]> git.proxmox.com Git - mirror_qemu.git/blob - vl.c
Syncing documentation vs. -help vs. qemu_options table
[mirror_qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
31
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
34
35 #ifndef _WIN32
36 #include <pwd.h>
37 #include <sys/times.h>
38 #include <sys/wait.h>
39 #include <termios.h>
40 #include <sys/mman.h>
41 #include <sys/ioctl.h>
42 #include <sys/resource.h>
43 #include <sys/socket.h>
44 #include <netinet/in.h>
45 #include <net/if.h>
46 #if defined(__NetBSD__)
47 #include <net/if_tap.h>
48 #endif
49 #ifdef __linux__
50 #include <linux/if_tun.h>
51 #endif
52 #include <arpa/inet.h>
53 #include <dirent.h>
54 #include <netdb.h>
55 #include <sys/select.h>
56 #ifdef HOST_BSD
57 #include <sys/stat.h>
58 #if defined(__FreeBSD__) || defined(__DragonFly__)
59 #include <libutil.h>
60 #else
61 #include <util.h>
62 #endif
63 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
64 #include <freebsd/stdlib.h>
65 #else
66 #ifdef __linux__
67 #include <pty.h>
68 #include <malloc.h>
69 #include <linux/rtc.h>
70
71 /* For the benefit of older linux systems which don't supply it,
72 we use a local copy of hpet.h. */
73 /* #include <linux/hpet.h> */
74 #include "hpet.h"
75
76 #include <linux/ppdev.h>
77 #include <linux/parport.h>
78 #endif
79 #ifdef __sun__
80 #include <sys/stat.h>
81 #include <sys/ethernet.h>
82 #include <sys/sockio.h>
83 #include <netinet/arp.h>
84 #include <netinet/in.h>
85 #include <netinet/in_systm.h>
86 #include <netinet/ip.h>
87 #include <netinet/ip_icmp.h> // must come after ip.h
88 #include <netinet/udp.h>
89 #include <netinet/tcp.h>
90 #include <net/if.h>
91 #include <syslog.h>
92 #include <stropts.h>
93 #endif
94 #endif
95 #endif
96
97 #if defined(__OpenBSD__)
98 #include <util.h>
99 #endif
100
101 #if defined(CONFIG_VDE)
102 #include <libvdeplug.h>
103 #endif
104
105 #ifdef _WIN32
106 #include <windows.h>
107 #include <malloc.h>
108 #include <sys/timeb.h>
109 #include <mmsystem.h>
110 #define getopt_long_only getopt_long
111 #define memalign(align, size) malloc(size)
112 #endif
113
114 #ifdef CONFIG_SDL
115 #ifdef __APPLE__
116 #include <SDL/SDL.h>
117 int qemu_main(int argc, char **argv, char **envp);
118 int main(int argc, char **argv)
119 {
120 qemu_main(argc, argv, NULL);
121 }
122 #undef main
123 #define main qemu_main
124 #endif
125 #endif /* CONFIG_SDL */
126
127 #ifdef CONFIG_COCOA
128 #undef main
129 #define main qemu_main
130 #endif /* CONFIG_COCOA */
131
132 #include "hw/hw.h"
133 #include "hw/boards.h"
134 #include "hw/usb.h"
135 #include "hw/pcmcia.h"
136 #include "hw/pc.h"
137 #include "hw/audiodev.h"
138 #include "hw/isa.h"
139 #include "hw/baum.h"
140 #include "hw/bt.h"
141 #include "bt-host.h"
142 #include "net.h"
143 #include "monitor.h"
144 #include "console.h"
145 #include "sysemu.h"
146 #include "gdbstub.h"
147 #include "qemu-timer.h"
148 #include "qemu-char.h"
149 #include "cache-utils.h"
150 #include "block.h"
151 #include "audio/audio.h"
152 #include "migration.h"
153 #include "kvm.h"
154 #include "balloon.h"
155
156 #include "disas.h"
157
158 #include "exec-all.h"
159
160 #include "qemu_socket.h"
161
162 #if defined(CONFIG_SLIRP)
163 #include "libslirp.h"
164 #endif
165
166 //#define DEBUG_UNUSED_IOPORT
167 //#define DEBUG_IOPORT
168 //#define DEBUG_NET
169 //#define DEBUG_SLIRP
170
171
172 #ifdef DEBUG_IOPORT
173 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
174 #else
175 # define LOG_IOPORT(...) do { } while (0)
176 #endif
177
178 #define DEFAULT_RAM_SIZE 128
179
180 /* Max number of USB devices that can be specified on the commandline. */
181 #define MAX_USB_CMDLINE 8
182
183 /* Max number of bluetooth switches on the commandline. */
184 #define MAX_BT_CMDLINE 10
185
186 /* XXX: use a two level table to limit memory usage */
187 #define MAX_IOPORTS 65536
188
189 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
190 const char *bios_name = NULL;
191 static void *ioport_opaque[MAX_IOPORTS];
192 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
193 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
194 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
195 to store the VM snapshots */
196 DriveInfo drives_table[MAX_DRIVES+1];
197 int nb_drives;
198 static int vga_ram_size;
199 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
200 static DisplayState *display_state;
201 int nographic;
202 static int curses;
203 static int sdl;
204 const char* keyboard_layout = NULL;
205 int64_t ticks_per_sec;
206 ram_addr_t ram_size;
207 int nb_nics;
208 NICInfo nd_table[MAX_NICS];
209 int vm_running;
210 static int autostart;
211 static int rtc_utc = 1;
212 static int rtc_date_offset = -1; /* -1 means no change */
213 int cirrus_vga_enabled = 1;
214 int std_vga_enabled = 0;
215 int vmsvga_enabled = 0;
216 #ifdef TARGET_SPARC
217 int graphic_width = 1024;
218 int graphic_height = 768;
219 int graphic_depth = 8;
220 #else
221 int graphic_width = 800;
222 int graphic_height = 600;
223 int graphic_depth = 15;
224 #endif
225 static int full_screen = 0;
226 #ifdef CONFIG_SDL
227 static int no_frame = 0;
228 #endif
229 int no_quit = 0;
230 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
231 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
232 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
233 #ifdef TARGET_I386
234 int win2k_install_hack = 0;
235 int rtc_td_hack = 0;
236 #endif
237 int usb_enabled = 0;
238 int smp_cpus = 1;
239 const char *vnc_display;
240 int acpi_enabled = 1;
241 int no_hpet = 0;
242 int fd_bootchk = 1;
243 int no_reboot = 0;
244 int no_shutdown = 0;
245 int cursor_hide = 1;
246 int graphic_rotate = 0;
247 int daemonize = 0;
248 const char *option_rom[MAX_OPTION_ROMS];
249 int nb_option_roms;
250 int semihosting_enabled = 0;
251 #ifdef TARGET_ARM
252 int old_param = 0;
253 #endif
254 const char *qemu_name;
255 int alt_grab = 0;
256 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
257 unsigned int nb_prom_envs = 0;
258 const char *prom_envs[MAX_PROM_ENVS];
259 #endif
260 int nb_drives_opt;
261 struct drive_opt drives_opt[MAX_DRIVES];
262
263 static CPUState *cur_cpu;
264 static CPUState *next_cpu;
265 static int event_pending = 1;
266 /* Conversion factor from emulated instructions to virtual clock ticks. */
267 static int icount_time_shift;
268 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
269 #define MAX_ICOUNT_SHIFT 10
270 /* Compensate for varying guest execution speed. */
271 static int64_t qemu_icount_bias;
272 static QEMUTimer *icount_rt_timer;
273 static QEMUTimer *icount_vm_timer;
274 static QEMUTimer *nographic_timer;
275
276 uint8_t qemu_uuid[16];
277
278 /***********************************************************/
279 /* x86 ISA bus support */
280
281 target_phys_addr_t isa_mem_base = 0;
282 PicState2 *isa_pic;
283
284 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
285 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
286
287 static uint32_t ioport_read(int index, uint32_t address)
288 {
289 static IOPortReadFunc *default_func[3] = {
290 default_ioport_readb,
291 default_ioport_readw,
292 default_ioport_readl
293 };
294 IOPortReadFunc *func = ioport_read_table[index][address];
295 if (!func)
296 func = default_func[index];
297 return func(ioport_opaque[address], address);
298 }
299
300 static void ioport_write(int index, uint32_t address, uint32_t data)
301 {
302 static IOPortWriteFunc *default_func[3] = {
303 default_ioport_writeb,
304 default_ioport_writew,
305 default_ioport_writel
306 };
307 IOPortWriteFunc *func = ioport_write_table[index][address];
308 if (!func)
309 func = default_func[index];
310 func(ioport_opaque[address], address, data);
311 }
312
313 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
314 {
315 #ifdef DEBUG_UNUSED_IOPORT
316 fprintf(stderr, "unused inb: port=0x%04x\n", address);
317 #endif
318 return 0xff;
319 }
320
321 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
322 {
323 #ifdef DEBUG_UNUSED_IOPORT
324 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
325 #endif
326 }
327
328 /* default is to make two byte accesses */
329 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
330 {
331 uint32_t data;
332 data = ioport_read(0, address);
333 address = (address + 1) & (MAX_IOPORTS - 1);
334 data |= ioport_read(0, address) << 8;
335 return data;
336 }
337
338 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
339 {
340 ioport_write(0, address, data & 0xff);
341 address = (address + 1) & (MAX_IOPORTS - 1);
342 ioport_write(0, address, (data >> 8) & 0xff);
343 }
344
345 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
346 {
347 #ifdef DEBUG_UNUSED_IOPORT
348 fprintf(stderr, "unused inl: port=0x%04x\n", address);
349 #endif
350 return 0xffffffff;
351 }
352
353 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
354 {
355 #ifdef DEBUG_UNUSED_IOPORT
356 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
357 #endif
358 }
359
360 /* size is the word size in byte */
361 int register_ioport_read(int start, int length, int size,
362 IOPortReadFunc *func, void *opaque)
363 {
364 int i, bsize;
365
366 if (size == 1) {
367 bsize = 0;
368 } else if (size == 2) {
369 bsize = 1;
370 } else if (size == 4) {
371 bsize = 2;
372 } else {
373 hw_error("register_ioport_read: invalid size");
374 return -1;
375 }
376 for(i = start; i < start + length; i += size) {
377 ioport_read_table[bsize][i] = func;
378 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
379 hw_error("register_ioport_read: invalid opaque");
380 ioport_opaque[i] = opaque;
381 }
382 return 0;
383 }
384
385 /* size is the word size in byte */
386 int register_ioport_write(int start, int length, int size,
387 IOPortWriteFunc *func, void *opaque)
388 {
389 int i, bsize;
390
391 if (size == 1) {
392 bsize = 0;
393 } else if (size == 2) {
394 bsize = 1;
395 } else if (size == 4) {
396 bsize = 2;
397 } else {
398 hw_error("register_ioport_write: invalid size");
399 return -1;
400 }
401 for(i = start; i < start + length; i += size) {
402 ioport_write_table[bsize][i] = func;
403 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
404 hw_error("register_ioport_write: invalid opaque");
405 ioport_opaque[i] = opaque;
406 }
407 return 0;
408 }
409
410 void isa_unassign_ioport(int start, int length)
411 {
412 int i;
413
414 for(i = start; i < start + length; i++) {
415 ioport_read_table[0][i] = default_ioport_readb;
416 ioport_read_table[1][i] = default_ioport_readw;
417 ioport_read_table[2][i] = default_ioport_readl;
418
419 ioport_write_table[0][i] = default_ioport_writeb;
420 ioport_write_table[1][i] = default_ioport_writew;
421 ioport_write_table[2][i] = default_ioport_writel;
422
423 ioport_opaque[i] = NULL;
424 }
425 }
426
427 /***********************************************************/
428
429 void cpu_outb(CPUState *env, int addr, int val)
430 {
431 LOG_IOPORT("outb: %04x %02x\n", addr, val);
432 ioport_write(0, addr, val);
433 #ifdef USE_KQEMU
434 if (env)
435 env->last_io_time = cpu_get_time_fast();
436 #endif
437 }
438
439 void cpu_outw(CPUState *env, int addr, int val)
440 {
441 LOG_IOPORT("outw: %04x %04x\n", addr, val);
442 ioport_write(1, addr, val);
443 #ifdef USE_KQEMU
444 if (env)
445 env->last_io_time = cpu_get_time_fast();
446 #endif
447 }
448
449 void cpu_outl(CPUState *env, int addr, int val)
450 {
451 LOG_IOPORT("outl: %04x %08x\n", addr, val);
452 ioport_write(2, addr, val);
453 #ifdef USE_KQEMU
454 if (env)
455 env->last_io_time = cpu_get_time_fast();
456 #endif
457 }
458
459 int cpu_inb(CPUState *env, int addr)
460 {
461 int val;
462 val = ioport_read(0, addr);
463 LOG_IOPORT("inb : %04x %02x\n", addr, val);
464 #ifdef USE_KQEMU
465 if (env)
466 env->last_io_time = cpu_get_time_fast();
467 #endif
468 return val;
469 }
470
471 int cpu_inw(CPUState *env, int addr)
472 {
473 int val;
474 val = ioport_read(1, addr);
475 LOG_IOPORT("inw : %04x %04x\n", addr, val);
476 #ifdef USE_KQEMU
477 if (env)
478 env->last_io_time = cpu_get_time_fast();
479 #endif
480 return val;
481 }
482
483 int cpu_inl(CPUState *env, int addr)
484 {
485 int val;
486 val = ioport_read(2, addr);
487 LOG_IOPORT("inl : %04x %08x\n", addr, val);
488 #ifdef USE_KQEMU
489 if (env)
490 env->last_io_time = cpu_get_time_fast();
491 #endif
492 return val;
493 }
494
495 /***********************************************************/
496 void hw_error(const char *fmt, ...)
497 {
498 va_list ap;
499 CPUState *env;
500
501 va_start(ap, fmt);
502 fprintf(stderr, "qemu: hardware error: ");
503 vfprintf(stderr, fmt, ap);
504 fprintf(stderr, "\n");
505 for(env = first_cpu; env != NULL; env = env->next_cpu) {
506 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
507 #ifdef TARGET_I386
508 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
509 #else
510 cpu_dump_state(env, stderr, fprintf, 0);
511 #endif
512 }
513 va_end(ap);
514 abort();
515 }
516
517 /***************/
518 /* ballooning */
519
520 static QEMUBalloonEvent *qemu_balloon_event;
521 void *qemu_balloon_event_opaque;
522
523 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
524 {
525 qemu_balloon_event = func;
526 qemu_balloon_event_opaque = opaque;
527 }
528
529 void qemu_balloon(ram_addr_t target)
530 {
531 if (qemu_balloon_event)
532 qemu_balloon_event(qemu_balloon_event_opaque, target);
533 }
534
535 ram_addr_t qemu_balloon_status(void)
536 {
537 if (qemu_balloon_event)
538 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
539 return 0;
540 }
541
542 /***********************************************************/
543 /* keyboard/mouse */
544
545 static QEMUPutKBDEvent *qemu_put_kbd_event;
546 static void *qemu_put_kbd_event_opaque;
547 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
548 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
549
550 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
551 {
552 qemu_put_kbd_event_opaque = opaque;
553 qemu_put_kbd_event = func;
554 }
555
556 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
557 void *opaque, int absolute,
558 const char *name)
559 {
560 QEMUPutMouseEntry *s, *cursor;
561
562 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
563
564 s->qemu_put_mouse_event = func;
565 s->qemu_put_mouse_event_opaque = opaque;
566 s->qemu_put_mouse_event_absolute = absolute;
567 s->qemu_put_mouse_event_name = qemu_strdup(name);
568 s->next = NULL;
569
570 if (!qemu_put_mouse_event_head) {
571 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
572 return s;
573 }
574
575 cursor = qemu_put_mouse_event_head;
576 while (cursor->next != NULL)
577 cursor = cursor->next;
578
579 cursor->next = s;
580 qemu_put_mouse_event_current = s;
581
582 return s;
583 }
584
585 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
586 {
587 QEMUPutMouseEntry *prev = NULL, *cursor;
588
589 if (!qemu_put_mouse_event_head || entry == NULL)
590 return;
591
592 cursor = qemu_put_mouse_event_head;
593 while (cursor != NULL && cursor != entry) {
594 prev = cursor;
595 cursor = cursor->next;
596 }
597
598 if (cursor == NULL) // does not exist or list empty
599 return;
600 else if (prev == NULL) { // entry is head
601 qemu_put_mouse_event_head = cursor->next;
602 if (qemu_put_mouse_event_current == entry)
603 qemu_put_mouse_event_current = cursor->next;
604 qemu_free(entry->qemu_put_mouse_event_name);
605 qemu_free(entry);
606 return;
607 }
608
609 prev->next = entry->next;
610
611 if (qemu_put_mouse_event_current == entry)
612 qemu_put_mouse_event_current = prev;
613
614 qemu_free(entry->qemu_put_mouse_event_name);
615 qemu_free(entry);
616 }
617
618 void kbd_put_keycode(int keycode)
619 {
620 if (qemu_put_kbd_event) {
621 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
622 }
623 }
624
625 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
626 {
627 QEMUPutMouseEvent *mouse_event;
628 void *mouse_event_opaque;
629 int width;
630
631 if (!qemu_put_mouse_event_current) {
632 return;
633 }
634
635 mouse_event =
636 qemu_put_mouse_event_current->qemu_put_mouse_event;
637 mouse_event_opaque =
638 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
639
640 if (mouse_event) {
641 if (graphic_rotate) {
642 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
643 width = 0x7fff;
644 else
645 width = graphic_width - 1;
646 mouse_event(mouse_event_opaque,
647 width - dy, dx, dz, buttons_state);
648 } else
649 mouse_event(mouse_event_opaque,
650 dx, dy, dz, buttons_state);
651 }
652 }
653
654 int kbd_mouse_is_absolute(void)
655 {
656 if (!qemu_put_mouse_event_current)
657 return 0;
658
659 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
660 }
661
662 void do_info_mice(Monitor *mon)
663 {
664 QEMUPutMouseEntry *cursor;
665 int index = 0;
666
667 if (!qemu_put_mouse_event_head) {
668 monitor_printf(mon, "No mouse devices connected\n");
669 return;
670 }
671
672 monitor_printf(mon, "Mouse devices available:\n");
673 cursor = qemu_put_mouse_event_head;
674 while (cursor != NULL) {
675 monitor_printf(mon, "%c Mouse #%d: %s\n",
676 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
677 index, cursor->qemu_put_mouse_event_name);
678 index++;
679 cursor = cursor->next;
680 }
681 }
682
683 void do_mouse_set(Monitor *mon, int index)
684 {
685 QEMUPutMouseEntry *cursor;
686 int i = 0;
687
688 if (!qemu_put_mouse_event_head) {
689 monitor_printf(mon, "No mouse devices connected\n");
690 return;
691 }
692
693 cursor = qemu_put_mouse_event_head;
694 while (cursor != NULL && index != i) {
695 i++;
696 cursor = cursor->next;
697 }
698
699 if (cursor != NULL)
700 qemu_put_mouse_event_current = cursor;
701 else
702 monitor_printf(mon, "Mouse at given index not found\n");
703 }
704
705 /* compute with 96 bit intermediate result: (a*b)/c */
706 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
707 {
708 union {
709 uint64_t ll;
710 struct {
711 #ifdef WORDS_BIGENDIAN
712 uint32_t high, low;
713 #else
714 uint32_t low, high;
715 #endif
716 } l;
717 } u, res;
718 uint64_t rl, rh;
719
720 u.ll = a;
721 rl = (uint64_t)u.l.low * (uint64_t)b;
722 rh = (uint64_t)u.l.high * (uint64_t)b;
723 rh += (rl >> 32);
724 res.l.high = rh / c;
725 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
726 return res.ll;
727 }
728
729 /***********************************************************/
730 /* real time host monotonic timer */
731
732 #define QEMU_TIMER_BASE 1000000000LL
733
734 #ifdef WIN32
735
736 static int64_t clock_freq;
737
738 static void init_get_clock(void)
739 {
740 LARGE_INTEGER freq;
741 int ret;
742 ret = QueryPerformanceFrequency(&freq);
743 if (ret == 0) {
744 fprintf(stderr, "Could not calibrate ticks\n");
745 exit(1);
746 }
747 clock_freq = freq.QuadPart;
748 }
749
750 static int64_t get_clock(void)
751 {
752 LARGE_INTEGER ti;
753 QueryPerformanceCounter(&ti);
754 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
755 }
756
757 #else
758
759 static int use_rt_clock;
760
761 static void init_get_clock(void)
762 {
763 use_rt_clock = 0;
764 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
765 || defined(__DragonFly__)
766 {
767 struct timespec ts;
768 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
769 use_rt_clock = 1;
770 }
771 }
772 #endif
773 }
774
775 static int64_t get_clock(void)
776 {
777 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
778 || defined(__DragonFly__)
779 if (use_rt_clock) {
780 struct timespec ts;
781 clock_gettime(CLOCK_MONOTONIC, &ts);
782 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
783 } else
784 #endif
785 {
786 /* XXX: using gettimeofday leads to problems if the date
787 changes, so it should be avoided. */
788 struct timeval tv;
789 gettimeofday(&tv, NULL);
790 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
791 }
792 }
793 #endif
794
795 /* Return the virtual CPU time, based on the instruction counter. */
796 static int64_t cpu_get_icount(void)
797 {
798 int64_t icount;
799 CPUState *env = cpu_single_env;;
800 icount = qemu_icount;
801 if (env) {
802 if (!can_do_io(env))
803 fprintf(stderr, "Bad clock read\n");
804 icount -= (env->icount_decr.u16.low + env->icount_extra);
805 }
806 return qemu_icount_bias + (icount << icount_time_shift);
807 }
808
809 /***********************************************************/
810 /* guest cycle counter */
811
812 static int64_t cpu_ticks_prev;
813 static int64_t cpu_ticks_offset;
814 static int64_t cpu_clock_offset;
815 static int cpu_ticks_enabled;
816
817 /* return the host CPU cycle counter and handle stop/restart */
818 int64_t cpu_get_ticks(void)
819 {
820 if (use_icount) {
821 return cpu_get_icount();
822 }
823 if (!cpu_ticks_enabled) {
824 return cpu_ticks_offset;
825 } else {
826 int64_t ticks;
827 ticks = cpu_get_real_ticks();
828 if (cpu_ticks_prev > ticks) {
829 /* Note: non increasing ticks may happen if the host uses
830 software suspend */
831 cpu_ticks_offset += cpu_ticks_prev - ticks;
832 }
833 cpu_ticks_prev = ticks;
834 return ticks + cpu_ticks_offset;
835 }
836 }
837
838 /* return the host CPU monotonic timer and handle stop/restart */
839 static int64_t cpu_get_clock(void)
840 {
841 int64_t ti;
842 if (!cpu_ticks_enabled) {
843 return cpu_clock_offset;
844 } else {
845 ti = get_clock();
846 return ti + cpu_clock_offset;
847 }
848 }
849
850 /* enable cpu_get_ticks() */
851 void cpu_enable_ticks(void)
852 {
853 if (!cpu_ticks_enabled) {
854 cpu_ticks_offset -= cpu_get_real_ticks();
855 cpu_clock_offset -= get_clock();
856 cpu_ticks_enabled = 1;
857 }
858 }
859
860 /* disable cpu_get_ticks() : the clock is stopped. You must not call
861 cpu_get_ticks() after that. */
862 void cpu_disable_ticks(void)
863 {
864 if (cpu_ticks_enabled) {
865 cpu_ticks_offset = cpu_get_ticks();
866 cpu_clock_offset = cpu_get_clock();
867 cpu_ticks_enabled = 0;
868 }
869 }
870
871 /***********************************************************/
872 /* timers */
873
874 #define QEMU_TIMER_REALTIME 0
875 #define QEMU_TIMER_VIRTUAL 1
876
877 struct QEMUClock {
878 int type;
879 /* XXX: add frequency */
880 };
881
882 struct QEMUTimer {
883 QEMUClock *clock;
884 int64_t expire_time;
885 QEMUTimerCB *cb;
886 void *opaque;
887 struct QEMUTimer *next;
888 };
889
890 struct qemu_alarm_timer {
891 char const *name;
892 unsigned int flags;
893
894 int (*start)(struct qemu_alarm_timer *t);
895 void (*stop)(struct qemu_alarm_timer *t);
896 void (*rearm)(struct qemu_alarm_timer *t);
897 void *priv;
898 };
899
900 #define ALARM_FLAG_DYNTICKS 0x1
901 #define ALARM_FLAG_EXPIRED 0x2
902
903 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
904 {
905 return t->flags & ALARM_FLAG_DYNTICKS;
906 }
907
908 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
909 {
910 if (!alarm_has_dynticks(t))
911 return;
912
913 t->rearm(t);
914 }
915
916 /* TODO: MIN_TIMER_REARM_US should be optimized */
917 #define MIN_TIMER_REARM_US 250
918
919 static struct qemu_alarm_timer *alarm_timer;
920 #ifndef _WIN32
921 static int alarm_timer_rfd, alarm_timer_wfd;
922 #endif
923
924 #ifdef _WIN32
925
926 struct qemu_alarm_win32 {
927 MMRESULT timerId;
928 HANDLE host_alarm;
929 unsigned int period;
930 } alarm_win32_data = {0, NULL, -1};
931
932 static int win32_start_timer(struct qemu_alarm_timer *t);
933 static void win32_stop_timer(struct qemu_alarm_timer *t);
934 static void win32_rearm_timer(struct qemu_alarm_timer *t);
935
936 #else
937
938 static int unix_start_timer(struct qemu_alarm_timer *t);
939 static void unix_stop_timer(struct qemu_alarm_timer *t);
940
941 #ifdef __linux__
942
943 static int dynticks_start_timer(struct qemu_alarm_timer *t);
944 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
945 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
946
947 static int hpet_start_timer(struct qemu_alarm_timer *t);
948 static void hpet_stop_timer(struct qemu_alarm_timer *t);
949
950 static int rtc_start_timer(struct qemu_alarm_timer *t);
951 static void rtc_stop_timer(struct qemu_alarm_timer *t);
952
953 #endif /* __linux__ */
954
955 #endif /* _WIN32 */
956
957 /* Correlation between real and virtual time is always going to be
958 fairly approximate, so ignore small variation.
959 When the guest is idle real and virtual time will be aligned in
960 the IO wait loop. */
961 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
962
963 static void icount_adjust(void)
964 {
965 int64_t cur_time;
966 int64_t cur_icount;
967 int64_t delta;
968 static int64_t last_delta;
969 /* If the VM is not running, then do nothing. */
970 if (!vm_running)
971 return;
972
973 cur_time = cpu_get_clock();
974 cur_icount = qemu_get_clock(vm_clock);
975 delta = cur_icount - cur_time;
976 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
977 if (delta > 0
978 && last_delta + ICOUNT_WOBBLE < delta * 2
979 && icount_time_shift > 0) {
980 /* The guest is getting too far ahead. Slow time down. */
981 icount_time_shift--;
982 }
983 if (delta < 0
984 && last_delta - ICOUNT_WOBBLE > delta * 2
985 && icount_time_shift < MAX_ICOUNT_SHIFT) {
986 /* The guest is getting too far behind. Speed time up. */
987 icount_time_shift++;
988 }
989 last_delta = delta;
990 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
991 }
992
993 static void icount_adjust_rt(void * opaque)
994 {
995 qemu_mod_timer(icount_rt_timer,
996 qemu_get_clock(rt_clock) + 1000);
997 icount_adjust();
998 }
999
1000 static void icount_adjust_vm(void * opaque)
1001 {
1002 qemu_mod_timer(icount_vm_timer,
1003 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1004 icount_adjust();
1005 }
1006
1007 static void init_icount_adjust(void)
1008 {
1009 /* Have both realtime and virtual time triggers for speed adjustment.
1010 The realtime trigger catches emulated time passing too slowly,
1011 the virtual time trigger catches emulated time passing too fast.
1012 Realtime triggers occur even when idle, so use them less frequently
1013 than VM triggers. */
1014 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1015 qemu_mod_timer(icount_rt_timer,
1016 qemu_get_clock(rt_clock) + 1000);
1017 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1018 qemu_mod_timer(icount_vm_timer,
1019 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1020 }
1021
1022 static struct qemu_alarm_timer alarm_timers[] = {
1023 #ifndef _WIN32
1024 #ifdef __linux__
1025 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1026 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1027 /* HPET - if available - is preferred */
1028 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1029 /* ...otherwise try RTC */
1030 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1031 #endif
1032 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1033 #else
1034 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1035 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1036 {"win32", 0, win32_start_timer,
1037 win32_stop_timer, NULL, &alarm_win32_data},
1038 #endif
1039 {NULL, }
1040 };
1041
1042 static void show_available_alarms(void)
1043 {
1044 int i;
1045
1046 printf("Available alarm timers, in order of precedence:\n");
1047 for (i = 0; alarm_timers[i].name; i++)
1048 printf("%s\n", alarm_timers[i].name);
1049 }
1050
1051 static void configure_alarms(char const *opt)
1052 {
1053 int i;
1054 int cur = 0;
1055 int count = ARRAY_SIZE(alarm_timers) - 1;
1056 char *arg;
1057 char *name;
1058 struct qemu_alarm_timer tmp;
1059
1060 if (!strcmp(opt, "?")) {
1061 show_available_alarms();
1062 exit(0);
1063 }
1064
1065 arg = strdup(opt);
1066
1067 /* Reorder the array */
1068 name = strtok(arg, ",");
1069 while (name) {
1070 for (i = 0; i < count && alarm_timers[i].name; i++) {
1071 if (!strcmp(alarm_timers[i].name, name))
1072 break;
1073 }
1074
1075 if (i == count) {
1076 fprintf(stderr, "Unknown clock %s\n", name);
1077 goto next;
1078 }
1079
1080 if (i < cur)
1081 /* Ignore */
1082 goto next;
1083
1084 /* Swap */
1085 tmp = alarm_timers[i];
1086 alarm_timers[i] = alarm_timers[cur];
1087 alarm_timers[cur] = tmp;
1088
1089 cur++;
1090 next:
1091 name = strtok(NULL, ",");
1092 }
1093
1094 free(arg);
1095
1096 if (cur) {
1097 /* Disable remaining timers */
1098 for (i = cur; i < count; i++)
1099 alarm_timers[i].name = NULL;
1100 } else {
1101 show_available_alarms();
1102 exit(1);
1103 }
1104 }
1105
1106 QEMUClock *rt_clock;
1107 QEMUClock *vm_clock;
1108
1109 static QEMUTimer *active_timers[2];
1110
1111 static QEMUClock *qemu_new_clock(int type)
1112 {
1113 QEMUClock *clock;
1114 clock = qemu_mallocz(sizeof(QEMUClock));
1115 clock->type = type;
1116 return clock;
1117 }
1118
1119 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1120 {
1121 QEMUTimer *ts;
1122
1123 ts = qemu_mallocz(sizeof(QEMUTimer));
1124 ts->clock = clock;
1125 ts->cb = cb;
1126 ts->opaque = opaque;
1127 return ts;
1128 }
1129
1130 void qemu_free_timer(QEMUTimer *ts)
1131 {
1132 qemu_free(ts);
1133 }
1134
1135 /* stop a timer, but do not dealloc it */
1136 void qemu_del_timer(QEMUTimer *ts)
1137 {
1138 QEMUTimer **pt, *t;
1139
1140 /* NOTE: this code must be signal safe because
1141 qemu_timer_expired() can be called from a signal. */
1142 pt = &active_timers[ts->clock->type];
1143 for(;;) {
1144 t = *pt;
1145 if (!t)
1146 break;
1147 if (t == ts) {
1148 *pt = t->next;
1149 break;
1150 }
1151 pt = &t->next;
1152 }
1153 }
1154
1155 /* modify the current timer so that it will be fired when current_time
1156 >= expire_time. The corresponding callback will be called. */
1157 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1158 {
1159 QEMUTimer **pt, *t;
1160
1161 qemu_del_timer(ts);
1162
1163 /* add the timer in the sorted list */
1164 /* NOTE: this code must be signal safe because
1165 qemu_timer_expired() can be called from a signal. */
1166 pt = &active_timers[ts->clock->type];
1167 for(;;) {
1168 t = *pt;
1169 if (!t)
1170 break;
1171 if (t->expire_time > expire_time)
1172 break;
1173 pt = &t->next;
1174 }
1175 ts->expire_time = expire_time;
1176 ts->next = *pt;
1177 *pt = ts;
1178
1179 /* Rearm if necessary */
1180 if (pt == &active_timers[ts->clock->type]) {
1181 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1182 qemu_rearm_alarm_timer(alarm_timer);
1183 }
1184 /* Interrupt execution to force deadline recalculation. */
1185 if (use_icount && cpu_single_env) {
1186 cpu_exit(cpu_single_env);
1187 }
1188 }
1189 }
1190
1191 int qemu_timer_pending(QEMUTimer *ts)
1192 {
1193 QEMUTimer *t;
1194 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1195 if (t == ts)
1196 return 1;
1197 }
1198 return 0;
1199 }
1200
1201 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1202 {
1203 if (!timer_head)
1204 return 0;
1205 return (timer_head->expire_time <= current_time);
1206 }
1207
1208 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1209 {
1210 QEMUTimer *ts;
1211
1212 for(;;) {
1213 ts = *ptimer_head;
1214 if (!ts || ts->expire_time > current_time)
1215 break;
1216 /* remove timer from the list before calling the callback */
1217 *ptimer_head = ts->next;
1218 ts->next = NULL;
1219
1220 /* run the callback (the timer list can be modified) */
1221 ts->cb(ts->opaque);
1222 }
1223 }
1224
1225 int64_t qemu_get_clock(QEMUClock *clock)
1226 {
1227 switch(clock->type) {
1228 case QEMU_TIMER_REALTIME:
1229 return get_clock() / 1000000;
1230 default:
1231 case QEMU_TIMER_VIRTUAL:
1232 if (use_icount) {
1233 return cpu_get_icount();
1234 } else {
1235 return cpu_get_clock();
1236 }
1237 }
1238 }
1239
1240 static void init_timers(void)
1241 {
1242 init_get_clock();
1243 ticks_per_sec = QEMU_TIMER_BASE;
1244 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1245 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1246 }
1247
1248 /* save a timer */
1249 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1250 {
1251 uint64_t expire_time;
1252
1253 if (qemu_timer_pending(ts)) {
1254 expire_time = ts->expire_time;
1255 } else {
1256 expire_time = -1;
1257 }
1258 qemu_put_be64(f, expire_time);
1259 }
1260
1261 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1262 {
1263 uint64_t expire_time;
1264
1265 expire_time = qemu_get_be64(f);
1266 if (expire_time != -1) {
1267 qemu_mod_timer(ts, expire_time);
1268 } else {
1269 qemu_del_timer(ts);
1270 }
1271 }
1272
1273 static void timer_save(QEMUFile *f, void *opaque)
1274 {
1275 if (cpu_ticks_enabled) {
1276 hw_error("cannot save state if virtual timers are running");
1277 }
1278 qemu_put_be64(f, cpu_ticks_offset);
1279 qemu_put_be64(f, ticks_per_sec);
1280 qemu_put_be64(f, cpu_clock_offset);
1281 }
1282
1283 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1284 {
1285 if (version_id != 1 && version_id != 2)
1286 return -EINVAL;
1287 if (cpu_ticks_enabled) {
1288 return -EINVAL;
1289 }
1290 cpu_ticks_offset=qemu_get_be64(f);
1291 ticks_per_sec=qemu_get_be64(f);
1292 if (version_id == 2) {
1293 cpu_clock_offset=qemu_get_be64(f);
1294 }
1295 return 0;
1296 }
1297
1298 #ifdef _WIN32
1299 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1300 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1301 #else
1302 static void host_alarm_handler(int host_signum)
1303 #endif
1304 {
1305 #if 0
1306 #define DISP_FREQ 1000
1307 {
1308 static int64_t delta_min = INT64_MAX;
1309 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1310 static int count;
1311 ti = qemu_get_clock(vm_clock);
1312 if (last_clock != 0) {
1313 delta = ti - last_clock;
1314 if (delta < delta_min)
1315 delta_min = delta;
1316 if (delta > delta_max)
1317 delta_max = delta;
1318 delta_cum += delta;
1319 if (++count == DISP_FREQ) {
1320 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1321 muldiv64(delta_min, 1000000, ticks_per_sec),
1322 muldiv64(delta_max, 1000000, ticks_per_sec),
1323 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1324 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1325 count = 0;
1326 delta_min = INT64_MAX;
1327 delta_max = 0;
1328 delta_cum = 0;
1329 }
1330 }
1331 last_clock = ti;
1332 }
1333 #endif
1334 if (alarm_has_dynticks(alarm_timer) ||
1335 (!use_icount &&
1336 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1337 qemu_get_clock(vm_clock))) ||
1338 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1339 qemu_get_clock(rt_clock))) {
1340 CPUState *env = next_cpu;
1341
1342 #ifdef _WIN32
1343 struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1344 SetEvent(data->host_alarm);
1345 #else
1346 static const char byte = 0;
1347 write(alarm_timer_wfd, &byte, sizeof(byte));
1348 #endif
1349 alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1350
1351 if (env) {
1352 /* stop the currently executing cpu because a timer occured */
1353 cpu_exit(env);
1354 #ifdef USE_KQEMU
1355 if (env->kqemu_enabled) {
1356 kqemu_cpu_interrupt(env);
1357 }
1358 #endif
1359 }
1360 event_pending = 1;
1361 }
1362 }
1363
1364 static int64_t qemu_next_deadline(void)
1365 {
1366 int64_t delta;
1367
1368 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1369 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1370 qemu_get_clock(vm_clock);
1371 } else {
1372 /* To avoid problems with overflow limit this to 2^32. */
1373 delta = INT32_MAX;
1374 }
1375
1376 if (delta < 0)
1377 delta = 0;
1378
1379 return delta;
1380 }
1381
1382 #if defined(__linux__) || defined(_WIN32)
1383 static uint64_t qemu_next_deadline_dyntick(void)
1384 {
1385 int64_t delta;
1386 int64_t rtdelta;
1387
1388 if (use_icount)
1389 delta = INT32_MAX;
1390 else
1391 delta = (qemu_next_deadline() + 999) / 1000;
1392
1393 if (active_timers[QEMU_TIMER_REALTIME]) {
1394 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1395 qemu_get_clock(rt_clock))*1000;
1396 if (rtdelta < delta)
1397 delta = rtdelta;
1398 }
1399
1400 if (delta < MIN_TIMER_REARM_US)
1401 delta = MIN_TIMER_REARM_US;
1402
1403 return delta;
1404 }
1405 #endif
1406
1407 #ifndef _WIN32
1408
1409 /* Sets a specific flag */
1410 static int fcntl_setfl(int fd, int flag)
1411 {
1412 int flags;
1413
1414 flags = fcntl(fd, F_GETFL);
1415 if (flags == -1)
1416 return -errno;
1417
1418 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1419 return -errno;
1420
1421 return 0;
1422 }
1423
1424 #if defined(__linux__)
1425
1426 #define RTC_FREQ 1024
1427
1428 static void enable_sigio_timer(int fd)
1429 {
1430 struct sigaction act;
1431
1432 /* timer signal */
1433 sigfillset(&act.sa_mask);
1434 act.sa_flags = 0;
1435 act.sa_handler = host_alarm_handler;
1436
1437 sigaction(SIGIO, &act, NULL);
1438 fcntl_setfl(fd, O_ASYNC);
1439 fcntl(fd, F_SETOWN, getpid());
1440 }
1441
1442 static int hpet_start_timer(struct qemu_alarm_timer *t)
1443 {
1444 struct hpet_info info;
1445 int r, fd;
1446
1447 fd = open("/dev/hpet", O_RDONLY);
1448 if (fd < 0)
1449 return -1;
1450
1451 /* Set frequency */
1452 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1453 if (r < 0) {
1454 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1455 "error, but for better emulation accuracy type:\n"
1456 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1457 goto fail;
1458 }
1459
1460 /* Check capabilities */
1461 r = ioctl(fd, HPET_INFO, &info);
1462 if (r < 0)
1463 goto fail;
1464
1465 /* Enable periodic mode */
1466 r = ioctl(fd, HPET_EPI, 0);
1467 if (info.hi_flags && (r < 0))
1468 goto fail;
1469
1470 /* Enable interrupt */
1471 r = ioctl(fd, HPET_IE_ON, 0);
1472 if (r < 0)
1473 goto fail;
1474
1475 enable_sigio_timer(fd);
1476 t->priv = (void *)(long)fd;
1477
1478 return 0;
1479 fail:
1480 close(fd);
1481 return -1;
1482 }
1483
1484 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1485 {
1486 int fd = (long)t->priv;
1487
1488 close(fd);
1489 }
1490
1491 static int rtc_start_timer(struct qemu_alarm_timer *t)
1492 {
1493 int rtc_fd;
1494 unsigned long current_rtc_freq = 0;
1495
1496 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1497 if (rtc_fd < 0)
1498 return -1;
1499 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1500 if (current_rtc_freq != RTC_FREQ &&
1501 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1502 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1503 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1504 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1505 goto fail;
1506 }
1507 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1508 fail:
1509 close(rtc_fd);
1510 return -1;
1511 }
1512
1513 enable_sigio_timer(rtc_fd);
1514
1515 t->priv = (void *)(long)rtc_fd;
1516
1517 return 0;
1518 }
1519
1520 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1521 {
1522 int rtc_fd = (long)t->priv;
1523
1524 close(rtc_fd);
1525 }
1526
1527 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1528 {
1529 struct sigevent ev;
1530 timer_t host_timer;
1531 struct sigaction act;
1532
1533 sigfillset(&act.sa_mask);
1534 act.sa_flags = 0;
1535 act.sa_handler = host_alarm_handler;
1536
1537 sigaction(SIGALRM, &act, NULL);
1538
1539 ev.sigev_value.sival_int = 0;
1540 ev.sigev_notify = SIGEV_SIGNAL;
1541 ev.sigev_signo = SIGALRM;
1542
1543 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1544 perror("timer_create");
1545
1546 /* disable dynticks */
1547 fprintf(stderr, "Dynamic Ticks disabled\n");
1548
1549 return -1;
1550 }
1551
1552 t->priv = (void *)(long)host_timer;
1553
1554 return 0;
1555 }
1556
1557 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1558 {
1559 timer_t host_timer = (timer_t)(long)t->priv;
1560
1561 timer_delete(host_timer);
1562 }
1563
1564 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1565 {
1566 timer_t host_timer = (timer_t)(long)t->priv;
1567 struct itimerspec timeout;
1568 int64_t nearest_delta_us = INT64_MAX;
1569 int64_t current_us;
1570
1571 if (!active_timers[QEMU_TIMER_REALTIME] &&
1572 !active_timers[QEMU_TIMER_VIRTUAL])
1573 return;
1574
1575 nearest_delta_us = qemu_next_deadline_dyntick();
1576
1577 /* check whether a timer is already running */
1578 if (timer_gettime(host_timer, &timeout)) {
1579 perror("gettime");
1580 fprintf(stderr, "Internal timer error: aborting\n");
1581 exit(1);
1582 }
1583 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1584 if (current_us && current_us <= nearest_delta_us)
1585 return;
1586
1587 timeout.it_interval.tv_sec = 0;
1588 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1589 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1590 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1591 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1592 perror("settime");
1593 fprintf(stderr, "Internal timer error: aborting\n");
1594 exit(1);
1595 }
1596 }
1597
1598 #endif /* defined(__linux__) */
1599
1600 static int unix_start_timer(struct qemu_alarm_timer *t)
1601 {
1602 struct sigaction act;
1603 struct itimerval itv;
1604 int err;
1605
1606 /* timer signal */
1607 sigfillset(&act.sa_mask);
1608 act.sa_flags = 0;
1609 act.sa_handler = host_alarm_handler;
1610
1611 sigaction(SIGALRM, &act, NULL);
1612
1613 itv.it_interval.tv_sec = 0;
1614 /* for i386 kernel 2.6 to get 1 ms */
1615 itv.it_interval.tv_usec = 999;
1616 itv.it_value.tv_sec = 0;
1617 itv.it_value.tv_usec = 10 * 1000;
1618
1619 err = setitimer(ITIMER_REAL, &itv, NULL);
1620 if (err)
1621 return -1;
1622
1623 return 0;
1624 }
1625
1626 static void unix_stop_timer(struct qemu_alarm_timer *t)
1627 {
1628 struct itimerval itv;
1629
1630 memset(&itv, 0, sizeof(itv));
1631 setitimer(ITIMER_REAL, &itv, NULL);
1632 }
1633
1634 #endif /* !defined(_WIN32) */
1635
1636 static void try_to_rearm_timer(void *opaque)
1637 {
1638 struct qemu_alarm_timer *t = opaque;
1639 #ifndef _WIN32
1640 ssize_t len;
1641
1642 /* Drain the notify pipe */
1643 do {
1644 char buffer[512];
1645 len = read(alarm_timer_rfd, buffer, sizeof(buffer));
1646 } while ((len == -1 && errno == EINTR) || len > 0);
1647 #endif
1648
1649 if (t->flags & ALARM_FLAG_EXPIRED) {
1650 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
1651 qemu_rearm_alarm_timer(alarm_timer);
1652 }
1653 }
1654
1655 #ifdef _WIN32
1656
1657 static int win32_start_timer(struct qemu_alarm_timer *t)
1658 {
1659 TIMECAPS tc;
1660 struct qemu_alarm_win32 *data = t->priv;
1661 UINT flags;
1662
1663 data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1664 if (!data->host_alarm) {
1665 perror("Failed CreateEvent");
1666 return -1;
1667 }
1668
1669 memset(&tc, 0, sizeof(tc));
1670 timeGetDevCaps(&tc, sizeof(tc));
1671
1672 if (data->period < tc.wPeriodMin)
1673 data->period = tc.wPeriodMin;
1674
1675 timeBeginPeriod(data->period);
1676
1677 flags = TIME_CALLBACK_FUNCTION;
1678 if (alarm_has_dynticks(t))
1679 flags |= TIME_ONESHOT;
1680 else
1681 flags |= TIME_PERIODIC;
1682
1683 data->timerId = timeSetEvent(1, // interval (ms)
1684 data->period, // resolution
1685 host_alarm_handler, // function
1686 (DWORD)t, // parameter
1687 flags);
1688
1689 if (!data->timerId) {
1690 perror("Failed to initialize win32 alarm timer");
1691
1692 timeEndPeriod(data->period);
1693 CloseHandle(data->host_alarm);
1694 return -1;
1695 }
1696
1697 qemu_add_wait_object(data->host_alarm, try_to_rearm_timer, t);
1698
1699 return 0;
1700 }
1701
1702 static void win32_stop_timer(struct qemu_alarm_timer *t)
1703 {
1704 struct qemu_alarm_win32 *data = t->priv;
1705
1706 timeKillEvent(data->timerId);
1707 timeEndPeriod(data->period);
1708
1709 CloseHandle(data->host_alarm);
1710 }
1711
1712 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1713 {
1714 struct qemu_alarm_win32 *data = t->priv;
1715 uint64_t nearest_delta_us;
1716
1717 if (!active_timers[QEMU_TIMER_REALTIME] &&
1718 !active_timers[QEMU_TIMER_VIRTUAL])
1719 return;
1720
1721 nearest_delta_us = qemu_next_deadline_dyntick();
1722 nearest_delta_us /= 1000;
1723
1724 timeKillEvent(data->timerId);
1725
1726 data->timerId = timeSetEvent(1,
1727 data->period,
1728 host_alarm_handler,
1729 (DWORD)t,
1730 TIME_ONESHOT | TIME_PERIODIC);
1731
1732 if (!data->timerId) {
1733 perror("Failed to re-arm win32 alarm timer");
1734
1735 timeEndPeriod(data->period);
1736 CloseHandle(data->host_alarm);
1737 exit(1);
1738 }
1739 }
1740
1741 #endif /* _WIN32 */
1742
1743 static int init_timer_alarm(void)
1744 {
1745 struct qemu_alarm_timer *t = NULL;
1746 int i, err = -1;
1747
1748 #ifndef _WIN32
1749 int fds[2];
1750
1751 err = pipe(fds);
1752 if (err == -1)
1753 return -errno;
1754
1755 err = fcntl_setfl(fds[0], O_NONBLOCK);
1756 if (err < 0)
1757 goto fail;
1758
1759 err = fcntl_setfl(fds[1], O_NONBLOCK);
1760 if (err < 0)
1761 goto fail;
1762
1763 alarm_timer_rfd = fds[0];
1764 alarm_timer_wfd = fds[1];
1765 #endif
1766
1767 for (i = 0; alarm_timers[i].name; i++) {
1768 t = &alarm_timers[i];
1769
1770 err = t->start(t);
1771 if (!err)
1772 break;
1773 }
1774
1775 if (err) {
1776 err = -ENOENT;
1777 goto fail;
1778 }
1779
1780 #ifndef _WIN32
1781 qemu_set_fd_handler2(alarm_timer_rfd, NULL,
1782 try_to_rearm_timer, NULL, t);
1783 #endif
1784
1785 alarm_timer = t;
1786
1787 return 0;
1788
1789 fail:
1790 #ifndef _WIN32
1791 close(fds[0]);
1792 close(fds[1]);
1793 #endif
1794 return err;
1795 }
1796
1797 static void quit_timers(void)
1798 {
1799 alarm_timer->stop(alarm_timer);
1800 alarm_timer = NULL;
1801 }
1802
1803 /***********************************************************/
1804 /* host time/date access */
1805 void qemu_get_timedate(struct tm *tm, int offset)
1806 {
1807 time_t ti;
1808 struct tm *ret;
1809
1810 time(&ti);
1811 ti += offset;
1812 if (rtc_date_offset == -1) {
1813 if (rtc_utc)
1814 ret = gmtime(&ti);
1815 else
1816 ret = localtime(&ti);
1817 } else {
1818 ti -= rtc_date_offset;
1819 ret = gmtime(&ti);
1820 }
1821
1822 memcpy(tm, ret, sizeof(struct tm));
1823 }
1824
1825 int qemu_timedate_diff(struct tm *tm)
1826 {
1827 time_t seconds;
1828
1829 if (rtc_date_offset == -1)
1830 if (rtc_utc)
1831 seconds = mktimegm(tm);
1832 else
1833 seconds = mktime(tm);
1834 else
1835 seconds = mktimegm(tm) + rtc_date_offset;
1836
1837 return seconds - time(NULL);
1838 }
1839
1840 #ifdef _WIN32
1841 static void socket_cleanup(void)
1842 {
1843 WSACleanup();
1844 }
1845
1846 static int socket_init(void)
1847 {
1848 WSADATA Data;
1849 int ret, err;
1850
1851 ret = WSAStartup(MAKEWORD(2,2), &Data);
1852 if (ret != 0) {
1853 err = WSAGetLastError();
1854 fprintf(stderr, "WSAStartup: %d\n", err);
1855 return -1;
1856 }
1857 atexit(socket_cleanup);
1858 return 0;
1859 }
1860 #endif
1861
1862 const char *get_opt_name(char *buf, int buf_size, const char *p)
1863 {
1864 char *q;
1865
1866 q = buf;
1867 while (*p != '\0' && *p != '=') {
1868 if (q && (q - buf) < buf_size - 1)
1869 *q++ = *p;
1870 p++;
1871 }
1872 if (q)
1873 *q = '\0';
1874
1875 return p;
1876 }
1877
1878 const char *get_opt_value(char *buf, int buf_size, const char *p)
1879 {
1880 char *q;
1881
1882 q = buf;
1883 while (*p != '\0') {
1884 if (*p == ',') {
1885 if (*(p + 1) != ',')
1886 break;
1887 p++;
1888 }
1889 if (q && (q - buf) < buf_size - 1)
1890 *q++ = *p;
1891 p++;
1892 }
1893 if (q)
1894 *q = '\0';
1895
1896 return p;
1897 }
1898
1899 int get_param_value(char *buf, int buf_size,
1900 const char *tag, const char *str)
1901 {
1902 const char *p;
1903 char option[128];
1904
1905 p = str;
1906 for(;;) {
1907 p = get_opt_name(option, sizeof(option), p);
1908 if (*p != '=')
1909 break;
1910 p++;
1911 if (!strcmp(tag, option)) {
1912 (void)get_opt_value(buf, buf_size, p);
1913 return strlen(buf);
1914 } else {
1915 p = get_opt_value(NULL, 0, p);
1916 }
1917 if (*p != ',')
1918 break;
1919 p++;
1920 }
1921 return 0;
1922 }
1923
1924 int check_params(char *buf, int buf_size,
1925 const char * const *params, const char *str)
1926 {
1927 const char *p;
1928 int i;
1929
1930 p = str;
1931 for(;;) {
1932 p = get_opt_name(buf, buf_size, p);
1933 if (*p != '=')
1934 return -1;
1935 p++;
1936 for(i = 0; params[i] != NULL; i++)
1937 if (!strcmp(params[i], buf))
1938 break;
1939 if (params[i] == NULL)
1940 return -1;
1941 p = get_opt_value(NULL, 0, p);
1942 if (*p != ',')
1943 break;
1944 p++;
1945 }
1946 return 0;
1947 }
1948
1949 /***********************************************************/
1950 /* Bluetooth support */
1951 static int nb_hcis;
1952 static int cur_hci;
1953 static struct HCIInfo *hci_table[MAX_NICS];
1954
1955 static struct bt_vlan_s {
1956 struct bt_scatternet_s net;
1957 int id;
1958 struct bt_vlan_s *next;
1959 } *first_bt_vlan;
1960
1961 /* find or alloc a new bluetooth "VLAN" */
1962 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1963 {
1964 struct bt_vlan_s **pvlan, *vlan;
1965 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1966 if (vlan->id == id)
1967 return &vlan->net;
1968 }
1969 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1970 vlan->id = id;
1971 pvlan = &first_bt_vlan;
1972 while (*pvlan != NULL)
1973 pvlan = &(*pvlan)->next;
1974 *pvlan = vlan;
1975 return &vlan->net;
1976 }
1977
1978 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1979 {
1980 }
1981
1982 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1983 {
1984 return -ENOTSUP;
1985 }
1986
1987 static struct HCIInfo null_hci = {
1988 .cmd_send = null_hci_send,
1989 .sco_send = null_hci_send,
1990 .acl_send = null_hci_send,
1991 .bdaddr_set = null_hci_addr_set,
1992 };
1993
1994 struct HCIInfo *qemu_next_hci(void)
1995 {
1996 if (cur_hci == nb_hcis)
1997 return &null_hci;
1998
1999 return hci_table[cur_hci++];
2000 }
2001
2002 static struct HCIInfo *hci_init(const char *str)
2003 {
2004 char *endp;
2005 struct bt_scatternet_s *vlan = 0;
2006
2007 if (!strcmp(str, "null"))
2008 /* null */
2009 return &null_hci;
2010 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
2011 /* host[:hciN] */
2012 return bt_host_hci(str[4] ? str + 5 : "hci0");
2013 else if (!strncmp(str, "hci", 3)) {
2014 /* hci[,vlan=n] */
2015 if (str[3]) {
2016 if (!strncmp(str + 3, ",vlan=", 6)) {
2017 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
2018 if (*endp)
2019 vlan = 0;
2020 }
2021 } else
2022 vlan = qemu_find_bt_vlan(0);
2023 if (vlan)
2024 return bt_new_hci(vlan);
2025 }
2026
2027 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
2028
2029 return 0;
2030 }
2031
2032 static int bt_hci_parse(const char *str)
2033 {
2034 struct HCIInfo *hci;
2035 bdaddr_t bdaddr;
2036
2037 if (nb_hcis >= MAX_NICS) {
2038 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
2039 return -1;
2040 }
2041
2042 hci = hci_init(str);
2043 if (!hci)
2044 return -1;
2045
2046 bdaddr.b[0] = 0x52;
2047 bdaddr.b[1] = 0x54;
2048 bdaddr.b[2] = 0x00;
2049 bdaddr.b[3] = 0x12;
2050 bdaddr.b[4] = 0x34;
2051 bdaddr.b[5] = 0x56 + nb_hcis;
2052 hci->bdaddr_set(hci, bdaddr.b);
2053
2054 hci_table[nb_hcis++] = hci;
2055
2056 return 0;
2057 }
2058
2059 static void bt_vhci_add(int vlan_id)
2060 {
2061 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
2062
2063 if (!vlan->slave)
2064 fprintf(stderr, "qemu: warning: adding a VHCI to "
2065 "an empty scatternet %i\n", vlan_id);
2066
2067 bt_vhci_init(bt_new_hci(vlan));
2068 }
2069
2070 static struct bt_device_s *bt_device_add(const char *opt)
2071 {
2072 struct bt_scatternet_s *vlan;
2073 int vlan_id = 0;
2074 char *endp = strstr(opt, ",vlan=");
2075 int len = (endp ? endp - opt : strlen(opt)) + 1;
2076 char devname[10];
2077
2078 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2079
2080 if (endp) {
2081 vlan_id = strtol(endp + 6, &endp, 0);
2082 if (*endp) {
2083 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2084 return 0;
2085 }
2086 }
2087
2088 vlan = qemu_find_bt_vlan(vlan_id);
2089
2090 if (!vlan->slave)
2091 fprintf(stderr, "qemu: warning: adding a slave device to "
2092 "an empty scatternet %i\n", vlan_id);
2093
2094 if (!strcmp(devname, "keyboard"))
2095 return bt_keyboard_init(vlan);
2096
2097 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2098 return 0;
2099 }
2100
2101 static int bt_parse(const char *opt)
2102 {
2103 const char *endp, *p;
2104 int vlan;
2105
2106 if (strstart(opt, "hci", &endp)) {
2107 if (!*endp || *endp == ',') {
2108 if (*endp)
2109 if (!strstart(endp, ",vlan=", 0))
2110 opt = endp + 1;
2111
2112 return bt_hci_parse(opt);
2113 }
2114 } else if (strstart(opt, "vhci", &endp)) {
2115 if (!*endp || *endp == ',') {
2116 if (*endp) {
2117 if (strstart(endp, ",vlan=", &p)) {
2118 vlan = strtol(p, (char **) &endp, 0);
2119 if (*endp) {
2120 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2121 return 1;
2122 }
2123 } else {
2124 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2125 return 1;
2126 }
2127 } else
2128 vlan = 0;
2129
2130 bt_vhci_add(vlan);
2131 return 0;
2132 }
2133 } else if (strstart(opt, "device:", &endp))
2134 return !bt_device_add(endp);
2135
2136 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2137 return 1;
2138 }
2139
2140 /***********************************************************/
2141 /* QEMU Block devices */
2142
2143 #define HD_ALIAS "index=%d,media=disk"
2144 #define CDROM_ALIAS "index=2,media=cdrom"
2145 #define FD_ALIAS "index=%d,if=floppy"
2146 #define PFLASH_ALIAS "if=pflash"
2147 #define MTD_ALIAS "if=mtd"
2148 #define SD_ALIAS "index=0,if=sd"
2149
2150 static int drive_opt_get_free_idx(void)
2151 {
2152 int index;
2153
2154 for (index = 0; index < MAX_DRIVES; index++)
2155 if (!drives_opt[index].used) {
2156 drives_opt[index].used = 1;
2157 return index;
2158 }
2159
2160 return -1;
2161 }
2162
2163 static int drive_get_free_idx(void)
2164 {
2165 int index;
2166
2167 for (index = 0; index < MAX_DRIVES; index++)
2168 if (!drives_table[index].used) {
2169 drives_table[index].used = 1;
2170 return index;
2171 }
2172
2173 return -1;
2174 }
2175
2176 int drive_add(const char *file, const char *fmt, ...)
2177 {
2178 va_list ap;
2179 int index = drive_opt_get_free_idx();
2180
2181 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2182 fprintf(stderr, "qemu: too many drives\n");
2183 return -1;
2184 }
2185
2186 drives_opt[index].file = file;
2187 va_start(ap, fmt);
2188 vsnprintf(drives_opt[index].opt,
2189 sizeof(drives_opt[0].opt), fmt, ap);
2190 va_end(ap);
2191
2192 nb_drives_opt++;
2193 return index;
2194 }
2195
2196 void drive_remove(int index)
2197 {
2198 drives_opt[index].used = 0;
2199 nb_drives_opt--;
2200 }
2201
2202 int drive_get_index(BlockInterfaceType type, int bus, int unit)
2203 {
2204 int index;
2205
2206 /* seek interface, bus and unit */
2207
2208 for (index = 0; index < MAX_DRIVES; index++)
2209 if (drives_table[index].type == type &&
2210 drives_table[index].bus == bus &&
2211 drives_table[index].unit == unit &&
2212 drives_table[index].used)
2213 return index;
2214
2215 return -1;
2216 }
2217
2218 int drive_get_max_bus(BlockInterfaceType type)
2219 {
2220 int max_bus;
2221 int index;
2222
2223 max_bus = -1;
2224 for (index = 0; index < nb_drives; index++) {
2225 if(drives_table[index].type == type &&
2226 drives_table[index].bus > max_bus)
2227 max_bus = drives_table[index].bus;
2228 }
2229 return max_bus;
2230 }
2231
2232 const char *drive_get_serial(BlockDriverState *bdrv)
2233 {
2234 int index;
2235
2236 for (index = 0; index < nb_drives; index++)
2237 if (drives_table[index].bdrv == bdrv)
2238 return drives_table[index].serial;
2239
2240 return "\0";
2241 }
2242
2243 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2244 {
2245 int index;
2246
2247 for (index = 0; index < nb_drives; index++)
2248 if (drives_table[index].bdrv == bdrv)
2249 return drives_table[index].onerror;
2250
2251 return BLOCK_ERR_STOP_ENOSPC;
2252 }
2253
2254 static void bdrv_format_print(void *opaque, const char *name)
2255 {
2256 fprintf(stderr, " %s", name);
2257 }
2258
2259 void drive_uninit(BlockDriverState *bdrv)
2260 {
2261 int i;
2262
2263 for (i = 0; i < MAX_DRIVES; i++)
2264 if (drives_table[i].bdrv == bdrv) {
2265 drives_table[i].bdrv = NULL;
2266 drives_table[i].used = 0;
2267 drive_remove(drives_table[i].drive_opt_idx);
2268 nb_drives--;
2269 break;
2270 }
2271 }
2272
2273 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2274 {
2275 char buf[128];
2276 char file[1024];
2277 char devname[128];
2278 char serial[21];
2279 const char *mediastr = "";
2280 BlockInterfaceType type;
2281 enum { MEDIA_DISK, MEDIA_CDROM } media;
2282 int bus_id, unit_id;
2283 int cyls, heads, secs, translation;
2284 BlockDriverState *bdrv;
2285 BlockDriver *drv = NULL;
2286 QEMUMachine *machine = opaque;
2287 int max_devs;
2288 int index;
2289 int cache;
2290 int bdrv_flags, onerror;
2291 int drives_table_idx;
2292 char *str = arg->opt;
2293 static const char * const params[] = { "bus", "unit", "if", "index",
2294 "cyls", "heads", "secs", "trans",
2295 "media", "snapshot", "file",
2296 "cache", "format", "serial", "werror",
2297 NULL };
2298
2299 if (check_params(buf, sizeof(buf), params, str) < 0) {
2300 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2301 buf, str);
2302 return -1;
2303 }
2304
2305 file[0] = 0;
2306 cyls = heads = secs = 0;
2307 bus_id = 0;
2308 unit_id = -1;
2309 translation = BIOS_ATA_TRANSLATION_AUTO;
2310 index = -1;
2311 cache = 3;
2312
2313 if (machine->use_scsi) {
2314 type = IF_SCSI;
2315 max_devs = MAX_SCSI_DEVS;
2316 pstrcpy(devname, sizeof(devname), "scsi");
2317 } else {
2318 type = IF_IDE;
2319 max_devs = MAX_IDE_DEVS;
2320 pstrcpy(devname, sizeof(devname), "ide");
2321 }
2322 media = MEDIA_DISK;
2323
2324 /* extract parameters */
2325
2326 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2327 bus_id = strtol(buf, NULL, 0);
2328 if (bus_id < 0) {
2329 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2330 return -1;
2331 }
2332 }
2333
2334 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2335 unit_id = strtol(buf, NULL, 0);
2336 if (unit_id < 0) {
2337 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2338 return -1;
2339 }
2340 }
2341
2342 if (get_param_value(buf, sizeof(buf), "if", str)) {
2343 pstrcpy(devname, sizeof(devname), buf);
2344 if (!strcmp(buf, "ide")) {
2345 type = IF_IDE;
2346 max_devs = MAX_IDE_DEVS;
2347 } else if (!strcmp(buf, "scsi")) {
2348 type = IF_SCSI;
2349 max_devs = MAX_SCSI_DEVS;
2350 } else if (!strcmp(buf, "floppy")) {
2351 type = IF_FLOPPY;
2352 max_devs = 0;
2353 } else if (!strcmp(buf, "pflash")) {
2354 type = IF_PFLASH;
2355 max_devs = 0;
2356 } else if (!strcmp(buf, "mtd")) {
2357 type = IF_MTD;
2358 max_devs = 0;
2359 } else if (!strcmp(buf, "sd")) {
2360 type = IF_SD;
2361 max_devs = 0;
2362 } else if (!strcmp(buf, "virtio")) {
2363 type = IF_VIRTIO;
2364 max_devs = 0;
2365 } else {
2366 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2367 return -1;
2368 }
2369 }
2370
2371 if (get_param_value(buf, sizeof(buf), "index", str)) {
2372 index = strtol(buf, NULL, 0);
2373 if (index < 0) {
2374 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2375 return -1;
2376 }
2377 }
2378
2379 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2380 cyls = strtol(buf, NULL, 0);
2381 }
2382
2383 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2384 heads = strtol(buf, NULL, 0);
2385 }
2386
2387 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2388 secs = strtol(buf, NULL, 0);
2389 }
2390
2391 if (cyls || heads || secs) {
2392 if (cyls < 1 || cyls > 16383) {
2393 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2394 return -1;
2395 }
2396 if (heads < 1 || heads > 16) {
2397 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2398 return -1;
2399 }
2400 if (secs < 1 || secs > 63) {
2401 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2402 return -1;
2403 }
2404 }
2405
2406 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2407 if (!cyls) {
2408 fprintf(stderr,
2409 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2410 str);
2411 return -1;
2412 }
2413 if (!strcmp(buf, "none"))
2414 translation = BIOS_ATA_TRANSLATION_NONE;
2415 else if (!strcmp(buf, "lba"))
2416 translation = BIOS_ATA_TRANSLATION_LBA;
2417 else if (!strcmp(buf, "auto"))
2418 translation = BIOS_ATA_TRANSLATION_AUTO;
2419 else {
2420 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2421 return -1;
2422 }
2423 }
2424
2425 if (get_param_value(buf, sizeof(buf), "media", str)) {
2426 if (!strcmp(buf, "disk")) {
2427 media = MEDIA_DISK;
2428 } else if (!strcmp(buf, "cdrom")) {
2429 if (cyls || secs || heads) {
2430 fprintf(stderr,
2431 "qemu: '%s' invalid physical CHS format\n", str);
2432 return -1;
2433 }
2434 media = MEDIA_CDROM;
2435 } else {
2436 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2437 return -1;
2438 }
2439 }
2440
2441 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2442 if (!strcmp(buf, "on"))
2443 snapshot = 1;
2444 else if (!strcmp(buf, "off"))
2445 snapshot = 0;
2446 else {
2447 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2448 return -1;
2449 }
2450 }
2451
2452 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2453 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2454 cache = 0;
2455 else if (!strcmp(buf, "writethrough"))
2456 cache = 1;
2457 else if (!strcmp(buf, "writeback"))
2458 cache = 2;
2459 else {
2460 fprintf(stderr, "qemu: invalid cache option\n");
2461 return -1;
2462 }
2463 }
2464
2465 if (get_param_value(buf, sizeof(buf), "format", str)) {
2466 if (strcmp(buf, "?") == 0) {
2467 fprintf(stderr, "qemu: Supported formats:");
2468 bdrv_iterate_format(bdrv_format_print, NULL);
2469 fprintf(stderr, "\n");
2470 return -1;
2471 }
2472 drv = bdrv_find_format(buf);
2473 if (!drv) {
2474 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2475 return -1;
2476 }
2477 }
2478
2479 if (arg->file == NULL)
2480 get_param_value(file, sizeof(file), "file", str);
2481 else
2482 pstrcpy(file, sizeof(file), arg->file);
2483
2484 if (!get_param_value(serial, sizeof(serial), "serial", str))
2485 memset(serial, 0, sizeof(serial));
2486
2487 onerror = BLOCK_ERR_STOP_ENOSPC;
2488 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2489 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2490 fprintf(stderr, "werror is no supported by this format\n");
2491 return -1;
2492 }
2493 if (!strcmp(buf, "ignore"))
2494 onerror = BLOCK_ERR_IGNORE;
2495 else if (!strcmp(buf, "enospc"))
2496 onerror = BLOCK_ERR_STOP_ENOSPC;
2497 else if (!strcmp(buf, "stop"))
2498 onerror = BLOCK_ERR_STOP_ANY;
2499 else if (!strcmp(buf, "report"))
2500 onerror = BLOCK_ERR_REPORT;
2501 else {
2502 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2503 return -1;
2504 }
2505 }
2506
2507 /* compute bus and unit according index */
2508
2509 if (index != -1) {
2510 if (bus_id != 0 || unit_id != -1) {
2511 fprintf(stderr,
2512 "qemu: '%s' index cannot be used with bus and unit\n", str);
2513 return -1;
2514 }
2515 if (max_devs == 0)
2516 {
2517 unit_id = index;
2518 bus_id = 0;
2519 } else {
2520 unit_id = index % max_devs;
2521 bus_id = index / max_devs;
2522 }
2523 }
2524
2525 /* if user doesn't specify a unit_id,
2526 * try to find the first free
2527 */
2528
2529 if (unit_id == -1) {
2530 unit_id = 0;
2531 while (drive_get_index(type, bus_id, unit_id) != -1) {
2532 unit_id++;
2533 if (max_devs && unit_id >= max_devs) {
2534 unit_id -= max_devs;
2535 bus_id++;
2536 }
2537 }
2538 }
2539
2540 /* check unit id */
2541
2542 if (max_devs && unit_id >= max_devs) {
2543 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2544 str, unit_id, max_devs - 1);
2545 return -1;
2546 }
2547
2548 /*
2549 * ignore multiple definitions
2550 */
2551
2552 if (drive_get_index(type, bus_id, unit_id) != -1)
2553 return -2;
2554
2555 /* init */
2556
2557 if (type == IF_IDE || type == IF_SCSI)
2558 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2559 if (max_devs)
2560 snprintf(buf, sizeof(buf), "%s%i%s%i",
2561 devname, bus_id, mediastr, unit_id);
2562 else
2563 snprintf(buf, sizeof(buf), "%s%s%i",
2564 devname, mediastr, unit_id);
2565 bdrv = bdrv_new(buf);
2566 drives_table_idx = drive_get_free_idx();
2567 drives_table[drives_table_idx].bdrv = bdrv;
2568 drives_table[drives_table_idx].type = type;
2569 drives_table[drives_table_idx].bus = bus_id;
2570 drives_table[drives_table_idx].unit = unit_id;
2571 drives_table[drives_table_idx].onerror = onerror;
2572 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2573 strncpy(drives_table[nb_drives].serial, serial, sizeof(serial));
2574 nb_drives++;
2575
2576 switch(type) {
2577 case IF_IDE:
2578 case IF_SCSI:
2579 switch(media) {
2580 case MEDIA_DISK:
2581 if (cyls != 0) {
2582 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2583 bdrv_set_translation_hint(bdrv, translation);
2584 }
2585 break;
2586 case MEDIA_CDROM:
2587 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2588 break;
2589 }
2590 break;
2591 case IF_SD:
2592 /* FIXME: This isn't really a floppy, but it's a reasonable
2593 approximation. */
2594 case IF_FLOPPY:
2595 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2596 break;
2597 case IF_PFLASH:
2598 case IF_MTD:
2599 case IF_VIRTIO:
2600 break;
2601 }
2602 if (!file[0])
2603 return -2;
2604 bdrv_flags = 0;
2605 if (snapshot) {
2606 bdrv_flags |= BDRV_O_SNAPSHOT;
2607 cache = 2; /* always use write-back with snapshot */
2608 }
2609 if (cache == 0) /* no caching */
2610 bdrv_flags |= BDRV_O_NOCACHE;
2611 else if (cache == 2) /* write-back */
2612 bdrv_flags |= BDRV_O_CACHE_WB;
2613 else if (cache == 3) /* not specified */
2614 bdrv_flags |= BDRV_O_CACHE_DEF;
2615 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2616 fprintf(stderr, "qemu: could not open disk image %s\n",
2617 file);
2618 return -1;
2619 }
2620 if (bdrv_key_required(bdrv))
2621 autostart = 0;
2622 return drives_table_idx;
2623 }
2624
2625 /***********************************************************/
2626 /* USB devices */
2627
2628 static USBPort *used_usb_ports;
2629 static USBPort *free_usb_ports;
2630
2631 /* ??? Maybe change this to register a hub to keep track of the topology. */
2632 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2633 usb_attachfn attach)
2634 {
2635 port->opaque = opaque;
2636 port->index = index;
2637 port->attach = attach;
2638 port->next = free_usb_ports;
2639 free_usb_ports = port;
2640 }
2641
2642 int usb_device_add_dev(USBDevice *dev)
2643 {
2644 USBPort *port;
2645
2646 /* Find a USB port to add the device to. */
2647 port = free_usb_ports;
2648 if (!port->next) {
2649 USBDevice *hub;
2650
2651 /* Create a new hub and chain it on. */
2652 free_usb_ports = NULL;
2653 port->next = used_usb_ports;
2654 used_usb_ports = port;
2655
2656 hub = usb_hub_init(VM_USB_HUB_SIZE);
2657 usb_attach(port, hub);
2658 port = free_usb_ports;
2659 }
2660
2661 free_usb_ports = port->next;
2662 port->next = used_usb_ports;
2663 used_usb_ports = port;
2664 usb_attach(port, dev);
2665 return 0;
2666 }
2667
2668 static void usb_msd_password_cb(void *opaque, int err)
2669 {
2670 USBDevice *dev = opaque;
2671
2672 if (!err)
2673 usb_device_add_dev(dev);
2674 else
2675 dev->handle_destroy(dev);
2676 }
2677
2678 static int usb_device_add(const char *devname, int is_hotplug)
2679 {
2680 const char *p;
2681 USBDevice *dev;
2682
2683 if (!free_usb_ports)
2684 return -1;
2685
2686 if (strstart(devname, "host:", &p)) {
2687 dev = usb_host_device_open(p);
2688 } else if (!strcmp(devname, "mouse")) {
2689 dev = usb_mouse_init();
2690 } else if (!strcmp(devname, "tablet")) {
2691 dev = usb_tablet_init();
2692 } else if (!strcmp(devname, "keyboard")) {
2693 dev = usb_keyboard_init();
2694 } else if (strstart(devname, "disk:", &p)) {
2695 BlockDriverState *bs;
2696
2697 dev = usb_msd_init(p);
2698 if (!dev)
2699 return -1;
2700 bs = usb_msd_get_bdrv(dev);
2701 if (bdrv_key_required(bs)) {
2702 autostart = 0;
2703 if (is_hotplug) {
2704 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2705 dev);
2706 return 0;
2707 }
2708 }
2709 } else if (!strcmp(devname, "wacom-tablet")) {
2710 dev = usb_wacom_init();
2711 } else if (strstart(devname, "serial:", &p)) {
2712 dev = usb_serial_init(p);
2713 #ifdef CONFIG_BRLAPI
2714 } else if (!strcmp(devname, "braille")) {
2715 dev = usb_baum_init();
2716 #endif
2717 } else if (strstart(devname, "net:", &p)) {
2718 int nic = nb_nics;
2719
2720 if (net_client_init("nic", p) < 0)
2721 return -1;
2722 nd_table[nic].model = "usb";
2723 dev = usb_net_init(&nd_table[nic]);
2724 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2725 dev = usb_bt_init(devname[2] ? hci_init(p) :
2726 bt_new_hci(qemu_find_bt_vlan(0)));
2727 } else {
2728 return -1;
2729 }
2730 if (!dev)
2731 return -1;
2732
2733 return usb_device_add_dev(dev);
2734 }
2735
2736 int usb_device_del_addr(int bus_num, int addr)
2737 {
2738 USBPort *port;
2739 USBPort **lastp;
2740 USBDevice *dev;
2741
2742 if (!used_usb_ports)
2743 return -1;
2744
2745 if (bus_num != 0)
2746 return -1;
2747
2748 lastp = &used_usb_ports;
2749 port = used_usb_ports;
2750 while (port && port->dev->addr != addr) {
2751 lastp = &port->next;
2752 port = port->next;
2753 }
2754
2755 if (!port)
2756 return -1;
2757
2758 dev = port->dev;
2759 *lastp = port->next;
2760 usb_attach(port, NULL);
2761 dev->handle_destroy(dev);
2762 port->next = free_usb_ports;
2763 free_usb_ports = port;
2764 return 0;
2765 }
2766
2767 static int usb_device_del(const char *devname)
2768 {
2769 int bus_num, addr;
2770 const char *p;
2771
2772 if (strstart(devname, "host:", &p))
2773 return usb_host_device_close(p);
2774
2775 if (!used_usb_ports)
2776 return -1;
2777
2778 p = strchr(devname, '.');
2779 if (!p)
2780 return -1;
2781 bus_num = strtoul(devname, NULL, 0);
2782 addr = strtoul(p + 1, NULL, 0);
2783
2784 return usb_device_del_addr(bus_num, addr);
2785 }
2786
2787 void do_usb_add(Monitor *mon, const char *devname)
2788 {
2789 usb_device_add(devname, 1);
2790 }
2791
2792 void do_usb_del(Monitor *mon, const char *devname)
2793 {
2794 usb_device_del(devname);
2795 }
2796
2797 void usb_info(Monitor *mon)
2798 {
2799 USBDevice *dev;
2800 USBPort *port;
2801 const char *speed_str;
2802
2803 if (!usb_enabled) {
2804 monitor_printf(mon, "USB support not enabled\n");
2805 return;
2806 }
2807
2808 for (port = used_usb_ports; port; port = port->next) {
2809 dev = port->dev;
2810 if (!dev)
2811 continue;
2812 switch(dev->speed) {
2813 case USB_SPEED_LOW:
2814 speed_str = "1.5";
2815 break;
2816 case USB_SPEED_FULL:
2817 speed_str = "12";
2818 break;
2819 case USB_SPEED_HIGH:
2820 speed_str = "480";
2821 break;
2822 default:
2823 speed_str = "?";
2824 break;
2825 }
2826 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2827 0, dev->addr, speed_str, dev->devname);
2828 }
2829 }
2830
2831 /***********************************************************/
2832 /* PCMCIA/Cardbus */
2833
2834 static struct pcmcia_socket_entry_s {
2835 struct pcmcia_socket_s *socket;
2836 struct pcmcia_socket_entry_s *next;
2837 } *pcmcia_sockets = 0;
2838
2839 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
2840 {
2841 struct pcmcia_socket_entry_s *entry;
2842
2843 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2844 entry->socket = socket;
2845 entry->next = pcmcia_sockets;
2846 pcmcia_sockets = entry;
2847 }
2848
2849 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
2850 {
2851 struct pcmcia_socket_entry_s *entry, **ptr;
2852
2853 ptr = &pcmcia_sockets;
2854 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2855 if (entry->socket == socket) {
2856 *ptr = entry->next;
2857 qemu_free(entry);
2858 }
2859 }
2860
2861 void pcmcia_info(Monitor *mon)
2862 {
2863 struct pcmcia_socket_entry_s *iter;
2864
2865 if (!pcmcia_sockets)
2866 monitor_printf(mon, "No PCMCIA sockets\n");
2867
2868 for (iter = pcmcia_sockets; iter; iter = iter->next)
2869 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2870 iter->socket->attached ? iter->socket->card_string :
2871 "Empty");
2872 }
2873
2874 /***********************************************************/
2875 /* register display */
2876
2877 struct DisplayAllocator default_allocator = {
2878 defaultallocator_create_displaysurface,
2879 defaultallocator_resize_displaysurface,
2880 defaultallocator_free_displaysurface
2881 };
2882
2883 void register_displaystate(DisplayState *ds)
2884 {
2885 DisplayState **s;
2886 s = &display_state;
2887 while (*s != NULL)
2888 s = &(*s)->next;
2889 ds->next = NULL;
2890 *s = ds;
2891 }
2892
2893 DisplayState *get_displaystate(void)
2894 {
2895 return display_state;
2896 }
2897
2898 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2899 {
2900 if(ds->allocator == &default_allocator) ds->allocator = da;
2901 return ds->allocator;
2902 }
2903
2904 /* dumb display */
2905
2906 static void dumb_display_init(void)
2907 {
2908 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2909 ds->allocator = &default_allocator;
2910 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2911 register_displaystate(ds);
2912 }
2913
2914 /***********************************************************/
2915 /* I/O handling */
2916
2917 typedef struct IOHandlerRecord {
2918 int fd;
2919 IOCanRWHandler *fd_read_poll;
2920 IOHandler *fd_read;
2921 IOHandler *fd_write;
2922 int deleted;
2923 void *opaque;
2924 /* temporary data */
2925 struct pollfd *ufd;
2926 struct IOHandlerRecord *next;
2927 } IOHandlerRecord;
2928
2929 static IOHandlerRecord *first_io_handler;
2930
2931 /* XXX: fd_read_poll should be suppressed, but an API change is
2932 necessary in the character devices to suppress fd_can_read(). */
2933 int qemu_set_fd_handler2(int fd,
2934 IOCanRWHandler *fd_read_poll,
2935 IOHandler *fd_read,
2936 IOHandler *fd_write,
2937 void *opaque)
2938 {
2939 IOHandlerRecord **pioh, *ioh;
2940
2941 if (!fd_read && !fd_write) {
2942 pioh = &first_io_handler;
2943 for(;;) {
2944 ioh = *pioh;
2945 if (ioh == NULL)
2946 break;
2947 if (ioh->fd == fd) {
2948 ioh->deleted = 1;
2949 break;
2950 }
2951 pioh = &ioh->next;
2952 }
2953 } else {
2954 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2955 if (ioh->fd == fd)
2956 goto found;
2957 }
2958 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2959 ioh->next = first_io_handler;
2960 first_io_handler = ioh;
2961 found:
2962 ioh->fd = fd;
2963 ioh->fd_read_poll = fd_read_poll;
2964 ioh->fd_read = fd_read;
2965 ioh->fd_write = fd_write;
2966 ioh->opaque = opaque;
2967 ioh->deleted = 0;
2968 }
2969 return 0;
2970 }
2971
2972 int qemu_set_fd_handler(int fd,
2973 IOHandler *fd_read,
2974 IOHandler *fd_write,
2975 void *opaque)
2976 {
2977 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2978 }
2979
2980 #ifdef _WIN32
2981 /***********************************************************/
2982 /* Polling handling */
2983
2984 typedef struct PollingEntry {
2985 PollingFunc *func;
2986 void *opaque;
2987 struct PollingEntry *next;
2988 } PollingEntry;
2989
2990 static PollingEntry *first_polling_entry;
2991
2992 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2993 {
2994 PollingEntry **ppe, *pe;
2995 pe = qemu_mallocz(sizeof(PollingEntry));
2996 pe->func = func;
2997 pe->opaque = opaque;
2998 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2999 *ppe = pe;
3000 return 0;
3001 }
3002
3003 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
3004 {
3005 PollingEntry **ppe, *pe;
3006 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
3007 pe = *ppe;
3008 if (pe->func == func && pe->opaque == opaque) {
3009 *ppe = pe->next;
3010 qemu_free(pe);
3011 break;
3012 }
3013 }
3014 }
3015
3016 /***********************************************************/
3017 /* Wait objects support */
3018 typedef struct WaitObjects {
3019 int num;
3020 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
3021 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
3022 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
3023 } WaitObjects;
3024
3025 static WaitObjects wait_objects = {0};
3026
3027 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3028 {
3029 WaitObjects *w = &wait_objects;
3030
3031 if (w->num >= MAXIMUM_WAIT_OBJECTS)
3032 return -1;
3033 w->events[w->num] = handle;
3034 w->func[w->num] = func;
3035 w->opaque[w->num] = opaque;
3036 w->num++;
3037 return 0;
3038 }
3039
3040 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3041 {
3042 int i, found;
3043 WaitObjects *w = &wait_objects;
3044
3045 found = 0;
3046 for (i = 0; i < w->num; i++) {
3047 if (w->events[i] == handle)
3048 found = 1;
3049 if (found) {
3050 w->events[i] = w->events[i + 1];
3051 w->func[i] = w->func[i + 1];
3052 w->opaque[i] = w->opaque[i + 1];
3053 }
3054 }
3055 if (found)
3056 w->num--;
3057 }
3058 #endif
3059
3060 /***********************************************************/
3061 /* ram save/restore */
3062
3063 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3064 {
3065 int v;
3066
3067 v = qemu_get_byte(f);
3068 switch(v) {
3069 case 0:
3070 if (qemu_get_buffer(f, buf, len) != len)
3071 return -EIO;
3072 break;
3073 case 1:
3074 v = qemu_get_byte(f);
3075 memset(buf, v, len);
3076 break;
3077 default:
3078 return -EINVAL;
3079 }
3080
3081 if (qemu_file_has_error(f))
3082 return -EIO;
3083
3084 return 0;
3085 }
3086
3087 static int ram_load_v1(QEMUFile *f, void *opaque)
3088 {
3089 int ret;
3090 ram_addr_t i;
3091
3092 if (qemu_get_be32(f) != phys_ram_size)
3093 return -EINVAL;
3094 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
3095 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
3096 if (ret)
3097 return ret;
3098 }
3099 return 0;
3100 }
3101
3102 #define BDRV_HASH_BLOCK_SIZE 1024
3103 #define IOBUF_SIZE 4096
3104 #define RAM_CBLOCK_MAGIC 0xfabe
3105
3106 typedef struct RamDecompressState {
3107 z_stream zstream;
3108 QEMUFile *f;
3109 uint8_t buf[IOBUF_SIZE];
3110 } RamDecompressState;
3111
3112 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3113 {
3114 int ret;
3115 memset(s, 0, sizeof(*s));
3116 s->f = f;
3117 ret = inflateInit(&s->zstream);
3118 if (ret != Z_OK)
3119 return -1;
3120 return 0;
3121 }
3122
3123 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3124 {
3125 int ret, clen;
3126
3127 s->zstream.avail_out = len;
3128 s->zstream.next_out = buf;
3129 while (s->zstream.avail_out > 0) {
3130 if (s->zstream.avail_in == 0) {
3131 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3132 return -1;
3133 clen = qemu_get_be16(s->f);
3134 if (clen > IOBUF_SIZE)
3135 return -1;
3136 qemu_get_buffer(s->f, s->buf, clen);
3137 s->zstream.avail_in = clen;
3138 s->zstream.next_in = s->buf;
3139 }
3140 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3141 if (ret != Z_OK && ret != Z_STREAM_END) {
3142 return -1;
3143 }
3144 }
3145 return 0;
3146 }
3147
3148 static void ram_decompress_close(RamDecompressState *s)
3149 {
3150 inflateEnd(&s->zstream);
3151 }
3152
3153 #define RAM_SAVE_FLAG_FULL 0x01
3154 #define RAM_SAVE_FLAG_COMPRESS 0x02
3155 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3156 #define RAM_SAVE_FLAG_PAGE 0x08
3157 #define RAM_SAVE_FLAG_EOS 0x10
3158
3159 static int is_dup_page(uint8_t *page, uint8_t ch)
3160 {
3161 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3162 uint32_t *array = (uint32_t *)page;
3163 int i;
3164
3165 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3166 if (array[i] != val)
3167 return 0;
3168 }
3169
3170 return 1;
3171 }
3172
3173 static int ram_save_block(QEMUFile *f)
3174 {
3175 static ram_addr_t current_addr = 0;
3176 ram_addr_t saved_addr = current_addr;
3177 ram_addr_t addr = 0;
3178 int found = 0;
3179
3180 while (addr < phys_ram_size) {
3181 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3182 uint8_t ch;
3183
3184 cpu_physical_memory_reset_dirty(current_addr,
3185 current_addr + TARGET_PAGE_SIZE,
3186 MIGRATION_DIRTY_FLAG);
3187
3188 ch = *(phys_ram_base + current_addr);
3189
3190 if (is_dup_page(phys_ram_base + current_addr, ch)) {
3191 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3192 qemu_put_byte(f, ch);
3193 } else {
3194 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3195 qemu_put_buffer(f, phys_ram_base + current_addr, TARGET_PAGE_SIZE);
3196 }
3197
3198 found = 1;
3199 break;
3200 }
3201 addr += TARGET_PAGE_SIZE;
3202 current_addr = (saved_addr + addr) % phys_ram_size;
3203 }
3204
3205 return found;
3206 }
3207
3208 static ram_addr_t ram_save_threshold = 10;
3209
3210 static ram_addr_t ram_save_remaining(void)
3211 {
3212 ram_addr_t addr;
3213 ram_addr_t count = 0;
3214
3215 for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
3216 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3217 count++;
3218 }
3219
3220 return count;
3221 }
3222
3223 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3224 {
3225 ram_addr_t addr;
3226
3227 if (stage == 1) {
3228 /* Make sure all dirty bits are set */
3229 for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
3230 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3231 cpu_physical_memory_set_dirty(addr);
3232 }
3233
3234 /* Enable dirty memory tracking */
3235 cpu_physical_memory_set_dirty_tracking(1);
3236
3237 qemu_put_be64(f, phys_ram_size | RAM_SAVE_FLAG_MEM_SIZE);
3238 }
3239
3240 while (!qemu_file_rate_limit(f)) {
3241 int ret;
3242
3243 ret = ram_save_block(f);
3244 if (ret == 0) /* no more blocks */
3245 break;
3246 }
3247
3248 /* try transferring iterative blocks of memory */
3249
3250 if (stage == 3) {
3251 cpu_physical_memory_set_dirty_tracking(0);
3252
3253 /* flush all remaining blocks regardless of rate limiting */
3254 while (ram_save_block(f) != 0);
3255 }
3256
3257 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3258
3259 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3260 }
3261
3262 static int ram_load_dead(QEMUFile *f, void *opaque)
3263 {
3264 RamDecompressState s1, *s = &s1;
3265 uint8_t buf[10];
3266 ram_addr_t i;
3267
3268 if (ram_decompress_open(s, f) < 0)
3269 return -EINVAL;
3270 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
3271 if (ram_decompress_buf(s, buf, 1) < 0) {
3272 fprintf(stderr, "Error while reading ram block header\n");
3273 goto error;
3274 }
3275 if (buf[0] == 0) {
3276 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
3277 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3278 goto error;
3279 }
3280 } else {
3281 error:
3282 printf("Error block header\n");
3283 return -EINVAL;
3284 }
3285 }
3286 ram_decompress_close(s);
3287
3288 return 0;
3289 }
3290
3291 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3292 {
3293 ram_addr_t addr;
3294 int flags;
3295
3296 if (version_id == 1)
3297 return ram_load_v1(f, opaque);
3298
3299 if (version_id == 2) {
3300 if (qemu_get_be32(f) != phys_ram_size)
3301 return -EINVAL;
3302 return ram_load_dead(f, opaque);
3303 }
3304
3305 if (version_id != 3)
3306 return -EINVAL;
3307
3308 do {
3309 addr = qemu_get_be64(f);
3310
3311 flags = addr & ~TARGET_PAGE_MASK;
3312 addr &= TARGET_PAGE_MASK;
3313
3314 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3315 if (addr != phys_ram_size)
3316 return -EINVAL;
3317 }
3318
3319 if (flags & RAM_SAVE_FLAG_FULL) {
3320 if (ram_load_dead(f, opaque) < 0)
3321 return -EINVAL;
3322 }
3323
3324 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3325 uint8_t ch = qemu_get_byte(f);
3326 memset(phys_ram_base + addr, ch, TARGET_PAGE_SIZE);
3327 } else if (flags & RAM_SAVE_FLAG_PAGE)
3328 qemu_get_buffer(f, phys_ram_base + addr, TARGET_PAGE_SIZE);
3329 } while (!(flags & RAM_SAVE_FLAG_EOS));
3330
3331 return 0;
3332 }
3333
3334 void qemu_service_io(void)
3335 {
3336 CPUState *env = cpu_single_env;
3337 if (env) {
3338 cpu_exit(env);
3339 #ifdef USE_KQEMU
3340 if (env->kqemu_enabled) {
3341 kqemu_cpu_interrupt(env);
3342 }
3343 #endif
3344 }
3345 }
3346
3347 /***********************************************************/
3348 /* bottom halves (can be seen as timers which expire ASAP) */
3349
3350 struct QEMUBH {
3351 QEMUBHFunc *cb;
3352 void *opaque;
3353 int scheduled;
3354 int idle;
3355 int deleted;
3356 QEMUBH *next;
3357 };
3358
3359 static QEMUBH *first_bh = NULL;
3360
3361 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3362 {
3363 QEMUBH *bh;
3364 bh = qemu_mallocz(sizeof(QEMUBH));
3365 bh->cb = cb;
3366 bh->opaque = opaque;
3367 bh->next = first_bh;
3368 first_bh = bh;
3369 return bh;
3370 }
3371
3372 int qemu_bh_poll(void)
3373 {
3374 QEMUBH *bh, **bhp;
3375 int ret;
3376
3377 ret = 0;
3378 for (bh = first_bh; bh; bh = bh->next) {
3379 if (!bh->deleted && bh->scheduled) {
3380 bh->scheduled = 0;
3381 if (!bh->idle)
3382 ret = 1;
3383 bh->idle = 0;
3384 bh->cb(bh->opaque);
3385 }
3386 }
3387
3388 /* remove deleted bhs */
3389 bhp = &first_bh;
3390 while (*bhp) {
3391 bh = *bhp;
3392 if (bh->deleted) {
3393 *bhp = bh->next;
3394 qemu_free(bh);
3395 } else
3396 bhp = &bh->next;
3397 }
3398
3399 return ret;
3400 }
3401
3402 void qemu_bh_schedule_idle(QEMUBH *bh)
3403 {
3404 if (bh->scheduled)
3405 return;
3406 bh->scheduled = 1;
3407 bh->idle = 1;
3408 }
3409
3410 void qemu_bh_schedule(QEMUBH *bh)
3411 {
3412 CPUState *env = cpu_single_env;
3413 if (bh->scheduled)
3414 return;
3415 bh->scheduled = 1;
3416 bh->idle = 0;
3417 /* stop the currently executing CPU to execute the BH ASAP */
3418 if (env) {
3419 cpu_exit(env);
3420 }
3421 }
3422
3423 void qemu_bh_cancel(QEMUBH *bh)
3424 {
3425 bh->scheduled = 0;
3426 }
3427
3428 void qemu_bh_delete(QEMUBH *bh)
3429 {
3430 bh->scheduled = 0;
3431 bh->deleted = 1;
3432 }
3433
3434 static void qemu_bh_update_timeout(int *timeout)
3435 {
3436 QEMUBH *bh;
3437
3438 for (bh = first_bh; bh; bh = bh->next) {
3439 if (!bh->deleted && bh->scheduled) {
3440 if (bh->idle) {
3441 /* idle bottom halves will be polled at least
3442 * every 10ms */
3443 *timeout = MIN(10, *timeout);
3444 } else {
3445 /* non-idle bottom halves will be executed
3446 * immediately */
3447 *timeout = 0;
3448 break;
3449 }
3450 }
3451 }
3452 }
3453
3454 /***********************************************************/
3455 /* machine registration */
3456
3457 static QEMUMachine *first_machine = NULL;
3458 QEMUMachine *current_machine = NULL;
3459
3460 int qemu_register_machine(QEMUMachine *m)
3461 {
3462 QEMUMachine **pm;
3463 pm = &first_machine;
3464 while (*pm != NULL)
3465 pm = &(*pm)->next;
3466 m->next = NULL;
3467 *pm = m;
3468 return 0;
3469 }
3470
3471 static QEMUMachine *find_machine(const char *name)
3472 {
3473 QEMUMachine *m;
3474
3475 for(m = first_machine; m != NULL; m = m->next) {
3476 if (!strcmp(m->name, name))
3477 return m;
3478 }
3479 return NULL;
3480 }
3481
3482 /***********************************************************/
3483 /* main execution loop */
3484
3485 static void gui_update(void *opaque)
3486 {
3487 uint64_t interval = GUI_REFRESH_INTERVAL;
3488 DisplayState *ds = opaque;
3489 DisplayChangeListener *dcl = ds->listeners;
3490
3491 dpy_refresh(ds);
3492
3493 while (dcl != NULL) {
3494 if (dcl->gui_timer_interval &&
3495 dcl->gui_timer_interval < interval)
3496 interval = dcl->gui_timer_interval;
3497 dcl = dcl->next;
3498 }
3499 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3500 }
3501
3502 static void nographic_update(void *opaque)
3503 {
3504 uint64_t interval = GUI_REFRESH_INTERVAL;
3505
3506 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3507 }
3508
3509 struct vm_change_state_entry {
3510 VMChangeStateHandler *cb;
3511 void *opaque;
3512 LIST_ENTRY (vm_change_state_entry) entries;
3513 };
3514
3515 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3516
3517 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3518 void *opaque)
3519 {
3520 VMChangeStateEntry *e;
3521
3522 e = qemu_mallocz(sizeof (*e));
3523
3524 e->cb = cb;
3525 e->opaque = opaque;
3526 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3527 return e;
3528 }
3529
3530 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3531 {
3532 LIST_REMOVE (e, entries);
3533 qemu_free (e);
3534 }
3535
3536 static void vm_state_notify(int running, int reason)
3537 {
3538 VMChangeStateEntry *e;
3539
3540 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3541 e->cb(e->opaque, running, reason);
3542 }
3543 }
3544
3545 void vm_start(void)
3546 {
3547 if (!vm_running) {
3548 cpu_enable_ticks();
3549 vm_running = 1;
3550 vm_state_notify(1, 0);
3551 qemu_rearm_alarm_timer(alarm_timer);
3552 }
3553 }
3554
3555 void vm_stop(int reason)
3556 {
3557 if (vm_running) {
3558 cpu_disable_ticks();
3559 vm_running = 0;
3560 vm_state_notify(0, reason);
3561 }
3562 }
3563
3564 /* reset/shutdown handler */
3565
3566 typedef struct QEMUResetEntry {
3567 QEMUResetHandler *func;
3568 void *opaque;
3569 struct QEMUResetEntry *next;
3570 } QEMUResetEntry;
3571
3572 static QEMUResetEntry *first_reset_entry;
3573 static int reset_requested;
3574 static int shutdown_requested;
3575 static int powerdown_requested;
3576
3577 int qemu_shutdown_requested(void)
3578 {
3579 int r = shutdown_requested;
3580 shutdown_requested = 0;
3581 return r;
3582 }
3583
3584 int qemu_reset_requested(void)
3585 {
3586 int r = reset_requested;
3587 reset_requested = 0;
3588 return r;
3589 }
3590
3591 int qemu_powerdown_requested(void)
3592 {
3593 int r = powerdown_requested;
3594 powerdown_requested = 0;
3595 return r;
3596 }
3597
3598 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3599 {
3600 QEMUResetEntry **pre, *re;
3601
3602 pre = &first_reset_entry;
3603 while (*pre != NULL)
3604 pre = &(*pre)->next;
3605 re = qemu_mallocz(sizeof(QEMUResetEntry));
3606 re->func = func;
3607 re->opaque = opaque;
3608 re->next = NULL;
3609 *pre = re;
3610 }
3611
3612 void qemu_system_reset(void)
3613 {
3614 QEMUResetEntry *re;
3615
3616 /* reset all devices */
3617 for(re = first_reset_entry; re != NULL; re = re->next) {
3618 re->func(re->opaque);
3619 }
3620 }
3621
3622 void qemu_system_reset_request(void)
3623 {
3624 if (no_reboot) {
3625 shutdown_requested = 1;
3626 } else {
3627 reset_requested = 1;
3628 }
3629 if (cpu_single_env)
3630 cpu_exit(cpu_single_env);
3631 }
3632
3633 void qemu_system_shutdown_request(void)
3634 {
3635 shutdown_requested = 1;
3636 if (cpu_single_env)
3637 cpu_exit(cpu_single_env);
3638 }
3639
3640 void qemu_system_powerdown_request(void)
3641 {
3642 powerdown_requested = 1;
3643 if (cpu_single_env)
3644 cpu_exit(cpu_single_env);
3645 }
3646
3647 #ifdef _WIN32
3648 static void host_main_loop_wait(int *timeout)
3649 {
3650 int ret, ret2, i;
3651 PollingEntry *pe;
3652
3653
3654 /* XXX: need to suppress polling by better using win32 events */
3655 ret = 0;
3656 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3657 ret |= pe->func(pe->opaque);
3658 }
3659 if (ret == 0) {
3660 int err;
3661 WaitObjects *w = &wait_objects;
3662
3663 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3664 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3665 if (w->func[ret - WAIT_OBJECT_0])
3666 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3667
3668 /* Check for additional signaled events */
3669 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3670
3671 /* Check if event is signaled */
3672 ret2 = WaitForSingleObject(w->events[i], 0);
3673 if(ret2 == WAIT_OBJECT_0) {
3674 if (w->func[i])
3675 w->func[i](w->opaque[i]);
3676 } else if (ret2 == WAIT_TIMEOUT) {
3677 } else {
3678 err = GetLastError();
3679 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3680 }
3681 }
3682 } else if (ret == WAIT_TIMEOUT) {
3683 } else {
3684 err = GetLastError();
3685 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3686 }
3687 }
3688
3689 *timeout = 0;
3690 }
3691 #else
3692 static void host_main_loop_wait(int *timeout)
3693 {
3694 }
3695 #endif
3696
3697 void main_loop_wait(int timeout)
3698 {
3699 IOHandlerRecord *ioh;
3700 fd_set rfds, wfds, xfds;
3701 int ret, nfds;
3702 struct timeval tv;
3703
3704 qemu_bh_update_timeout(&timeout);
3705
3706 host_main_loop_wait(&timeout);
3707
3708 /* poll any events */
3709 /* XXX: separate device handlers from system ones */
3710 nfds = -1;
3711 FD_ZERO(&rfds);
3712 FD_ZERO(&wfds);
3713 FD_ZERO(&xfds);
3714 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3715 if (ioh->deleted)
3716 continue;
3717 if (ioh->fd_read &&
3718 (!ioh->fd_read_poll ||
3719 ioh->fd_read_poll(ioh->opaque) != 0)) {
3720 FD_SET(ioh->fd, &rfds);
3721 if (ioh->fd > nfds)
3722 nfds = ioh->fd;
3723 }
3724 if (ioh->fd_write) {
3725 FD_SET(ioh->fd, &wfds);
3726 if (ioh->fd > nfds)
3727 nfds = ioh->fd;
3728 }
3729 }
3730
3731 tv.tv_sec = timeout / 1000;
3732 tv.tv_usec = (timeout % 1000) * 1000;
3733
3734 #if defined(CONFIG_SLIRP)
3735 if (slirp_is_inited()) {
3736 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3737 }
3738 #endif
3739 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3740 if (ret > 0) {
3741 IOHandlerRecord **pioh;
3742
3743 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3744 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3745 ioh->fd_read(ioh->opaque);
3746 }
3747 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3748 ioh->fd_write(ioh->opaque);
3749 }
3750 }
3751
3752 /* remove deleted IO handlers */
3753 pioh = &first_io_handler;
3754 while (*pioh) {
3755 ioh = *pioh;
3756 if (ioh->deleted) {
3757 *pioh = ioh->next;
3758 qemu_free(ioh);
3759 } else
3760 pioh = &ioh->next;
3761 }
3762 }
3763 #if defined(CONFIG_SLIRP)
3764 if (slirp_is_inited()) {
3765 if (ret < 0) {
3766 FD_ZERO(&rfds);
3767 FD_ZERO(&wfds);
3768 FD_ZERO(&xfds);
3769 }
3770 slirp_select_poll(&rfds, &wfds, &xfds);
3771 }
3772 #endif
3773
3774 /* vm time timers */
3775 if (vm_running && likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3776 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
3777 qemu_get_clock(vm_clock));
3778
3779 /* real time timers */
3780 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
3781 qemu_get_clock(rt_clock));
3782
3783 /* Check bottom-halves last in case any of the earlier events triggered
3784 them. */
3785 qemu_bh_poll();
3786
3787 }
3788
3789 static int main_loop(void)
3790 {
3791 int ret, timeout;
3792 #ifdef CONFIG_PROFILER
3793 int64_t ti;
3794 #endif
3795 CPUState *env;
3796
3797 cur_cpu = first_cpu;
3798 next_cpu = cur_cpu->next_cpu ?: first_cpu;
3799 for(;;) {
3800 if (vm_running) {
3801
3802 for(;;) {
3803 /* get next cpu */
3804 env = next_cpu;
3805 #ifdef CONFIG_PROFILER
3806 ti = profile_getclock();
3807 #endif
3808 if (use_icount) {
3809 int64_t count;
3810 int decr;
3811 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
3812 env->icount_decr.u16.low = 0;
3813 env->icount_extra = 0;
3814 count = qemu_next_deadline();
3815 count = (count + (1 << icount_time_shift) - 1)
3816 >> icount_time_shift;
3817 qemu_icount += count;
3818 decr = (count > 0xffff) ? 0xffff : count;
3819 count -= decr;
3820 env->icount_decr.u16.low = decr;
3821 env->icount_extra = count;
3822 }
3823 ret = cpu_exec(env);
3824 #ifdef CONFIG_PROFILER
3825 qemu_time += profile_getclock() - ti;
3826 #endif
3827 if (use_icount) {
3828 /* Fold pending instructions back into the
3829 instruction counter, and clear the interrupt flag. */
3830 qemu_icount -= (env->icount_decr.u16.low
3831 + env->icount_extra);
3832 env->icount_decr.u32 = 0;
3833 env->icount_extra = 0;
3834 }
3835 next_cpu = env->next_cpu ?: first_cpu;
3836 if (event_pending && likely(ret != EXCP_DEBUG)) {
3837 ret = EXCP_INTERRUPT;
3838 event_pending = 0;
3839 break;
3840 }
3841 if (ret == EXCP_HLT) {
3842 /* Give the next CPU a chance to run. */
3843 cur_cpu = env;
3844 continue;
3845 }
3846 if (ret != EXCP_HALTED)
3847 break;
3848 /* all CPUs are halted ? */
3849 if (env == cur_cpu)
3850 break;
3851 }
3852 cur_cpu = env;
3853
3854 if (shutdown_requested) {
3855 ret = EXCP_INTERRUPT;
3856 if (no_shutdown) {
3857 vm_stop(0);
3858 no_shutdown = 0;
3859 }
3860 else
3861 break;
3862 }
3863 if (reset_requested) {
3864 reset_requested = 0;
3865 qemu_system_reset();
3866 ret = EXCP_INTERRUPT;
3867 }
3868 if (powerdown_requested) {
3869 powerdown_requested = 0;
3870 qemu_system_powerdown();
3871 ret = EXCP_INTERRUPT;
3872 }
3873 if (unlikely(ret == EXCP_DEBUG)) {
3874 gdb_set_stop_cpu(cur_cpu);
3875 vm_stop(EXCP_DEBUG);
3876 }
3877 /* If all cpus are halted then wait until the next IRQ */
3878 /* XXX: use timeout computed from timers */
3879 if (ret == EXCP_HALTED) {
3880 if (use_icount) {
3881 int64_t add;
3882 int64_t delta;
3883 /* Advance virtual time to the next event. */
3884 if (use_icount == 1) {
3885 /* When not using an adaptive execution frequency
3886 we tend to get badly out of sync with real time,
3887 so just delay for a reasonable amount of time. */
3888 delta = 0;
3889 } else {
3890 delta = cpu_get_icount() - cpu_get_clock();
3891 }
3892 if (delta > 0) {
3893 /* If virtual time is ahead of real time then just
3894 wait for IO. */
3895 timeout = (delta / 1000000) + 1;
3896 } else {
3897 /* Wait for either IO to occur or the next
3898 timer event. */
3899 add = qemu_next_deadline();
3900 /* We advance the timer before checking for IO.
3901 Limit the amount we advance so that early IO
3902 activity won't get the guest too far ahead. */
3903 if (add > 10000000)
3904 add = 10000000;
3905 delta += add;
3906 add = (add + (1 << icount_time_shift) - 1)
3907 >> icount_time_shift;
3908 qemu_icount += add;
3909 timeout = delta / 1000000;
3910 if (timeout < 0)
3911 timeout = 0;
3912 }
3913 } else {
3914 timeout = 5000;
3915 }
3916 } else {
3917 timeout = 0;
3918 }
3919 } else {
3920 if (shutdown_requested) {
3921 ret = EXCP_INTERRUPT;
3922 break;
3923 }
3924 timeout = 5000;
3925 }
3926 #ifdef CONFIG_PROFILER
3927 ti = profile_getclock();
3928 #endif
3929 main_loop_wait(timeout);
3930 #ifdef CONFIG_PROFILER
3931 dev_time += profile_getclock() - ti;
3932 #endif
3933 }
3934 cpu_disable_ticks();
3935 return ret;
3936 }
3937
3938 static void help(int exitcode)
3939 {
3940 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
3941 "usage: %s [options] [disk_image]\n"
3942 "\n"
3943 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
3944 "\n"
3945 #define DEF(option, opt_arg, opt_enum, opt_help) \
3946 opt_help
3947 #define DEFHEADING(text) stringify(text) "\n"
3948 #include "qemu-options.h"
3949 #undef DEF
3950 #undef DEFHEADING
3951 #undef GEN_DOCS
3952 "\n"
3953 "During emulation, the following keys are useful:\n"
3954 "ctrl-alt-f toggle full screen\n"
3955 "ctrl-alt-n switch to virtual console 'n'\n"
3956 "ctrl-alt toggle mouse and keyboard grab\n"
3957 "\n"
3958 "When using -nographic, press 'ctrl-a h' to get some help.\n"
3959 ,
3960 "qemu",
3961 DEFAULT_RAM_SIZE,
3962 #ifndef _WIN32
3963 DEFAULT_NETWORK_SCRIPT,
3964 DEFAULT_NETWORK_DOWN_SCRIPT,
3965 #endif
3966 DEFAULT_GDBSTUB_PORT,
3967 "/tmp/qemu.log");
3968 exit(exitcode);
3969 }
3970
3971 #define HAS_ARG 0x0001
3972
3973 enum {
3974 #define DEF(option, opt_arg, opt_enum, opt_help) \
3975 opt_enum,
3976 #define DEFHEADING(text)
3977 #include "qemu-options.h"
3978 #undef DEF
3979 #undef DEFHEADING
3980 #undef GEN_DOCS
3981 };
3982
3983 typedef struct QEMUOption {
3984 const char *name;
3985 int flags;
3986 int index;
3987 } QEMUOption;
3988
3989 static const QEMUOption qemu_options[] = {
3990 { "h", 0, QEMU_OPTION_h },
3991 #define DEF(option, opt_arg, opt_enum, opt_help) \
3992 { option, opt_arg, opt_enum },
3993 #define DEFHEADING(text)
3994 #include "qemu-options.h"
3995 #undef DEF
3996 #undef DEFHEADING
3997 #undef GEN_DOCS
3998 { NULL },
3999 };
4000
4001 #ifdef HAS_AUDIO
4002 struct soundhw soundhw[] = {
4003 #ifdef HAS_AUDIO_CHOICE
4004 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4005 {
4006 "pcspk",
4007 "PC speaker",
4008 0,
4009 1,
4010 { .init_isa = pcspk_audio_init }
4011 },
4012 #endif
4013
4014 #ifdef CONFIG_SB16
4015 {
4016 "sb16",
4017 "Creative Sound Blaster 16",
4018 0,
4019 1,
4020 { .init_isa = SB16_init }
4021 },
4022 #endif
4023
4024 #ifdef CONFIG_CS4231A
4025 {
4026 "cs4231a",
4027 "CS4231A",
4028 0,
4029 1,
4030 { .init_isa = cs4231a_init }
4031 },
4032 #endif
4033
4034 #ifdef CONFIG_ADLIB
4035 {
4036 "adlib",
4037 #ifdef HAS_YMF262
4038 "Yamaha YMF262 (OPL3)",
4039 #else
4040 "Yamaha YM3812 (OPL2)",
4041 #endif
4042 0,
4043 1,
4044 { .init_isa = Adlib_init }
4045 },
4046 #endif
4047
4048 #ifdef CONFIG_GUS
4049 {
4050 "gus",
4051 "Gravis Ultrasound GF1",
4052 0,
4053 1,
4054 { .init_isa = GUS_init }
4055 },
4056 #endif
4057
4058 #ifdef CONFIG_AC97
4059 {
4060 "ac97",
4061 "Intel 82801AA AC97 Audio",
4062 0,
4063 0,
4064 { .init_pci = ac97_init }
4065 },
4066 #endif
4067
4068 #ifdef CONFIG_ES1370
4069 {
4070 "es1370",
4071 "ENSONIQ AudioPCI ES1370",
4072 0,
4073 0,
4074 { .init_pci = es1370_init }
4075 },
4076 #endif
4077
4078 #endif /* HAS_AUDIO_CHOICE */
4079
4080 { NULL, NULL, 0, 0, { NULL } }
4081 };
4082
4083 static void select_soundhw (const char *optarg)
4084 {
4085 struct soundhw *c;
4086
4087 if (*optarg == '?') {
4088 show_valid_cards:
4089
4090 printf ("Valid sound card names (comma separated):\n");
4091 for (c = soundhw; c->name; ++c) {
4092 printf ("%-11s %s\n", c->name, c->descr);
4093 }
4094 printf ("\n-soundhw all will enable all of the above\n");
4095 exit (*optarg != '?');
4096 }
4097 else {
4098 size_t l;
4099 const char *p;
4100 char *e;
4101 int bad_card = 0;
4102
4103 if (!strcmp (optarg, "all")) {
4104 for (c = soundhw; c->name; ++c) {
4105 c->enabled = 1;
4106 }
4107 return;
4108 }
4109
4110 p = optarg;
4111 while (*p) {
4112 e = strchr (p, ',');
4113 l = !e ? strlen (p) : (size_t) (e - p);
4114
4115 for (c = soundhw; c->name; ++c) {
4116 if (!strncmp (c->name, p, l)) {
4117 c->enabled = 1;
4118 break;
4119 }
4120 }
4121
4122 if (!c->name) {
4123 if (l > 80) {
4124 fprintf (stderr,
4125 "Unknown sound card name (too big to show)\n");
4126 }
4127 else {
4128 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4129 (int) l, p);
4130 }
4131 bad_card = 1;
4132 }
4133 p += l + (e != NULL);
4134 }
4135
4136 if (bad_card)
4137 goto show_valid_cards;
4138 }
4139 }
4140 #endif
4141
4142 static void select_vgahw (const char *p)
4143 {
4144 const char *opts;
4145
4146 if (strstart(p, "std", &opts)) {
4147 std_vga_enabled = 1;
4148 cirrus_vga_enabled = 0;
4149 vmsvga_enabled = 0;
4150 } else if (strstart(p, "cirrus", &opts)) {
4151 cirrus_vga_enabled = 1;
4152 std_vga_enabled = 0;
4153 vmsvga_enabled = 0;
4154 } else if (strstart(p, "vmware", &opts)) {
4155 cirrus_vga_enabled = 0;
4156 std_vga_enabled = 0;
4157 vmsvga_enabled = 1;
4158 } else if (strstart(p, "none", &opts)) {
4159 cirrus_vga_enabled = 0;
4160 std_vga_enabled = 0;
4161 vmsvga_enabled = 0;
4162 } else {
4163 invalid_vga:
4164 fprintf(stderr, "Unknown vga type: %s\n", p);
4165 exit(1);
4166 }
4167 while (*opts) {
4168 const char *nextopt;
4169
4170 if (strstart(opts, ",retrace=", &nextopt)) {
4171 opts = nextopt;
4172 if (strstart(opts, "dumb", &nextopt))
4173 vga_retrace_method = VGA_RETRACE_DUMB;
4174 else if (strstart(opts, "precise", &nextopt))
4175 vga_retrace_method = VGA_RETRACE_PRECISE;
4176 else goto invalid_vga;
4177 } else goto invalid_vga;
4178 opts = nextopt;
4179 }
4180 }
4181
4182 #ifdef _WIN32
4183 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4184 {
4185 exit(STATUS_CONTROL_C_EXIT);
4186 return TRUE;
4187 }
4188 #endif
4189
4190 static int qemu_uuid_parse(const char *str, uint8_t *uuid)
4191 {
4192 int ret;
4193
4194 if(strlen(str) != 36)
4195 return -1;
4196
4197 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4198 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4199 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4200
4201 if(ret != 16)
4202 return -1;
4203
4204 return 0;
4205 }
4206
4207 #define MAX_NET_CLIENTS 32
4208
4209 #ifndef _WIN32
4210
4211 static void termsig_handler(int signal)
4212 {
4213 qemu_system_shutdown_request();
4214 }
4215
4216 static void termsig_setup(void)
4217 {
4218 struct sigaction act;
4219
4220 memset(&act, 0, sizeof(act));
4221 act.sa_handler = termsig_handler;
4222 sigaction(SIGINT, &act, NULL);
4223 sigaction(SIGHUP, &act, NULL);
4224 sigaction(SIGTERM, &act, NULL);
4225 }
4226
4227 #endif
4228
4229 int main(int argc, char **argv, char **envp)
4230 {
4231 #ifdef CONFIG_GDBSTUB
4232 int use_gdbstub;
4233 const char *gdbstub_port;
4234 #endif
4235 uint32_t boot_devices_bitmap = 0;
4236 int i;
4237 int snapshot, linux_boot, net_boot;
4238 const char *initrd_filename;
4239 const char *kernel_filename, *kernel_cmdline;
4240 const char *boot_devices = "";
4241 DisplayState *ds;
4242 DisplayChangeListener *dcl;
4243 int cyls, heads, secs, translation;
4244 const char *net_clients[MAX_NET_CLIENTS];
4245 int nb_net_clients;
4246 const char *bt_opts[MAX_BT_CMDLINE];
4247 int nb_bt_opts;
4248 int hda_index;
4249 int optind;
4250 const char *r, *optarg;
4251 CharDriverState *monitor_hd = NULL;
4252 const char *monitor_device;
4253 const char *serial_devices[MAX_SERIAL_PORTS];
4254 int serial_device_index;
4255 const char *parallel_devices[MAX_PARALLEL_PORTS];
4256 int parallel_device_index;
4257 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4258 int virtio_console_index;
4259 const char *loadvm = NULL;
4260 QEMUMachine *machine;
4261 const char *cpu_model;
4262 const char *usb_devices[MAX_USB_CMDLINE];
4263 int usb_devices_index;
4264 int fds[2];
4265 int tb_size;
4266 const char *pid_file = NULL;
4267 const char *incoming = NULL;
4268 int fd = 0;
4269 struct passwd *pwd = NULL;
4270 const char *chroot_dir = NULL;
4271 const char *run_as = NULL;
4272
4273 qemu_cache_utils_init(envp);
4274
4275 LIST_INIT (&vm_change_state_head);
4276 #ifndef _WIN32
4277 {
4278 struct sigaction act;
4279 sigfillset(&act.sa_mask);
4280 act.sa_flags = 0;
4281 act.sa_handler = SIG_IGN;
4282 sigaction(SIGPIPE, &act, NULL);
4283 }
4284 #else
4285 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4286 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4287 QEMU to run on a single CPU */
4288 {
4289 HANDLE h;
4290 DWORD mask, smask;
4291 int i;
4292 h = GetCurrentProcess();
4293 if (GetProcessAffinityMask(h, &mask, &smask)) {
4294 for(i = 0; i < 32; i++) {
4295 if (mask & (1 << i))
4296 break;
4297 }
4298 if (i != 32) {
4299 mask = 1 << i;
4300 SetProcessAffinityMask(h, mask);
4301 }
4302 }
4303 }
4304 #endif
4305
4306 register_machines();
4307 machine = first_machine;
4308 cpu_model = NULL;
4309 initrd_filename = NULL;
4310 ram_size = 0;
4311 vga_ram_size = VGA_RAM_SIZE;
4312 #ifdef CONFIG_GDBSTUB
4313 use_gdbstub = 0;
4314 gdbstub_port = DEFAULT_GDBSTUB_PORT;
4315 #endif
4316 snapshot = 0;
4317 nographic = 0;
4318 curses = 0;
4319 kernel_filename = NULL;
4320 kernel_cmdline = "";
4321 cyls = heads = secs = 0;
4322 translation = BIOS_ATA_TRANSLATION_AUTO;
4323 monitor_device = "vc:80Cx24C";
4324
4325 serial_devices[0] = "vc:80Cx24C";
4326 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4327 serial_devices[i] = NULL;
4328 serial_device_index = 0;
4329
4330 parallel_devices[0] = "vc:80Cx24C";
4331 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4332 parallel_devices[i] = NULL;
4333 parallel_device_index = 0;
4334
4335 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4336 virtio_consoles[i] = NULL;
4337 virtio_console_index = 0;
4338
4339 usb_devices_index = 0;
4340
4341 nb_net_clients = 0;
4342 nb_bt_opts = 0;
4343 nb_drives = 0;
4344 nb_drives_opt = 0;
4345 hda_index = -1;
4346
4347 nb_nics = 0;
4348
4349 tb_size = 0;
4350 autostart= 1;
4351
4352 optind = 1;
4353 for(;;) {
4354 if (optind >= argc)
4355 break;
4356 r = argv[optind];
4357 if (r[0] != '-') {
4358 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4359 } else {
4360 const QEMUOption *popt;
4361
4362 optind++;
4363 /* Treat --foo the same as -foo. */
4364 if (r[1] == '-')
4365 r++;
4366 popt = qemu_options;
4367 for(;;) {
4368 if (!popt->name) {
4369 fprintf(stderr, "%s: invalid option -- '%s'\n",
4370 argv[0], r);
4371 exit(1);
4372 }
4373 if (!strcmp(popt->name, r + 1))
4374 break;
4375 popt++;
4376 }
4377 if (popt->flags & HAS_ARG) {
4378 if (optind >= argc) {
4379 fprintf(stderr, "%s: option '%s' requires an argument\n",
4380 argv[0], r);
4381 exit(1);
4382 }
4383 optarg = argv[optind++];
4384 } else {
4385 optarg = NULL;
4386 }
4387
4388 switch(popt->index) {
4389 case QEMU_OPTION_M:
4390 machine = find_machine(optarg);
4391 if (!machine) {
4392 QEMUMachine *m;
4393 printf("Supported machines are:\n");
4394 for(m = first_machine; m != NULL; m = m->next) {
4395 printf("%-10s %s%s\n",
4396 m->name, m->desc,
4397 m == first_machine ? " (default)" : "");
4398 }
4399 exit(*optarg != '?');
4400 }
4401 break;
4402 case QEMU_OPTION_cpu:
4403 /* hw initialization will check this */
4404 if (*optarg == '?') {
4405 /* XXX: implement xxx_cpu_list for targets that still miss it */
4406 #if defined(cpu_list)
4407 cpu_list(stdout, &fprintf);
4408 #endif
4409 exit(0);
4410 } else {
4411 cpu_model = optarg;
4412 }
4413 break;
4414 case QEMU_OPTION_initrd:
4415 initrd_filename = optarg;
4416 break;
4417 case QEMU_OPTION_hda:
4418 if (cyls == 0)
4419 hda_index = drive_add(optarg, HD_ALIAS, 0);
4420 else
4421 hda_index = drive_add(optarg, HD_ALIAS
4422 ",cyls=%d,heads=%d,secs=%d%s",
4423 0, cyls, heads, secs,
4424 translation == BIOS_ATA_TRANSLATION_LBA ?
4425 ",trans=lba" :
4426 translation == BIOS_ATA_TRANSLATION_NONE ?
4427 ",trans=none" : "");
4428 break;
4429 case QEMU_OPTION_hdb:
4430 case QEMU_OPTION_hdc:
4431 case QEMU_OPTION_hdd:
4432 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4433 break;
4434 case QEMU_OPTION_drive:
4435 drive_add(NULL, "%s", optarg);
4436 break;
4437 case QEMU_OPTION_mtdblock:
4438 drive_add(optarg, MTD_ALIAS);
4439 break;
4440 case QEMU_OPTION_sd:
4441 drive_add(optarg, SD_ALIAS);
4442 break;
4443 case QEMU_OPTION_pflash:
4444 drive_add(optarg, PFLASH_ALIAS);
4445 break;
4446 case QEMU_OPTION_snapshot:
4447 snapshot = 1;
4448 break;
4449 case QEMU_OPTION_hdachs:
4450 {
4451 const char *p;
4452 p = optarg;
4453 cyls = strtol(p, (char **)&p, 0);
4454 if (cyls < 1 || cyls > 16383)
4455 goto chs_fail;
4456 if (*p != ',')
4457 goto chs_fail;
4458 p++;
4459 heads = strtol(p, (char **)&p, 0);
4460 if (heads < 1 || heads > 16)
4461 goto chs_fail;
4462 if (*p != ',')
4463 goto chs_fail;
4464 p++;
4465 secs = strtol(p, (char **)&p, 0);
4466 if (secs < 1 || secs > 63)
4467 goto chs_fail;
4468 if (*p == ',') {
4469 p++;
4470 if (!strcmp(p, "none"))
4471 translation = BIOS_ATA_TRANSLATION_NONE;
4472 else if (!strcmp(p, "lba"))
4473 translation = BIOS_ATA_TRANSLATION_LBA;
4474 else if (!strcmp(p, "auto"))
4475 translation = BIOS_ATA_TRANSLATION_AUTO;
4476 else
4477 goto chs_fail;
4478 } else if (*p != '\0') {
4479 chs_fail:
4480 fprintf(stderr, "qemu: invalid physical CHS format\n");
4481 exit(1);
4482 }
4483 if (hda_index != -1)
4484 snprintf(drives_opt[hda_index].opt,
4485 sizeof(drives_opt[hda_index].opt),
4486 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
4487 0, cyls, heads, secs,
4488 translation == BIOS_ATA_TRANSLATION_LBA ?
4489 ",trans=lba" :
4490 translation == BIOS_ATA_TRANSLATION_NONE ?
4491 ",trans=none" : "");
4492 }
4493 break;
4494 case QEMU_OPTION_nographic:
4495 nographic = 1;
4496 break;
4497 #ifdef CONFIG_CURSES
4498 case QEMU_OPTION_curses:
4499 curses = 1;
4500 break;
4501 #endif
4502 case QEMU_OPTION_portrait:
4503 graphic_rotate = 1;
4504 break;
4505 case QEMU_OPTION_kernel:
4506 kernel_filename = optarg;
4507 break;
4508 case QEMU_OPTION_append:
4509 kernel_cmdline = optarg;
4510 break;
4511 case QEMU_OPTION_cdrom:
4512 drive_add(optarg, CDROM_ALIAS);
4513 break;
4514 case QEMU_OPTION_boot:
4515 boot_devices = optarg;
4516 /* We just do some generic consistency checks */
4517 {
4518 /* Could easily be extended to 64 devices if needed */
4519 const char *p;
4520
4521 boot_devices_bitmap = 0;
4522 for (p = boot_devices; *p != '\0'; p++) {
4523 /* Allowed boot devices are:
4524 * a b : floppy disk drives
4525 * c ... f : IDE disk drives
4526 * g ... m : machine implementation dependant drives
4527 * n ... p : network devices
4528 * It's up to each machine implementation to check
4529 * if the given boot devices match the actual hardware
4530 * implementation and firmware features.
4531 */
4532 if (*p < 'a' || *p > 'q') {
4533 fprintf(stderr, "Invalid boot device '%c'\n", *p);
4534 exit(1);
4535 }
4536 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
4537 fprintf(stderr,
4538 "Boot device '%c' was given twice\n",*p);
4539 exit(1);
4540 }
4541 boot_devices_bitmap |= 1 << (*p - 'a');
4542 }
4543 }
4544 break;
4545 case QEMU_OPTION_fda:
4546 case QEMU_OPTION_fdb:
4547 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
4548 break;
4549 #ifdef TARGET_I386
4550 case QEMU_OPTION_no_fd_bootchk:
4551 fd_bootchk = 0;
4552 break;
4553 #endif
4554 case QEMU_OPTION_net:
4555 if (nb_net_clients >= MAX_NET_CLIENTS) {
4556 fprintf(stderr, "qemu: too many network clients\n");
4557 exit(1);
4558 }
4559 net_clients[nb_net_clients] = optarg;
4560 nb_net_clients++;
4561 break;
4562 #ifdef CONFIG_SLIRP
4563 case QEMU_OPTION_tftp:
4564 tftp_prefix = optarg;
4565 break;
4566 case QEMU_OPTION_bootp:
4567 bootp_filename = optarg;
4568 break;
4569 #ifndef _WIN32
4570 case QEMU_OPTION_smb:
4571 net_slirp_smb(optarg);
4572 break;
4573 #endif
4574 case QEMU_OPTION_redir:
4575 net_slirp_redir(optarg);
4576 break;
4577 #endif
4578 case QEMU_OPTION_bt:
4579 if (nb_bt_opts >= MAX_BT_CMDLINE) {
4580 fprintf(stderr, "qemu: too many bluetooth options\n");
4581 exit(1);
4582 }
4583 bt_opts[nb_bt_opts++] = optarg;
4584 break;
4585 #ifdef HAS_AUDIO
4586 case QEMU_OPTION_audio_help:
4587 AUD_help ();
4588 exit (0);
4589 break;
4590 case QEMU_OPTION_soundhw:
4591 select_soundhw (optarg);
4592 break;
4593 #endif
4594 case QEMU_OPTION_h:
4595 help(0);
4596 break;
4597 case QEMU_OPTION_m: {
4598 uint64_t value;
4599 char *ptr;
4600
4601 value = strtoul(optarg, &ptr, 10);
4602 switch (*ptr) {
4603 case 0: case 'M': case 'm':
4604 value <<= 20;
4605 break;
4606 case 'G': case 'g':
4607 value <<= 30;
4608 break;
4609 default:
4610 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
4611 exit(1);
4612 }
4613
4614 /* On 32-bit hosts, QEMU is limited by virtual address space */
4615 if (value > (2047 << 20)
4616 #ifndef USE_KQEMU
4617 && HOST_LONG_BITS == 32
4618 #endif
4619 ) {
4620 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
4621 exit(1);
4622 }
4623 if (value != (uint64_t)(ram_addr_t)value) {
4624 fprintf(stderr, "qemu: ram size too large\n");
4625 exit(1);
4626 }
4627 ram_size = value;
4628 break;
4629 }
4630 case QEMU_OPTION_d:
4631 {
4632 int mask;
4633 const CPULogItem *item;
4634
4635 mask = cpu_str_to_log_mask(optarg);
4636 if (!mask) {
4637 printf("Log items (comma separated):\n");
4638 for(item = cpu_log_items; item->mask != 0; item++) {
4639 printf("%-10s %s\n", item->name, item->help);
4640 }
4641 exit(1);
4642 }
4643 cpu_set_log(mask);
4644 }
4645 break;
4646 #ifdef CONFIG_GDBSTUB
4647 case QEMU_OPTION_s:
4648 use_gdbstub = 1;
4649 break;
4650 case QEMU_OPTION_p:
4651 gdbstub_port = optarg;
4652 break;
4653 #endif
4654 case QEMU_OPTION_L:
4655 bios_dir = optarg;
4656 break;
4657 case QEMU_OPTION_bios:
4658 bios_name = optarg;
4659 break;
4660 case QEMU_OPTION_S:
4661 autostart = 0;
4662 break;
4663 #ifndef _WIN32
4664 case QEMU_OPTION_k:
4665 keyboard_layout = optarg;
4666 break;
4667 #endif
4668 case QEMU_OPTION_localtime:
4669 rtc_utc = 0;
4670 break;
4671 case QEMU_OPTION_vga:
4672 select_vgahw (optarg);
4673 break;
4674 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
4675 case QEMU_OPTION_g:
4676 {
4677 const char *p;
4678 int w, h, depth;
4679 p = optarg;
4680 w = strtol(p, (char **)&p, 10);
4681 if (w <= 0) {
4682 graphic_error:
4683 fprintf(stderr, "qemu: invalid resolution or depth\n");
4684 exit(1);
4685 }
4686 if (*p != 'x')
4687 goto graphic_error;
4688 p++;
4689 h = strtol(p, (char **)&p, 10);
4690 if (h <= 0)
4691 goto graphic_error;
4692 if (*p == 'x') {
4693 p++;
4694 depth = strtol(p, (char **)&p, 10);
4695 if (depth != 8 && depth != 15 && depth != 16 &&
4696 depth != 24 && depth != 32)
4697 goto graphic_error;
4698 } else if (*p == '\0') {
4699 depth = graphic_depth;
4700 } else {
4701 goto graphic_error;
4702 }
4703
4704 graphic_width = w;
4705 graphic_height = h;
4706 graphic_depth = depth;
4707 }
4708 break;
4709 #endif
4710 case QEMU_OPTION_echr:
4711 {
4712 char *r;
4713 term_escape_char = strtol(optarg, &r, 0);
4714 if (r == optarg)
4715 printf("Bad argument to echr\n");
4716 break;
4717 }
4718 case QEMU_OPTION_monitor:
4719 monitor_device = optarg;
4720 break;
4721 case QEMU_OPTION_serial:
4722 if (serial_device_index >= MAX_SERIAL_PORTS) {
4723 fprintf(stderr, "qemu: too many serial ports\n");
4724 exit(1);
4725 }
4726 serial_devices[serial_device_index] = optarg;
4727 serial_device_index++;
4728 break;
4729 case QEMU_OPTION_virtiocon:
4730 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
4731 fprintf(stderr, "qemu: too many virtio consoles\n");
4732 exit(1);
4733 }
4734 virtio_consoles[virtio_console_index] = optarg;
4735 virtio_console_index++;
4736 break;
4737 case QEMU_OPTION_parallel:
4738 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
4739 fprintf(stderr, "qemu: too many parallel ports\n");
4740 exit(1);
4741 }
4742 parallel_devices[parallel_device_index] = optarg;
4743 parallel_device_index++;
4744 break;
4745 case QEMU_OPTION_loadvm:
4746 loadvm = optarg;
4747 break;
4748 case QEMU_OPTION_full_screen:
4749 full_screen = 1;
4750 break;
4751 #ifdef CONFIG_SDL
4752 case QEMU_OPTION_no_frame:
4753 no_frame = 1;
4754 break;
4755 case QEMU_OPTION_alt_grab:
4756 alt_grab = 1;
4757 break;
4758 case QEMU_OPTION_no_quit:
4759 no_quit = 1;
4760 break;
4761 case QEMU_OPTION_sdl:
4762 sdl = 1;
4763 break;
4764 #endif
4765 case QEMU_OPTION_pidfile:
4766 pid_file = optarg;
4767 break;
4768 #ifdef TARGET_I386
4769 case QEMU_OPTION_win2k_hack:
4770 win2k_install_hack = 1;
4771 break;
4772 case QEMU_OPTION_rtc_td_hack:
4773 rtc_td_hack = 1;
4774 break;
4775 case QEMU_OPTION_acpitable:
4776 if(acpi_table_add(optarg) < 0) {
4777 fprintf(stderr, "Wrong acpi table provided\n");
4778 exit(1);
4779 }
4780 break;
4781 #endif
4782 #ifdef USE_KQEMU
4783 case QEMU_OPTION_no_kqemu:
4784 kqemu_allowed = 0;
4785 break;
4786 case QEMU_OPTION_kernel_kqemu:
4787 kqemu_allowed = 2;
4788 break;
4789 #endif
4790 #ifdef CONFIG_KVM
4791 case QEMU_OPTION_enable_kvm:
4792 kvm_allowed = 1;
4793 #ifdef USE_KQEMU
4794 kqemu_allowed = 0;
4795 #endif
4796 break;
4797 #endif
4798 case QEMU_OPTION_usb:
4799 usb_enabled = 1;
4800 break;
4801 case QEMU_OPTION_usbdevice:
4802 usb_enabled = 1;
4803 if (usb_devices_index >= MAX_USB_CMDLINE) {
4804 fprintf(stderr, "Too many USB devices\n");
4805 exit(1);
4806 }
4807 usb_devices[usb_devices_index] = optarg;
4808 usb_devices_index++;
4809 break;
4810 case QEMU_OPTION_smp:
4811 smp_cpus = atoi(optarg);
4812 if (smp_cpus < 1) {
4813 fprintf(stderr, "Invalid number of CPUs\n");
4814 exit(1);
4815 }
4816 break;
4817 case QEMU_OPTION_vnc:
4818 vnc_display = optarg;
4819 break;
4820 #ifdef TARGET_I386
4821 case QEMU_OPTION_no_acpi:
4822 acpi_enabled = 0;
4823 break;
4824 case QEMU_OPTION_no_hpet:
4825 no_hpet = 1;
4826 break;
4827 #endif
4828 case QEMU_OPTION_no_reboot:
4829 no_reboot = 1;
4830 break;
4831 case QEMU_OPTION_no_shutdown:
4832 no_shutdown = 1;
4833 break;
4834 case QEMU_OPTION_show_cursor:
4835 cursor_hide = 0;
4836 break;
4837 case QEMU_OPTION_uuid:
4838 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
4839 fprintf(stderr, "Fail to parse UUID string."
4840 " Wrong format.\n");
4841 exit(1);
4842 }
4843 break;
4844 #ifndef _WIN32
4845 case QEMU_OPTION_daemonize:
4846 daemonize = 1;
4847 break;
4848 #endif
4849 case QEMU_OPTION_option_rom:
4850 if (nb_option_roms >= MAX_OPTION_ROMS) {
4851 fprintf(stderr, "Too many option ROMs\n");
4852 exit(1);
4853 }
4854 option_rom[nb_option_roms] = optarg;
4855 nb_option_roms++;
4856 break;
4857 #if defined(TARGET_ARM) || defined(TARGET_M68K)
4858 case QEMU_OPTION_semihosting:
4859 semihosting_enabled = 1;
4860 break;
4861 #endif
4862 case QEMU_OPTION_name:
4863 qemu_name = optarg;
4864 break;
4865 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
4866 case QEMU_OPTION_prom_env:
4867 if (nb_prom_envs >= MAX_PROM_ENVS) {
4868 fprintf(stderr, "Too many prom variables\n");
4869 exit(1);
4870 }
4871 prom_envs[nb_prom_envs] = optarg;
4872 nb_prom_envs++;
4873 break;
4874 #endif
4875 #ifdef TARGET_ARM
4876 case QEMU_OPTION_old_param:
4877 old_param = 1;
4878 break;
4879 #endif
4880 case QEMU_OPTION_clock:
4881 configure_alarms(optarg);
4882 break;
4883 case QEMU_OPTION_startdate:
4884 {
4885 struct tm tm;
4886 time_t rtc_start_date;
4887 if (!strcmp(optarg, "now")) {
4888 rtc_date_offset = -1;
4889 } else {
4890 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
4891 &tm.tm_year,
4892 &tm.tm_mon,
4893 &tm.tm_mday,
4894 &tm.tm_hour,
4895 &tm.tm_min,
4896 &tm.tm_sec) == 6) {
4897 /* OK */
4898 } else if (sscanf(optarg, "%d-%d-%d",
4899 &tm.tm_year,
4900 &tm.tm_mon,
4901 &tm.tm_mday) == 3) {
4902 tm.tm_hour = 0;
4903 tm.tm_min = 0;
4904 tm.tm_sec = 0;
4905 } else {
4906 goto date_fail;
4907 }
4908 tm.tm_year -= 1900;
4909 tm.tm_mon--;
4910 rtc_start_date = mktimegm(&tm);
4911 if (rtc_start_date == -1) {
4912 date_fail:
4913 fprintf(stderr, "Invalid date format. Valid format are:\n"
4914 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
4915 exit(1);
4916 }
4917 rtc_date_offset = time(NULL) - rtc_start_date;
4918 }
4919 }
4920 break;
4921 case QEMU_OPTION_tb_size:
4922 tb_size = strtol(optarg, NULL, 0);
4923 if (tb_size < 0)
4924 tb_size = 0;
4925 break;
4926 case QEMU_OPTION_icount:
4927 use_icount = 1;
4928 if (strcmp(optarg, "auto") == 0) {
4929 icount_time_shift = -1;
4930 } else {
4931 icount_time_shift = strtol(optarg, NULL, 0);
4932 }
4933 break;
4934 case QEMU_OPTION_incoming:
4935 incoming = optarg;
4936 break;
4937 #ifndef _WIN32
4938 case QEMU_OPTION_chroot:
4939 chroot_dir = optarg;
4940 break;
4941 case QEMU_OPTION_runas:
4942 run_as = optarg;
4943 break;
4944 #endif
4945 }
4946 }
4947 }
4948
4949 #if defined(CONFIG_KVM) && defined(USE_KQEMU)
4950 if (kvm_allowed && kqemu_allowed) {
4951 fprintf(stderr,
4952 "You can not enable both KVM and kqemu at the same time\n");
4953 exit(1);
4954 }
4955 #endif
4956
4957 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
4958 if (smp_cpus > machine->max_cpus) {
4959 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
4960 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
4961 machine->max_cpus);
4962 exit(1);
4963 }
4964
4965 if (nographic) {
4966 if (serial_device_index == 0)
4967 serial_devices[0] = "stdio";
4968 if (parallel_device_index == 0)
4969 parallel_devices[0] = "null";
4970 if (strncmp(monitor_device, "vc", 2) == 0)
4971 monitor_device = "stdio";
4972 }
4973
4974 #ifndef _WIN32
4975 if (daemonize) {
4976 pid_t pid;
4977
4978 if (pipe(fds) == -1)
4979 exit(1);
4980
4981 pid = fork();
4982 if (pid > 0) {
4983 uint8_t status;
4984 ssize_t len;
4985
4986 close(fds[1]);
4987
4988 again:
4989 len = read(fds[0], &status, 1);
4990 if (len == -1 && (errno == EINTR))
4991 goto again;
4992
4993 if (len != 1)
4994 exit(1);
4995 else if (status == 1) {
4996 fprintf(stderr, "Could not acquire pidfile\n");
4997 exit(1);
4998 } else
4999 exit(0);
5000 } else if (pid < 0)
5001 exit(1);
5002
5003 setsid();
5004
5005 pid = fork();
5006 if (pid > 0)
5007 exit(0);
5008 else if (pid < 0)
5009 exit(1);
5010
5011 umask(027);
5012
5013 signal(SIGTSTP, SIG_IGN);
5014 signal(SIGTTOU, SIG_IGN);
5015 signal(SIGTTIN, SIG_IGN);
5016 }
5017 #endif
5018
5019 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5020 if (daemonize) {
5021 uint8_t status = 1;
5022 write(fds[1], &status, 1);
5023 } else
5024 fprintf(stderr, "Could not acquire pid file\n");
5025 exit(1);
5026 }
5027
5028 #ifdef USE_KQEMU
5029 if (smp_cpus > 1)
5030 kqemu_allowed = 0;
5031 #endif
5032 linux_boot = (kernel_filename != NULL);
5033 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5034
5035 if (!linux_boot && net_boot == 0 &&
5036 !machine->nodisk_ok && nb_drives_opt == 0)
5037 help(1);
5038
5039 if (!linux_boot && *kernel_cmdline != '\0') {
5040 fprintf(stderr, "-append only allowed with -kernel option\n");
5041 exit(1);
5042 }
5043
5044 if (!linux_boot && initrd_filename != NULL) {
5045 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5046 exit(1);
5047 }
5048
5049 /* boot to floppy or the default cd if no hard disk defined yet */
5050 if (!boot_devices[0]) {
5051 boot_devices = "cad";
5052 }
5053 setvbuf(stdout, NULL, _IOLBF, 0);
5054
5055 init_timers();
5056 if (init_timer_alarm() < 0) {
5057 fprintf(stderr, "could not initialize alarm timer\n");
5058 exit(1);
5059 }
5060 if (use_icount && icount_time_shift < 0) {
5061 use_icount = 2;
5062 /* 125MIPS seems a reasonable initial guess at the guest speed.
5063 It will be corrected fairly quickly anyway. */
5064 icount_time_shift = 3;
5065 init_icount_adjust();
5066 }
5067
5068 #ifdef _WIN32
5069 socket_init();
5070 #endif
5071
5072 /* init network clients */
5073 if (nb_net_clients == 0) {
5074 /* if no clients, we use a default config */
5075 net_clients[nb_net_clients++] = "nic";
5076 #ifdef CONFIG_SLIRP
5077 net_clients[nb_net_clients++] = "user";
5078 #endif
5079 }
5080
5081 for(i = 0;i < nb_net_clients; i++) {
5082 if (net_client_parse(net_clients[i]) < 0)
5083 exit(1);
5084 }
5085 net_client_check();
5086
5087 #ifdef TARGET_I386
5088 /* XXX: this should be moved in the PC machine instantiation code */
5089 if (net_boot != 0) {
5090 int netroms = 0;
5091 for (i = 0; i < nb_nics && i < 4; i++) {
5092 const char *model = nd_table[i].model;
5093 char buf[1024];
5094 if (net_boot & (1 << i)) {
5095 if (model == NULL)
5096 model = "ne2k_pci";
5097 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5098 if (get_image_size(buf) > 0) {
5099 if (nb_option_roms >= MAX_OPTION_ROMS) {
5100 fprintf(stderr, "Too many option ROMs\n");
5101 exit(1);
5102 }
5103 option_rom[nb_option_roms] = strdup(buf);
5104 nb_option_roms++;
5105 netroms++;
5106 }
5107 }
5108 }
5109 if (netroms == 0) {
5110 fprintf(stderr, "No valid PXE rom found for network device\n");
5111 exit(1);
5112 }
5113 }
5114 #endif
5115
5116 /* init the bluetooth world */
5117 for (i = 0; i < nb_bt_opts; i++)
5118 if (bt_parse(bt_opts[i]))
5119 exit(1);
5120
5121 /* init the memory */
5122 phys_ram_size = machine->ram_require & ~RAMSIZE_FIXED;
5123
5124 if (machine->ram_require & RAMSIZE_FIXED) {
5125 if (ram_size > 0) {
5126 if (ram_size < phys_ram_size) {
5127 fprintf(stderr, "Machine `%s' requires %llu bytes of memory\n",
5128 machine->name, (unsigned long long) phys_ram_size);
5129 exit(-1);
5130 }
5131
5132 phys_ram_size = ram_size;
5133 } else
5134 ram_size = phys_ram_size;
5135 } else {
5136 if (ram_size == 0)
5137 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5138
5139 phys_ram_size += ram_size;
5140 }
5141
5142 phys_ram_base = qemu_vmalloc(phys_ram_size);
5143 if (!phys_ram_base) {
5144 fprintf(stderr, "Could not allocate physical memory\n");
5145 exit(1);
5146 }
5147
5148 /* init the dynamic translator */
5149 cpu_exec_init_all(tb_size * 1024 * 1024);
5150
5151 bdrv_init();
5152 dma_helper_init();
5153
5154 /* we always create the cdrom drive, even if no disk is there */
5155
5156 if (nb_drives_opt < MAX_DRIVES)
5157 drive_add(NULL, CDROM_ALIAS);
5158
5159 /* we always create at least one floppy */
5160
5161 if (nb_drives_opt < MAX_DRIVES)
5162 drive_add(NULL, FD_ALIAS, 0);
5163
5164 /* we always create one sd slot, even if no card is in it */
5165
5166 if (nb_drives_opt < MAX_DRIVES)
5167 drive_add(NULL, SD_ALIAS);
5168
5169 /* open the virtual block devices */
5170
5171 for(i = 0; i < nb_drives_opt; i++)
5172 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5173 exit(1);
5174
5175 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5176 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5177
5178 #ifndef _WIN32
5179 /* must be after terminal init, SDL library changes signal handlers */
5180 termsig_setup();
5181 #endif
5182
5183 /* Maintain compatibility with multiple stdio monitors */
5184 if (!strcmp(monitor_device,"stdio")) {
5185 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5186 const char *devname = serial_devices[i];
5187 if (devname && !strcmp(devname,"mon:stdio")) {
5188 monitor_device = NULL;
5189 break;
5190 } else if (devname && !strcmp(devname,"stdio")) {
5191 monitor_device = NULL;
5192 serial_devices[i] = "mon:stdio";
5193 break;
5194 }
5195 }
5196 }
5197
5198 if (kvm_enabled()) {
5199 int ret;
5200
5201 ret = kvm_init(smp_cpus);
5202 if (ret < 0) {
5203 fprintf(stderr, "failed to initialize KVM\n");
5204 exit(1);
5205 }
5206 }
5207
5208 if (monitor_device) {
5209 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5210 if (!monitor_hd) {
5211 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5212 exit(1);
5213 }
5214 }
5215
5216 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5217 const char *devname = serial_devices[i];
5218 if (devname && strcmp(devname, "none")) {
5219 char label[32];
5220 snprintf(label, sizeof(label), "serial%d", i);
5221 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5222 if (!serial_hds[i]) {
5223 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5224 devname);
5225 exit(1);
5226 }
5227 }
5228 }
5229
5230 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5231 const char *devname = parallel_devices[i];
5232 if (devname && strcmp(devname, "none")) {
5233 char label[32];
5234 snprintf(label, sizeof(label), "parallel%d", i);
5235 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5236 if (!parallel_hds[i]) {
5237 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5238 devname);
5239 exit(1);
5240 }
5241 }
5242 }
5243
5244 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5245 const char *devname = virtio_consoles[i];
5246 if (devname && strcmp(devname, "none")) {
5247 char label[32];
5248 snprintf(label, sizeof(label), "virtcon%d", i);
5249 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5250 if (!virtcon_hds[i]) {
5251 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5252 devname);
5253 exit(1);
5254 }
5255 }
5256 }
5257
5258 machine->init(ram_size, vga_ram_size, boot_devices,
5259 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5260
5261 current_machine = machine;
5262
5263 /* Set KVM's vcpu state to qemu's initial CPUState. */
5264 if (kvm_enabled()) {
5265 int ret;
5266
5267 ret = kvm_sync_vcpus();
5268 if (ret < 0) {
5269 fprintf(stderr, "failed to initialize vcpus\n");
5270 exit(1);
5271 }
5272 }
5273
5274 /* init USB devices */
5275 if (usb_enabled) {
5276 for(i = 0; i < usb_devices_index; i++) {
5277 if (usb_device_add(usb_devices[i], 0) < 0) {
5278 fprintf(stderr, "Warning: could not add USB device %s\n",
5279 usb_devices[i]);
5280 }
5281 }
5282 }
5283
5284 if (!display_state)
5285 dumb_display_init();
5286 /* just use the first displaystate for the moment */
5287 ds = display_state;
5288 /* terminal init */
5289 if (nographic) {
5290 if (curses) {
5291 fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
5292 exit(1);
5293 }
5294 } else {
5295 #if defined(CONFIG_CURSES)
5296 if (curses) {
5297 /* At the moment curses cannot be used with other displays */
5298 curses_display_init(ds, full_screen);
5299 } else
5300 #endif
5301 {
5302 if (vnc_display != NULL) {
5303 vnc_display_init(ds);
5304 if (vnc_display_open(ds, vnc_display) < 0)
5305 exit(1);
5306 }
5307 #if defined(CONFIG_SDL)
5308 if (sdl || !vnc_display)
5309 sdl_display_init(ds, full_screen, no_frame);
5310 #elif defined(CONFIG_COCOA)
5311 if (sdl || !vnc_display)
5312 cocoa_display_init(ds, full_screen);
5313 #endif
5314 }
5315 }
5316 dpy_resize(ds);
5317
5318 dcl = ds->listeners;
5319 while (dcl != NULL) {
5320 if (dcl->dpy_refresh != NULL) {
5321 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5322 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5323 }
5324 dcl = dcl->next;
5325 }
5326
5327 if (nographic || (vnc_display && !sdl)) {
5328 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5329 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5330 }
5331
5332 text_consoles_set_display(display_state);
5333 qemu_chr_initial_reset();
5334
5335 if (monitor_device && monitor_hd)
5336 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
5337
5338 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5339 const char *devname = serial_devices[i];
5340 if (devname && strcmp(devname, "none")) {
5341 char label[32];
5342 snprintf(label, sizeof(label), "serial%d", i);
5343 if (strstart(devname, "vc", 0))
5344 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5345 }
5346 }
5347
5348 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5349 const char *devname = parallel_devices[i];
5350 if (devname && strcmp(devname, "none")) {
5351 char label[32];
5352 snprintf(label, sizeof(label), "parallel%d", i);
5353 if (strstart(devname, "vc", 0))
5354 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5355 }
5356 }
5357
5358 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5359 const char *devname = virtio_consoles[i];
5360 if (virtcon_hds[i] && devname) {
5361 char label[32];
5362 snprintf(label, sizeof(label), "virtcon%d", i);
5363 if (strstart(devname, "vc", 0))
5364 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
5365 }
5366 }
5367
5368 #ifdef CONFIG_GDBSTUB
5369 if (use_gdbstub) {
5370 /* XXX: use standard host:port notation and modify options
5371 accordingly. */
5372 if (gdbserver_start(gdbstub_port) < 0) {
5373 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
5374 gdbstub_port);
5375 exit(1);
5376 }
5377 }
5378 #endif
5379
5380 if (loadvm)
5381 do_loadvm(cur_mon, loadvm);
5382
5383 if (incoming) {
5384 autostart = 0; /* fixme how to deal with -daemonize */
5385 qemu_start_incoming_migration(incoming);
5386 }
5387
5388 if (autostart)
5389 vm_start();
5390
5391 if (daemonize) {
5392 uint8_t status = 0;
5393 ssize_t len;
5394
5395 again1:
5396 len = write(fds[1], &status, 1);
5397 if (len == -1 && (errno == EINTR))
5398 goto again1;
5399
5400 if (len != 1)
5401 exit(1);
5402
5403 chdir("/");
5404 TFR(fd = open("/dev/null", O_RDWR));
5405 if (fd == -1)
5406 exit(1);
5407 }
5408
5409 #ifndef _WIN32
5410 if (run_as) {
5411 pwd = getpwnam(run_as);
5412 if (!pwd) {
5413 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
5414 exit(1);
5415 }
5416 }
5417
5418 if (chroot_dir) {
5419 if (chroot(chroot_dir) < 0) {
5420 fprintf(stderr, "chroot failed\n");
5421 exit(1);
5422 }
5423 chdir("/");
5424 }
5425
5426 if (run_as) {
5427 if (setgid(pwd->pw_gid) < 0) {
5428 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
5429 exit(1);
5430 }
5431 if (setuid(pwd->pw_uid) < 0) {
5432 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
5433 exit(1);
5434 }
5435 if (setuid(0) != -1) {
5436 fprintf(stderr, "Dropping privileges failed\n");
5437 exit(1);
5438 }
5439 }
5440 #endif
5441
5442 if (daemonize) {
5443 dup2(fd, 0);
5444 dup2(fd, 1);
5445 dup2(fd, 2);
5446
5447 close(fd);
5448 }
5449
5450 main_loop();
5451 quit_timers();
5452 net_cleanup();
5453
5454 return 0;
5455 }