]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - virt/kvm/kvm_main.c
Merge branch 'linux-4.4' of https://github.com/skeggsb/linux into drm-fixes
[mirror_ubuntu-artful-kernel.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 /* Architectures should define their poll value according to the halt latency */
70 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
71 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
72
73 /* Default doubles per-vcpu halt_poll_ns. */
74 static unsigned int halt_poll_ns_grow = 2;
75 module_param(halt_poll_ns_grow, int, S_IRUGO);
76
77 /* Default resets per-vcpu halt_poll_ns . */
78 static unsigned int halt_poll_ns_shrink;
79 module_param(halt_poll_ns_shrink, int, S_IRUGO);
80
81 /*
82 * Ordering of locks:
83 *
84 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
85 */
86
87 DEFINE_SPINLOCK(kvm_lock);
88 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
89 LIST_HEAD(vm_list);
90
91 static cpumask_var_t cpus_hardware_enabled;
92 static int kvm_usage_count;
93 static atomic_t hardware_enable_failed;
94
95 struct kmem_cache *kvm_vcpu_cache;
96 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
97
98 static __read_mostly struct preempt_ops kvm_preempt_ops;
99
100 struct dentry *kvm_debugfs_dir;
101 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
102
103 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
104 unsigned long arg);
105 #ifdef CONFIG_KVM_COMPAT
106 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
107 unsigned long arg);
108 #endif
109 static int hardware_enable_all(void);
110 static void hardware_disable_all(void);
111
112 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
113
114 static void kvm_release_pfn_dirty(pfn_t pfn);
115 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
116
117 __visible bool kvm_rebooting;
118 EXPORT_SYMBOL_GPL(kvm_rebooting);
119
120 static bool largepages_enabled = true;
121
122 bool kvm_is_reserved_pfn(pfn_t pfn)
123 {
124 if (pfn_valid(pfn))
125 return PageReserved(pfn_to_page(pfn));
126
127 return true;
128 }
129
130 /*
131 * Switches to specified vcpu, until a matching vcpu_put()
132 */
133 int vcpu_load(struct kvm_vcpu *vcpu)
134 {
135 int cpu;
136
137 if (mutex_lock_killable(&vcpu->mutex))
138 return -EINTR;
139 cpu = get_cpu();
140 preempt_notifier_register(&vcpu->preempt_notifier);
141 kvm_arch_vcpu_load(vcpu, cpu);
142 put_cpu();
143 return 0;
144 }
145
146 void vcpu_put(struct kvm_vcpu *vcpu)
147 {
148 preempt_disable();
149 kvm_arch_vcpu_put(vcpu);
150 preempt_notifier_unregister(&vcpu->preempt_notifier);
151 preempt_enable();
152 mutex_unlock(&vcpu->mutex);
153 }
154
155 static void ack_flush(void *_completed)
156 {
157 }
158
159 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
160 {
161 int i, cpu, me;
162 cpumask_var_t cpus;
163 bool called = true;
164 struct kvm_vcpu *vcpu;
165
166 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
167
168 me = get_cpu();
169 kvm_for_each_vcpu(i, vcpu, kvm) {
170 kvm_make_request(req, vcpu);
171 cpu = vcpu->cpu;
172
173 /* Set ->requests bit before we read ->mode */
174 smp_mb();
175
176 if (cpus != NULL && cpu != -1 && cpu != me &&
177 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
178 cpumask_set_cpu(cpu, cpus);
179 }
180 if (unlikely(cpus == NULL))
181 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
182 else if (!cpumask_empty(cpus))
183 smp_call_function_many(cpus, ack_flush, NULL, 1);
184 else
185 called = false;
186 put_cpu();
187 free_cpumask_var(cpus);
188 return called;
189 }
190
191 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
192 void kvm_flush_remote_tlbs(struct kvm *kvm)
193 {
194 long dirty_count = kvm->tlbs_dirty;
195
196 smp_mb();
197 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
198 ++kvm->stat.remote_tlb_flush;
199 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
200 }
201 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
202 #endif
203
204 void kvm_reload_remote_mmus(struct kvm *kvm)
205 {
206 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
207 }
208
209 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
210 {
211 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
212 }
213
214 void kvm_make_scan_ioapic_request(struct kvm *kvm)
215 {
216 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
217 }
218
219 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
220 {
221 struct page *page;
222 int r;
223
224 mutex_init(&vcpu->mutex);
225 vcpu->cpu = -1;
226 vcpu->kvm = kvm;
227 vcpu->vcpu_id = id;
228 vcpu->pid = NULL;
229 vcpu->halt_poll_ns = 0;
230 init_waitqueue_head(&vcpu->wq);
231 kvm_async_pf_vcpu_init(vcpu);
232
233 vcpu->pre_pcpu = -1;
234 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
235
236 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
237 if (!page) {
238 r = -ENOMEM;
239 goto fail;
240 }
241 vcpu->run = page_address(page);
242
243 kvm_vcpu_set_in_spin_loop(vcpu, false);
244 kvm_vcpu_set_dy_eligible(vcpu, false);
245 vcpu->preempted = false;
246
247 r = kvm_arch_vcpu_init(vcpu);
248 if (r < 0)
249 goto fail_free_run;
250 return 0;
251
252 fail_free_run:
253 free_page((unsigned long)vcpu->run);
254 fail:
255 return r;
256 }
257 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
258
259 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
260 {
261 put_pid(vcpu->pid);
262 kvm_arch_vcpu_uninit(vcpu);
263 free_page((unsigned long)vcpu->run);
264 }
265 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
266
267 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
268 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
269 {
270 return container_of(mn, struct kvm, mmu_notifier);
271 }
272
273 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
274 struct mm_struct *mm,
275 unsigned long address)
276 {
277 struct kvm *kvm = mmu_notifier_to_kvm(mn);
278 int need_tlb_flush, idx;
279
280 /*
281 * When ->invalidate_page runs, the linux pte has been zapped
282 * already but the page is still allocated until
283 * ->invalidate_page returns. So if we increase the sequence
284 * here the kvm page fault will notice if the spte can't be
285 * established because the page is going to be freed. If
286 * instead the kvm page fault establishes the spte before
287 * ->invalidate_page runs, kvm_unmap_hva will release it
288 * before returning.
289 *
290 * The sequence increase only need to be seen at spin_unlock
291 * time, and not at spin_lock time.
292 *
293 * Increasing the sequence after the spin_unlock would be
294 * unsafe because the kvm page fault could then establish the
295 * pte after kvm_unmap_hva returned, without noticing the page
296 * is going to be freed.
297 */
298 idx = srcu_read_lock(&kvm->srcu);
299 spin_lock(&kvm->mmu_lock);
300
301 kvm->mmu_notifier_seq++;
302 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
303 /* we've to flush the tlb before the pages can be freed */
304 if (need_tlb_flush)
305 kvm_flush_remote_tlbs(kvm);
306
307 spin_unlock(&kvm->mmu_lock);
308
309 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
310
311 srcu_read_unlock(&kvm->srcu, idx);
312 }
313
314 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
315 struct mm_struct *mm,
316 unsigned long address,
317 pte_t pte)
318 {
319 struct kvm *kvm = mmu_notifier_to_kvm(mn);
320 int idx;
321
322 idx = srcu_read_lock(&kvm->srcu);
323 spin_lock(&kvm->mmu_lock);
324 kvm->mmu_notifier_seq++;
325 kvm_set_spte_hva(kvm, address, pte);
326 spin_unlock(&kvm->mmu_lock);
327 srcu_read_unlock(&kvm->srcu, idx);
328 }
329
330 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
331 struct mm_struct *mm,
332 unsigned long start,
333 unsigned long end)
334 {
335 struct kvm *kvm = mmu_notifier_to_kvm(mn);
336 int need_tlb_flush = 0, idx;
337
338 idx = srcu_read_lock(&kvm->srcu);
339 spin_lock(&kvm->mmu_lock);
340 /*
341 * The count increase must become visible at unlock time as no
342 * spte can be established without taking the mmu_lock and
343 * count is also read inside the mmu_lock critical section.
344 */
345 kvm->mmu_notifier_count++;
346 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
347 need_tlb_flush |= kvm->tlbs_dirty;
348 /* we've to flush the tlb before the pages can be freed */
349 if (need_tlb_flush)
350 kvm_flush_remote_tlbs(kvm);
351
352 spin_unlock(&kvm->mmu_lock);
353 srcu_read_unlock(&kvm->srcu, idx);
354 }
355
356 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
357 struct mm_struct *mm,
358 unsigned long start,
359 unsigned long end)
360 {
361 struct kvm *kvm = mmu_notifier_to_kvm(mn);
362
363 spin_lock(&kvm->mmu_lock);
364 /*
365 * This sequence increase will notify the kvm page fault that
366 * the page that is going to be mapped in the spte could have
367 * been freed.
368 */
369 kvm->mmu_notifier_seq++;
370 smp_wmb();
371 /*
372 * The above sequence increase must be visible before the
373 * below count decrease, which is ensured by the smp_wmb above
374 * in conjunction with the smp_rmb in mmu_notifier_retry().
375 */
376 kvm->mmu_notifier_count--;
377 spin_unlock(&kvm->mmu_lock);
378
379 BUG_ON(kvm->mmu_notifier_count < 0);
380 }
381
382 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
383 struct mm_struct *mm,
384 unsigned long start,
385 unsigned long end)
386 {
387 struct kvm *kvm = mmu_notifier_to_kvm(mn);
388 int young, idx;
389
390 idx = srcu_read_lock(&kvm->srcu);
391 spin_lock(&kvm->mmu_lock);
392
393 young = kvm_age_hva(kvm, start, end);
394 if (young)
395 kvm_flush_remote_tlbs(kvm);
396
397 spin_unlock(&kvm->mmu_lock);
398 srcu_read_unlock(&kvm->srcu, idx);
399
400 return young;
401 }
402
403 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
404 struct mm_struct *mm,
405 unsigned long start,
406 unsigned long end)
407 {
408 struct kvm *kvm = mmu_notifier_to_kvm(mn);
409 int young, idx;
410
411 idx = srcu_read_lock(&kvm->srcu);
412 spin_lock(&kvm->mmu_lock);
413 /*
414 * Even though we do not flush TLB, this will still adversely
415 * affect performance on pre-Haswell Intel EPT, where there is
416 * no EPT Access Bit to clear so that we have to tear down EPT
417 * tables instead. If we find this unacceptable, we can always
418 * add a parameter to kvm_age_hva so that it effectively doesn't
419 * do anything on clear_young.
420 *
421 * Also note that currently we never issue secondary TLB flushes
422 * from clear_young, leaving this job up to the regular system
423 * cadence. If we find this inaccurate, we might come up with a
424 * more sophisticated heuristic later.
425 */
426 young = kvm_age_hva(kvm, start, end);
427 spin_unlock(&kvm->mmu_lock);
428 srcu_read_unlock(&kvm->srcu, idx);
429
430 return young;
431 }
432
433 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
434 struct mm_struct *mm,
435 unsigned long address)
436 {
437 struct kvm *kvm = mmu_notifier_to_kvm(mn);
438 int young, idx;
439
440 idx = srcu_read_lock(&kvm->srcu);
441 spin_lock(&kvm->mmu_lock);
442 young = kvm_test_age_hva(kvm, address);
443 spin_unlock(&kvm->mmu_lock);
444 srcu_read_unlock(&kvm->srcu, idx);
445
446 return young;
447 }
448
449 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
450 struct mm_struct *mm)
451 {
452 struct kvm *kvm = mmu_notifier_to_kvm(mn);
453 int idx;
454
455 idx = srcu_read_lock(&kvm->srcu);
456 kvm_arch_flush_shadow_all(kvm);
457 srcu_read_unlock(&kvm->srcu, idx);
458 }
459
460 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
461 .invalidate_page = kvm_mmu_notifier_invalidate_page,
462 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
463 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
464 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
465 .clear_young = kvm_mmu_notifier_clear_young,
466 .test_young = kvm_mmu_notifier_test_young,
467 .change_pte = kvm_mmu_notifier_change_pte,
468 .release = kvm_mmu_notifier_release,
469 };
470
471 static int kvm_init_mmu_notifier(struct kvm *kvm)
472 {
473 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
474 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
475 }
476
477 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
478
479 static int kvm_init_mmu_notifier(struct kvm *kvm)
480 {
481 return 0;
482 }
483
484 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
485
486 static struct kvm_memslots *kvm_alloc_memslots(void)
487 {
488 int i;
489 struct kvm_memslots *slots;
490
491 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
492 if (!slots)
493 return NULL;
494
495 /*
496 * Init kvm generation close to the maximum to easily test the
497 * code of handling generation number wrap-around.
498 */
499 slots->generation = -150;
500 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
501 slots->id_to_index[i] = slots->memslots[i].id = i;
502
503 return slots;
504 }
505
506 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
507 {
508 if (!memslot->dirty_bitmap)
509 return;
510
511 kvfree(memslot->dirty_bitmap);
512 memslot->dirty_bitmap = NULL;
513 }
514
515 /*
516 * Free any memory in @free but not in @dont.
517 */
518 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
519 struct kvm_memory_slot *dont)
520 {
521 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
522 kvm_destroy_dirty_bitmap(free);
523
524 kvm_arch_free_memslot(kvm, free, dont);
525
526 free->npages = 0;
527 }
528
529 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
530 {
531 struct kvm_memory_slot *memslot;
532
533 if (!slots)
534 return;
535
536 kvm_for_each_memslot(memslot, slots)
537 kvm_free_memslot(kvm, memslot, NULL);
538
539 kvfree(slots);
540 }
541
542 static struct kvm *kvm_create_vm(unsigned long type)
543 {
544 int r, i;
545 struct kvm *kvm = kvm_arch_alloc_vm();
546
547 if (!kvm)
548 return ERR_PTR(-ENOMEM);
549
550 r = kvm_arch_init_vm(kvm, type);
551 if (r)
552 goto out_err_no_disable;
553
554 r = hardware_enable_all();
555 if (r)
556 goto out_err_no_disable;
557
558 #ifdef CONFIG_HAVE_KVM_IRQFD
559 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
560 #endif
561
562 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
563
564 r = -ENOMEM;
565 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
566 kvm->memslots[i] = kvm_alloc_memslots();
567 if (!kvm->memslots[i])
568 goto out_err_no_srcu;
569 }
570
571 if (init_srcu_struct(&kvm->srcu))
572 goto out_err_no_srcu;
573 if (init_srcu_struct(&kvm->irq_srcu))
574 goto out_err_no_irq_srcu;
575 for (i = 0; i < KVM_NR_BUSES; i++) {
576 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
577 GFP_KERNEL);
578 if (!kvm->buses[i])
579 goto out_err;
580 }
581
582 spin_lock_init(&kvm->mmu_lock);
583 kvm->mm = current->mm;
584 atomic_inc(&kvm->mm->mm_count);
585 kvm_eventfd_init(kvm);
586 mutex_init(&kvm->lock);
587 mutex_init(&kvm->irq_lock);
588 mutex_init(&kvm->slots_lock);
589 atomic_set(&kvm->users_count, 1);
590 INIT_LIST_HEAD(&kvm->devices);
591
592 r = kvm_init_mmu_notifier(kvm);
593 if (r)
594 goto out_err;
595
596 spin_lock(&kvm_lock);
597 list_add(&kvm->vm_list, &vm_list);
598 spin_unlock(&kvm_lock);
599
600 preempt_notifier_inc();
601
602 return kvm;
603
604 out_err:
605 cleanup_srcu_struct(&kvm->irq_srcu);
606 out_err_no_irq_srcu:
607 cleanup_srcu_struct(&kvm->srcu);
608 out_err_no_srcu:
609 hardware_disable_all();
610 out_err_no_disable:
611 for (i = 0; i < KVM_NR_BUSES; i++)
612 kfree(kvm->buses[i]);
613 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
614 kvm_free_memslots(kvm, kvm->memslots[i]);
615 kvm_arch_free_vm(kvm);
616 return ERR_PTR(r);
617 }
618
619 /*
620 * Avoid using vmalloc for a small buffer.
621 * Should not be used when the size is statically known.
622 */
623 void *kvm_kvzalloc(unsigned long size)
624 {
625 if (size > PAGE_SIZE)
626 return vzalloc(size);
627 else
628 return kzalloc(size, GFP_KERNEL);
629 }
630
631 static void kvm_destroy_devices(struct kvm *kvm)
632 {
633 struct list_head *node, *tmp;
634
635 list_for_each_safe(node, tmp, &kvm->devices) {
636 struct kvm_device *dev =
637 list_entry(node, struct kvm_device, vm_node);
638
639 list_del(node);
640 dev->ops->destroy(dev);
641 }
642 }
643
644 static void kvm_destroy_vm(struct kvm *kvm)
645 {
646 int i;
647 struct mm_struct *mm = kvm->mm;
648
649 kvm_arch_sync_events(kvm);
650 spin_lock(&kvm_lock);
651 list_del(&kvm->vm_list);
652 spin_unlock(&kvm_lock);
653 kvm_free_irq_routing(kvm);
654 for (i = 0; i < KVM_NR_BUSES; i++)
655 kvm_io_bus_destroy(kvm->buses[i]);
656 kvm_coalesced_mmio_free(kvm);
657 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
658 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
659 #else
660 kvm_arch_flush_shadow_all(kvm);
661 #endif
662 kvm_arch_destroy_vm(kvm);
663 kvm_destroy_devices(kvm);
664 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
665 kvm_free_memslots(kvm, kvm->memslots[i]);
666 cleanup_srcu_struct(&kvm->irq_srcu);
667 cleanup_srcu_struct(&kvm->srcu);
668 kvm_arch_free_vm(kvm);
669 preempt_notifier_dec();
670 hardware_disable_all();
671 mmdrop(mm);
672 }
673
674 void kvm_get_kvm(struct kvm *kvm)
675 {
676 atomic_inc(&kvm->users_count);
677 }
678 EXPORT_SYMBOL_GPL(kvm_get_kvm);
679
680 void kvm_put_kvm(struct kvm *kvm)
681 {
682 if (atomic_dec_and_test(&kvm->users_count))
683 kvm_destroy_vm(kvm);
684 }
685 EXPORT_SYMBOL_GPL(kvm_put_kvm);
686
687
688 static int kvm_vm_release(struct inode *inode, struct file *filp)
689 {
690 struct kvm *kvm = filp->private_data;
691
692 kvm_irqfd_release(kvm);
693
694 kvm_put_kvm(kvm);
695 return 0;
696 }
697
698 /*
699 * Allocation size is twice as large as the actual dirty bitmap size.
700 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
701 */
702 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
703 {
704 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
705
706 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
707 if (!memslot->dirty_bitmap)
708 return -ENOMEM;
709
710 return 0;
711 }
712
713 /*
714 * Insert memslot and re-sort memslots based on their GFN,
715 * so binary search could be used to lookup GFN.
716 * Sorting algorithm takes advantage of having initially
717 * sorted array and known changed memslot position.
718 */
719 static void update_memslots(struct kvm_memslots *slots,
720 struct kvm_memory_slot *new)
721 {
722 int id = new->id;
723 int i = slots->id_to_index[id];
724 struct kvm_memory_slot *mslots = slots->memslots;
725
726 WARN_ON(mslots[i].id != id);
727 if (!new->npages) {
728 WARN_ON(!mslots[i].npages);
729 if (mslots[i].npages)
730 slots->used_slots--;
731 } else {
732 if (!mslots[i].npages)
733 slots->used_slots++;
734 }
735
736 while (i < KVM_MEM_SLOTS_NUM - 1 &&
737 new->base_gfn <= mslots[i + 1].base_gfn) {
738 if (!mslots[i + 1].npages)
739 break;
740 mslots[i] = mslots[i + 1];
741 slots->id_to_index[mslots[i].id] = i;
742 i++;
743 }
744
745 /*
746 * The ">=" is needed when creating a slot with base_gfn == 0,
747 * so that it moves before all those with base_gfn == npages == 0.
748 *
749 * On the other hand, if new->npages is zero, the above loop has
750 * already left i pointing to the beginning of the empty part of
751 * mslots, and the ">=" would move the hole backwards in this
752 * case---which is wrong. So skip the loop when deleting a slot.
753 */
754 if (new->npages) {
755 while (i > 0 &&
756 new->base_gfn >= mslots[i - 1].base_gfn) {
757 mslots[i] = mslots[i - 1];
758 slots->id_to_index[mslots[i].id] = i;
759 i--;
760 }
761 } else
762 WARN_ON_ONCE(i != slots->used_slots);
763
764 mslots[i] = *new;
765 slots->id_to_index[mslots[i].id] = i;
766 }
767
768 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
769 {
770 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
771
772 #ifdef __KVM_HAVE_READONLY_MEM
773 valid_flags |= KVM_MEM_READONLY;
774 #endif
775
776 if (mem->flags & ~valid_flags)
777 return -EINVAL;
778
779 return 0;
780 }
781
782 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
783 int as_id, struct kvm_memslots *slots)
784 {
785 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
786
787 /*
788 * Set the low bit in the generation, which disables SPTE caching
789 * until the end of synchronize_srcu_expedited.
790 */
791 WARN_ON(old_memslots->generation & 1);
792 slots->generation = old_memslots->generation + 1;
793
794 rcu_assign_pointer(kvm->memslots[as_id], slots);
795 synchronize_srcu_expedited(&kvm->srcu);
796
797 /*
798 * Increment the new memslot generation a second time. This prevents
799 * vm exits that race with memslot updates from caching a memslot
800 * generation that will (potentially) be valid forever.
801 */
802 slots->generation++;
803
804 kvm_arch_memslots_updated(kvm, slots);
805
806 return old_memslots;
807 }
808
809 /*
810 * Allocate some memory and give it an address in the guest physical address
811 * space.
812 *
813 * Discontiguous memory is allowed, mostly for framebuffers.
814 *
815 * Must be called holding kvm->slots_lock for write.
816 */
817 int __kvm_set_memory_region(struct kvm *kvm,
818 const struct kvm_userspace_memory_region *mem)
819 {
820 int r;
821 gfn_t base_gfn;
822 unsigned long npages;
823 struct kvm_memory_slot *slot;
824 struct kvm_memory_slot old, new;
825 struct kvm_memslots *slots = NULL, *old_memslots;
826 int as_id, id;
827 enum kvm_mr_change change;
828
829 r = check_memory_region_flags(mem);
830 if (r)
831 goto out;
832
833 r = -EINVAL;
834 as_id = mem->slot >> 16;
835 id = (u16)mem->slot;
836
837 /* General sanity checks */
838 if (mem->memory_size & (PAGE_SIZE - 1))
839 goto out;
840 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
841 goto out;
842 /* We can read the guest memory with __xxx_user() later on. */
843 if ((id < KVM_USER_MEM_SLOTS) &&
844 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
845 !access_ok(VERIFY_WRITE,
846 (void __user *)(unsigned long)mem->userspace_addr,
847 mem->memory_size)))
848 goto out;
849 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
850 goto out;
851 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
852 goto out;
853
854 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
855 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
856 npages = mem->memory_size >> PAGE_SHIFT;
857
858 if (npages > KVM_MEM_MAX_NR_PAGES)
859 goto out;
860
861 new = old = *slot;
862
863 new.id = id;
864 new.base_gfn = base_gfn;
865 new.npages = npages;
866 new.flags = mem->flags;
867
868 if (npages) {
869 if (!old.npages)
870 change = KVM_MR_CREATE;
871 else { /* Modify an existing slot. */
872 if ((mem->userspace_addr != old.userspace_addr) ||
873 (npages != old.npages) ||
874 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
875 goto out;
876
877 if (base_gfn != old.base_gfn)
878 change = KVM_MR_MOVE;
879 else if (new.flags != old.flags)
880 change = KVM_MR_FLAGS_ONLY;
881 else { /* Nothing to change. */
882 r = 0;
883 goto out;
884 }
885 }
886 } else {
887 if (!old.npages)
888 goto out;
889
890 change = KVM_MR_DELETE;
891 new.base_gfn = 0;
892 new.flags = 0;
893 }
894
895 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
896 /* Check for overlaps */
897 r = -EEXIST;
898 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
899 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
900 (slot->id == id))
901 continue;
902 if (!((base_gfn + npages <= slot->base_gfn) ||
903 (base_gfn >= slot->base_gfn + slot->npages)))
904 goto out;
905 }
906 }
907
908 /* Free page dirty bitmap if unneeded */
909 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
910 new.dirty_bitmap = NULL;
911
912 r = -ENOMEM;
913 if (change == KVM_MR_CREATE) {
914 new.userspace_addr = mem->userspace_addr;
915
916 if (kvm_arch_create_memslot(kvm, &new, npages))
917 goto out_free;
918 }
919
920 /* Allocate page dirty bitmap if needed */
921 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
922 if (kvm_create_dirty_bitmap(&new) < 0)
923 goto out_free;
924 }
925
926 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
927 if (!slots)
928 goto out_free;
929 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
930
931 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
932 slot = id_to_memslot(slots, id);
933 slot->flags |= KVM_MEMSLOT_INVALID;
934
935 old_memslots = install_new_memslots(kvm, as_id, slots);
936
937 /* slot was deleted or moved, clear iommu mapping */
938 kvm_iommu_unmap_pages(kvm, &old);
939 /* From this point no new shadow pages pointing to a deleted,
940 * or moved, memslot will be created.
941 *
942 * validation of sp->gfn happens in:
943 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
944 * - kvm_is_visible_gfn (mmu_check_roots)
945 */
946 kvm_arch_flush_shadow_memslot(kvm, slot);
947
948 /*
949 * We can re-use the old_memslots from above, the only difference
950 * from the currently installed memslots is the invalid flag. This
951 * will get overwritten by update_memslots anyway.
952 */
953 slots = old_memslots;
954 }
955
956 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
957 if (r)
958 goto out_slots;
959
960 /* actual memory is freed via old in kvm_free_memslot below */
961 if (change == KVM_MR_DELETE) {
962 new.dirty_bitmap = NULL;
963 memset(&new.arch, 0, sizeof(new.arch));
964 }
965
966 update_memslots(slots, &new);
967 old_memslots = install_new_memslots(kvm, as_id, slots);
968
969 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
970
971 kvm_free_memslot(kvm, &old, &new);
972 kvfree(old_memslots);
973
974 /*
975 * IOMMU mapping: New slots need to be mapped. Old slots need to be
976 * un-mapped and re-mapped if their base changes. Since base change
977 * unmapping is handled above with slot deletion, mapping alone is
978 * needed here. Anything else the iommu might care about for existing
979 * slots (size changes, userspace addr changes and read-only flag
980 * changes) is disallowed above, so any other attribute changes getting
981 * here can be skipped.
982 */
983 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
984 r = kvm_iommu_map_pages(kvm, &new);
985 return r;
986 }
987
988 return 0;
989
990 out_slots:
991 kvfree(slots);
992 out_free:
993 kvm_free_memslot(kvm, &new, &old);
994 out:
995 return r;
996 }
997 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
998
999 int kvm_set_memory_region(struct kvm *kvm,
1000 const struct kvm_userspace_memory_region *mem)
1001 {
1002 int r;
1003
1004 mutex_lock(&kvm->slots_lock);
1005 r = __kvm_set_memory_region(kvm, mem);
1006 mutex_unlock(&kvm->slots_lock);
1007 return r;
1008 }
1009 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1010
1011 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1012 struct kvm_userspace_memory_region *mem)
1013 {
1014 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1015 return -EINVAL;
1016
1017 return kvm_set_memory_region(kvm, mem);
1018 }
1019
1020 int kvm_get_dirty_log(struct kvm *kvm,
1021 struct kvm_dirty_log *log, int *is_dirty)
1022 {
1023 struct kvm_memslots *slots;
1024 struct kvm_memory_slot *memslot;
1025 int r, i, as_id, id;
1026 unsigned long n;
1027 unsigned long any = 0;
1028
1029 r = -EINVAL;
1030 as_id = log->slot >> 16;
1031 id = (u16)log->slot;
1032 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1033 goto out;
1034
1035 slots = __kvm_memslots(kvm, as_id);
1036 memslot = id_to_memslot(slots, id);
1037 r = -ENOENT;
1038 if (!memslot->dirty_bitmap)
1039 goto out;
1040
1041 n = kvm_dirty_bitmap_bytes(memslot);
1042
1043 for (i = 0; !any && i < n/sizeof(long); ++i)
1044 any = memslot->dirty_bitmap[i];
1045
1046 r = -EFAULT;
1047 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1048 goto out;
1049
1050 if (any)
1051 *is_dirty = 1;
1052
1053 r = 0;
1054 out:
1055 return r;
1056 }
1057 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1058
1059 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1060 /**
1061 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1062 * are dirty write protect them for next write.
1063 * @kvm: pointer to kvm instance
1064 * @log: slot id and address to which we copy the log
1065 * @is_dirty: flag set if any page is dirty
1066 *
1067 * We need to keep it in mind that VCPU threads can write to the bitmap
1068 * concurrently. So, to avoid losing track of dirty pages we keep the
1069 * following order:
1070 *
1071 * 1. Take a snapshot of the bit and clear it if needed.
1072 * 2. Write protect the corresponding page.
1073 * 3. Copy the snapshot to the userspace.
1074 * 4. Upon return caller flushes TLB's if needed.
1075 *
1076 * Between 2 and 4, the guest may write to the page using the remaining TLB
1077 * entry. This is not a problem because the page is reported dirty using
1078 * the snapshot taken before and step 4 ensures that writes done after
1079 * exiting to userspace will be logged for the next call.
1080 *
1081 */
1082 int kvm_get_dirty_log_protect(struct kvm *kvm,
1083 struct kvm_dirty_log *log, bool *is_dirty)
1084 {
1085 struct kvm_memslots *slots;
1086 struct kvm_memory_slot *memslot;
1087 int r, i, as_id, id;
1088 unsigned long n;
1089 unsigned long *dirty_bitmap;
1090 unsigned long *dirty_bitmap_buffer;
1091
1092 r = -EINVAL;
1093 as_id = log->slot >> 16;
1094 id = (u16)log->slot;
1095 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1096 goto out;
1097
1098 slots = __kvm_memslots(kvm, as_id);
1099 memslot = id_to_memslot(slots, id);
1100
1101 dirty_bitmap = memslot->dirty_bitmap;
1102 r = -ENOENT;
1103 if (!dirty_bitmap)
1104 goto out;
1105
1106 n = kvm_dirty_bitmap_bytes(memslot);
1107
1108 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1109 memset(dirty_bitmap_buffer, 0, n);
1110
1111 spin_lock(&kvm->mmu_lock);
1112 *is_dirty = false;
1113 for (i = 0; i < n / sizeof(long); i++) {
1114 unsigned long mask;
1115 gfn_t offset;
1116
1117 if (!dirty_bitmap[i])
1118 continue;
1119
1120 *is_dirty = true;
1121
1122 mask = xchg(&dirty_bitmap[i], 0);
1123 dirty_bitmap_buffer[i] = mask;
1124
1125 if (mask) {
1126 offset = i * BITS_PER_LONG;
1127 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1128 offset, mask);
1129 }
1130 }
1131
1132 spin_unlock(&kvm->mmu_lock);
1133
1134 r = -EFAULT;
1135 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1136 goto out;
1137
1138 r = 0;
1139 out:
1140 return r;
1141 }
1142 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1143 #endif
1144
1145 bool kvm_largepages_enabled(void)
1146 {
1147 return largepages_enabled;
1148 }
1149
1150 void kvm_disable_largepages(void)
1151 {
1152 largepages_enabled = false;
1153 }
1154 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1155
1156 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1157 {
1158 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1159 }
1160 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1161
1162 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1163 {
1164 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1165 }
1166
1167 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1168 {
1169 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1170
1171 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1172 memslot->flags & KVM_MEMSLOT_INVALID)
1173 return 0;
1174
1175 return 1;
1176 }
1177 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1178
1179 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1180 {
1181 struct vm_area_struct *vma;
1182 unsigned long addr, size;
1183
1184 size = PAGE_SIZE;
1185
1186 addr = gfn_to_hva(kvm, gfn);
1187 if (kvm_is_error_hva(addr))
1188 return PAGE_SIZE;
1189
1190 down_read(&current->mm->mmap_sem);
1191 vma = find_vma(current->mm, addr);
1192 if (!vma)
1193 goto out;
1194
1195 size = vma_kernel_pagesize(vma);
1196
1197 out:
1198 up_read(&current->mm->mmap_sem);
1199
1200 return size;
1201 }
1202
1203 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1204 {
1205 return slot->flags & KVM_MEM_READONLY;
1206 }
1207
1208 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1209 gfn_t *nr_pages, bool write)
1210 {
1211 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1212 return KVM_HVA_ERR_BAD;
1213
1214 if (memslot_is_readonly(slot) && write)
1215 return KVM_HVA_ERR_RO_BAD;
1216
1217 if (nr_pages)
1218 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1219
1220 return __gfn_to_hva_memslot(slot, gfn);
1221 }
1222
1223 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1224 gfn_t *nr_pages)
1225 {
1226 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1227 }
1228
1229 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1230 gfn_t gfn)
1231 {
1232 return gfn_to_hva_many(slot, gfn, NULL);
1233 }
1234 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1235
1236 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1237 {
1238 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1239 }
1240 EXPORT_SYMBOL_GPL(gfn_to_hva);
1241
1242 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1243 {
1244 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1245 }
1246 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1247
1248 /*
1249 * If writable is set to false, the hva returned by this function is only
1250 * allowed to be read.
1251 */
1252 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1253 gfn_t gfn, bool *writable)
1254 {
1255 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1256
1257 if (!kvm_is_error_hva(hva) && writable)
1258 *writable = !memslot_is_readonly(slot);
1259
1260 return hva;
1261 }
1262
1263 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1264 {
1265 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1266
1267 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1268 }
1269
1270 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1271 {
1272 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1273
1274 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1275 }
1276
1277 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1278 unsigned long start, int write, struct page **page)
1279 {
1280 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1281
1282 if (write)
1283 flags |= FOLL_WRITE;
1284
1285 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1286 }
1287
1288 static inline int check_user_page_hwpoison(unsigned long addr)
1289 {
1290 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1291
1292 rc = __get_user_pages(current, current->mm, addr, 1,
1293 flags, NULL, NULL, NULL);
1294 return rc == -EHWPOISON;
1295 }
1296
1297 /*
1298 * The atomic path to get the writable pfn which will be stored in @pfn,
1299 * true indicates success, otherwise false is returned.
1300 */
1301 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1302 bool write_fault, bool *writable, pfn_t *pfn)
1303 {
1304 struct page *page[1];
1305 int npages;
1306
1307 if (!(async || atomic))
1308 return false;
1309
1310 /*
1311 * Fast pin a writable pfn only if it is a write fault request
1312 * or the caller allows to map a writable pfn for a read fault
1313 * request.
1314 */
1315 if (!(write_fault || writable))
1316 return false;
1317
1318 npages = __get_user_pages_fast(addr, 1, 1, page);
1319 if (npages == 1) {
1320 *pfn = page_to_pfn(page[0]);
1321
1322 if (writable)
1323 *writable = true;
1324 return true;
1325 }
1326
1327 return false;
1328 }
1329
1330 /*
1331 * The slow path to get the pfn of the specified host virtual address,
1332 * 1 indicates success, -errno is returned if error is detected.
1333 */
1334 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1335 bool *writable, pfn_t *pfn)
1336 {
1337 struct page *page[1];
1338 int npages = 0;
1339
1340 might_sleep();
1341
1342 if (writable)
1343 *writable = write_fault;
1344
1345 if (async) {
1346 down_read(&current->mm->mmap_sem);
1347 npages = get_user_page_nowait(current, current->mm,
1348 addr, write_fault, page);
1349 up_read(&current->mm->mmap_sem);
1350 } else
1351 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1352 write_fault, 0, page,
1353 FOLL_TOUCH|FOLL_HWPOISON);
1354 if (npages != 1)
1355 return npages;
1356
1357 /* map read fault as writable if possible */
1358 if (unlikely(!write_fault) && writable) {
1359 struct page *wpage[1];
1360
1361 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1362 if (npages == 1) {
1363 *writable = true;
1364 put_page(page[0]);
1365 page[0] = wpage[0];
1366 }
1367
1368 npages = 1;
1369 }
1370 *pfn = page_to_pfn(page[0]);
1371 return npages;
1372 }
1373
1374 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1375 {
1376 if (unlikely(!(vma->vm_flags & VM_READ)))
1377 return false;
1378
1379 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1380 return false;
1381
1382 return true;
1383 }
1384
1385 /*
1386 * Pin guest page in memory and return its pfn.
1387 * @addr: host virtual address which maps memory to the guest
1388 * @atomic: whether this function can sleep
1389 * @async: whether this function need to wait IO complete if the
1390 * host page is not in the memory
1391 * @write_fault: whether we should get a writable host page
1392 * @writable: whether it allows to map a writable host page for !@write_fault
1393 *
1394 * The function will map a writable host page for these two cases:
1395 * 1): @write_fault = true
1396 * 2): @write_fault = false && @writable, @writable will tell the caller
1397 * whether the mapping is writable.
1398 */
1399 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1400 bool write_fault, bool *writable)
1401 {
1402 struct vm_area_struct *vma;
1403 pfn_t pfn = 0;
1404 int npages;
1405
1406 /* we can do it either atomically or asynchronously, not both */
1407 BUG_ON(atomic && async);
1408
1409 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1410 return pfn;
1411
1412 if (atomic)
1413 return KVM_PFN_ERR_FAULT;
1414
1415 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1416 if (npages == 1)
1417 return pfn;
1418
1419 down_read(&current->mm->mmap_sem);
1420 if (npages == -EHWPOISON ||
1421 (!async && check_user_page_hwpoison(addr))) {
1422 pfn = KVM_PFN_ERR_HWPOISON;
1423 goto exit;
1424 }
1425
1426 vma = find_vma_intersection(current->mm, addr, addr + 1);
1427
1428 if (vma == NULL)
1429 pfn = KVM_PFN_ERR_FAULT;
1430 else if ((vma->vm_flags & VM_PFNMAP)) {
1431 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1432 vma->vm_pgoff;
1433 BUG_ON(!kvm_is_reserved_pfn(pfn));
1434 } else {
1435 if (async && vma_is_valid(vma, write_fault))
1436 *async = true;
1437 pfn = KVM_PFN_ERR_FAULT;
1438 }
1439 exit:
1440 up_read(&current->mm->mmap_sem);
1441 return pfn;
1442 }
1443
1444 pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1445 bool *async, bool write_fault, bool *writable)
1446 {
1447 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1448
1449 if (addr == KVM_HVA_ERR_RO_BAD)
1450 return KVM_PFN_ERR_RO_FAULT;
1451
1452 if (kvm_is_error_hva(addr))
1453 return KVM_PFN_NOSLOT;
1454
1455 /* Do not map writable pfn in the readonly memslot. */
1456 if (writable && memslot_is_readonly(slot)) {
1457 *writable = false;
1458 writable = NULL;
1459 }
1460
1461 return hva_to_pfn(addr, atomic, async, write_fault,
1462 writable);
1463 }
1464 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1465
1466 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1467 bool *writable)
1468 {
1469 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1470 write_fault, writable);
1471 }
1472 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1473
1474 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1475 {
1476 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1477 }
1478 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1479
1480 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1481 {
1482 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1483 }
1484 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1485
1486 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1487 {
1488 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1489 }
1490 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1491
1492 pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1493 {
1494 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1495 }
1496 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1497
1498 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1499 {
1500 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1501 }
1502 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1503
1504 pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1505 {
1506 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1507 }
1508 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1509
1510 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1511 struct page **pages, int nr_pages)
1512 {
1513 unsigned long addr;
1514 gfn_t entry;
1515
1516 addr = gfn_to_hva_many(slot, gfn, &entry);
1517 if (kvm_is_error_hva(addr))
1518 return -1;
1519
1520 if (entry < nr_pages)
1521 return 0;
1522
1523 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1524 }
1525 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1526
1527 static struct page *kvm_pfn_to_page(pfn_t pfn)
1528 {
1529 if (is_error_noslot_pfn(pfn))
1530 return KVM_ERR_PTR_BAD_PAGE;
1531
1532 if (kvm_is_reserved_pfn(pfn)) {
1533 WARN_ON(1);
1534 return KVM_ERR_PTR_BAD_PAGE;
1535 }
1536
1537 return pfn_to_page(pfn);
1538 }
1539
1540 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1541 {
1542 pfn_t pfn;
1543
1544 pfn = gfn_to_pfn(kvm, gfn);
1545
1546 return kvm_pfn_to_page(pfn);
1547 }
1548 EXPORT_SYMBOL_GPL(gfn_to_page);
1549
1550 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1551 {
1552 pfn_t pfn;
1553
1554 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1555
1556 return kvm_pfn_to_page(pfn);
1557 }
1558 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1559
1560 void kvm_release_page_clean(struct page *page)
1561 {
1562 WARN_ON(is_error_page(page));
1563
1564 kvm_release_pfn_clean(page_to_pfn(page));
1565 }
1566 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1567
1568 void kvm_release_pfn_clean(pfn_t pfn)
1569 {
1570 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1571 put_page(pfn_to_page(pfn));
1572 }
1573 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1574
1575 void kvm_release_page_dirty(struct page *page)
1576 {
1577 WARN_ON(is_error_page(page));
1578
1579 kvm_release_pfn_dirty(page_to_pfn(page));
1580 }
1581 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1582
1583 static void kvm_release_pfn_dirty(pfn_t pfn)
1584 {
1585 kvm_set_pfn_dirty(pfn);
1586 kvm_release_pfn_clean(pfn);
1587 }
1588
1589 void kvm_set_pfn_dirty(pfn_t pfn)
1590 {
1591 if (!kvm_is_reserved_pfn(pfn)) {
1592 struct page *page = pfn_to_page(pfn);
1593
1594 if (!PageReserved(page))
1595 SetPageDirty(page);
1596 }
1597 }
1598 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1599
1600 void kvm_set_pfn_accessed(pfn_t pfn)
1601 {
1602 if (!kvm_is_reserved_pfn(pfn))
1603 mark_page_accessed(pfn_to_page(pfn));
1604 }
1605 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1606
1607 void kvm_get_pfn(pfn_t pfn)
1608 {
1609 if (!kvm_is_reserved_pfn(pfn))
1610 get_page(pfn_to_page(pfn));
1611 }
1612 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1613
1614 static int next_segment(unsigned long len, int offset)
1615 {
1616 if (len > PAGE_SIZE - offset)
1617 return PAGE_SIZE - offset;
1618 else
1619 return len;
1620 }
1621
1622 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1623 void *data, int offset, int len)
1624 {
1625 int r;
1626 unsigned long addr;
1627
1628 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1629 if (kvm_is_error_hva(addr))
1630 return -EFAULT;
1631 r = __copy_from_user(data, (void __user *)addr + offset, len);
1632 if (r)
1633 return -EFAULT;
1634 return 0;
1635 }
1636
1637 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1638 int len)
1639 {
1640 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1641
1642 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1643 }
1644 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1645
1646 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1647 int offset, int len)
1648 {
1649 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1650
1651 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1652 }
1653 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1654
1655 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1656 {
1657 gfn_t gfn = gpa >> PAGE_SHIFT;
1658 int seg;
1659 int offset = offset_in_page(gpa);
1660 int ret;
1661
1662 while ((seg = next_segment(len, offset)) != 0) {
1663 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1664 if (ret < 0)
1665 return ret;
1666 offset = 0;
1667 len -= seg;
1668 data += seg;
1669 ++gfn;
1670 }
1671 return 0;
1672 }
1673 EXPORT_SYMBOL_GPL(kvm_read_guest);
1674
1675 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1676 {
1677 gfn_t gfn = gpa >> PAGE_SHIFT;
1678 int seg;
1679 int offset = offset_in_page(gpa);
1680 int ret;
1681
1682 while ((seg = next_segment(len, offset)) != 0) {
1683 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1684 if (ret < 0)
1685 return ret;
1686 offset = 0;
1687 len -= seg;
1688 data += seg;
1689 ++gfn;
1690 }
1691 return 0;
1692 }
1693 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1694
1695 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1696 void *data, int offset, unsigned long len)
1697 {
1698 int r;
1699 unsigned long addr;
1700
1701 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1702 if (kvm_is_error_hva(addr))
1703 return -EFAULT;
1704 pagefault_disable();
1705 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1706 pagefault_enable();
1707 if (r)
1708 return -EFAULT;
1709 return 0;
1710 }
1711
1712 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1713 unsigned long len)
1714 {
1715 gfn_t gfn = gpa >> PAGE_SHIFT;
1716 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1717 int offset = offset_in_page(gpa);
1718
1719 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1720 }
1721 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1722
1723 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1724 void *data, unsigned long len)
1725 {
1726 gfn_t gfn = gpa >> PAGE_SHIFT;
1727 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1728 int offset = offset_in_page(gpa);
1729
1730 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1731 }
1732 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1733
1734 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1735 const void *data, int offset, int len)
1736 {
1737 int r;
1738 unsigned long addr;
1739
1740 addr = gfn_to_hva_memslot(memslot, gfn);
1741 if (kvm_is_error_hva(addr))
1742 return -EFAULT;
1743 r = __copy_to_user((void __user *)addr + offset, data, len);
1744 if (r)
1745 return -EFAULT;
1746 mark_page_dirty_in_slot(memslot, gfn);
1747 return 0;
1748 }
1749
1750 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1751 const void *data, int offset, int len)
1752 {
1753 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1754
1755 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1756 }
1757 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1758
1759 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1760 const void *data, int offset, int len)
1761 {
1762 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1763
1764 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1765 }
1766 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1767
1768 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1769 unsigned long len)
1770 {
1771 gfn_t gfn = gpa >> PAGE_SHIFT;
1772 int seg;
1773 int offset = offset_in_page(gpa);
1774 int ret;
1775
1776 while ((seg = next_segment(len, offset)) != 0) {
1777 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1778 if (ret < 0)
1779 return ret;
1780 offset = 0;
1781 len -= seg;
1782 data += seg;
1783 ++gfn;
1784 }
1785 return 0;
1786 }
1787 EXPORT_SYMBOL_GPL(kvm_write_guest);
1788
1789 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1790 unsigned long len)
1791 {
1792 gfn_t gfn = gpa >> PAGE_SHIFT;
1793 int seg;
1794 int offset = offset_in_page(gpa);
1795 int ret;
1796
1797 while ((seg = next_segment(len, offset)) != 0) {
1798 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1799 if (ret < 0)
1800 return ret;
1801 offset = 0;
1802 len -= seg;
1803 data += seg;
1804 ++gfn;
1805 }
1806 return 0;
1807 }
1808 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1809
1810 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1811 gpa_t gpa, unsigned long len)
1812 {
1813 struct kvm_memslots *slots = kvm_memslots(kvm);
1814 int offset = offset_in_page(gpa);
1815 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1816 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1817 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1818 gfn_t nr_pages_avail;
1819
1820 ghc->gpa = gpa;
1821 ghc->generation = slots->generation;
1822 ghc->len = len;
1823 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1824 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1825 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1826 ghc->hva += offset;
1827 } else {
1828 /*
1829 * If the requested region crosses two memslots, we still
1830 * verify that the entire region is valid here.
1831 */
1832 while (start_gfn <= end_gfn) {
1833 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1834 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1835 &nr_pages_avail);
1836 if (kvm_is_error_hva(ghc->hva))
1837 return -EFAULT;
1838 start_gfn += nr_pages_avail;
1839 }
1840 /* Use the slow path for cross page reads and writes. */
1841 ghc->memslot = NULL;
1842 }
1843 return 0;
1844 }
1845 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1846
1847 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1848 void *data, unsigned long len)
1849 {
1850 struct kvm_memslots *slots = kvm_memslots(kvm);
1851 int r;
1852
1853 BUG_ON(len > ghc->len);
1854
1855 if (slots->generation != ghc->generation)
1856 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1857
1858 if (unlikely(!ghc->memslot))
1859 return kvm_write_guest(kvm, ghc->gpa, data, len);
1860
1861 if (kvm_is_error_hva(ghc->hva))
1862 return -EFAULT;
1863
1864 r = __copy_to_user((void __user *)ghc->hva, data, len);
1865 if (r)
1866 return -EFAULT;
1867 mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1868
1869 return 0;
1870 }
1871 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1872
1873 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1874 void *data, unsigned long len)
1875 {
1876 struct kvm_memslots *slots = kvm_memslots(kvm);
1877 int r;
1878
1879 BUG_ON(len > ghc->len);
1880
1881 if (slots->generation != ghc->generation)
1882 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1883
1884 if (unlikely(!ghc->memslot))
1885 return kvm_read_guest(kvm, ghc->gpa, data, len);
1886
1887 if (kvm_is_error_hva(ghc->hva))
1888 return -EFAULT;
1889
1890 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1891 if (r)
1892 return -EFAULT;
1893
1894 return 0;
1895 }
1896 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1897
1898 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1899 {
1900 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1901
1902 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1903 }
1904 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1905
1906 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1907 {
1908 gfn_t gfn = gpa >> PAGE_SHIFT;
1909 int seg;
1910 int offset = offset_in_page(gpa);
1911 int ret;
1912
1913 while ((seg = next_segment(len, offset)) != 0) {
1914 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1915 if (ret < 0)
1916 return ret;
1917 offset = 0;
1918 len -= seg;
1919 ++gfn;
1920 }
1921 return 0;
1922 }
1923 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1924
1925 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1926 gfn_t gfn)
1927 {
1928 if (memslot && memslot->dirty_bitmap) {
1929 unsigned long rel_gfn = gfn - memslot->base_gfn;
1930
1931 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1932 }
1933 }
1934
1935 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1936 {
1937 struct kvm_memory_slot *memslot;
1938
1939 memslot = gfn_to_memslot(kvm, gfn);
1940 mark_page_dirty_in_slot(memslot, gfn);
1941 }
1942 EXPORT_SYMBOL_GPL(mark_page_dirty);
1943
1944 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
1945 {
1946 struct kvm_memory_slot *memslot;
1947
1948 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1949 mark_page_dirty_in_slot(memslot, gfn);
1950 }
1951 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
1952
1953 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
1954 {
1955 int old, val;
1956
1957 old = val = vcpu->halt_poll_ns;
1958 /* 10us base */
1959 if (val == 0 && halt_poll_ns_grow)
1960 val = 10000;
1961 else
1962 val *= halt_poll_ns_grow;
1963
1964 vcpu->halt_poll_ns = val;
1965 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
1966 }
1967
1968 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
1969 {
1970 int old, val;
1971
1972 old = val = vcpu->halt_poll_ns;
1973 if (halt_poll_ns_shrink == 0)
1974 val = 0;
1975 else
1976 val /= halt_poll_ns_shrink;
1977
1978 vcpu->halt_poll_ns = val;
1979 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
1980 }
1981
1982 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1983 {
1984 if (kvm_arch_vcpu_runnable(vcpu)) {
1985 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1986 return -EINTR;
1987 }
1988 if (kvm_cpu_has_pending_timer(vcpu))
1989 return -EINTR;
1990 if (signal_pending(current))
1991 return -EINTR;
1992
1993 return 0;
1994 }
1995
1996 /*
1997 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1998 */
1999 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2000 {
2001 ktime_t start, cur;
2002 DEFINE_WAIT(wait);
2003 bool waited = false;
2004 u64 block_ns;
2005
2006 start = cur = ktime_get();
2007 if (vcpu->halt_poll_ns) {
2008 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2009
2010 ++vcpu->stat.halt_attempted_poll;
2011 do {
2012 /*
2013 * This sets KVM_REQ_UNHALT if an interrupt
2014 * arrives.
2015 */
2016 if (kvm_vcpu_check_block(vcpu) < 0) {
2017 ++vcpu->stat.halt_successful_poll;
2018 goto out;
2019 }
2020 cur = ktime_get();
2021 } while (single_task_running() && ktime_before(cur, stop));
2022 }
2023
2024 kvm_arch_vcpu_blocking(vcpu);
2025
2026 for (;;) {
2027 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2028
2029 if (kvm_vcpu_check_block(vcpu) < 0)
2030 break;
2031
2032 waited = true;
2033 schedule();
2034 }
2035
2036 finish_wait(&vcpu->wq, &wait);
2037 cur = ktime_get();
2038
2039 kvm_arch_vcpu_unblocking(vcpu);
2040 out:
2041 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2042
2043 if (halt_poll_ns) {
2044 if (block_ns <= vcpu->halt_poll_ns)
2045 ;
2046 /* we had a long block, shrink polling */
2047 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2048 shrink_halt_poll_ns(vcpu);
2049 /* we had a short halt and our poll time is too small */
2050 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2051 block_ns < halt_poll_ns)
2052 grow_halt_poll_ns(vcpu);
2053 } else
2054 vcpu->halt_poll_ns = 0;
2055
2056 trace_kvm_vcpu_wakeup(block_ns, waited);
2057 }
2058 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2059
2060 #ifndef CONFIG_S390
2061 /*
2062 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2063 */
2064 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2065 {
2066 int me;
2067 int cpu = vcpu->cpu;
2068 wait_queue_head_t *wqp;
2069
2070 wqp = kvm_arch_vcpu_wq(vcpu);
2071 if (waitqueue_active(wqp)) {
2072 wake_up_interruptible(wqp);
2073 ++vcpu->stat.halt_wakeup;
2074 }
2075
2076 me = get_cpu();
2077 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2078 if (kvm_arch_vcpu_should_kick(vcpu))
2079 smp_send_reschedule(cpu);
2080 put_cpu();
2081 }
2082 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2083 #endif /* !CONFIG_S390 */
2084
2085 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2086 {
2087 struct pid *pid;
2088 struct task_struct *task = NULL;
2089 int ret = 0;
2090
2091 rcu_read_lock();
2092 pid = rcu_dereference(target->pid);
2093 if (pid)
2094 task = get_pid_task(pid, PIDTYPE_PID);
2095 rcu_read_unlock();
2096 if (!task)
2097 return ret;
2098 ret = yield_to(task, 1);
2099 put_task_struct(task);
2100
2101 return ret;
2102 }
2103 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2104
2105 /*
2106 * Helper that checks whether a VCPU is eligible for directed yield.
2107 * Most eligible candidate to yield is decided by following heuristics:
2108 *
2109 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2110 * (preempted lock holder), indicated by @in_spin_loop.
2111 * Set at the beiginning and cleared at the end of interception/PLE handler.
2112 *
2113 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2114 * chance last time (mostly it has become eligible now since we have probably
2115 * yielded to lockholder in last iteration. This is done by toggling
2116 * @dy_eligible each time a VCPU checked for eligibility.)
2117 *
2118 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2119 * to preempted lock-holder could result in wrong VCPU selection and CPU
2120 * burning. Giving priority for a potential lock-holder increases lock
2121 * progress.
2122 *
2123 * Since algorithm is based on heuristics, accessing another VCPU data without
2124 * locking does not harm. It may result in trying to yield to same VCPU, fail
2125 * and continue with next VCPU and so on.
2126 */
2127 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2128 {
2129 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2130 bool eligible;
2131
2132 eligible = !vcpu->spin_loop.in_spin_loop ||
2133 vcpu->spin_loop.dy_eligible;
2134
2135 if (vcpu->spin_loop.in_spin_loop)
2136 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2137
2138 return eligible;
2139 #else
2140 return true;
2141 #endif
2142 }
2143
2144 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2145 {
2146 struct kvm *kvm = me->kvm;
2147 struct kvm_vcpu *vcpu;
2148 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2149 int yielded = 0;
2150 int try = 3;
2151 int pass;
2152 int i;
2153
2154 kvm_vcpu_set_in_spin_loop(me, true);
2155 /*
2156 * We boost the priority of a VCPU that is runnable but not
2157 * currently running, because it got preempted by something
2158 * else and called schedule in __vcpu_run. Hopefully that
2159 * VCPU is holding the lock that we need and will release it.
2160 * We approximate round-robin by starting at the last boosted VCPU.
2161 */
2162 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2163 kvm_for_each_vcpu(i, vcpu, kvm) {
2164 if (!pass && i <= last_boosted_vcpu) {
2165 i = last_boosted_vcpu;
2166 continue;
2167 } else if (pass && i > last_boosted_vcpu)
2168 break;
2169 if (!ACCESS_ONCE(vcpu->preempted))
2170 continue;
2171 if (vcpu == me)
2172 continue;
2173 if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2174 continue;
2175 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2176 continue;
2177
2178 yielded = kvm_vcpu_yield_to(vcpu);
2179 if (yielded > 0) {
2180 kvm->last_boosted_vcpu = i;
2181 break;
2182 } else if (yielded < 0) {
2183 try--;
2184 if (!try)
2185 break;
2186 }
2187 }
2188 }
2189 kvm_vcpu_set_in_spin_loop(me, false);
2190
2191 /* Ensure vcpu is not eligible during next spinloop */
2192 kvm_vcpu_set_dy_eligible(me, false);
2193 }
2194 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2195
2196 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2197 {
2198 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2199 struct page *page;
2200
2201 if (vmf->pgoff == 0)
2202 page = virt_to_page(vcpu->run);
2203 #ifdef CONFIG_X86
2204 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2205 page = virt_to_page(vcpu->arch.pio_data);
2206 #endif
2207 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2208 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2209 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2210 #endif
2211 else
2212 return kvm_arch_vcpu_fault(vcpu, vmf);
2213 get_page(page);
2214 vmf->page = page;
2215 return 0;
2216 }
2217
2218 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2219 .fault = kvm_vcpu_fault,
2220 };
2221
2222 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2223 {
2224 vma->vm_ops = &kvm_vcpu_vm_ops;
2225 return 0;
2226 }
2227
2228 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2229 {
2230 struct kvm_vcpu *vcpu = filp->private_data;
2231
2232 kvm_put_kvm(vcpu->kvm);
2233 return 0;
2234 }
2235
2236 static struct file_operations kvm_vcpu_fops = {
2237 .release = kvm_vcpu_release,
2238 .unlocked_ioctl = kvm_vcpu_ioctl,
2239 #ifdef CONFIG_KVM_COMPAT
2240 .compat_ioctl = kvm_vcpu_compat_ioctl,
2241 #endif
2242 .mmap = kvm_vcpu_mmap,
2243 .llseek = noop_llseek,
2244 };
2245
2246 /*
2247 * Allocates an inode for the vcpu.
2248 */
2249 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2250 {
2251 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2252 }
2253
2254 /*
2255 * Creates some virtual cpus. Good luck creating more than one.
2256 */
2257 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2258 {
2259 int r;
2260 struct kvm_vcpu *vcpu, *v;
2261
2262 if (id >= KVM_MAX_VCPUS)
2263 return -EINVAL;
2264
2265 vcpu = kvm_arch_vcpu_create(kvm, id);
2266 if (IS_ERR(vcpu))
2267 return PTR_ERR(vcpu);
2268
2269 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2270
2271 r = kvm_arch_vcpu_setup(vcpu);
2272 if (r)
2273 goto vcpu_destroy;
2274
2275 mutex_lock(&kvm->lock);
2276 if (!kvm_vcpu_compatible(vcpu)) {
2277 r = -EINVAL;
2278 goto unlock_vcpu_destroy;
2279 }
2280 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2281 r = -EINVAL;
2282 goto unlock_vcpu_destroy;
2283 }
2284
2285 kvm_for_each_vcpu(r, v, kvm)
2286 if (v->vcpu_id == id) {
2287 r = -EEXIST;
2288 goto unlock_vcpu_destroy;
2289 }
2290
2291 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2292
2293 /* Now it's all set up, let userspace reach it */
2294 kvm_get_kvm(kvm);
2295 r = create_vcpu_fd(vcpu);
2296 if (r < 0) {
2297 kvm_put_kvm(kvm);
2298 goto unlock_vcpu_destroy;
2299 }
2300
2301 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2302
2303 /*
2304 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2305 * before kvm->online_vcpu's incremented value.
2306 */
2307 smp_wmb();
2308 atomic_inc(&kvm->online_vcpus);
2309
2310 mutex_unlock(&kvm->lock);
2311 kvm_arch_vcpu_postcreate(vcpu);
2312 return r;
2313
2314 unlock_vcpu_destroy:
2315 mutex_unlock(&kvm->lock);
2316 vcpu_destroy:
2317 kvm_arch_vcpu_destroy(vcpu);
2318 return r;
2319 }
2320
2321 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2322 {
2323 if (sigset) {
2324 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2325 vcpu->sigset_active = 1;
2326 vcpu->sigset = *sigset;
2327 } else
2328 vcpu->sigset_active = 0;
2329 return 0;
2330 }
2331
2332 static long kvm_vcpu_ioctl(struct file *filp,
2333 unsigned int ioctl, unsigned long arg)
2334 {
2335 struct kvm_vcpu *vcpu = filp->private_data;
2336 void __user *argp = (void __user *)arg;
2337 int r;
2338 struct kvm_fpu *fpu = NULL;
2339 struct kvm_sregs *kvm_sregs = NULL;
2340
2341 if (vcpu->kvm->mm != current->mm)
2342 return -EIO;
2343
2344 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2345 return -EINVAL;
2346
2347 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2348 /*
2349 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2350 * so vcpu_load() would break it.
2351 */
2352 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2353 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2354 #endif
2355
2356
2357 r = vcpu_load(vcpu);
2358 if (r)
2359 return r;
2360 switch (ioctl) {
2361 case KVM_RUN:
2362 r = -EINVAL;
2363 if (arg)
2364 goto out;
2365 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2366 /* The thread running this VCPU changed. */
2367 struct pid *oldpid = vcpu->pid;
2368 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2369
2370 rcu_assign_pointer(vcpu->pid, newpid);
2371 if (oldpid)
2372 synchronize_rcu();
2373 put_pid(oldpid);
2374 }
2375 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2376 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2377 break;
2378 case KVM_GET_REGS: {
2379 struct kvm_regs *kvm_regs;
2380
2381 r = -ENOMEM;
2382 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2383 if (!kvm_regs)
2384 goto out;
2385 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2386 if (r)
2387 goto out_free1;
2388 r = -EFAULT;
2389 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2390 goto out_free1;
2391 r = 0;
2392 out_free1:
2393 kfree(kvm_regs);
2394 break;
2395 }
2396 case KVM_SET_REGS: {
2397 struct kvm_regs *kvm_regs;
2398
2399 r = -ENOMEM;
2400 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2401 if (IS_ERR(kvm_regs)) {
2402 r = PTR_ERR(kvm_regs);
2403 goto out;
2404 }
2405 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2406 kfree(kvm_regs);
2407 break;
2408 }
2409 case KVM_GET_SREGS: {
2410 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2411 r = -ENOMEM;
2412 if (!kvm_sregs)
2413 goto out;
2414 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2415 if (r)
2416 goto out;
2417 r = -EFAULT;
2418 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2419 goto out;
2420 r = 0;
2421 break;
2422 }
2423 case KVM_SET_SREGS: {
2424 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2425 if (IS_ERR(kvm_sregs)) {
2426 r = PTR_ERR(kvm_sregs);
2427 kvm_sregs = NULL;
2428 goto out;
2429 }
2430 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2431 break;
2432 }
2433 case KVM_GET_MP_STATE: {
2434 struct kvm_mp_state mp_state;
2435
2436 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2437 if (r)
2438 goto out;
2439 r = -EFAULT;
2440 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2441 goto out;
2442 r = 0;
2443 break;
2444 }
2445 case KVM_SET_MP_STATE: {
2446 struct kvm_mp_state mp_state;
2447
2448 r = -EFAULT;
2449 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2450 goto out;
2451 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2452 break;
2453 }
2454 case KVM_TRANSLATE: {
2455 struct kvm_translation tr;
2456
2457 r = -EFAULT;
2458 if (copy_from_user(&tr, argp, sizeof(tr)))
2459 goto out;
2460 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2461 if (r)
2462 goto out;
2463 r = -EFAULT;
2464 if (copy_to_user(argp, &tr, sizeof(tr)))
2465 goto out;
2466 r = 0;
2467 break;
2468 }
2469 case KVM_SET_GUEST_DEBUG: {
2470 struct kvm_guest_debug dbg;
2471
2472 r = -EFAULT;
2473 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2474 goto out;
2475 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2476 break;
2477 }
2478 case KVM_SET_SIGNAL_MASK: {
2479 struct kvm_signal_mask __user *sigmask_arg = argp;
2480 struct kvm_signal_mask kvm_sigmask;
2481 sigset_t sigset, *p;
2482
2483 p = NULL;
2484 if (argp) {
2485 r = -EFAULT;
2486 if (copy_from_user(&kvm_sigmask, argp,
2487 sizeof(kvm_sigmask)))
2488 goto out;
2489 r = -EINVAL;
2490 if (kvm_sigmask.len != sizeof(sigset))
2491 goto out;
2492 r = -EFAULT;
2493 if (copy_from_user(&sigset, sigmask_arg->sigset,
2494 sizeof(sigset)))
2495 goto out;
2496 p = &sigset;
2497 }
2498 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2499 break;
2500 }
2501 case KVM_GET_FPU: {
2502 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2503 r = -ENOMEM;
2504 if (!fpu)
2505 goto out;
2506 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2507 if (r)
2508 goto out;
2509 r = -EFAULT;
2510 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2511 goto out;
2512 r = 0;
2513 break;
2514 }
2515 case KVM_SET_FPU: {
2516 fpu = memdup_user(argp, sizeof(*fpu));
2517 if (IS_ERR(fpu)) {
2518 r = PTR_ERR(fpu);
2519 fpu = NULL;
2520 goto out;
2521 }
2522 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2523 break;
2524 }
2525 default:
2526 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2527 }
2528 out:
2529 vcpu_put(vcpu);
2530 kfree(fpu);
2531 kfree(kvm_sregs);
2532 return r;
2533 }
2534
2535 #ifdef CONFIG_KVM_COMPAT
2536 static long kvm_vcpu_compat_ioctl(struct file *filp,
2537 unsigned int ioctl, unsigned long arg)
2538 {
2539 struct kvm_vcpu *vcpu = filp->private_data;
2540 void __user *argp = compat_ptr(arg);
2541 int r;
2542
2543 if (vcpu->kvm->mm != current->mm)
2544 return -EIO;
2545
2546 switch (ioctl) {
2547 case KVM_SET_SIGNAL_MASK: {
2548 struct kvm_signal_mask __user *sigmask_arg = argp;
2549 struct kvm_signal_mask kvm_sigmask;
2550 compat_sigset_t csigset;
2551 sigset_t sigset;
2552
2553 if (argp) {
2554 r = -EFAULT;
2555 if (copy_from_user(&kvm_sigmask, argp,
2556 sizeof(kvm_sigmask)))
2557 goto out;
2558 r = -EINVAL;
2559 if (kvm_sigmask.len != sizeof(csigset))
2560 goto out;
2561 r = -EFAULT;
2562 if (copy_from_user(&csigset, sigmask_arg->sigset,
2563 sizeof(csigset)))
2564 goto out;
2565 sigset_from_compat(&sigset, &csigset);
2566 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2567 } else
2568 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2569 break;
2570 }
2571 default:
2572 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2573 }
2574
2575 out:
2576 return r;
2577 }
2578 #endif
2579
2580 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2581 int (*accessor)(struct kvm_device *dev,
2582 struct kvm_device_attr *attr),
2583 unsigned long arg)
2584 {
2585 struct kvm_device_attr attr;
2586
2587 if (!accessor)
2588 return -EPERM;
2589
2590 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2591 return -EFAULT;
2592
2593 return accessor(dev, &attr);
2594 }
2595
2596 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2597 unsigned long arg)
2598 {
2599 struct kvm_device *dev = filp->private_data;
2600
2601 switch (ioctl) {
2602 case KVM_SET_DEVICE_ATTR:
2603 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2604 case KVM_GET_DEVICE_ATTR:
2605 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2606 case KVM_HAS_DEVICE_ATTR:
2607 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2608 default:
2609 if (dev->ops->ioctl)
2610 return dev->ops->ioctl(dev, ioctl, arg);
2611
2612 return -ENOTTY;
2613 }
2614 }
2615
2616 static int kvm_device_release(struct inode *inode, struct file *filp)
2617 {
2618 struct kvm_device *dev = filp->private_data;
2619 struct kvm *kvm = dev->kvm;
2620
2621 kvm_put_kvm(kvm);
2622 return 0;
2623 }
2624
2625 static const struct file_operations kvm_device_fops = {
2626 .unlocked_ioctl = kvm_device_ioctl,
2627 #ifdef CONFIG_KVM_COMPAT
2628 .compat_ioctl = kvm_device_ioctl,
2629 #endif
2630 .release = kvm_device_release,
2631 };
2632
2633 struct kvm_device *kvm_device_from_filp(struct file *filp)
2634 {
2635 if (filp->f_op != &kvm_device_fops)
2636 return NULL;
2637
2638 return filp->private_data;
2639 }
2640
2641 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2642 #ifdef CONFIG_KVM_MPIC
2643 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2644 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2645 #endif
2646
2647 #ifdef CONFIG_KVM_XICS
2648 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2649 #endif
2650 };
2651
2652 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2653 {
2654 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2655 return -ENOSPC;
2656
2657 if (kvm_device_ops_table[type] != NULL)
2658 return -EEXIST;
2659
2660 kvm_device_ops_table[type] = ops;
2661 return 0;
2662 }
2663
2664 void kvm_unregister_device_ops(u32 type)
2665 {
2666 if (kvm_device_ops_table[type] != NULL)
2667 kvm_device_ops_table[type] = NULL;
2668 }
2669
2670 static int kvm_ioctl_create_device(struct kvm *kvm,
2671 struct kvm_create_device *cd)
2672 {
2673 struct kvm_device_ops *ops = NULL;
2674 struct kvm_device *dev;
2675 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2676 int ret;
2677
2678 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2679 return -ENODEV;
2680
2681 ops = kvm_device_ops_table[cd->type];
2682 if (ops == NULL)
2683 return -ENODEV;
2684
2685 if (test)
2686 return 0;
2687
2688 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2689 if (!dev)
2690 return -ENOMEM;
2691
2692 dev->ops = ops;
2693 dev->kvm = kvm;
2694
2695 ret = ops->create(dev, cd->type);
2696 if (ret < 0) {
2697 kfree(dev);
2698 return ret;
2699 }
2700
2701 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2702 if (ret < 0) {
2703 ops->destroy(dev);
2704 return ret;
2705 }
2706
2707 list_add(&dev->vm_node, &kvm->devices);
2708 kvm_get_kvm(kvm);
2709 cd->fd = ret;
2710 return 0;
2711 }
2712
2713 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2714 {
2715 switch (arg) {
2716 case KVM_CAP_USER_MEMORY:
2717 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2718 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2719 case KVM_CAP_INTERNAL_ERROR_DATA:
2720 #ifdef CONFIG_HAVE_KVM_MSI
2721 case KVM_CAP_SIGNAL_MSI:
2722 #endif
2723 #ifdef CONFIG_HAVE_KVM_IRQFD
2724 case KVM_CAP_IRQFD:
2725 case KVM_CAP_IRQFD_RESAMPLE:
2726 #endif
2727 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2728 case KVM_CAP_CHECK_EXTENSION_VM:
2729 return 1;
2730 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2731 case KVM_CAP_IRQ_ROUTING:
2732 return KVM_MAX_IRQ_ROUTES;
2733 #endif
2734 #if KVM_ADDRESS_SPACE_NUM > 1
2735 case KVM_CAP_MULTI_ADDRESS_SPACE:
2736 return KVM_ADDRESS_SPACE_NUM;
2737 #endif
2738 default:
2739 break;
2740 }
2741 return kvm_vm_ioctl_check_extension(kvm, arg);
2742 }
2743
2744 static long kvm_vm_ioctl(struct file *filp,
2745 unsigned int ioctl, unsigned long arg)
2746 {
2747 struct kvm *kvm = filp->private_data;
2748 void __user *argp = (void __user *)arg;
2749 int r;
2750
2751 if (kvm->mm != current->mm)
2752 return -EIO;
2753 switch (ioctl) {
2754 case KVM_CREATE_VCPU:
2755 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2756 break;
2757 case KVM_SET_USER_MEMORY_REGION: {
2758 struct kvm_userspace_memory_region kvm_userspace_mem;
2759
2760 r = -EFAULT;
2761 if (copy_from_user(&kvm_userspace_mem, argp,
2762 sizeof(kvm_userspace_mem)))
2763 goto out;
2764
2765 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2766 break;
2767 }
2768 case KVM_GET_DIRTY_LOG: {
2769 struct kvm_dirty_log log;
2770
2771 r = -EFAULT;
2772 if (copy_from_user(&log, argp, sizeof(log)))
2773 goto out;
2774 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2775 break;
2776 }
2777 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2778 case KVM_REGISTER_COALESCED_MMIO: {
2779 struct kvm_coalesced_mmio_zone zone;
2780
2781 r = -EFAULT;
2782 if (copy_from_user(&zone, argp, sizeof(zone)))
2783 goto out;
2784 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2785 break;
2786 }
2787 case KVM_UNREGISTER_COALESCED_MMIO: {
2788 struct kvm_coalesced_mmio_zone zone;
2789
2790 r = -EFAULT;
2791 if (copy_from_user(&zone, argp, sizeof(zone)))
2792 goto out;
2793 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2794 break;
2795 }
2796 #endif
2797 case KVM_IRQFD: {
2798 struct kvm_irqfd data;
2799
2800 r = -EFAULT;
2801 if (copy_from_user(&data, argp, sizeof(data)))
2802 goto out;
2803 r = kvm_irqfd(kvm, &data);
2804 break;
2805 }
2806 case KVM_IOEVENTFD: {
2807 struct kvm_ioeventfd data;
2808
2809 r = -EFAULT;
2810 if (copy_from_user(&data, argp, sizeof(data)))
2811 goto out;
2812 r = kvm_ioeventfd(kvm, &data);
2813 break;
2814 }
2815 #ifdef CONFIG_HAVE_KVM_MSI
2816 case KVM_SIGNAL_MSI: {
2817 struct kvm_msi msi;
2818
2819 r = -EFAULT;
2820 if (copy_from_user(&msi, argp, sizeof(msi)))
2821 goto out;
2822 r = kvm_send_userspace_msi(kvm, &msi);
2823 break;
2824 }
2825 #endif
2826 #ifdef __KVM_HAVE_IRQ_LINE
2827 case KVM_IRQ_LINE_STATUS:
2828 case KVM_IRQ_LINE: {
2829 struct kvm_irq_level irq_event;
2830
2831 r = -EFAULT;
2832 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2833 goto out;
2834
2835 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2836 ioctl == KVM_IRQ_LINE_STATUS);
2837 if (r)
2838 goto out;
2839
2840 r = -EFAULT;
2841 if (ioctl == KVM_IRQ_LINE_STATUS) {
2842 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2843 goto out;
2844 }
2845
2846 r = 0;
2847 break;
2848 }
2849 #endif
2850 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2851 case KVM_SET_GSI_ROUTING: {
2852 struct kvm_irq_routing routing;
2853 struct kvm_irq_routing __user *urouting;
2854 struct kvm_irq_routing_entry *entries;
2855
2856 r = -EFAULT;
2857 if (copy_from_user(&routing, argp, sizeof(routing)))
2858 goto out;
2859 r = -EINVAL;
2860 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2861 goto out;
2862 if (routing.flags)
2863 goto out;
2864 r = -ENOMEM;
2865 entries = vmalloc(routing.nr * sizeof(*entries));
2866 if (!entries)
2867 goto out;
2868 r = -EFAULT;
2869 urouting = argp;
2870 if (copy_from_user(entries, urouting->entries,
2871 routing.nr * sizeof(*entries)))
2872 goto out_free_irq_routing;
2873 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2874 routing.flags);
2875 out_free_irq_routing:
2876 vfree(entries);
2877 break;
2878 }
2879 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2880 case KVM_CREATE_DEVICE: {
2881 struct kvm_create_device cd;
2882
2883 r = -EFAULT;
2884 if (copy_from_user(&cd, argp, sizeof(cd)))
2885 goto out;
2886
2887 r = kvm_ioctl_create_device(kvm, &cd);
2888 if (r)
2889 goto out;
2890
2891 r = -EFAULT;
2892 if (copy_to_user(argp, &cd, sizeof(cd)))
2893 goto out;
2894
2895 r = 0;
2896 break;
2897 }
2898 case KVM_CHECK_EXTENSION:
2899 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2900 break;
2901 default:
2902 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2903 }
2904 out:
2905 return r;
2906 }
2907
2908 #ifdef CONFIG_KVM_COMPAT
2909 struct compat_kvm_dirty_log {
2910 __u32 slot;
2911 __u32 padding1;
2912 union {
2913 compat_uptr_t dirty_bitmap; /* one bit per page */
2914 __u64 padding2;
2915 };
2916 };
2917
2918 static long kvm_vm_compat_ioctl(struct file *filp,
2919 unsigned int ioctl, unsigned long arg)
2920 {
2921 struct kvm *kvm = filp->private_data;
2922 int r;
2923
2924 if (kvm->mm != current->mm)
2925 return -EIO;
2926 switch (ioctl) {
2927 case KVM_GET_DIRTY_LOG: {
2928 struct compat_kvm_dirty_log compat_log;
2929 struct kvm_dirty_log log;
2930
2931 r = -EFAULT;
2932 if (copy_from_user(&compat_log, (void __user *)arg,
2933 sizeof(compat_log)))
2934 goto out;
2935 log.slot = compat_log.slot;
2936 log.padding1 = compat_log.padding1;
2937 log.padding2 = compat_log.padding2;
2938 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2939
2940 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2941 break;
2942 }
2943 default:
2944 r = kvm_vm_ioctl(filp, ioctl, arg);
2945 }
2946
2947 out:
2948 return r;
2949 }
2950 #endif
2951
2952 static struct file_operations kvm_vm_fops = {
2953 .release = kvm_vm_release,
2954 .unlocked_ioctl = kvm_vm_ioctl,
2955 #ifdef CONFIG_KVM_COMPAT
2956 .compat_ioctl = kvm_vm_compat_ioctl,
2957 #endif
2958 .llseek = noop_llseek,
2959 };
2960
2961 static int kvm_dev_ioctl_create_vm(unsigned long type)
2962 {
2963 int r;
2964 struct kvm *kvm;
2965
2966 kvm = kvm_create_vm(type);
2967 if (IS_ERR(kvm))
2968 return PTR_ERR(kvm);
2969 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2970 r = kvm_coalesced_mmio_init(kvm);
2971 if (r < 0) {
2972 kvm_put_kvm(kvm);
2973 return r;
2974 }
2975 #endif
2976 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2977 if (r < 0)
2978 kvm_put_kvm(kvm);
2979
2980 return r;
2981 }
2982
2983 static long kvm_dev_ioctl(struct file *filp,
2984 unsigned int ioctl, unsigned long arg)
2985 {
2986 long r = -EINVAL;
2987
2988 switch (ioctl) {
2989 case KVM_GET_API_VERSION:
2990 if (arg)
2991 goto out;
2992 r = KVM_API_VERSION;
2993 break;
2994 case KVM_CREATE_VM:
2995 r = kvm_dev_ioctl_create_vm(arg);
2996 break;
2997 case KVM_CHECK_EXTENSION:
2998 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2999 break;
3000 case KVM_GET_VCPU_MMAP_SIZE:
3001 if (arg)
3002 goto out;
3003 r = PAGE_SIZE; /* struct kvm_run */
3004 #ifdef CONFIG_X86
3005 r += PAGE_SIZE; /* pio data page */
3006 #endif
3007 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3008 r += PAGE_SIZE; /* coalesced mmio ring page */
3009 #endif
3010 break;
3011 case KVM_TRACE_ENABLE:
3012 case KVM_TRACE_PAUSE:
3013 case KVM_TRACE_DISABLE:
3014 r = -EOPNOTSUPP;
3015 break;
3016 default:
3017 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3018 }
3019 out:
3020 return r;
3021 }
3022
3023 static struct file_operations kvm_chardev_ops = {
3024 .unlocked_ioctl = kvm_dev_ioctl,
3025 .compat_ioctl = kvm_dev_ioctl,
3026 .llseek = noop_llseek,
3027 };
3028
3029 static struct miscdevice kvm_dev = {
3030 KVM_MINOR,
3031 "kvm",
3032 &kvm_chardev_ops,
3033 };
3034
3035 static void hardware_enable_nolock(void *junk)
3036 {
3037 int cpu = raw_smp_processor_id();
3038 int r;
3039
3040 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3041 return;
3042
3043 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3044
3045 r = kvm_arch_hardware_enable();
3046
3047 if (r) {
3048 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3049 atomic_inc(&hardware_enable_failed);
3050 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3051 }
3052 }
3053
3054 static void hardware_enable(void)
3055 {
3056 raw_spin_lock(&kvm_count_lock);
3057 if (kvm_usage_count)
3058 hardware_enable_nolock(NULL);
3059 raw_spin_unlock(&kvm_count_lock);
3060 }
3061
3062 static void hardware_disable_nolock(void *junk)
3063 {
3064 int cpu = raw_smp_processor_id();
3065
3066 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3067 return;
3068 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3069 kvm_arch_hardware_disable();
3070 }
3071
3072 static void hardware_disable(void)
3073 {
3074 raw_spin_lock(&kvm_count_lock);
3075 if (kvm_usage_count)
3076 hardware_disable_nolock(NULL);
3077 raw_spin_unlock(&kvm_count_lock);
3078 }
3079
3080 static void hardware_disable_all_nolock(void)
3081 {
3082 BUG_ON(!kvm_usage_count);
3083
3084 kvm_usage_count--;
3085 if (!kvm_usage_count)
3086 on_each_cpu(hardware_disable_nolock, NULL, 1);
3087 }
3088
3089 static void hardware_disable_all(void)
3090 {
3091 raw_spin_lock(&kvm_count_lock);
3092 hardware_disable_all_nolock();
3093 raw_spin_unlock(&kvm_count_lock);
3094 }
3095
3096 static int hardware_enable_all(void)
3097 {
3098 int r = 0;
3099
3100 raw_spin_lock(&kvm_count_lock);
3101
3102 kvm_usage_count++;
3103 if (kvm_usage_count == 1) {
3104 atomic_set(&hardware_enable_failed, 0);
3105 on_each_cpu(hardware_enable_nolock, NULL, 1);
3106
3107 if (atomic_read(&hardware_enable_failed)) {
3108 hardware_disable_all_nolock();
3109 r = -EBUSY;
3110 }
3111 }
3112
3113 raw_spin_unlock(&kvm_count_lock);
3114
3115 return r;
3116 }
3117
3118 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3119 void *v)
3120 {
3121 val &= ~CPU_TASKS_FROZEN;
3122 switch (val) {
3123 case CPU_DYING:
3124 hardware_disable();
3125 break;
3126 case CPU_STARTING:
3127 hardware_enable();
3128 break;
3129 }
3130 return NOTIFY_OK;
3131 }
3132
3133 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3134 void *v)
3135 {
3136 /*
3137 * Some (well, at least mine) BIOSes hang on reboot if
3138 * in vmx root mode.
3139 *
3140 * And Intel TXT required VMX off for all cpu when system shutdown.
3141 */
3142 pr_info("kvm: exiting hardware virtualization\n");
3143 kvm_rebooting = true;
3144 on_each_cpu(hardware_disable_nolock, NULL, 1);
3145 return NOTIFY_OK;
3146 }
3147
3148 static struct notifier_block kvm_reboot_notifier = {
3149 .notifier_call = kvm_reboot,
3150 .priority = 0,
3151 };
3152
3153 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3154 {
3155 int i;
3156
3157 for (i = 0; i < bus->dev_count; i++) {
3158 struct kvm_io_device *pos = bus->range[i].dev;
3159
3160 kvm_iodevice_destructor(pos);
3161 }
3162 kfree(bus);
3163 }
3164
3165 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3166 const struct kvm_io_range *r2)
3167 {
3168 gpa_t addr1 = r1->addr;
3169 gpa_t addr2 = r2->addr;
3170
3171 if (addr1 < addr2)
3172 return -1;
3173
3174 /* If r2->len == 0, match the exact address. If r2->len != 0,
3175 * accept any overlapping write. Any order is acceptable for
3176 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3177 * we process all of them.
3178 */
3179 if (r2->len) {
3180 addr1 += r1->len;
3181 addr2 += r2->len;
3182 }
3183
3184 if (addr1 > addr2)
3185 return 1;
3186
3187 return 0;
3188 }
3189
3190 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3191 {
3192 return kvm_io_bus_cmp(p1, p2);
3193 }
3194
3195 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3196 gpa_t addr, int len)
3197 {
3198 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3199 .addr = addr,
3200 .len = len,
3201 .dev = dev,
3202 };
3203
3204 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3205 kvm_io_bus_sort_cmp, NULL);
3206
3207 return 0;
3208 }
3209
3210 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3211 gpa_t addr, int len)
3212 {
3213 struct kvm_io_range *range, key;
3214 int off;
3215
3216 key = (struct kvm_io_range) {
3217 .addr = addr,
3218 .len = len,
3219 };
3220
3221 range = bsearch(&key, bus->range, bus->dev_count,
3222 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3223 if (range == NULL)
3224 return -ENOENT;
3225
3226 off = range - bus->range;
3227
3228 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3229 off--;
3230
3231 return off;
3232 }
3233
3234 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3235 struct kvm_io_range *range, const void *val)
3236 {
3237 int idx;
3238
3239 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3240 if (idx < 0)
3241 return -EOPNOTSUPP;
3242
3243 while (idx < bus->dev_count &&
3244 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3245 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3246 range->len, val))
3247 return idx;
3248 idx++;
3249 }
3250
3251 return -EOPNOTSUPP;
3252 }
3253
3254 /* kvm_io_bus_write - called under kvm->slots_lock */
3255 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3256 int len, const void *val)
3257 {
3258 struct kvm_io_bus *bus;
3259 struct kvm_io_range range;
3260 int r;
3261
3262 range = (struct kvm_io_range) {
3263 .addr = addr,
3264 .len = len,
3265 };
3266
3267 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3268 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3269 return r < 0 ? r : 0;
3270 }
3271
3272 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3273 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3274 gpa_t addr, int len, const void *val, long cookie)
3275 {
3276 struct kvm_io_bus *bus;
3277 struct kvm_io_range range;
3278
3279 range = (struct kvm_io_range) {
3280 .addr = addr,
3281 .len = len,
3282 };
3283
3284 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3285
3286 /* First try the device referenced by cookie. */
3287 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3288 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3289 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3290 val))
3291 return cookie;
3292
3293 /*
3294 * cookie contained garbage; fall back to search and return the
3295 * correct cookie value.
3296 */
3297 return __kvm_io_bus_write(vcpu, bus, &range, val);
3298 }
3299
3300 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3301 struct kvm_io_range *range, void *val)
3302 {
3303 int idx;
3304
3305 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3306 if (idx < 0)
3307 return -EOPNOTSUPP;
3308
3309 while (idx < bus->dev_count &&
3310 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3311 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3312 range->len, val))
3313 return idx;
3314 idx++;
3315 }
3316
3317 return -EOPNOTSUPP;
3318 }
3319 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3320
3321 /* kvm_io_bus_read - called under kvm->slots_lock */
3322 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3323 int len, void *val)
3324 {
3325 struct kvm_io_bus *bus;
3326 struct kvm_io_range range;
3327 int r;
3328
3329 range = (struct kvm_io_range) {
3330 .addr = addr,
3331 .len = len,
3332 };
3333
3334 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3335 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3336 return r < 0 ? r : 0;
3337 }
3338
3339
3340 /* Caller must hold slots_lock. */
3341 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3342 int len, struct kvm_io_device *dev)
3343 {
3344 struct kvm_io_bus *new_bus, *bus;
3345
3346 bus = kvm->buses[bus_idx];
3347 /* exclude ioeventfd which is limited by maximum fd */
3348 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3349 return -ENOSPC;
3350
3351 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3352 sizeof(struct kvm_io_range)), GFP_KERNEL);
3353 if (!new_bus)
3354 return -ENOMEM;
3355 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3356 sizeof(struct kvm_io_range)));
3357 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3358 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3359 synchronize_srcu_expedited(&kvm->srcu);
3360 kfree(bus);
3361
3362 return 0;
3363 }
3364
3365 /* Caller must hold slots_lock. */
3366 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3367 struct kvm_io_device *dev)
3368 {
3369 int i, r;
3370 struct kvm_io_bus *new_bus, *bus;
3371
3372 bus = kvm->buses[bus_idx];
3373 r = -ENOENT;
3374 for (i = 0; i < bus->dev_count; i++)
3375 if (bus->range[i].dev == dev) {
3376 r = 0;
3377 break;
3378 }
3379
3380 if (r)
3381 return r;
3382
3383 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3384 sizeof(struct kvm_io_range)), GFP_KERNEL);
3385 if (!new_bus)
3386 return -ENOMEM;
3387
3388 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3389 new_bus->dev_count--;
3390 memcpy(new_bus->range + i, bus->range + i + 1,
3391 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3392
3393 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3394 synchronize_srcu_expedited(&kvm->srcu);
3395 kfree(bus);
3396 return r;
3397 }
3398
3399 static struct notifier_block kvm_cpu_notifier = {
3400 .notifier_call = kvm_cpu_hotplug,
3401 };
3402
3403 static int vm_stat_get(void *_offset, u64 *val)
3404 {
3405 unsigned offset = (long)_offset;
3406 struct kvm *kvm;
3407
3408 *val = 0;
3409 spin_lock(&kvm_lock);
3410 list_for_each_entry(kvm, &vm_list, vm_list)
3411 *val += *(u32 *)((void *)kvm + offset);
3412 spin_unlock(&kvm_lock);
3413 return 0;
3414 }
3415
3416 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3417
3418 static int vcpu_stat_get(void *_offset, u64 *val)
3419 {
3420 unsigned offset = (long)_offset;
3421 struct kvm *kvm;
3422 struct kvm_vcpu *vcpu;
3423 int i;
3424
3425 *val = 0;
3426 spin_lock(&kvm_lock);
3427 list_for_each_entry(kvm, &vm_list, vm_list)
3428 kvm_for_each_vcpu(i, vcpu, kvm)
3429 *val += *(u32 *)((void *)vcpu + offset);
3430
3431 spin_unlock(&kvm_lock);
3432 return 0;
3433 }
3434
3435 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3436
3437 static const struct file_operations *stat_fops[] = {
3438 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3439 [KVM_STAT_VM] = &vm_stat_fops,
3440 };
3441
3442 static int kvm_init_debug(void)
3443 {
3444 int r = -EEXIST;
3445 struct kvm_stats_debugfs_item *p;
3446
3447 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3448 if (kvm_debugfs_dir == NULL)
3449 goto out;
3450
3451 for (p = debugfs_entries; p->name; ++p) {
3452 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3453 (void *)(long)p->offset,
3454 stat_fops[p->kind]);
3455 if (p->dentry == NULL)
3456 goto out_dir;
3457 }
3458
3459 return 0;
3460
3461 out_dir:
3462 debugfs_remove_recursive(kvm_debugfs_dir);
3463 out:
3464 return r;
3465 }
3466
3467 static void kvm_exit_debug(void)
3468 {
3469 struct kvm_stats_debugfs_item *p;
3470
3471 for (p = debugfs_entries; p->name; ++p)
3472 debugfs_remove(p->dentry);
3473 debugfs_remove(kvm_debugfs_dir);
3474 }
3475
3476 static int kvm_suspend(void)
3477 {
3478 if (kvm_usage_count)
3479 hardware_disable_nolock(NULL);
3480 return 0;
3481 }
3482
3483 static void kvm_resume(void)
3484 {
3485 if (kvm_usage_count) {
3486 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3487 hardware_enable_nolock(NULL);
3488 }
3489 }
3490
3491 static struct syscore_ops kvm_syscore_ops = {
3492 .suspend = kvm_suspend,
3493 .resume = kvm_resume,
3494 };
3495
3496 static inline
3497 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3498 {
3499 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3500 }
3501
3502 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3503 {
3504 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3505
3506 if (vcpu->preempted)
3507 vcpu->preempted = false;
3508
3509 kvm_arch_sched_in(vcpu, cpu);
3510
3511 kvm_arch_vcpu_load(vcpu, cpu);
3512 }
3513
3514 static void kvm_sched_out(struct preempt_notifier *pn,
3515 struct task_struct *next)
3516 {
3517 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3518
3519 if (current->state == TASK_RUNNING)
3520 vcpu->preempted = true;
3521 kvm_arch_vcpu_put(vcpu);
3522 }
3523
3524 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3525 struct module *module)
3526 {
3527 int r;
3528 int cpu;
3529
3530 r = kvm_arch_init(opaque);
3531 if (r)
3532 goto out_fail;
3533
3534 /*
3535 * kvm_arch_init makes sure there's at most one caller
3536 * for architectures that support multiple implementations,
3537 * like intel and amd on x86.
3538 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3539 * conflicts in case kvm is already setup for another implementation.
3540 */
3541 r = kvm_irqfd_init();
3542 if (r)
3543 goto out_irqfd;
3544
3545 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3546 r = -ENOMEM;
3547 goto out_free_0;
3548 }
3549
3550 r = kvm_arch_hardware_setup();
3551 if (r < 0)
3552 goto out_free_0a;
3553
3554 for_each_online_cpu(cpu) {
3555 smp_call_function_single(cpu,
3556 kvm_arch_check_processor_compat,
3557 &r, 1);
3558 if (r < 0)
3559 goto out_free_1;
3560 }
3561
3562 r = register_cpu_notifier(&kvm_cpu_notifier);
3563 if (r)
3564 goto out_free_2;
3565 register_reboot_notifier(&kvm_reboot_notifier);
3566
3567 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3568 if (!vcpu_align)
3569 vcpu_align = __alignof__(struct kvm_vcpu);
3570 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3571 0, NULL);
3572 if (!kvm_vcpu_cache) {
3573 r = -ENOMEM;
3574 goto out_free_3;
3575 }
3576
3577 r = kvm_async_pf_init();
3578 if (r)
3579 goto out_free;
3580
3581 kvm_chardev_ops.owner = module;
3582 kvm_vm_fops.owner = module;
3583 kvm_vcpu_fops.owner = module;
3584
3585 r = misc_register(&kvm_dev);
3586 if (r) {
3587 pr_err("kvm: misc device register failed\n");
3588 goto out_unreg;
3589 }
3590
3591 register_syscore_ops(&kvm_syscore_ops);
3592
3593 kvm_preempt_ops.sched_in = kvm_sched_in;
3594 kvm_preempt_ops.sched_out = kvm_sched_out;
3595
3596 r = kvm_init_debug();
3597 if (r) {
3598 pr_err("kvm: create debugfs files failed\n");
3599 goto out_undebugfs;
3600 }
3601
3602 r = kvm_vfio_ops_init();
3603 WARN_ON(r);
3604
3605 return 0;
3606
3607 out_undebugfs:
3608 unregister_syscore_ops(&kvm_syscore_ops);
3609 misc_deregister(&kvm_dev);
3610 out_unreg:
3611 kvm_async_pf_deinit();
3612 out_free:
3613 kmem_cache_destroy(kvm_vcpu_cache);
3614 out_free_3:
3615 unregister_reboot_notifier(&kvm_reboot_notifier);
3616 unregister_cpu_notifier(&kvm_cpu_notifier);
3617 out_free_2:
3618 out_free_1:
3619 kvm_arch_hardware_unsetup();
3620 out_free_0a:
3621 free_cpumask_var(cpus_hardware_enabled);
3622 out_free_0:
3623 kvm_irqfd_exit();
3624 out_irqfd:
3625 kvm_arch_exit();
3626 out_fail:
3627 return r;
3628 }
3629 EXPORT_SYMBOL_GPL(kvm_init);
3630
3631 void kvm_exit(void)
3632 {
3633 kvm_exit_debug();
3634 misc_deregister(&kvm_dev);
3635 kmem_cache_destroy(kvm_vcpu_cache);
3636 kvm_async_pf_deinit();
3637 unregister_syscore_ops(&kvm_syscore_ops);
3638 unregister_reboot_notifier(&kvm_reboot_notifier);
3639 unregister_cpu_notifier(&kvm_cpu_notifier);
3640 on_each_cpu(hardware_disable_nolock, NULL, 1);
3641 kvm_arch_hardware_unsetup();
3642 kvm_arch_exit();
3643 kvm_irqfd_exit();
3644 free_cpumask_var(cpus_hardware_enabled);
3645 kvm_vfio_ops_exit();
3646 }
3647 EXPORT_SYMBOL_GPL(kvm_exit);