]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - virt/kvm/kvm_main.c
mm: remove write/force parameters from __get_user_pages_unlocked()
[mirror_ubuntu-artful-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71
72 /* Architectures should define their poll value according to the halt latency */
73 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
75
76 /* Default doubles per-vcpu halt_poll_ns. */
77 static unsigned int halt_poll_ns_grow = 2;
78 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
79
80 /* Default resets per-vcpu halt_poll_ns . */
81 static unsigned int halt_poll_ns_shrink;
82 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
83
84 /*
85 * Ordering of locks:
86 *
87 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
88 */
89
90 DEFINE_SPINLOCK(kvm_lock);
91 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
92 LIST_HEAD(vm_list);
93
94 static cpumask_var_t cpus_hardware_enabled;
95 static int kvm_usage_count;
96 static atomic_t hardware_enable_failed;
97
98 struct kmem_cache *kvm_vcpu_cache;
99 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
100
101 static __read_mostly struct preempt_ops kvm_preempt_ops;
102
103 struct dentry *kvm_debugfs_dir;
104 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
105
106 static int kvm_debugfs_num_entries;
107 static const struct file_operations *stat_fops_per_vm[];
108
109 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
110 unsigned long arg);
111 #ifdef CONFIG_KVM_COMPAT
112 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
113 unsigned long arg);
114 #endif
115 static int hardware_enable_all(void);
116 static void hardware_disable_all(void);
117
118 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
119
120 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
121 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
122
123 __visible bool kvm_rebooting;
124 EXPORT_SYMBOL_GPL(kvm_rebooting);
125
126 static bool largepages_enabled = true;
127
128 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
129 {
130 if (pfn_valid(pfn))
131 return PageReserved(pfn_to_page(pfn));
132
133 return true;
134 }
135
136 /*
137 * Switches to specified vcpu, until a matching vcpu_put()
138 */
139 int vcpu_load(struct kvm_vcpu *vcpu)
140 {
141 int cpu;
142
143 if (mutex_lock_killable(&vcpu->mutex))
144 return -EINTR;
145 cpu = get_cpu();
146 preempt_notifier_register(&vcpu->preempt_notifier);
147 kvm_arch_vcpu_load(vcpu, cpu);
148 put_cpu();
149 return 0;
150 }
151 EXPORT_SYMBOL_GPL(vcpu_load);
152
153 void vcpu_put(struct kvm_vcpu *vcpu)
154 {
155 preempt_disable();
156 kvm_arch_vcpu_put(vcpu);
157 preempt_notifier_unregister(&vcpu->preempt_notifier);
158 preempt_enable();
159 mutex_unlock(&vcpu->mutex);
160 }
161 EXPORT_SYMBOL_GPL(vcpu_put);
162
163 static void ack_flush(void *_completed)
164 {
165 }
166
167 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
168 {
169 int i, cpu, me;
170 cpumask_var_t cpus;
171 bool called = true;
172 struct kvm_vcpu *vcpu;
173
174 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
175
176 me = get_cpu();
177 kvm_for_each_vcpu(i, vcpu, kvm) {
178 kvm_make_request(req, vcpu);
179 cpu = vcpu->cpu;
180
181 /* Set ->requests bit before we read ->mode. */
182 smp_mb__after_atomic();
183
184 if (cpus != NULL && cpu != -1 && cpu != me &&
185 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
186 cpumask_set_cpu(cpu, cpus);
187 }
188 if (unlikely(cpus == NULL))
189 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
190 else if (!cpumask_empty(cpus))
191 smp_call_function_many(cpus, ack_flush, NULL, 1);
192 else
193 called = false;
194 put_cpu();
195 free_cpumask_var(cpus);
196 return called;
197 }
198
199 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
200 void kvm_flush_remote_tlbs(struct kvm *kvm)
201 {
202 /*
203 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
204 * kvm_make_all_cpus_request.
205 */
206 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
207
208 /*
209 * We want to publish modifications to the page tables before reading
210 * mode. Pairs with a memory barrier in arch-specific code.
211 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
212 * and smp_mb in walk_shadow_page_lockless_begin/end.
213 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
214 *
215 * There is already an smp_mb__after_atomic() before
216 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
217 * barrier here.
218 */
219 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
220 ++kvm->stat.remote_tlb_flush;
221 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
222 }
223 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
224 #endif
225
226 void kvm_reload_remote_mmus(struct kvm *kvm)
227 {
228 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
229 }
230
231 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
232 {
233 struct page *page;
234 int r;
235
236 mutex_init(&vcpu->mutex);
237 vcpu->cpu = -1;
238 vcpu->kvm = kvm;
239 vcpu->vcpu_id = id;
240 vcpu->pid = NULL;
241 init_swait_queue_head(&vcpu->wq);
242 kvm_async_pf_vcpu_init(vcpu);
243
244 vcpu->pre_pcpu = -1;
245 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
246
247 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
248 if (!page) {
249 r = -ENOMEM;
250 goto fail;
251 }
252 vcpu->run = page_address(page);
253
254 kvm_vcpu_set_in_spin_loop(vcpu, false);
255 kvm_vcpu_set_dy_eligible(vcpu, false);
256 vcpu->preempted = false;
257
258 r = kvm_arch_vcpu_init(vcpu);
259 if (r < 0)
260 goto fail_free_run;
261 return 0;
262
263 fail_free_run:
264 free_page((unsigned long)vcpu->run);
265 fail:
266 return r;
267 }
268 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
269
270 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
271 {
272 put_pid(vcpu->pid);
273 kvm_arch_vcpu_uninit(vcpu);
274 free_page((unsigned long)vcpu->run);
275 }
276 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
277
278 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
279 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
280 {
281 return container_of(mn, struct kvm, mmu_notifier);
282 }
283
284 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
285 struct mm_struct *mm,
286 unsigned long address)
287 {
288 struct kvm *kvm = mmu_notifier_to_kvm(mn);
289 int need_tlb_flush, idx;
290
291 /*
292 * When ->invalidate_page runs, the linux pte has been zapped
293 * already but the page is still allocated until
294 * ->invalidate_page returns. So if we increase the sequence
295 * here the kvm page fault will notice if the spte can't be
296 * established because the page is going to be freed. If
297 * instead the kvm page fault establishes the spte before
298 * ->invalidate_page runs, kvm_unmap_hva will release it
299 * before returning.
300 *
301 * The sequence increase only need to be seen at spin_unlock
302 * time, and not at spin_lock time.
303 *
304 * Increasing the sequence after the spin_unlock would be
305 * unsafe because the kvm page fault could then establish the
306 * pte after kvm_unmap_hva returned, without noticing the page
307 * is going to be freed.
308 */
309 idx = srcu_read_lock(&kvm->srcu);
310 spin_lock(&kvm->mmu_lock);
311
312 kvm->mmu_notifier_seq++;
313 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
314 /* we've to flush the tlb before the pages can be freed */
315 if (need_tlb_flush)
316 kvm_flush_remote_tlbs(kvm);
317
318 spin_unlock(&kvm->mmu_lock);
319
320 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
321
322 srcu_read_unlock(&kvm->srcu, idx);
323 }
324
325 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
326 struct mm_struct *mm,
327 unsigned long address,
328 pte_t pte)
329 {
330 struct kvm *kvm = mmu_notifier_to_kvm(mn);
331 int idx;
332
333 idx = srcu_read_lock(&kvm->srcu);
334 spin_lock(&kvm->mmu_lock);
335 kvm->mmu_notifier_seq++;
336 kvm_set_spte_hva(kvm, address, pte);
337 spin_unlock(&kvm->mmu_lock);
338 srcu_read_unlock(&kvm->srcu, idx);
339 }
340
341 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
342 struct mm_struct *mm,
343 unsigned long start,
344 unsigned long end)
345 {
346 struct kvm *kvm = mmu_notifier_to_kvm(mn);
347 int need_tlb_flush = 0, idx;
348
349 idx = srcu_read_lock(&kvm->srcu);
350 spin_lock(&kvm->mmu_lock);
351 /*
352 * The count increase must become visible at unlock time as no
353 * spte can be established without taking the mmu_lock and
354 * count is also read inside the mmu_lock critical section.
355 */
356 kvm->mmu_notifier_count++;
357 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
358 need_tlb_flush |= kvm->tlbs_dirty;
359 /* we've to flush the tlb before the pages can be freed */
360 if (need_tlb_flush)
361 kvm_flush_remote_tlbs(kvm);
362
363 spin_unlock(&kvm->mmu_lock);
364 srcu_read_unlock(&kvm->srcu, idx);
365 }
366
367 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
368 struct mm_struct *mm,
369 unsigned long start,
370 unsigned long end)
371 {
372 struct kvm *kvm = mmu_notifier_to_kvm(mn);
373
374 spin_lock(&kvm->mmu_lock);
375 /*
376 * This sequence increase will notify the kvm page fault that
377 * the page that is going to be mapped in the spte could have
378 * been freed.
379 */
380 kvm->mmu_notifier_seq++;
381 smp_wmb();
382 /*
383 * The above sequence increase must be visible before the
384 * below count decrease, which is ensured by the smp_wmb above
385 * in conjunction with the smp_rmb in mmu_notifier_retry().
386 */
387 kvm->mmu_notifier_count--;
388 spin_unlock(&kvm->mmu_lock);
389
390 BUG_ON(kvm->mmu_notifier_count < 0);
391 }
392
393 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
394 struct mm_struct *mm,
395 unsigned long start,
396 unsigned long end)
397 {
398 struct kvm *kvm = mmu_notifier_to_kvm(mn);
399 int young, idx;
400
401 idx = srcu_read_lock(&kvm->srcu);
402 spin_lock(&kvm->mmu_lock);
403
404 young = kvm_age_hva(kvm, start, end);
405 if (young)
406 kvm_flush_remote_tlbs(kvm);
407
408 spin_unlock(&kvm->mmu_lock);
409 srcu_read_unlock(&kvm->srcu, idx);
410
411 return young;
412 }
413
414 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
415 struct mm_struct *mm,
416 unsigned long start,
417 unsigned long end)
418 {
419 struct kvm *kvm = mmu_notifier_to_kvm(mn);
420 int young, idx;
421
422 idx = srcu_read_lock(&kvm->srcu);
423 spin_lock(&kvm->mmu_lock);
424 /*
425 * Even though we do not flush TLB, this will still adversely
426 * affect performance on pre-Haswell Intel EPT, where there is
427 * no EPT Access Bit to clear so that we have to tear down EPT
428 * tables instead. If we find this unacceptable, we can always
429 * add a parameter to kvm_age_hva so that it effectively doesn't
430 * do anything on clear_young.
431 *
432 * Also note that currently we never issue secondary TLB flushes
433 * from clear_young, leaving this job up to the regular system
434 * cadence. If we find this inaccurate, we might come up with a
435 * more sophisticated heuristic later.
436 */
437 young = kvm_age_hva(kvm, start, end);
438 spin_unlock(&kvm->mmu_lock);
439 srcu_read_unlock(&kvm->srcu, idx);
440
441 return young;
442 }
443
444 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
445 struct mm_struct *mm,
446 unsigned long address)
447 {
448 struct kvm *kvm = mmu_notifier_to_kvm(mn);
449 int young, idx;
450
451 idx = srcu_read_lock(&kvm->srcu);
452 spin_lock(&kvm->mmu_lock);
453 young = kvm_test_age_hva(kvm, address);
454 spin_unlock(&kvm->mmu_lock);
455 srcu_read_unlock(&kvm->srcu, idx);
456
457 return young;
458 }
459
460 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
461 struct mm_struct *mm)
462 {
463 struct kvm *kvm = mmu_notifier_to_kvm(mn);
464 int idx;
465
466 idx = srcu_read_lock(&kvm->srcu);
467 kvm_arch_flush_shadow_all(kvm);
468 srcu_read_unlock(&kvm->srcu, idx);
469 }
470
471 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
472 .invalidate_page = kvm_mmu_notifier_invalidate_page,
473 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
474 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
475 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
476 .clear_young = kvm_mmu_notifier_clear_young,
477 .test_young = kvm_mmu_notifier_test_young,
478 .change_pte = kvm_mmu_notifier_change_pte,
479 .release = kvm_mmu_notifier_release,
480 };
481
482 static int kvm_init_mmu_notifier(struct kvm *kvm)
483 {
484 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
485 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
486 }
487
488 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
489
490 static int kvm_init_mmu_notifier(struct kvm *kvm)
491 {
492 return 0;
493 }
494
495 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
496
497 static struct kvm_memslots *kvm_alloc_memslots(void)
498 {
499 int i;
500 struct kvm_memslots *slots;
501
502 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
503 if (!slots)
504 return NULL;
505
506 /*
507 * Init kvm generation close to the maximum to easily test the
508 * code of handling generation number wrap-around.
509 */
510 slots->generation = -150;
511 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
512 slots->id_to_index[i] = slots->memslots[i].id = i;
513
514 return slots;
515 }
516
517 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
518 {
519 if (!memslot->dirty_bitmap)
520 return;
521
522 kvfree(memslot->dirty_bitmap);
523 memslot->dirty_bitmap = NULL;
524 }
525
526 /*
527 * Free any memory in @free but not in @dont.
528 */
529 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
530 struct kvm_memory_slot *dont)
531 {
532 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
533 kvm_destroy_dirty_bitmap(free);
534
535 kvm_arch_free_memslot(kvm, free, dont);
536
537 free->npages = 0;
538 }
539
540 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
541 {
542 struct kvm_memory_slot *memslot;
543
544 if (!slots)
545 return;
546
547 kvm_for_each_memslot(memslot, slots)
548 kvm_free_memslot(kvm, memslot, NULL);
549
550 kvfree(slots);
551 }
552
553 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
554 {
555 int i;
556
557 if (!kvm->debugfs_dentry)
558 return;
559
560 debugfs_remove_recursive(kvm->debugfs_dentry);
561
562 if (kvm->debugfs_stat_data) {
563 for (i = 0; i < kvm_debugfs_num_entries; i++)
564 kfree(kvm->debugfs_stat_data[i]);
565 kfree(kvm->debugfs_stat_data);
566 }
567 }
568
569 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
570 {
571 char dir_name[ITOA_MAX_LEN * 2];
572 struct kvm_stat_data *stat_data;
573 struct kvm_stats_debugfs_item *p;
574
575 if (!debugfs_initialized())
576 return 0;
577
578 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
579 kvm->debugfs_dentry = debugfs_create_dir(dir_name,
580 kvm_debugfs_dir);
581 if (!kvm->debugfs_dentry)
582 return -ENOMEM;
583
584 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
585 sizeof(*kvm->debugfs_stat_data),
586 GFP_KERNEL);
587 if (!kvm->debugfs_stat_data)
588 return -ENOMEM;
589
590 for (p = debugfs_entries; p->name; p++) {
591 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
592 if (!stat_data)
593 return -ENOMEM;
594
595 stat_data->kvm = kvm;
596 stat_data->offset = p->offset;
597 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
598 if (!debugfs_create_file(p->name, 0444,
599 kvm->debugfs_dentry,
600 stat_data,
601 stat_fops_per_vm[p->kind]))
602 return -ENOMEM;
603 }
604 return 0;
605 }
606
607 static struct kvm *kvm_create_vm(unsigned long type)
608 {
609 int r, i;
610 struct kvm *kvm = kvm_arch_alloc_vm();
611
612 if (!kvm)
613 return ERR_PTR(-ENOMEM);
614
615 spin_lock_init(&kvm->mmu_lock);
616 atomic_inc(&current->mm->mm_count);
617 kvm->mm = current->mm;
618 kvm_eventfd_init(kvm);
619 mutex_init(&kvm->lock);
620 mutex_init(&kvm->irq_lock);
621 mutex_init(&kvm->slots_lock);
622 atomic_set(&kvm->users_count, 1);
623 INIT_LIST_HEAD(&kvm->devices);
624
625 r = kvm_arch_init_vm(kvm, type);
626 if (r)
627 goto out_err_no_disable;
628
629 r = hardware_enable_all();
630 if (r)
631 goto out_err_no_disable;
632
633 #ifdef CONFIG_HAVE_KVM_IRQFD
634 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
635 #endif
636
637 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
638
639 r = -ENOMEM;
640 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
641 kvm->memslots[i] = kvm_alloc_memslots();
642 if (!kvm->memslots[i])
643 goto out_err_no_srcu;
644 }
645
646 if (init_srcu_struct(&kvm->srcu))
647 goto out_err_no_srcu;
648 if (init_srcu_struct(&kvm->irq_srcu))
649 goto out_err_no_irq_srcu;
650 for (i = 0; i < KVM_NR_BUSES; i++) {
651 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
652 GFP_KERNEL);
653 if (!kvm->buses[i])
654 goto out_err;
655 }
656
657 r = kvm_init_mmu_notifier(kvm);
658 if (r)
659 goto out_err;
660
661 spin_lock(&kvm_lock);
662 list_add(&kvm->vm_list, &vm_list);
663 spin_unlock(&kvm_lock);
664
665 preempt_notifier_inc();
666
667 return kvm;
668
669 out_err:
670 cleanup_srcu_struct(&kvm->irq_srcu);
671 out_err_no_irq_srcu:
672 cleanup_srcu_struct(&kvm->srcu);
673 out_err_no_srcu:
674 hardware_disable_all();
675 out_err_no_disable:
676 for (i = 0; i < KVM_NR_BUSES; i++)
677 kfree(kvm->buses[i]);
678 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
679 kvm_free_memslots(kvm, kvm->memslots[i]);
680 kvm_arch_free_vm(kvm);
681 mmdrop(current->mm);
682 return ERR_PTR(r);
683 }
684
685 /*
686 * Avoid using vmalloc for a small buffer.
687 * Should not be used when the size is statically known.
688 */
689 void *kvm_kvzalloc(unsigned long size)
690 {
691 if (size > PAGE_SIZE)
692 return vzalloc(size);
693 else
694 return kzalloc(size, GFP_KERNEL);
695 }
696
697 static void kvm_destroy_devices(struct kvm *kvm)
698 {
699 struct kvm_device *dev, *tmp;
700
701 /*
702 * We do not need to take the kvm->lock here, because nobody else
703 * has a reference to the struct kvm at this point and therefore
704 * cannot access the devices list anyhow.
705 */
706 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
707 list_del(&dev->vm_node);
708 dev->ops->destroy(dev);
709 }
710 }
711
712 static void kvm_destroy_vm(struct kvm *kvm)
713 {
714 int i;
715 struct mm_struct *mm = kvm->mm;
716
717 kvm_destroy_vm_debugfs(kvm);
718 kvm_arch_sync_events(kvm);
719 spin_lock(&kvm_lock);
720 list_del(&kvm->vm_list);
721 spin_unlock(&kvm_lock);
722 kvm_free_irq_routing(kvm);
723 for (i = 0; i < KVM_NR_BUSES; i++)
724 kvm_io_bus_destroy(kvm->buses[i]);
725 kvm_coalesced_mmio_free(kvm);
726 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
727 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
728 #else
729 kvm_arch_flush_shadow_all(kvm);
730 #endif
731 kvm_arch_destroy_vm(kvm);
732 kvm_destroy_devices(kvm);
733 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
734 kvm_free_memslots(kvm, kvm->memslots[i]);
735 cleanup_srcu_struct(&kvm->irq_srcu);
736 cleanup_srcu_struct(&kvm->srcu);
737 kvm_arch_free_vm(kvm);
738 preempt_notifier_dec();
739 hardware_disable_all();
740 mmdrop(mm);
741 }
742
743 void kvm_get_kvm(struct kvm *kvm)
744 {
745 atomic_inc(&kvm->users_count);
746 }
747 EXPORT_SYMBOL_GPL(kvm_get_kvm);
748
749 void kvm_put_kvm(struct kvm *kvm)
750 {
751 if (atomic_dec_and_test(&kvm->users_count))
752 kvm_destroy_vm(kvm);
753 }
754 EXPORT_SYMBOL_GPL(kvm_put_kvm);
755
756
757 static int kvm_vm_release(struct inode *inode, struct file *filp)
758 {
759 struct kvm *kvm = filp->private_data;
760
761 kvm_irqfd_release(kvm);
762
763 kvm_put_kvm(kvm);
764 return 0;
765 }
766
767 /*
768 * Allocation size is twice as large as the actual dirty bitmap size.
769 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
770 */
771 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
772 {
773 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
774
775 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
776 if (!memslot->dirty_bitmap)
777 return -ENOMEM;
778
779 return 0;
780 }
781
782 /*
783 * Insert memslot and re-sort memslots based on their GFN,
784 * so binary search could be used to lookup GFN.
785 * Sorting algorithm takes advantage of having initially
786 * sorted array and known changed memslot position.
787 */
788 static void update_memslots(struct kvm_memslots *slots,
789 struct kvm_memory_slot *new)
790 {
791 int id = new->id;
792 int i = slots->id_to_index[id];
793 struct kvm_memory_slot *mslots = slots->memslots;
794
795 WARN_ON(mslots[i].id != id);
796 if (!new->npages) {
797 WARN_ON(!mslots[i].npages);
798 if (mslots[i].npages)
799 slots->used_slots--;
800 } else {
801 if (!mslots[i].npages)
802 slots->used_slots++;
803 }
804
805 while (i < KVM_MEM_SLOTS_NUM - 1 &&
806 new->base_gfn <= mslots[i + 1].base_gfn) {
807 if (!mslots[i + 1].npages)
808 break;
809 mslots[i] = mslots[i + 1];
810 slots->id_to_index[mslots[i].id] = i;
811 i++;
812 }
813
814 /*
815 * The ">=" is needed when creating a slot with base_gfn == 0,
816 * so that it moves before all those with base_gfn == npages == 0.
817 *
818 * On the other hand, if new->npages is zero, the above loop has
819 * already left i pointing to the beginning of the empty part of
820 * mslots, and the ">=" would move the hole backwards in this
821 * case---which is wrong. So skip the loop when deleting a slot.
822 */
823 if (new->npages) {
824 while (i > 0 &&
825 new->base_gfn >= mslots[i - 1].base_gfn) {
826 mslots[i] = mslots[i - 1];
827 slots->id_to_index[mslots[i].id] = i;
828 i--;
829 }
830 } else
831 WARN_ON_ONCE(i != slots->used_slots);
832
833 mslots[i] = *new;
834 slots->id_to_index[mslots[i].id] = i;
835 }
836
837 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
838 {
839 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
840
841 #ifdef __KVM_HAVE_READONLY_MEM
842 valid_flags |= KVM_MEM_READONLY;
843 #endif
844
845 if (mem->flags & ~valid_flags)
846 return -EINVAL;
847
848 return 0;
849 }
850
851 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
852 int as_id, struct kvm_memslots *slots)
853 {
854 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
855
856 /*
857 * Set the low bit in the generation, which disables SPTE caching
858 * until the end of synchronize_srcu_expedited.
859 */
860 WARN_ON(old_memslots->generation & 1);
861 slots->generation = old_memslots->generation + 1;
862
863 rcu_assign_pointer(kvm->memslots[as_id], slots);
864 synchronize_srcu_expedited(&kvm->srcu);
865
866 /*
867 * Increment the new memslot generation a second time. This prevents
868 * vm exits that race with memslot updates from caching a memslot
869 * generation that will (potentially) be valid forever.
870 */
871 slots->generation++;
872
873 kvm_arch_memslots_updated(kvm, slots);
874
875 return old_memslots;
876 }
877
878 /*
879 * Allocate some memory and give it an address in the guest physical address
880 * space.
881 *
882 * Discontiguous memory is allowed, mostly for framebuffers.
883 *
884 * Must be called holding kvm->slots_lock for write.
885 */
886 int __kvm_set_memory_region(struct kvm *kvm,
887 const struct kvm_userspace_memory_region *mem)
888 {
889 int r;
890 gfn_t base_gfn;
891 unsigned long npages;
892 struct kvm_memory_slot *slot;
893 struct kvm_memory_slot old, new;
894 struct kvm_memslots *slots = NULL, *old_memslots;
895 int as_id, id;
896 enum kvm_mr_change change;
897
898 r = check_memory_region_flags(mem);
899 if (r)
900 goto out;
901
902 r = -EINVAL;
903 as_id = mem->slot >> 16;
904 id = (u16)mem->slot;
905
906 /* General sanity checks */
907 if (mem->memory_size & (PAGE_SIZE - 1))
908 goto out;
909 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
910 goto out;
911 /* We can read the guest memory with __xxx_user() later on. */
912 if ((id < KVM_USER_MEM_SLOTS) &&
913 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
914 !access_ok(VERIFY_WRITE,
915 (void __user *)(unsigned long)mem->userspace_addr,
916 mem->memory_size)))
917 goto out;
918 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
919 goto out;
920 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
921 goto out;
922
923 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
924 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
925 npages = mem->memory_size >> PAGE_SHIFT;
926
927 if (npages > KVM_MEM_MAX_NR_PAGES)
928 goto out;
929
930 new = old = *slot;
931
932 new.id = id;
933 new.base_gfn = base_gfn;
934 new.npages = npages;
935 new.flags = mem->flags;
936
937 if (npages) {
938 if (!old.npages)
939 change = KVM_MR_CREATE;
940 else { /* Modify an existing slot. */
941 if ((mem->userspace_addr != old.userspace_addr) ||
942 (npages != old.npages) ||
943 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
944 goto out;
945
946 if (base_gfn != old.base_gfn)
947 change = KVM_MR_MOVE;
948 else if (new.flags != old.flags)
949 change = KVM_MR_FLAGS_ONLY;
950 else { /* Nothing to change. */
951 r = 0;
952 goto out;
953 }
954 }
955 } else {
956 if (!old.npages)
957 goto out;
958
959 change = KVM_MR_DELETE;
960 new.base_gfn = 0;
961 new.flags = 0;
962 }
963
964 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
965 /* Check for overlaps */
966 r = -EEXIST;
967 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
968 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
969 (slot->id == id))
970 continue;
971 if (!((base_gfn + npages <= slot->base_gfn) ||
972 (base_gfn >= slot->base_gfn + slot->npages)))
973 goto out;
974 }
975 }
976
977 /* Free page dirty bitmap if unneeded */
978 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
979 new.dirty_bitmap = NULL;
980
981 r = -ENOMEM;
982 if (change == KVM_MR_CREATE) {
983 new.userspace_addr = mem->userspace_addr;
984
985 if (kvm_arch_create_memslot(kvm, &new, npages))
986 goto out_free;
987 }
988
989 /* Allocate page dirty bitmap if needed */
990 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
991 if (kvm_create_dirty_bitmap(&new) < 0)
992 goto out_free;
993 }
994
995 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
996 if (!slots)
997 goto out_free;
998 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
999
1000 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1001 slot = id_to_memslot(slots, id);
1002 slot->flags |= KVM_MEMSLOT_INVALID;
1003
1004 old_memslots = install_new_memslots(kvm, as_id, slots);
1005
1006 /* slot was deleted or moved, clear iommu mapping */
1007 kvm_iommu_unmap_pages(kvm, &old);
1008 /* From this point no new shadow pages pointing to a deleted,
1009 * or moved, memslot will be created.
1010 *
1011 * validation of sp->gfn happens in:
1012 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1013 * - kvm_is_visible_gfn (mmu_check_roots)
1014 */
1015 kvm_arch_flush_shadow_memslot(kvm, slot);
1016
1017 /*
1018 * We can re-use the old_memslots from above, the only difference
1019 * from the currently installed memslots is the invalid flag. This
1020 * will get overwritten by update_memslots anyway.
1021 */
1022 slots = old_memslots;
1023 }
1024
1025 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1026 if (r)
1027 goto out_slots;
1028
1029 /* actual memory is freed via old in kvm_free_memslot below */
1030 if (change == KVM_MR_DELETE) {
1031 new.dirty_bitmap = NULL;
1032 memset(&new.arch, 0, sizeof(new.arch));
1033 }
1034
1035 update_memslots(slots, &new);
1036 old_memslots = install_new_memslots(kvm, as_id, slots);
1037
1038 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1039
1040 kvm_free_memslot(kvm, &old, &new);
1041 kvfree(old_memslots);
1042
1043 /*
1044 * IOMMU mapping: New slots need to be mapped. Old slots need to be
1045 * un-mapped and re-mapped if their base changes. Since base change
1046 * unmapping is handled above with slot deletion, mapping alone is
1047 * needed here. Anything else the iommu might care about for existing
1048 * slots (size changes, userspace addr changes and read-only flag
1049 * changes) is disallowed above, so any other attribute changes getting
1050 * here can be skipped.
1051 */
1052 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1053 r = kvm_iommu_map_pages(kvm, &new);
1054 return r;
1055 }
1056
1057 return 0;
1058
1059 out_slots:
1060 kvfree(slots);
1061 out_free:
1062 kvm_free_memslot(kvm, &new, &old);
1063 out:
1064 return r;
1065 }
1066 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1067
1068 int kvm_set_memory_region(struct kvm *kvm,
1069 const struct kvm_userspace_memory_region *mem)
1070 {
1071 int r;
1072
1073 mutex_lock(&kvm->slots_lock);
1074 r = __kvm_set_memory_region(kvm, mem);
1075 mutex_unlock(&kvm->slots_lock);
1076 return r;
1077 }
1078 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1079
1080 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1081 struct kvm_userspace_memory_region *mem)
1082 {
1083 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1084 return -EINVAL;
1085
1086 return kvm_set_memory_region(kvm, mem);
1087 }
1088
1089 int kvm_get_dirty_log(struct kvm *kvm,
1090 struct kvm_dirty_log *log, int *is_dirty)
1091 {
1092 struct kvm_memslots *slots;
1093 struct kvm_memory_slot *memslot;
1094 int r, i, as_id, id;
1095 unsigned long n;
1096 unsigned long any = 0;
1097
1098 r = -EINVAL;
1099 as_id = log->slot >> 16;
1100 id = (u16)log->slot;
1101 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1102 goto out;
1103
1104 slots = __kvm_memslots(kvm, as_id);
1105 memslot = id_to_memslot(slots, id);
1106 r = -ENOENT;
1107 if (!memslot->dirty_bitmap)
1108 goto out;
1109
1110 n = kvm_dirty_bitmap_bytes(memslot);
1111
1112 for (i = 0; !any && i < n/sizeof(long); ++i)
1113 any = memslot->dirty_bitmap[i];
1114
1115 r = -EFAULT;
1116 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1117 goto out;
1118
1119 if (any)
1120 *is_dirty = 1;
1121
1122 r = 0;
1123 out:
1124 return r;
1125 }
1126 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1127
1128 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1129 /**
1130 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1131 * are dirty write protect them for next write.
1132 * @kvm: pointer to kvm instance
1133 * @log: slot id and address to which we copy the log
1134 * @is_dirty: flag set if any page is dirty
1135 *
1136 * We need to keep it in mind that VCPU threads can write to the bitmap
1137 * concurrently. So, to avoid losing track of dirty pages we keep the
1138 * following order:
1139 *
1140 * 1. Take a snapshot of the bit and clear it if needed.
1141 * 2. Write protect the corresponding page.
1142 * 3. Copy the snapshot to the userspace.
1143 * 4. Upon return caller flushes TLB's if needed.
1144 *
1145 * Between 2 and 4, the guest may write to the page using the remaining TLB
1146 * entry. This is not a problem because the page is reported dirty using
1147 * the snapshot taken before and step 4 ensures that writes done after
1148 * exiting to userspace will be logged for the next call.
1149 *
1150 */
1151 int kvm_get_dirty_log_protect(struct kvm *kvm,
1152 struct kvm_dirty_log *log, bool *is_dirty)
1153 {
1154 struct kvm_memslots *slots;
1155 struct kvm_memory_slot *memslot;
1156 int r, i, as_id, id;
1157 unsigned long n;
1158 unsigned long *dirty_bitmap;
1159 unsigned long *dirty_bitmap_buffer;
1160
1161 r = -EINVAL;
1162 as_id = log->slot >> 16;
1163 id = (u16)log->slot;
1164 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1165 goto out;
1166
1167 slots = __kvm_memslots(kvm, as_id);
1168 memslot = id_to_memslot(slots, id);
1169
1170 dirty_bitmap = memslot->dirty_bitmap;
1171 r = -ENOENT;
1172 if (!dirty_bitmap)
1173 goto out;
1174
1175 n = kvm_dirty_bitmap_bytes(memslot);
1176
1177 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1178 memset(dirty_bitmap_buffer, 0, n);
1179
1180 spin_lock(&kvm->mmu_lock);
1181 *is_dirty = false;
1182 for (i = 0; i < n / sizeof(long); i++) {
1183 unsigned long mask;
1184 gfn_t offset;
1185
1186 if (!dirty_bitmap[i])
1187 continue;
1188
1189 *is_dirty = true;
1190
1191 mask = xchg(&dirty_bitmap[i], 0);
1192 dirty_bitmap_buffer[i] = mask;
1193
1194 if (mask) {
1195 offset = i * BITS_PER_LONG;
1196 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1197 offset, mask);
1198 }
1199 }
1200
1201 spin_unlock(&kvm->mmu_lock);
1202
1203 r = -EFAULT;
1204 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1205 goto out;
1206
1207 r = 0;
1208 out:
1209 return r;
1210 }
1211 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1212 #endif
1213
1214 bool kvm_largepages_enabled(void)
1215 {
1216 return largepages_enabled;
1217 }
1218
1219 void kvm_disable_largepages(void)
1220 {
1221 largepages_enabled = false;
1222 }
1223 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1224
1225 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1226 {
1227 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1228 }
1229 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1230
1231 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1232 {
1233 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1234 }
1235
1236 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1237 {
1238 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1239
1240 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1241 memslot->flags & KVM_MEMSLOT_INVALID)
1242 return false;
1243
1244 return true;
1245 }
1246 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1247
1248 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1249 {
1250 struct vm_area_struct *vma;
1251 unsigned long addr, size;
1252
1253 size = PAGE_SIZE;
1254
1255 addr = gfn_to_hva(kvm, gfn);
1256 if (kvm_is_error_hva(addr))
1257 return PAGE_SIZE;
1258
1259 down_read(&current->mm->mmap_sem);
1260 vma = find_vma(current->mm, addr);
1261 if (!vma)
1262 goto out;
1263
1264 size = vma_kernel_pagesize(vma);
1265
1266 out:
1267 up_read(&current->mm->mmap_sem);
1268
1269 return size;
1270 }
1271
1272 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1273 {
1274 return slot->flags & KVM_MEM_READONLY;
1275 }
1276
1277 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1278 gfn_t *nr_pages, bool write)
1279 {
1280 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1281 return KVM_HVA_ERR_BAD;
1282
1283 if (memslot_is_readonly(slot) && write)
1284 return KVM_HVA_ERR_RO_BAD;
1285
1286 if (nr_pages)
1287 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1288
1289 return __gfn_to_hva_memslot(slot, gfn);
1290 }
1291
1292 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1293 gfn_t *nr_pages)
1294 {
1295 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1296 }
1297
1298 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1299 gfn_t gfn)
1300 {
1301 return gfn_to_hva_many(slot, gfn, NULL);
1302 }
1303 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1304
1305 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1306 {
1307 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1308 }
1309 EXPORT_SYMBOL_GPL(gfn_to_hva);
1310
1311 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1312 {
1313 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1314 }
1315 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1316
1317 /*
1318 * If writable is set to false, the hva returned by this function is only
1319 * allowed to be read.
1320 */
1321 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1322 gfn_t gfn, bool *writable)
1323 {
1324 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1325
1326 if (!kvm_is_error_hva(hva) && writable)
1327 *writable = !memslot_is_readonly(slot);
1328
1329 return hva;
1330 }
1331
1332 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1333 {
1334 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1335
1336 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1337 }
1338
1339 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1340 {
1341 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1342
1343 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1344 }
1345
1346 static int get_user_page_nowait(unsigned long start, int write,
1347 struct page **page)
1348 {
1349 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1350
1351 if (write)
1352 flags |= FOLL_WRITE;
1353
1354 return __get_user_pages(current, current->mm, start, 1, flags, page,
1355 NULL, NULL);
1356 }
1357
1358 static inline int check_user_page_hwpoison(unsigned long addr)
1359 {
1360 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1361
1362 rc = __get_user_pages(current, current->mm, addr, 1,
1363 flags, NULL, NULL, NULL);
1364 return rc == -EHWPOISON;
1365 }
1366
1367 /*
1368 * The atomic path to get the writable pfn which will be stored in @pfn,
1369 * true indicates success, otherwise false is returned.
1370 */
1371 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1372 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1373 {
1374 struct page *page[1];
1375 int npages;
1376
1377 if (!(async || atomic))
1378 return false;
1379
1380 /*
1381 * Fast pin a writable pfn only if it is a write fault request
1382 * or the caller allows to map a writable pfn for a read fault
1383 * request.
1384 */
1385 if (!(write_fault || writable))
1386 return false;
1387
1388 npages = __get_user_pages_fast(addr, 1, 1, page);
1389 if (npages == 1) {
1390 *pfn = page_to_pfn(page[0]);
1391
1392 if (writable)
1393 *writable = true;
1394 return true;
1395 }
1396
1397 return false;
1398 }
1399
1400 /*
1401 * The slow path to get the pfn of the specified host virtual address,
1402 * 1 indicates success, -errno is returned if error is detected.
1403 */
1404 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1405 bool *writable, kvm_pfn_t *pfn)
1406 {
1407 struct page *page[1];
1408 int npages = 0;
1409
1410 might_sleep();
1411
1412 if (writable)
1413 *writable = write_fault;
1414
1415 if (async) {
1416 down_read(&current->mm->mmap_sem);
1417 npages = get_user_page_nowait(addr, write_fault, page);
1418 up_read(&current->mm->mmap_sem);
1419 } else {
1420 unsigned int flags = FOLL_TOUCH | FOLL_HWPOISON;
1421
1422 if (write_fault)
1423 flags |= FOLL_WRITE;
1424
1425 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1426 page, flags);
1427 }
1428 if (npages != 1)
1429 return npages;
1430
1431 /* map read fault as writable if possible */
1432 if (unlikely(!write_fault) && writable) {
1433 struct page *wpage[1];
1434
1435 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1436 if (npages == 1) {
1437 *writable = true;
1438 put_page(page[0]);
1439 page[0] = wpage[0];
1440 }
1441
1442 npages = 1;
1443 }
1444 *pfn = page_to_pfn(page[0]);
1445 return npages;
1446 }
1447
1448 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1449 {
1450 if (unlikely(!(vma->vm_flags & VM_READ)))
1451 return false;
1452
1453 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1454 return false;
1455
1456 return true;
1457 }
1458
1459 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1460 unsigned long addr, bool *async,
1461 bool write_fault, kvm_pfn_t *p_pfn)
1462 {
1463 unsigned long pfn;
1464 int r;
1465
1466 r = follow_pfn(vma, addr, &pfn);
1467 if (r) {
1468 /*
1469 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1470 * not call the fault handler, so do it here.
1471 */
1472 bool unlocked = false;
1473 r = fixup_user_fault(current, current->mm, addr,
1474 (write_fault ? FAULT_FLAG_WRITE : 0),
1475 &unlocked);
1476 if (unlocked)
1477 return -EAGAIN;
1478 if (r)
1479 return r;
1480
1481 r = follow_pfn(vma, addr, &pfn);
1482 if (r)
1483 return r;
1484
1485 }
1486
1487
1488 /*
1489 * Get a reference here because callers of *hva_to_pfn* and
1490 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1491 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1492 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1493 * simply do nothing for reserved pfns.
1494 *
1495 * Whoever called remap_pfn_range is also going to call e.g.
1496 * unmap_mapping_range before the underlying pages are freed,
1497 * causing a call to our MMU notifier.
1498 */
1499 kvm_get_pfn(pfn);
1500
1501 *p_pfn = pfn;
1502 return 0;
1503 }
1504
1505 /*
1506 * Pin guest page in memory and return its pfn.
1507 * @addr: host virtual address which maps memory to the guest
1508 * @atomic: whether this function can sleep
1509 * @async: whether this function need to wait IO complete if the
1510 * host page is not in the memory
1511 * @write_fault: whether we should get a writable host page
1512 * @writable: whether it allows to map a writable host page for !@write_fault
1513 *
1514 * The function will map a writable host page for these two cases:
1515 * 1): @write_fault = true
1516 * 2): @write_fault = false && @writable, @writable will tell the caller
1517 * whether the mapping is writable.
1518 */
1519 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1520 bool write_fault, bool *writable)
1521 {
1522 struct vm_area_struct *vma;
1523 kvm_pfn_t pfn = 0;
1524 int npages, r;
1525
1526 /* we can do it either atomically or asynchronously, not both */
1527 BUG_ON(atomic && async);
1528
1529 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1530 return pfn;
1531
1532 if (atomic)
1533 return KVM_PFN_ERR_FAULT;
1534
1535 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1536 if (npages == 1)
1537 return pfn;
1538
1539 down_read(&current->mm->mmap_sem);
1540 if (npages == -EHWPOISON ||
1541 (!async && check_user_page_hwpoison(addr))) {
1542 pfn = KVM_PFN_ERR_HWPOISON;
1543 goto exit;
1544 }
1545
1546 retry:
1547 vma = find_vma_intersection(current->mm, addr, addr + 1);
1548
1549 if (vma == NULL)
1550 pfn = KVM_PFN_ERR_FAULT;
1551 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1552 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1553 if (r == -EAGAIN)
1554 goto retry;
1555 if (r < 0)
1556 pfn = KVM_PFN_ERR_FAULT;
1557 } else {
1558 if (async && vma_is_valid(vma, write_fault))
1559 *async = true;
1560 pfn = KVM_PFN_ERR_FAULT;
1561 }
1562 exit:
1563 up_read(&current->mm->mmap_sem);
1564 return pfn;
1565 }
1566
1567 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1568 bool atomic, bool *async, bool write_fault,
1569 bool *writable)
1570 {
1571 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1572
1573 if (addr == KVM_HVA_ERR_RO_BAD) {
1574 if (writable)
1575 *writable = false;
1576 return KVM_PFN_ERR_RO_FAULT;
1577 }
1578
1579 if (kvm_is_error_hva(addr)) {
1580 if (writable)
1581 *writable = false;
1582 return KVM_PFN_NOSLOT;
1583 }
1584
1585 /* Do not map writable pfn in the readonly memslot. */
1586 if (writable && memslot_is_readonly(slot)) {
1587 *writable = false;
1588 writable = NULL;
1589 }
1590
1591 return hva_to_pfn(addr, atomic, async, write_fault,
1592 writable);
1593 }
1594 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1595
1596 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1597 bool *writable)
1598 {
1599 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1600 write_fault, writable);
1601 }
1602 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1603
1604 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1605 {
1606 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1607 }
1608 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1609
1610 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1611 {
1612 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1613 }
1614 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1615
1616 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1617 {
1618 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1619 }
1620 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1621
1622 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1623 {
1624 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1625 }
1626 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1627
1628 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1629 {
1630 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1631 }
1632 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1633
1634 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1635 {
1636 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1637 }
1638 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1639
1640 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1641 struct page **pages, int nr_pages)
1642 {
1643 unsigned long addr;
1644 gfn_t entry;
1645
1646 addr = gfn_to_hva_many(slot, gfn, &entry);
1647 if (kvm_is_error_hva(addr))
1648 return -1;
1649
1650 if (entry < nr_pages)
1651 return 0;
1652
1653 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1654 }
1655 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1656
1657 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1658 {
1659 if (is_error_noslot_pfn(pfn))
1660 return KVM_ERR_PTR_BAD_PAGE;
1661
1662 if (kvm_is_reserved_pfn(pfn)) {
1663 WARN_ON(1);
1664 return KVM_ERR_PTR_BAD_PAGE;
1665 }
1666
1667 return pfn_to_page(pfn);
1668 }
1669
1670 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1671 {
1672 kvm_pfn_t pfn;
1673
1674 pfn = gfn_to_pfn(kvm, gfn);
1675
1676 return kvm_pfn_to_page(pfn);
1677 }
1678 EXPORT_SYMBOL_GPL(gfn_to_page);
1679
1680 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1681 {
1682 kvm_pfn_t pfn;
1683
1684 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1685
1686 return kvm_pfn_to_page(pfn);
1687 }
1688 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1689
1690 void kvm_release_page_clean(struct page *page)
1691 {
1692 WARN_ON(is_error_page(page));
1693
1694 kvm_release_pfn_clean(page_to_pfn(page));
1695 }
1696 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1697
1698 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1699 {
1700 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1701 put_page(pfn_to_page(pfn));
1702 }
1703 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1704
1705 void kvm_release_page_dirty(struct page *page)
1706 {
1707 WARN_ON(is_error_page(page));
1708
1709 kvm_release_pfn_dirty(page_to_pfn(page));
1710 }
1711 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1712
1713 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1714 {
1715 kvm_set_pfn_dirty(pfn);
1716 kvm_release_pfn_clean(pfn);
1717 }
1718
1719 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1720 {
1721 if (!kvm_is_reserved_pfn(pfn)) {
1722 struct page *page = pfn_to_page(pfn);
1723
1724 if (!PageReserved(page))
1725 SetPageDirty(page);
1726 }
1727 }
1728 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1729
1730 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1731 {
1732 if (!kvm_is_reserved_pfn(pfn))
1733 mark_page_accessed(pfn_to_page(pfn));
1734 }
1735 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1736
1737 void kvm_get_pfn(kvm_pfn_t pfn)
1738 {
1739 if (!kvm_is_reserved_pfn(pfn))
1740 get_page(pfn_to_page(pfn));
1741 }
1742 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1743
1744 static int next_segment(unsigned long len, int offset)
1745 {
1746 if (len > PAGE_SIZE - offset)
1747 return PAGE_SIZE - offset;
1748 else
1749 return len;
1750 }
1751
1752 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1753 void *data, int offset, int len)
1754 {
1755 int r;
1756 unsigned long addr;
1757
1758 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1759 if (kvm_is_error_hva(addr))
1760 return -EFAULT;
1761 r = __copy_from_user(data, (void __user *)addr + offset, len);
1762 if (r)
1763 return -EFAULT;
1764 return 0;
1765 }
1766
1767 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1768 int len)
1769 {
1770 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1771
1772 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1773 }
1774 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1775
1776 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1777 int offset, int len)
1778 {
1779 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1780
1781 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1782 }
1783 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1784
1785 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1786 {
1787 gfn_t gfn = gpa >> PAGE_SHIFT;
1788 int seg;
1789 int offset = offset_in_page(gpa);
1790 int ret;
1791
1792 while ((seg = next_segment(len, offset)) != 0) {
1793 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1794 if (ret < 0)
1795 return ret;
1796 offset = 0;
1797 len -= seg;
1798 data += seg;
1799 ++gfn;
1800 }
1801 return 0;
1802 }
1803 EXPORT_SYMBOL_GPL(kvm_read_guest);
1804
1805 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1806 {
1807 gfn_t gfn = gpa >> PAGE_SHIFT;
1808 int seg;
1809 int offset = offset_in_page(gpa);
1810 int ret;
1811
1812 while ((seg = next_segment(len, offset)) != 0) {
1813 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1814 if (ret < 0)
1815 return ret;
1816 offset = 0;
1817 len -= seg;
1818 data += seg;
1819 ++gfn;
1820 }
1821 return 0;
1822 }
1823 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1824
1825 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1826 void *data, int offset, unsigned long len)
1827 {
1828 int r;
1829 unsigned long addr;
1830
1831 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1832 if (kvm_is_error_hva(addr))
1833 return -EFAULT;
1834 pagefault_disable();
1835 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1836 pagefault_enable();
1837 if (r)
1838 return -EFAULT;
1839 return 0;
1840 }
1841
1842 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1843 unsigned long len)
1844 {
1845 gfn_t gfn = gpa >> PAGE_SHIFT;
1846 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1847 int offset = offset_in_page(gpa);
1848
1849 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1850 }
1851 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1852
1853 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1854 void *data, unsigned long len)
1855 {
1856 gfn_t gfn = gpa >> PAGE_SHIFT;
1857 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1858 int offset = offset_in_page(gpa);
1859
1860 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1861 }
1862 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1863
1864 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1865 const void *data, int offset, int len)
1866 {
1867 int r;
1868 unsigned long addr;
1869
1870 addr = gfn_to_hva_memslot(memslot, gfn);
1871 if (kvm_is_error_hva(addr))
1872 return -EFAULT;
1873 r = __copy_to_user((void __user *)addr + offset, data, len);
1874 if (r)
1875 return -EFAULT;
1876 mark_page_dirty_in_slot(memslot, gfn);
1877 return 0;
1878 }
1879
1880 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1881 const void *data, int offset, int len)
1882 {
1883 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1884
1885 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1886 }
1887 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1888
1889 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1890 const void *data, int offset, int len)
1891 {
1892 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1893
1894 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1895 }
1896 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1897
1898 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1899 unsigned long len)
1900 {
1901 gfn_t gfn = gpa >> PAGE_SHIFT;
1902 int seg;
1903 int offset = offset_in_page(gpa);
1904 int ret;
1905
1906 while ((seg = next_segment(len, offset)) != 0) {
1907 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1908 if (ret < 0)
1909 return ret;
1910 offset = 0;
1911 len -= seg;
1912 data += seg;
1913 ++gfn;
1914 }
1915 return 0;
1916 }
1917 EXPORT_SYMBOL_GPL(kvm_write_guest);
1918
1919 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1920 unsigned long len)
1921 {
1922 gfn_t gfn = gpa >> PAGE_SHIFT;
1923 int seg;
1924 int offset = offset_in_page(gpa);
1925 int ret;
1926
1927 while ((seg = next_segment(len, offset)) != 0) {
1928 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1929 if (ret < 0)
1930 return ret;
1931 offset = 0;
1932 len -= seg;
1933 data += seg;
1934 ++gfn;
1935 }
1936 return 0;
1937 }
1938 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1939
1940 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1941 gpa_t gpa, unsigned long len)
1942 {
1943 struct kvm_memslots *slots = kvm_memslots(kvm);
1944 int offset = offset_in_page(gpa);
1945 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1946 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1947 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1948 gfn_t nr_pages_avail;
1949
1950 ghc->gpa = gpa;
1951 ghc->generation = slots->generation;
1952 ghc->len = len;
1953 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1954 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1955 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1956 ghc->hva += offset;
1957 } else {
1958 /*
1959 * If the requested region crosses two memslots, we still
1960 * verify that the entire region is valid here.
1961 */
1962 while (start_gfn <= end_gfn) {
1963 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1964 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1965 &nr_pages_avail);
1966 if (kvm_is_error_hva(ghc->hva))
1967 return -EFAULT;
1968 start_gfn += nr_pages_avail;
1969 }
1970 /* Use the slow path for cross page reads and writes. */
1971 ghc->memslot = NULL;
1972 }
1973 return 0;
1974 }
1975 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1976
1977 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1978 void *data, unsigned long len)
1979 {
1980 struct kvm_memslots *slots = kvm_memslots(kvm);
1981 int r;
1982
1983 BUG_ON(len > ghc->len);
1984
1985 if (slots->generation != ghc->generation)
1986 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1987
1988 if (unlikely(!ghc->memslot))
1989 return kvm_write_guest(kvm, ghc->gpa, data, len);
1990
1991 if (kvm_is_error_hva(ghc->hva))
1992 return -EFAULT;
1993
1994 r = __copy_to_user((void __user *)ghc->hva, data, len);
1995 if (r)
1996 return -EFAULT;
1997 mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1998
1999 return 0;
2000 }
2001 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2002
2003 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2004 void *data, unsigned long len)
2005 {
2006 struct kvm_memslots *slots = kvm_memslots(kvm);
2007 int r;
2008
2009 BUG_ON(len > ghc->len);
2010
2011 if (slots->generation != ghc->generation)
2012 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
2013
2014 if (unlikely(!ghc->memslot))
2015 return kvm_read_guest(kvm, ghc->gpa, data, len);
2016
2017 if (kvm_is_error_hva(ghc->hva))
2018 return -EFAULT;
2019
2020 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2021 if (r)
2022 return -EFAULT;
2023
2024 return 0;
2025 }
2026 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2027
2028 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2029 {
2030 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2031
2032 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2033 }
2034 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2035
2036 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2037 {
2038 gfn_t gfn = gpa >> PAGE_SHIFT;
2039 int seg;
2040 int offset = offset_in_page(gpa);
2041 int ret;
2042
2043 while ((seg = next_segment(len, offset)) != 0) {
2044 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2045 if (ret < 0)
2046 return ret;
2047 offset = 0;
2048 len -= seg;
2049 ++gfn;
2050 }
2051 return 0;
2052 }
2053 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2054
2055 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2056 gfn_t gfn)
2057 {
2058 if (memslot && memslot->dirty_bitmap) {
2059 unsigned long rel_gfn = gfn - memslot->base_gfn;
2060
2061 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2062 }
2063 }
2064
2065 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2066 {
2067 struct kvm_memory_slot *memslot;
2068
2069 memslot = gfn_to_memslot(kvm, gfn);
2070 mark_page_dirty_in_slot(memslot, gfn);
2071 }
2072 EXPORT_SYMBOL_GPL(mark_page_dirty);
2073
2074 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2075 {
2076 struct kvm_memory_slot *memslot;
2077
2078 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2079 mark_page_dirty_in_slot(memslot, gfn);
2080 }
2081 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2082
2083 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2084 {
2085 unsigned int old, val, grow;
2086
2087 old = val = vcpu->halt_poll_ns;
2088 grow = READ_ONCE(halt_poll_ns_grow);
2089 /* 10us base */
2090 if (val == 0 && grow)
2091 val = 10000;
2092 else
2093 val *= grow;
2094
2095 if (val > halt_poll_ns)
2096 val = halt_poll_ns;
2097
2098 vcpu->halt_poll_ns = val;
2099 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2100 }
2101
2102 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2103 {
2104 unsigned int old, val, shrink;
2105
2106 old = val = vcpu->halt_poll_ns;
2107 shrink = READ_ONCE(halt_poll_ns_shrink);
2108 if (shrink == 0)
2109 val = 0;
2110 else
2111 val /= shrink;
2112
2113 vcpu->halt_poll_ns = val;
2114 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2115 }
2116
2117 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2118 {
2119 if (kvm_arch_vcpu_runnable(vcpu)) {
2120 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2121 return -EINTR;
2122 }
2123 if (kvm_cpu_has_pending_timer(vcpu))
2124 return -EINTR;
2125 if (signal_pending(current))
2126 return -EINTR;
2127
2128 return 0;
2129 }
2130
2131 /*
2132 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2133 */
2134 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2135 {
2136 ktime_t start, cur;
2137 DECLARE_SWAITQUEUE(wait);
2138 bool waited = false;
2139 u64 block_ns;
2140
2141 start = cur = ktime_get();
2142 if (vcpu->halt_poll_ns) {
2143 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2144
2145 ++vcpu->stat.halt_attempted_poll;
2146 do {
2147 /*
2148 * This sets KVM_REQ_UNHALT if an interrupt
2149 * arrives.
2150 */
2151 if (kvm_vcpu_check_block(vcpu) < 0) {
2152 ++vcpu->stat.halt_successful_poll;
2153 if (!vcpu_valid_wakeup(vcpu))
2154 ++vcpu->stat.halt_poll_invalid;
2155 goto out;
2156 }
2157 cur = ktime_get();
2158 } while (single_task_running() && ktime_before(cur, stop));
2159 }
2160
2161 kvm_arch_vcpu_blocking(vcpu);
2162
2163 for (;;) {
2164 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2165
2166 if (kvm_vcpu_check_block(vcpu) < 0)
2167 break;
2168
2169 waited = true;
2170 schedule();
2171 }
2172
2173 finish_swait(&vcpu->wq, &wait);
2174 cur = ktime_get();
2175
2176 kvm_arch_vcpu_unblocking(vcpu);
2177 out:
2178 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2179
2180 if (!vcpu_valid_wakeup(vcpu))
2181 shrink_halt_poll_ns(vcpu);
2182 else if (halt_poll_ns) {
2183 if (block_ns <= vcpu->halt_poll_ns)
2184 ;
2185 /* we had a long block, shrink polling */
2186 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2187 shrink_halt_poll_ns(vcpu);
2188 /* we had a short halt and our poll time is too small */
2189 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2190 block_ns < halt_poll_ns)
2191 grow_halt_poll_ns(vcpu);
2192 } else
2193 vcpu->halt_poll_ns = 0;
2194
2195 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2196 kvm_arch_vcpu_block_finish(vcpu);
2197 }
2198 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2199
2200 #ifndef CONFIG_S390
2201 void kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2202 {
2203 struct swait_queue_head *wqp;
2204
2205 wqp = kvm_arch_vcpu_wq(vcpu);
2206 if (swait_active(wqp)) {
2207 swake_up(wqp);
2208 ++vcpu->stat.halt_wakeup;
2209 }
2210
2211 }
2212 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2213
2214 /*
2215 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2216 */
2217 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2218 {
2219 int me;
2220 int cpu = vcpu->cpu;
2221
2222 kvm_vcpu_wake_up(vcpu);
2223 me = get_cpu();
2224 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2225 if (kvm_arch_vcpu_should_kick(vcpu))
2226 smp_send_reschedule(cpu);
2227 put_cpu();
2228 }
2229 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2230 #endif /* !CONFIG_S390 */
2231
2232 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2233 {
2234 struct pid *pid;
2235 struct task_struct *task = NULL;
2236 int ret = 0;
2237
2238 rcu_read_lock();
2239 pid = rcu_dereference(target->pid);
2240 if (pid)
2241 task = get_pid_task(pid, PIDTYPE_PID);
2242 rcu_read_unlock();
2243 if (!task)
2244 return ret;
2245 ret = yield_to(task, 1);
2246 put_task_struct(task);
2247
2248 return ret;
2249 }
2250 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2251
2252 /*
2253 * Helper that checks whether a VCPU is eligible for directed yield.
2254 * Most eligible candidate to yield is decided by following heuristics:
2255 *
2256 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2257 * (preempted lock holder), indicated by @in_spin_loop.
2258 * Set at the beiginning and cleared at the end of interception/PLE handler.
2259 *
2260 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2261 * chance last time (mostly it has become eligible now since we have probably
2262 * yielded to lockholder in last iteration. This is done by toggling
2263 * @dy_eligible each time a VCPU checked for eligibility.)
2264 *
2265 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2266 * to preempted lock-holder could result in wrong VCPU selection and CPU
2267 * burning. Giving priority for a potential lock-holder increases lock
2268 * progress.
2269 *
2270 * Since algorithm is based on heuristics, accessing another VCPU data without
2271 * locking does not harm. It may result in trying to yield to same VCPU, fail
2272 * and continue with next VCPU and so on.
2273 */
2274 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2275 {
2276 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2277 bool eligible;
2278
2279 eligible = !vcpu->spin_loop.in_spin_loop ||
2280 vcpu->spin_loop.dy_eligible;
2281
2282 if (vcpu->spin_loop.in_spin_loop)
2283 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2284
2285 return eligible;
2286 #else
2287 return true;
2288 #endif
2289 }
2290
2291 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2292 {
2293 struct kvm *kvm = me->kvm;
2294 struct kvm_vcpu *vcpu;
2295 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2296 int yielded = 0;
2297 int try = 3;
2298 int pass;
2299 int i;
2300
2301 kvm_vcpu_set_in_spin_loop(me, true);
2302 /*
2303 * We boost the priority of a VCPU that is runnable but not
2304 * currently running, because it got preempted by something
2305 * else and called schedule in __vcpu_run. Hopefully that
2306 * VCPU is holding the lock that we need and will release it.
2307 * We approximate round-robin by starting at the last boosted VCPU.
2308 */
2309 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2310 kvm_for_each_vcpu(i, vcpu, kvm) {
2311 if (!pass && i <= last_boosted_vcpu) {
2312 i = last_boosted_vcpu;
2313 continue;
2314 } else if (pass && i > last_boosted_vcpu)
2315 break;
2316 if (!ACCESS_ONCE(vcpu->preempted))
2317 continue;
2318 if (vcpu == me)
2319 continue;
2320 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2321 continue;
2322 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2323 continue;
2324
2325 yielded = kvm_vcpu_yield_to(vcpu);
2326 if (yielded > 0) {
2327 kvm->last_boosted_vcpu = i;
2328 break;
2329 } else if (yielded < 0) {
2330 try--;
2331 if (!try)
2332 break;
2333 }
2334 }
2335 }
2336 kvm_vcpu_set_in_spin_loop(me, false);
2337
2338 /* Ensure vcpu is not eligible during next spinloop */
2339 kvm_vcpu_set_dy_eligible(me, false);
2340 }
2341 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2342
2343 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2344 {
2345 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2346 struct page *page;
2347
2348 if (vmf->pgoff == 0)
2349 page = virt_to_page(vcpu->run);
2350 #ifdef CONFIG_X86
2351 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2352 page = virt_to_page(vcpu->arch.pio_data);
2353 #endif
2354 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2355 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2356 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2357 #endif
2358 else
2359 return kvm_arch_vcpu_fault(vcpu, vmf);
2360 get_page(page);
2361 vmf->page = page;
2362 return 0;
2363 }
2364
2365 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2366 .fault = kvm_vcpu_fault,
2367 };
2368
2369 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2370 {
2371 vma->vm_ops = &kvm_vcpu_vm_ops;
2372 return 0;
2373 }
2374
2375 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2376 {
2377 struct kvm_vcpu *vcpu = filp->private_data;
2378
2379 debugfs_remove_recursive(vcpu->debugfs_dentry);
2380 kvm_put_kvm(vcpu->kvm);
2381 return 0;
2382 }
2383
2384 static struct file_operations kvm_vcpu_fops = {
2385 .release = kvm_vcpu_release,
2386 .unlocked_ioctl = kvm_vcpu_ioctl,
2387 #ifdef CONFIG_KVM_COMPAT
2388 .compat_ioctl = kvm_vcpu_compat_ioctl,
2389 #endif
2390 .mmap = kvm_vcpu_mmap,
2391 .llseek = noop_llseek,
2392 };
2393
2394 /*
2395 * Allocates an inode for the vcpu.
2396 */
2397 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2398 {
2399 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2400 }
2401
2402 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2403 {
2404 char dir_name[ITOA_MAX_LEN * 2];
2405 int ret;
2406
2407 if (!kvm_arch_has_vcpu_debugfs())
2408 return 0;
2409
2410 if (!debugfs_initialized())
2411 return 0;
2412
2413 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2414 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2415 vcpu->kvm->debugfs_dentry);
2416 if (!vcpu->debugfs_dentry)
2417 return -ENOMEM;
2418
2419 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2420 if (ret < 0) {
2421 debugfs_remove_recursive(vcpu->debugfs_dentry);
2422 return ret;
2423 }
2424
2425 return 0;
2426 }
2427
2428 /*
2429 * Creates some virtual cpus. Good luck creating more than one.
2430 */
2431 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2432 {
2433 int r;
2434 struct kvm_vcpu *vcpu;
2435
2436 if (id >= KVM_MAX_VCPU_ID)
2437 return -EINVAL;
2438
2439 mutex_lock(&kvm->lock);
2440 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2441 mutex_unlock(&kvm->lock);
2442 return -EINVAL;
2443 }
2444
2445 kvm->created_vcpus++;
2446 mutex_unlock(&kvm->lock);
2447
2448 vcpu = kvm_arch_vcpu_create(kvm, id);
2449 if (IS_ERR(vcpu)) {
2450 r = PTR_ERR(vcpu);
2451 goto vcpu_decrement;
2452 }
2453
2454 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2455
2456 r = kvm_arch_vcpu_setup(vcpu);
2457 if (r)
2458 goto vcpu_destroy;
2459
2460 r = kvm_create_vcpu_debugfs(vcpu);
2461 if (r)
2462 goto vcpu_destroy;
2463
2464 mutex_lock(&kvm->lock);
2465 if (kvm_get_vcpu_by_id(kvm, id)) {
2466 r = -EEXIST;
2467 goto unlock_vcpu_destroy;
2468 }
2469
2470 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2471
2472 /* Now it's all set up, let userspace reach it */
2473 kvm_get_kvm(kvm);
2474 r = create_vcpu_fd(vcpu);
2475 if (r < 0) {
2476 kvm_put_kvm(kvm);
2477 goto unlock_vcpu_destroy;
2478 }
2479
2480 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2481
2482 /*
2483 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2484 * before kvm->online_vcpu's incremented value.
2485 */
2486 smp_wmb();
2487 atomic_inc(&kvm->online_vcpus);
2488
2489 mutex_unlock(&kvm->lock);
2490 kvm_arch_vcpu_postcreate(vcpu);
2491 return r;
2492
2493 unlock_vcpu_destroy:
2494 mutex_unlock(&kvm->lock);
2495 debugfs_remove_recursive(vcpu->debugfs_dentry);
2496 vcpu_destroy:
2497 kvm_arch_vcpu_destroy(vcpu);
2498 vcpu_decrement:
2499 mutex_lock(&kvm->lock);
2500 kvm->created_vcpus--;
2501 mutex_unlock(&kvm->lock);
2502 return r;
2503 }
2504
2505 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2506 {
2507 if (sigset) {
2508 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2509 vcpu->sigset_active = 1;
2510 vcpu->sigset = *sigset;
2511 } else
2512 vcpu->sigset_active = 0;
2513 return 0;
2514 }
2515
2516 static long kvm_vcpu_ioctl(struct file *filp,
2517 unsigned int ioctl, unsigned long arg)
2518 {
2519 struct kvm_vcpu *vcpu = filp->private_data;
2520 void __user *argp = (void __user *)arg;
2521 int r;
2522 struct kvm_fpu *fpu = NULL;
2523 struct kvm_sregs *kvm_sregs = NULL;
2524
2525 if (vcpu->kvm->mm != current->mm)
2526 return -EIO;
2527
2528 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2529 return -EINVAL;
2530
2531 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2532 /*
2533 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2534 * so vcpu_load() would break it.
2535 */
2536 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2537 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2538 #endif
2539
2540
2541 r = vcpu_load(vcpu);
2542 if (r)
2543 return r;
2544 switch (ioctl) {
2545 case KVM_RUN:
2546 r = -EINVAL;
2547 if (arg)
2548 goto out;
2549 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2550 /* The thread running this VCPU changed. */
2551 struct pid *oldpid = vcpu->pid;
2552 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2553
2554 rcu_assign_pointer(vcpu->pid, newpid);
2555 if (oldpid)
2556 synchronize_rcu();
2557 put_pid(oldpid);
2558 }
2559 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2560 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2561 break;
2562 case KVM_GET_REGS: {
2563 struct kvm_regs *kvm_regs;
2564
2565 r = -ENOMEM;
2566 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2567 if (!kvm_regs)
2568 goto out;
2569 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2570 if (r)
2571 goto out_free1;
2572 r = -EFAULT;
2573 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2574 goto out_free1;
2575 r = 0;
2576 out_free1:
2577 kfree(kvm_regs);
2578 break;
2579 }
2580 case KVM_SET_REGS: {
2581 struct kvm_regs *kvm_regs;
2582
2583 r = -ENOMEM;
2584 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2585 if (IS_ERR(kvm_regs)) {
2586 r = PTR_ERR(kvm_regs);
2587 goto out;
2588 }
2589 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2590 kfree(kvm_regs);
2591 break;
2592 }
2593 case KVM_GET_SREGS: {
2594 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2595 r = -ENOMEM;
2596 if (!kvm_sregs)
2597 goto out;
2598 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2599 if (r)
2600 goto out;
2601 r = -EFAULT;
2602 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2603 goto out;
2604 r = 0;
2605 break;
2606 }
2607 case KVM_SET_SREGS: {
2608 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2609 if (IS_ERR(kvm_sregs)) {
2610 r = PTR_ERR(kvm_sregs);
2611 kvm_sregs = NULL;
2612 goto out;
2613 }
2614 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2615 break;
2616 }
2617 case KVM_GET_MP_STATE: {
2618 struct kvm_mp_state mp_state;
2619
2620 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2621 if (r)
2622 goto out;
2623 r = -EFAULT;
2624 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2625 goto out;
2626 r = 0;
2627 break;
2628 }
2629 case KVM_SET_MP_STATE: {
2630 struct kvm_mp_state mp_state;
2631
2632 r = -EFAULT;
2633 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2634 goto out;
2635 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2636 break;
2637 }
2638 case KVM_TRANSLATE: {
2639 struct kvm_translation tr;
2640
2641 r = -EFAULT;
2642 if (copy_from_user(&tr, argp, sizeof(tr)))
2643 goto out;
2644 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2645 if (r)
2646 goto out;
2647 r = -EFAULT;
2648 if (copy_to_user(argp, &tr, sizeof(tr)))
2649 goto out;
2650 r = 0;
2651 break;
2652 }
2653 case KVM_SET_GUEST_DEBUG: {
2654 struct kvm_guest_debug dbg;
2655
2656 r = -EFAULT;
2657 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2658 goto out;
2659 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2660 break;
2661 }
2662 case KVM_SET_SIGNAL_MASK: {
2663 struct kvm_signal_mask __user *sigmask_arg = argp;
2664 struct kvm_signal_mask kvm_sigmask;
2665 sigset_t sigset, *p;
2666
2667 p = NULL;
2668 if (argp) {
2669 r = -EFAULT;
2670 if (copy_from_user(&kvm_sigmask, argp,
2671 sizeof(kvm_sigmask)))
2672 goto out;
2673 r = -EINVAL;
2674 if (kvm_sigmask.len != sizeof(sigset))
2675 goto out;
2676 r = -EFAULT;
2677 if (copy_from_user(&sigset, sigmask_arg->sigset,
2678 sizeof(sigset)))
2679 goto out;
2680 p = &sigset;
2681 }
2682 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2683 break;
2684 }
2685 case KVM_GET_FPU: {
2686 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2687 r = -ENOMEM;
2688 if (!fpu)
2689 goto out;
2690 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2691 if (r)
2692 goto out;
2693 r = -EFAULT;
2694 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2695 goto out;
2696 r = 0;
2697 break;
2698 }
2699 case KVM_SET_FPU: {
2700 fpu = memdup_user(argp, sizeof(*fpu));
2701 if (IS_ERR(fpu)) {
2702 r = PTR_ERR(fpu);
2703 fpu = NULL;
2704 goto out;
2705 }
2706 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2707 break;
2708 }
2709 default:
2710 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2711 }
2712 out:
2713 vcpu_put(vcpu);
2714 kfree(fpu);
2715 kfree(kvm_sregs);
2716 return r;
2717 }
2718
2719 #ifdef CONFIG_KVM_COMPAT
2720 static long kvm_vcpu_compat_ioctl(struct file *filp,
2721 unsigned int ioctl, unsigned long arg)
2722 {
2723 struct kvm_vcpu *vcpu = filp->private_data;
2724 void __user *argp = compat_ptr(arg);
2725 int r;
2726
2727 if (vcpu->kvm->mm != current->mm)
2728 return -EIO;
2729
2730 switch (ioctl) {
2731 case KVM_SET_SIGNAL_MASK: {
2732 struct kvm_signal_mask __user *sigmask_arg = argp;
2733 struct kvm_signal_mask kvm_sigmask;
2734 compat_sigset_t csigset;
2735 sigset_t sigset;
2736
2737 if (argp) {
2738 r = -EFAULT;
2739 if (copy_from_user(&kvm_sigmask, argp,
2740 sizeof(kvm_sigmask)))
2741 goto out;
2742 r = -EINVAL;
2743 if (kvm_sigmask.len != sizeof(csigset))
2744 goto out;
2745 r = -EFAULT;
2746 if (copy_from_user(&csigset, sigmask_arg->sigset,
2747 sizeof(csigset)))
2748 goto out;
2749 sigset_from_compat(&sigset, &csigset);
2750 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2751 } else
2752 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2753 break;
2754 }
2755 default:
2756 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2757 }
2758
2759 out:
2760 return r;
2761 }
2762 #endif
2763
2764 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2765 int (*accessor)(struct kvm_device *dev,
2766 struct kvm_device_attr *attr),
2767 unsigned long arg)
2768 {
2769 struct kvm_device_attr attr;
2770
2771 if (!accessor)
2772 return -EPERM;
2773
2774 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2775 return -EFAULT;
2776
2777 return accessor(dev, &attr);
2778 }
2779
2780 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2781 unsigned long arg)
2782 {
2783 struct kvm_device *dev = filp->private_data;
2784
2785 switch (ioctl) {
2786 case KVM_SET_DEVICE_ATTR:
2787 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2788 case KVM_GET_DEVICE_ATTR:
2789 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2790 case KVM_HAS_DEVICE_ATTR:
2791 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2792 default:
2793 if (dev->ops->ioctl)
2794 return dev->ops->ioctl(dev, ioctl, arg);
2795
2796 return -ENOTTY;
2797 }
2798 }
2799
2800 static int kvm_device_release(struct inode *inode, struct file *filp)
2801 {
2802 struct kvm_device *dev = filp->private_data;
2803 struct kvm *kvm = dev->kvm;
2804
2805 kvm_put_kvm(kvm);
2806 return 0;
2807 }
2808
2809 static const struct file_operations kvm_device_fops = {
2810 .unlocked_ioctl = kvm_device_ioctl,
2811 #ifdef CONFIG_KVM_COMPAT
2812 .compat_ioctl = kvm_device_ioctl,
2813 #endif
2814 .release = kvm_device_release,
2815 };
2816
2817 struct kvm_device *kvm_device_from_filp(struct file *filp)
2818 {
2819 if (filp->f_op != &kvm_device_fops)
2820 return NULL;
2821
2822 return filp->private_data;
2823 }
2824
2825 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2826 #ifdef CONFIG_KVM_MPIC
2827 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2828 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2829 #endif
2830
2831 #ifdef CONFIG_KVM_XICS
2832 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2833 #endif
2834 };
2835
2836 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2837 {
2838 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2839 return -ENOSPC;
2840
2841 if (kvm_device_ops_table[type] != NULL)
2842 return -EEXIST;
2843
2844 kvm_device_ops_table[type] = ops;
2845 return 0;
2846 }
2847
2848 void kvm_unregister_device_ops(u32 type)
2849 {
2850 if (kvm_device_ops_table[type] != NULL)
2851 kvm_device_ops_table[type] = NULL;
2852 }
2853
2854 static int kvm_ioctl_create_device(struct kvm *kvm,
2855 struct kvm_create_device *cd)
2856 {
2857 struct kvm_device_ops *ops = NULL;
2858 struct kvm_device *dev;
2859 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2860 int ret;
2861
2862 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2863 return -ENODEV;
2864
2865 ops = kvm_device_ops_table[cd->type];
2866 if (ops == NULL)
2867 return -ENODEV;
2868
2869 if (test)
2870 return 0;
2871
2872 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2873 if (!dev)
2874 return -ENOMEM;
2875
2876 dev->ops = ops;
2877 dev->kvm = kvm;
2878
2879 mutex_lock(&kvm->lock);
2880 ret = ops->create(dev, cd->type);
2881 if (ret < 0) {
2882 mutex_unlock(&kvm->lock);
2883 kfree(dev);
2884 return ret;
2885 }
2886 list_add(&dev->vm_node, &kvm->devices);
2887 mutex_unlock(&kvm->lock);
2888
2889 if (ops->init)
2890 ops->init(dev);
2891
2892 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2893 if (ret < 0) {
2894 ops->destroy(dev);
2895 mutex_lock(&kvm->lock);
2896 list_del(&dev->vm_node);
2897 mutex_unlock(&kvm->lock);
2898 return ret;
2899 }
2900
2901 kvm_get_kvm(kvm);
2902 cd->fd = ret;
2903 return 0;
2904 }
2905
2906 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2907 {
2908 switch (arg) {
2909 case KVM_CAP_USER_MEMORY:
2910 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2911 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2912 case KVM_CAP_INTERNAL_ERROR_DATA:
2913 #ifdef CONFIG_HAVE_KVM_MSI
2914 case KVM_CAP_SIGNAL_MSI:
2915 #endif
2916 #ifdef CONFIG_HAVE_KVM_IRQFD
2917 case KVM_CAP_IRQFD:
2918 case KVM_CAP_IRQFD_RESAMPLE:
2919 #endif
2920 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2921 case KVM_CAP_CHECK_EXTENSION_VM:
2922 return 1;
2923 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2924 case KVM_CAP_IRQ_ROUTING:
2925 return KVM_MAX_IRQ_ROUTES;
2926 #endif
2927 #if KVM_ADDRESS_SPACE_NUM > 1
2928 case KVM_CAP_MULTI_ADDRESS_SPACE:
2929 return KVM_ADDRESS_SPACE_NUM;
2930 #endif
2931 case KVM_CAP_MAX_VCPU_ID:
2932 return KVM_MAX_VCPU_ID;
2933 default:
2934 break;
2935 }
2936 return kvm_vm_ioctl_check_extension(kvm, arg);
2937 }
2938
2939 static long kvm_vm_ioctl(struct file *filp,
2940 unsigned int ioctl, unsigned long arg)
2941 {
2942 struct kvm *kvm = filp->private_data;
2943 void __user *argp = (void __user *)arg;
2944 int r;
2945
2946 if (kvm->mm != current->mm)
2947 return -EIO;
2948 switch (ioctl) {
2949 case KVM_CREATE_VCPU:
2950 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2951 break;
2952 case KVM_SET_USER_MEMORY_REGION: {
2953 struct kvm_userspace_memory_region kvm_userspace_mem;
2954
2955 r = -EFAULT;
2956 if (copy_from_user(&kvm_userspace_mem, argp,
2957 sizeof(kvm_userspace_mem)))
2958 goto out;
2959
2960 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2961 break;
2962 }
2963 case KVM_GET_DIRTY_LOG: {
2964 struct kvm_dirty_log log;
2965
2966 r = -EFAULT;
2967 if (copy_from_user(&log, argp, sizeof(log)))
2968 goto out;
2969 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2970 break;
2971 }
2972 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2973 case KVM_REGISTER_COALESCED_MMIO: {
2974 struct kvm_coalesced_mmio_zone zone;
2975
2976 r = -EFAULT;
2977 if (copy_from_user(&zone, argp, sizeof(zone)))
2978 goto out;
2979 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2980 break;
2981 }
2982 case KVM_UNREGISTER_COALESCED_MMIO: {
2983 struct kvm_coalesced_mmio_zone zone;
2984
2985 r = -EFAULT;
2986 if (copy_from_user(&zone, argp, sizeof(zone)))
2987 goto out;
2988 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2989 break;
2990 }
2991 #endif
2992 case KVM_IRQFD: {
2993 struct kvm_irqfd data;
2994
2995 r = -EFAULT;
2996 if (copy_from_user(&data, argp, sizeof(data)))
2997 goto out;
2998 r = kvm_irqfd(kvm, &data);
2999 break;
3000 }
3001 case KVM_IOEVENTFD: {
3002 struct kvm_ioeventfd data;
3003
3004 r = -EFAULT;
3005 if (copy_from_user(&data, argp, sizeof(data)))
3006 goto out;
3007 r = kvm_ioeventfd(kvm, &data);
3008 break;
3009 }
3010 #ifdef CONFIG_HAVE_KVM_MSI
3011 case KVM_SIGNAL_MSI: {
3012 struct kvm_msi msi;
3013
3014 r = -EFAULT;
3015 if (copy_from_user(&msi, argp, sizeof(msi)))
3016 goto out;
3017 r = kvm_send_userspace_msi(kvm, &msi);
3018 break;
3019 }
3020 #endif
3021 #ifdef __KVM_HAVE_IRQ_LINE
3022 case KVM_IRQ_LINE_STATUS:
3023 case KVM_IRQ_LINE: {
3024 struct kvm_irq_level irq_event;
3025
3026 r = -EFAULT;
3027 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3028 goto out;
3029
3030 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3031 ioctl == KVM_IRQ_LINE_STATUS);
3032 if (r)
3033 goto out;
3034
3035 r = -EFAULT;
3036 if (ioctl == KVM_IRQ_LINE_STATUS) {
3037 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3038 goto out;
3039 }
3040
3041 r = 0;
3042 break;
3043 }
3044 #endif
3045 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3046 case KVM_SET_GSI_ROUTING: {
3047 struct kvm_irq_routing routing;
3048 struct kvm_irq_routing __user *urouting;
3049 struct kvm_irq_routing_entry *entries = NULL;
3050
3051 r = -EFAULT;
3052 if (copy_from_user(&routing, argp, sizeof(routing)))
3053 goto out;
3054 r = -EINVAL;
3055 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3056 goto out;
3057 if (routing.flags)
3058 goto out;
3059 if (routing.nr) {
3060 r = -ENOMEM;
3061 entries = vmalloc(routing.nr * sizeof(*entries));
3062 if (!entries)
3063 goto out;
3064 r = -EFAULT;
3065 urouting = argp;
3066 if (copy_from_user(entries, urouting->entries,
3067 routing.nr * sizeof(*entries)))
3068 goto out_free_irq_routing;
3069 }
3070 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3071 routing.flags);
3072 out_free_irq_routing:
3073 vfree(entries);
3074 break;
3075 }
3076 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3077 case KVM_CREATE_DEVICE: {
3078 struct kvm_create_device cd;
3079
3080 r = -EFAULT;
3081 if (copy_from_user(&cd, argp, sizeof(cd)))
3082 goto out;
3083
3084 r = kvm_ioctl_create_device(kvm, &cd);
3085 if (r)
3086 goto out;
3087
3088 r = -EFAULT;
3089 if (copy_to_user(argp, &cd, sizeof(cd)))
3090 goto out;
3091
3092 r = 0;
3093 break;
3094 }
3095 case KVM_CHECK_EXTENSION:
3096 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3097 break;
3098 default:
3099 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3100 }
3101 out:
3102 return r;
3103 }
3104
3105 #ifdef CONFIG_KVM_COMPAT
3106 struct compat_kvm_dirty_log {
3107 __u32 slot;
3108 __u32 padding1;
3109 union {
3110 compat_uptr_t dirty_bitmap; /* one bit per page */
3111 __u64 padding2;
3112 };
3113 };
3114
3115 static long kvm_vm_compat_ioctl(struct file *filp,
3116 unsigned int ioctl, unsigned long arg)
3117 {
3118 struct kvm *kvm = filp->private_data;
3119 int r;
3120
3121 if (kvm->mm != current->mm)
3122 return -EIO;
3123 switch (ioctl) {
3124 case KVM_GET_DIRTY_LOG: {
3125 struct compat_kvm_dirty_log compat_log;
3126 struct kvm_dirty_log log;
3127
3128 r = -EFAULT;
3129 if (copy_from_user(&compat_log, (void __user *)arg,
3130 sizeof(compat_log)))
3131 goto out;
3132 log.slot = compat_log.slot;
3133 log.padding1 = compat_log.padding1;
3134 log.padding2 = compat_log.padding2;
3135 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3136
3137 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3138 break;
3139 }
3140 default:
3141 r = kvm_vm_ioctl(filp, ioctl, arg);
3142 }
3143
3144 out:
3145 return r;
3146 }
3147 #endif
3148
3149 static struct file_operations kvm_vm_fops = {
3150 .release = kvm_vm_release,
3151 .unlocked_ioctl = kvm_vm_ioctl,
3152 #ifdef CONFIG_KVM_COMPAT
3153 .compat_ioctl = kvm_vm_compat_ioctl,
3154 #endif
3155 .llseek = noop_llseek,
3156 };
3157
3158 static int kvm_dev_ioctl_create_vm(unsigned long type)
3159 {
3160 int r;
3161 struct kvm *kvm;
3162 struct file *file;
3163
3164 kvm = kvm_create_vm(type);
3165 if (IS_ERR(kvm))
3166 return PTR_ERR(kvm);
3167 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3168 r = kvm_coalesced_mmio_init(kvm);
3169 if (r < 0) {
3170 kvm_put_kvm(kvm);
3171 return r;
3172 }
3173 #endif
3174 r = get_unused_fd_flags(O_CLOEXEC);
3175 if (r < 0) {
3176 kvm_put_kvm(kvm);
3177 return r;
3178 }
3179 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3180 if (IS_ERR(file)) {
3181 put_unused_fd(r);
3182 kvm_put_kvm(kvm);
3183 return PTR_ERR(file);
3184 }
3185
3186 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3187 put_unused_fd(r);
3188 fput(file);
3189 return -ENOMEM;
3190 }
3191
3192 fd_install(r, file);
3193 return r;
3194 }
3195
3196 static long kvm_dev_ioctl(struct file *filp,
3197 unsigned int ioctl, unsigned long arg)
3198 {
3199 long r = -EINVAL;
3200
3201 switch (ioctl) {
3202 case KVM_GET_API_VERSION:
3203 if (arg)
3204 goto out;
3205 r = KVM_API_VERSION;
3206 break;
3207 case KVM_CREATE_VM:
3208 r = kvm_dev_ioctl_create_vm(arg);
3209 break;
3210 case KVM_CHECK_EXTENSION:
3211 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3212 break;
3213 case KVM_GET_VCPU_MMAP_SIZE:
3214 if (arg)
3215 goto out;
3216 r = PAGE_SIZE; /* struct kvm_run */
3217 #ifdef CONFIG_X86
3218 r += PAGE_SIZE; /* pio data page */
3219 #endif
3220 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3221 r += PAGE_SIZE; /* coalesced mmio ring page */
3222 #endif
3223 break;
3224 case KVM_TRACE_ENABLE:
3225 case KVM_TRACE_PAUSE:
3226 case KVM_TRACE_DISABLE:
3227 r = -EOPNOTSUPP;
3228 break;
3229 default:
3230 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3231 }
3232 out:
3233 return r;
3234 }
3235
3236 static struct file_operations kvm_chardev_ops = {
3237 .unlocked_ioctl = kvm_dev_ioctl,
3238 .compat_ioctl = kvm_dev_ioctl,
3239 .llseek = noop_llseek,
3240 };
3241
3242 static struct miscdevice kvm_dev = {
3243 KVM_MINOR,
3244 "kvm",
3245 &kvm_chardev_ops,
3246 };
3247
3248 static void hardware_enable_nolock(void *junk)
3249 {
3250 int cpu = raw_smp_processor_id();
3251 int r;
3252
3253 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3254 return;
3255
3256 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3257
3258 r = kvm_arch_hardware_enable();
3259
3260 if (r) {
3261 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3262 atomic_inc(&hardware_enable_failed);
3263 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3264 }
3265 }
3266
3267 static int kvm_starting_cpu(unsigned int cpu)
3268 {
3269 raw_spin_lock(&kvm_count_lock);
3270 if (kvm_usage_count)
3271 hardware_enable_nolock(NULL);
3272 raw_spin_unlock(&kvm_count_lock);
3273 return 0;
3274 }
3275
3276 static void hardware_disable_nolock(void *junk)
3277 {
3278 int cpu = raw_smp_processor_id();
3279
3280 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3281 return;
3282 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3283 kvm_arch_hardware_disable();
3284 }
3285
3286 static int kvm_dying_cpu(unsigned int cpu)
3287 {
3288 raw_spin_lock(&kvm_count_lock);
3289 if (kvm_usage_count)
3290 hardware_disable_nolock(NULL);
3291 raw_spin_unlock(&kvm_count_lock);
3292 return 0;
3293 }
3294
3295 static void hardware_disable_all_nolock(void)
3296 {
3297 BUG_ON(!kvm_usage_count);
3298
3299 kvm_usage_count--;
3300 if (!kvm_usage_count)
3301 on_each_cpu(hardware_disable_nolock, NULL, 1);
3302 }
3303
3304 static void hardware_disable_all(void)
3305 {
3306 raw_spin_lock(&kvm_count_lock);
3307 hardware_disable_all_nolock();
3308 raw_spin_unlock(&kvm_count_lock);
3309 }
3310
3311 static int hardware_enable_all(void)
3312 {
3313 int r = 0;
3314
3315 raw_spin_lock(&kvm_count_lock);
3316
3317 kvm_usage_count++;
3318 if (kvm_usage_count == 1) {
3319 atomic_set(&hardware_enable_failed, 0);
3320 on_each_cpu(hardware_enable_nolock, NULL, 1);
3321
3322 if (atomic_read(&hardware_enable_failed)) {
3323 hardware_disable_all_nolock();
3324 r = -EBUSY;
3325 }
3326 }
3327
3328 raw_spin_unlock(&kvm_count_lock);
3329
3330 return r;
3331 }
3332
3333 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3334 void *v)
3335 {
3336 /*
3337 * Some (well, at least mine) BIOSes hang on reboot if
3338 * in vmx root mode.
3339 *
3340 * And Intel TXT required VMX off for all cpu when system shutdown.
3341 */
3342 pr_info("kvm: exiting hardware virtualization\n");
3343 kvm_rebooting = true;
3344 on_each_cpu(hardware_disable_nolock, NULL, 1);
3345 return NOTIFY_OK;
3346 }
3347
3348 static struct notifier_block kvm_reboot_notifier = {
3349 .notifier_call = kvm_reboot,
3350 .priority = 0,
3351 };
3352
3353 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3354 {
3355 int i;
3356
3357 for (i = 0; i < bus->dev_count; i++) {
3358 struct kvm_io_device *pos = bus->range[i].dev;
3359
3360 kvm_iodevice_destructor(pos);
3361 }
3362 kfree(bus);
3363 }
3364
3365 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3366 const struct kvm_io_range *r2)
3367 {
3368 gpa_t addr1 = r1->addr;
3369 gpa_t addr2 = r2->addr;
3370
3371 if (addr1 < addr2)
3372 return -1;
3373
3374 /* If r2->len == 0, match the exact address. If r2->len != 0,
3375 * accept any overlapping write. Any order is acceptable for
3376 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3377 * we process all of them.
3378 */
3379 if (r2->len) {
3380 addr1 += r1->len;
3381 addr2 += r2->len;
3382 }
3383
3384 if (addr1 > addr2)
3385 return 1;
3386
3387 return 0;
3388 }
3389
3390 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3391 {
3392 return kvm_io_bus_cmp(p1, p2);
3393 }
3394
3395 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3396 gpa_t addr, int len)
3397 {
3398 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3399 .addr = addr,
3400 .len = len,
3401 .dev = dev,
3402 };
3403
3404 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3405 kvm_io_bus_sort_cmp, NULL);
3406
3407 return 0;
3408 }
3409
3410 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3411 gpa_t addr, int len)
3412 {
3413 struct kvm_io_range *range, key;
3414 int off;
3415
3416 key = (struct kvm_io_range) {
3417 .addr = addr,
3418 .len = len,
3419 };
3420
3421 range = bsearch(&key, bus->range, bus->dev_count,
3422 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3423 if (range == NULL)
3424 return -ENOENT;
3425
3426 off = range - bus->range;
3427
3428 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3429 off--;
3430
3431 return off;
3432 }
3433
3434 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3435 struct kvm_io_range *range, const void *val)
3436 {
3437 int idx;
3438
3439 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3440 if (idx < 0)
3441 return -EOPNOTSUPP;
3442
3443 while (idx < bus->dev_count &&
3444 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3445 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3446 range->len, val))
3447 return idx;
3448 idx++;
3449 }
3450
3451 return -EOPNOTSUPP;
3452 }
3453
3454 /* kvm_io_bus_write - called under kvm->slots_lock */
3455 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3456 int len, const void *val)
3457 {
3458 struct kvm_io_bus *bus;
3459 struct kvm_io_range range;
3460 int r;
3461
3462 range = (struct kvm_io_range) {
3463 .addr = addr,
3464 .len = len,
3465 };
3466
3467 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3468 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3469 return r < 0 ? r : 0;
3470 }
3471
3472 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3473 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3474 gpa_t addr, int len, const void *val, long cookie)
3475 {
3476 struct kvm_io_bus *bus;
3477 struct kvm_io_range range;
3478
3479 range = (struct kvm_io_range) {
3480 .addr = addr,
3481 .len = len,
3482 };
3483
3484 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3485
3486 /* First try the device referenced by cookie. */
3487 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3488 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3489 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3490 val))
3491 return cookie;
3492
3493 /*
3494 * cookie contained garbage; fall back to search and return the
3495 * correct cookie value.
3496 */
3497 return __kvm_io_bus_write(vcpu, bus, &range, val);
3498 }
3499
3500 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3501 struct kvm_io_range *range, void *val)
3502 {
3503 int idx;
3504
3505 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3506 if (idx < 0)
3507 return -EOPNOTSUPP;
3508
3509 while (idx < bus->dev_count &&
3510 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3511 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3512 range->len, val))
3513 return idx;
3514 idx++;
3515 }
3516
3517 return -EOPNOTSUPP;
3518 }
3519 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3520
3521 /* kvm_io_bus_read - called under kvm->slots_lock */
3522 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3523 int len, void *val)
3524 {
3525 struct kvm_io_bus *bus;
3526 struct kvm_io_range range;
3527 int r;
3528
3529 range = (struct kvm_io_range) {
3530 .addr = addr,
3531 .len = len,
3532 };
3533
3534 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3535 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3536 return r < 0 ? r : 0;
3537 }
3538
3539
3540 /* Caller must hold slots_lock. */
3541 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3542 int len, struct kvm_io_device *dev)
3543 {
3544 struct kvm_io_bus *new_bus, *bus;
3545
3546 bus = kvm->buses[bus_idx];
3547 /* exclude ioeventfd which is limited by maximum fd */
3548 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3549 return -ENOSPC;
3550
3551 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3552 sizeof(struct kvm_io_range)), GFP_KERNEL);
3553 if (!new_bus)
3554 return -ENOMEM;
3555 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3556 sizeof(struct kvm_io_range)));
3557 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3558 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3559 synchronize_srcu_expedited(&kvm->srcu);
3560 kfree(bus);
3561
3562 return 0;
3563 }
3564
3565 /* Caller must hold slots_lock. */
3566 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3567 struct kvm_io_device *dev)
3568 {
3569 int i, r;
3570 struct kvm_io_bus *new_bus, *bus;
3571
3572 bus = kvm->buses[bus_idx];
3573 r = -ENOENT;
3574 for (i = 0; i < bus->dev_count; i++)
3575 if (bus->range[i].dev == dev) {
3576 r = 0;
3577 break;
3578 }
3579
3580 if (r)
3581 return r;
3582
3583 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3584 sizeof(struct kvm_io_range)), GFP_KERNEL);
3585 if (!new_bus)
3586 return -ENOMEM;
3587
3588 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3589 new_bus->dev_count--;
3590 memcpy(new_bus->range + i, bus->range + i + 1,
3591 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3592
3593 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3594 synchronize_srcu_expedited(&kvm->srcu);
3595 kfree(bus);
3596 return r;
3597 }
3598
3599 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3600 gpa_t addr)
3601 {
3602 struct kvm_io_bus *bus;
3603 int dev_idx, srcu_idx;
3604 struct kvm_io_device *iodev = NULL;
3605
3606 srcu_idx = srcu_read_lock(&kvm->srcu);
3607
3608 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3609
3610 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3611 if (dev_idx < 0)
3612 goto out_unlock;
3613
3614 iodev = bus->range[dev_idx].dev;
3615
3616 out_unlock:
3617 srcu_read_unlock(&kvm->srcu, srcu_idx);
3618
3619 return iodev;
3620 }
3621 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3622
3623 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3624 int (*get)(void *, u64 *), int (*set)(void *, u64),
3625 const char *fmt)
3626 {
3627 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3628 inode->i_private;
3629
3630 /* The debugfs files are a reference to the kvm struct which
3631 * is still valid when kvm_destroy_vm is called.
3632 * To avoid the race between open and the removal of the debugfs
3633 * directory we test against the users count.
3634 */
3635 if (!atomic_add_unless(&stat_data->kvm->users_count, 1, 0))
3636 return -ENOENT;
3637
3638 if (simple_attr_open(inode, file, get, set, fmt)) {
3639 kvm_put_kvm(stat_data->kvm);
3640 return -ENOMEM;
3641 }
3642
3643 return 0;
3644 }
3645
3646 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3647 {
3648 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3649 inode->i_private;
3650
3651 simple_attr_release(inode, file);
3652 kvm_put_kvm(stat_data->kvm);
3653
3654 return 0;
3655 }
3656
3657 static int vm_stat_get_per_vm(void *data, u64 *val)
3658 {
3659 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3660
3661 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3662
3663 return 0;
3664 }
3665
3666 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3667 {
3668 __simple_attr_check_format("%llu\n", 0ull);
3669 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3670 NULL, "%llu\n");
3671 }
3672
3673 static const struct file_operations vm_stat_get_per_vm_fops = {
3674 .owner = THIS_MODULE,
3675 .open = vm_stat_get_per_vm_open,
3676 .release = kvm_debugfs_release,
3677 .read = simple_attr_read,
3678 .write = simple_attr_write,
3679 .llseek = generic_file_llseek,
3680 };
3681
3682 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3683 {
3684 int i;
3685 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3686 struct kvm_vcpu *vcpu;
3687
3688 *val = 0;
3689
3690 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3691 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3692
3693 return 0;
3694 }
3695
3696 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3697 {
3698 __simple_attr_check_format("%llu\n", 0ull);
3699 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3700 NULL, "%llu\n");
3701 }
3702
3703 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3704 .owner = THIS_MODULE,
3705 .open = vcpu_stat_get_per_vm_open,
3706 .release = kvm_debugfs_release,
3707 .read = simple_attr_read,
3708 .write = simple_attr_write,
3709 .llseek = generic_file_llseek,
3710 };
3711
3712 static const struct file_operations *stat_fops_per_vm[] = {
3713 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3714 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3715 };
3716
3717 static int vm_stat_get(void *_offset, u64 *val)
3718 {
3719 unsigned offset = (long)_offset;
3720 struct kvm *kvm;
3721 struct kvm_stat_data stat_tmp = {.offset = offset};
3722 u64 tmp_val;
3723
3724 *val = 0;
3725 spin_lock(&kvm_lock);
3726 list_for_each_entry(kvm, &vm_list, vm_list) {
3727 stat_tmp.kvm = kvm;
3728 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3729 *val += tmp_val;
3730 }
3731 spin_unlock(&kvm_lock);
3732 return 0;
3733 }
3734
3735 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3736
3737 static int vcpu_stat_get(void *_offset, u64 *val)
3738 {
3739 unsigned offset = (long)_offset;
3740 struct kvm *kvm;
3741 struct kvm_stat_data stat_tmp = {.offset = offset};
3742 u64 tmp_val;
3743
3744 *val = 0;
3745 spin_lock(&kvm_lock);
3746 list_for_each_entry(kvm, &vm_list, vm_list) {
3747 stat_tmp.kvm = kvm;
3748 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3749 *val += tmp_val;
3750 }
3751 spin_unlock(&kvm_lock);
3752 return 0;
3753 }
3754
3755 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3756
3757 static const struct file_operations *stat_fops[] = {
3758 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3759 [KVM_STAT_VM] = &vm_stat_fops,
3760 };
3761
3762 static int kvm_init_debug(void)
3763 {
3764 int r = -EEXIST;
3765 struct kvm_stats_debugfs_item *p;
3766
3767 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3768 if (kvm_debugfs_dir == NULL)
3769 goto out;
3770
3771 kvm_debugfs_num_entries = 0;
3772 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3773 if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3774 (void *)(long)p->offset,
3775 stat_fops[p->kind]))
3776 goto out_dir;
3777 }
3778
3779 return 0;
3780
3781 out_dir:
3782 debugfs_remove_recursive(kvm_debugfs_dir);
3783 out:
3784 return r;
3785 }
3786
3787 static int kvm_suspend(void)
3788 {
3789 if (kvm_usage_count)
3790 hardware_disable_nolock(NULL);
3791 return 0;
3792 }
3793
3794 static void kvm_resume(void)
3795 {
3796 if (kvm_usage_count) {
3797 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3798 hardware_enable_nolock(NULL);
3799 }
3800 }
3801
3802 static struct syscore_ops kvm_syscore_ops = {
3803 .suspend = kvm_suspend,
3804 .resume = kvm_resume,
3805 };
3806
3807 static inline
3808 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3809 {
3810 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3811 }
3812
3813 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3814 {
3815 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3816
3817 if (vcpu->preempted)
3818 vcpu->preempted = false;
3819
3820 kvm_arch_sched_in(vcpu, cpu);
3821
3822 kvm_arch_vcpu_load(vcpu, cpu);
3823 }
3824
3825 static void kvm_sched_out(struct preempt_notifier *pn,
3826 struct task_struct *next)
3827 {
3828 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3829
3830 if (current->state == TASK_RUNNING)
3831 vcpu->preempted = true;
3832 kvm_arch_vcpu_put(vcpu);
3833 }
3834
3835 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3836 struct module *module)
3837 {
3838 int r;
3839 int cpu;
3840
3841 r = kvm_arch_init(opaque);
3842 if (r)
3843 goto out_fail;
3844
3845 /*
3846 * kvm_arch_init makes sure there's at most one caller
3847 * for architectures that support multiple implementations,
3848 * like intel and amd on x86.
3849 */
3850
3851 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3852 r = -ENOMEM;
3853 goto out_free_0;
3854 }
3855
3856 r = kvm_arch_hardware_setup();
3857 if (r < 0)
3858 goto out_free_0a;
3859
3860 for_each_online_cpu(cpu) {
3861 smp_call_function_single(cpu,
3862 kvm_arch_check_processor_compat,
3863 &r, 1);
3864 if (r < 0)
3865 goto out_free_1;
3866 }
3867
3868 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "AP_KVM_STARTING",
3869 kvm_starting_cpu, kvm_dying_cpu);
3870 if (r)
3871 goto out_free_2;
3872 register_reboot_notifier(&kvm_reboot_notifier);
3873
3874 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3875 if (!vcpu_align)
3876 vcpu_align = __alignof__(struct kvm_vcpu);
3877 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3878 0, NULL);
3879 if (!kvm_vcpu_cache) {
3880 r = -ENOMEM;
3881 goto out_free_3;
3882 }
3883
3884 r = kvm_async_pf_init();
3885 if (r)
3886 goto out_free;
3887
3888 kvm_chardev_ops.owner = module;
3889 kvm_vm_fops.owner = module;
3890 kvm_vcpu_fops.owner = module;
3891
3892 r = misc_register(&kvm_dev);
3893 if (r) {
3894 pr_err("kvm: misc device register failed\n");
3895 goto out_unreg;
3896 }
3897
3898 register_syscore_ops(&kvm_syscore_ops);
3899
3900 kvm_preempt_ops.sched_in = kvm_sched_in;
3901 kvm_preempt_ops.sched_out = kvm_sched_out;
3902
3903 r = kvm_init_debug();
3904 if (r) {
3905 pr_err("kvm: create debugfs files failed\n");
3906 goto out_undebugfs;
3907 }
3908
3909 r = kvm_vfio_ops_init();
3910 WARN_ON(r);
3911
3912 return 0;
3913
3914 out_undebugfs:
3915 unregister_syscore_ops(&kvm_syscore_ops);
3916 misc_deregister(&kvm_dev);
3917 out_unreg:
3918 kvm_async_pf_deinit();
3919 out_free:
3920 kmem_cache_destroy(kvm_vcpu_cache);
3921 out_free_3:
3922 unregister_reboot_notifier(&kvm_reboot_notifier);
3923 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3924 out_free_2:
3925 out_free_1:
3926 kvm_arch_hardware_unsetup();
3927 out_free_0a:
3928 free_cpumask_var(cpus_hardware_enabled);
3929 out_free_0:
3930 kvm_irqfd_exit();
3931 kvm_arch_exit();
3932 out_fail:
3933 return r;
3934 }
3935 EXPORT_SYMBOL_GPL(kvm_init);
3936
3937 void kvm_exit(void)
3938 {
3939 debugfs_remove_recursive(kvm_debugfs_dir);
3940 misc_deregister(&kvm_dev);
3941 kmem_cache_destroy(kvm_vcpu_cache);
3942 kvm_async_pf_deinit();
3943 unregister_syscore_ops(&kvm_syscore_ops);
3944 unregister_reboot_notifier(&kvm_reboot_notifier);
3945 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
3946 on_each_cpu(hardware_disable_nolock, NULL, 1);
3947 kvm_arch_hardware_unsetup();
3948 kvm_arch_exit();
3949 kvm_irqfd_exit();
3950 free_cpumask_var(cpus_hardware_enabled);
3951 kvm_vfio_ops_exit();
3952 }
3953 EXPORT_SYMBOL_GPL(kvm_exit);