]> git.proxmox.com Git - qemu.git/blob - vl.c
0482d979451aafb1cfacf83eaf2c847851f2a65a
[qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw/hw.h"
25 #include "hw/boards.h"
26 #include "hw/usb.h"
27 #include "hw/pcmcia.h"
28 #include "hw/pc.h"
29 #include "hw/audiodev.h"
30 #include "hw/isa.h"
31 #include "hw/baum.h"
32 #include "hw/bt.h"
33 #include "net.h"
34 #include "console.h"
35 #include "sysemu.h"
36 #include "gdbstub.h"
37 #include "qemu-timer.h"
38 #include "qemu-char.h"
39 #include "cache-utils.h"
40 #include "block.h"
41 #include "audio/audio.h"
42 #include "migration.h"
43 #include "kvm.h"
44 #include "balloon.h"
45
46 #include <unistd.h>
47 #include <fcntl.h>
48 #include <signal.h>
49 #include <time.h>
50 #include <errno.h>
51 #include <sys/time.h>
52 #include <zlib.h>
53
54 #ifndef _WIN32
55 #include <sys/times.h>
56 #include <sys/wait.h>
57 #include <termios.h>
58 #include <sys/mman.h>
59 #include <sys/ioctl.h>
60 #include <sys/resource.h>
61 #include <sys/socket.h>
62 #include <netinet/in.h>
63 #include <net/if.h>
64 #if defined(__NetBSD__)
65 #include <net/if_tap.h>
66 #endif
67 #ifdef __linux__
68 #include <linux/if_tun.h>
69 #endif
70 #include <arpa/inet.h>
71 #include <dirent.h>
72 #include <netdb.h>
73 #include <sys/select.h>
74 #ifdef _BSD
75 #include <sys/stat.h>
76 #ifdef __FreeBSD__
77 #include <libutil.h>
78 #else
79 #include <util.h>
80 #endif
81 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
82 #include <freebsd/stdlib.h>
83 #else
84 #ifdef __linux__
85 #include <pty.h>
86 #include <malloc.h>
87 #include <linux/rtc.h>
88
89 /* For the benefit of older linux systems which don't supply it,
90 we use a local copy of hpet.h. */
91 /* #include <linux/hpet.h> */
92 #include "hpet.h"
93
94 #include <linux/ppdev.h>
95 #include <linux/parport.h>
96 #endif
97 #ifdef __sun__
98 #include <sys/stat.h>
99 #include <sys/ethernet.h>
100 #include <sys/sockio.h>
101 #include <netinet/arp.h>
102 #include <netinet/in.h>
103 #include <netinet/in_systm.h>
104 #include <netinet/ip.h>
105 #include <netinet/ip_icmp.h> // must come after ip.h
106 #include <netinet/udp.h>
107 #include <netinet/tcp.h>
108 #include <net/if.h>
109 #include <syslog.h>
110 #include <stropts.h>
111 #endif
112 #endif
113 #endif
114
115 #include "qemu_socket.h"
116
117 #if defined(CONFIG_SLIRP)
118 #include "libslirp.h"
119 #endif
120
121 #if defined(__OpenBSD__)
122 #include <util.h>
123 #endif
124
125 #if defined(CONFIG_VDE)
126 #include <libvdeplug.h>
127 #endif
128
129 #ifdef _WIN32
130 #include <malloc.h>
131 #include <sys/timeb.h>
132 #include <mmsystem.h>
133 #define getopt_long_only getopt_long
134 #define memalign(align, size) malloc(size)
135 #endif
136
137 #ifdef CONFIG_SDL
138 #ifdef __APPLE__
139 #include <SDL/SDL.h>
140 #endif
141 #endif /* CONFIG_SDL */
142
143 #ifdef CONFIG_COCOA
144 #undef main
145 #define main qemu_main
146 #endif /* CONFIG_COCOA */
147
148 #include "disas.h"
149
150 #include "exec-all.h"
151
152 //#define DEBUG_UNUSED_IOPORT
153 //#define DEBUG_IOPORT
154 //#define DEBUG_NET
155 //#define DEBUG_SLIRP
156
157
158 #ifdef DEBUG_IOPORT
159 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
160 #else
161 # define LOG_IOPORT(...) do { } while (0)
162 #endif
163
164 #ifdef TARGET_PPC
165 #define DEFAULT_RAM_SIZE 144
166 #else
167 #define DEFAULT_RAM_SIZE 128
168 #endif
169
170 /* Max number of USB devices that can be specified on the commandline. */
171 #define MAX_USB_CMDLINE 8
172
173 /* Max number of bluetooth switches on the commandline. */
174 #define MAX_BT_CMDLINE 10
175
176 /* XXX: use a two level table to limit memory usage */
177 #define MAX_IOPORTS 65536
178
179 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
180 const char *bios_name = NULL;
181 static void *ioport_opaque[MAX_IOPORTS];
182 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
183 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
184 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
185 to store the VM snapshots */
186 DriveInfo drives_table[MAX_DRIVES+1];
187 int nb_drives;
188 static int vga_ram_size;
189 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
190 DisplayState display_state;
191 int nographic;
192 static int curses;
193 static int sdl;
194 const char* keyboard_layout = NULL;
195 int64_t ticks_per_sec;
196 ram_addr_t ram_size;
197 int nb_nics;
198 NICInfo nd_table[MAX_NICS];
199 int vm_running;
200 static int rtc_utc = 1;
201 static int rtc_date_offset = -1; /* -1 means no change */
202 int cirrus_vga_enabled = 1;
203 int std_vga_enabled = 0;
204 int vmsvga_enabled = 0;
205 #ifdef TARGET_SPARC
206 int graphic_width = 1024;
207 int graphic_height = 768;
208 int graphic_depth = 8;
209 #else
210 int graphic_width = 800;
211 int graphic_height = 600;
212 int graphic_depth = 15;
213 #endif
214 static int full_screen = 0;
215 #ifdef CONFIG_SDL
216 static int no_frame = 0;
217 #endif
218 int no_quit = 0;
219 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
220 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
221 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
222 #ifdef TARGET_I386
223 int win2k_install_hack = 0;
224 int rtc_td_hack = 0;
225 #endif
226 int usb_enabled = 0;
227 int smp_cpus = 1;
228 const char *vnc_display;
229 int acpi_enabled = 1;
230 int no_hpet = 0;
231 int fd_bootchk = 1;
232 int no_reboot = 0;
233 int no_shutdown = 0;
234 int cursor_hide = 1;
235 int graphic_rotate = 0;
236 int daemonize = 0;
237 const char *option_rom[MAX_OPTION_ROMS];
238 int nb_option_roms;
239 int semihosting_enabled = 0;
240 #ifdef TARGET_ARM
241 int old_param = 0;
242 #endif
243 const char *qemu_name;
244 int alt_grab = 0;
245 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
246 unsigned int nb_prom_envs = 0;
247 const char *prom_envs[MAX_PROM_ENVS];
248 #endif
249 static int nb_drives_opt;
250 static struct drive_opt {
251 const char *file;
252 char opt[1024];
253 } drives_opt[MAX_DRIVES];
254
255 static CPUState *cur_cpu;
256 static CPUState *next_cpu;
257 static int event_pending = 1;
258 /* Conversion factor from emulated instructions to virtual clock ticks. */
259 static int icount_time_shift;
260 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
261 #define MAX_ICOUNT_SHIFT 10
262 /* Compensate for varying guest execution speed. */
263 static int64_t qemu_icount_bias;
264 static QEMUTimer *icount_rt_timer;
265 static QEMUTimer *icount_vm_timer;
266
267 uint8_t qemu_uuid[16];
268
269 /***********************************************************/
270 /* x86 ISA bus support */
271
272 target_phys_addr_t isa_mem_base = 0;
273 PicState2 *isa_pic;
274
275 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
276 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
277
278 static uint32_t ioport_read(int index, uint32_t address)
279 {
280 static IOPortReadFunc *default_func[3] = {
281 default_ioport_readb,
282 default_ioport_readw,
283 default_ioport_readl
284 };
285 IOPortReadFunc *func = ioport_read_table[index][address];
286 if (!func)
287 func = default_func[index];
288 return func(ioport_opaque[address], address);
289 }
290
291 static void ioport_write(int index, uint32_t address, uint32_t data)
292 {
293 static IOPortWriteFunc *default_func[3] = {
294 default_ioport_writeb,
295 default_ioport_writew,
296 default_ioport_writel
297 };
298 IOPortWriteFunc *func = ioport_write_table[index][address];
299 if (!func)
300 func = default_func[index];
301 func(ioport_opaque[address], address, data);
302 }
303
304 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
305 {
306 #ifdef DEBUG_UNUSED_IOPORT
307 fprintf(stderr, "unused inb: port=0x%04x\n", address);
308 #endif
309 return 0xff;
310 }
311
312 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
313 {
314 #ifdef DEBUG_UNUSED_IOPORT
315 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
316 #endif
317 }
318
319 /* default is to make two byte accesses */
320 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
321 {
322 uint32_t data;
323 data = ioport_read(0, address);
324 address = (address + 1) & (MAX_IOPORTS - 1);
325 data |= ioport_read(0, address) << 8;
326 return data;
327 }
328
329 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
330 {
331 ioport_write(0, address, data & 0xff);
332 address = (address + 1) & (MAX_IOPORTS - 1);
333 ioport_write(0, address, (data >> 8) & 0xff);
334 }
335
336 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
337 {
338 #ifdef DEBUG_UNUSED_IOPORT
339 fprintf(stderr, "unused inl: port=0x%04x\n", address);
340 #endif
341 return 0xffffffff;
342 }
343
344 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
345 {
346 #ifdef DEBUG_UNUSED_IOPORT
347 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
348 #endif
349 }
350
351 /* size is the word size in byte */
352 int register_ioport_read(int start, int length, int size,
353 IOPortReadFunc *func, void *opaque)
354 {
355 int i, bsize;
356
357 if (size == 1) {
358 bsize = 0;
359 } else if (size == 2) {
360 bsize = 1;
361 } else if (size == 4) {
362 bsize = 2;
363 } else {
364 hw_error("register_ioport_read: invalid size");
365 return -1;
366 }
367 for(i = start; i < start + length; i += size) {
368 ioport_read_table[bsize][i] = func;
369 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
370 hw_error("register_ioport_read: invalid opaque");
371 ioport_opaque[i] = opaque;
372 }
373 return 0;
374 }
375
376 /* size is the word size in byte */
377 int register_ioport_write(int start, int length, int size,
378 IOPortWriteFunc *func, void *opaque)
379 {
380 int i, bsize;
381
382 if (size == 1) {
383 bsize = 0;
384 } else if (size == 2) {
385 bsize = 1;
386 } else if (size == 4) {
387 bsize = 2;
388 } else {
389 hw_error("register_ioport_write: invalid size");
390 return -1;
391 }
392 for(i = start; i < start + length; i += size) {
393 ioport_write_table[bsize][i] = func;
394 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
395 hw_error("register_ioport_write: invalid opaque");
396 ioport_opaque[i] = opaque;
397 }
398 return 0;
399 }
400
401 void isa_unassign_ioport(int start, int length)
402 {
403 int i;
404
405 for(i = start; i < start + length; i++) {
406 ioport_read_table[0][i] = default_ioport_readb;
407 ioport_read_table[1][i] = default_ioport_readw;
408 ioport_read_table[2][i] = default_ioport_readl;
409
410 ioport_write_table[0][i] = default_ioport_writeb;
411 ioport_write_table[1][i] = default_ioport_writew;
412 ioport_write_table[2][i] = default_ioport_writel;
413 }
414 }
415
416 /***********************************************************/
417
418 void cpu_outb(CPUState *env, int addr, int val)
419 {
420 LOG_IOPORT("outb: %04x %02x\n", addr, val);
421 ioport_write(0, addr, val);
422 #ifdef USE_KQEMU
423 if (env)
424 env->last_io_time = cpu_get_time_fast();
425 #endif
426 }
427
428 void cpu_outw(CPUState *env, int addr, int val)
429 {
430 LOG_IOPORT("outw: %04x %04x\n", addr, val);
431 ioport_write(1, addr, val);
432 #ifdef USE_KQEMU
433 if (env)
434 env->last_io_time = cpu_get_time_fast();
435 #endif
436 }
437
438 void cpu_outl(CPUState *env, int addr, int val)
439 {
440 LOG_IOPORT("outl: %04x %08x\n", addr, val);
441 ioport_write(2, addr, val);
442 #ifdef USE_KQEMU
443 if (env)
444 env->last_io_time = cpu_get_time_fast();
445 #endif
446 }
447
448 int cpu_inb(CPUState *env, int addr)
449 {
450 int val;
451 val = ioport_read(0, addr);
452 LOG_IOPORT("inb : %04x %02x\n", addr, val);
453 #ifdef USE_KQEMU
454 if (env)
455 env->last_io_time = cpu_get_time_fast();
456 #endif
457 return val;
458 }
459
460 int cpu_inw(CPUState *env, int addr)
461 {
462 int val;
463 val = ioport_read(1, addr);
464 LOG_IOPORT("inw : %04x %04x\n", addr, val);
465 #ifdef USE_KQEMU
466 if (env)
467 env->last_io_time = cpu_get_time_fast();
468 #endif
469 return val;
470 }
471
472 int cpu_inl(CPUState *env, int addr)
473 {
474 int val;
475 val = ioport_read(2, addr);
476 LOG_IOPORT("inl : %04x %08x\n", addr, val);
477 #ifdef USE_KQEMU
478 if (env)
479 env->last_io_time = cpu_get_time_fast();
480 #endif
481 return val;
482 }
483
484 /***********************************************************/
485 void hw_error(const char *fmt, ...)
486 {
487 va_list ap;
488 CPUState *env;
489
490 va_start(ap, fmt);
491 fprintf(stderr, "qemu: hardware error: ");
492 vfprintf(stderr, fmt, ap);
493 fprintf(stderr, "\n");
494 for(env = first_cpu; env != NULL; env = env->next_cpu) {
495 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
496 #ifdef TARGET_I386
497 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
498 #else
499 cpu_dump_state(env, stderr, fprintf, 0);
500 #endif
501 }
502 va_end(ap);
503 abort();
504 }
505
506 /***************/
507 /* ballooning */
508
509 static QEMUBalloonEvent *qemu_balloon_event;
510 void *qemu_balloon_event_opaque;
511
512 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
513 {
514 qemu_balloon_event = func;
515 qemu_balloon_event_opaque = opaque;
516 }
517
518 void qemu_balloon(ram_addr_t target)
519 {
520 if (qemu_balloon_event)
521 qemu_balloon_event(qemu_balloon_event_opaque, target);
522 }
523
524 ram_addr_t qemu_balloon_status(void)
525 {
526 if (qemu_balloon_event)
527 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
528 return 0;
529 }
530
531 /***********************************************************/
532 /* keyboard/mouse */
533
534 static QEMUPutKBDEvent *qemu_put_kbd_event;
535 static void *qemu_put_kbd_event_opaque;
536 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
537 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
538
539 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
540 {
541 qemu_put_kbd_event_opaque = opaque;
542 qemu_put_kbd_event = func;
543 }
544
545 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
546 void *opaque, int absolute,
547 const char *name)
548 {
549 QEMUPutMouseEntry *s, *cursor;
550
551 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
552 if (!s)
553 return NULL;
554
555 s->qemu_put_mouse_event = func;
556 s->qemu_put_mouse_event_opaque = opaque;
557 s->qemu_put_mouse_event_absolute = absolute;
558 s->qemu_put_mouse_event_name = qemu_strdup(name);
559 s->next = NULL;
560
561 if (!qemu_put_mouse_event_head) {
562 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
563 return s;
564 }
565
566 cursor = qemu_put_mouse_event_head;
567 while (cursor->next != NULL)
568 cursor = cursor->next;
569
570 cursor->next = s;
571 qemu_put_mouse_event_current = s;
572
573 return s;
574 }
575
576 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
577 {
578 QEMUPutMouseEntry *prev = NULL, *cursor;
579
580 if (!qemu_put_mouse_event_head || entry == NULL)
581 return;
582
583 cursor = qemu_put_mouse_event_head;
584 while (cursor != NULL && cursor != entry) {
585 prev = cursor;
586 cursor = cursor->next;
587 }
588
589 if (cursor == NULL) // does not exist or list empty
590 return;
591 else if (prev == NULL) { // entry is head
592 qemu_put_mouse_event_head = cursor->next;
593 if (qemu_put_mouse_event_current == entry)
594 qemu_put_mouse_event_current = cursor->next;
595 qemu_free(entry->qemu_put_mouse_event_name);
596 qemu_free(entry);
597 return;
598 }
599
600 prev->next = entry->next;
601
602 if (qemu_put_mouse_event_current == entry)
603 qemu_put_mouse_event_current = prev;
604
605 qemu_free(entry->qemu_put_mouse_event_name);
606 qemu_free(entry);
607 }
608
609 void kbd_put_keycode(int keycode)
610 {
611 if (qemu_put_kbd_event) {
612 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
613 }
614 }
615
616 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
617 {
618 QEMUPutMouseEvent *mouse_event;
619 void *mouse_event_opaque;
620 int width;
621
622 if (!qemu_put_mouse_event_current) {
623 return;
624 }
625
626 mouse_event =
627 qemu_put_mouse_event_current->qemu_put_mouse_event;
628 mouse_event_opaque =
629 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
630
631 if (mouse_event) {
632 if (graphic_rotate) {
633 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
634 width = 0x7fff;
635 else
636 width = graphic_width - 1;
637 mouse_event(mouse_event_opaque,
638 width - dy, dx, dz, buttons_state);
639 } else
640 mouse_event(mouse_event_opaque,
641 dx, dy, dz, buttons_state);
642 }
643 }
644
645 int kbd_mouse_is_absolute(void)
646 {
647 if (!qemu_put_mouse_event_current)
648 return 0;
649
650 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
651 }
652
653 void do_info_mice(void)
654 {
655 QEMUPutMouseEntry *cursor;
656 int index = 0;
657
658 if (!qemu_put_mouse_event_head) {
659 term_printf("No mouse devices connected\n");
660 return;
661 }
662
663 term_printf("Mouse devices available:\n");
664 cursor = qemu_put_mouse_event_head;
665 while (cursor != NULL) {
666 term_printf("%c Mouse #%d: %s\n",
667 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
668 index, cursor->qemu_put_mouse_event_name);
669 index++;
670 cursor = cursor->next;
671 }
672 }
673
674 void do_mouse_set(int index)
675 {
676 QEMUPutMouseEntry *cursor;
677 int i = 0;
678
679 if (!qemu_put_mouse_event_head) {
680 term_printf("No mouse devices connected\n");
681 return;
682 }
683
684 cursor = qemu_put_mouse_event_head;
685 while (cursor != NULL && index != i) {
686 i++;
687 cursor = cursor->next;
688 }
689
690 if (cursor != NULL)
691 qemu_put_mouse_event_current = cursor;
692 else
693 term_printf("Mouse at given index not found\n");
694 }
695
696 /* compute with 96 bit intermediate result: (a*b)/c */
697 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
698 {
699 union {
700 uint64_t ll;
701 struct {
702 #ifdef WORDS_BIGENDIAN
703 uint32_t high, low;
704 #else
705 uint32_t low, high;
706 #endif
707 } l;
708 } u, res;
709 uint64_t rl, rh;
710
711 u.ll = a;
712 rl = (uint64_t)u.l.low * (uint64_t)b;
713 rh = (uint64_t)u.l.high * (uint64_t)b;
714 rh += (rl >> 32);
715 res.l.high = rh / c;
716 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
717 return res.ll;
718 }
719
720 /***********************************************************/
721 /* real time host monotonic timer */
722
723 #define QEMU_TIMER_BASE 1000000000LL
724
725 #ifdef WIN32
726
727 static int64_t clock_freq;
728
729 static void init_get_clock(void)
730 {
731 LARGE_INTEGER freq;
732 int ret;
733 ret = QueryPerformanceFrequency(&freq);
734 if (ret == 0) {
735 fprintf(stderr, "Could not calibrate ticks\n");
736 exit(1);
737 }
738 clock_freq = freq.QuadPart;
739 }
740
741 static int64_t get_clock(void)
742 {
743 LARGE_INTEGER ti;
744 QueryPerformanceCounter(&ti);
745 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
746 }
747
748 #else
749
750 static int use_rt_clock;
751
752 static void init_get_clock(void)
753 {
754 use_rt_clock = 0;
755 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000)
756 {
757 struct timespec ts;
758 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
759 use_rt_clock = 1;
760 }
761 }
762 #endif
763 }
764
765 static int64_t get_clock(void)
766 {
767 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000)
768 if (use_rt_clock) {
769 struct timespec ts;
770 clock_gettime(CLOCK_MONOTONIC, &ts);
771 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
772 } else
773 #endif
774 {
775 /* XXX: using gettimeofday leads to problems if the date
776 changes, so it should be avoided. */
777 struct timeval tv;
778 gettimeofday(&tv, NULL);
779 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
780 }
781 }
782 #endif
783
784 /* Return the virtual CPU time, based on the instruction counter. */
785 static int64_t cpu_get_icount(void)
786 {
787 int64_t icount;
788 CPUState *env = cpu_single_env;;
789 icount = qemu_icount;
790 if (env) {
791 if (!can_do_io(env))
792 fprintf(stderr, "Bad clock read\n");
793 icount -= (env->icount_decr.u16.low + env->icount_extra);
794 }
795 return qemu_icount_bias + (icount << icount_time_shift);
796 }
797
798 /***********************************************************/
799 /* guest cycle counter */
800
801 static int64_t cpu_ticks_prev;
802 static int64_t cpu_ticks_offset;
803 static int64_t cpu_clock_offset;
804 static int cpu_ticks_enabled;
805
806 /* return the host CPU cycle counter and handle stop/restart */
807 int64_t cpu_get_ticks(void)
808 {
809 if (use_icount) {
810 return cpu_get_icount();
811 }
812 if (!cpu_ticks_enabled) {
813 return cpu_ticks_offset;
814 } else {
815 int64_t ticks;
816 ticks = cpu_get_real_ticks();
817 if (cpu_ticks_prev > ticks) {
818 /* Note: non increasing ticks may happen if the host uses
819 software suspend */
820 cpu_ticks_offset += cpu_ticks_prev - ticks;
821 }
822 cpu_ticks_prev = ticks;
823 return ticks + cpu_ticks_offset;
824 }
825 }
826
827 /* return the host CPU monotonic timer and handle stop/restart */
828 static int64_t cpu_get_clock(void)
829 {
830 int64_t ti;
831 if (!cpu_ticks_enabled) {
832 return cpu_clock_offset;
833 } else {
834 ti = get_clock();
835 return ti + cpu_clock_offset;
836 }
837 }
838
839 /* enable cpu_get_ticks() */
840 void cpu_enable_ticks(void)
841 {
842 if (!cpu_ticks_enabled) {
843 cpu_ticks_offset -= cpu_get_real_ticks();
844 cpu_clock_offset -= get_clock();
845 cpu_ticks_enabled = 1;
846 }
847 }
848
849 /* disable cpu_get_ticks() : the clock is stopped. You must not call
850 cpu_get_ticks() after that. */
851 void cpu_disable_ticks(void)
852 {
853 if (cpu_ticks_enabled) {
854 cpu_ticks_offset = cpu_get_ticks();
855 cpu_clock_offset = cpu_get_clock();
856 cpu_ticks_enabled = 0;
857 }
858 }
859
860 /***********************************************************/
861 /* timers */
862
863 #define QEMU_TIMER_REALTIME 0
864 #define QEMU_TIMER_VIRTUAL 1
865
866 struct QEMUClock {
867 int type;
868 /* XXX: add frequency */
869 };
870
871 struct QEMUTimer {
872 QEMUClock *clock;
873 int64_t expire_time;
874 QEMUTimerCB *cb;
875 void *opaque;
876 struct QEMUTimer *next;
877 };
878
879 struct qemu_alarm_timer {
880 char const *name;
881 unsigned int flags;
882
883 int (*start)(struct qemu_alarm_timer *t);
884 void (*stop)(struct qemu_alarm_timer *t);
885 void (*rearm)(struct qemu_alarm_timer *t);
886 void *priv;
887 };
888
889 #define ALARM_FLAG_DYNTICKS 0x1
890 #define ALARM_FLAG_EXPIRED 0x2
891
892 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
893 {
894 return t->flags & ALARM_FLAG_DYNTICKS;
895 }
896
897 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
898 {
899 if (!alarm_has_dynticks(t))
900 return;
901
902 t->rearm(t);
903 }
904
905 /* TODO: MIN_TIMER_REARM_US should be optimized */
906 #define MIN_TIMER_REARM_US 250
907
908 static struct qemu_alarm_timer *alarm_timer;
909 #ifndef _WIN32
910 static int alarm_timer_rfd, alarm_timer_wfd;
911 #endif
912
913 #ifdef _WIN32
914
915 struct qemu_alarm_win32 {
916 MMRESULT timerId;
917 HANDLE host_alarm;
918 unsigned int period;
919 } alarm_win32_data = {0, NULL, -1};
920
921 static int win32_start_timer(struct qemu_alarm_timer *t);
922 static void win32_stop_timer(struct qemu_alarm_timer *t);
923 static void win32_rearm_timer(struct qemu_alarm_timer *t);
924
925 #else
926
927 static int unix_start_timer(struct qemu_alarm_timer *t);
928 static void unix_stop_timer(struct qemu_alarm_timer *t);
929
930 #ifdef __linux__
931
932 static int dynticks_start_timer(struct qemu_alarm_timer *t);
933 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
934 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
935
936 static int hpet_start_timer(struct qemu_alarm_timer *t);
937 static void hpet_stop_timer(struct qemu_alarm_timer *t);
938
939 static int rtc_start_timer(struct qemu_alarm_timer *t);
940 static void rtc_stop_timer(struct qemu_alarm_timer *t);
941
942 #endif /* __linux__ */
943
944 #endif /* _WIN32 */
945
946 /* Correlation between real and virtual time is always going to be
947 fairly approximate, so ignore small variation.
948 When the guest is idle real and virtual time will be aligned in
949 the IO wait loop. */
950 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
951
952 static void icount_adjust(void)
953 {
954 int64_t cur_time;
955 int64_t cur_icount;
956 int64_t delta;
957 static int64_t last_delta;
958 /* If the VM is not running, then do nothing. */
959 if (!vm_running)
960 return;
961
962 cur_time = cpu_get_clock();
963 cur_icount = qemu_get_clock(vm_clock);
964 delta = cur_icount - cur_time;
965 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
966 if (delta > 0
967 && last_delta + ICOUNT_WOBBLE < delta * 2
968 && icount_time_shift > 0) {
969 /* The guest is getting too far ahead. Slow time down. */
970 icount_time_shift--;
971 }
972 if (delta < 0
973 && last_delta - ICOUNT_WOBBLE > delta * 2
974 && icount_time_shift < MAX_ICOUNT_SHIFT) {
975 /* The guest is getting too far behind. Speed time up. */
976 icount_time_shift++;
977 }
978 last_delta = delta;
979 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
980 }
981
982 static void icount_adjust_rt(void * opaque)
983 {
984 qemu_mod_timer(icount_rt_timer,
985 qemu_get_clock(rt_clock) + 1000);
986 icount_adjust();
987 }
988
989 static void icount_adjust_vm(void * opaque)
990 {
991 qemu_mod_timer(icount_vm_timer,
992 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
993 icount_adjust();
994 }
995
996 static void init_icount_adjust(void)
997 {
998 /* Have both realtime and virtual time triggers for speed adjustment.
999 The realtime trigger catches emulated time passing too slowly,
1000 the virtual time trigger catches emulated time passing too fast.
1001 Realtime triggers occur even when idle, so use them less frequently
1002 than VM triggers. */
1003 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1004 qemu_mod_timer(icount_rt_timer,
1005 qemu_get_clock(rt_clock) + 1000);
1006 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1007 qemu_mod_timer(icount_vm_timer,
1008 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1009 }
1010
1011 static struct qemu_alarm_timer alarm_timers[] = {
1012 #ifndef _WIN32
1013 #ifdef __linux__
1014 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1015 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1016 /* HPET - if available - is preferred */
1017 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1018 /* ...otherwise try RTC */
1019 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1020 #endif
1021 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1022 #else
1023 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1024 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1025 {"win32", 0, win32_start_timer,
1026 win32_stop_timer, NULL, &alarm_win32_data},
1027 #endif
1028 {NULL, }
1029 };
1030
1031 static void show_available_alarms(void)
1032 {
1033 int i;
1034
1035 printf("Available alarm timers, in order of precedence:\n");
1036 for (i = 0; alarm_timers[i].name; i++)
1037 printf("%s\n", alarm_timers[i].name);
1038 }
1039
1040 static void configure_alarms(char const *opt)
1041 {
1042 int i;
1043 int cur = 0;
1044 int count = ARRAY_SIZE(alarm_timers) - 1;
1045 char *arg;
1046 char *name;
1047 struct qemu_alarm_timer tmp;
1048
1049 if (!strcmp(opt, "?")) {
1050 show_available_alarms();
1051 exit(0);
1052 }
1053
1054 arg = strdup(opt);
1055
1056 /* Reorder the array */
1057 name = strtok(arg, ",");
1058 while (name) {
1059 for (i = 0; i < count && alarm_timers[i].name; i++) {
1060 if (!strcmp(alarm_timers[i].name, name))
1061 break;
1062 }
1063
1064 if (i == count) {
1065 fprintf(stderr, "Unknown clock %s\n", name);
1066 goto next;
1067 }
1068
1069 if (i < cur)
1070 /* Ignore */
1071 goto next;
1072
1073 /* Swap */
1074 tmp = alarm_timers[i];
1075 alarm_timers[i] = alarm_timers[cur];
1076 alarm_timers[cur] = tmp;
1077
1078 cur++;
1079 next:
1080 name = strtok(NULL, ",");
1081 }
1082
1083 free(arg);
1084
1085 if (cur) {
1086 /* Disable remaining timers */
1087 for (i = cur; i < count; i++)
1088 alarm_timers[i].name = NULL;
1089 } else {
1090 show_available_alarms();
1091 exit(1);
1092 }
1093 }
1094
1095 QEMUClock *rt_clock;
1096 QEMUClock *vm_clock;
1097
1098 static QEMUTimer *active_timers[2];
1099
1100 static QEMUClock *qemu_new_clock(int type)
1101 {
1102 QEMUClock *clock;
1103 clock = qemu_mallocz(sizeof(QEMUClock));
1104 if (!clock)
1105 return NULL;
1106 clock->type = type;
1107 return clock;
1108 }
1109
1110 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1111 {
1112 QEMUTimer *ts;
1113
1114 ts = qemu_mallocz(sizeof(QEMUTimer));
1115 ts->clock = clock;
1116 ts->cb = cb;
1117 ts->opaque = opaque;
1118 return ts;
1119 }
1120
1121 void qemu_free_timer(QEMUTimer *ts)
1122 {
1123 qemu_free(ts);
1124 }
1125
1126 /* stop a timer, but do not dealloc it */
1127 void qemu_del_timer(QEMUTimer *ts)
1128 {
1129 QEMUTimer **pt, *t;
1130
1131 /* NOTE: this code must be signal safe because
1132 qemu_timer_expired() can be called from a signal. */
1133 pt = &active_timers[ts->clock->type];
1134 for(;;) {
1135 t = *pt;
1136 if (!t)
1137 break;
1138 if (t == ts) {
1139 *pt = t->next;
1140 break;
1141 }
1142 pt = &t->next;
1143 }
1144 }
1145
1146 /* modify the current timer so that it will be fired when current_time
1147 >= expire_time. The corresponding callback will be called. */
1148 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1149 {
1150 QEMUTimer **pt, *t;
1151
1152 qemu_del_timer(ts);
1153
1154 /* add the timer in the sorted list */
1155 /* NOTE: this code must be signal safe because
1156 qemu_timer_expired() can be called from a signal. */
1157 pt = &active_timers[ts->clock->type];
1158 for(;;) {
1159 t = *pt;
1160 if (!t)
1161 break;
1162 if (t->expire_time > expire_time)
1163 break;
1164 pt = &t->next;
1165 }
1166 ts->expire_time = expire_time;
1167 ts->next = *pt;
1168 *pt = ts;
1169
1170 /* Rearm if necessary */
1171 if (pt == &active_timers[ts->clock->type]) {
1172 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1173 qemu_rearm_alarm_timer(alarm_timer);
1174 }
1175 /* Interrupt execution to force deadline recalculation. */
1176 if (use_icount && cpu_single_env) {
1177 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
1178 }
1179 }
1180 }
1181
1182 int qemu_timer_pending(QEMUTimer *ts)
1183 {
1184 QEMUTimer *t;
1185 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1186 if (t == ts)
1187 return 1;
1188 }
1189 return 0;
1190 }
1191
1192 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1193 {
1194 if (!timer_head)
1195 return 0;
1196 return (timer_head->expire_time <= current_time);
1197 }
1198
1199 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1200 {
1201 QEMUTimer *ts;
1202
1203 for(;;) {
1204 ts = *ptimer_head;
1205 if (!ts || ts->expire_time > current_time)
1206 break;
1207 /* remove timer from the list before calling the callback */
1208 *ptimer_head = ts->next;
1209 ts->next = NULL;
1210
1211 /* run the callback (the timer list can be modified) */
1212 ts->cb(ts->opaque);
1213 }
1214 }
1215
1216 int64_t qemu_get_clock(QEMUClock *clock)
1217 {
1218 switch(clock->type) {
1219 case QEMU_TIMER_REALTIME:
1220 return get_clock() / 1000000;
1221 default:
1222 case QEMU_TIMER_VIRTUAL:
1223 if (use_icount) {
1224 return cpu_get_icount();
1225 } else {
1226 return cpu_get_clock();
1227 }
1228 }
1229 }
1230
1231 static void init_timers(void)
1232 {
1233 init_get_clock();
1234 ticks_per_sec = QEMU_TIMER_BASE;
1235 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1236 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1237 }
1238
1239 /* save a timer */
1240 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1241 {
1242 uint64_t expire_time;
1243
1244 if (qemu_timer_pending(ts)) {
1245 expire_time = ts->expire_time;
1246 } else {
1247 expire_time = -1;
1248 }
1249 qemu_put_be64(f, expire_time);
1250 }
1251
1252 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1253 {
1254 uint64_t expire_time;
1255
1256 expire_time = qemu_get_be64(f);
1257 if (expire_time != -1) {
1258 qemu_mod_timer(ts, expire_time);
1259 } else {
1260 qemu_del_timer(ts);
1261 }
1262 }
1263
1264 static void timer_save(QEMUFile *f, void *opaque)
1265 {
1266 if (cpu_ticks_enabled) {
1267 hw_error("cannot save state if virtual timers are running");
1268 }
1269 qemu_put_be64(f, cpu_ticks_offset);
1270 qemu_put_be64(f, ticks_per_sec);
1271 qemu_put_be64(f, cpu_clock_offset);
1272 }
1273
1274 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1275 {
1276 if (version_id != 1 && version_id != 2)
1277 return -EINVAL;
1278 if (cpu_ticks_enabled) {
1279 return -EINVAL;
1280 }
1281 cpu_ticks_offset=qemu_get_be64(f);
1282 ticks_per_sec=qemu_get_be64(f);
1283 if (version_id == 2) {
1284 cpu_clock_offset=qemu_get_be64(f);
1285 }
1286 return 0;
1287 }
1288
1289 #ifdef _WIN32
1290 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1291 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1292 #else
1293 static void host_alarm_handler(int host_signum)
1294 #endif
1295 {
1296 #if 0
1297 #define DISP_FREQ 1000
1298 {
1299 static int64_t delta_min = INT64_MAX;
1300 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1301 static int count;
1302 ti = qemu_get_clock(vm_clock);
1303 if (last_clock != 0) {
1304 delta = ti - last_clock;
1305 if (delta < delta_min)
1306 delta_min = delta;
1307 if (delta > delta_max)
1308 delta_max = delta;
1309 delta_cum += delta;
1310 if (++count == DISP_FREQ) {
1311 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1312 muldiv64(delta_min, 1000000, ticks_per_sec),
1313 muldiv64(delta_max, 1000000, ticks_per_sec),
1314 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1315 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1316 count = 0;
1317 delta_min = INT64_MAX;
1318 delta_max = 0;
1319 delta_cum = 0;
1320 }
1321 }
1322 last_clock = ti;
1323 }
1324 #endif
1325 if (alarm_has_dynticks(alarm_timer) ||
1326 (!use_icount &&
1327 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1328 qemu_get_clock(vm_clock))) ||
1329 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1330 qemu_get_clock(rt_clock))) {
1331 CPUState *env = next_cpu;
1332
1333 #ifdef _WIN32
1334 struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1335 SetEvent(data->host_alarm);
1336 #else
1337 static const char byte = 0;
1338 write(alarm_timer_wfd, &byte, sizeof(byte));
1339 #endif
1340 alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1341
1342 if (env) {
1343 /* stop the currently executing cpu because a timer occured */
1344 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1345 #ifdef USE_KQEMU
1346 if (env->kqemu_enabled) {
1347 kqemu_cpu_interrupt(env);
1348 }
1349 #endif
1350 }
1351 event_pending = 1;
1352 }
1353 }
1354
1355 static int64_t qemu_next_deadline(void)
1356 {
1357 int64_t delta;
1358
1359 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1360 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1361 qemu_get_clock(vm_clock);
1362 } else {
1363 /* To avoid problems with overflow limit this to 2^32. */
1364 delta = INT32_MAX;
1365 }
1366
1367 if (delta < 0)
1368 delta = 0;
1369
1370 return delta;
1371 }
1372
1373 #if defined(__linux__) || defined(_WIN32)
1374 static uint64_t qemu_next_deadline_dyntick(void)
1375 {
1376 int64_t delta;
1377 int64_t rtdelta;
1378
1379 if (use_icount)
1380 delta = INT32_MAX;
1381 else
1382 delta = (qemu_next_deadline() + 999) / 1000;
1383
1384 if (active_timers[QEMU_TIMER_REALTIME]) {
1385 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1386 qemu_get_clock(rt_clock))*1000;
1387 if (rtdelta < delta)
1388 delta = rtdelta;
1389 }
1390
1391 if (delta < MIN_TIMER_REARM_US)
1392 delta = MIN_TIMER_REARM_US;
1393
1394 return delta;
1395 }
1396 #endif
1397
1398 #ifndef _WIN32
1399
1400 /* Sets a specific flag */
1401 static int fcntl_setfl(int fd, int flag)
1402 {
1403 int flags;
1404
1405 flags = fcntl(fd, F_GETFL);
1406 if (flags == -1)
1407 return -errno;
1408
1409 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1410 return -errno;
1411
1412 return 0;
1413 }
1414
1415 #if defined(__linux__)
1416
1417 #define RTC_FREQ 1024
1418
1419 static void enable_sigio_timer(int fd)
1420 {
1421 struct sigaction act;
1422
1423 /* timer signal */
1424 sigfillset(&act.sa_mask);
1425 act.sa_flags = 0;
1426 act.sa_handler = host_alarm_handler;
1427
1428 sigaction(SIGIO, &act, NULL);
1429 fcntl_setfl(fd, O_ASYNC);
1430 fcntl(fd, F_SETOWN, getpid());
1431 }
1432
1433 static int hpet_start_timer(struct qemu_alarm_timer *t)
1434 {
1435 struct hpet_info info;
1436 int r, fd;
1437
1438 fd = open("/dev/hpet", O_RDONLY);
1439 if (fd < 0)
1440 return -1;
1441
1442 /* Set frequency */
1443 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1444 if (r < 0) {
1445 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1446 "error, but for better emulation accuracy type:\n"
1447 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1448 goto fail;
1449 }
1450
1451 /* Check capabilities */
1452 r = ioctl(fd, HPET_INFO, &info);
1453 if (r < 0)
1454 goto fail;
1455
1456 /* Enable periodic mode */
1457 r = ioctl(fd, HPET_EPI, 0);
1458 if (info.hi_flags && (r < 0))
1459 goto fail;
1460
1461 /* Enable interrupt */
1462 r = ioctl(fd, HPET_IE_ON, 0);
1463 if (r < 0)
1464 goto fail;
1465
1466 enable_sigio_timer(fd);
1467 t->priv = (void *)(long)fd;
1468
1469 return 0;
1470 fail:
1471 close(fd);
1472 return -1;
1473 }
1474
1475 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1476 {
1477 int fd = (long)t->priv;
1478
1479 close(fd);
1480 }
1481
1482 static int rtc_start_timer(struct qemu_alarm_timer *t)
1483 {
1484 int rtc_fd;
1485 unsigned long current_rtc_freq = 0;
1486
1487 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1488 if (rtc_fd < 0)
1489 return -1;
1490 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1491 if (current_rtc_freq != RTC_FREQ &&
1492 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1493 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1494 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1495 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1496 goto fail;
1497 }
1498 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1499 fail:
1500 close(rtc_fd);
1501 return -1;
1502 }
1503
1504 enable_sigio_timer(rtc_fd);
1505
1506 t->priv = (void *)(long)rtc_fd;
1507
1508 return 0;
1509 }
1510
1511 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1512 {
1513 int rtc_fd = (long)t->priv;
1514
1515 close(rtc_fd);
1516 }
1517
1518 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1519 {
1520 struct sigevent ev;
1521 timer_t host_timer;
1522 struct sigaction act;
1523
1524 sigfillset(&act.sa_mask);
1525 act.sa_flags = 0;
1526 act.sa_handler = host_alarm_handler;
1527
1528 sigaction(SIGALRM, &act, NULL);
1529
1530 ev.sigev_value.sival_int = 0;
1531 ev.sigev_notify = SIGEV_SIGNAL;
1532 ev.sigev_signo = SIGALRM;
1533
1534 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1535 perror("timer_create");
1536
1537 /* disable dynticks */
1538 fprintf(stderr, "Dynamic Ticks disabled\n");
1539
1540 return -1;
1541 }
1542
1543 t->priv = (void *)(long)host_timer;
1544
1545 return 0;
1546 }
1547
1548 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1549 {
1550 timer_t host_timer = (timer_t)(long)t->priv;
1551
1552 timer_delete(host_timer);
1553 }
1554
1555 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1556 {
1557 timer_t host_timer = (timer_t)(long)t->priv;
1558 struct itimerspec timeout;
1559 int64_t nearest_delta_us = INT64_MAX;
1560 int64_t current_us;
1561
1562 if (!active_timers[QEMU_TIMER_REALTIME] &&
1563 !active_timers[QEMU_TIMER_VIRTUAL])
1564 return;
1565
1566 nearest_delta_us = qemu_next_deadline_dyntick();
1567
1568 /* check whether a timer is already running */
1569 if (timer_gettime(host_timer, &timeout)) {
1570 perror("gettime");
1571 fprintf(stderr, "Internal timer error: aborting\n");
1572 exit(1);
1573 }
1574 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1575 if (current_us && current_us <= nearest_delta_us)
1576 return;
1577
1578 timeout.it_interval.tv_sec = 0;
1579 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1580 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1581 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1582 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1583 perror("settime");
1584 fprintf(stderr, "Internal timer error: aborting\n");
1585 exit(1);
1586 }
1587 }
1588
1589 #endif /* defined(__linux__) */
1590
1591 static int unix_start_timer(struct qemu_alarm_timer *t)
1592 {
1593 struct sigaction act;
1594 struct itimerval itv;
1595 int err;
1596
1597 /* timer signal */
1598 sigfillset(&act.sa_mask);
1599 act.sa_flags = 0;
1600 act.sa_handler = host_alarm_handler;
1601
1602 sigaction(SIGALRM, &act, NULL);
1603
1604 itv.it_interval.tv_sec = 0;
1605 /* for i386 kernel 2.6 to get 1 ms */
1606 itv.it_interval.tv_usec = 999;
1607 itv.it_value.tv_sec = 0;
1608 itv.it_value.tv_usec = 10 * 1000;
1609
1610 err = setitimer(ITIMER_REAL, &itv, NULL);
1611 if (err)
1612 return -1;
1613
1614 return 0;
1615 }
1616
1617 static void unix_stop_timer(struct qemu_alarm_timer *t)
1618 {
1619 struct itimerval itv;
1620
1621 memset(&itv, 0, sizeof(itv));
1622 setitimer(ITIMER_REAL, &itv, NULL);
1623 }
1624
1625 #endif /* !defined(_WIN32) */
1626
1627 static void try_to_rearm_timer(void *opaque)
1628 {
1629 struct qemu_alarm_timer *t = opaque;
1630 #ifndef _WIN32
1631 ssize_t len;
1632
1633 /* Drain the notify pipe */
1634 do {
1635 char buffer[512];
1636 len = read(alarm_timer_rfd, buffer, sizeof(buffer));
1637 } while ((len == -1 && errno == EINTR) || len > 0);
1638 #endif
1639
1640 if (t->flags & ALARM_FLAG_EXPIRED) {
1641 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
1642 qemu_rearm_alarm_timer(alarm_timer);
1643 }
1644 }
1645
1646 #ifdef _WIN32
1647
1648 static int win32_start_timer(struct qemu_alarm_timer *t)
1649 {
1650 TIMECAPS tc;
1651 struct qemu_alarm_win32 *data = t->priv;
1652 UINT flags;
1653
1654 data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1655 if (!data->host_alarm) {
1656 perror("Failed CreateEvent");
1657 return -1;
1658 }
1659
1660 memset(&tc, 0, sizeof(tc));
1661 timeGetDevCaps(&tc, sizeof(tc));
1662
1663 if (data->period < tc.wPeriodMin)
1664 data->period = tc.wPeriodMin;
1665
1666 timeBeginPeriod(data->period);
1667
1668 flags = TIME_CALLBACK_FUNCTION;
1669 if (alarm_has_dynticks(t))
1670 flags |= TIME_ONESHOT;
1671 else
1672 flags |= TIME_PERIODIC;
1673
1674 data->timerId = timeSetEvent(1, // interval (ms)
1675 data->period, // resolution
1676 host_alarm_handler, // function
1677 (DWORD)t, // parameter
1678 flags);
1679
1680 if (!data->timerId) {
1681 perror("Failed to initialize win32 alarm timer");
1682
1683 timeEndPeriod(data->period);
1684 CloseHandle(data->host_alarm);
1685 return -1;
1686 }
1687
1688 qemu_add_wait_object(data->host_alarm, try_to_rearm_timer, t);
1689
1690 return 0;
1691 }
1692
1693 static void win32_stop_timer(struct qemu_alarm_timer *t)
1694 {
1695 struct qemu_alarm_win32 *data = t->priv;
1696
1697 timeKillEvent(data->timerId);
1698 timeEndPeriod(data->period);
1699
1700 CloseHandle(data->host_alarm);
1701 }
1702
1703 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1704 {
1705 struct qemu_alarm_win32 *data = t->priv;
1706 uint64_t nearest_delta_us;
1707
1708 if (!active_timers[QEMU_TIMER_REALTIME] &&
1709 !active_timers[QEMU_TIMER_VIRTUAL])
1710 return;
1711
1712 nearest_delta_us = qemu_next_deadline_dyntick();
1713 nearest_delta_us /= 1000;
1714
1715 timeKillEvent(data->timerId);
1716
1717 data->timerId = timeSetEvent(1,
1718 data->period,
1719 host_alarm_handler,
1720 (DWORD)t,
1721 TIME_ONESHOT | TIME_PERIODIC);
1722
1723 if (!data->timerId) {
1724 perror("Failed to re-arm win32 alarm timer");
1725
1726 timeEndPeriod(data->period);
1727 CloseHandle(data->host_alarm);
1728 exit(1);
1729 }
1730 }
1731
1732 #endif /* _WIN32 */
1733
1734 static int init_timer_alarm(void)
1735 {
1736 struct qemu_alarm_timer *t = NULL;
1737 int i, err = -1;
1738
1739 #ifndef _WIN32
1740 int fds[2];
1741
1742 err = pipe(fds);
1743 if (err == -1)
1744 return -errno;
1745
1746 err = fcntl_setfl(fds[0], O_NONBLOCK);
1747 if (err < 0)
1748 goto fail;
1749
1750 err = fcntl_setfl(fds[1], O_NONBLOCK);
1751 if (err < 0)
1752 goto fail;
1753
1754 alarm_timer_rfd = fds[0];
1755 alarm_timer_wfd = fds[1];
1756 #endif
1757
1758 for (i = 0; alarm_timers[i].name; i++) {
1759 t = &alarm_timers[i];
1760
1761 err = t->start(t);
1762 if (!err)
1763 break;
1764 }
1765
1766 if (err) {
1767 err = -ENOENT;
1768 goto fail;
1769 }
1770
1771 #ifndef _WIN32
1772 qemu_set_fd_handler2(alarm_timer_rfd, NULL,
1773 try_to_rearm_timer, NULL, t);
1774 #endif
1775
1776 alarm_timer = t;
1777
1778 return 0;
1779
1780 fail:
1781 #ifndef _WIN32
1782 close(fds[0]);
1783 close(fds[1]);
1784 #endif
1785 return err;
1786 }
1787
1788 static void quit_timers(void)
1789 {
1790 alarm_timer->stop(alarm_timer);
1791 alarm_timer = NULL;
1792 }
1793
1794 /***********************************************************/
1795 /* host time/date access */
1796 void qemu_get_timedate(struct tm *tm, int offset)
1797 {
1798 time_t ti;
1799 struct tm *ret;
1800
1801 time(&ti);
1802 ti += offset;
1803 if (rtc_date_offset == -1) {
1804 if (rtc_utc)
1805 ret = gmtime(&ti);
1806 else
1807 ret = localtime(&ti);
1808 } else {
1809 ti -= rtc_date_offset;
1810 ret = gmtime(&ti);
1811 }
1812
1813 memcpy(tm, ret, sizeof(struct tm));
1814 }
1815
1816 int qemu_timedate_diff(struct tm *tm)
1817 {
1818 time_t seconds;
1819
1820 if (rtc_date_offset == -1)
1821 if (rtc_utc)
1822 seconds = mktimegm(tm);
1823 else
1824 seconds = mktime(tm);
1825 else
1826 seconds = mktimegm(tm) + rtc_date_offset;
1827
1828 return seconds - time(NULL);
1829 }
1830
1831 #ifdef _WIN32
1832 static void socket_cleanup(void)
1833 {
1834 WSACleanup();
1835 }
1836
1837 static int socket_init(void)
1838 {
1839 WSADATA Data;
1840 int ret, err;
1841
1842 ret = WSAStartup(MAKEWORD(2,2), &Data);
1843 if (ret != 0) {
1844 err = WSAGetLastError();
1845 fprintf(stderr, "WSAStartup: %d\n", err);
1846 return -1;
1847 }
1848 atexit(socket_cleanup);
1849 return 0;
1850 }
1851 #endif
1852
1853 const char *get_opt_name(char *buf, int buf_size, const char *p)
1854 {
1855 char *q;
1856
1857 q = buf;
1858 while (*p != '\0' && *p != '=') {
1859 if (q && (q - buf) < buf_size - 1)
1860 *q++ = *p;
1861 p++;
1862 }
1863 if (q)
1864 *q = '\0';
1865
1866 return p;
1867 }
1868
1869 const char *get_opt_value(char *buf, int buf_size, const char *p)
1870 {
1871 char *q;
1872
1873 q = buf;
1874 while (*p != '\0') {
1875 if (*p == ',') {
1876 if (*(p + 1) != ',')
1877 break;
1878 p++;
1879 }
1880 if (q && (q - buf) < buf_size - 1)
1881 *q++ = *p;
1882 p++;
1883 }
1884 if (q)
1885 *q = '\0';
1886
1887 return p;
1888 }
1889
1890 int get_param_value(char *buf, int buf_size,
1891 const char *tag, const char *str)
1892 {
1893 const char *p;
1894 char option[128];
1895
1896 p = str;
1897 for(;;) {
1898 p = get_opt_name(option, sizeof(option), p);
1899 if (*p != '=')
1900 break;
1901 p++;
1902 if (!strcmp(tag, option)) {
1903 (void)get_opt_value(buf, buf_size, p);
1904 return strlen(buf);
1905 } else {
1906 p = get_opt_value(NULL, 0, p);
1907 }
1908 if (*p != ',')
1909 break;
1910 p++;
1911 }
1912 return 0;
1913 }
1914
1915 int check_params(char *buf, int buf_size,
1916 const char * const *params, const char *str)
1917 {
1918 const char *p;
1919 int i;
1920
1921 p = str;
1922 for(;;) {
1923 p = get_opt_name(buf, buf_size, p);
1924 if (*p != '=')
1925 return -1;
1926 p++;
1927 for(i = 0; params[i] != NULL; i++)
1928 if (!strcmp(params[i], buf))
1929 break;
1930 if (params[i] == NULL)
1931 return -1;
1932 p = get_opt_value(NULL, 0, p);
1933 if (*p != ',')
1934 break;
1935 p++;
1936 }
1937 return 0;
1938 }
1939
1940 /***********************************************************/
1941 /* Bluetooth support */
1942 static int nb_hcis;
1943 static int cur_hci;
1944 static struct HCIInfo *hci_table[MAX_NICS];
1945
1946 static struct bt_vlan_s {
1947 struct bt_scatternet_s net;
1948 int id;
1949 struct bt_vlan_s *next;
1950 } *first_bt_vlan;
1951
1952 /* find or alloc a new bluetooth "VLAN" */
1953 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1954 {
1955 struct bt_vlan_s **pvlan, *vlan;
1956 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1957 if (vlan->id == id)
1958 return &vlan->net;
1959 }
1960 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1961 vlan->id = id;
1962 pvlan = &first_bt_vlan;
1963 while (*pvlan != NULL)
1964 pvlan = &(*pvlan)->next;
1965 *pvlan = vlan;
1966 return &vlan->net;
1967 }
1968
1969 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1970 {
1971 }
1972
1973 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1974 {
1975 return -ENOTSUP;
1976 }
1977
1978 static struct HCIInfo null_hci = {
1979 .cmd_send = null_hci_send,
1980 .sco_send = null_hci_send,
1981 .acl_send = null_hci_send,
1982 .bdaddr_set = null_hci_addr_set,
1983 };
1984
1985 struct HCIInfo *qemu_next_hci(void)
1986 {
1987 if (cur_hci == nb_hcis)
1988 return &null_hci;
1989
1990 return hci_table[cur_hci++];
1991 }
1992
1993 static struct HCIInfo *hci_init(const char *str)
1994 {
1995 char *endp;
1996 struct bt_scatternet_s *vlan = 0;
1997
1998 if (!strcmp(str, "null"))
1999 /* null */
2000 return &null_hci;
2001 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
2002 /* host[:hciN] */
2003 return bt_host_hci(str[4] ? str + 5 : "hci0");
2004 else if (!strncmp(str, "hci", 3)) {
2005 /* hci[,vlan=n] */
2006 if (str[3]) {
2007 if (!strncmp(str + 3, ",vlan=", 6)) {
2008 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
2009 if (*endp)
2010 vlan = 0;
2011 }
2012 } else
2013 vlan = qemu_find_bt_vlan(0);
2014 if (vlan)
2015 return bt_new_hci(vlan);
2016 }
2017
2018 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
2019
2020 return 0;
2021 }
2022
2023 static int bt_hci_parse(const char *str)
2024 {
2025 struct HCIInfo *hci;
2026 bdaddr_t bdaddr;
2027
2028 if (nb_hcis >= MAX_NICS) {
2029 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
2030 return -1;
2031 }
2032
2033 hci = hci_init(str);
2034 if (!hci)
2035 return -1;
2036
2037 bdaddr.b[0] = 0x52;
2038 bdaddr.b[1] = 0x54;
2039 bdaddr.b[2] = 0x00;
2040 bdaddr.b[3] = 0x12;
2041 bdaddr.b[4] = 0x34;
2042 bdaddr.b[5] = 0x56 + nb_hcis;
2043 hci->bdaddr_set(hci, bdaddr.b);
2044
2045 hci_table[nb_hcis++] = hci;
2046
2047 return 0;
2048 }
2049
2050 static void bt_vhci_add(int vlan_id)
2051 {
2052 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
2053
2054 if (!vlan->slave)
2055 fprintf(stderr, "qemu: warning: adding a VHCI to "
2056 "an empty scatternet %i\n", vlan_id);
2057
2058 bt_vhci_init(bt_new_hci(vlan));
2059 }
2060
2061 static struct bt_device_s *bt_device_add(const char *opt)
2062 {
2063 struct bt_scatternet_s *vlan;
2064 int vlan_id = 0;
2065 char *endp = strstr(opt, ",vlan=");
2066 int len = (endp ? endp - opt : strlen(opt)) + 1;
2067 char devname[10];
2068
2069 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2070
2071 if (endp) {
2072 vlan_id = strtol(endp + 6, &endp, 0);
2073 if (*endp) {
2074 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2075 return 0;
2076 }
2077 }
2078
2079 vlan = qemu_find_bt_vlan(vlan_id);
2080
2081 if (!vlan->slave)
2082 fprintf(stderr, "qemu: warning: adding a slave device to "
2083 "an empty scatternet %i\n", vlan_id);
2084
2085 if (!strcmp(devname, "keyboard"))
2086 return bt_keyboard_init(vlan);
2087
2088 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2089 return 0;
2090 }
2091
2092 static int bt_parse(const char *opt)
2093 {
2094 const char *endp, *p;
2095 int vlan;
2096
2097 if (strstart(opt, "hci", &endp)) {
2098 if (!*endp || *endp == ',') {
2099 if (*endp)
2100 if (!strstart(endp, ",vlan=", 0))
2101 opt = endp + 1;
2102
2103 return bt_hci_parse(opt);
2104 }
2105 } else if (strstart(opt, "vhci", &endp)) {
2106 if (!*endp || *endp == ',') {
2107 if (*endp) {
2108 if (strstart(endp, ",vlan=", &p)) {
2109 vlan = strtol(p, (char **) &endp, 0);
2110 if (*endp) {
2111 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2112 return 1;
2113 }
2114 } else {
2115 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2116 return 1;
2117 }
2118 } else
2119 vlan = 0;
2120
2121 bt_vhci_add(vlan);
2122 return 0;
2123 }
2124 } else if (strstart(opt, "device:", &endp))
2125 return !bt_device_add(endp);
2126
2127 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2128 return 1;
2129 }
2130
2131 /***********************************************************/
2132 /* QEMU Block devices */
2133
2134 #define HD_ALIAS "index=%d,media=disk"
2135 #ifdef TARGET_PPC
2136 #define CDROM_ALIAS "index=1,media=cdrom"
2137 #else
2138 #define CDROM_ALIAS "index=2,media=cdrom"
2139 #endif
2140 #define FD_ALIAS "index=%d,if=floppy"
2141 #define PFLASH_ALIAS "if=pflash"
2142 #define MTD_ALIAS "if=mtd"
2143 #define SD_ALIAS "index=0,if=sd"
2144
2145 static int drive_add(const char *file, const char *fmt, ...)
2146 {
2147 va_list ap;
2148
2149 if (nb_drives_opt >= MAX_DRIVES) {
2150 fprintf(stderr, "qemu: too many drives\n");
2151 exit(1);
2152 }
2153
2154 drives_opt[nb_drives_opt].file = file;
2155 va_start(ap, fmt);
2156 vsnprintf(drives_opt[nb_drives_opt].opt,
2157 sizeof(drives_opt[0].opt), fmt, ap);
2158 va_end(ap);
2159
2160 return nb_drives_opt++;
2161 }
2162
2163 int drive_get_index(BlockInterfaceType type, int bus, int unit)
2164 {
2165 int index;
2166
2167 /* seek interface, bus and unit */
2168
2169 for (index = 0; index < nb_drives; index++)
2170 if (drives_table[index].type == type &&
2171 drives_table[index].bus == bus &&
2172 drives_table[index].unit == unit)
2173 return index;
2174
2175 return -1;
2176 }
2177
2178 int drive_get_max_bus(BlockInterfaceType type)
2179 {
2180 int max_bus;
2181 int index;
2182
2183 max_bus = -1;
2184 for (index = 0; index < nb_drives; index++) {
2185 if(drives_table[index].type == type &&
2186 drives_table[index].bus > max_bus)
2187 max_bus = drives_table[index].bus;
2188 }
2189 return max_bus;
2190 }
2191
2192 const char *drive_get_serial(BlockDriverState *bdrv)
2193 {
2194 int index;
2195
2196 for (index = 0; index < nb_drives; index++)
2197 if (drives_table[index].bdrv == bdrv)
2198 return drives_table[index].serial;
2199
2200 return "\0";
2201 }
2202
2203 static void bdrv_format_print(void *opaque, const char *name)
2204 {
2205 fprintf(stderr, " %s", name);
2206 }
2207
2208 static int drive_init(struct drive_opt *arg, int snapshot,
2209 QEMUMachine *machine)
2210 {
2211 char buf[128];
2212 char file[1024];
2213 char devname[128];
2214 char serial[21];
2215 const char *mediastr = "";
2216 BlockInterfaceType type;
2217 enum { MEDIA_DISK, MEDIA_CDROM } media;
2218 int bus_id, unit_id;
2219 int cyls, heads, secs, translation;
2220 BlockDriverState *bdrv;
2221 BlockDriver *drv = NULL;
2222 int max_devs;
2223 int index;
2224 int cache;
2225 int bdrv_flags;
2226 char *str = arg->opt;
2227 static const char * const params[] = { "bus", "unit", "if", "index",
2228 "cyls", "heads", "secs", "trans",
2229 "media", "snapshot", "file",
2230 "cache", "format", "serial", NULL };
2231
2232 if (check_params(buf, sizeof(buf), params, str) < 0) {
2233 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2234 buf, str);
2235 return -1;
2236 }
2237
2238 file[0] = 0;
2239 cyls = heads = secs = 0;
2240 bus_id = 0;
2241 unit_id = -1;
2242 translation = BIOS_ATA_TRANSLATION_AUTO;
2243 index = -1;
2244 cache = 3;
2245
2246 if (machine->use_scsi) {
2247 type = IF_SCSI;
2248 max_devs = MAX_SCSI_DEVS;
2249 pstrcpy(devname, sizeof(devname), "scsi");
2250 } else {
2251 type = IF_IDE;
2252 max_devs = MAX_IDE_DEVS;
2253 pstrcpy(devname, sizeof(devname), "ide");
2254 }
2255 media = MEDIA_DISK;
2256
2257 /* extract parameters */
2258
2259 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2260 bus_id = strtol(buf, NULL, 0);
2261 if (bus_id < 0) {
2262 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2263 return -1;
2264 }
2265 }
2266
2267 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2268 unit_id = strtol(buf, NULL, 0);
2269 if (unit_id < 0) {
2270 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2271 return -1;
2272 }
2273 }
2274
2275 if (get_param_value(buf, sizeof(buf), "if", str)) {
2276 pstrcpy(devname, sizeof(devname), buf);
2277 if (!strcmp(buf, "ide")) {
2278 type = IF_IDE;
2279 max_devs = MAX_IDE_DEVS;
2280 } else if (!strcmp(buf, "scsi")) {
2281 type = IF_SCSI;
2282 max_devs = MAX_SCSI_DEVS;
2283 } else if (!strcmp(buf, "floppy")) {
2284 type = IF_FLOPPY;
2285 max_devs = 0;
2286 } else if (!strcmp(buf, "pflash")) {
2287 type = IF_PFLASH;
2288 max_devs = 0;
2289 } else if (!strcmp(buf, "mtd")) {
2290 type = IF_MTD;
2291 max_devs = 0;
2292 } else if (!strcmp(buf, "sd")) {
2293 type = IF_SD;
2294 max_devs = 0;
2295 } else if (!strcmp(buf, "virtio")) {
2296 type = IF_VIRTIO;
2297 max_devs = 0;
2298 } else {
2299 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2300 return -1;
2301 }
2302 }
2303
2304 if (get_param_value(buf, sizeof(buf), "index", str)) {
2305 index = strtol(buf, NULL, 0);
2306 if (index < 0) {
2307 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2308 return -1;
2309 }
2310 }
2311
2312 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2313 cyls = strtol(buf, NULL, 0);
2314 }
2315
2316 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2317 heads = strtol(buf, NULL, 0);
2318 }
2319
2320 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2321 secs = strtol(buf, NULL, 0);
2322 }
2323
2324 if (cyls || heads || secs) {
2325 if (cyls < 1 || cyls > 16383) {
2326 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2327 return -1;
2328 }
2329 if (heads < 1 || heads > 16) {
2330 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2331 return -1;
2332 }
2333 if (secs < 1 || secs > 63) {
2334 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2335 return -1;
2336 }
2337 }
2338
2339 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2340 if (!cyls) {
2341 fprintf(stderr,
2342 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2343 str);
2344 return -1;
2345 }
2346 if (!strcmp(buf, "none"))
2347 translation = BIOS_ATA_TRANSLATION_NONE;
2348 else if (!strcmp(buf, "lba"))
2349 translation = BIOS_ATA_TRANSLATION_LBA;
2350 else if (!strcmp(buf, "auto"))
2351 translation = BIOS_ATA_TRANSLATION_AUTO;
2352 else {
2353 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2354 return -1;
2355 }
2356 }
2357
2358 if (get_param_value(buf, sizeof(buf), "media", str)) {
2359 if (!strcmp(buf, "disk")) {
2360 media = MEDIA_DISK;
2361 } else if (!strcmp(buf, "cdrom")) {
2362 if (cyls || secs || heads) {
2363 fprintf(stderr,
2364 "qemu: '%s' invalid physical CHS format\n", str);
2365 return -1;
2366 }
2367 media = MEDIA_CDROM;
2368 } else {
2369 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2370 return -1;
2371 }
2372 }
2373
2374 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2375 if (!strcmp(buf, "on"))
2376 snapshot = 1;
2377 else if (!strcmp(buf, "off"))
2378 snapshot = 0;
2379 else {
2380 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2381 return -1;
2382 }
2383 }
2384
2385 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2386 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2387 cache = 0;
2388 else if (!strcmp(buf, "writethrough"))
2389 cache = 1;
2390 else if (!strcmp(buf, "writeback"))
2391 cache = 2;
2392 else {
2393 fprintf(stderr, "qemu: invalid cache option\n");
2394 return -1;
2395 }
2396 }
2397
2398 if (get_param_value(buf, sizeof(buf), "format", str)) {
2399 if (strcmp(buf, "?") == 0) {
2400 fprintf(stderr, "qemu: Supported formats:");
2401 bdrv_iterate_format(bdrv_format_print, NULL);
2402 fprintf(stderr, "\n");
2403 return -1;
2404 }
2405 drv = bdrv_find_format(buf);
2406 if (!drv) {
2407 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2408 return -1;
2409 }
2410 }
2411
2412 if (arg->file == NULL)
2413 get_param_value(file, sizeof(file), "file", str);
2414 else
2415 pstrcpy(file, sizeof(file), arg->file);
2416
2417 if (!get_param_value(serial, sizeof(serial), "serial", str))
2418 memset(serial, 0, sizeof(serial));
2419
2420 /* compute bus and unit according index */
2421
2422 if (index != -1) {
2423 if (bus_id != 0 || unit_id != -1) {
2424 fprintf(stderr,
2425 "qemu: '%s' index cannot be used with bus and unit\n", str);
2426 return -1;
2427 }
2428 if (max_devs == 0)
2429 {
2430 unit_id = index;
2431 bus_id = 0;
2432 } else {
2433 unit_id = index % max_devs;
2434 bus_id = index / max_devs;
2435 }
2436 }
2437
2438 /* if user doesn't specify a unit_id,
2439 * try to find the first free
2440 */
2441
2442 if (unit_id == -1) {
2443 unit_id = 0;
2444 while (drive_get_index(type, bus_id, unit_id) != -1) {
2445 unit_id++;
2446 if (max_devs && unit_id >= max_devs) {
2447 unit_id -= max_devs;
2448 bus_id++;
2449 }
2450 }
2451 }
2452
2453 /* check unit id */
2454
2455 if (max_devs && unit_id >= max_devs) {
2456 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2457 str, unit_id, max_devs - 1);
2458 return -1;
2459 }
2460
2461 /*
2462 * ignore multiple definitions
2463 */
2464
2465 if (drive_get_index(type, bus_id, unit_id) != -1)
2466 return 0;
2467
2468 /* init */
2469
2470 if (type == IF_IDE || type == IF_SCSI)
2471 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2472 if (max_devs)
2473 snprintf(buf, sizeof(buf), "%s%i%s%i",
2474 devname, bus_id, mediastr, unit_id);
2475 else
2476 snprintf(buf, sizeof(buf), "%s%s%i",
2477 devname, mediastr, unit_id);
2478 bdrv = bdrv_new(buf);
2479 drives_table[nb_drives].bdrv = bdrv;
2480 drives_table[nb_drives].type = type;
2481 drives_table[nb_drives].bus = bus_id;
2482 drives_table[nb_drives].unit = unit_id;
2483 strncpy(drives_table[nb_drives].serial, serial, sizeof(serial));
2484 nb_drives++;
2485
2486 switch(type) {
2487 case IF_IDE:
2488 case IF_SCSI:
2489 switch(media) {
2490 case MEDIA_DISK:
2491 if (cyls != 0) {
2492 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2493 bdrv_set_translation_hint(bdrv, translation);
2494 }
2495 break;
2496 case MEDIA_CDROM:
2497 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2498 break;
2499 }
2500 break;
2501 case IF_SD:
2502 /* FIXME: This isn't really a floppy, but it's a reasonable
2503 approximation. */
2504 case IF_FLOPPY:
2505 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2506 break;
2507 case IF_PFLASH:
2508 case IF_MTD:
2509 case IF_VIRTIO:
2510 break;
2511 }
2512 if (!file[0])
2513 return 0;
2514 bdrv_flags = 0;
2515 if (snapshot) {
2516 bdrv_flags |= BDRV_O_SNAPSHOT;
2517 cache = 2; /* always use write-back with snapshot */
2518 }
2519 if (cache == 0) /* no caching */
2520 bdrv_flags |= BDRV_O_NOCACHE;
2521 else if (cache == 2) /* write-back */
2522 bdrv_flags |= BDRV_O_CACHE_WB;
2523 else if (cache == 3) /* not specified */
2524 bdrv_flags |= BDRV_O_CACHE_DEF;
2525 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0 || qemu_key_check(bdrv, file)) {
2526 fprintf(stderr, "qemu: could not open disk image %s\n",
2527 file);
2528 return -1;
2529 }
2530 return 0;
2531 }
2532
2533 /***********************************************************/
2534 /* USB devices */
2535
2536 static USBPort *used_usb_ports;
2537 static USBPort *free_usb_ports;
2538
2539 /* ??? Maybe change this to register a hub to keep track of the topology. */
2540 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2541 usb_attachfn attach)
2542 {
2543 port->opaque = opaque;
2544 port->index = index;
2545 port->attach = attach;
2546 port->next = free_usb_ports;
2547 free_usb_ports = port;
2548 }
2549
2550 int usb_device_add_dev(USBDevice *dev)
2551 {
2552 USBPort *port;
2553
2554 /* Find a USB port to add the device to. */
2555 port = free_usb_ports;
2556 if (!port->next) {
2557 USBDevice *hub;
2558
2559 /* Create a new hub and chain it on. */
2560 free_usb_ports = NULL;
2561 port->next = used_usb_ports;
2562 used_usb_ports = port;
2563
2564 hub = usb_hub_init(VM_USB_HUB_SIZE);
2565 usb_attach(port, hub);
2566 port = free_usb_ports;
2567 }
2568
2569 free_usb_ports = port->next;
2570 port->next = used_usb_ports;
2571 used_usb_ports = port;
2572 usb_attach(port, dev);
2573 return 0;
2574 }
2575
2576 static int usb_device_add(const char *devname)
2577 {
2578 const char *p;
2579 USBDevice *dev;
2580
2581 if (!free_usb_ports)
2582 return -1;
2583
2584 if (strstart(devname, "host:", &p)) {
2585 dev = usb_host_device_open(p);
2586 } else if (!strcmp(devname, "mouse")) {
2587 dev = usb_mouse_init();
2588 } else if (!strcmp(devname, "tablet")) {
2589 dev = usb_tablet_init();
2590 } else if (!strcmp(devname, "keyboard")) {
2591 dev = usb_keyboard_init();
2592 } else if (strstart(devname, "disk:", &p)) {
2593 dev = usb_msd_init(p);
2594 } else if (!strcmp(devname, "wacom-tablet")) {
2595 dev = usb_wacom_init();
2596 } else if (strstart(devname, "serial:", &p)) {
2597 dev = usb_serial_init(p);
2598 #ifdef CONFIG_BRLAPI
2599 } else if (!strcmp(devname, "braille")) {
2600 dev = usb_baum_init();
2601 #endif
2602 } else if (strstart(devname, "net:", &p)) {
2603 int nic = nb_nics;
2604
2605 if (net_client_init("nic", p) < 0)
2606 return -1;
2607 nd_table[nic].model = "usb";
2608 dev = usb_net_init(&nd_table[nic]);
2609 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2610 dev = usb_bt_init(devname[2] ? hci_init(p) :
2611 bt_new_hci(qemu_find_bt_vlan(0)));
2612 } else {
2613 return -1;
2614 }
2615 if (!dev)
2616 return -1;
2617
2618 return usb_device_add_dev(dev);
2619 }
2620
2621 int usb_device_del_addr(int bus_num, int addr)
2622 {
2623 USBPort *port;
2624 USBPort **lastp;
2625 USBDevice *dev;
2626
2627 if (!used_usb_ports)
2628 return -1;
2629
2630 if (bus_num != 0)
2631 return -1;
2632
2633 lastp = &used_usb_ports;
2634 port = used_usb_ports;
2635 while (port && port->dev->addr != addr) {
2636 lastp = &port->next;
2637 port = port->next;
2638 }
2639
2640 if (!port)
2641 return -1;
2642
2643 dev = port->dev;
2644 *lastp = port->next;
2645 usb_attach(port, NULL);
2646 dev->handle_destroy(dev);
2647 port->next = free_usb_ports;
2648 free_usb_ports = port;
2649 return 0;
2650 }
2651
2652 static int usb_device_del(const char *devname)
2653 {
2654 int bus_num, addr;
2655 const char *p;
2656
2657 if (strstart(devname, "host:", &p))
2658 return usb_host_device_close(p);
2659
2660 if (!used_usb_ports)
2661 return -1;
2662
2663 p = strchr(devname, '.');
2664 if (!p)
2665 return -1;
2666 bus_num = strtoul(devname, NULL, 0);
2667 addr = strtoul(p + 1, NULL, 0);
2668
2669 return usb_device_del_addr(bus_num, addr);
2670 }
2671
2672 void do_usb_add(const char *devname)
2673 {
2674 usb_device_add(devname);
2675 }
2676
2677 void do_usb_del(const char *devname)
2678 {
2679 usb_device_del(devname);
2680 }
2681
2682 void usb_info(void)
2683 {
2684 USBDevice *dev;
2685 USBPort *port;
2686 const char *speed_str;
2687
2688 if (!usb_enabled) {
2689 term_printf("USB support not enabled\n");
2690 return;
2691 }
2692
2693 for (port = used_usb_ports; port; port = port->next) {
2694 dev = port->dev;
2695 if (!dev)
2696 continue;
2697 switch(dev->speed) {
2698 case USB_SPEED_LOW:
2699 speed_str = "1.5";
2700 break;
2701 case USB_SPEED_FULL:
2702 speed_str = "12";
2703 break;
2704 case USB_SPEED_HIGH:
2705 speed_str = "480";
2706 break;
2707 default:
2708 speed_str = "?";
2709 break;
2710 }
2711 term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n",
2712 0, dev->addr, speed_str, dev->devname);
2713 }
2714 }
2715
2716 /***********************************************************/
2717 /* PCMCIA/Cardbus */
2718
2719 static struct pcmcia_socket_entry_s {
2720 struct pcmcia_socket_s *socket;
2721 struct pcmcia_socket_entry_s *next;
2722 } *pcmcia_sockets = 0;
2723
2724 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
2725 {
2726 struct pcmcia_socket_entry_s *entry;
2727
2728 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2729 entry->socket = socket;
2730 entry->next = pcmcia_sockets;
2731 pcmcia_sockets = entry;
2732 }
2733
2734 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
2735 {
2736 struct pcmcia_socket_entry_s *entry, **ptr;
2737
2738 ptr = &pcmcia_sockets;
2739 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2740 if (entry->socket == socket) {
2741 *ptr = entry->next;
2742 qemu_free(entry);
2743 }
2744 }
2745
2746 void pcmcia_info(void)
2747 {
2748 struct pcmcia_socket_entry_s *iter;
2749 if (!pcmcia_sockets)
2750 term_printf("No PCMCIA sockets\n");
2751
2752 for (iter = pcmcia_sockets; iter; iter = iter->next)
2753 term_printf("%s: %s\n", iter->socket->slot_string,
2754 iter->socket->attached ? iter->socket->card_string :
2755 "Empty");
2756 }
2757
2758 /***********************************************************/
2759 /* dumb display */
2760
2761 static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
2762 {
2763 }
2764
2765 static void dumb_resize(DisplayState *ds)
2766 {
2767 }
2768
2769 static void dumb_display_init(DisplayState *ds)
2770 {
2771 DisplayChangeListener *dcl = qemu_mallocz(sizeof(DisplayChangeListener));
2772 if (!dcl)
2773 exit(1);
2774 dcl->dpy_update = dumb_update;
2775 dcl->dpy_resize = dumb_resize;
2776 dcl->dpy_refresh = NULL;
2777 dcl->idle = 1;
2778 dcl->gui_timer_interval = 500;
2779 register_displaychangelistener(ds, dcl);
2780 }
2781
2782 /***********************************************************/
2783 /* I/O handling */
2784
2785 #define MAX_IO_HANDLERS 64
2786
2787 typedef struct IOHandlerRecord {
2788 int fd;
2789 IOCanRWHandler *fd_read_poll;
2790 IOHandler *fd_read;
2791 IOHandler *fd_write;
2792 int deleted;
2793 void *opaque;
2794 /* temporary data */
2795 struct pollfd *ufd;
2796 struct IOHandlerRecord *next;
2797 } IOHandlerRecord;
2798
2799 static IOHandlerRecord *first_io_handler;
2800
2801 /* XXX: fd_read_poll should be suppressed, but an API change is
2802 necessary in the character devices to suppress fd_can_read(). */
2803 int qemu_set_fd_handler2(int fd,
2804 IOCanRWHandler *fd_read_poll,
2805 IOHandler *fd_read,
2806 IOHandler *fd_write,
2807 void *opaque)
2808 {
2809 IOHandlerRecord **pioh, *ioh;
2810
2811 if (!fd_read && !fd_write) {
2812 pioh = &first_io_handler;
2813 for(;;) {
2814 ioh = *pioh;
2815 if (ioh == NULL)
2816 break;
2817 if (ioh->fd == fd) {
2818 ioh->deleted = 1;
2819 break;
2820 }
2821 pioh = &ioh->next;
2822 }
2823 } else {
2824 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2825 if (ioh->fd == fd)
2826 goto found;
2827 }
2828 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2829 if (!ioh)
2830 return -1;
2831 ioh->next = first_io_handler;
2832 first_io_handler = ioh;
2833 found:
2834 ioh->fd = fd;
2835 ioh->fd_read_poll = fd_read_poll;
2836 ioh->fd_read = fd_read;
2837 ioh->fd_write = fd_write;
2838 ioh->opaque = opaque;
2839 ioh->deleted = 0;
2840 }
2841 return 0;
2842 }
2843
2844 int qemu_set_fd_handler(int fd,
2845 IOHandler *fd_read,
2846 IOHandler *fd_write,
2847 void *opaque)
2848 {
2849 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2850 }
2851
2852 #ifdef _WIN32
2853 /***********************************************************/
2854 /* Polling handling */
2855
2856 typedef struct PollingEntry {
2857 PollingFunc *func;
2858 void *opaque;
2859 struct PollingEntry *next;
2860 } PollingEntry;
2861
2862 static PollingEntry *first_polling_entry;
2863
2864 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2865 {
2866 PollingEntry **ppe, *pe;
2867 pe = qemu_mallocz(sizeof(PollingEntry));
2868 if (!pe)
2869 return -1;
2870 pe->func = func;
2871 pe->opaque = opaque;
2872 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2873 *ppe = pe;
2874 return 0;
2875 }
2876
2877 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2878 {
2879 PollingEntry **ppe, *pe;
2880 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2881 pe = *ppe;
2882 if (pe->func == func && pe->opaque == opaque) {
2883 *ppe = pe->next;
2884 qemu_free(pe);
2885 break;
2886 }
2887 }
2888 }
2889
2890 /***********************************************************/
2891 /* Wait objects support */
2892 typedef struct WaitObjects {
2893 int num;
2894 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2895 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2896 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2897 } WaitObjects;
2898
2899 static WaitObjects wait_objects = {0};
2900
2901 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2902 {
2903 WaitObjects *w = &wait_objects;
2904
2905 if (w->num >= MAXIMUM_WAIT_OBJECTS)
2906 return -1;
2907 w->events[w->num] = handle;
2908 w->func[w->num] = func;
2909 w->opaque[w->num] = opaque;
2910 w->num++;
2911 return 0;
2912 }
2913
2914 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2915 {
2916 int i, found;
2917 WaitObjects *w = &wait_objects;
2918
2919 found = 0;
2920 for (i = 0; i < w->num; i++) {
2921 if (w->events[i] == handle)
2922 found = 1;
2923 if (found) {
2924 w->events[i] = w->events[i + 1];
2925 w->func[i] = w->func[i + 1];
2926 w->opaque[i] = w->opaque[i + 1];
2927 }
2928 }
2929 if (found)
2930 w->num--;
2931 }
2932 #endif
2933
2934 /***********************************************************/
2935 /* ram save/restore */
2936
2937 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
2938 {
2939 int v;
2940
2941 v = qemu_get_byte(f);
2942 switch(v) {
2943 case 0:
2944 if (qemu_get_buffer(f, buf, len) != len)
2945 return -EIO;
2946 break;
2947 case 1:
2948 v = qemu_get_byte(f);
2949 memset(buf, v, len);
2950 break;
2951 default:
2952 return -EINVAL;
2953 }
2954
2955 if (qemu_file_has_error(f))
2956 return -EIO;
2957
2958 return 0;
2959 }
2960
2961 static int ram_load_v1(QEMUFile *f, void *opaque)
2962 {
2963 int ret;
2964 ram_addr_t i;
2965
2966 if (qemu_get_be32(f) != phys_ram_size)
2967 return -EINVAL;
2968 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
2969 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
2970 if (ret)
2971 return ret;
2972 }
2973 return 0;
2974 }
2975
2976 #define BDRV_HASH_BLOCK_SIZE 1024
2977 #define IOBUF_SIZE 4096
2978 #define RAM_CBLOCK_MAGIC 0xfabe
2979
2980 typedef struct RamDecompressState {
2981 z_stream zstream;
2982 QEMUFile *f;
2983 uint8_t buf[IOBUF_SIZE];
2984 } RamDecompressState;
2985
2986 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
2987 {
2988 int ret;
2989 memset(s, 0, sizeof(*s));
2990 s->f = f;
2991 ret = inflateInit(&s->zstream);
2992 if (ret != Z_OK)
2993 return -1;
2994 return 0;
2995 }
2996
2997 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
2998 {
2999 int ret, clen;
3000
3001 s->zstream.avail_out = len;
3002 s->zstream.next_out = buf;
3003 while (s->zstream.avail_out > 0) {
3004 if (s->zstream.avail_in == 0) {
3005 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3006 return -1;
3007 clen = qemu_get_be16(s->f);
3008 if (clen > IOBUF_SIZE)
3009 return -1;
3010 qemu_get_buffer(s->f, s->buf, clen);
3011 s->zstream.avail_in = clen;
3012 s->zstream.next_in = s->buf;
3013 }
3014 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3015 if (ret != Z_OK && ret != Z_STREAM_END) {
3016 return -1;
3017 }
3018 }
3019 return 0;
3020 }
3021
3022 static void ram_decompress_close(RamDecompressState *s)
3023 {
3024 inflateEnd(&s->zstream);
3025 }
3026
3027 #define RAM_SAVE_FLAG_FULL 0x01
3028 #define RAM_SAVE_FLAG_COMPRESS 0x02
3029 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3030 #define RAM_SAVE_FLAG_PAGE 0x08
3031 #define RAM_SAVE_FLAG_EOS 0x10
3032
3033 static int is_dup_page(uint8_t *page, uint8_t ch)
3034 {
3035 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3036 uint32_t *array = (uint32_t *)page;
3037 int i;
3038
3039 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3040 if (array[i] != val)
3041 return 0;
3042 }
3043
3044 return 1;
3045 }
3046
3047 static int ram_save_block(QEMUFile *f)
3048 {
3049 static ram_addr_t current_addr = 0;
3050 ram_addr_t saved_addr = current_addr;
3051 ram_addr_t addr = 0;
3052 int found = 0;
3053
3054 while (addr < phys_ram_size) {
3055 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3056 uint8_t ch;
3057
3058 cpu_physical_memory_reset_dirty(current_addr,
3059 current_addr + TARGET_PAGE_SIZE,
3060 MIGRATION_DIRTY_FLAG);
3061
3062 ch = *(phys_ram_base + current_addr);
3063
3064 if (is_dup_page(phys_ram_base + current_addr, ch)) {
3065 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3066 qemu_put_byte(f, ch);
3067 } else {
3068 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3069 qemu_put_buffer(f, phys_ram_base + current_addr, TARGET_PAGE_SIZE);
3070 }
3071
3072 found = 1;
3073 break;
3074 }
3075 addr += TARGET_PAGE_SIZE;
3076 current_addr = (saved_addr + addr) % phys_ram_size;
3077 }
3078
3079 return found;
3080 }
3081
3082 static ram_addr_t ram_save_threshold = 10;
3083
3084 static ram_addr_t ram_save_remaining(void)
3085 {
3086 ram_addr_t addr;
3087 ram_addr_t count = 0;
3088
3089 for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
3090 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3091 count++;
3092 }
3093
3094 return count;
3095 }
3096
3097 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3098 {
3099 ram_addr_t addr;
3100
3101 if (stage == 1) {
3102 /* Make sure all dirty bits are set */
3103 for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
3104 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3105 cpu_physical_memory_set_dirty(addr);
3106 }
3107
3108 /* Enable dirty memory tracking */
3109 cpu_physical_memory_set_dirty_tracking(1);
3110
3111 qemu_put_be64(f, phys_ram_size | RAM_SAVE_FLAG_MEM_SIZE);
3112 }
3113
3114 while (!qemu_file_rate_limit(f)) {
3115 int ret;
3116
3117 ret = ram_save_block(f);
3118 if (ret == 0) /* no more blocks */
3119 break;
3120 }
3121
3122 /* try transferring iterative blocks of memory */
3123
3124 if (stage == 3) {
3125 cpu_physical_memory_set_dirty_tracking(0);
3126
3127 /* flush all remaining blocks regardless of rate limiting */
3128 while (ram_save_block(f) != 0);
3129 }
3130
3131 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3132
3133 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3134 }
3135
3136 static int ram_load_dead(QEMUFile *f, void *opaque)
3137 {
3138 RamDecompressState s1, *s = &s1;
3139 uint8_t buf[10];
3140 ram_addr_t i;
3141
3142 if (ram_decompress_open(s, f) < 0)
3143 return -EINVAL;
3144 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
3145 if (ram_decompress_buf(s, buf, 1) < 0) {
3146 fprintf(stderr, "Error while reading ram block header\n");
3147 goto error;
3148 }
3149 if (buf[0] == 0) {
3150 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
3151 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3152 goto error;
3153 }
3154 } else {
3155 error:
3156 printf("Error block header\n");
3157 return -EINVAL;
3158 }
3159 }
3160 ram_decompress_close(s);
3161
3162 return 0;
3163 }
3164
3165 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3166 {
3167 ram_addr_t addr;
3168 int flags;
3169
3170 if (version_id == 1)
3171 return ram_load_v1(f, opaque);
3172
3173 if (version_id == 2) {
3174 if (qemu_get_be32(f) != phys_ram_size)
3175 return -EINVAL;
3176 return ram_load_dead(f, opaque);
3177 }
3178
3179 if (version_id != 3)
3180 return -EINVAL;
3181
3182 do {
3183 addr = qemu_get_be64(f);
3184
3185 flags = addr & ~TARGET_PAGE_MASK;
3186 addr &= TARGET_PAGE_MASK;
3187
3188 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3189 if (addr != phys_ram_size)
3190 return -EINVAL;
3191 }
3192
3193 if (flags & RAM_SAVE_FLAG_FULL) {
3194 if (ram_load_dead(f, opaque) < 0)
3195 return -EINVAL;
3196 }
3197
3198 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3199 uint8_t ch = qemu_get_byte(f);
3200 memset(phys_ram_base + addr, ch, TARGET_PAGE_SIZE);
3201 } else if (flags & RAM_SAVE_FLAG_PAGE)
3202 qemu_get_buffer(f, phys_ram_base + addr, TARGET_PAGE_SIZE);
3203 } while (!(flags & RAM_SAVE_FLAG_EOS));
3204
3205 return 0;
3206 }
3207
3208 void qemu_service_io(void)
3209 {
3210 CPUState *env = cpu_single_env;
3211 if (env) {
3212 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
3213 #ifdef USE_KQEMU
3214 if (env->kqemu_enabled) {
3215 kqemu_cpu_interrupt(env);
3216 }
3217 #endif
3218 }
3219 }
3220
3221 /***********************************************************/
3222 /* bottom halves (can be seen as timers which expire ASAP) */
3223
3224 struct QEMUBH {
3225 QEMUBHFunc *cb;
3226 void *opaque;
3227 int scheduled;
3228 int idle;
3229 int deleted;
3230 QEMUBH *next;
3231 };
3232
3233 static QEMUBH *first_bh = NULL;
3234
3235 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3236 {
3237 QEMUBH *bh;
3238 bh = qemu_mallocz(sizeof(QEMUBH));
3239 if (!bh)
3240 return NULL;
3241 bh->cb = cb;
3242 bh->opaque = opaque;
3243 bh->next = first_bh;
3244 first_bh = bh;
3245 return bh;
3246 }
3247
3248 int qemu_bh_poll(void)
3249 {
3250 QEMUBH *bh, **bhp;
3251 int ret;
3252
3253 ret = 0;
3254 for (bh = first_bh; bh; bh = bh->next) {
3255 if (!bh->deleted && bh->scheduled) {
3256 bh->scheduled = 0;
3257 if (!bh->idle)
3258 ret = 1;
3259 bh->idle = 0;
3260 bh->cb(bh->opaque);
3261 }
3262 }
3263
3264 /* remove deleted bhs */
3265 bhp = &first_bh;
3266 while (*bhp) {
3267 bh = *bhp;
3268 if (bh->deleted) {
3269 *bhp = bh->next;
3270 qemu_free(bh);
3271 } else
3272 bhp = &bh->next;
3273 }
3274
3275 return ret;
3276 }
3277
3278 void qemu_bh_schedule_idle(QEMUBH *bh)
3279 {
3280 if (bh->scheduled)
3281 return;
3282 bh->scheduled = 1;
3283 bh->idle = 1;
3284 }
3285
3286 void qemu_bh_schedule(QEMUBH *bh)
3287 {
3288 CPUState *env = cpu_single_env;
3289 if (bh->scheduled)
3290 return;
3291 bh->scheduled = 1;
3292 bh->idle = 0;
3293 /* stop the currently executing CPU to execute the BH ASAP */
3294 if (env) {
3295 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
3296 }
3297 }
3298
3299 void qemu_bh_cancel(QEMUBH *bh)
3300 {
3301 bh->scheduled = 0;
3302 }
3303
3304 void qemu_bh_delete(QEMUBH *bh)
3305 {
3306 bh->scheduled = 0;
3307 bh->deleted = 1;
3308 }
3309
3310 static void qemu_bh_update_timeout(int *timeout)
3311 {
3312 QEMUBH *bh;
3313
3314 for (bh = first_bh; bh; bh = bh->next) {
3315 if (!bh->deleted && bh->scheduled) {
3316 if (bh->idle) {
3317 /* idle bottom halves will be polled at least
3318 * every 10ms */
3319 *timeout = MIN(10, *timeout);
3320 } else {
3321 /* non-idle bottom halves will be executed
3322 * immediately */
3323 *timeout = 0;
3324 break;
3325 }
3326 }
3327 }
3328 }
3329
3330 /***********************************************************/
3331 /* machine registration */
3332
3333 static QEMUMachine *first_machine = NULL;
3334
3335 int qemu_register_machine(QEMUMachine *m)
3336 {
3337 QEMUMachine **pm;
3338 pm = &first_machine;
3339 while (*pm != NULL)
3340 pm = &(*pm)->next;
3341 m->next = NULL;
3342 *pm = m;
3343 return 0;
3344 }
3345
3346 static QEMUMachine *find_machine(const char *name)
3347 {
3348 QEMUMachine *m;
3349
3350 for(m = first_machine; m != NULL; m = m->next) {
3351 if (!strcmp(m->name, name))
3352 return m;
3353 }
3354 return NULL;
3355 }
3356
3357 /***********************************************************/
3358 /* main execution loop */
3359
3360 static void gui_update(void *opaque)
3361 {
3362 uint64_t interval = GUI_REFRESH_INTERVAL;
3363 DisplayState *ds = opaque;
3364 DisplayChangeListener *dcl = ds->listeners;
3365
3366 dpy_refresh(ds);
3367
3368 while (dcl != NULL) {
3369 if (dcl->gui_timer_interval &&
3370 dcl->gui_timer_interval < interval)
3371 interval = dcl->gui_timer_interval;
3372 dcl = dcl->next;
3373 }
3374 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3375 }
3376
3377 struct vm_change_state_entry {
3378 VMChangeStateHandler *cb;
3379 void *opaque;
3380 LIST_ENTRY (vm_change_state_entry) entries;
3381 };
3382
3383 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3384
3385 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3386 void *opaque)
3387 {
3388 VMChangeStateEntry *e;
3389
3390 e = qemu_mallocz(sizeof (*e));
3391 if (!e)
3392 return NULL;
3393
3394 e->cb = cb;
3395 e->opaque = opaque;
3396 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3397 return e;
3398 }
3399
3400 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3401 {
3402 LIST_REMOVE (e, entries);
3403 qemu_free (e);
3404 }
3405
3406 static void vm_state_notify(int running)
3407 {
3408 VMChangeStateEntry *e;
3409
3410 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3411 e->cb(e->opaque, running);
3412 }
3413 }
3414
3415 /* XXX: support several handlers */
3416 static VMStopHandler *vm_stop_cb;
3417 static void *vm_stop_opaque;
3418
3419 int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
3420 {
3421 vm_stop_cb = cb;
3422 vm_stop_opaque = opaque;
3423 return 0;
3424 }
3425
3426 void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
3427 {
3428 vm_stop_cb = NULL;
3429 }
3430
3431 void vm_start(void)
3432 {
3433 if (!vm_running) {
3434 cpu_enable_ticks();
3435 vm_running = 1;
3436 vm_state_notify(1);
3437 qemu_rearm_alarm_timer(alarm_timer);
3438 }
3439 }
3440
3441 void vm_stop(int reason)
3442 {
3443 if (vm_running) {
3444 cpu_disable_ticks();
3445 vm_running = 0;
3446 if (reason != 0) {
3447 if (vm_stop_cb) {
3448 vm_stop_cb(vm_stop_opaque, reason);
3449 }
3450 }
3451 vm_state_notify(0);
3452 }
3453 }
3454
3455 /* reset/shutdown handler */
3456
3457 typedef struct QEMUResetEntry {
3458 QEMUResetHandler *func;
3459 void *opaque;
3460 struct QEMUResetEntry *next;
3461 } QEMUResetEntry;
3462
3463 static QEMUResetEntry *first_reset_entry;
3464 static int reset_requested;
3465 static int shutdown_requested;
3466 static int powerdown_requested;
3467
3468 int qemu_shutdown_requested(void)
3469 {
3470 int r = shutdown_requested;
3471 shutdown_requested = 0;
3472 return r;
3473 }
3474
3475 int qemu_reset_requested(void)
3476 {
3477 int r = reset_requested;
3478 reset_requested = 0;
3479 return r;
3480 }
3481
3482 int qemu_powerdown_requested(void)
3483 {
3484 int r = powerdown_requested;
3485 powerdown_requested = 0;
3486 return r;
3487 }
3488
3489 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3490 {
3491 QEMUResetEntry **pre, *re;
3492
3493 pre = &first_reset_entry;
3494 while (*pre != NULL)
3495 pre = &(*pre)->next;
3496 re = qemu_mallocz(sizeof(QEMUResetEntry));
3497 re->func = func;
3498 re->opaque = opaque;
3499 re->next = NULL;
3500 *pre = re;
3501 }
3502
3503 void qemu_system_reset(void)
3504 {
3505 QEMUResetEntry *re;
3506
3507 /* reset all devices */
3508 for(re = first_reset_entry; re != NULL; re = re->next) {
3509 re->func(re->opaque);
3510 }
3511 }
3512
3513 void qemu_system_reset_request(void)
3514 {
3515 if (no_reboot) {
3516 shutdown_requested = 1;
3517 } else {
3518 reset_requested = 1;
3519 }
3520 if (cpu_single_env)
3521 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3522 }
3523
3524 void qemu_system_shutdown_request(void)
3525 {
3526 shutdown_requested = 1;
3527 if (cpu_single_env)
3528 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3529 }
3530
3531 void qemu_system_powerdown_request(void)
3532 {
3533 powerdown_requested = 1;
3534 if (cpu_single_env)
3535 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3536 }
3537
3538 #ifdef _WIN32
3539 static void host_main_loop_wait(int *timeout)
3540 {
3541 int ret, ret2, i;
3542 PollingEntry *pe;
3543
3544
3545 /* XXX: need to suppress polling by better using win32 events */
3546 ret = 0;
3547 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3548 ret |= pe->func(pe->opaque);
3549 }
3550 if (ret == 0) {
3551 int err;
3552 WaitObjects *w = &wait_objects;
3553
3554 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3555 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3556 if (w->func[ret - WAIT_OBJECT_0])
3557 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3558
3559 /* Check for additional signaled events */
3560 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3561
3562 /* Check if event is signaled */
3563 ret2 = WaitForSingleObject(w->events[i], 0);
3564 if(ret2 == WAIT_OBJECT_0) {
3565 if (w->func[i])
3566 w->func[i](w->opaque[i]);
3567 } else if (ret2 == WAIT_TIMEOUT) {
3568 } else {
3569 err = GetLastError();
3570 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3571 }
3572 }
3573 } else if (ret == WAIT_TIMEOUT) {
3574 } else {
3575 err = GetLastError();
3576 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3577 }
3578 }
3579
3580 *timeout = 0;
3581 }
3582 #else
3583 static void host_main_loop_wait(int *timeout)
3584 {
3585 }
3586 #endif
3587
3588 void main_loop_wait(int timeout)
3589 {
3590 IOHandlerRecord *ioh;
3591 fd_set rfds, wfds, xfds;
3592 int ret, nfds;
3593 struct timeval tv;
3594
3595 qemu_bh_update_timeout(&timeout);
3596
3597 host_main_loop_wait(&timeout);
3598
3599 /* poll any events */
3600 /* XXX: separate device handlers from system ones */
3601 nfds = -1;
3602 FD_ZERO(&rfds);
3603 FD_ZERO(&wfds);
3604 FD_ZERO(&xfds);
3605 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3606 if (ioh->deleted)
3607 continue;
3608 if (ioh->fd_read &&
3609 (!ioh->fd_read_poll ||
3610 ioh->fd_read_poll(ioh->opaque) != 0)) {
3611 FD_SET(ioh->fd, &rfds);
3612 if (ioh->fd > nfds)
3613 nfds = ioh->fd;
3614 }
3615 if (ioh->fd_write) {
3616 FD_SET(ioh->fd, &wfds);
3617 if (ioh->fd > nfds)
3618 nfds = ioh->fd;
3619 }
3620 }
3621
3622 tv.tv_sec = timeout / 1000;
3623 tv.tv_usec = (timeout % 1000) * 1000;
3624
3625 #if defined(CONFIG_SLIRP)
3626 if (slirp_is_inited()) {
3627 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3628 }
3629 #endif
3630 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3631 if (ret > 0) {
3632 IOHandlerRecord **pioh;
3633
3634 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3635 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3636 ioh->fd_read(ioh->opaque);
3637 }
3638 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3639 ioh->fd_write(ioh->opaque);
3640 }
3641 }
3642
3643 /* remove deleted IO handlers */
3644 pioh = &first_io_handler;
3645 while (*pioh) {
3646 ioh = *pioh;
3647 if (ioh->deleted) {
3648 *pioh = ioh->next;
3649 qemu_free(ioh);
3650 } else
3651 pioh = &ioh->next;
3652 }
3653 }
3654 #if defined(CONFIG_SLIRP)
3655 if (slirp_is_inited()) {
3656 if (ret < 0) {
3657 FD_ZERO(&rfds);
3658 FD_ZERO(&wfds);
3659 FD_ZERO(&xfds);
3660 }
3661 slirp_select_poll(&rfds, &wfds, &xfds);
3662 }
3663 #endif
3664
3665 /* vm time timers */
3666 if (vm_running && likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3667 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
3668 qemu_get_clock(vm_clock));
3669
3670 /* real time timers */
3671 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
3672 qemu_get_clock(rt_clock));
3673
3674 /* Check bottom-halves last in case any of the earlier events triggered
3675 them. */
3676 qemu_bh_poll();
3677
3678 }
3679
3680 static int main_loop(void)
3681 {
3682 int ret, timeout;
3683 #ifdef CONFIG_PROFILER
3684 int64_t ti;
3685 #endif
3686 CPUState *env;
3687
3688 cur_cpu = first_cpu;
3689 next_cpu = cur_cpu->next_cpu ?: first_cpu;
3690 for(;;) {
3691 if (vm_running) {
3692
3693 for(;;) {
3694 /* get next cpu */
3695 env = next_cpu;
3696 #ifdef CONFIG_PROFILER
3697 ti = profile_getclock();
3698 #endif
3699 if (use_icount) {
3700 int64_t count;
3701 int decr;
3702 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
3703 env->icount_decr.u16.low = 0;
3704 env->icount_extra = 0;
3705 count = qemu_next_deadline();
3706 count = (count + (1 << icount_time_shift) - 1)
3707 >> icount_time_shift;
3708 qemu_icount += count;
3709 decr = (count > 0xffff) ? 0xffff : count;
3710 count -= decr;
3711 env->icount_decr.u16.low = decr;
3712 env->icount_extra = count;
3713 }
3714 ret = cpu_exec(env);
3715 #ifdef CONFIG_PROFILER
3716 qemu_time += profile_getclock() - ti;
3717 #endif
3718 if (use_icount) {
3719 /* Fold pending instructions back into the
3720 instruction counter, and clear the interrupt flag. */
3721 qemu_icount -= (env->icount_decr.u16.low
3722 + env->icount_extra);
3723 env->icount_decr.u32 = 0;
3724 env->icount_extra = 0;
3725 }
3726 next_cpu = env->next_cpu ?: first_cpu;
3727 if (event_pending && likely(ret != EXCP_DEBUG)) {
3728 ret = EXCP_INTERRUPT;
3729 event_pending = 0;
3730 break;
3731 }
3732 if (ret == EXCP_HLT) {
3733 /* Give the next CPU a chance to run. */
3734 cur_cpu = env;
3735 continue;
3736 }
3737 if (ret != EXCP_HALTED)
3738 break;
3739 /* all CPUs are halted ? */
3740 if (env == cur_cpu)
3741 break;
3742 }
3743 cur_cpu = env;
3744
3745 if (shutdown_requested) {
3746 ret = EXCP_INTERRUPT;
3747 if (no_shutdown) {
3748 vm_stop(0);
3749 no_shutdown = 0;
3750 }
3751 else
3752 break;
3753 }
3754 if (reset_requested) {
3755 reset_requested = 0;
3756 qemu_system_reset();
3757 ret = EXCP_INTERRUPT;
3758 }
3759 if (powerdown_requested) {
3760 powerdown_requested = 0;
3761 qemu_system_powerdown();
3762 ret = EXCP_INTERRUPT;
3763 }
3764 if (unlikely(ret == EXCP_DEBUG)) {
3765 gdb_set_stop_cpu(cur_cpu);
3766 vm_stop(EXCP_DEBUG);
3767 }
3768 /* If all cpus are halted then wait until the next IRQ */
3769 /* XXX: use timeout computed from timers */
3770 if (ret == EXCP_HALTED) {
3771 if (use_icount) {
3772 int64_t add;
3773 int64_t delta;
3774 /* Advance virtual time to the next event. */
3775 if (use_icount == 1) {
3776 /* When not using an adaptive execution frequency
3777 we tend to get badly out of sync with real time,
3778 so just delay for a reasonable amount of time. */
3779 delta = 0;
3780 } else {
3781 delta = cpu_get_icount() - cpu_get_clock();
3782 }
3783 if (delta > 0) {
3784 /* If virtual time is ahead of real time then just
3785 wait for IO. */
3786 timeout = (delta / 1000000) + 1;
3787 } else {
3788 /* Wait for either IO to occur or the next
3789 timer event. */
3790 add = qemu_next_deadline();
3791 /* We advance the timer before checking for IO.
3792 Limit the amount we advance so that early IO
3793 activity won't get the guest too far ahead. */
3794 if (add > 10000000)
3795 add = 10000000;
3796 delta += add;
3797 add = (add + (1 << icount_time_shift) - 1)
3798 >> icount_time_shift;
3799 qemu_icount += add;
3800 timeout = delta / 1000000;
3801 if (timeout < 0)
3802 timeout = 0;
3803 }
3804 } else {
3805 timeout = 5000;
3806 }
3807 } else {
3808 timeout = 0;
3809 }
3810 } else {
3811 if (shutdown_requested) {
3812 ret = EXCP_INTERRUPT;
3813 break;
3814 }
3815 timeout = 5000;
3816 }
3817 #ifdef CONFIG_PROFILER
3818 ti = profile_getclock();
3819 #endif
3820 main_loop_wait(timeout);
3821 #ifdef CONFIG_PROFILER
3822 dev_time += profile_getclock() - ti;
3823 #endif
3824 }
3825 cpu_disable_ticks();
3826 return ret;
3827 }
3828
3829 static void help(int exitcode)
3830 {
3831 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
3832 "usage: %s [options] [disk_image]\n"
3833 "\n"
3834 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
3835 "\n"
3836 "Standard options:\n"
3837 "-M machine select emulated machine (-M ? for list)\n"
3838 "-cpu cpu select CPU (-cpu ? for list)\n"
3839 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
3840 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
3841 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
3842 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
3843 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
3844 " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
3845 " [,cache=writethrough|writeback|none][,format=f][,serial=s]\n"
3846 " use 'file' as a drive image\n"
3847 "-mtdblock file use 'file' as on-board Flash memory image\n"
3848 "-sd file use 'file' as SecureDigital card image\n"
3849 "-pflash file use 'file' as a parallel flash image\n"
3850 "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
3851 "-snapshot write to temporary files instead of disk image files\n"
3852 #ifdef CONFIG_SDL
3853 "-no-frame open SDL window without a frame and window decorations\n"
3854 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
3855 "-no-quit disable SDL window close capability\n"
3856 "-sdl enable SDL\n"
3857 #endif
3858 #ifdef TARGET_I386
3859 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
3860 #endif
3861 "-m megs set virtual RAM size to megs MB [default=%d]\n"
3862 "-smp n set the number of CPUs to 'n' [default=1]\n"
3863 "-nographic disable graphical output and redirect serial I/Os to console\n"
3864 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n"
3865 #ifndef _WIN32
3866 "-k language use keyboard layout (for example \"fr\" for French)\n"
3867 #endif
3868 #ifdef HAS_AUDIO
3869 "-audio-help print list of audio drivers and their options\n"
3870 "-soundhw c1,... enable audio support\n"
3871 " and only specified sound cards (comma separated list)\n"
3872 " use -soundhw ? to get the list of supported cards\n"
3873 " use -soundhw all to enable all of them\n"
3874 #endif
3875 "-vga [std|cirrus|vmware|none]\n"
3876 " select video card type\n"
3877 "-localtime set the real time clock to local time [default=utc]\n"
3878 "-full-screen start in full screen\n"
3879 #ifdef TARGET_I386
3880 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
3881 "-rtc-td-hack use it to fix time drift in Windows ACPI HAL\n"
3882 #endif
3883 "-usb enable the USB driver (will be the default soon)\n"
3884 "-usbdevice name add the host or guest USB device 'name'\n"
3885 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
3886 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
3887 #endif
3888 "-name string set the name of the guest\n"
3889 "-uuid %%08x-%%04x-%%04x-%%04x-%%012x specify machine UUID\n"
3890 "\n"
3891 "Network options:\n"
3892 "-net nic[,vlan=n][,macaddr=addr][,model=type][,name=str]\n"
3893 " create a new Network Interface Card and connect it to VLAN 'n'\n"
3894 #ifdef CONFIG_SLIRP
3895 "-net user[,vlan=n][,name=str][,hostname=host]\n"
3896 " connect the user mode network stack to VLAN 'n' and send\n"
3897 " hostname 'host' to DHCP clients\n"
3898 #endif
3899 #ifdef _WIN32
3900 "-net tap[,vlan=n][,name=str],ifname=name\n"
3901 " connect the host TAP network interface to VLAN 'n'\n"
3902 #else
3903 "-net tap[,vlan=n][,name=str][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
3904 " connect the host TAP network interface to VLAN 'n' and use the\n"
3905 " network scripts 'file' (default=%s)\n"
3906 " and 'dfile' (default=%s);\n"
3907 " use '[down]script=no' to disable script execution;\n"
3908 " use 'fd=h' to connect to an already opened TAP interface\n"
3909 #endif
3910 "-net socket[,vlan=n][,name=str][,fd=h][,listen=[host]:port][,connect=host:port]\n"
3911 " connect the vlan 'n' to another VLAN using a socket connection\n"
3912 "-net socket[,vlan=n][,name=str][,fd=h][,mcast=maddr:port]\n"
3913 " connect the vlan 'n' to multicast maddr and port\n"
3914 #ifdef CONFIG_VDE
3915 "-net vde[,vlan=n][,name=str][,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
3916 " connect the vlan 'n' to port 'n' of a vde switch running\n"
3917 " on host and listening for incoming connections on 'socketpath'.\n"
3918 " Use group 'groupname' and mode 'octalmode' to change default\n"
3919 " ownership and permissions for communication port.\n"
3920 #endif
3921 "-net none use it alone to have zero network devices; if no -net option\n"
3922 " is provided, the default is '-net nic -net user'\n"
3923 "\n"
3924 "-bt hci,null Dumb bluetooth HCI - doesn't respond to commands\n"
3925 "-bt hci,host[:id]\n"
3926 " Use host's HCI with the given name\n"
3927 "-bt hci[,vlan=n]\n"
3928 " Emulate a standard HCI in virtual scatternet 'n'\n"
3929 "-bt vhci[,vlan=n]\n"
3930 " Add host computer to virtual scatternet 'n' using VHCI\n"
3931 "-bt device:dev[,vlan=n]\n"
3932 " Emulate a bluetooth device 'dev' in scatternet 'n'\n"
3933 "\n"
3934 #ifdef CONFIG_SLIRP
3935 "-tftp dir allow tftp access to files in dir [-net user]\n"
3936 "-bootp file advertise file in BOOTP replies\n"
3937 #ifndef _WIN32
3938 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
3939 #endif
3940 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
3941 " redirect TCP or UDP connections from host to guest [-net user]\n"
3942 #endif
3943 "\n"
3944 "Linux boot specific:\n"
3945 "-kernel bzImage use 'bzImage' as kernel image\n"
3946 "-append cmdline use 'cmdline' as kernel command line\n"
3947 "-initrd file use 'file' as initial ram disk\n"
3948 "\n"
3949 "Debug/Expert options:\n"
3950 "-monitor dev redirect the monitor to char device 'dev'\n"
3951 "-serial dev redirect the serial port to char device 'dev'\n"
3952 "-parallel dev redirect the parallel port to char device 'dev'\n"
3953 "-pidfile file Write PID to 'file'\n"
3954 "-S freeze CPU at startup (use 'c' to start execution)\n"
3955 "-s wait gdb connection to port\n"
3956 "-p port set gdb connection port [default=%s]\n"
3957 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
3958 "-hdachs c,h,s[,t] force hard disk 0 physical geometry and the optional BIOS\n"
3959 " translation (t=none or lba) (usually qemu can guess them)\n"
3960 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
3961 #ifdef USE_KQEMU
3962 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
3963 "-no-kqemu disable KQEMU kernel module usage\n"
3964 #endif
3965 #ifdef CONFIG_KVM
3966 "-enable-kvm enable KVM full virtualization support\n"
3967 #endif
3968 #ifdef TARGET_I386
3969 "-no-acpi disable ACPI\n"
3970 "-no-hpet disable HPET\n"
3971 #endif
3972 #ifdef CONFIG_CURSES
3973 "-curses use a curses/ncurses interface instead of SDL\n"
3974 #endif
3975 "-no-reboot exit instead of rebooting\n"
3976 "-no-shutdown stop before shutdown\n"
3977 "-loadvm [tag|id] start right away with a saved state (loadvm in monitor)\n"
3978 "-vnc display start a VNC server on display\n"
3979 #ifndef _WIN32
3980 "-daemonize daemonize QEMU after initializing\n"
3981 #endif
3982 "-option-rom rom load a file, rom, into the option ROM space\n"
3983 #ifdef TARGET_SPARC
3984 "-prom-env variable=value set OpenBIOS nvram variables\n"
3985 #endif
3986 "-clock force the use of the given methods for timer alarm.\n"
3987 " To see what timers are available use -clock ?\n"
3988 "-startdate select initial date of the clock\n"
3989 "-icount [N|auto]\n"
3990 " Enable virtual instruction counter with 2^N clock ticks per instruction\n"
3991 "\n"
3992 "During emulation, the following keys are useful:\n"
3993 "ctrl-alt-f toggle full screen\n"
3994 "ctrl-alt-n switch to virtual console 'n'\n"
3995 "ctrl-alt toggle mouse and keyboard grab\n"
3996 "\n"
3997 "When using -nographic, press 'ctrl-a h' to get some help.\n"
3998 ,
3999 "qemu",
4000 DEFAULT_RAM_SIZE,
4001 #ifndef _WIN32
4002 DEFAULT_NETWORK_SCRIPT,
4003 DEFAULT_NETWORK_DOWN_SCRIPT,
4004 #endif
4005 DEFAULT_GDBSTUB_PORT,
4006 "/tmp/qemu.log");
4007 exit(exitcode);
4008 }
4009
4010 #define HAS_ARG 0x0001
4011
4012 enum {
4013 QEMU_OPTION_h,
4014
4015 QEMU_OPTION_M,
4016 QEMU_OPTION_cpu,
4017 QEMU_OPTION_fda,
4018 QEMU_OPTION_fdb,
4019 QEMU_OPTION_hda,
4020 QEMU_OPTION_hdb,
4021 QEMU_OPTION_hdc,
4022 QEMU_OPTION_hdd,
4023 QEMU_OPTION_drive,
4024 QEMU_OPTION_cdrom,
4025 QEMU_OPTION_mtdblock,
4026 QEMU_OPTION_sd,
4027 QEMU_OPTION_pflash,
4028 QEMU_OPTION_boot,
4029 QEMU_OPTION_snapshot,
4030 #ifdef TARGET_I386
4031 QEMU_OPTION_no_fd_bootchk,
4032 #endif
4033 QEMU_OPTION_m,
4034 QEMU_OPTION_nographic,
4035 QEMU_OPTION_portrait,
4036 #ifdef HAS_AUDIO
4037 QEMU_OPTION_audio_help,
4038 QEMU_OPTION_soundhw,
4039 #endif
4040
4041 QEMU_OPTION_net,
4042 QEMU_OPTION_tftp,
4043 QEMU_OPTION_bootp,
4044 QEMU_OPTION_smb,
4045 QEMU_OPTION_redir,
4046 QEMU_OPTION_bt,
4047
4048 QEMU_OPTION_kernel,
4049 QEMU_OPTION_append,
4050 QEMU_OPTION_initrd,
4051
4052 QEMU_OPTION_S,
4053 QEMU_OPTION_s,
4054 QEMU_OPTION_p,
4055 QEMU_OPTION_d,
4056 QEMU_OPTION_hdachs,
4057 QEMU_OPTION_L,
4058 QEMU_OPTION_bios,
4059 QEMU_OPTION_k,
4060 QEMU_OPTION_localtime,
4061 QEMU_OPTION_g,
4062 QEMU_OPTION_vga,
4063 QEMU_OPTION_echr,
4064 QEMU_OPTION_monitor,
4065 QEMU_OPTION_serial,
4066 QEMU_OPTION_virtiocon,
4067 QEMU_OPTION_parallel,
4068 QEMU_OPTION_loadvm,
4069 QEMU_OPTION_full_screen,
4070 QEMU_OPTION_no_frame,
4071 QEMU_OPTION_alt_grab,
4072 QEMU_OPTION_no_quit,
4073 QEMU_OPTION_sdl,
4074 QEMU_OPTION_pidfile,
4075 QEMU_OPTION_no_kqemu,
4076 QEMU_OPTION_kernel_kqemu,
4077 QEMU_OPTION_enable_kvm,
4078 QEMU_OPTION_win2k_hack,
4079 QEMU_OPTION_rtc_td_hack,
4080 QEMU_OPTION_usb,
4081 QEMU_OPTION_usbdevice,
4082 QEMU_OPTION_smp,
4083 QEMU_OPTION_vnc,
4084 QEMU_OPTION_no_acpi,
4085 QEMU_OPTION_no_hpet,
4086 QEMU_OPTION_curses,
4087 QEMU_OPTION_no_reboot,
4088 QEMU_OPTION_no_shutdown,
4089 QEMU_OPTION_show_cursor,
4090 QEMU_OPTION_daemonize,
4091 QEMU_OPTION_option_rom,
4092 QEMU_OPTION_semihosting,
4093 QEMU_OPTION_name,
4094 QEMU_OPTION_prom_env,
4095 QEMU_OPTION_old_param,
4096 QEMU_OPTION_clock,
4097 QEMU_OPTION_startdate,
4098 QEMU_OPTION_tb_size,
4099 QEMU_OPTION_icount,
4100 QEMU_OPTION_uuid,
4101 QEMU_OPTION_incoming,
4102 };
4103
4104 typedef struct QEMUOption {
4105 const char *name;
4106 int flags;
4107 int index;
4108 } QEMUOption;
4109
4110 static const QEMUOption qemu_options[] = {
4111 { "h", 0, QEMU_OPTION_h },
4112 { "help", 0, QEMU_OPTION_h },
4113
4114 { "M", HAS_ARG, QEMU_OPTION_M },
4115 { "cpu", HAS_ARG, QEMU_OPTION_cpu },
4116 { "fda", HAS_ARG, QEMU_OPTION_fda },
4117 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
4118 { "hda", HAS_ARG, QEMU_OPTION_hda },
4119 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
4120 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
4121 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
4122 { "drive", HAS_ARG, QEMU_OPTION_drive },
4123 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
4124 { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
4125 { "sd", HAS_ARG, QEMU_OPTION_sd },
4126 { "pflash", HAS_ARG, QEMU_OPTION_pflash },
4127 { "boot", HAS_ARG, QEMU_OPTION_boot },
4128 { "snapshot", 0, QEMU_OPTION_snapshot },
4129 #ifdef TARGET_I386
4130 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
4131 #endif
4132 { "m", HAS_ARG, QEMU_OPTION_m },
4133 { "nographic", 0, QEMU_OPTION_nographic },
4134 { "portrait", 0, QEMU_OPTION_portrait },
4135 { "k", HAS_ARG, QEMU_OPTION_k },
4136 #ifdef HAS_AUDIO
4137 { "audio-help", 0, QEMU_OPTION_audio_help },
4138 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
4139 #endif
4140
4141 { "net", HAS_ARG, QEMU_OPTION_net},
4142 #ifdef CONFIG_SLIRP
4143 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
4144 { "bootp", HAS_ARG, QEMU_OPTION_bootp },
4145 #ifndef _WIN32
4146 { "smb", HAS_ARG, QEMU_OPTION_smb },
4147 #endif
4148 { "redir", HAS_ARG, QEMU_OPTION_redir },
4149 #endif
4150 { "bt", HAS_ARG, QEMU_OPTION_bt },
4151
4152 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
4153 { "append", HAS_ARG, QEMU_OPTION_append },
4154 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
4155
4156 { "S", 0, QEMU_OPTION_S },
4157 { "s", 0, QEMU_OPTION_s },
4158 { "p", HAS_ARG, QEMU_OPTION_p },
4159 { "d", HAS_ARG, QEMU_OPTION_d },
4160 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
4161 { "L", HAS_ARG, QEMU_OPTION_L },
4162 { "bios", HAS_ARG, QEMU_OPTION_bios },
4163 #ifdef USE_KQEMU
4164 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
4165 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
4166 #endif
4167 #ifdef CONFIG_KVM
4168 { "enable-kvm", 0, QEMU_OPTION_enable_kvm },
4169 #endif
4170 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
4171 { "g", 1, QEMU_OPTION_g },
4172 #endif
4173 { "localtime", 0, QEMU_OPTION_localtime },
4174 { "vga", HAS_ARG, QEMU_OPTION_vga },
4175 { "echr", HAS_ARG, QEMU_OPTION_echr },
4176 { "monitor", HAS_ARG, QEMU_OPTION_monitor },
4177 { "serial", HAS_ARG, QEMU_OPTION_serial },
4178 { "virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon },
4179 { "parallel", HAS_ARG, QEMU_OPTION_parallel },
4180 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
4181 { "full-screen", 0, QEMU_OPTION_full_screen },
4182 #ifdef CONFIG_SDL
4183 { "no-frame", 0, QEMU_OPTION_no_frame },
4184 { "alt-grab", 0, QEMU_OPTION_alt_grab },
4185 { "no-quit", 0, QEMU_OPTION_no_quit },
4186 { "sdl", 0, QEMU_OPTION_sdl },
4187 #endif
4188 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
4189 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
4190 { "rtc-td-hack", 0, QEMU_OPTION_rtc_td_hack },
4191 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
4192 { "smp", HAS_ARG, QEMU_OPTION_smp },
4193 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
4194 #ifdef CONFIG_CURSES
4195 { "curses", 0, QEMU_OPTION_curses },
4196 #endif
4197 { "uuid", HAS_ARG, QEMU_OPTION_uuid },
4198
4199 /* temporary options */
4200 { "usb", 0, QEMU_OPTION_usb },
4201 { "no-acpi", 0, QEMU_OPTION_no_acpi },
4202 { "no-hpet", 0, QEMU_OPTION_no_hpet },
4203 { "no-reboot", 0, QEMU_OPTION_no_reboot },
4204 { "no-shutdown", 0, QEMU_OPTION_no_shutdown },
4205 { "show-cursor", 0, QEMU_OPTION_show_cursor },
4206 { "daemonize", 0, QEMU_OPTION_daemonize },
4207 { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
4208 #if defined(TARGET_ARM) || defined(TARGET_M68K)
4209 { "semihosting", 0, QEMU_OPTION_semihosting },
4210 #endif
4211 { "name", HAS_ARG, QEMU_OPTION_name },
4212 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
4213 { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
4214 #endif
4215 #if defined(TARGET_ARM)
4216 { "old-param", 0, QEMU_OPTION_old_param },
4217 #endif
4218 { "clock", HAS_ARG, QEMU_OPTION_clock },
4219 { "startdate", HAS_ARG, QEMU_OPTION_startdate },
4220 { "tb-size", HAS_ARG, QEMU_OPTION_tb_size },
4221 { "icount", HAS_ARG, QEMU_OPTION_icount },
4222 { "incoming", HAS_ARG, QEMU_OPTION_incoming },
4223 { NULL },
4224 };
4225
4226 /* password input */
4227
4228 int qemu_key_check(BlockDriverState *bs, const char *name)
4229 {
4230 char password[256];
4231 int i;
4232
4233 if (!bdrv_is_encrypted(bs))
4234 return 0;
4235
4236 term_printf("%s is encrypted.\n", name);
4237 for(i = 0; i < 3; i++) {
4238 monitor_readline("Password: ", 1, password, sizeof(password));
4239 if (bdrv_set_key(bs, password) == 0)
4240 return 0;
4241 term_printf("invalid password\n");
4242 }
4243 return -EPERM;
4244 }
4245
4246 static BlockDriverState *get_bdrv(int index)
4247 {
4248 if (index > nb_drives)
4249 return NULL;
4250 return drives_table[index].bdrv;
4251 }
4252
4253 static void read_passwords(void)
4254 {
4255 BlockDriverState *bs;
4256 int i;
4257
4258 for(i = 0; i < 6; i++) {
4259 bs = get_bdrv(i);
4260 if (bs)
4261 qemu_key_check(bs, bdrv_get_device_name(bs));
4262 }
4263 }
4264
4265 #ifdef HAS_AUDIO
4266 struct soundhw soundhw[] = {
4267 #ifdef HAS_AUDIO_CHOICE
4268 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4269 {
4270 "pcspk",
4271 "PC speaker",
4272 0,
4273 1,
4274 { .init_isa = pcspk_audio_init }
4275 },
4276 #endif
4277
4278 #ifdef CONFIG_SB16
4279 {
4280 "sb16",
4281 "Creative Sound Blaster 16",
4282 0,
4283 1,
4284 { .init_isa = SB16_init }
4285 },
4286 #endif
4287
4288 #ifdef CONFIG_CS4231A
4289 {
4290 "cs4231a",
4291 "CS4231A",
4292 0,
4293 1,
4294 { .init_isa = cs4231a_init }
4295 },
4296 #endif
4297
4298 #ifdef CONFIG_ADLIB
4299 {
4300 "adlib",
4301 #ifdef HAS_YMF262
4302 "Yamaha YMF262 (OPL3)",
4303 #else
4304 "Yamaha YM3812 (OPL2)",
4305 #endif
4306 0,
4307 1,
4308 { .init_isa = Adlib_init }
4309 },
4310 #endif
4311
4312 #ifdef CONFIG_GUS
4313 {
4314 "gus",
4315 "Gravis Ultrasound GF1",
4316 0,
4317 1,
4318 { .init_isa = GUS_init }
4319 },
4320 #endif
4321
4322 #ifdef CONFIG_AC97
4323 {
4324 "ac97",
4325 "Intel 82801AA AC97 Audio",
4326 0,
4327 0,
4328 { .init_pci = ac97_init }
4329 },
4330 #endif
4331
4332 #ifdef CONFIG_ES1370
4333 {
4334 "es1370",
4335 "ENSONIQ AudioPCI ES1370",
4336 0,
4337 0,
4338 { .init_pci = es1370_init }
4339 },
4340 #endif
4341
4342 #endif /* HAS_AUDIO_CHOICE */
4343
4344 { NULL, NULL, 0, 0, { NULL } }
4345 };
4346
4347 static void select_soundhw (const char *optarg)
4348 {
4349 struct soundhw *c;
4350
4351 if (*optarg == '?') {
4352 show_valid_cards:
4353
4354 printf ("Valid sound card names (comma separated):\n");
4355 for (c = soundhw; c->name; ++c) {
4356 printf ("%-11s %s\n", c->name, c->descr);
4357 }
4358 printf ("\n-soundhw all will enable all of the above\n");
4359 exit (*optarg != '?');
4360 }
4361 else {
4362 size_t l;
4363 const char *p;
4364 char *e;
4365 int bad_card = 0;
4366
4367 if (!strcmp (optarg, "all")) {
4368 for (c = soundhw; c->name; ++c) {
4369 c->enabled = 1;
4370 }
4371 return;
4372 }
4373
4374 p = optarg;
4375 while (*p) {
4376 e = strchr (p, ',');
4377 l = !e ? strlen (p) : (size_t) (e - p);
4378
4379 for (c = soundhw; c->name; ++c) {
4380 if (!strncmp (c->name, p, l)) {
4381 c->enabled = 1;
4382 break;
4383 }
4384 }
4385
4386 if (!c->name) {
4387 if (l > 80) {
4388 fprintf (stderr,
4389 "Unknown sound card name (too big to show)\n");
4390 }
4391 else {
4392 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4393 (int) l, p);
4394 }
4395 bad_card = 1;
4396 }
4397 p += l + (e != NULL);
4398 }
4399
4400 if (bad_card)
4401 goto show_valid_cards;
4402 }
4403 }
4404 #endif
4405
4406 static void select_vgahw (const char *p)
4407 {
4408 const char *opts;
4409
4410 if (strstart(p, "std", &opts)) {
4411 std_vga_enabled = 1;
4412 cirrus_vga_enabled = 0;
4413 vmsvga_enabled = 0;
4414 } else if (strstart(p, "cirrus", &opts)) {
4415 cirrus_vga_enabled = 1;
4416 std_vga_enabled = 0;
4417 vmsvga_enabled = 0;
4418 } else if (strstart(p, "vmware", &opts)) {
4419 cirrus_vga_enabled = 0;
4420 std_vga_enabled = 0;
4421 vmsvga_enabled = 1;
4422 } else if (strstart(p, "none", &opts)) {
4423 cirrus_vga_enabled = 0;
4424 std_vga_enabled = 0;
4425 vmsvga_enabled = 0;
4426 } else {
4427 invalid_vga:
4428 fprintf(stderr, "Unknown vga type: %s\n", p);
4429 exit(1);
4430 }
4431 while (*opts) {
4432 const char *nextopt;
4433
4434 if (strstart(opts, ",retrace=", &nextopt)) {
4435 opts = nextopt;
4436 if (strstart(opts, "dumb", &nextopt))
4437 vga_retrace_method = VGA_RETRACE_DUMB;
4438 else if (strstart(opts, "precise", &nextopt))
4439 vga_retrace_method = VGA_RETRACE_PRECISE;
4440 else goto invalid_vga;
4441 } else goto invalid_vga;
4442 opts = nextopt;
4443 }
4444 }
4445
4446 #ifdef _WIN32
4447 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4448 {
4449 exit(STATUS_CONTROL_C_EXIT);
4450 return TRUE;
4451 }
4452 #endif
4453
4454 static int qemu_uuid_parse(const char *str, uint8_t *uuid)
4455 {
4456 int ret;
4457
4458 if(strlen(str) != 36)
4459 return -1;
4460
4461 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4462 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4463 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4464
4465 if(ret != 16)
4466 return -1;
4467
4468 return 0;
4469 }
4470
4471 #define MAX_NET_CLIENTS 32
4472
4473 #ifndef _WIN32
4474
4475 static void termsig_handler(int signal)
4476 {
4477 qemu_system_shutdown_request();
4478 }
4479
4480 static void termsig_setup(void)
4481 {
4482 struct sigaction act;
4483
4484 memset(&act, 0, sizeof(act));
4485 act.sa_handler = termsig_handler;
4486 sigaction(SIGINT, &act, NULL);
4487 sigaction(SIGHUP, &act, NULL);
4488 sigaction(SIGTERM, &act, NULL);
4489 }
4490
4491 #endif
4492
4493 int main(int argc, char **argv, char **envp)
4494 {
4495 #ifdef CONFIG_GDBSTUB
4496 int use_gdbstub;
4497 const char *gdbstub_port;
4498 #endif
4499 uint32_t boot_devices_bitmap = 0;
4500 int i;
4501 int snapshot, linux_boot, net_boot;
4502 const char *initrd_filename;
4503 const char *kernel_filename, *kernel_cmdline;
4504 const char *boot_devices = "";
4505 DisplayState *ds = &display_state;
4506 DisplayChangeListener *dcl;
4507 int cyls, heads, secs, translation;
4508 const char *net_clients[MAX_NET_CLIENTS];
4509 int nb_net_clients;
4510 const char *bt_opts[MAX_BT_CMDLINE];
4511 int nb_bt_opts;
4512 int hda_index;
4513 int optind;
4514 const char *r, *optarg;
4515 CharDriverState *monitor_hd;
4516 const char *monitor_device;
4517 const char *serial_devices[MAX_SERIAL_PORTS];
4518 int serial_device_index;
4519 const char *parallel_devices[MAX_PARALLEL_PORTS];
4520 int parallel_device_index;
4521 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4522 int virtio_console_index;
4523 const char *loadvm = NULL;
4524 QEMUMachine *machine;
4525 const char *cpu_model;
4526 const char *usb_devices[MAX_USB_CMDLINE];
4527 int usb_devices_index;
4528 int fds[2];
4529 int tb_size;
4530 const char *pid_file = NULL;
4531 int autostart;
4532 const char *incoming = NULL;
4533
4534 qemu_cache_utils_init(envp);
4535
4536 LIST_INIT (&vm_change_state_head);
4537 #ifndef _WIN32
4538 {
4539 struct sigaction act;
4540 sigfillset(&act.sa_mask);
4541 act.sa_flags = 0;
4542 act.sa_handler = SIG_IGN;
4543 sigaction(SIGPIPE, &act, NULL);
4544 }
4545 #else
4546 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4547 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4548 QEMU to run on a single CPU */
4549 {
4550 HANDLE h;
4551 DWORD mask, smask;
4552 int i;
4553 h = GetCurrentProcess();
4554 if (GetProcessAffinityMask(h, &mask, &smask)) {
4555 for(i = 0; i < 32; i++) {
4556 if (mask & (1 << i))
4557 break;
4558 }
4559 if (i != 32) {
4560 mask = 1 << i;
4561 SetProcessAffinityMask(h, mask);
4562 }
4563 }
4564 }
4565 #endif
4566
4567 register_machines();
4568 machine = first_machine;
4569 cpu_model = NULL;
4570 initrd_filename = NULL;
4571 ram_size = 0;
4572 vga_ram_size = VGA_RAM_SIZE;
4573 #ifdef CONFIG_GDBSTUB
4574 use_gdbstub = 0;
4575 gdbstub_port = DEFAULT_GDBSTUB_PORT;
4576 #endif
4577 snapshot = 0;
4578 nographic = 0;
4579 curses = 0;
4580 kernel_filename = NULL;
4581 kernel_cmdline = "";
4582 cyls = heads = secs = 0;
4583 translation = BIOS_ATA_TRANSLATION_AUTO;
4584 monitor_device = "vc";
4585
4586 serial_devices[0] = "vc:80Cx24C";
4587 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4588 serial_devices[i] = NULL;
4589 serial_device_index = 0;
4590
4591 parallel_devices[0] = "vc:640x480";
4592 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4593 parallel_devices[i] = NULL;
4594 parallel_device_index = 0;
4595
4596 virtio_consoles[0] = "vc:80Cx24C";
4597 for(i = 1; i < MAX_VIRTIO_CONSOLES; i++)
4598 virtio_consoles[i] = NULL;
4599 virtio_console_index = 0;
4600
4601 usb_devices_index = 0;
4602
4603 nb_net_clients = 0;
4604 nb_bt_opts = 0;
4605 nb_drives = 0;
4606 nb_drives_opt = 0;
4607 hda_index = -1;
4608
4609 nb_nics = 0;
4610
4611 tb_size = 0;
4612 autostart= 1;
4613
4614 optind = 1;
4615 for(;;) {
4616 if (optind >= argc)
4617 break;
4618 r = argv[optind];
4619 if (r[0] != '-') {
4620 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4621 } else {
4622 const QEMUOption *popt;
4623
4624 optind++;
4625 /* Treat --foo the same as -foo. */
4626 if (r[1] == '-')
4627 r++;
4628 popt = qemu_options;
4629 for(;;) {
4630 if (!popt->name) {
4631 fprintf(stderr, "%s: invalid option -- '%s'\n",
4632 argv[0], r);
4633 exit(1);
4634 }
4635 if (!strcmp(popt->name, r + 1))
4636 break;
4637 popt++;
4638 }
4639 if (popt->flags & HAS_ARG) {
4640 if (optind >= argc) {
4641 fprintf(stderr, "%s: option '%s' requires an argument\n",
4642 argv[0], r);
4643 exit(1);
4644 }
4645 optarg = argv[optind++];
4646 } else {
4647 optarg = NULL;
4648 }
4649
4650 switch(popt->index) {
4651 case QEMU_OPTION_M:
4652 machine = find_machine(optarg);
4653 if (!machine) {
4654 QEMUMachine *m;
4655 printf("Supported machines are:\n");
4656 for(m = first_machine; m != NULL; m = m->next) {
4657 printf("%-10s %s%s\n",
4658 m->name, m->desc,
4659 m == first_machine ? " (default)" : "");
4660 }
4661 exit(*optarg != '?');
4662 }
4663 break;
4664 case QEMU_OPTION_cpu:
4665 /* hw initialization will check this */
4666 if (*optarg == '?') {
4667 /* XXX: implement xxx_cpu_list for targets that still miss it */
4668 #if defined(cpu_list)
4669 cpu_list(stdout, &fprintf);
4670 #endif
4671 exit(0);
4672 } else {
4673 cpu_model = optarg;
4674 }
4675 break;
4676 case QEMU_OPTION_initrd:
4677 initrd_filename = optarg;
4678 break;
4679 case QEMU_OPTION_hda:
4680 if (cyls == 0)
4681 hda_index = drive_add(optarg, HD_ALIAS, 0);
4682 else
4683 hda_index = drive_add(optarg, HD_ALIAS
4684 ",cyls=%d,heads=%d,secs=%d%s",
4685 0, cyls, heads, secs,
4686 translation == BIOS_ATA_TRANSLATION_LBA ?
4687 ",trans=lba" :
4688 translation == BIOS_ATA_TRANSLATION_NONE ?
4689 ",trans=none" : "");
4690 break;
4691 case QEMU_OPTION_hdb:
4692 case QEMU_OPTION_hdc:
4693 case QEMU_OPTION_hdd:
4694 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4695 break;
4696 case QEMU_OPTION_drive:
4697 drive_add(NULL, "%s", optarg);
4698 break;
4699 case QEMU_OPTION_mtdblock:
4700 drive_add(optarg, MTD_ALIAS);
4701 break;
4702 case QEMU_OPTION_sd:
4703 drive_add(optarg, SD_ALIAS);
4704 break;
4705 case QEMU_OPTION_pflash:
4706 drive_add(optarg, PFLASH_ALIAS);
4707 break;
4708 case QEMU_OPTION_snapshot:
4709 snapshot = 1;
4710 break;
4711 case QEMU_OPTION_hdachs:
4712 {
4713 const char *p;
4714 p = optarg;
4715 cyls = strtol(p, (char **)&p, 0);
4716 if (cyls < 1 || cyls > 16383)
4717 goto chs_fail;
4718 if (*p != ',')
4719 goto chs_fail;
4720 p++;
4721 heads = strtol(p, (char **)&p, 0);
4722 if (heads < 1 || heads > 16)
4723 goto chs_fail;
4724 if (*p != ',')
4725 goto chs_fail;
4726 p++;
4727 secs = strtol(p, (char **)&p, 0);
4728 if (secs < 1 || secs > 63)
4729 goto chs_fail;
4730 if (*p == ',') {
4731 p++;
4732 if (!strcmp(p, "none"))
4733 translation = BIOS_ATA_TRANSLATION_NONE;
4734 else if (!strcmp(p, "lba"))
4735 translation = BIOS_ATA_TRANSLATION_LBA;
4736 else if (!strcmp(p, "auto"))
4737 translation = BIOS_ATA_TRANSLATION_AUTO;
4738 else
4739 goto chs_fail;
4740 } else if (*p != '\0') {
4741 chs_fail:
4742 fprintf(stderr, "qemu: invalid physical CHS format\n");
4743 exit(1);
4744 }
4745 if (hda_index != -1)
4746 snprintf(drives_opt[hda_index].opt,
4747 sizeof(drives_opt[hda_index].opt),
4748 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
4749 0, cyls, heads, secs,
4750 translation == BIOS_ATA_TRANSLATION_LBA ?
4751 ",trans=lba" :
4752 translation == BIOS_ATA_TRANSLATION_NONE ?
4753 ",trans=none" : "");
4754 }
4755 break;
4756 case QEMU_OPTION_nographic:
4757 nographic = 1;
4758 break;
4759 #ifdef CONFIG_CURSES
4760 case QEMU_OPTION_curses:
4761 curses = 1;
4762 break;
4763 #endif
4764 case QEMU_OPTION_portrait:
4765 graphic_rotate = 1;
4766 break;
4767 case QEMU_OPTION_kernel:
4768 kernel_filename = optarg;
4769 break;
4770 case QEMU_OPTION_append:
4771 kernel_cmdline = optarg;
4772 break;
4773 case QEMU_OPTION_cdrom:
4774 drive_add(optarg, CDROM_ALIAS);
4775 break;
4776 case QEMU_OPTION_boot:
4777 boot_devices = optarg;
4778 /* We just do some generic consistency checks */
4779 {
4780 /* Could easily be extended to 64 devices if needed */
4781 const char *p;
4782
4783 boot_devices_bitmap = 0;
4784 for (p = boot_devices; *p != '\0'; p++) {
4785 /* Allowed boot devices are:
4786 * a b : floppy disk drives
4787 * c ... f : IDE disk drives
4788 * g ... m : machine implementation dependant drives
4789 * n ... p : network devices
4790 * It's up to each machine implementation to check
4791 * if the given boot devices match the actual hardware
4792 * implementation and firmware features.
4793 */
4794 if (*p < 'a' || *p > 'q') {
4795 fprintf(stderr, "Invalid boot device '%c'\n", *p);
4796 exit(1);
4797 }
4798 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
4799 fprintf(stderr,
4800 "Boot device '%c' was given twice\n",*p);
4801 exit(1);
4802 }
4803 boot_devices_bitmap |= 1 << (*p - 'a');
4804 }
4805 }
4806 break;
4807 case QEMU_OPTION_fda:
4808 case QEMU_OPTION_fdb:
4809 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
4810 break;
4811 #ifdef TARGET_I386
4812 case QEMU_OPTION_no_fd_bootchk:
4813 fd_bootchk = 0;
4814 break;
4815 #endif
4816 case QEMU_OPTION_net:
4817 if (nb_net_clients >= MAX_NET_CLIENTS) {
4818 fprintf(stderr, "qemu: too many network clients\n");
4819 exit(1);
4820 }
4821 net_clients[nb_net_clients] = optarg;
4822 nb_net_clients++;
4823 break;
4824 #ifdef CONFIG_SLIRP
4825 case QEMU_OPTION_tftp:
4826 tftp_prefix = optarg;
4827 break;
4828 case QEMU_OPTION_bootp:
4829 bootp_filename = optarg;
4830 break;
4831 #ifndef _WIN32
4832 case QEMU_OPTION_smb:
4833 net_slirp_smb(optarg);
4834 break;
4835 #endif
4836 case QEMU_OPTION_redir:
4837 net_slirp_redir(optarg);
4838 break;
4839 #endif
4840 case QEMU_OPTION_bt:
4841 if (nb_bt_opts >= MAX_BT_CMDLINE) {
4842 fprintf(stderr, "qemu: too many bluetooth options\n");
4843 exit(1);
4844 }
4845 bt_opts[nb_bt_opts++] = optarg;
4846 break;
4847 #ifdef HAS_AUDIO
4848 case QEMU_OPTION_audio_help:
4849 AUD_help ();
4850 exit (0);
4851 break;
4852 case QEMU_OPTION_soundhw:
4853 select_soundhw (optarg);
4854 break;
4855 #endif
4856 case QEMU_OPTION_h:
4857 help(0);
4858 break;
4859 case QEMU_OPTION_m: {
4860 uint64_t value;
4861 char *ptr;
4862
4863 value = strtoul(optarg, &ptr, 10);
4864 switch (*ptr) {
4865 case 0: case 'M': case 'm':
4866 value <<= 20;
4867 break;
4868 case 'G': case 'g':
4869 value <<= 30;
4870 break;
4871 default:
4872 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
4873 exit(1);
4874 }
4875
4876 /* On 32-bit hosts, QEMU is limited by virtual address space */
4877 if (value > (2047 << 20)
4878 #ifndef USE_KQEMU
4879 && HOST_LONG_BITS == 32
4880 #endif
4881 ) {
4882 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
4883 exit(1);
4884 }
4885 if (value != (uint64_t)(ram_addr_t)value) {
4886 fprintf(stderr, "qemu: ram size too large\n");
4887 exit(1);
4888 }
4889 ram_size = value;
4890 break;
4891 }
4892 case QEMU_OPTION_d:
4893 {
4894 int mask;
4895 const CPULogItem *item;
4896
4897 mask = cpu_str_to_log_mask(optarg);
4898 if (!mask) {
4899 printf("Log items (comma separated):\n");
4900 for(item = cpu_log_items; item->mask != 0; item++) {
4901 printf("%-10s %s\n", item->name, item->help);
4902 }
4903 exit(1);
4904 }
4905 cpu_set_log(mask);
4906 }
4907 break;
4908 #ifdef CONFIG_GDBSTUB
4909 case QEMU_OPTION_s:
4910 use_gdbstub = 1;
4911 break;
4912 case QEMU_OPTION_p:
4913 gdbstub_port = optarg;
4914 break;
4915 #endif
4916 case QEMU_OPTION_L:
4917 bios_dir = optarg;
4918 break;
4919 case QEMU_OPTION_bios:
4920 bios_name = optarg;
4921 break;
4922 case QEMU_OPTION_S:
4923 autostart = 0;
4924 break;
4925 case QEMU_OPTION_k:
4926 keyboard_layout = optarg;
4927 break;
4928 case QEMU_OPTION_localtime:
4929 rtc_utc = 0;
4930 break;
4931 case QEMU_OPTION_vga:
4932 select_vgahw (optarg);
4933 break;
4934 case QEMU_OPTION_g:
4935 {
4936 const char *p;
4937 int w, h, depth;
4938 p = optarg;
4939 w = strtol(p, (char **)&p, 10);
4940 if (w <= 0) {
4941 graphic_error:
4942 fprintf(stderr, "qemu: invalid resolution or depth\n");
4943 exit(1);
4944 }
4945 if (*p != 'x')
4946 goto graphic_error;
4947 p++;
4948 h = strtol(p, (char **)&p, 10);
4949 if (h <= 0)
4950 goto graphic_error;
4951 if (*p == 'x') {
4952 p++;
4953 depth = strtol(p, (char **)&p, 10);
4954 if (depth != 8 && depth != 15 && depth != 16 &&
4955 depth != 24 && depth != 32)
4956 goto graphic_error;
4957 } else if (*p == '\0') {
4958 depth = graphic_depth;
4959 } else {
4960 goto graphic_error;
4961 }
4962
4963 graphic_width = w;
4964 graphic_height = h;
4965 graphic_depth = depth;
4966 }
4967 break;
4968 case QEMU_OPTION_echr:
4969 {
4970 char *r;
4971 term_escape_char = strtol(optarg, &r, 0);
4972 if (r == optarg)
4973 printf("Bad argument to echr\n");
4974 break;
4975 }
4976 case QEMU_OPTION_monitor:
4977 monitor_device = optarg;
4978 break;
4979 case QEMU_OPTION_serial:
4980 if (serial_device_index >= MAX_SERIAL_PORTS) {
4981 fprintf(stderr, "qemu: too many serial ports\n");
4982 exit(1);
4983 }
4984 serial_devices[serial_device_index] = optarg;
4985 serial_device_index++;
4986 break;
4987 case QEMU_OPTION_virtiocon:
4988 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
4989 fprintf(stderr, "qemu: too many virtio consoles\n");
4990 exit(1);
4991 }
4992 virtio_consoles[virtio_console_index] = optarg;
4993 virtio_console_index++;
4994 break;
4995 case QEMU_OPTION_parallel:
4996 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
4997 fprintf(stderr, "qemu: too many parallel ports\n");
4998 exit(1);
4999 }
5000 parallel_devices[parallel_device_index] = optarg;
5001 parallel_device_index++;
5002 break;
5003 case QEMU_OPTION_loadvm:
5004 loadvm = optarg;
5005 break;
5006 case QEMU_OPTION_full_screen:
5007 full_screen = 1;
5008 break;
5009 #ifdef CONFIG_SDL
5010 case QEMU_OPTION_no_frame:
5011 no_frame = 1;
5012 break;
5013 case QEMU_OPTION_alt_grab:
5014 alt_grab = 1;
5015 break;
5016 case QEMU_OPTION_no_quit:
5017 no_quit = 1;
5018 break;
5019 case QEMU_OPTION_sdl:
5020 sdl = 1;
5021 break;
5022 #endif
5023 case QEMU_OPTION_pidfile:
5024 pid_file = optarg;
5025 break;
5026 #ifdef TARGET_I386
5027 case QEMU_OPTION_win2k_hack:
5028 win2k_install_hack = 1;
5029 break;
5030 case QEMU_OPTION_rtc_td_hack:
5031 rtc_td_hack = 1;
5032 break;
5033 #endif
5034 #ifdef USE_KQEMU
5035 case QEMU_OPTION_no_kqemu:
5036 kqemu_allowed = 0;
5037 break;
5038 case QEMU_OPTION_kernel_kqemu:
5039 kqemu_allowed = 2;
5040 break;
5041 #endif
5042 #ifdef CONFIG_KVM
5043 case QEMU_OPTION_enable_kvm:
5044 kvm_allowed = 1;
5045 #ifdef USE_KQEMU
5046 kqemu_allowed = 0;
5047 #endif
5048 break;
5049 #endif
5050 case QEMU_OPTION_usb:
5051 usb_enabled = 1;
5052 break;
5053 case QEMU_OPTION_usbdevice:
5054 usb_enabled = 1;
5055 if (usb_devices_index >= MAX_USB_CMDLINE) {
5056 fprintf(stderr, "Too many USB devices\n");
5057 exit(1);
5058 }
5059 usb_devices[usb_devices_index] = optarg;
5060 usb_devices_index++;
5061 break;
5062 case QEMU_OPTION_smp:
5063 smp_cpus = atoi(optarg);
5064 if (smp_cpus < 1) {
5065 fprintf(stderr, "Invalid number of CPUs\n");
5066 exit(1);
5067 }
5068 break;
5069 case QEMU_OPTION_vnc:
5070 vnc_display = optarg;
5071 break;
5072 case QEMU_OPTION_no_acpi:
5073 acpi_enabled = 0;
5074 break;
5075 case QEMU_OPTION_no_hpet:
5076 no_hpet = 1;
5077 break;
5078 case QEMU_OPTION_no_reboot:
5079 no_reboot = 1;
5080 break;
5081 case QEMU_OPTION_no_shutdown:
5082 no_shutdown = 1;
5083 break;
5084 case QEMU_OPTION_show_cursor:
5085 cursor_hide = 0;
5086 break;
5087 case QEMU_OPTION_uuid:
5088 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5089 fprintf(stderr, "Fail to parse UUID string."
5090 " Wrong format.\n");
5091 exit(1);
5092 }
5093 break;
5094 case QEMU_OPTION_daemonize:
5095 daemonize = 1;
5096 break;
5097 case QEMU_OPTION_option_rom:
5098 if (nb_option_roms >= MAX_OPTION_ROMS) {
5099 fprintf(stderr, "Too many option ROMs\n");
5100 exit(1);
5101 }
5102 option_rom[nb_option_roms] = optarg;
5103 nb_option_roms++;
5104 break;
5105 case QEMU_OPTION_semihosting:
5106 semihosting_enabled = 1;
5107 break;
5108 case QEMU_OPTION_name:
5109 qemu_name = optarg;
5110 break;
5111 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5112 case QEMU_OPTION_prom_env:
5113 if (nb_prom_envs >= MAX_PROM_ENVS) {
5114 fprintf(stderr, "Too many prom variables\n");
5115 exit(1);
5116 }
5117 prom_envs[nb_prom_envs] = optarg;
5118 nb_prom_envs++;
5119 break;
5120 #endif
5121 #ifdef TARGET_ARM
5122 case QEMU_OPTION_old_param:
5123 old_param = 1;
5124 break;
5125 #endif
5126 case QEMU_OPTION_clock:
5127 configure_alarms(optarg);
5128 break;
5129 case QEMU_OPTION_startdate:
5130 {
5131 struct tm tm;
5132 time_t rtc_start_date;
5133 if (!strcmp(optarg, "now")) {
5134 rtc_date_offset = -1;
5135 } else {
5136 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5137 &tm.tm_year,
5138 &tm.tm_mon,
5139 &tm.tm_mday,
5140 &tm.tm_hour,
5141 &tm.tm_min,
5142 &tm.tm_sec) == 6) {
5143 /* OK */
5144 } else if (sscanf(optarg, "%d-%d-%d",
5145 &tm.tm_year,
5146 &tm.tm_mon,
5147 &tm.tm_mday) == 3) {
5148 tm.tm_hour = 0;
5149 tm.tm_min = 0;
5150 tm.tm_sec = 0;
5151 } else {
5152 goto date_fail;
5153 }
5154 tm.tm_year -= 1900;
5155 tm.tm_mon--;
5156 rtc_start_date = mktimegm(&tm);
5157 if (rtc_start_date == -1) {
5158 date_fail:
5159 fprintf(stderr, "Invalid date format. Valid format are:\n"
5160 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5161 exit(1);
5162 }
5163 rtc_date_offset = time(NULL) - rtc_start_date;
5164 }
5165 }
5166 break;
5167 case QEMU_OPTION_tb_size:
5168 tb_size = strtol(optarg, NULL, 0);
5169 if (tb_size < 0)
5170 tb_size = 0;
5171 break;
5172 case QEMU_OPTION_icount:
5173 use_icount = 1;
5174 if (strcmp(optarg, "auto") == 0) {
5175 icount_time_shift = -1;
5176 } else {
5177 icount_time_shift = strtol(optarg, NULL, 0);
5178 }
5179 break;
5180 case QEMU_OPTION_incoming:
5181 incoming = optarg;
5182 break;
5183 }
5184 }
5185 }
5186
5187 #if defined(CONFIG_KVM) && defined(USE_KQEMU)
5188 if (kvm_allowed && kqemu_allowed) {
5189 fprintf(stderr,
5190 "You can not enable both KVM and kqemu at the same time\n");
5191 exit(1);
5192 }
5193 #endif
5194
5195 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5196 if (smp_cpus > machine->max_cpus) {
5197 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5198 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5199 machine->max_cpus);
5200 exit(1);
5201 }
5202
5203 if (nographic) {
5204 if (serial_device_index == 0)
5205 serial_devices[0] = "stdio";
5206 if (parallel_device_index == 0)
5207 parallel_devices[0] = "null";
5208 if (strncmp(monitor_device, "vc", 2) == 0)
5209 monitor_device = "stdio";
5210 if (virtio_console_index == 0)
5211 virtio_consoles[0] = "null";
5212 }
5213
5214 #ifndef _WIN32
5215 if (daemonize) {
5216 pid_t pid;
5217
5218 if (pipe(fds) == -1)
5219 exit(1);
5220
5221 pid = fork();
5222 if (pid > 0) {
5223 uint8_t status;
5224 ssize_t len;
5225
5226 close(fds[1]);
5227
5228 again:
5229 len = read(fds[0], &status, 1);
5230 if (len == -1 && (errno == EINTR))
5231 goto again;
5232
5233 if (len != 1)
5234 exit(1);
5235 else if (status == 1) {
5236 fprintf(stderr, "Could not acquire pidfile\n");
5237 exit(1);
5238 } else
5239 exit(0);
5240 } else if (pid < 0)
5241 exit(1);
5242
5243 setsid();
5244
5245 pid = fork();
5246 if (pid > 0)
5247 exit(0);
5248 else if (pid < 0)
5249 exit(1);
5250
5251 umask(027);
5252
5253 signal(SIGTSTP, SIG_IGN);
5254 signal(SIGTTOU, SIG_IGN);
5255 signal(SIGTTIN, SIG_IGN);
5256 }
5257 #endif
5258
5259 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5260 if (daemonize) {
5261 uint8_t status = 1;
5262 write(fds[1], &status, 1);
5263 } else
5264 fprintf(stderr, "Could not acquire pid file\n");
5265 exit(1);
5266 }
5267
5268 #ifdef USE_KQEMU
5269 if (smp_cpus > 1)
5270 kqemu_allowed = 0;
5271 #endif
5272 linux_boot = (kernel_filename != NULL);
5273 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5274
5275 if (!linux_boot && net_boot == 0 &&
5276 !machine->nodisk_ok && nb_drives_opt == 0)
5277 help(1);
5278
5279 if (!linux_boot && *kernel_cmdline != '\0') {
5280 fprintf(stderr, "-append only allowed with -kernel option\n");
5281 exit(1);
5282 }
5283
5284 if (!linux_boot && initrd_filename != NULL) {
5285 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5286 exit(1);
5287 }
5288
5289 /* boot to floppy or the default cd if no hard disk defined yet */
5290 if (!boot_devices[0]) {
5291 boot_devices = "cad";
5292 }
5293 setvbuf(stdout, NULL, _IOLBF, 0);
5294
5295 init_timers();
5296 if (init_timer_alarm() < 0) {
5297 fprintf(stderr, "could not initialize alarm timer\n");
5298 exit(1);
5299 }
5300 if (use_icount && icount_time_shift < 0) {
5301 use_icount = 2;
5302 /* 125MIPS seems a reasonable initial guess at the guest speed.
5303 It will be corrected fairly quickly anyway. */
5304 icount_time_shift = 3;
5305 init_icount_adjust();
5306 }
5307
5308 #ifdef _WIN32
5309 socket_init();
5310 #endif
5311
5312 /* init network clients */
5313 if (nb_net_clients == 0) {
5314 /* if no clients, we use a default config */
5315 net_clients[nb_net_clients++] = "nic";
5316 #ifdef CONFIG_SLIRP
5317 net_clients[nb_net_clients++] = "user";
5318 #endif
5319 }
5320
5321 for(i = 0;i < nb_net_clients; i++) {
5322 if (net_client_parse(net_clients[i]) < 0)
5323 exit(1);
5324 }
5325 net_client_check();
5326
5327 #ifdef TARGET_I386
5328 /* XXX: this should be moved in the PC machine instantiation code */
5329 if (net_boot != 0) {
5330 int netroms = 0;
5331 for (i = 0; i < nb_nics && i < 4; i++) {
5332 const char *model = nd_table[i].model;
5333 char buf[1024];
5334 if (net_boot & (1 << i)) {
5335 if (model == NULL)
5336 model = "ne2k_pci";
5337 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5338 if (get_image_size(buf) > 0) {
5339 if (nb_option_roms >= MAX_OPTION_ROMS) {
5340 fprintf(stderr, "Too many option ROMs\n");
5341 exit(1);
5342 }
5343 option_rom[nb_option_roms] = strdup(buf);
5344 nb_option_roms++;
5345 netroms++;
5346 }
5347 }
5348 }
5349 if (netroms == 0) {
5350 fprintf(stderr, "No valid PXE rom found for network device\n");
5351 exit(1);
5352 }
5353 }
5354 #endif
5355
5356 /* init the bluetooth world */
5357 for (i = 0; i < nb_bt_opts; i++)
5358 if (bt_parse(bt_opts[i]))
5359 exit(1);
5360
5361 /* init the memory */
5362 phys_ram_size = machine->ram_require & ~RAMSIZE_FIXED;
5363
5364 if (machine->ram_require & RAMSIZE_FIXED) {
5365 if (ram_size > 0) {
5366 if (ram_size < phys_ram_size) {
5367 fprintf(stderr, "Machine `%s' requires %llu bytes of memory\n",
5368 machine->name, (unsigned long long) phys_ram_size);
5369 exit(-1);
5370 }
5371
5372 phys_ram_size = ram_size;
5373 } else
5374 ram_size = phys_ram_size;
5375 } else {
5376 if (ram_size == 0)
5377 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5378
5379 phys_ram_size += ram_size;
5380 }
5381
5382 phys_ram_base = qemu_vmalloc(phys_ram_size);
5383 if (!phys_ram_base) {
5384 fprintf(stderr, "Could not allocate physical memory\n");
5385 exit(1);
5386 }
5387
5388 /* init the dynamic translator */
5389 cpu_exec_init_all(tb_size * 1024 * 1024);
5390
5391 bdrv_init();
5392
5393 /* we always create the cdrom drive, even if no disk is there */
5394
5395 if (nb_drives_opt < MAX_DRIVES)
5396 drive_add(NULL, CDROM_ALIAS);
5397
5398 /* we always create at least one floppy */
5399
5400 if (nb_drives_opt < MAX_DRIVES)
5401 drive_add(NULL, FD_ALIAS, 0);
5402
5403 /* we always create one sd slot, even if no card is in it */
5404
5405 if (nb_drives_opt < MAX_DRIVES)
5406 drive_add(NULL, SD_ALIAS);
5407
5408 /* open the virtual block devices */
5409
5410 for(i = 0; i < nb_drives_opt; i++)
5411 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5412 exit(1);
5413
5414 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5415 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5416
5417 /* terminal init */
5418 memset(&display_state, 0, sizeof(display_state));
5419 ds->surface = qemu_create_displaysurface(640, 480, 32, 640 * 4);
5420 if (nographic) {
5421 if (curses) {
5422 fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
5423 exit(1);
5424 }
5425 /* nearly nothing to do */
5426 dumb_display_init(ds);
5427 } else {
5428 #if defined(CONFIG_CURSES)
5429 if (curses) {
5430 /* At the moment curses cannot be used with other displays */
5431 curses_display_init(ds, full_screen);
5432 } else
5433 #endif
5434 {
5435 if (vnc_display != NULL) {
5436 vnc_display_init(ds);
5437 if (vnc_display_open(ds, vnc_display) < 0)
5438 exit(1);
5439 }
5440 if (sdl || !vnc_display)
5441 #if defined(CONFIG_SDL)
5442 sdl_display_init(ds, full_screen, no_frame);
5443 #elif defined(CONFIG_COCOA)
5444 cocoa_display_init(ds, full_screen);
5445 #else
5446 dumb_display_init(ds);
5447 #endif
5448 }
5449 }
5450 dpy_resize(ds);
5451 #ifndef _WIN32
5452 /* must be after terminal init, SDL library changes signal handlers */
5453 termsig_setup();
5454 #endif
5455
5456 /* Maintain compatibility with multiple stdio monitors */
5457 if (!strcmp(monitor_device,"stdio")) {
5458 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5459 const char *devname = serial_devices[i];
5460 if (devname && !strcmp(devname,"mon:stdio")) {
5461 monitor_device = NULL;
5462 break;
5463 } else if (devname && !strcmp(devname,"stdio")) {
5464 monitor_device = NULL;
5465 serial_devices[i] = "mon:stdio";
5466 break;
5467 }
5468 }
5469 }
5470 if (monitor_device) {
5471 monitor_hd = qemu_chr_open("monitor", monitor_device);
5472 if (!monitor_hd) {
5473 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5474 exit(1);
5475 }
5476 monitor_init(monitor_hd, !nographic);
5477 }
5478
5479 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5480 const char *devname = serial_devices[i];
5481 if (devname && strcmp(devname, "none")) {
5482 char label[32];
5483 snprintf(label, sizeof(label), "serial%d", i);
5484 serial_hds[i] = qemu_chr_open(label, devname);
5485 if (!serial_hds[i]) {
5486 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5487 devname);
5488 exit(1);
5489 }
5490 if (strstart(devname, "vc", 0))
5491 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5492 }
5493 }
5494
5495 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5496 const char *devname = parallel_devices[i];
5497 if (devname && strcmp(devname, "none")) {
5498 char label[32];
5499 snprintf(label, sizeof(label), "parallel%d", i);
5500 parallel_hds[i] = qemu_chr_open(label, devname);
5501 if (!parallel_hds[i]) {
5502 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5503 devname);
5504 exit(1);
5505 }
5506 if (strstart(devname, "vc", 0))
5507 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5508 }
5509 }
5510
5511 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5512 const char *devname = virtio_consoles[i];
5513 if (devname && strcmp(devname, "none")) {
5514 char label[32];
5515 snprintf(label, sizeof(label), "virtcon%d", i);
5516 virtcon_hds[i] = qemu_chr_open(label, devname);
5517 if (!virtcon_hds[i]) {
5518 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5519 devname);
5520 exit(1);
5521 }
5522 if (strstart(devname, "vc", 0))
5523 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
5524 }
5525 }
5526
5527 if (kvm_enabled()) {
5528 int ret;
5529
5530 ret = kvm_init(smp_cpus);
5531 if (ret < 0) {
5532 fprintf(stderr, "failed to initialize KVM\n");
5533 exit(1);
5534 }
5535 }
5536
5537 machine->init(ram_size, vga_ram_size, boot_devices, ds,
5538 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5539
5540 /* Set KVM's vcpu state to qemu's initial CPUState. */
5541 if (kvm_enabled()) {
5542 int ret;
5543
5544 ret = kvm_sync_vcpus();
5545 if (ret < 0) {
5546 fprintf(stderr, "failed to initialize vcpus\n");
5547 exit(1);
5548 }
5549 }
5550
5551 /* init USB devices */
5552 if (usb_enabled) {
5553 for(i = 0; i < usb_devices_index; i++) {
5554 if (usb_device_add(usb_devices[i]) < 0) {
5555 fprintf(stderr, "Warning: could not add USB device %s\n",
5556 usb_devices[i]);
5557 }
5558 }
5559 }
5560
5561 dcl = ds->listeners;
5562 while (dcl != NULL) {
5563 if (dcl->dpy_refresh != NULL) {
5564 display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
5565 qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
5566 }
5567 dcl = dcl->next;
5568 }
5569 #ifdef CONFIG_GDBSTUB
5570 if (use_gdbstub) {
5571 /* XXX: use standard host:port notation and modify options
5572 accordingly. */
5573 if (gdbserver_start(gdbstub_port) < 0) {
5574 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
5575 gdbstub_port);
5576 exit(1);
5577 }
5578 }
5579 #endif
5580
5581 if (loadvm)
5582 do_loadvm(loadvm);
5583
5584 if (incoming) {
5585 autostart = 0; /* fixme how to deal with -daemonize */
5586 qemu_start_incoming_migration(incoming);
5587 }
5588
5589 {
5590 /* XXX: simplify init */
5591 read_passwords();
5592 if (autostart) {
5593 vm_start();
5594 }
5595 }
5596
5597 if (daemonize) {
5598 uint8_t status = 0;
5599 ssize_t len;
5600 int fd;
5601
5602 again1:
5603 len = write(fds[1], &status, 1);
5604 if (len == -1 && (errno == EINTR))
5605 goto again1;
5606
5607 if (len != 1)
5608 exit(1);
5609
5610 chdir("/");
5611 TFR(fd = open("/dev/null", O_RDWR));
5612 if (fd == -1)
5613 exit(1);
5614
5615 dup2(fd, 0);
5616 dup2(fd, 1);
5617 dup2(fd, 2);
5618
5619 close(fd);
5620 }
5621
5622 main_loop();
5623 quit_timers();
5624 net_cleanup();
5625
5626 return 0;
5627 }