1963 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1964 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1965 &nr_pages_avail);
1966 if (kvm_is_error_hva(ghc->hva))
1967 return -EFAULT;
1968 start_gfn += nr_pages_avail;
1969 }
1970 /* Use the slow path for cross page reads and writes. */
1971 ghc->memslot = NULL;
1972 }
1973 return 0;
1974 }
1975 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1976
1977 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1978 void *data, int offset, unsigned long len)
1979 {
1980 struct kvm_memslots *slots = kvm_memslots(kvm);
1981 int r;
1982 gpa_t gpa = ghc->gpa + offset;
1983
1984 BUG_ON(len + offset > ghc->len);
1985
1986 if (slots->generation != ghc->generation)
1987 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1988
1989 if (unlikely(!ghc->memslot))
1990 return kvm_write_guest(kvm, gpa, data, len);
1991
1992 if (kvm_is_error_hva(ghc->hva))
1993 return -EFAULT;
1994
1995 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1996 if (r)
1997 return -EFAULT;
1998 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1999
2000 return 0;
2001 }
2002 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2003
2004 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2005 void *data, unsigned long len)
2006 {
2007 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2008 }
2009 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2010
2011 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2012 void *data, unsigned long len)
2013 {
2014 struct kvm_memslots *slots = kvm_memslots(kvm);
2015 int r;
2016
2017 BUG_ON(len > ghc->len);
2018
2019 if (slots->generation != ghc->generation)
2020 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
2021
2022 if (unlikely(!ghc->memslot))
2023 return kvm_read_guest(kvm, ghc->gpa, data, len);
2024
2025 if (kvm_is_error_hva(ghc->hva))
2026 return -EFAULT;
2027
2028 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2029 if (r)
2030 return -EFAULT;
2031
2032 return 0;
2033 }
2034 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2035
2036 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2037 {
2038 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2039
2040 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2041 }
2042 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2043
2044 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2045 {
2046 gfn_t gfn = gpa >> PAGE_SHIFT;
2047 int seg;
2048 int offset = offset_in_page(gpa);
2049 int ret;
2050
2051 while ((seg = next_segment(len, offset)) != 0) {
2052 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2053 if (ret < 0)
2054 return ret;
2055 offset = 0;
2056 len -= seg;
2057 ++gfn;
2058 }
2059 return 0;
2060 }
2061 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2062
2063 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2064 gfn_t gfn)
2065 {
2066 if (memslot && memslot->dirty_bitmap) {
2067 unsigned long rel_gfn = gfn - memslot->base_gfn;
2068
2069 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2070 }
2071 }
2072
2073 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2074 {
2075 struct kvm_memory_slot *memslot;
2076
2077 memslot = gfn_to_memslot(kvm, gfn);
2078 mark_page_dirty_in_slot(memslot, gfn);
2079 }
2080 EXPORT_SYMBOL_GPL(mark_page_dirty);
2081
2082 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2083 {
2084 struct kvm_memory_slot *memslot;
2085
2086 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2087 mark_page_dirty_in_slot(memslot, gfn);
2088 }
2089 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2090
2091 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2092 {
2093 unsigned int old, val, grow;
2094
2095 old = val = vcpu->halt_poll_ns;
2096 grow = READ_ONCE(halt_poll_ns_grow);
2097 /* 10us base */
2098 if (val == 0 && grow)
2099 val = 10000;
2100 else
2101 val *= grow;
2102
2103 if (val > halt_poll_ns)
2104 val = halt_poll_ns;
2105
2106 vcpu->halt_poll_ns = val;
2107 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2108 }
2109
2110 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2111 {
2112 unsigned int old, val, shrink;
2113
2114 old = val = vcpu->halt_poll_ns;
2115 shrink = READ_ONCE(halt_poll_ns_shrink);
2116 if (shrink == 0)
2117 val = 0;
2118 else
2119 val /= shrink;
2120
2121 vcpu->halt_poll_ns = val;
2122 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2123 }
2124
2125 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2126 {
2127 if (kvm_arch_vcpu_runnable(vcpu)) {
2128 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2129 return -EINTR;
2130 }
2131 if (kvm_cpu_has_pending_timer(vcpu))
2132 return -EINTR;
2133 if (signal_pending(current))
2134 return -EINTR;
2135
2136 return 0;
2137 }
2138
2139 /*
2140 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2141 */
2142 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2143 {
2144 ktime_t start, cur;
2145 DECLARE_SWAITQUEUE(wait);
2146 bool waited = false;
2147 u64 block_ns;
2148
2149 start = cur = ktime_get();
2150 if (vcpu->halt_poll_ns) {
2151 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2152
2153 ++vcpu->stat.halt_attempted_poll;
2154 do {
2155 /*
2156 * This sets KVM_REQ_UNHALT if an interrupt
2157 * arrives.
2158 */
2159 if (kvm_vcpu_check_block(vcpu) < 0) {
2160 ++vcpu->stat.halt_successful_poll;
2161 if (!vcpu_valid_wakeup(vcpu))
2162 ++vcpu->stat.halt_poll_invalid;
2163 goto out;
2164 }
2165 cur = ktime_get();
2166 } while (single_task_running() && ktime_before(cur, stop));
2167 }
2168
2169 kvm_arch_vcpu_blocking(vcpu);
2170
2171 for (;;) {
2172 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2173
2174 if (kvm_vcpu_check_block(vcpu) < 0)
2175 break;
2176
2177 waited = true;
2178 schedule();
2179 }
2180
2181 finish_swait(&vcpu->wq, &wait);
2182 cur = ktime_get();
2183
2184 kvm_arch_vcpu_unblocking(vcpu);
2185 out:
2186 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2187
2188 if (!vcpu_valid_wakeup(vcpu))
2189 shrink_halt_poll_ns(vcpu);
2190 else if (halt_poll_ns) {
2191 if (block_ns <= vcpu->halt_poll_ns)
2192 ;
2193 /* we had a long block, shrink polling */
2194 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2195 shrink_halt_poll_ns(vcpu);
2196 /* we had a short halt and our poll time is too small */
2197 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2198 block_ns < halt_poll_ns)
2199 grow_halt_poll_ns(vcpu);
2200 } else
2201 vcpu->halt_poll_ns = 0;
2202
2203 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2204 kvm_arch_vcpu_block_finish(vcpu);
2205 }
2206 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2207
2208 #ifndef CONFIG_S390
2209 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2210 {
2211 struct swait_queue_head *wqp;
2212
2213 wqp = kvm_arch_vcpu_wq(vcpu);
2214 if (swait_active(wqp)) {
2215 swake_up(wqp);
2216 ++vcpu->stat.halt_wakeup;
2217 }
2218
2219 }
2220 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2221
2222 /*
2223 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2224 */
2225 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2226 {
2227 int me;
2228 int cpu = vcpu->cpu;
2229
2230 kvm_vcpu_wake_up(vcpu);
2231 me = get_cpu();
2232 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2233 if (kvm_arch_vcpu_should_kick(vcpu))
2234 smp_send_reschedule(cpu);
2235 put_cpu();
2236 }
2237 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2238 #endif /* !CONFIG_S390 */
2239
2240 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2241 {
2242 struct pid *pid;
2243 struct task_struct *task = NULL;
2244 int ret = 0;
2245
2246 rcu_read_lock();
2247 pid = rcu_dereference(target->pid);
2248 if (pid)
2249 task = get_pid_task(pid, PIDTYPE_PID);
2250 rcu_read_unlock();
2251 if (!task)
2252 return ret;
2253 ret = yield_to(task, 1);
2254 put_task_struct(task);
2255
2256 return ret;
2257 }
2258 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2259
2260 /*
2261 * Helper that checks whether a VCPU is eligible for directed yield.
2262 * Most eligible candidate to yield is decided by following heuristics:
2263 *
2264 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2265 * (preempted lock holder), indicated by @in_spin_loop.
2266 * Set at the beiginning and cleared at the end of interception/PLE handler.
2267 *
2268 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2269 * chance last time (mostly it has become eligible now since we have probably
2270 * yielded to lockholder in last iteration. This is done by toggling
2271 * @dy_eligible each time a VCPU checked for eligibility.)
2272 *
2273 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2274 * to preempted lock-holder could result in wrong VCPU selection and CPU
2275 * burning. Giving priority for a potential lock-holder increases lock
2276 * progress.
2277 *
2278 * Since algorithm is based on heuristics, accessing another VCPU data without
2279 * locking does not harm. It may result in trying to yield to same VCPU, fail
2280 * and continue with next VCPU and so on.
2281 */
2282 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2283 {
2284 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2285 bool eligible;
2286
2287 eligible = !vcpu->spin_loop.in_spin_loop ||
2288 vcpu->spin_loop.dy_eligible;
2289
2290 if (vcpu->spin_loop.in_spin_loop)
2291 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2292
2293 return eligible;
2294 #else
2295 return true;
2296 #endif
2297 }
2298
2299 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2300 {
2301 struct kvm *kvm = me->kvm;
2302 struct kvm_vcpu *vcpu;
2303 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2304 int yielded = 0;
2305 int try = 3;
2306 int pass;
2307 int i;
2308
2309 kvm_vcpu_set_in_spin_loop(me, true);
2310 /*
2311 * We boost the priority of a VCPU that is runnable but not
2312 * currently running, because it got preempted by something
2313 * else and called schedule in __vcpu_run. Hopefully that
2314 * VCPU is holding the lock that we need and will release it.
2315 * We approximate round-robin by starting at the last boosted VCPU.
2316 */
2317 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2318 kvm_for_each_vcpu(i, vcpu, kvm) {
2319 if (!pass && i <= last_boosted_vcpu) {
2320 i = last_boosted_vcpu;
2321 continue;
2322 } else if (pass && i > last_boosted_vcpu)
2323 break;
2324 if (!ACCESS_ONCE(vcpu->preempted))
2325 continue;
2326 if (vcpu == me)
2327 continue;
2328 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2329 continue;
2330 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2331 continue;
2332
2333 yielded = kvm_vcpu_yield_to(vcpu);
2334 if (yielded > 0) {
2335 kvm->last_boosted_vcpu = i;
2336 break;
2337 } else if (yielded < 0) {
2338 try--;
2339 if (!try)
2340 break;
2341 }
2342 }
2343 }
2344 kvm_vcpu_set_in_spin_loop(me, false);
2345
2346 /* Ensure vcpu is not eligible during next spinloop */
2347 kvm_vcpu_set_dy_eligible(me, false);
2348 }
2349 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2350
2351 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2352 {
2353 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2354 struct page *page;
2355
2356 if (vmf->pgoff == 0)
2357 page = virt_to_page(vcpu->run);
2358 #ifdef CONFIG_X86
2359 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2360 page = virt_to_page(vcpu->arch.pio_data);
2361 #endif
2362 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2363 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2364 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2365 #endif
2366 else
2367 return kvm_arch_vcpu_fault(vcpu, vmf);
2368 get_page(page);
2369 vmf->page = page;
2370 return 0;
2371 }
2372
2373 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2374 .fault = kvm_vcpu_fault,
2375 };
2376
2377 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2378 {
2379 vma->vm_ops = &kvm_vcpu_vm_ops;
2380 return 0;
2381 }
2382
2383 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2384 {
2385 struct kvm_vcpu *vcpu = filp->private_data;
2386
2387 debugfs_remove_recursive(vcpu->debugfs_dentry);
2388 kvm_put_kvm(vcpu->kvm);
2389 return 0;
2390 }
2391
2392 static struct file_operations kvm_vcpu_fops = {
2393 .release = kvm_vcpu_release,
2394 .unlocked_ioctl = kvm_vcpu_ioctl,
2395 #ifdef CONFIG_KVM_COMPAT
2396 .compat_ioctl = kvm_vcpu_compat_ioctl,
2397 #endif
2398 .mmap = kvm_vcpu_mmap,
2399 .llseek = noop_llseek,
2400 };
2401
2402 /*
2403 * Allocates an inode for the vcpu.
2404 */
2405 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2406 {
2407 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2408 }
2409
2410 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2411 {
2412 char dir_name[ITOA_MAX_LEN * 2];
2413 int ret;
2414
2415 if (!kvm_arch_has_vcpu_debugfs())
2416 return 0;
2417
2418 if (!debugfs_initialized())
2419 return 0;
2420
2421 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2422 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2423 vcpu->kvm->debugfs_dentry);
2424 if (!vcpu->debugfs_dentry)
2425 return -ENOMEM;
2426
2427 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2428 if (ret < 0) {
2429 debugfs_remove_recursive(vcpu->debugfs_dentry);
2430 return ret;
2431 }
2432
2433 return 0;
2434 }
2435
2436 /*
2437 * Creates some virtual cpus. Good luck creating more than one.
2438 */
2439 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2440 {
2441 int r;
2442 struct kvm_vcpu *vcpu;
2443
2444 if (id >= KVM_MAX_VCPU_ID)
2445 return -EINVAL;
2446
2447 mutex_lock(&kvm->lock);
2448 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2449 mutex_unlock(&kvm->lock);
2450 return -EINVAL;
2451 }
2452
2453 kvm->created_vcpus++;
2454 mutex_unlock(&kvm->lock);
2455
2456 vcpu = kvm_arch_vcpu_create(kvm, id);
2457 if (IS_ERR(vcpu)) {
2458 r = PTR_ERR(vcpu);
2459 goto vcpu_decrement;
2460 }
2461
2462 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2463
2464 r = kvm_arch_vcpu_setup(vcpu);
2465 if (r)
2466 goto vcpu_destroy;
2467
2468 r = kvm_create_vcpu_debugfs(vcpu);
2469 if (r)
2470 goto vcpu_destroy;
2471
2472 mutex_lock(&kvm->lock);
2473 if (kvm_get_vcpu_by_id(kvm, id)) {
2474 r = -EEXIST;
2475 goto unlock_vcpu_destroy;
2476 }
2477
2478 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2479
2480 /* Now it's all set up, let userspace reach it */
2481 kvm_get_kvm(kvm);
2482 r = create_vcpu_fd(vcpu);
2483 if (r < 0) {
2484 kvm_put_kvm(kvm);
2485 goto unlock_vcpu_destroy;
2486 }
2487
2488 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2489
2490 /*
2491 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2492 * before kvm->online_vcpu's incremented value.
2493 */
2494 smp_wmb();
2495 atomic_inc(&kvm->online_vcpus);
2496
2497 mutex_unlock(&kvm->lock);
2498 kvm_arch_vcpu_postcreate(vcpu);
2499 return r;
2500
2501 unlock_vcpu_destroy:
2502 mutex_unlock(&kvm->lock);
2503 debugfs_remove_recursive(vcpu->debugfs_dentry);
2504 vcpu_destroy:
2505 kvm_arch_vcpu_destroy(vcpu);
2506 vcpu_decrement:
2507 mutex_lock(&kvm->lock);
2508 kvm->created_vcpus--;
2509 mutex_unlock(&kvm->lock);
2510 return r;
2511 }
2512
2513 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2514 {
2515 if (sigset) {
2516 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2517 vcpu->sigset_active = 1;
2518 vcpu->sigset = *sigset;
2519 } else
2520 vcpu->sigset_active = 0;
2521 return 0;
2522 }
2523
2524 static long kvm_vcpu_ioctl(struct file *filp,
2525 unsigned int ioctl, unsigned long arg)
2526 {
2527 struct kvm_vcpu *vcpu = filp->private_data;
2528 void __user *argp = (void __user *)arg;
2529 int r;
2530 struct kvm_fpu *fpu = NULL;
2531 struct kvm_sregs *kvm_sregs = NULL;
2532
2533 if (vcpu->kvm->mm != current->mm)
2534 return -EIO;
2535
2536 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2537 return -EINVAL;
2538
2539 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2540 /*
2541 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2542 * so vcpu_load() would break it.
2543 */
2544 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2545 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2546 #endif
2547
2548
2549 r = vcpu_load(vcpu);
2550 if (r)
2551 return r;
2552 switch (ioctl) {
2553 case KVM_RUN:
2554 r = -EINVAL;
2555 if (arg)
2556 goto out;
2557 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2558 /* The thread running this VCPU changed. */
2559 struct pid *oldpid = vcpu->pid;
2560 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2561
2562 rcu_assign_pointer(vcpu->pid, newpid);
2563 if (oldpid)
2564 synchronize_rcu();
2565 put_pid(oldpid);
2566 }
2567 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2568 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2569 break;
2570 case KVM_GET_REGS: {
2571 struct kvm_regs *kvm_regs;
2572
2573 r = -ENOMEM;
2574 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2575 if (!kvm_regs)
2576 goto out;
2577 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2578 if (r)
2579 goto out_free1;
2580 r = -EFAULT;
2581 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2582 goto out_free1;
2583 r = 0;
2584 out_free1:
2585 kfree(kvm_regs);
2586 break;
2587 }
2588 case KVM_SET_REGS: {
2589 struct kvm_regs *kvm_regs;
2590
2591 r = -ENOMEM;
2592 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2593 if (IS_ERR(kvm_regs)) {
2594 r = PTR_ERR(kvm_regs);
2595 goto out;
2596 }
2597 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2598 kfree(kvm_regs);
2599 break;
2600 }
2601 case KVM_GET_SREGS: {
2602 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2603 r = -ENOMEM;
2604 if (!kvm_sregs)
2605 goto out;
2606 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2607 if (r)
2608 goto out;
2609 r = -EFAULT;
2610 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2611 goto out;
2612 r = 0;
2613 break;
2614 }
2615 case KVM_SET_SREGS: {
2616 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2617 if (IS_ERR(kvm_sregs)) {
2618 r = PTR_ERR(kvm_sregs);
2619 kvm_sregs = NULL;
2620 goto out;
2621 }
2622 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2623 break;
2624 }
2625 case KVM_GET_MP_STATE: {
2626 struct kvm_mp_state mp_state;
2627
2628 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2629 if (r)
2630 goto out;
2631 r = -EFAULT;
2632 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2633 goto out;
2634 r = 0;
2635 break;
2636 }
2637 case KVM_SET_MP_STATE: {
2638 struct kvm_mp_state mp_state;
2639
2640 r = -EFAULT;
2641 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2642 goto out;
2643 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2644 break;
2645 }
2646 case KVM_TRANSLATE: {
2647 struct kvm_translation tr;
2648
2649 r = -EFAULT;
2650 if (copy_from_user(&tr, argp, sizeof(tr)))
2651 goto out;
2652 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2653 if (r)
2654 goto out;
2655 r = -EFAULT;
2656 if (copy_to_user(argp, &tr, sizeof(tr)))
2657 goto out;
2658 r = 0;
2659 break;
2660 }
2661 case KVM_SET_GUEST_DEBUG: {
2662 struct kvm_guest_debug dbg;
2663
2664 r = -EFAULT;
2665 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2666 goto out;
2667 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2668 break;
2669 }
2670 case KVM_SET_SIGNAL_MASK: {
2671 struct kvm_signal_mask __user *sigmask_arg = argp;
2672 struct kvm_signal_mask kvm_sigmask;
2673 sigset_t sigset, *p;
2674
2675 p = NULL;
2676 if (argp) {
2677 r = -EFAULT;
2678 if (copy_from_user(&kvm_sigmask, argp,
2679 sizeof(kvm_sigmask)))
2680 goto out;
2681 r = -EINVAL;
2682 if (kvm_sigmask.len != sizeof(sigset))
2683 goto out;
2684 r = -EFAULT;
2685 if (copy_from_user(&sigset, sigmask_arg->sigset,
2686 sizeof(sigset)))
2687 goto out;
2688 p = &sigset;
2689 }
2690 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2691 break;
2692 }
2693 case KVM_GET_FPU: {
2694 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2695 r = -ENOMEM;
2696 if (!fpu)
2697 goto out;
2698 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2699 if (r)
2700 goto out;
2701 r = -EFAULT;
2702 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2703 goto out;
2704 r = 0;
2705 break;
2706 }
2707 case KVM_SET_FPU: {
2708 fpu = memdup_user(argp, sizeof(*fpu));
2709 if (IS_ERR(fpu)) {
2710 r = PTR_ERR(fpu);
2711 fpu = NULL;
2712 goto out;
2713 }
2714 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2715 break;
2716 }
2717 default:
2718 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2719 }
2720 out:
2721 vcpu_put(vcpu);
2722 kfree(fpu);
2723 kfree(kvm_sregs);
2724 return r;
2725 }
2726
2727 #ifdef CONFIG_KVM_COMPAT
2728 static long kvm_vcpu_compat_ioctl(struct file *filp,
2729 unsigned int ioctl, unsigned long arg)
2730 {
2731 struct kvm_vcpu *vcpu = filp->private_data;
2732 void __user *argp = compat_ptr(arg);
2733 int r;
2734
2735 if (vcpu->kvm->mm != current->mm)
2736 return -EIO;
2737
2738 switch (ioctl) {
2739 case KVM_SET_SIGNAL_MASK: {
2740 struct kvm_signal_mask __user *sigmask_arg = argp;
2741 struct kvm_signal_mask kvm_sigmask;
2742 compat_sigset_t csigset;
2743 sigset_t sigset;
2744
2745 if (argp) {
2746 r = -EFAULT;
2747 if (copy_from_user(&kvm_sigmask, argp,
2748 sizeof(kvm_sigmask)))
2749 goto out;
2750 r = -EINVAL;
2751 if (kvm_sigmask.len != sizeof(csigset))
2752 goto out;
2753 r = -EFAULT;
2754 if (copy_from_user(&csigset, sigmask_arg->sigset,
2755 sizeof(csigset)))
2756 goto out;
2757 sigset_from_compat(&sigset, &csigset);
2758 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2759 } else
2760 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2761 break;
2762 }
2763 default:
2764 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2765 }
2766
2767 out:
2768 return r;
2769 }
2770 #endif
2771
2772 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2773 int (*accessor)(struct kvm_device *dev,
2774 struct kvm_device_attr *attr),
2775 unsigned long arg)
2776 {
2777 struct kvm_device_attr attr;
2778
2779 if (!accessor)
2780 return -EPERM;
2781
2782 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2783 return -EFAULT;
2784
2785 return accessor(dev, &attr);
2786 }
2787
2788 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2789 unsigned long arg)
2790 {
2791 struct kvm_device *dev = filp->private_data;
2792
2793 switch (ioctl) {
2794 case KVM_SET_DEVICE_ATTR:
2795 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2796 case KVM_GET_DEVICE_ATTR:
2797 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2798 case KVM_HAS_DEVICE_ATTR:
2799 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2800 default:
2801 if (dev->ops->ioctl)
2802 return dev->ops->ioctl(dev, ioctl, arg);
2803
2804 return -ENOTTY;
2805 }
2806 }
2807
2808 static int kvm_device_release(struct inode *inode, struct file *filp)
2809 {
2810 struct kvm_device *dev = filp->private_data;
2811 struct kvm *kvm = dev->kvm;
2812
2813 kvm_put_kvm(kvm);
2814 return 0;
2815 }
2816
2817 static const struct file_operations kvm_device_fops = {
2818 .unlocked_ioctl = kvm_device_ioctl,
2819 #ifdef CONFIG_KVM_COMPAT
2820 .compat_ioctl = kvm_device_ioctl,
2821 #endif
2822 .release = kvm_device_release,
2823 };
2824
2825 struct kvm_device *kvm_device_from_filp(struct file *filp)
2826 {
2827 if (filp->f_op != &kvm_device_fops)
2828 return NULL;
2829
2830 return filp->private_data;
2831 }
2832
2833 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2834 #ifdef CONFIG_KVM_MPIC
2835 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2836 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2837 #endif
2838
2839 #ifdef CONFIG_KVM_XICS
2840 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2841 #endif
2842 };
2843
2844 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2845 {
2846 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2847 return -ENOSPC;
2848
2849 if (kvm_device_ops_table[type] != NULL)
2850 return -EEXIST;
2851
2852 kvm_device_ops_table[type] = ops;
2853 return 0;
2854 }
2855
2856 void kvm_unregister_device_ops(u32 type)
2857 {
2858 if (kvm_device_ops_table[type] != NULL)
2859 kvm_device_ops_table[type] = NULL;
2860 }
2861
2862 static int kvm_ioctl_create_device(struct kvm *kvm,
2863 struct kvm_create_device *cd)
2864 {
2865 struct kvm_device_ops *ops = NULL;
2866 struct kvm_device *dev;
2867 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2868 int ret;
2869
2870 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2871 return -ENODEV;
2872
2873 ops = kvm_device_ops_table[cd->type];
2874 if (ops == NULL)
2875 return -ENODEV;
2876
2877 if (test)
2878 return 0;
2879
2880 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2881 if (!dev)
2882 return -ENOMEM;
2883
2884 dev->ops = ops;
2885 dev->kvm = kvm;
2886
2887 mutex_lock(&kvm->lock);
2888 ret = ops->create(dev, cd->type);
2889 if (ret < 0) {
2890 mutex_unlock(&kvm->lock);
2891 kfree(dev);
2892 return ret;
2893 }
2894 list_add(&dev->vm_node, &kvm->devices);
2895 mutex_unlock(&kvm->lock);
2896
2897 if (ops->init)
2898 ops->init(dev);
2899
2900 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2901 if (ret < 0) {
2902 mutex_lock(&kvm->lock);
2903 list_del(&dev->vm_node);
2904 mutex_unlock(&kvm->lock);
2905 ops->destroy(dev);
2906 return ret;
2907 }
2908
2909 kvm_get_kvm(kvm);
2910 cd->fd = ret;
2911 return 0;
2912 }
2913
2914 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2915 {
2916 switch (arg) {
2917 case KVM_CAP_USER_MEMORY:
2918 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2919 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2920 case KVM_CAP_INTERNAL_ERROR_DATA:
2921 #ifdef CONFIG_HAVE_KVM_MSI
2922 case KVM_CAP_SIGNAL_MSI:
2923 #endif
2924 #ifdef CONFIG_HAVE_KVM_IRQFD
2925 case KVM_CAP_IRQFD:
2926 case KVM_CAP_IRQFD_RESAMPLE:
2927 #endif
2928 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2929 case KVM_CAP_CHECK_EXTENSION_VM:
2930 return 1;
2931 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2932 case KVM_CAP_IRQ_ROUTING:
2933 return KVM_MAX_IRQ_ROUTES;
2934 #endif
2935 #if KVM_ADDRESS_SPACE_NUM > 1
2936 case KVM_CAP_MULTI_ADDRESS_SPACE:
2937 return KVM_ADDRESS_SPACE_NUM;
2938 #endif
2939 case KVM_CAP_MAX_VCPU_ID:
2940 return KVM_MAX_VCPU_ID;
2941 default:
2942 break;
2943 }
2944 return kvm_vm_ioctl_check_extension(kvm, arg);
2945 }
2946
2947 static long kvm_vm_ioctl(struct file *filp,
2948 unsigned int ioctl, unsigned long arg)
2949 {
2950 struct kvm *kvm = filp->private_data;
2951 void __user *argp = (void __user *)arg;
2952 int r;
2953
2954 if (kvm->mm != current->mm)
2955 return -EIO;
2956 switch (ioctl) {
2957 case KVM_CREATE_VCPU:
2958 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2959 break;
2960 case KVM_SET_USER_MEMORY_REGION: {
2961 struct kvm_userspace_memory_region kvm_userspace_mem;
2962
2963 r = -EFAULT;
2964 if (copy_from_user(&kvm_userspace_mem, argp,
2965 sizeof(kvm_userspace_mem)))
2966 goto out;
2967
2968 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2969 break;
2970 }
2971 case KVM_GET_DIRTY_LOG: {
2972 struct kvm_dirty_log log;
2973
2974 r = -EFAULT;
2975 if (copy_from_user(&log, argp, sizeof(log)))
2976 goto out;
2977 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2978 break;
2979 }
2980 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2981 case KVM_REGISTER_COALESCED_MMIO: {
2982 struct kvm_coalesced_mmio_zone zone;
2983
2984 r = -EFAULT;
2985 if (copy_from_user(&zone, argp, sizeof(zone)))
2986 goto out;
2987 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2988 break;
2989 }
2990 case KVM_UNREGISTER_COALESCED_MMIO: {
2991 struct kvm_coalesced_mmio_zone zone;
2992
2993 r = -EFAULT;
2994 if (copy_from_user(&zone, argp, sizeof(zone)))
2995 goto out;
2996 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2997 break;
2998 }
2999 #endif
3000 case KVM_IRQFD: {
3001 struct kvm_irqfd data;
3002
3003 r = -EFAULT;
3004 if (copy_from_user(&data, argp, sizeof(data)))
3005 goto out;
3006 r = kvm_irqfd(kvm, &data);
3007 break;
3008 }
3009 case KVM_IOEVENTFD: {
3010 struct kvm_ioeventfd data;
3011
3012 r = -EFAULT;
3013 if (copy_from_user(&data, argp, sizeof(data)))
3014 goto out;
3015 r = kvm_ioeventfd(kvm, &data);
3016 break;
3017 }
3018 #ifdef CONFIG_HAVE_KVM_MSI
3019 case KVM_SIGNAL_MSI: {
3020 struct kvm_msi msi;
3021
3022 r = -EFAULT;
3023 if (copy_from_user(&msi, argp, sizeof(msi)))
3024 goto out;
3025 r = kvm_send_userspace_msi(kvm, &msi);
3026 break;
3027 }
3028 #endif
3029 #ifdef __KVM_HAVE_IRQ_LINE
3030 case KVM_IRQ_LINE_STATUS:
3031 case KVM_IRQ_LINE: {
3032 struct kvm_irq_level irq_event;
3033
3034 r = -EFAULT;
3035 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3036 goto out;
3037
3038 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3039 ioctl == KVM_IRQ_LINE_STATUS);
3040 if (r)
3041 goto out;
3042
3043 r = -EFAULT;
3044 if (ioctl == KVM_IRQ_LINE_STATUS) {
3045 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3046 goto out;
3047 }
3048
3049 r = 0;
3050 break;
3051 }
3052 #endif
3053 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3054 case KVM_SET_GSI_ROUTING: {
3055 struct kvm_irq_routing routing;
3056 struct kvm_irq_routing __user *urouting;
3057 struct kvm_irq_routing_entry *entries = NULL;
3058
3059 r = -EFAULT;
3060 if (copy_from_user(&routing, argp, sizeof(routing)))
3061 goto out;
3062 r = -EINVAL;
3063 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3064 goto out;
3065 if (routing.flags)
3066 goto out;
3067 if (routing.nr) {
3068 r = -ENOMEM;
3069 entries = vmalloc(routing.nr * sizeof(*entries));
3070 if (!entries)
3071 goto out;
3072 r = -EFAULT;
3073 urouting = argp;
3074 if (copy_from_user(entries, urouting->entries,
3075 routing.nr * sizeof(*entries)))
3076 goto out_free_irq_routing;
3077 }
3078 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3079 routing.flags);
3080 out_free_irq_routing:
3081 vfree(entries);
3082 break;
3083 }
3084 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3085 case KVM_CREATE_DEVICE: {
3086 struct kvm_create_device cd;
3087
3088 r = -EFAULT;
3089 if (copy_from_user(&cd, argp, sizeof(cd)))
3090 goto out;
3091
3092 r = kvm_ioctl_create_device(kvm, &cd);
3093 if (r)
3094 goto out;
3095
3096 r = -EFAULT;
3097 if (copy_to_user(argp, &cd, sizeof(cd)))
3098 goto out;
3099
3100 r = 0;
3101 break;
3102 }
3103 case KVM_CHECK_EXTENSION:
3104 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3105 break;
3106 default:
3107 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3108 }
3109 out:
3110 return r;
3111 }
3112
3113 #ifdef CONFIG_KVM_COMPAT
3114 struct compat_kvm_dirty_log {
3115 __u32 slot;
3116 __u32 padding1;
3117 union {
3118 compat_uptr_t dirty_bitmap; /* one bit per page */
3119 __u64 padding2;
3120 };
3121 };
3122
3123 static long kvm_vm_compat_ioctl(struct file *filp,
3124 unsigned int ioctl, unsigned long arg)
3125 {
3126 struct kvm *kvm = filp->private_data;
3127 int r;
3128
3129 if (kvm->mm != current->mm)
3130 return -EIO;
3131 switch (ioctl) {
3132 case KVM_GET_DIRTY_LOG: {
3133 struct compat_kvm_dirty_log compat_log;
3134 struct kvm_dirty_log log;
3135
3136 r = -EFAULT;
3137 if (copy_from_user(&compat_log, (void __user *)arg,
3138 sizeof(compat_log)))
3139 goto out;
3140 log.slot = compat_log.slot;
3141 log.padding1 = compat_log.padding1;
3142 log.padding2 = compat_log.padding2;
3143 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3144
3145 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3146 break;
3147 }
3148 default:
3149 r = kvm_vm_ioctl(filp, ioctl, arg);
3150 }
3151
3152 out:
3153 return r;
3154 }
3155 #endif
3156
3157 static struct file_operations kvm_vm_fops = {
3158 .release = kvm_vm_release,
3159 .unlocked_ioctl = kvm_vm_ioctl,
3160 #ifdef CONFIG_KVM_COMPAT
3161 .compat_ioctl = kvm_vm_compat_ioctl,
3162 #endif
3163 .llseek = noop_llseek,
3164 };
3165
3166 static int kvm_dev_ioctl_create_vm(unsigned long type)
3167 {
3168 int r;
3169 struct kvm *kvm;
3170 struct file *file;
3171
3172 kvm = kvm_create_vm(type);
3173 if (IS_ERR(kvm))
3174 return PTR_ERR(kvm);
3175 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3176 r = kvm_coalesced_mmio_init(kvm);
3177 if (r < 0) {
3178 kvm_put_kvm(kvm);
3179 return r;
3180 }
3181 #endif
3182 r = get_unused_fd_flags(O_CLOEXEC);
3183 if (r < 0) {
3184 kvm_put_kvm(kvm);
3185 return r;
3186 }
3187 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3188 if (IS_ERR(file)) {
3189 put_unused_fd(r);
3190 kvm_put_kvm(kvm);
3191 return PTR_ERR(file);
3192 }
3193
3194 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3195 put_unused_fd(r);
3196 fput(file);
3197 return -ENOMEM;
3198 }
3199
3200 fd_install(r, file);
3201 return r;
3202 }
3203
3204 static long kvm_dev_ioctl(struct file *filp,
3205 unsigned int ioctl, unsigned long arg)
3206 {
3207 long r = -EINVAL;
3208
3209 switch (ioctl) {
3210 case KVM_GET_API_VERSION:
3211 if (arg)
3212 goto out;
3213 r = KVM_API_VERSION;
3214 break;
3215 case KVM_CREATE_VM:
3216 r = kvm_dev_ioctl_create_vm(arg);
3217 break;
3218 case KVM_CHECK_EXTENSION:
3219 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3220 break;
3221 case KVM_GET_VCPU_MMAP_SIZE:
3222 if (arg)
3223 goto out;
3224 r = PAGE_SIZE; /* struct kvm_run */
3225 #ifdef CONFIG_X86
3226 r += PAGE_SIZE; /* pio data page */
3227 #endif
3228 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3229 r += PAGE_SIZE; /* coalesced mmio ring page */
3230 #endif
3231 break;
3232 case KVM_TRACE_ENABLE:
3233 case KVM_TRACE_PAUSE:
3234 case KVM_TRACE_DISABLE:
3235 r = -EOPNOTSUPP;
3236 break;
3237 default:
3238 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3239 }
3240 out:
3241 return r;
3242 }
3243
3244 static struct file_operations kvm_chardev_ops = {
3245 .unlocked_ioctl = kvm_dev_ioctl,
3246 .compat_ioctl = kvm_dev_ioctl,
3247 .llseek = noop_llseek,
3248 };
3249
3250 static struct miscdevice kvm_dev = {
3251 KVM_MINOR,
3252 "kvm",
3253 &kvm_chardev_ops,
3254 };
3255
3256 static void hardware_enable_nolock(void *junk)
3257 {
3258 int cpu = raw_smp_processor_id();
3259 int r;
3260
3261 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3262 return;
3263
3264 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3265
3266 r = kvm_arch_hardware_enable();
3267
3268 if (r) {
3269 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3270 atomic_inc(&hardware_enable_failed);
3271 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3272 }
3273 }
3274
3275 static int kvm_starting_cpu(unsigned int cpu)
3276 {
3277 raw_spin_lock(&kvm_count_lock);
3278 if (kvm_usage_count)
3279 hardware_enable_nolock(NULL);
3280 raw_spin_unlock(&kvm_count_lock);
3281 return 0;
3282 }
3283
3284 static void hardware_disable_nolock(void *junk)
3285 {
3286 int cpu = raw_smp_processor_id();
3287
3288 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3289 return;
3290 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3291 kvm_arch_hardware_disable();
3292 }
3293
3294 static int kvm_dying_cpu(unsigned int cpu)
3295 {
3296 raw_spin_lock(&kvm_count_lock);
3297 if (kvm_usage_count)
3298 hardware_disable_nolock(NULL);
3299 raw_spin_unlock(&kvm_count_lock);
3300 return 0;
3301 }
3302
3303 static void hardware_disable_all_nolock(void)
3304 {
3305 BUG_ON(!kvm_usage_count);
3306
3307 kvm_usage_count--;
3308 if (!kvm_usage_count)
3309 on_each_cpu(hardware_disable_nolock, NULL, 1);
3310 }
3311
3312 static void hardware_disable_all(void)
3313 {
3314 raw_spin_lock(&kvm_count_lock);
3315 hardware_disable_all_nolock();
3316 raw_spin_unlock(&kvm_count_lock);
3317 }
3318
3319 static int hardware_enable_all(void)
3320 {
3321 int r = 0;
3322
3323 raw_spin_lock(&kvm_count_lock);
3324
3325 kvm_usage_count++;
3326 if (kvm_usage_count == 1) {
3327 atomic_set(&hardware_enable_failed, 0);
3328 on_each_cpu(hardware_enable_nolock, NULL, 1);
3329
3330 if (atomic_read(&hardware_enable_failed)) {
3331 hardware_disable_all_nolock();
3332 r = -EBUSY;
3333 }
3334 }
3335
3336 raw_spin_unlock(&kvm_count_lock);
3337
3338 return r;
3339 }
3340
3341 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3342 void *v)
3343 {
3344 /*
3345 * Some (well, at least mine) BIOSes hang on reboot if
3346 * in vmx root mode.
3347 *
3348 * And Intel TXT required VMX off for all cpu when system shutdown.
3349 */
3350 pr_info("kvm: exiting hardware virtualization\n");
3351 kvm_rebooting = true;
3352 on_each_cpu(hardware_disable_nolock, NULL, 1);
3353 return NOTIFY_OK;
3354 }
3355
3356 static struct notifier_block kvm_reboot_notifier = {
3357 .notifier_call = kvm_reboot,
3358 .priority = 0,
3359 };
3360
3361 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3362 {
3363 int i;
3364
3365 for (i = 0; i < bus->dev_count; i++) {
3366 struct kvm_io_device *pos = bus->range[i].dev;
3367
3368 kvm_iodevice_destructor(pos);
3369 }
3370 kfree(bus);
3371 }
3372
3373 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3374 const struct kvm_io_range *r2)
3375 {
3376 gpa_t addr1 = r1->addr;
3377 gpa_t addr2 = r2->addr;
3378
3379 if (addr1 < addr2)
3380 return -1;
3381
3382 /* If r2->len == 0, match the exact address. If r2->len != 0,
3383 * accept any overlapping write. Any order is acceptable for
3384 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3385 * we process all of them.
3386 */
3387 if (r2->len) {
3388 addr1 += r1->len;
3389 addr2 += r2->len;
3390 }
3391
3392 if (addr1 > addr2)
3393 return 1;
3394
3395 return 0;
3396 }
3397
3398 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3399 {
3400 return kvm_io_bus_cmp(p1, p2);
3401 }
3402
3403 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3404 gpa_t addr, int len)
3405 {
3406 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3407 .addr = addr,
3408 .len = len,
3409 .dev = dev,
3410 };
3411
3412 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3413 kvm_io_bus_sort_cmp, NULL);
3414
3415 return 0;
3416 }
3417
3418 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3419 gpa_t addr, int len)
3420 {
3421 struct kvm_io_range *range, key;
3422 int off;
3423
3424 key = (struct kvm_io_range) {
3425 .addr = addr,
3426 .len = len,
3427 };
3428
3429 range = bsearch(&key, bus->range, bus->dev_count,
3430 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3431 if (range == NULL)
3432 return -ENOENT;
3433
3434 off = range - bus->range;
3435
3436 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3437 off--;
3438
3439 return off;
3440 }
3441
3442 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3443 struct kvm_io_range *range, const void *val)
3444 {
3445 int idx;
3446
3447 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3448 if (idx < 0)
3449 return -EOPNOTSUPP;
3450
3451 while (idx < bus->dev_count &&
3452 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3453 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3454 range->len, val))
3455 return idx;
3456 idx++;
3457 }
3458
3459 return -EOPNOTSUPP;
3460 }
3461
3462 /* kvm_io_bus_write - called under kvm->slots_lock */
3463 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3464 int len, const void *val)
3465 {
3466 struct kvm_io_bus *bus;
3467 struct kvm_io_range range;
3468 int r;
3469
3470 range = (struct kvm_io_range) {
3471 .addr = addr,
3472 .len = len,
3473 };
3474
3475 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3476 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3477 return r < 0 ? r : 0;
3478 }
3479
3480 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3481 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3482 gpa_t addr, int len, const void *val, long cookie)
3483 {
3484 struct kvm_io_bus *bus;
3485 struct kvm_io_range range;
3486
3487 range = (struct kvm_io_range) {
3488 .addr = addr,
3489 .len = len,
3490 };
3491
3492 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3493
3494 /* First try the device referenced by cookie. */
3495 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3496 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3497 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3498 val))
3499 return cookie;
3500
3501 /*
3502 * cookie contained garbage; fall back to search and return the
3503 * correct cookie value.
3504 */
3505 return __kvm_io_bus_write(vcpu, bus, &range, val);
3506 }
3507
3508 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3509 struct kvm_io_range *range, void *val)
3510 {
3511 int idx;
3512
3513 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3514 if (idx < 0)
3515 return -EOPNOTSUPP;
3516
3517 while (idx < bus->dev_count &&
3518 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3519 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3520 range->len, val))
3521 return idx;
3522 idx++;
3523 }
3524
3525 return -EOPNOTSUPP;
3526 }
3527 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3528
3529 /* kvm_io_bus_read - called under kvm->slots_lock */
3530 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3531 int len, void *val)
3532 {
3533 struct kvm_io_bus *bus;
3534 struct kvm_io_range range;
3535 int r;
3536
3537 range = (struct kvm_io_range) {
3538 .addr = addr,
3539 .len = len,
3540 };
3541
3542 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3543 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3544 return r < 0 ? r : 0;
3545 }
3546
3547
3548 /* Caller must hold slots_lock. */
3549 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3550 int len, struct kvm_io_device *dev)
3551 {
3552 struct kvm_io_bus *new_bus, *bus;
3553
3554 bus = kvm->buses[bus_idx];
3555 /* exclude ioeventfd which is limited by maximum fd */
3556 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3557 return -ENOSPC;
3558
3559 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3560 sizeof(struct kvm_io_range)), GFP_KERNEL);
3561 if (!new_bus)
3562 return -ENOMEM;
3563 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3564 sizeof(struct kvm_io_range)));
3565 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3566 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3567 synchronize_srcu_expedited(&kvm->srcu);
3568 kfree(bus);
3569
3570 return 0;
3571 }
3572
3573 /* Caller must hold slots_lock. */
3574 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3575 struct kvm_io_device *dev)
3576 {
3577 int i, r;
3578 struct kvm_io_bus *new_bus, *bus;
3579
3580 bus = kvm->buses[bus_idx];
3581 r = -ENOENT;
3582 for (i = 0; i < bus->dev_count; i++)
3583 if (bus->range[i].dev == dev) {
3584 r = 0;
3585 break;
3586 }
3587
3588 if (r)
3589 return r;
3590
3591 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3592 sizeof(struct kvm_io_range)), GFP_KERNEL);
3593 if (!new_bus)
3594 return -ENOMEM;
3595
3596 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3597 new_bus->dev_count--;
3598 memcpy(new_bus->range + i, bus->range + i + 1,
3599 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3600
3601 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3602 synchronize_srcu_expedited(&kvm->srcu);
3603 kfree(bus);
3604 return r;
3605 }
3606
3607 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3608 gpa_t addr)
3609 {
3610 struct kvm_io_bus *bus;
3611 int dev_idx, srcu_idx;
3612 struct kvm_io_device *iodev = NULL;
3613
3614 srcu_idx = srcu_read_lock(&kvm->srcu);
3615
3616 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3617
3618 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3619 if (dev_idx < 0)
3620 goto out_unlock;
3621
3622 iodev = bus->range[dev_idx].dev;
3623
3624 out_unlock:
3625 srcu_read_unlock(&kvm->srcu, srcu_idx);
3626
3627 return iodev;
3628 }
3629 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3630
3631 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3632 int (*get)(void *, u64 *), int (*set)(void *, u64),
3633 const char *fmt)
3634 {
3635 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3636 inode->i_private;
3637
3638 /* The debugfs files are a reference to the kvm struct which
3639 * is still valid when kvm_destroy_vm is called.
3640 * To avoid the race between open and the removal of the debugfs
3641 * directory we test against the users count.
3642 */
3643 if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0))
3644 return -ENOENT;
3645
3646 if (simple_attr_open(inode, file, get, set, fmt)) {
3647 kvm_put_kvm(stat_data->kvm);
3648 return -ENOMEM;
3649 }
3650
3651 return 0;
3652 }
3653
3654 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3655 {
3656 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3657 inode->i_private;
3658
3659 simple_attr_release(inode, file);
3660 kvm_put_kvm(stat_data->kvm);
3661
3662 return 0;
3663 }
3664
3665 static int vm_stat_get_per_vm(void *data, u64 *val)
3666 {
3667 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3668
3669 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3670
3671 return 0;
3672 }
3673
3674 static int vm_stat_clear_per_vm(void *data, u64 val)
3675 {
3676 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3677
3678 if (val)
3679 return -EINVAL;
3680
3681 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3682
3683 return 0;
3684 }
3685
3686 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3687 {
3688 __simple_attr_check_format("%llu\n", 0ull);
3689 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3690 vm_stat_clear_per_vm, "%llu\n");
3691 }
3692
3693 static const struct file_operations vm_stat_get_per_vm_fops = {
3694 .owner = THIS_MODULE,
3695 .open = vm_stat_get_per_vm_open,
3696 .release = kvm_debugfs_release,
3697 .read = simple_attr_read,
3698 .write = simple_attr_write,
3699 .llseek = generic_file_llseek,
3700 };
3701
3702 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3703 {
3704 int i;
3705 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3706 struct kvm_vcpu *vcpu;
3707
3708 *val = 0;
3709
3710 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3711 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3712
3713 return 0;
3714 }
3715
3716 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3717 {
3718 int i;
3719 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3720 struct kvm_vcpu *vcpu;
3721
3722 if (val)
3723 return -EINVAL;
3724
3725 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3726 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3727
3728 return 0;
3729 }
3730
3731 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3732 {
3733 __simple_attr_check_format("%llu\n", 0ull);
3734 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3735 vcpu_stat_clear_per_vm, "%llu\n");
3736 }
3737
3738 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3739 .owner = THIS_MODULE,
3740 .open = vcpu_stat_get_per_vm_open,
3741 .release = kvm_debugfs_release,
3742 .read = simple_attr_read,
3743 .write = simple_attr_write,
3744 .llseek = generic_file_llseek,
3745 };
3746
3747 static const struct file_operations *stat_fops_per_vm[] = {
3748 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3749 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3750 };
3751
3752 static int vm_stat_get(void *_offset, u64 *val)
3753 {
3754 unsigned offset = (long)_offset;
3755 struct kvm *kvm;
3756 struct kvm_stat_data stat_tmp = {.offset = offset};
3757 u64 tmp_val;
3758
3759 *val = 0;
3760 spin_lock(&kvm_lock);
3761 list_for_each_entry(kvm, &vm_list, vm_list) {
3762 stat_tmp.kvm = kvm;
3763 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3764 *val += tmp_val;
3765 }
3766 spin_unlock(&kvm_lock);
3767 return 0;
3768 }
3769
3770 static int vm_stat_clear(void *_offset, u64 val)
3771 {
3772 unsigned offset = (long)_offset;
3773 struct kvm *kvm;
3774 struct kvm_stat_data stat_tmp = {.offset = offset};
3775
3776 if (val)
3777 return -EINVAL;
3778
3779 spin_lock(&kvm_lock);
3780 list_for_each_entry(kvm, &vm_list, vm_list) {
3781 stat_tmp.kvm = kvm;
3782 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3783 }
3784 spin_unlock(&kvm_lock);
3785
3786 return 0;
3787 }
3788
3789 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3790
3791 static int vcpu_stat_get(void *_offset, u64 *val)
3792 {
3793 unsigned offset = (long)_offset;
3794 struct kvm *kvm;
3795 struct kvm_stat_data stat_tmp = {.offset = offset};
3796 u64 tmp_val;
3797
3798 *val = 0;
3799 spin_lock(&kvm_lock);
3800 list_for_each_entry(kvm, &vm_list, vm_list) {
3801 stat_tmp.kvm = kvm;
3802 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3803 *val += tmp_val;
3804 }
3805 spin_unlock(&kvm_lock);
3806 return 0;
3807 }
3808
3809 static int vcpu_stat_clear(void *_offset, u64 val)
3810 {
3811 unsigned offset = (long)_offset;
3812 struct kvm *kvm;
3813 struct kvm_stat_data stat_tmp = {.offset = offset};
3814
3815 if (val)
3816 return -EINVAL;
3817
3818 spin_lock(&kvm_lock);
3819 list_for_each_entry(kvm, &vm_list, vm_list) {
3820 stat_tmp.kvm = kvm;
3821 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3822 }
3823 spin_unlock(&kvm_lock);
3824
3825 return 0;
3826 }
3827
3828 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3829 "%llu\n");
3830
3831 static const struct file_operations *stat_fops[] = {
3832 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3833 [KVM_STAT_VM] = &vm_stat_fops,
3834 };
3835
3836 static int kvm_init_debug(void)
3837 {
3838 int r = -EEXIST;
3839 struct kvm_stats_debugfs_item *p;
3840
3841 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3842 if (kvm_debugfs_dir == NULL)
3843 goto out;
3844
3845 kvm_debugfs_num_entries = 0;
3846 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3847 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3848 (void *)(long)p->offset,
3849 stat_fops[p->kind]))
3850 goto out_dir;
3851 }
3852
3853 return 0;
3854
3855 out_dir:
3856 debugfs_remove_recursive(kvm_debugfs_dir);
3857 out:
3858 return r;
3859 }
3860
3861 static int kvm_suspend(void)
3862 {
3863 if (kvm_usage_count)
3864 hardware_disable_nolock(NULL);
3865 return 0;
3866 }
3867
3868 static void kvm_resume(void)
3869 {
3870 if (kvm_usage_count) {
3871 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3872 hardware_enable_nolock(NULL);
3873 }
3874 }
3875
3876 static struct syscore_ops kvm_syscore_ops = {
3877 .suspend = kvm_suspend,
3878 .resume = kvm_resume,
3879 };
3880
3881 static inline
3882 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3883 {
3884 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3885 }
3886
3887 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3888 {
3889 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3890
3891 if (vcpu->preempted)
3892 vcpu->preempted = false;
3893
3894 kvm_arch_sched_in(vcpu, cpu);
3895
3896 kvm_arch_vcpu_load(vcpu, cpu);
3897 }
3898
3899 static void kvm_sched_out(struct preempt_notifier *pn,
3900 struct task_struct *next)
3901 {
3902 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3903
3904 if (current->state == TASK_RUNNING)
3905 vcpu->preempted = true;
3906 kvm_arch_vcpu_put(vcpu);
3907 }
3908
3909 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3910 struct module *module)
3911 {
3912 int r;
3913 int cpu;
3914
3915 r = kvm_arch_init(opaque);
3916 if (r)
3917 goto out_fail;
3918
3919 /*
3920 * kvm_arch_init makes sure there's at most one caller
3921 * for architectures that support multiple implementations,
3922 * like intel and amd on x86.
3923 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3924 * conflicts in case kvm is already setup for another implementation.
3925 */
3926 r = kvm_irqfd_init();
3927 if (r)
3928 goto out_irqfd;
3929
3930 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3931 r = -ENOMEM;
3932 goto out_free_0;
3933 }
3934
3935 r = kvm_arch_hardware_setup();
3936 if (r < 0)
3937 goto out_free_0a;
3938
3939 for_each_online_cpu(cpu) {
3940 smp_call_function_single(cpu,
3941 kvm_arch_check_processor_compat,
3942 &r, 1);
3943 if (r < 0)
3944 goto out_free_1;
3945 }
3946
3947 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
3948 kvm_starting_cpu, kvm_dying_cpu);
3949 if (r)
3950 goto out_free_2;
3951 register_reboot_notifier(&kvm_reboot_notifier);
3952
3953 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3954 if (!vcpu_align)
3955 vcpu_align = __alignof__(struct kvm_vcpu);
3956 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3957 0, NULL);
3958 if (!kvm_vcpu_cache) {
3959 r = -ENOMEM;
3960 goto out_free_3;
3961 }
3962
3963 r = kvm_async_pf_init();
3964 if (r)
3965 goto out_free;
3966
3967 kvm_chardev_ops.owner = module;
3968 kvm_vm_fops.owner = module;
3969 kvm_vcpu_fops.owner = module;
3970
3971 r = misc_register(&kvm_dev);
3972 if (r) {
3973 pr_err("kvm: misc device register failed\n");
3974 goto out_unreg;
3975 }
3976
3977 register_syscore_ops(&kvm_syscore_ops);
3978
3979 kvm_preempt_ops.sched_in = kvm_sched_in;
3980 kvm_preempt_ops.sched_out = kvm_sched_out;
3981
3982 r = kvm_init_debug();
3983 if (r) {
3984 pr_err("kvm: create debugfs files failed\n");
3985 goto out_undebugfs;
3986 }
3987
3988 r = kvm_vfio_ops_init();
3989 WARN_ON(r);
3990
3991 return 0;
3992
3993 out_undebugfs:
3994 unregister_syscore_ops(&kvm_syscore_ops);
3995 misc_deregister(&kvm_dev);
3996 out_unreg:
3997 kvm_async_pf_deinit();
3998 out_free:
3999 kmem_cache_destroy(kvm_vcpu_cache);
4000 out_free_3:
4001 unregister_reboot_notifier(&kvm_reboot_notifier);
4002 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4003 out_free_2:
4004 out_free_1:
4005 kvm_arch_hardware_unsetup();
4006 out_free_0a:
4007 free_cpumask_var(cpus_hardware_enabled);
4008 out_free_0:
4009 kvm_irqfd_exit();
4010 out_irqfd:
4011 kvm_arch_exit();
4012 out_fail:
4013 return r;
4014 }
4015 EXPORT_SYMBOL_GPL(kvm_init);
4016
4017 void kvm_exit(void)
4018 {
4019 debugfs_remove_recursive(kvm_debugfs_dir);
4020 misc_deregister(&kvm_dev);
4021 kmem_cache_destroy(kvm_vcpu_cache);
4022 kvm_async_pf_deinit();
4023 unregister_syscore_ops(&kvm_syscore_ops);
4024 unregister_reboot_notifier(&kvm_reboot_notifier);
4025 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4026 on_each_cpu(hardware_disable_nolock, NULL, 1);
4027 kvm_arch_hardware_unsetup();
4028 kvm_arch_exit();
4029 kvm_irqfd_exit();
4030 free_cpumask_var(cpus_hardware_enabled);
4031 kvm_vfio_ops_exit();
4032 }
4033 EXPORT_SYMBOL_GPL(kvm_exit);