]> git.proxmox.com Git - qemu.git/blob - vl.c
50f133d4964f27b7104c0147b427e4d691ac352e
[qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
31
32 /* Needed early for CONFIG_BSD etc. */
33 #include "config-host.h"
34
35 #ifndef _WIN32
36 #include <libgen.h>
37 #include <pwd.h>
38 #include <sys/times.h>
39 #include <sys/wait.h>
40 #include <termios.h>
41 #include <sys/mman.h>
42 #include <sys/ioctl.h>
43 #include <sys/resource.h>
44 #include <sys/socket.h>
45 #include <netinet/in.h>
46 #include <net/if.h>
47 #include <arpa/inet.h>
48 #include <dirent.h>
49 #include <netdb.h>
50 #include <sys/select.h>
51 #ifdef CONFIG_BSD
52 #include <sys/stat.h>
53 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
54 #include <libutil.h>
55 #else
56 #include <util.h>
57 #endif
58 #else
59 #ifdef __linux__
60 #include <pty.h>
61 #include <malloc.h>
62 #include <linux/rtc.h>
63 #include <sys/prctl.h>
64
65 /* For the benefit of older linux systems which don't supply it,
66 we use a local copy of hpet.h. */
67 /* #include <linux/hpet.h> */
68 #include "hpet.h"
69
70 #include <linux/ppdev.h>
71 #include <linux/parport.h>
72 #endif
73 #ifdef __sun__
74 #include <sys/stat.h>
75 #include <sys/ethernet.h>
76 #include <sys/sockio.h>
77 #include <netinet/arp.h>
78 #include <netinet/in.h>
79 #include <netinet/in_systm.h>
80 #include <netinet/ip.h>
81 #include <netinet/ip_icmp.h> // must come after ip.h
82 #include <netinet/udp.h>
83 #include <netinet/tcp.h>
84 #include <net/if.h>
85 #include <syslog.h>
86 #include <stropts.h>
87 /* See MySQL bug #7156 (http://bugs.mysql.com/bug.php?id=7156) for
88 discussion about Solaris header problems */
89 extern int madvise(caddr_t, size_t, int);
90 #endif
91 #endif
92 #endif
93
94 #if defined(__OpenBSD__)
95 #include <util.h>
96 #endif
97
98 #if defined(CONFIG_VDE)
99 #include <libvdeplug.h>
100 #endif
101
102 #ifdef _WIN32
103 #include <windows.h>
104 #include <mmsystem.h>
105 #endif
106
107 #ifdef CONFIG_SDL
108 #if defined(__APPLE__) || defined(main)
109 #include <SDL.h>
110 int qemu_main(int argc, char **argv, char **envp);
111 int main(int argc, char **argv)
112 {
113 return qemu_main(argc, argv, NULL);
114 }
115 #undef main
116 #define main qemu_main
117 #endif
118 #endif /* CONFIG_SDL */
119
120 #ifdef CONFIG_COCOA
121 #undef main
122 #define main qemu_main
123 #endif /* CONFIG_COCOA */
124
125 #include "hw/hw.h"
126 #include "hw/boards.h"
127 #include "hw/usb.h"
128 #include "hw/pcmcia.h"
129 #include "hw/pc.h"
130 #include "hw/audiodev.h"
131 #include "hw/isa.h"
132 #include "hw/baum.h"
133 #include "hw/bt.h"
134 #include "hw/watchdog.h"
135 #include "hw/smbios.h"
136 #include "hw/xen.h"
137 #include "hw/qdev.h"
138 #include "hw/loader.h"
139 #include "bt-host.h"
140 #include "net.h"
141 #include "net/slirp.h"
142 #include "monitor.h"
143 #include "console.h"
144 #include "sysemu.h"
145 #include "gdbstub.h"
146 #include "qemu-timer.h"
147 #include "qemu-char.h"
148 #include "cache-utils.h"
149 #include "block.h"
150 #include "block_int.h"
151 #include "block-migration.h"
152 #include "dma.h"
153 #include "audio/audio.h"
154 #include "migration.h"
155 #include "kvm.h"
156 #include "balloon.h"
157 #include "qemu-option.h"
158 #include "qemu-config.h"
159 #include "qemu-objects.h"
160
161 #include "disas.h"
162
163 #include "exec-all.h"
164
165 #include "qemu_socket.h"
166
167 #include "slirp/libslirp.h"
168
169 #include "qemu-queue.h"
170
171 //#define DEBUG_NET
172 //#define DEBUG_SLIRP
173
174 #define DEFAULT_RAM_SIZE 128
175
176 #define MAX_VIRTIO_CONSOLES 1
177
178 static const char *data_dir;
179 const char *bios_name = NULL;
180 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
181 to store the VM snapshots */
182 struct drivelist drives = QTAILQ_HEAD_INITIALIZER(drives);
183 struct driveoptlist driveopts = QTAILQ_HEAD_INITIALIZER(driveopts);
184 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
185 static DisplayState *display_state;
186 DisplayType display_type = DT_DEFAULT;
187 const char* keyboard_layout = NULL;
188 ram_addr_t ram_size;
189 int nb_nics;
190 NICInfo nd_table[MAX_NICS];
191 int vm_running;
192 int autostart;
193 static int rtc_utc = 1;
194 static int rtc_date_offset = -1; /* -1 means no change */
195 QEMUClock *rtc_clock;
196 int vga_interface_type = VGA_NONE;
197 #ifdef TARGET_SPARC
198 int graphic_width = 1024;
199 int graphic_height = 768;
200 int graphic_depth = 8;
201 #else
202 int graphic_width = 800;
203 int graphic_height = 600;
204 int graphic_depth = 15;
205 #endif
206 static int full_screen = 0;
207 #ifdef CONFIG_SDL
208 static int no_frame = 0;
209 #endif
210 int no_quit = 0;
211 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
212 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
213 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
214 #ifdef TARGET_I386
215 int win2k_install_hack = 0;
216 int rtc_td_hack = 0;
217 #endif
218 int usb_enabled = 0;
219 int singlestep = 0;
220 int smp_cpus = 1;
221 int max_cpus = 0;
222 int smp_cores = 1;
223 int smp_threads = 1;
224 const char *vnc_display;
225 int acpi_enabled = 1;
226 int no_hpet = 0;
227 int fd_bootchk = 1;
228 int no_reboot = 0;
229 int no_shutdown = 0;
230 int cursor_hide = 1;
231 int graphic_rotate = 0;
232 uint8_t irq0override = 1;
233 #ifndef _WIN32
234 int daemonize = 0;
235 #endif
236 const char *watchdog;
237 const char *option_rom[MAX_OPTION_ROMS];
238 int nb_option_roms;
239 int semihosting_enabled = 0;
240 #ifdef TARGET_ARM
241 int old_param = 0;
242 #endif
243 const char *qemu_name;
244 int alt_grab = 0;
245 int ctrl_grab = 0;
246 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
247 unsigned int nb_prom_envs = 0;
248 const char *prom_envs[MAX_PROM_ENVS];
249 #endif
250 int boot_menu;
251
252 int nb_numa_nodes;
253 uint64_t node_mem[MAX_NODES];
254 uint64_t node_cpumask[MAX_NODES];
255
256 static CPUState *cur_cpu;
257 static CPUState *next_cpu;
258 static int timer_alarm_pending = 1;
259 /* Conversion factor from emulated instructions to virtual clock ticks. */
260 static int icount_time_shift;
261 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
262 #define MAX_ICOUNT_SHIFT 10
263 /* Compensate for varying guest execution speed. */
264 static int64_t qemu_icount_bias;
265 static QEMUTimer *icount_rt_timer;
266 static QEMUTimer *icount_vm_timer;
267 static QEMUTimer *nographic_timer;
268
269 uint8_t qemu_uuid[16];
270
271 static QEMUBootSetHandler *boot_set_handler;
272 static void *boot_set_opaque;
273
274 static int default_serial = 1;
275 static int default_parallel = 1;
276 static int default_virtcon = 1;
277 static int default_monitor = 1;
278 static int default_vga = 1;
279 static int default_floppy = 1;
280 static int default_cdrom = 1;
281 static int default_sdcard = 1;
282
283 static struct {
284 const char *driver;
285 int *flag;
286 } default_list[] = {
287 { .driver = "isa-serial", .flag = &default_serial },
288 { .driver = "isa-parallel", .flag = &default_parallel },
289 { .driver = "isa-fdc", .flag = &default_floppy },
290 { .driver = "ide-drive", .flag = &default_cdrom },
291 { .driver = "virtio-serial-pci", .flag = &default_virtcon },
292 { .driver = "virtio-serial-s390", .flag = &default_virtcon },
293 { .driver = "virtio-serial", .flag = &default_virtcon },
294 { .driver = "VGA", .flag = &default_vga },
295 { .driver = "cirrus-vga", .flag = &default_vga },
296 { .driver = "vmware-svga", .flag = &default_vga },
297 };
298
299 static int default_driver_check(QemuOpts *opts, void *opaque)
300 {
301 const char *driver = qemu_opt_get(opts, "driver");
302 int i;
303
304 if (!driver)
305 return 0;
306 for (i = 0; i < ARRAY_SIZE(default_list); i++) {
307 if (strcmp(default_list[i].driver, driver) != 0)
308 continue;
309 *(default_list[i].flag) = 0;
310 }
311 return 0;
312 }
313
314 /***********************************************************/
315 /* x86 ISA bus support */
316
317 target_phys_addr_t isa_mem_base = 0;
318 PicState2 *isa_pic;
319
320 /***********************************************************/
321 void hw_error(const char *fmt, ...)
322 {
323 va_list ap;
324 CPUState *env;
325
326 va_start(ap, fmt);
327 fprintf(stderr, "qemu: hardware error: ");
328 vfprintf(stderr, fmt, ap);
329 fprintf(stderr, "\n");
330 for(env = first_cpu; env != NULL; env = env->next_cpu) {
331 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
332 #ifdef TARGET_I386
333 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
334 #else
335 cpu_dump_state(env, stderr, fprintf, 0);
336 #endif
337 }
338 va_end(ap);
339 abort();
340 }
341
342 static void set_proc_name(const char *s)
343 {
344 #if defined(__linux__) && defined(PR_SET_NAME)
345 char name[16];
346 if (!s)
347 return;
348 name[sizeof(name) - 1] = 0;
349 strncpy(name, s, sizeof(name));
350 /* Could rewrite argv[0] too, but that's a bit more complicated.
351 This simple way is enough for `top'. */
352 prctl(PR_SET_NAME, name);
353 #endif
354 }
355
356 /***************/
357 /* ballooning */
358
359 static QEMUBalloonEvent *qemu_balloon_event;
360 void *qemu_balloon_event_opaque;
361
362 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
363 {
364 qemu_balloon_event = func;
365 qemu_balloon_event_opaque = opaque;
366 }
367
368 int qemu_balloon(ram_addr_t target, MonitorCompletion cb, void *opaque)
369 {
370 if (qemu_balloon_event) {
371 qemu_balloon_event(qemu_balloon_event_opaque, target, cb, opaque);
372 return 1;
373 } else {
374 return 0;
375 }
376 }
377
378 int qemu_balloon_status(MonitorCompletion cb, void *opaque)
379 {
380 if (qemu_balloon_event) {
381 qemu_balloon_event(qemu_balloon_event_opaque, 0, cb, opaque);
382 return 1;
383 } else {
384 return 0;
385 }
386 }
387
388
389 /***********************************************************/
390 /* real time host monotonic timer */
391
392 /* compute with 96 bit intermediate result: (a*b)/c */
393 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
394 {
395 union {
396 uint64_t ll;
397 struct {
398 #ifdef HOST_WORDS_BIGENDIAN
399 uint32_t high, low;
400 #else
401 uint32_t low, high;
402 #endif
403 } l;
404 } u, res;
405 uint64_t rl, rh;
406
407 u.ll = a;
408 rl = (uint64_t)u.l.low * (uint64_t)b;
409 rh = (uint64_t)u.l.high * (uint64_t)b;
410 rh += (rl >> 32);
411 res.l.high = rh / c;
412 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
413 return res.ll;
414 }
415
416 static int64_t get_clock_realtime(void)
417 {
418 struct timeval tv;
419
420 gettimeofday(&tv, NULL);
421 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
422 }
423
424 #ifdef WIN32
425
426 static int64_t clock_freq;
427
428 static void init_get_clock(void)
429 {
430 LARGE_INTEGER freq;
431 int ret;
432 ret = QueryPerformanceFrequency(&freq);
433 if (ret == 0) {
434 fprintf(stderr, "Could not calibrate ticks\n");
435 exit(1);
436 }
437 clock_freq = freq.QuadPart;
438 }
439
440 static int64_t get_clock(void)
441 {
442 LARGE_INTEGER ti;
443 QueryPerformanceCounter(&ti);
444 return muldiv64(ti.QuadPart, get_ticks_per_sec(), clock_freq);
445 }
446
447 #else
448
449 static int use_rt_clock;
450
451 static void init_get_clock(void)
452 {
453 use_rt_clock = 0;
454 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
455 || defined(__DragonFly__) || defined(__FreeBSD_kernel__)
456 {
457 struct timespec ts;
458 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
459 use_rt_clock = 1;
460 }
461 }
462 #endif
463 }
464
465 static int64_t get_clock(void)
466 {
467 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
468 || defined(__DragonFly__) || defined(__FreeBSD_kernel__)
469 if (use_rt_clock) {
470 struct timespec ts;
471 clock_gettime(CLOCK_MONOTONIC, &ts);
472 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
473 } else
474 #endif
475 {
476 /* XXX: using gettimeofday leads to problems if the date
477 changes, so it should be avoided. */
478 return get_clock_realtime();
479 }
480 }
481 #endif
482
483 /* Return the virtual CPU time, based on the instruction counter. */
484 static int64_t cpu_get_icount(void)
485 {
486 int64_t icount;
487 CPUState *env = cpu_single_env;;
488 icount = qemu_icount;
489 if (env) {
490 if (!can_do_io(env))
491 fprintf(stderr, "Bad clock read\n");
492 icount -= (env->icount_decr.u16.low + env->icount_extra);
493 }
494 return qemu_icount_bias + (icount << icount_time_shift);
495 }
496
497 /***********************************************************/
498 /* guest cycle counter */
499
500 typedef struct TimersState {
501 int64_t cpu_ticks_prev;
502 int64_t cpu_ticks_offset;
503 int64_t cpu_clock_offset;
504 int32_t cpu_ticks_enabled;
505 int64_t dummy;
506 } TimersState;
507
508 TimersState timers_state;
509
510 /* return the host CPU cycle counter and handle stop/restart */
511 int64_t cpu_get_ticks(void)
512 {
513 if (use_icount) {
514 return cpu_get_icount();
515 }
516 if (!timers_state.cpu_ticks_enabled) {
517 return timers_state.cpu_ticks_offset;
518 } else {
519 int64_t ticks;
520 ticks = cpu_get_real_ticks();
521 if (timers_state.cpu_ticks_prev > ticks) {
522 /* Note: non increasing ticks may happen if the host uses
523 software suspend */
524 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
525 }
526 timers_state.cpu_ticks_prev = ticks;
527 return ticks + timers_state.cpu_ticks_offset;
528 }
529 }
530
531 /* return the host CPU monotonic timer and handle stop/restart */
532 static int64_t cpu_get_clock(void)
533 {
534 int64_t ti;
535 if (!timers_state.cpu_ticks_enabled) {
536 return timers_state.cpu_clock_offset;
537 } else {
538 ti = get_clock();
539 return ti + timers_state.cpu_clock_offset;
540 }
541 }
542
543 /* enable cpu_get_ticks() */
544 void cpu_enable_ticks(void)
545 {
546 if (!timers_state.cpu_ticks_enabled) {
547 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
548 timers_state.cpu_clock_offset -= get_clock();
549 timers_state.cpu_ticks_enabled = 1;
550 }
551 }
552
553 /* disable cpu_get_ticks() : the clock is stopped. You must not call
554 cpu_get_ticks() after that. */
555 void cpu_disable_ticks(void)
556 {
557 if (timers_state.cpu_ticks_enabled) {
558 timers_state.cpu_ticks_offset = cpu_get_ticks();
559 timers_state.cpu_clock_offset = cpu_get_clock();
560 timers_state.cpu_ticks_enabled = 0;
561 }
562 }
563
564 /***********************************************************/
565 /* timers */
566
567 #define QEMU_CLOCK_REALTIME 0
568 #define QEMU_CLOCK_VIRTUAL 1
569 #define QEMU_CLOCK_HOST 2
570
571 struct QEMUClock {
572 int type;
573 /* XXX: add frequency */
574 };
575
576 struct QEMUTimer {
577 QEMUClock *clock;
578 int64_t expire_time;
579 QEMUTimerCB *cb;
580 void *opaque;
581 struct QEMUTimer *next;
582 };
583
584 struct qemu_alarm_timer {
585 char const *name;
586 unsigned int flags;
587
588 int (*start)(struct qemu_alarm_timer *t);
589 void (*stop)(struct qemu_alarm_timer *t);
590 void (*rearm)(struct qemu_alarm_timer *t);
591 void *priv;
592 };
593
594 #define ALARM_FLAG_DYNTICKS 0x1
595 #define ALARM_FLAG_EXPIRED 0x2
596
597 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
598 {
599 return t && (t->flags & ALARM_FLAG_DYNTICKS);
600 }
601
602 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
603 {
604 if (!alarm_has_dynticks(t))
605 return;
606
607 t->rearm(t);
608 }
609
610 /* TODO: MIN_TIMER_REARM_US should be optimized */
611 #define MIN_TIMER_REARM_US 250
612
613 static struct qemu_alarm_timer *alarm_timer;
614
615 #ifdef _WIN32
616
617 struct qemu_alarm_win32 {
618 MMRESULT timerId;
619 unsigned int period;
620 } alarm_win32_data = {0, -1};
621
622 static int win32_start_timer(struct qemu_alarm_timer *t);
623 static void win32_stop_timer(struct qemu_alarm_timer *t);
624 static void win32_rearm_timer(struct qemu_alarm_timer *t);
625
626 #else
627
628 static int unix_start_timer(struct qemu_alarm_timer *t);
629 static void unix_stop_timer(struct qemu_alarm_timer *t);
630
631 #ifdef __linux__
632
633 static int dynticks_start_timer(struct qemu_alarm_timer *t);
634 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
635 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
636
637 static int hpet_start_timer(struct qemu_alarm_timer *t);
638 static void hpet_stop_timer(struct qemu_alarm_timer *t);
639
640 static int rtc_start_timer(struct qemu_alarm_timer *t);
641 static void rtc_stop_timer(struct qemu_alarm_timer *t);
642
643 #endif /* __linux__ */
644
645 #endif /* _WIN32 */
646
647 /* Correlation between real and virtual time is always going to be
648 fairly approximate, so ignore small variation.
649 When the guest is idle real and virtual time will be aligned in
650 the IO wait loop. */
651 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
652
653 static void icount_adjust(void)
654 {
655 int64_t cur_time;
656 int64_t cur_icount;
657 int64_t delta;
658 static int64_t last_delta;
659 /* If the VM is not running, then do nothing. */
660 if (!vm_running)
661 return;
662
663 cur_time = cpu_get_clock();
664 cur_icount = qemu_get_clock(vm_clock);
665 delta = cur_icount - cur_time;
666 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
667 if (delta > 0
668 && last_delta + ICOUNT_WOBBLE < delta * 2
669 && icount_time_shift > 0) {
670 /* The guest is getting too far ahead. Slow time down. */
671 icount_time_shift--;
672 }
673 if (delta < 0
674 && last_delta - ICOUNT_WOBBLE > delta * 2
675 && icount_time_shift < MAX_ICOUNT_SHIFT) {
676 /* The guest is getting too far behind. Speed time up. */
677 icount_time_shift++;
678 }
679 last_delta = delta;
680 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
681 }
682
683 static void icount_adjust_rt(void * opaque)
684 {
685 qemu_mod_timer(icount_rt_timer,
686 qemu_get_clock(rt_clock) + 1000);
687 icount_adjust();
688 }
689
690 static void icount_adjust_vm(void * opaque)
691 {
692 qemu_mod_timer(icount_vm_timer,
693 qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
694 icount_adjust();
695 }
696
697 static void init_icount_adjust(void)
698 {
699 /* Have both realtime and virtual time triggers for speed adjustment.
700 The realtime trigger catches emulated time passing too slowly,
701 the virtual time trigger catches emulated time passing too fast.
702 Realtime triggers occur even when idle, so use them less frequently
703 than VM triggers. */
704 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
705 qemu_mod_timer(icount_rt_timer,
706 qemu_get_clock(rt_clock) + 1000);
707 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
708 qemu_mod_timer(icount_vm_timer,
709 qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
710 }
711
712 static struct qemu_alarm_timer alarm_timers[] = {
713 #ifndef _WIN32
714 #ifdef __linux__
715 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
716 dynticks_stop_timer, dynticks_rearm_timer, NULL},
717 /* HPET - if available - is preferred */
718 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
719 /* ...otherwise try RTC */
720 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
721 #endif
722 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
723 #else
724 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
725 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
726 {"win32", 0, win32_start_timer,
727 win32_stop_timer, NULL, &alarm_win32_data},
728 #endif
729 {NULL, }
730 };
731
732 static void show_available_alarms(void)
733 {
734 int i;
735
736 printf("Available alarm timers, in order of precedence:\n");
737 for (i = 0; alarm_timers[i].name; i++)
738 printf("%s\n", alarm_timers[i].name);
739 }
740
741 static void configure_alarms(char const *opt)
742 {
743 int i;
744 int cur = 0;
745 int count = ARRAY_SIZE(alarm_timers) - 1;
746 char *arg;
747 char *name;
748 struct qemu_alarm_timer tmp;
749
750 if (!strcmp(opt, "?")) {
751 show_available_alarms();
752 exit(0);
753 }
754
755 arg = qemu_strdup(opt);
756
757 /* Reorder the array */
758 name = strtok(arg, ",");
759 while (name) {
760 for (i = 0; i < count && alarm_timers[i].name; i++) {
761 if (!strcmp(alarm_timers[i].name, name))
762 break;
763 }
764
765 if (i == count) {
766 fprintf(stderr, "Unknown clock %s\n", name);
767 goto next;
768 }
769
770 if (i < cur)
771 /* Ignore */
772 goto next;
773
774 /* Swap */
775 tmp = alarm_timers[i];
776 alarm_timers[i] = alarm_timers[cur];
777 alarm_timers[cur] = tmp;
778
779 cur++;
780 next:
781 name = strtok(NULL, ",");
782 }
783
784 qemu_free(arg);
785
786 if (cur) {
787 /* Disable remaining timers */
788 for (i = cur; i < count; i++)
789 alarm_timers[i].name = NULL;
790 } else {
791 show_available_alarms();
792 exit(1);
793 }
794 }
795
796 #define QEMU_NUM_CLOCKS 3
797
798 QEMUClock *rt_clock;
799 QEMUClock *vm_clock;
800 QEMUClock *host_clock;
801
802 static QEMUTimer *active_timers[QEMU_NUM_CLOCKS];
803
804 static QEMUClock *qemu_new_clock(int type)
805 {
806 QEMUClock *clock;
807 clock = qemu_mallocz(sizeof(QEMUClock));
808 clock->type = type;
809 return clock;
810 }
811
812 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
813 {
814 QEMUTimer *ts;
815
816 ts = qemu_mallocz(sizeof(QEMUTimer));
817 ts->clock = clock;
818 ts->cb = cb;
819 ts->opaque = opaque;
820 return ts;
821 }
822
823 void qemu_free_timer(QEMUTimer *ts)
824 {
825 qemu_free(ts);
826 }
827
828 /* stop a timer, but do not dealloc it */
829 void qemu_del_timer(QEMUTimer *ts)
830 {
831 QEMUTimer **pt, *t;
832
833 /* NOTE: this code must be signal safe because
834 qemu_timer_expired() can be called from a signal. */
835 pt = &active_timers[ts->clock->type];
836 for(;;) {
837 t = *pt;
838 if (!t)
839 break;
840 if (t == ts) {
841 *pt = t->next;
842 break;
843 }
844 pt = &t->next;
845 }
846 }
847
848 /* modify the current timer so that it will be fired when current_time
849 >= expire_time. The corresponding callback will be called. */
850 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
851 {
852 QEMUTimer **pt, *t;
853
854 qemu_del_timer(ts);
855
856 /* add the timer in the sorted list */
857 /* NOTE: this code must be signal safe because
858 qemu_timer_expired() can be called from a signal. */
859 pt = &active_timers[ts->clock->type];
860 for(;;) {
861 t = *pt;
862 if (!t)
863 break;
864 if (t->expire_time > expire_time)
865 break;
866 pt = &t->next;
867 }
868 ts->expire_time = expire_time;
869 ts->next = *pt;
870 *pt = ts;
871
872 /* Rearm if necessary */
873 if (pt == &active_timers[ts->clock->type]) {
874 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
875 qemu_rearm_alarm_timer(alarm_timer);
876 }
877 /* Interrupt execution to force deadline recalculation. */
878 if (use_icount)
879 qemu_notify_event();
880 }
881 }
882
883 int qemu_timer_pending(QEMUTimer *ts)
884 {
885 QEMUTimer *t;
886 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
887 if (t == ts)
888 return 1;
889 }
890 return 0;
891 }
892
893 int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
894 {
895 if (!timer_head)
896 return 0;
897 return (timer_head->expire_time <= current_time);
898 }
899
900 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
901 {
902 QEMUTimer *ts;
903
904 for(;;) {
905 ts = *ptimer_head;
906 if (!ts || ts->expire_time > current_time)
907 break;
908 /* remove timer from the list before calling the callback */
909 *ptimer_head = ts->next;
910 ts->next = NULL;
911
912 /* run the callback (the timer list can be modified) */
913 ts->cb(ts->opaque);
914 }
915 }
916
917 int64_t qemu_get_clock(QEMUClock *clock)
918 {
919 switch(clock->type) {
920 case QEMU_CLOCK_REALTIME:
921 return get_clock() / 1000000;
922 default:
923 case QEMU_CLOCK_VIRTUAL:
924 if (use_icount) {
925 return cpu_get_icount();
926 } else {
927 return cpu_get_clock();
928 }
929 case QEMU_CLOCK_HOST:
930 return get_clock_realtime();
931 }
932 }
933
934 static void init_clocks(void)
935 {
936 init_get_clock();
937 rt_clock = qemu_new_clock(QEMU_CLOCK_REALTIME);
938 vm_clock = qemu_new_clock(QEMU_CLOCK_VIRTUAL);
939 host_clock = qemu_new_clock(QEMU_CLOCK_HOST);
940
941 rtc_clock = host_clock;
942 }
943
944 /* save a timer */
945 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
946 {
947 uint64_t expire_time;
948
949 if (qemu_timer_pending(ts)) {
950 expire_time = ts->expire_time;
951 } else {
952 expire_time = -1;
953 }
954 qemu_put_be64(f, expire_time);
955 }
956
957 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
958 {
959 uint64_t expire_time;
960
961 expire_time = qemu_get_be64(f);
962 if (expire_time != -1) {
963 qemu_mod_timer(ts, expire_time);
964 } else {
965 qemu_del_timer(ts);
966 }
967 }
968
969 static const VMStateDescription vmstate_timers = {
970 .name = "timer",
971 .version_id = 2,
972 .minimum_version_id = 1,
973 .minimum_version_id_old = 1,
974 .fields = (VMStateField []) {
975 VMSTATE_INT64(cpu_ticks_offset, TimersState),
976 VMSTATE_INT64(dummy, TimersState),
977 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
978 VMSTATE_END_OF_LIST()
979 }
980 };
981
982 static void qemu_event_increment(void);
983
984 #ifdef _WIN32
985 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
986 DWORD_PTR dwUser, DWORD_PTR dw1,
987 DWORD_PTR dw2)
988 #else
989 static void host_alarm_handler(int host_signum)
990 #endif
991 {
992 #if 0
993 #define DISP_FREQ 1000
994 {
995 static int64_t delta_min = INT64_MAX;
996 static int64_t delta_max, delta_cum, last_clock, delta, ti;
997 static int count;
998 ti = qemu_get_clock(vm_clock);
999 if (last_clock != 0) {
1000 delta = ti - last_clock;
1001 if (delta < delta_min)
1002 delta_min = delta;
1003 if (delta > delta_max)
1004 delta_max = delta;
1005 delta_cum += delta;
1006 if (++count == DISP_FREQ) {
1007 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1008 muldiv64(delta_min, 1000000, get_ticks_per_sec()),
1009 muldiv64(delta_max, 1000000, get_ticks_per_sec()),
1010 muldiv64(delta_cum, 1000000 / DISP_FREQ, get_ticks_per_sec()),
1011 (double)get_ticks_per_sec() / ((double)delta_cum / DISP_FREQ));
1012 count = 0;
1013 delta_min = INT64_MAX;
1014 delta_max = 0;
1015 delta_cum = 0;
1016 }
1017 }
1018 last_clock = ti;
1019 }
1020 #endif
1021 if (alarm_has_dynticks(alarm_timer) ||
1022 (!use_icount &&
1023 qemu_timer_expired(active_timers[QEMU_CLOCK_VIRTUAL],
1024 qemu_get_clock(vm_clock))) ||
1025 qemu_timer_expired(active_timers[QEMU_CLOCK_REALTIME],
1026 qemu_get_clock(rt_clock)) ||
1027 qemu_timer_expired(active_timers[QEMU_CLOCK_HOST],
1028 qemu_get_clock(host_clock))) {
1029 qemu_event_increment();
1030 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1031
1032 #ifndef CONFIG_IOTHREAD
1033 if (next_cpu) {
1034 /* stop the currently executing cpu because a timer occured */
1035 cpu_exit(next_cpu);
1036 }
1037 #endif
1038 timer_alarm_pending = 1;
1039 qemu_notify_event();
1040 }
1041 }
1042
1043 static int64_t qemu_next_deadline(void)
1044 {
1045 /* To avoid problems with overflow limit this to 2^32. */
1046 int64_t delta = INT32_MAX;
1047
1048 if (active_timers[QEMU_CLOCK_VIRTUAL]) {
1049 delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
1050 qemu_get_clock(vm_clock);
1051 }
1052 if (active_timers[QEMU_CLOCK_HOST]) {
1053 int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time -
1054 qemu_get_clock(host_clock);
1055 if (hdelta < delta)
1056 delta = hdelta;
1057 }
1058
1059 if (delta < 0)
1060 delta = 0;
1061
1062 return delta;
1063 }
1064
1065 #if defined(__linux__)
1066 static uint64_t qemu_next_deadline_dyntick(void)
1067 {
1068 int64_t delta;
1069 int64_t rtdelta;
1070
1071 if (use_icount)
1072 delta = INT32_MAX;
1073 else
1074 delta = (qemu_next_deadline() + 999) / 1000;
1075
1076 if (active_timers[QEMU_CLOCK_REALTIME]) {
1077 rtdelta = (active_timers[QEMU_CLOCK_REALTIME]->expire_time -
1078 qemu_get_clock(rt_clock))*1000;
1079 if (rtdelta < delta)
1080 delta = rtdelta;
1081 }
1082
1083 if (delta < MIN_TIMER_REARM_US)
1084 delta = MIN_TIMER_REARM_US;
1085
1086 return delta;
1087 }
1088 #endif
1089
1090 #ifndef _WIN32
1091
1092 /* Sets a specific flag */
1093 static int fcntl_setfl(int fd, int flag)
1094 {
1095 int flags;
1096
1097 flags = fcntl(fd, F_GETFL);
1098 if (flags == -1)
1099 return -errno;
1100
1101 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1102 return -errno;
1103
1104 return 0;
1105 }
1106
1107 #if defined(__linux__)
1108
1109 #define RTC_FREQ 1024
1110
1111 static void enable_sigio_timer(int fd)
1112 {
1113 struct sigaction act;
1114
1115 /* timer signal */
1116 sigfillset(&act.sa_mask);
1117 act.sa_flags = 0;
1118 act.sa_handler = host_alarm_handler;
1119
1120 sigaction(SIGIO, &act, NULL);
1121 fcntl_setfl(fd, O_ASYNC);
1122 fcntl(fd, F_SETOWN, getpid());
1123 }
1124
1125 static int hpet_start_timer(struct qemu_alarm_timer *t)
1126 {
1127 struct hpet_info info;
1128 int r, fd;
1129
1130 fd = qemu_open("/dev/hpet", O_RDONLY);
1131 if (fd < 0)
1132 return -1;
1133
1134 /* Set frequency */
1135 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1136 if (r < 0) {
1137 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1138 "error, but for better emulation accuracy type:\n"
1139 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1140 goto fail;
1141 }
1142
1143 /* Check capabilities */
1144 r = ioctl(fd, HPET_INFO, &info);
1145 if (r < 0)
1146 goto fail;
1147
1148 /* Enable periodic mode */
1149 r = ioctl(fd, HPET_EPI, 0);
1150 if (info.hi_flags && (r < 0))
1151 goto fail;
1152
1153 /* Enable interrupt */
1154 r = ioctl(fd, HPET_IE_ON, 0);
1155 if (r < 0)
1156 goto fail;
1157
1158 enable_sigio_timer(fd);
1159 t->priv = (void *)(long)fd;
1160
1161 return 0;
1162 fail:
1163 close(fd);
1164 return -1;
1165 }
1166
1167 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1168 {
1169 int fd = (long)t->priv;
1170
1171 close(fd);
1172 }
1173
1174 static int rtc_start_timer(struct qemu_alarm_timer *t)
1175 {
1176 int rtc_fd;
1177 unsigned long current_rtc_freq = 0;
1178
1179 TFR(rtc_fd = qemu_open("/dev/rtc", O_RDONLY));
1180 if (rtc_fd < 0)
1181 return -1;
1182 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1183 if (current_rtc_freq != RTC_FREQ &&
1184 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1185 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1186 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1187 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1188 goto fail;
1189 }
1190 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1191 fail:
1192 close(rtc_fd);
1193 return -1;
1194 }
1195
1196 enable_sigio_timer(rtc_fd);
1197
1198 t->priv = (void *)(long)rtc_fd;
1199
1200 return 0;
1201 }
1202
1203 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1204 {
1205 int rtc_fd = (long)t->priv;
1206
1207 close(rtc_fd);
1208 }
1209
1210 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1211 {
1212 struct sigevent ev;
1213 timer_t host_timer;
1214 struct sigaction act;
1215
1216 sigfillset(&act.sa_mask);
1217 act.sa_flags = 0;
1218 act.sa_handler = host_alarm_handler;
1219
1220 sigaction(SIGALRM, &act, NULL);
1221
1222 /*
1223 * Initialize ev struct to 0 to avoid valgrind complaining
1224 * about uninitialized data in timer_create call
1225 */
1226 memset(&ev, 0, sizeof(ev));
1227 ev.sigev_value.sival_int = 0;
1228 ev.sigev_notify = SIGEV_SIGNAL;
1229 ev.sigev_signo = SIGALRM;
1230
1231 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1232 perror("timer_create");
1233
1234 /* disable dynticks */
1235 fprintf(stderr, "Dynamic Ticks disabled\n");
1236
1237 return -1;
1238 }
1239
1240 t->priv = (void *)(long)host_timer;
1241
1242 return 0;
1243 }
1244
1245 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1246 {
1247 timer_t host_timer = (timer_t)(long)t->priv;
1248
1249 timer_delete(host_timer);
1250 }
1251
1252 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1253 {
1254 timer_t host_timer = (timer_t)(long)t->priv;
1255 struct itimerspec timeout;
1256 int64_t nearest_delta_us = INT64_MAX;
1257 int64_t current_us;
1258
1259 if (!active_timers[QEMU_CLOCK_REALTIME] &&
1260 !active_timers[QEMU_CLOCK_VIRTUAL] &&
1261 !active_timers[QEMU_CLOCK_HOST])
1262 return;
1263
1264 nearest_delta_us = qemu_next_deadline_dyntick();
1265
1266 /* check whether a timer is already running */
1267 if (timer_gettime(host_timer, &timeout)) {
1268 perror("gettime");
1269 fprintf(stderr, "Internal timer error: aborting\n");
1270 exit(1);
1271 }
1272 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1273 if (current_us && current_us <= nearest_delta_us)
1274 return;
1275
1276 timeout.it_interval.tv_sec = 0;
1277 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1278 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1279 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1280 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1281 perror("settime");
1282 fprintf(stderr, "Internal timer error: aborting\n");
1283 exit(1);
1284 }
1285 }
1286
1287 #endif /* defined(__linux__) */
1288
1289 static int unix_start_timer(struct qemu_alarm_timer *t)
1290 {
1291 struct sigaction act;
1292 struct itimerval itv;
1293 int err;
1294
1295 /* timer signal */
1296 sigfillset(&act.sa_mask);
1297 act.sa_flags = 0;
1298 act.sa_handler = host_alarm_handler;
1299
1300 sigaction(SIGALRM, &act, NULL);
1301
1302 itv.it_interval.tv_sec = 0;
1303 /* for i386 kernel 2.6 to get 1 ms */
1304 itv.it_interval.tv_usec = 999;
1305 itv.it_value.tv_sec = 0;
1306 itv.it_value.tv_usec = 10 * 1000;
1307
1308 err = setitimer(ITIMER_REAL, &itv, NULL);
1309 if (err)
1310 return -1;
1311
1312 return 0;
1313 }
1314
1315 static void unix_stop_timer(struct qemu_alarm_timer *t)
1316 {
1317 struct itimerval itv;
1318
1319 memset(&itv, 0, sizeof(itv));
1320 setitimer(ITIMER_REAL, &itv, NULL);
1321 }
1322
1323 #endif /* !defined(_WIN32) */
1324
1325
1326 #ifdef _WIN32
1327
1328 static int win32_start_timer(struct qemu_alarm_timer *t)
1329 {
1330 TIMECAPS tc;
1331 struct qemu_alarm_win32 *data = t->priv;
1332 UINT flags;
1333
1334 memset(&tc, 0, sizeof(tc));
1335 timeGetDevCaps(&tc, sizeof(tc));
1336
1337 if (data->period < tc.wPeriodMin)
1338 data->period = tc.wPeriodMin;
1339
1340 timeBeginPeriod(data->period);
1341
1342 flags = TIME_CALLBACK_FUNCTION;
1343 if (alarm_has_dynticks(t))
1344 flags |= TIME_ONESHOT;
1345 else
1346 flags |= TIME_PERIODIC;
1347
1348 data->timerId = timeSetEvent(1, // interval (ms)
1349 data->period, // resolution
1350 host_alarm_handler, // function
1351 (DWORD)t, // parameter
1352 flags);
1353
1354 if (!data->timerId) {
1355 fprintf(stderr, "Failed to initialize win32 alarm timer: %ld\n",
1356 GetLastError());
1357 timeEndPeriod(data->period);
1358 return -1;
1359 }
1360
1361 return 0;
1362 }
1363
1364 static void win32_stop_timer(struct qemu_alarm_timer *t)
1365 {
1366 struct qemu_alarm_win32 *data = t->priv;
1367
1368 timeKillEvent(data->timerId);
1369 timeEndPeriod(data->period);
1370 }
1371
1372 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1373 {
1374 struct qemu_alarm_win32 *data = t->priv;
1375
1376 if (!active_timers[QEMU_CLOCK_REALTIME] &&
1377 !active_timers[QEMU_CLOCK_VIRTUAL] &&
1378 !active_timers[QEMU_CLOCK_HOST])
1379 return;
1380
1381 timeKillEvent(data->timerId);
1382
1383 data->timerId = timeSetEvent(1,
1384 data->period,
1385 host_alarm_handler,
1386 (DWORD)t,
1387 TIME_ONESHOT | TIME_PERIODIC);
1388
1389 if (!data->timerId) {
1390 fprintf(stderr, "Failed to re-arm win32 alarm timer %ld\n",
1391 GetLastError());
1392
1393 timeEndPeriod(data->period);
1394 exit(1);
1395 }
1396 }
1397
1398 #endif /* _WIN32 */
1399
1400 static int init_timer_alarm(void)
1401 {
1402 struct qemu_alarm_timer *t = NULL;
1403 int i, err = -1;
1404
1405 for (i = 0; alarm_timers[i].name; i++) {
1406 t = &alarm_timers[i];
1407
1408 err = t->start(t);
1409 if (!err)
1410 break;
1411 }
1412
1413 if (err) {
1414 err = -ENOENT;
1415 goto fail;
1416 }
1417
1418 alarm_timer = t;
1419
1420 return 0;
1421
1422 fail:
1423 return err;
1424 }
1425
1426 static void quit_timers(void)
1427 {
1428 alarm_timer->stop(alarm_timer);
1429 alarm_timer = NULL;
1430 }
1431
1432 /***********************************************************/
1433 /* host time/date access */
1434 void qemu_get_timedate(struct tm *tm, int offset)
1435 {
1436 time_t ti;
1437 struct tm *ret;
1438
1439 time(&ti);
1440 ti += offset;
1441 if (rtc_date_offset == -1) {
1442 if (rtc_utc)
1443 ret = gmtime(&ti);
1444 else
1445 ret = localtime(&ti);
1446 } else {
1447 ti -= rtc_date_offset;
1448 ret = gmtime(&ti);
1449 }
1450
1451 memcpy(tm, ret, sizeof(struct tm));
1452 }
1453
1454 int qemu_timedate_diff(struct tm *tm)
1455 {
1456 time_t seconds;
1457
1458 if (rtc_date_offset == -1)
1459 if (rtc_utc)
1460 seconds = mktimegm(tm);
1461 else
1462 seconds = mktime(tm);
1463 else
1464 seconds = mktimegm(tm) + rtc_date_offset;
1465
1466 return seconds - time(NULL);
1467 }
1468
1469 static void configure_rtc_date_offset(const char *startdate, int legacy)
1470 {
1471 time_t rtc_start_date;
1472 struct tm tm;
1473
1474 if (!strcmp(startdate, "now") && legacy) {
1475 rtc_date_offset = -1;
1476 } else {
1477 if (sscanf(startdate, "%d-%d-%dT%d:%d:%d",
1478 &tm.tm_year,
1479 &tm.tm_mon,
1480 &tm.tm_mday,
1481 &tm.tm_hour,
1482 &tm.tm_min,
1483 &tm.tm_sec) == 6) {
1484 /* OK */
1485 } else if (sscanf(startdate, "%d-%d-%d",
1486 &tm.tm_year,
1487 &tm.tm_mon,
1488 &tm.tm_mday) == 3) {
1489 tm.tm_hour = 0;
1490 tm.tm_min = 0;
1491 tm.tm_sec = 0;
1492 } else {
1493 goto date_fail;
1494 }
1495 tm.tm_year -= 1900;
1496 tm.tm_mon--;
1497 rtc_start_date = mktimegm(&tm);
1498 if (rtc_start_date == -1) {
1499 date_fail:
1500 fprintf(stderr, "Invalid date format. Valid formats are:\n"
1501 "'2006-06-17T16:01:21' or '2006-06-17'\n");
1502 exit(1);
1503 }
1504 rtc_date_offset = time(NULL) - rtc_start_date;
1505 }
1506 }
1507
1508 static void configure_rtc(QemuOpts *opts)
1509 {
1510 const char *value;
1511
1512 value = qemu_opt_get(opts, "base");
1513 if (value) {
1514 if (!strcmp(value, "utc")) {
1515 rtc_utc = 1;
1516 } else if (!strcmp(value, "localtime")) {
1517 rtc_utc = 0;
1518 } else {
1519 configure_rtc_date_offset(value, 0);
1520 }
1521 }
1522 value = qemu_opt_get(opts, "clock");
1523 if (value) {
1524 if (!strcmp(value, "host")) {
1525 rtc_clock = host_clock;
1526 } else if (!strcmp(value, "vm")) {
1527 rtc_clock = vm_clock;
1528 } else {
1529 fprintf(stderr, "qemu: invalid option value '%s'\n", value);
1530 exit(1);
1531 }
1532 }
1533 #ifdef CONFIG_TARGET_I386
1534 value = qemu_opt_get(opts, "driftfix");
1535 if (value) {
1536 if (!strcmp(buf, "slew")) {
1537 rtc_td_hack = 1;
1538 } else if (!strcmp(buf, "none")) {
1539 rtc_td_hack = 0;
1540 } else {
1541 fprintf(stderr, "qemu: invalid option value '%s'\n", value);
1542 exit(1);
1543 }
1544 }
1545 #endif
1546 }
1547
1548 #ifdef _WIN32
1549 static void socket_cleanup(void)
1550 {
1551 WSACleanup();
1552 }
1553
1554 static int socket_init(void)
1555 {
1556 WSADATA Data;
1557 int ret, err;
1558
1559 ret = WSAStartup(MAKEWORD(2,2), &Data);
1560 if (ret != 0) {
1561 err = WSAGetLastError();
1562 fprintf(stderr, "WSAStartup: %d\n", err);
1563 return -1;
1564 }
1565 atexit(socket_cleanup);
1566 return 0;
1567 }
1568 #endif
1569
1570 /***********************************************************/
1571 /* Bluetooth support */
1572 static int nb_hcis;
1573 static int cur_hci;
1574 static struct HCIInfo *hci_table[MAX_NICS];
1575
1576 static struct bt_vlan_s {
1577 struct bt_scatternet_s net;
1578 int id;
1579 struct bt_vlan_s *next;
1580 } *first_bt_vlan;
1581
1582 /* find or alloc a new bluetooth "VLAN" */
1583 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1584 {
1585 struct bt_vlan_s **pvlan, *vlan;
1586 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1587 if (vlan->id == id)
1588 return &vlan->net;
1589 }
1590 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1591 vlan->id = id;
1592 pvlan = &first_bt_vlan;
1593 while (*pvlan != NULL)
1594 pvlan = &(*pvlan)->next;
1595 *pvlan = vlan;
1596 return &vlan->net;
1597 }
1598
1599 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1600 {
1601 }
1602
1603 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1604 {
1605 return -ENOTSUP;
1606 }
1607
1608 static struct HCIInfo null_hci = {
1609 .cmd_send = null_hci_send,
1610 .sco_send = null_hci_send,
1611 .acl_send = null_hci_send,
1612 .bdaddr_set = null_hci_addr_set,
1613 };
1614
1615 struct HCIInfo *qemu_next_hci(void)
1616 {
1617 if (cur_hci == nb_hcis)
1618 return &null_hci;
1619
1620 return hci_table[cur_hci++];
1621 }
1622
1623 static struct HCIInfo *hci_init(const char *str)
1624 {
1625 char *endp;
1626 struct bt_scatternet_s *vlan = 0;
1627
1628 if (!strcmp(str, "null"))
1629 /* null */
1630 return &null_hci;
1631 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1632 /* host[:hciN] */
1633 return bt_host_hci(str[4] ? str + 5 : "hci0");
1634 else if (!strncmp(str, "hci", 3)) {
1635 /* hci[,vlan=n] */
1636 if (str[3]) {
1637 if (!strncmp(str + 3, ",vlan=", 6)) {
1638 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1639 if (*endp)
1640 vlan = 0;
1641 }
1642 } else
1643 vlan = qemu_find_bt_vlan(0);
1644 if (vlan)
1645 return bt_new_hci(vlan);
1646 }
1647
1648 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1649
1650 return 0;
1651 }
1652
1653 static int bt_hci_parse(const char *str)
1654 {
1655 struct HCIInfo *hci;
1656 bdaddr_t bdaddr;
1657
1658 if (nb_hcis >= MAX_NICS) {
1659 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1660 return -1;
1661 }
1662
1663 hci = hci_init(str);
1664 if (!hci)
1665 return -1;
1666
1667 bdaddr.b[0] = 0x52;
1668 bdaddr.b[1] = 0x54;
1669 bdaddr.b[2] = 0x00;
1670 bdaddr.b[3] = 0x12;
1671 bdaddr.b[4] = 0x34;
1672 bdaddr.b[5] = 0x56 + nb_hcis;
1673 hci->bdaddr_set(hci, bdaddr.b);
1674
1675 hci_table[nb_hcis++] = hci;
1676
1677 return 0;
1678 }
1679
1680 static void bt_vhci_add(int vlan_id)
1681 {
1682 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1683
1684 if (!vlan->slave)
1685 fprintf(stderr, "qemu: warning: adding a VHCI to "
1686 "an empty scatternet %i\n", vlan_id);
1687
1688 bt_vhci_init(bt_new_hci(vlan));
1689 }
1690
1691 static struct bt_device_s *bt_device_add(const char *opt)
1692 {
1693 struct bt_scatternet_s *vlan;
1694 int vlan_id = 0;
1695 char *endp = strstr(opt, ",vlan=");
1696 int len = (endp ? endp - opt : strlen(opt)) + 1;
1697 char devname[10];
1698
1699 pstrcpy(devname, MIN(sizeof(devname), len), opt);
1700
1701 if (endp) {
1702 vlan_id = strtol(endp + 6, &endp, 0);
1703 if (*endp) {
1704 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
1705 return 0;
1706 }
1707 }
1708
1709 vlan = qemu_find_bt_vlan(vlan_id);
1710
1711 if (!vlan->slave)
1712 fprintf(stderr, "qemu: warning: adding a slave device to "
1713 "an empty scatternet %i\n", vlan_id);
1714
1715 if (!strcmp(devname, "keyboard"))
1716 return bt_keyboard_init(vlan);
1717
1718 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
1719 return 0;
1720 }
1721
1722 static int bt_parse(const char *opt)
1723 {
1724 const char *endp, *p;
1725 int vlan;
1726
1727 if (strstart(opt, "hci", &endp)) {
1728 if (!*endp || *endp == ',') {
1729 if (*endp)
1730 if (!strstart(endp, ",vlan=", 0))
1731 opt = endp + 1;
1732
1733 return bt_hci_parse(opt);
1734 }
1735 } else if (strstart(opt, "vhci", &endp)) {
1736 if (!*endp || *endp == ',') {
1737 if (*endp) {
1738 if (strstart(endp, ",vlan=", &p)) {
1739 vlan = strtol(p, (char **) &endp, 0);
1740 if (*endp) {
1741 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
1742 return 1;
1743 }
1744 } else {
1745 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
1746 return 1;
1747 }
1748 } else
1749 vlan = 0;
1750
1751 bt_vhci_add(vlan);
1752 return 0;
1753 }
1754 } else if (strstart(opt, "device:", &endp))
1755 return !bt_device_add(endp);
1756
1757 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
1758 return 1;
1759 }
1760
1761 /***********************************************************/
1762 /* QEMU Block devices */
1763
1764 #define HD_ALIAS "index=%d,media=disk"
1765 #define CDROM_ALIAS "index=2,media=cdrom"
1766 #define FD_ALIAS "index=%d,if=floppy"
1767 #define PFLASH_ALIAS "if=pflash"
1768 #define MTD_ALIAS "if=mtd"
1769 #define SD_ALIAS "index=0,if=sd"
1770
1771 QemuOpts *drive_add(const char *file, const char *fmt, ...)
1772 {
1773 va_list ap;
1774 char optstr[1024];
1775 QemuOpts *opts;
1776
1777 va_start(ap, fmt);
1778 vsnprintf(optstr, sizeof(optstr), fmt, ap);
1779 va_end(ap);
1780
1781 opts = qemu_opts_parse(&qemu_drive_opts, optstr, NULL);
1782 if (!opts) {
1783 fprintf(stderr, "%s: huh? duplicate? (%s)\n",
1784 __FUNCTION__, optstr);
1785 return NULL;
1786 }
1787 if (file)
1788 qemu_opt_set(opts, "file", file);
1789 return opts;
1790 }
1791
1792 DriveInfo *drive_get(BlockInterfaceType type, int bus, int unit)
1793 {
1794 DriveInfo *dinfo;
1795
1796 /* seek interface, bus and unit */
1797
1798 QTAILQ_FOREACH(dinfo, &drives, next) {
1799 if (dinfo->type == type &&
1800 dinfo->bus == bus &&
1801 dinfo->unit == unit)
1802 return dinfo;
1803 }
1804
1805 return NULL;
1806 }
1807
1808 DriveInfo *drive_get_by_id(const char *id)
1809 {
1810 DriveInfo *dinfo;
1811
1812 QTAILQ_FOREACH(dinfo, &drives, next) {
1813 if (strcmp(id, dinfo->id))
1814 continue;
1815 return dinfo;
1816 }
1817 return NULL;
1818 }
1819
1820 int drive_get_max_bus(BlockInterfaceType type)
1821 {
1822 int max_bus;
1823 DriveInfo *dinfo;
1824
1825 max_bus = -1;
1826 QTAILQ_FOREACH(dinfo, &drives, next) {
1827 if(dinfo->type == type &&
1828 dinfo->bus > max_bus)
1829 max_bus = dinfo->bus;
1830 }
1831 return max_bus;
1832 }
1833
1834 const char *drive_get_serial(BlockDriverState *bdrv)
1835 {
1836 DriveInfo *dinfo;
1837
1838 QTAILQ_FOREACH(dinfo, &drives, next) {
1839 if (dinfo->bdrv == bdrv)
1840 return dinfo->serial;
1841 }
1842
1843 return "\0";
1844 }
1845
1846 BlockInterfaceErrorAction drive_get_on_error(
1847 BlockDriverState *bdrv, int is_read)
1848 {
1849 DriveInfo *dinfo;
1850
1851 QTAILQ_FOREACH(dinfo, &drives, next) {
1852 if (dinfo->bdrv == bdrv)
1853 return is_read ? dinfo->on_read_error : dinfo->on_write_error;
1854 }
1855
1856 return is_read ? BLOCK_ERR_REPORT : BLOCK_ERR_STOP_ENOSPC;
1857 }
1858
1859 static void bdrv_format_print(void *opaque, const char *name)
1860 {
1861 fprintf(stderr, " %s", name);
1862 }
1863
1864 void drive_uninit(DriveInfo *dinfo)
1865 {
1866 qemu_opts_del(dinfo->opts);
1867 bdrv_delete(dinfo->bdrv);
1868 QTAILQ_REMOVE(&drives, dinfo, next);
1869 qemu_free(dinfo);
1870 }
1871
1872 static int parse_block_error_action(const char *buf, int is_read)
1873 {
1874 if (!strcmp(buf, "ignore")) {
1875 return BLOCK_ERR_IGNORE;
1876 } else if (!is_read && !strcmp(buf, "enospc")) {
1877 return BLOCK_ERR_STOP_ENOSPC;
1878 } else if (!strcmp(buf, "stop")) {
1879 return BLOCK_ERR_STOP_ANY;
1880 } else if (!strcmp(buf, "report")) {
1881 return BLOCK_ERR_REPORT;
1882 } else {
1883 fprintf(stderr, "qemu: '%s' invalid %s error action\n",
1884 buf, is_read ? "read" : "write");
1885 return -1;
1886 }
1887 }
1888
1889 DriveInfo *drive_init(QemuOpts *opts, void *opaque,
1890 int *fatal_error)
1891 {
1892 const char *buf;
1893 const char *file = NULL;
1894 char devname[128];
1895 const char *serial;
1896 const char *mediastr = "";
1897 BlockInterfaceType type;
1898 enum { MEDIA_DISK, MEDIA_CDROM } media;
1899 int bus_id, unit_id;
1900 int cyls, heads, secs, translation;
1901 BlockDriver *drv = NULL;
1902 QEMUMachine *machine = opaque;
1903 int max_devs;
1904 int index;
1905 int cache;
1906 int aio = 0;
1907 int ro = 0;
1908 int bdrv_flags;
1909 int on_read_error, on_write_error;
1910 const char *devaddr;
1911 DriveInfo *dinfo;
1912 int snapshot = 0;
1913
1914 *fatal_error = 1;
1915
1916 translation = BIOS_ATA_TRANSLATION_AUTO;
1917 cache = 1;
1918
1919 if (machine && machine->use_scsi) {
1920 type = IF_SCSI;
1921 max_devs = MAX_SCSI_DEVS;
1922 pstrcpy(devname, sizeof(devname), "scsi");
1923 } else {
1924 type = IF_IDE;
1925 max_devs = MAX_IDE_DEVS;
1926 pstrcpy(devname, sizeof(devname), "ide");
1927 }
1928 media = MEDIA_DISK;
1929
1930 /* extract parameters */
1931 bus_id = qemu_opt_get_number(opts, "bus", 0);
1932 unit_id = qemu_opt_get_number(opts, "unit", -1);
1933 index = qemu_opt_get_number(opts, "index", -1);
1934
1935 cyls = qemu_opt_get_number(opts, "cyls", 0);
1936 heads = qemu_opt_get_number(opts, "heads", 0);
1937 secs = qemu_opt_get_number(opts, "secs", 0);
1938
1939 snapshot = qemu_opt_get_bool(opts, "snapshot", 0);
1940 ro = qemu_opt_get_bool(opts, "readonly", 0);
1941
1942 file = qemu_opt_get(opts, "file");
1943 serial = qemu_opt_get(opts, "serial");
1944
1945 if ((buf = qemu_opt_get(opts, "if")) != NULL) {
1946 pstrcpy(devname, sizeof(devname), buf);
1947 if (!strcmp(buf, "ide")) {
1948 type = IF_IDE;
1949 max_devs = MAX_IDE_DEVS;
1950 } else if (!strcmp(buf, "scsi")) {
1951 type = IF_SCSI;
1952 max_devs = MAX_SCSI_DEVS;
1953 } else if (!strcmp(buf, "floppy")) {
1954 type = IF_FLOPPY;
1955 max_devs = 0;
1956 } else if (!strcmp(buf, "pflash")) {
1957 type = IF_PFLASH;
1958 max_devs = 0;
1959 } else if (!strcmp(buf, "mtd")) {
1960 type = IF_MTD;
1961 max_devs = 0;
1962 } else if (!strcmp(buf, "sd")) {
1963 type = IF_SD;
1964 max_devs = 0;
1965 } else if (!strcmp(buf, "virtio")) {
1966 type = IF_VIRTIO;
1967 max_devs = 0;
1968 } else if (!strcmp(buf, "xen")) {
1969 type = IF_XEN;
1970 max_devs = 0;
1971 } else if (!strcmp(buf, "none")) {
1972 type = IF_NONE;
1973 max_devs = 0;
1974 } else {
1975 fprintf(stderr, "qemu: unsupported bus type '%s'\n", buf);
1976 return NULL;
1977 }
1978 }
1979
1980 if (cyls || heads || secs) {
1981 if (cyls < 1 || (type == IF_IDE && cyls > 16383)) {
1982 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", buf);
1983 return NULL;
1984 }
1985 if (heads < 1 || (type == IF_IDE && heads > 16)) {
1986 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", buf);
1987 return NULL;
1988 }
1989 if (secs < 1 || (type == IF_IDE && secs > 63)) {
1990 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", buf);
1991 return NULL;
1992 }
1993 }
1994
1995 if ((buf = qemu_opt_get(opts, "trans")) != NULL) {
1996 if (!cyls) {
1997 fprintf(stderr,
1998 "qemu: '%s' trans must be used with cyls,heads and secs\n",
1999 buf);
2000 return NULL;
2001 }
2002 if (!strcmp(buf, "none"))
2003 translation = BIOS_ATA_TRANSLATION_NONE;
2004 else if (!strcmp(buf, "lba"))
2005 translation = BIOS_ATA_TRANSLATION_LBA;
2006 else if (!strcmp(buf, "auto"))
2007 translation = BIOS_ATA_TRANSLATION_AUTO;
2008 else {
2009 fprintf(stderr, "qemu: '%s' invalid translation type\n", buf);
2010 return NULL;
2011 }
2012 }
2013
2014 if ((buf = qemu_opt_get(opts, "media")) != NULL) {
2015 if (!strcmp(buf, "disk")) {
2016 media = MEDIA_DISK;
2017 } else if (!strcmp(buf, "cdrom")) {
2018 if (cyls || secs || heads) {
2019 fprintf(stderr,
2020 "qemu: '%s' invalid physical CHS format\n", buf);
2021 return NULL;
2022 }
2023 media = MEDIA_CDROM;
2024 } else {
2025 fprintf(stderr, "qemu: '%s' invalid media\n", buf);
2026 return NULL;
2027 }
2028 }
2029
2030 if ((buf = qemu_opt_get(opts, "cache")) != NULL) {
2031 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2032 cache = 0;
2033 else if (!strcmp(buf, "writethrough"))
2034 cache = 1;
2035 else if (!strcmp(buf, "writeback"))
2036 cache = 2;
2037 else {
2038 fprintf(stderr, "qemu: invalid cache option\n");
2039 return NULL;
2040 }
2041 }
2042
2043 #ifdef CONFIG_LINUX_AIO
2044 if ((buf = qemu_opt_get(opts, "aio")) != NULL) {
2045 if (!strcmp(buf, "threads"))
2046 aio = 0;
2047 else if (!strcmp(buf, "native"))
2048 aio = 1;
2049 else {
2050 fprintf(stderr, "qemu: invalid aio option\n");
2051 return NULL;
2052 }
2053 }
2054 #endif
2055
2056 if ((buf = qemu_opt_get(opts, "format")) != NULL) {
2057 if (strcmp(buf, "?") == 0) {
2058 fprintf(stderr, "qemu: Supported formats:");
2059 bdrv_iterate_format(bdrv_format_print, NULL);
2060 fprintf(stderr, "\n");
2061 return NULL;
2062 }
2063 drv = bdrv_find_whitelisted_format(buf);
2064 if (!drv) {
2065 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2066 return NULL;
2067 }
2068 }
2069
2070 on_write_error = BLOCK_ERR_STOP_ENOSPC;
2071 if ((buf = qemu_opt_get(opts, "werror")) != NULL) {
2072 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2073 fprintf(stderr, "werror is no supported by this format\n");
2074 return NULL;
2075 }
2076
2077 on_write_error = parse_block_error_action(buf, 0);
2078 if (on_write_error < 0) {
2079 return NULL;
2080 }
2081 }
2082
2083 on_read_error = BLOCK_ERR_REPORT;
2084 if ((buf = qemu_opt_get(opts, "rerror")) != NULL) {
2085 if (type != IF_IDE && type != IF_VIRTIO) {
2086 fprintf(stderr, "rerror is no supported by this format\n");
2087 return NULL;
2088 }
2089
2090 on_read_error = parse_block_error_action(buf, 1);
2091 if (on_read_error < 0) {
2092 return NULL;
2093 }
2094 }
2095
2096 if ((devaddr = qemu_opt_get(opts, "addr")) != NULL) {
2097 if (type != IF_VIRTIO) {
2098 fprintf(stderr, "addr is not supported\n");
2099 return NULL;
2100 }
2101 }
2102
2103 /* compute bus and unit according index */
2104
2105 if (index != -1) {
2106 if (bus_id != 0 || unit_id != -1) {
2107 fprintf(stderr,
2108 "qemu: index cannot be used with bus and unit\n");
2109 return NULL;
2110 }
2111 if (max_devs == 0)
2112 {
2113 unit_id = index;
2114 bus_id = 0;
2115 } else {
2116 unit_id = index % max_devs;
2117 bus_id = index / max_devs;
2118 }
2119 }
2120
2121 /* if user doesn't specify a unit_id,
2122 * try to find the first free
2123 */
2124
2125 if (unit_id == -1) {
2126 unit_id = 0;
2127 while (drive_get(type, bus_id, unit_id) != NULL) {
2128 unit_id++;
2129 if (max_devs && unit_id >= max_devs) {
2130 unit_id -= max_devs;
2131 bus_id++;
2132 }
2133 }
2134 }
2135
2136 /* check unit id */
2137
2138 if (max_devs && unit_id >= max_devs) {
2139 fprintf(stderr, "qemu: unit %d too big (max is %d)\n",
2140 unit_id, max_devs - 1);
2141 return NULL;
2142 }
2143
2144 /*
2145 * ignore multiple definitions
2146 */
2147
2148 if (drive_get(type, bus_id, unit_id) != NULL) {
2149 *fatal_error = 0;
2150 return NULL;
2151 }
2152
2153 /* init */
2154
2155 dinfo = qemu_mallocz(sizeof(*dinfo));
2156 if ((buf = qemu_opts_id(opts)) != NULL) {
2157 dinfo->id = qemu_strdup(buf);
2158 } else {
2159 /* no id supplied -> create one */
2160 dinfo->id = qemu_mallocz(32);
2161 if (type == IF_IDE || type == IF_SCSI)
2162 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2163 if (max_devs)
2164 snprintf(dinfo->id, 32, "%s%i%s%i",
2165 devname, bus_id, mediastr, unit_id);
2166 else
2167 snprintf(dinfo->id, 32, "%s%s%i",
2168 devname, mediastr, unit_id);
2169 }
2170 dinfo->bdrv = bdrv_new(dinfo->id);
2171 dinfo->devaddr = devaddr;
2172 dinfo->type = type;
2173 dinfo->bus = bus_id;
2174 dinfo->unit = unit_id;
2175 dinfo->on_read_error = on_read_error;
2176 dinfo->on_write_error = on_write_error;
2177 dinfo->opts = opts;
2178 if (serial)
2179 strncpy(dinfo->serial, serial, sizeof(serial));
2180 QTAILQ_INSERT_TAIL(&drives, dinfo, next);
2181
2182 switch(type) {
2183 case IF_IDE:
2184 case IF_SCSI:
2185 case IF_XEN:
2186 case IF_NONE:
2187 switch(media) {
2188 case MEDIA_DISK:
2189 if (cyls != 0) {
2190 bdrv_set_geometry_hint(dinfo->bdrv, cyls, heads, secs);
2191 bdrv_set_translation_hint(dinfo->bdrv, translation);
2192 }
2193 break;
2194 case MEDIA_CDROM:
2195 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_CDROM);
2196 break;
2197 }
2198 break;
2199 case IF_SD:
2200 /* FIXME: This isn't really a floppy, but it's a reasonable
2201 approximation. */
2202 case IF_FLOPPY:
2203 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_FLOPPY);
2204 break;
2205 case IF_PFLASH:
2206 case IF_MTD:
2207 break;
2208 case IF_VIRTIO:
2209 /* add virtio block device */
2210 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
2211 qemu_opt_set(opts, "driver", "virtio-blk-pci");
2212 qemu_opt_set(opts, "drive", dinfo->id);
2213 if (devaddr)
2214 qemu_opt_set(opts, "addr", devaddr);
2215 break;
2216 case IF_COUNT:
2217 abort();
2218 }
2219 if (!file) {
2220 *fatal_error = 0;
2221 return NULL;
2222 }
2223 bdrv_flags = 0;
2224 if (snapshot) {
2225 bdrv_flags |= BDRV_O_SNAPSHOT;
2226 cache = 2; /* always use write-back with snapshot */
2227 }
2228 if (cache == 0) /* no caching */
2229 bdrv_flags |= BDRV_O_NOCACHE;
2230 else if (cache == 2) /* write-back */
2231 bdrv_flags |= BDRV_O_CACHE_WB;
2232
2233 if (aio == 1) {
2234 bdrv_flags |= BDRV_O_NATIVE_AIO;
2235 } else {
2236 bdrv_flags &= ~BDRV_O_NATIVE_AIO;
2237 }
2238
2239 if (ro == 1) {
2240 if (type != IF_SCSI && type != IF_VIRTIO && type != IF_FLOPPY) {
2241 fprintf(stderr, "qemu: readonly flag not supported for drive with this interface\n");
2242 return NULL;
2243 }
2244 }
2245 /*
2246 * cdrom is read-only. Set it now, after above interface checking
2247 * since readonly attribute not explicitly required, so no error.
2248 */
2249 if (media == MEDIA_CDROM) {
2250 ro = 1;
2251 }
2252 bdrv_flags |= ro ? 0 : BDRV_O_RDWR;
2253
2254 if (bdrv_open2(dinfo->bdrv, file, bdrv_flags, drv) < 0) {
2255 fprintf(stderr, "qemu: could not open disk image %s: %s\n",
2256 file, strerror(errno));
2257 return NULL;
2258 }
2259
2260 if (bdrv_key_required(dinfo->bdrv))
2261 autostart = 0;
2262 *fatal_error = 0;
2263 return dinfo;
2264 }
2265
2266 static int drive_init_func(QemuOpts *opts, void *opaque)
2267 {
2268 QEMUMachine *machine = opaque;
2269 int fatal_error = 0;
2270
2271 if (drive_init(opts, machine, &fatal_error) == NULL) {
2272 if (fatal_error)
2273 return 1;
2274 }
2275 return 0;
2276 }
2277
2278 static int drive_enable_snapshot(QemuOpts *opts, void *opaque)
2279 {
2280 if (NULL == qemu_opt_get(opts, "snapshot")) {
2281 qemu_opt_set(opts, "snapshot", "on");
2282 }
2283 return 0;
2284 }
2285
2286 void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque)
2287 {
2288 boot_set_handler = func;
2289 boot_set_opaque = opaque;
2290 }
2291
2292 int qemu_boot_set(const char *boot_devices)
2293 {
2294 if (!boot_set_handler) {
2295 return -EINVAL;
2296 }
2297 return boot_set_handler(boot_set_opaque, boot_devices);
2298 }
2299
2300 static int parse_bootdevices(char *devices)
2301 {
2302 /* We just do some generic consistency checks */
2303 const char *p;
2304 int bitmap = 0;
2305
2306 for (p = devices; *p != '\0'; p++) {
2307 /* Allowed boot devices are:
2308 * a-b: floppy disk drives
2309 * c-f: IDE disk drives
2310 * g-m: machine implementation dependant drives
2311 * n-p: network devices
2312 * It's up to each machine implementation to check if the given boot
2313 * devices match the actual hardware implementation and firmware
2314 * features.
2315 */
2316 if (*p < 'a' || *p > 'p') {
2317 fprintf(stderr, "Invalid boot device '%c'\n", *p);
2318 exit(1);
2319 }
2320 if (bitmap & (1 << (*p - 'a'))) {
2321 fprintf(stderr, "Boot device '%c' was given twice\n", *p);
2322 exit(1);
2323 }
2324 bitmap |= 1 << (*p - 'a');
2325 }
2326 return bitmap;
2327 }
2328
2329 static void restore_boot_devices(void *opaque)
2330 {
2331 char *standard_boot_devices = opaque;
2332
2333 qemu_boot_set(standard_boot_devices);
2334
2335 qemu_unregister_reset(restore_boot_devices, standard_boot_devices);
2336 qemu_free(standard_boot_devices);
2337 }
2338
2339 static void numa_add(const char *optarg)
2340 {
2341 char option[128];
2342 char *endptr;
2343 unsigned long long value, endvalue;
2344 int nodenr;
2345
2346 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2347 if (!strcmp(option, "node")) {
2348 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2349 nodenr = nb_numa_nodes;
2350 } else {
2351 nodenr = strtoull(option, NULL, 10);
2352 }
2353
2354 if (get_param_value(option, 128, "mem", optarg) == 0) {
2355 node_mem[nodenr] = 0;
2356 } else {
2357 value = strtoull(option, &endptr, 0);
2358 switch (*endptr) {
2359 case 0: case 'M': case 'm':
2360 value <<= 20;
2361 break;
2362 case 'G': case 'g':
2363 value <<= 30;
2364 break;
2365 }
2366 node_mem[nodenr] = value;
2367 }
2368 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2369 node_cpumask[nodenr] = 0;
2370 } else {
2371 value = strtoull(option, &endptr, 10);
2372 if (value >= 64) {
2373 value = 63;
2374 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2375 } else {
2376 if (*endptr == '-') {
2377 endvalue = strtoull(endptr+1, &endptr, 10);
2378 if (endvalue >= 63) {
2379 endvalue = 62;
2380 fprintf(stderr,
2381 "only 63 CPUs in NUMA mode supported.\n");
2382 }
2383 value = (1 << (endvalue + 1)) - (1 << value);
2384 } else {
2385 value = 1 << value;
2386 }
2387 }
2388 node_cpumask[nodenr] = value;
2389 }
2390 nb_numa_nodes++;
2391 }
2392 return;
2393 }
2394
2395 static void smp_parse(const char *optarg)
2396 {
2397 int smp, sockets = 0, threads = 0, cores = 0;
2398 char *endptr;
2399 char option[128];
2400
2401 smp = strtoul(optarg, &endptr, 10);
2402 if (endptr != optarg) {
2403 if (*endptr == ',') {
2404 endptr++;
2405 }
2406 }
2407 if (get_param_value(option, 128, "sockets", endptr) != 0)
2408 sockets = strtoull(option, NULL, 10);
2409 if (get_param_value(option, 128, "cores", endptr) != 0)
2410 cores = strtoull(option, NULL, 10);
2411 if (get_param_value(option, 128, "threads", endptr) != 0)
2412 threads = strtoull(option, NULL, 10);
2413 if (get_param_value(option, 128, "maxcpus", endptr) != 0)
2414 max_cpus = strtoull(option, NULL, 10);
2415
2416 /* compute missing values, prefer sockets over cores over threads */
2417 if (smp == 0 || sockets == 0) {
2418 sockets = sockets > 0 ? sockets : 1;
2419 cores = cores > 0 ? cores : 1;
2420 threads = threads > 0 ? threads : 1;
2421 if (smp == 0) {
2422 smp = cores * threads * sockets;
2423 }
2424 } else {
2425 if (cores == 0) {
2426 threads = threads > 0 ? threads : 1;
2427 cores = smp / (sockets * threads);
2428 } else {
2429 if (sockets) {
2430 threads = smp / (cores * sockets);
2431 }
2432 }
2433 }
2434 smp_cpus = smp;
2435 smp_cores = cores > 0 ? cores : 1;
2436 smp_threads = threads > 0 ? threads : 1;
2437 if (max_cpus == 0)
2438 max_cpus = smp_cpus;
2439 }
2440
2441 /***********************************************************/
2442 /* USB devices */
2443
2444 static int usb_device_add(const char *devname, int is_hotplug)
2445 {
2446 const char *p;
2447 USBDevice *dev = NULL;
2448
2449 if (!usb_enabled)
2450 return -1;
2451
2452 /* drivers with .usbdevice_name entry in USBDeviceInfo */
2453 dev = usbdevice_create(devname);
2454 if (dev)
2455 goto done;
2456
2457 /* the other ones */
2458 if (strstart(devname, "host:", &p)) {
2459 dev = usb_host_device_open(p);
2460 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2461 dev = usb_bt_init(devname[2] ? hci_init(p) :
2462 bt_new_hci(qemu_find_bt_vlan(0)));
2463 } else {
2464 return -1;
2465 }
2466 if (!dev)
2467 return -1;
2468
2469 done:
2470 return 0;
2471 }
2472
2473 static int usb_device_del(const char *devname)
2474 {
2475 int bus_num, addr;
2476 const char *p;
2477
2478 if (strstart(devname, "host:", &p))
2479 return usb_host_device_close(p);
2480
2481 if (!usb_enabled)
2482 return -1;
2483
2484 p = strchr(devname, '.');
2485 if (!p)
2486 return -1;
2487 bus_num = strtoul(devname, NULL, 0);
2488 addr = strtoul(p + 1, NULL, 0);
2489
2490 return usb_device_delete_addr(bus_num, addr);
2491 }
2492
2493 static int usb_parse(const char *cmdline)
2494 {
2495 int r;
2496 r = usb_device_add(cmdline, 0);
2497 if (r < 0) {
2498 fprintf(stderr, "qemu: could not add USB device '%s'\n", cmdline);
2499 }
2500 return r;
2501 }
2502
2503 void do_usb_add(Monitor *mon, const QDict *qdict)
2504 {
2505 const char *devname = qdict_get_str(qdict, "devname");
2506 if (usb_device_add(devname, 1) < 0) {
2507 qemu_error("could not add USB device '%s'\n", devname);
2508 }
2509 }
2510
2511 void do_usb_del(Monitor *mon, const QDict *qdict)
2512 {
2513 const char *devname = qdict_get_str(qdict, "devname");
2514 if (usb_device_del(devname) < 0) {
2515 qemu_error("could not delete USB device '%s'\n", devname);
2516 }
2517 }
2518
2519 /***********************************************************/
2520 /* PCMCIA/Cardbus */
2521
2522 static struct pcmcia_socket_entry_s {
2523 PCMCIASocket *socket;
2524 struct pcmcia_socket_entry_s *next;
2525 } *pcmcia_sockets = 0;
2526
2527 void pcmcia_socket_register(PCMCIASocket *socket)
2528 {
2529 struct pcmcia_socket_entry_s *entry;
2530
2531 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2532 entry->socket = socket;
2533 entry->next = pcmcia_sockets;
2534 pcmcia_sockets = entry;
2535 }
2536
2537 void pcmcia_socket_unregister(PCMCIASocket *socket)
2538 {
2539 struct pcmcia_socket_entry_s *entry, **ptr;
2540
2541 ptr = &pcmcia_sockets;
2542 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2543 if (entry->socket == socket) {
2544 *ptr = entry->next;
2545 qemu_free(entry);
2546 }
2547 }
2548
2549 void pcmcia_info(Monitor *mon)
2550 {
2551 struct pcmcia_socket_entry_s *iter;
2552
2553 if (!pcmcia_sockets)
2554 monitor_printf(mon, "No PCMCIA sockets\n");
2555
2556 for (iter = pcmcia_sockets; iter; iter = iter->next)
2557 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2558 iter->socket->attached ? iter->socket->card_string :
2559 "Empty");
2560 }
2561
2562 /***********************************************************/
2563 /* register display */
2564
2565 struct DisplayAllocator default_allocator = {
2566 defaultallocator_create_displaysurface,
2567 defaultallocator_resize_displaysurface,
2568 defaultallocator_free_displaysurface
2569 };
2570
2571 void register_displaystate(DisplayState *ds)
2572 {
2573 DisplayState **s;
2574 s = &display_state;
2575 while (*s != NULL)
2576 s = &(*s)->next;
2577 ds->next = NULL;
2578 *s = ds;
2579 }
2580
2581 DisplayState *get_displaystate(void)
2582 {
2583 return display_state;
2584 }
2585
2586 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2587 {
2588 if(ds->allocator == &default_allocator) ds->allocator = da;
2589 return ds->allocator;
2590 }
2591
2592 /* dumb display */
2593
2594 static void dumb_display_init(void)
2595 {
2596 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2597 ds->allocator = &default_allocator;
2598 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2599 register_displaystate(ds);
2600 }
2601
2602 /***********************************************************/
2603 /* I/O handling */
2604
2605 typedef struct IOHandlerRecord {
2606 int fd;
2607 IOCanRWHandler *fd_read_poll;
2608 IOHandler *fd_read;
2609 IOHandler *fd_write;
2610 int deleted;
2611 void *opaque;
2612 /* temporary data */
2613 struct pollfd *ufd;
2614 struct IOHandlerRecord *next;
2615 } IOHandlerRecord;
2616
2617 static IOHandlerRecord *first_io_handler;
2618
2619 /* XXX: fd_read_poll should be suppressed, but an API change is
2620 necessary in the character devices to suppress fd_can_read(). */
2621 int qemu_set_fd_handler2(int fd,
2622 IOCanRWHandler *fd_read_poll,
2623 IOHandler *fd_read,
2624 IOHandler *fd_write,
2625 void *opaque)
2626 {
2627 IOHandlerRecord **pioh, *ioh;
2628
2629 if (!fd_read && !fd_write) {
2630 pioh = &first_io_handler;
2631 for(;;) {
2632 ioh = *pioh;
2633 if (ioh == NULL)
2634 break;
2635 if (ioh->fd == fd) {
2636 ioh->deleted = 1;
2637 break;
2638 }
2639 pioh = &ioh->next;
2640 }
2641 } else {
2642 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2643 if (ioh->fd == fd)
2644 goto found;
2645 }
2646 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2647 ioh->next = first_io_handler;
2648 first_io_handler = ioh;
2649 found:
2650 ioh->fd = fd;
2651 ioh->fd_read_poll = fd_read_poll;
2652 ioh->fd_read = fd_read;
2653 ioh->fd_write = fd_write;
2654 ioh->opaque = opaque;
2655 ioh->deleted = 0;
2656 }
2657 return 0;
2658 }
2659
2660 int qemu_set_fd_handler(int fd,
2661 IOHandler *fd_read,
2662 IOHandler *fd_write,
2663 void *opaque)
2664 {
2665 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2666 }
2667
2668 #ifdef _WIN32
2669 /***********************************************************/
2670 /* Polling handling */
2671
2672 typedef struct PollingEntry {
2673 PollingFunc *func;
2674 void *opaque;
2675 struct PollingEntry *next;
2676 } PollingEntry;
2677
2678 static PollingEntry *first_polling_entry;
2679
2680 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2681 {
2682 PollingEntry **ppe, *pe;
2683 pe = qemu_mallocz(sizeof(PollingEntry));
2684 pe->func = func;
2685 pe->opaque = opaque;
2686 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2687 *ppe = pe;
2688 return 0;
2689 }
2690
2691 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2692 {
2693 PollingEntry **ppe, *pe;
2694 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2695 pe = *ppe;
2696 if (pe->func == func && pe->opaque == opaque) {
2697 *ppe = pe->next;
2698 qemu_free(pe);
2699 break;
2700 }
2701 }
2702 }
2703
2704 /***********************************************************/
2705 /* Wait objects support */
2706 typedef struct WaitObjects {
2707 int num;
2708 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2709 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2710 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2711 } WaitObjects;
2712
2713 static WaitObjects wait_objects = {0};
2714
2715 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2716 {
2717 WaitObjects *w = &wait_objects;
2718
2719 if (w->num >= MAXIMUM_WAIT_OBJECTS)
2720 return -1;
2721 w->events[w->num] = handle;
2722 w->func[w->num] = func;
2723 w->opaque[w->num] = opaque;
2724 w->num++;
2725 return 0;
2726 }
2727
2728 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2729 {
2730 int i, found;
2731 WaitObjects *w = &wait_objects;
2732
2733 found = 0;
2734 for (i = 0; i < w->num; i++) {
2735 if (w->events[i] == handle)
2736 found = 1;
2737 if (found) {
2738 w->events[i] = w->events[i + 1];
2739 w->func[i] = w->func[i + 1];
2740 w->opaque[i] = w->opaque[i + 1];
2741 }
2742 }
2743 if (found)
2744 w->num--;
2745 }
2746 #endif
2747
2748 /***********************************************************/
2749 /* ram save/restore */
2750
2751 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
2752 #define RAM_SAVE_FLAG_COMPRESS 0x02
2753 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
2754 #define RAM_SAVE_FLAG_PAGE 0x08
2755 #define RAM_SAVE_FLAG_EOS 0x10
2756
2757 static int is_dup_page(uint8_t *page, uint8_t ch)
2758 {
2759 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
2760 uint32_t *array = (uint32_t *)page;
2761 int i;
2762
2763 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
2764 if (array[i] != val)
2765 return 0;
2766 }
2767
2768 return 1;
2769 }
2770
2771 static int ram_save_block(QEMUFile *f)
2772 {
2773 static ram_addr_t current_addr = 0;
2774 ram_addr_t saved_addr = current_addr;
2775 ram_addr_t addr = 0;
2776 int found = 0;
2777
2778 while (addr < last_ram_offset) {
2779 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
2780 uint8_t *p;
2781
2782 cpu_physical_memory_reset_dirty(current_addr,
2783 current_addr + TARGET_PAGE_SIZE,
2784 MIGRATION_DIRTY_FLAG);
2785
2786 p = qemu_get_ram_ptr(current_addr);
2787
2788 if (is_dup_page(p, *p)) {
2789 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
2790 qemu_put_byte(f, *p);
2791 } else {
2792 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
2793 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
2794 }
2795
2796 found = 1;
2797 break;
2798 }
2799 addr += TARGET_PAGE_SIZE;
2800 current_addr = (saved_addr + addr) % last_ram_offset;
2801 }
2802
2803 return found;
2804 }
2805
2806 static uint64_t bytes_transferred;
2807
2808 static ram_addr_t ram_save_remaining(void)
2809 {
2810 ram_addr_t addr;
2811 ram_addr_t count = 0;
2812
2813 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2814 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2815 count++;
2816 }
2817
2818 return count;
2819 }
2820
2821 uint64_t ram_bytes_remaining(void)
2822 {
2823 return ram_save_remaining() * TARGET_PAGE_SIZE;
2824 }
2825
2826 uint64_t ram_bytes_transferred(void)
2827 {
2828 return bytes_transferred;
2829 }
2830
2831 uint64_t ram_bytes_total(void)
2832 {
2833 return last_ram_offset;
2834 }
2835
2836 static int ram_save_live(Monitor *mon, QEMUFile *f, int stage, void *opaque)
2837 {
2838 ram_addr_t addr;
2839 uint64_t bytes_transferred_last;
2840 double bwidth = 0;
2841 uint64_t expected_time = 0;
2842
2843 if (stage < 0) {
2844 cpu_physical_memory_set_dirty_tracking(0);
2845 return 0;
2846 }
2847
2848 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
2849 qemu_file_set_error(f);
2850 return 0;
2851 }
2852
2853 if (stage == 1) {
2854 bytes_transferred = 0;
2855
2856 /* Make sure all dirty bits are set */
2857 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2858 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2859 cpu_physical_memory_set_dirty(addr);
2860 }
2861
2862 /* Enable dirty memory tracking */
2863 cpu_physical_memory_set_dirty_tracking(1);
2864
2865 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
2866 }
2867
2868 bytes_transferred_last = bytes_transferred;
2869 bwidth = get_clock();
2870
2871 while (!qemu_file_rate_limit(f)) {
2872 int ret;
2873
2874 ret = ram_save_block(f);
2875 bytes_transferred += ret * TARGET_PAGE_SIZE;
2876 if (ret == 0) /* no more blocks */
2877 break;
2878 }
2879
2880 bwidth = get_clock() - bwidth;
2881 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
2882
2883 /* if we haven't transferred anything this round, force expected_time to a
2884 * a very high value, but without crashing */
2885 if (bwidth == 0)
2886 bwidth = 0.000001;
2887
2888 /* try transferring iterative blocks of memory */
2889 if (stage == 3) {
2890 /* flush all remaining blocks regardless of rate limiting */
2891 while (ram_save_block(f) != 0) {
2892 bytes_transferred += TARGET_PAGE_SIZE;
2893 }
2894 cpu_physical_memory_set_dirty_tracking(0);
2895 }
2896
2897 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2898
2899 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
2900
2901 return (stage == 2) && (expected_time <= migrate_max_downtime());
2902 }
2903
2904 static int ram_load(QEMUFile *f, void *opaque, int version_id)
2905 {
2906 ram_addr_t addr;
2907 int flags;
2908
2909 if (version_id != 3)
2910 return -EINVAL;
2911
2912 do {
2913 addr = qemu_get_be64(f);
2914
2915 flags = addr & ~TARGET_PAGE_MASK;
2916 addr &= TARGET_PAGE_MASK;
2917
2918 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
2919 if (addr != last_ram_offset)
2920 return -EINVAL;
2921 }
2922
2923 if (flags & RAM_SAVE_FLAG_COMPRESS) {
2924 uint8_t ch = qemu_get_byte(f);
2925 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
2926 #ifndef _WIN32
2927 if (ch == 0 &&
2928 (!kvm_enabled() || kvm_has_sync_mmu())) {
2929 madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED);
2930 }
2931 #endif
2932 } else if (flags & RAM_SAVE_FLAG_PAGE) {
2933 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
2934 }
2935 if (qemu_file_has_error(f)) {
2936 return -EIO;
2937 }
2938 } while (!(flags & RAM_SAVE_FLAG_EOS));
2939
2940 return 0;
2941 }
2942
2943 void qemu_service_io(void)
2944 {
2945 qemu_notify_event();
2946 }
2947
2948 /***********************************************************/
2949 /* machine registration */
2950
2951 static QEMUMachine *first_machine = NULL;
2952 QEMUMachine *current_machine = NULL;
2953
2954 int qemu_register_machine(QEMUMachine *m)
2955 {
2956 QEMUMachine **pm;
2957 pm = &first_machine;
2958 while (*pm != NULL)
2959 pm = &(*pm)->next;
2960 m->next = NULL;
2961 *pm = m;
2962 return 0;
2963 }
2964
2965 static QEMUMachine *find_machine(const char *name)
2966 {
2967 QEMUMachine *m;
2968
2969 for(m = first_machine; m != NULL; m = m->next) {
2970 if (!strcmp(m->name, name))
2971 return m;
2972 if (m->alias && !strcmp(m->alias, name))
2973 return m;
2974 }
2975 return NULL;
2976 }
2977
2978 static QEMUMachine *find_default_machine(void)
2979 {
2980 QEMUMachine *m;
2981
2982 for(m = first_machine; m != NULL; m = m->next) {
2983 if (m->is_default) {
2984 return m;
2985 }
2986 }
2987 return NULL;
2988 }
2989
2990 /***********************************************************/
2991 /* main execution loop */
2992
2993 static void gui_update(void *opaque)
2994 {
2995 uint64_t interval = GUI_REFRESH_INTERVAL;
2996 DisplayState *ds = opaque;
2997 DisplayChangeListener *dcl = ds->listeners;
2998
2999 qemu_flush_coalesced_mmio_buffer();
3000 dpy_refresh(ds);
3001
3002 while (dcl != NULL) {
3003 if (dcl->gui_timer_interval &&
3004 dcl->gui_timer_interval < interval)
3005 interval = dcl->gui_timer_interval;
3006 dcl = dcl->next;
3007 }
3008 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3009 }
3010
3011 static void nographic_update(void *opaque)
3012 {
3013 uint64_t interval = GUI_REFRESH_INTERVAL;
3014
3015 qemu_flush_coalesced_mmio_buffer();
3016 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3017 }
3018
3019 struct vm_change_state_entry {
3020 VMChangeStateHandler *cb;
3021 void *opaque;
3022 QLIST_ENTRY (vm_change_state_entry) entries;
3023 };
3024
3025 static QLIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3026
3027 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3028 void *opaque)
3029 {
3030 VMChangeStateEntry *e;
3031
3032 e = qemu_mallocz(sizeof (*e));
3033
3034 e->cb = cb;
3035 e->opaque = opaque;
3036 QLIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3037 return e;
3038 }
3039
3040 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3041 {
3042 QLIST_REMOVE (e, entries);
3043 qemu_free (e);
3044 }
3045
3046 static void vm_state_notify(int running, int reason)
3047 {
3048 VMChangeStateEntry *e;
3049
3050 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3051 e->cb(e->opaque, running, reason);
3052 }
3053 }
3054
3055 static void resume_all_vcpus(void);
3056 static void pause_all_vcpus(void);
3057
3058 void vm_start(void)
3059 {
3060 if (!vm_running) {
3061 cpu_enable_ticks();
3062 vm_running = 1;
3063 vm_state_notify(1, 0);
3064 qemu_rearm_alarm_timer(alarm_timer);
3065 resume_all_vcpus();
3066 }
3067 }
3068
3069 /* reset/shutdown handler */
3070
3071 typedef struct QEMUResetEntry {
3072 QTAILQ_ENTRY(QEMUResetEntry) entry;
3073 QEMUResetHandler *func;
3074 void *opaque;
3075 } QEMUResetEntry;
3076
3077 static QTAILQ_HEAD(reset_handlers, QEMUResetEntry) reset_handlers =
3078 QTAILQ_HEAD_INITIALIZER(reset_handlers);
3079 static int reset_requested;
3080 static int shutdown_requested;
3081 static int powerdown_requested;
3082 static int debug_requested;
3083 static int vmstop_requested;
3084
3085 int qemu_shutdown_requested(void)
3086 {
3087 int r = shutdown_requested;
3088 shutdown_requested = 0;
3089 return r;
3090 }
3091
3092 int qemu_reset_requested(void)
3093 {
3094 int r = reset_requested;
3095 reset_requested = 0;
3096 return r;
3097 }
3098
3099 int qemu_powerdown_requested(void)
3100 {
3101 int r = powerdown_requested;
3102 powerdown_requested = 0;
3103 return r;
3104 }
3105
3106 static int qemu_debug_requested(void)
3107 {
3108 int r = debug_requested;
3109 debug_requested = 0;
3110 return r;
3111 }
3112
3113 static int qemu_vmstop_requested(void)
3114 {
3115 int r = vmstop_requested;
3116 vmstop_requested = 0;
3117 return r;
3118 }
3119
3120 static void do_vm_stop(int reason)
3121 {
3122 if (vm_running) {
3123 cpu_disable_ticks();
3124 vm_running = 0;
3125 pause_all_vcpus();
3126 vm_state_notify(0, reason);
3127 }
3128 }
3129
3130 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3131 {
3132 QEMUResetEntry *re = qemu_mallocz(sizeof(QEMUResetEntry));
3133
3134 re->func = func;
3135 re->opaque = opaque;
3136 QTAILQ_INSERT_TAIL(&reset_handlers, re, entry);
3137 }
3138
3139 void qemu_unregister_reset(QEMUResetHandler *func, void *opaque)
3140 {
3141 QEMUResetEntry *re;
3142
3143 QTAILQ_FOREACH(re, &reset_handlers, entry) {
3144 if (re->func == func && re->opaque == opaque) {
3145 QTAILQ_REMOVE(&reset_handlers, re, entry);
3146 qemu_free(re);
3147 return;
3148 }
3149 }
3150 }
3151
3152 void qemu_system_reset(void)
3153 {
3154 QEMUResetEntry *re, *nre;
3155
3156 /* reset all devices */
3157 QTAILQ_FOREACH_SAFE(re, &reset_handlers, entry, nre) {
3158 re->func(re->opaque);
3159 }
3160 }
3161
3162 void qemu_system_reset_request(void)
3163 {
3164 if (no_reboot) {
3165 shutdown_requested = 1;
3166 } else {
3167 reset_requested = 1;
3168 }
3169 qemu_notify_event();
3170 }
3171
3172 void qemu_system_shutdown_request(void)
3173 {
3174 shutdown_requested = 1;
3175 qemu_notify_event();
3176 }
3177
3178 void qemu_system_powerdown_request(void)
3179 {
3180 powerdown_requested = 1;
3181 qemu_notify_event();
3182 }
3183
3184 #ifdef CONFIG_IOTHREAD
3185 static void qemu_system_vmstop_request(int reason)
3186 {
3187 vmstop_requested = reason;
3188 qemu_notify_event();
3189 }
3190 #endif
3191
3192 #ifndef _WIN32
3193 static int io_thread_fd = -1;
3194
3195 static void qemu_event_increment(void)
3196 {
3197 static const char byte = 0;
3198 ssize_t ret;
3199
3200 if (io_thread_fd == -1)
3201 return;
3202
3203 ret = write(io_thread_fd, &byte, sizeof(byte));
3204 if (ret < 0 && (errno != EINTR && errno != EAGAIN)) {
3205 fprintf(stderr, "qemu_event_increment: write() filed: %s\n",
3206 strerror(errno));
3207 exit (1);
3208 }
3209 }
3210
3211 static void qemu_event_read(void *opaque)
3212 {
3213 int fd = (unsigned long)opaque;
3214 ssize_t len;
3215
3216 /* Drain the notify pipe */
3217 do {
3218 char buffer[512];
3219 len = read(fd, buffer, sizeof(buffer));
3220 } while ((len == -1 && errno == EINTR) || len > 0);
3221 }
3222
3223 static int qemu_event_init(void)
3224 {
3225 int err;
3226 int fds[2];
3227
3228 err = qemu_pipe(fds);
3229 if (err == -1)
3230 return -errno;
3231
3232 err = fcntl_setfl(fds[0], O_NONBLOCK);
3233 if (err < 0)
3234 goto fail;
3235
3236 err = fcntl_setfl(fds[1], O_NONBLOCK);
3237 if (err < 0)
3238 goto fail;
3239
3240 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3241 (void *)(unsigned long)fds[0]);
3242
3243 io_thread_fd = fds[1];
3244 return 0;
3245
3246 fail:
3247 close(fds[0]);
3248 close(fds[1]);
3249 return err;
3250 }
3251 #else
3252 HANDLE qemu_event_handle;
3253
3254 static void dummy_event_handler(void *opaque)
3255 {
3256 }
3257
3258 static int qemu_event_init(void)
3259 {
3260 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3261 if (!qemu_event_handle) {
3262 fprintf(stderr, "Failed CreateEvent: %ld\n", GetLastError());
3263 return -1;
3264 }
3265 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3266 return 0;
3267 }
3268
3269 static void qemu_event_increment(void)
3270 {
3271 if (!SetEvent(qemu_event_handle)) {
3272 fprintf(stderr, "qemu_event_increment: SetEvent failed: %ld\n",
3273 GetLastError());
3274 exit (1);
3275 }
3276 }
3277 #endif
3278
3279 static int cpu_can_run(CPUState *env)
3280 {
3281 if (env->stop)
3282 return 0;
3283 if (env->stopped)
3284 return 0;
3285 return 1;
3286 }
3287
3288 #ifndef CONFIG_IOTHREAD
3289 static int qemu_init_main_loop(void)
3290 {
3291 return qemu_event_init();
3292 }
3293
3294 void qemu_init_vcpu(void *_env)
3295 {
3296 CPUState *env = _env;
3297
3298 env->nr_cores = smp_cores;
3299 env->nr_threads = smp_threads;
3300 if (kvm_enabled())
3301 kvm_init_vcpu(env);
3302 return;
3303 }
3304
3305 int qemu_cpu_self(void *env)
3306 {
3307 return 1;
3308 }
3309
3310 static void resume_all_vcpus(void)
3311 {
3312 }
3313
3314 static void pause_all_vcpus(void)
3315 {
3316 }
3317
3318 void qemu_cpu_kick(void *env)
3319 {
3320 return;
3321 }
3322
3323 void qemu_notify_event(void)
3324 {
3325 CPUState *env = cpu_single_env;
3326
3327 if (env) {
3328 cpu_exit(env);
3329 }
3330 }
3331
3332 void qemu_mutex_lock_iothread(void) {}
3333 void qemu_mutex_unlock_iothread(void) {}
3334
3335 void vm_stop(int reason)
3336 {
3337 do_vm_stop(reason);
3338 }
3339
3340 #else /* CONFIG_IOTHREAD */
3341
3342 #include "qemu-thread.h"
3343
3344 QemuMutex qemu_global_mutex;
3345 static QemuMutex qemu_fair_mutex;
3346
3347 static QemuThread io_thread;
3348
3349 static QemuThread *tcg_cpu_thread;
3350 static QemuCond *tcg_halt_cond;
3351
3352 static int qemu_system_ready;
3353 /* cpu creation */
3354 static QemuCond qemu_cpu_cond;
3355 /* system init */
3356 static QemuCond qemu_system_cond;
3357 static QemuCond qemu_pause_cond;
3358
3359 static void block_io_signals(void);
3360 static void unblock_io_signals(void);
3361 static int tcg_has_work(void);
3362
3363 static int qemu_init_main_loop(void)
3364 {
3365 int ret;
3366
3367 ret = qemu_event_init();
3368 if (ret)
3369 return ret;
3370
3371 qemu_cond_init(&qemu_pause_cond);
3372 qemu_mutex_init(&qemu_fair_mutex);
3373 qemu_mutex_init(&qemu_global_mutex);
3374 qemu_mutex_lock(&qemu_global_mutex);
3375
3376 unblock_io_signals();
3377 qemu_thread_self(&io_thread);
3378
3379 return 0;
3380 }
3381
3382 static void qemu_wait_io_event(CPUState *env)
3383 {
3384 while (!tcg_has_work())
3385 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3386
3387 qemu_mutex_unlock(&qemu_global_mutex);
3388
3389 /*
3390 * Users of qemu_global_mutex can be starved, having no chance
3391 * to acquire it since this path will get to it first.
3392 * So use another lock to provide fairness.
3393 */
3394 qemu_mutex_lock(&qemu_fair_mutex);
3395 qemu_mutex_unlock(&qemu_fair_mutex);
3396
3397 qemu_mutex_lock(&qemu_global_mutex);
3398 if (env->stop) {
3399 env->stop = 0;
3400 env->stopped = 1;
3401 qemu_cond_signal(&qemu_pause_cond);
3402 }
3403 }
3404
3405 static int qemu_cpu_exec(CPUState *env);
3406
3407 static void *kvm_cpu_thread_fn(void *arg)
3408 {
3409 CPUState *env = arg;
3410
3411 block_io_signals();
3412 qemu_thread_self(env->thread);
3413 if (kvm_enabled())
3414 kvm_init_vcpu(env);
3415
3416 /* signal CPU creation */
3417 qemu_mutex_lock(&qemu_global_mutex);
3418 env->created = 1;
3419 qemu_cond_signal(&qemu_cpu_cond);
3420
3421 /* and wait for machine initialization */
3422 while (!qemu_system_ready)
3423 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3424
3425 while (1) {
3426 if (cpu_can_run(env))
3427 qemu_cpu_exec(env);
3428 qemu_wait_io_event(env);
3429 }
3430
3431 return NULL;
3432 }
3433
3434 static void tcg_cpu_exec(void);
3435
3436 static void *tcg_cpu_thread_fn(void *arg)
3437 {
3438 CPUState *env = arg;
3439
3440 block_io_signals();
3441 qemu_thread_self(env->thread);
3442
3443 /* signal CPU creation */
3444 qemu_mutex_lock(&qemu_global_mutex);
3445 for (env = first_cpu; env != NULL; env = env->next_cpu)
3446 env->created = 1;
3447 qemu_cond_signal(&qemu_cpu_cond);
3448
3449 /* and wait for machine initialization */
3450 while (!qemu_system_ready)
3451 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3452
3453 while (1) {
3454 tcg_cpu_exec();
3455 qemu_wait_io_event(cur_cpu);
3456 }
3457
3458 return NULL;
3459 }
3460
3461 void qemu_cpu_kick(void *_env)
3462 {
3463 CPUState *env = _env;
3464 qemu_cond_broadcast(env->halt_cond);
3465 if (kvm_enabled())
3466 qemu_thread_signal(env->thread, SIGUSR1);
3467 }
3468
3469 int qemu_cpu_self(void *_env)
3470 {
3471 CPUState *env = _env;
3472 QemuThread this;
3473
3474 qemu_thread_self(&this);
3475
3476 return qemu_thread_equal(&this, env->thread);
3477 }
3478
3479 static void cpu_signal(int sig)
3480 {
3481 if (cpu_single_env)
3482 cpu_exit(cpu_single_env);
3483 }
3484
3485 static void block_io_signals(void)
3486 {
3487 sigset_t set;
3488 struct sigaction sigact;
3489
3490 sigemptyset(&set);
3491 sigaddset(&set, SIGUSR2);
3492 sigaddset(&set, SIGIO);
3493 sigaddset(&set, SIGALRM);
3494 pthread_sigmask(SIG_BLOCK, &set, NULL);
3495
3496 sigemptyset(&set);
3497 sigaddset(&set, SIGUSR1);
3498 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3499
3500 memset(&sigact, 0, sizeof(sigact));
3501 sigact.sa_handler = cpu_signal;
3502 sigaction(SIGUSR1, &sigact, NULL);
3503 }
3504
3505 static void unblock_io_signals(void)
3506 {
3507 sigset_t set;
3508
3509 sigemptyset(&set);
3510 sigaddset(&set, SIGUSR2);
3511 sigaddset(&set, SIGIO);
3512 sigaddset(&set, SIGALRM);
3513 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3514
3515 sigemptyset(&set);
3516 sigaddset(&set, SIGUSR1);
3517 pthread_sigmask(SIG_BLOCK, &set, NULL);
3518 }
3519
3520 static void qemu_signal_lock(unsigned int msecs)
3521 {
3522 qemu_mutex_lock(&qemu_fair_mutex);
3523
3524 while (qemu_mutex_trylock(&qemu_global_mutex)) {
3525 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
3526 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
3527 break;
3528 }
3529 qemu_mutex_unlock(&qemu_fair_mutex);
3530 }
3531
3532 void qemu_mutex_lock_iothread(void)
3533 {
3534 if (kvm_enabled()) {
3535 qemu_mutex_lock(&qemu_fair_mutex);
3536 qemu_mutex_lock(&qemu_global_mutex);
3537 qemu_mutex_unlock(&qemu_fair_mutex);
3538 } else
3539 qemu_signal_lock(100);
3540 }
3541
3542 void qemu_mutex_unlock_iothread(void)
3543 {
3544 qemu_mutex_unlock(&qemu_global_mutex);
3545 }
3546
3547 static int all_vcpus_paused(void)
3548 {
3549 CPUState *penv = first_cpu;
3550
3551 while (penv) {
3552 if (!penv->stopped)
3553 return 0;
3554 penv = (CPUState *)penv->next_cpu;
3555 }
3556
3557 return 1;
3558 }
3559
3560 static void pause_all_vcpus(void)
3561 {
3562 CPUState *penv = first_cpu;
3563
3564 while (penv) {
3565 penv->stop = 1;
3566 qemu_thread_signal(penv->thread, SIGUSR1);
3567 qemu_cpu_kick(penv);
3568 penv = (CPUState *)penv->next_cpu;
3569 }
3570
3571 while (!all_vcpus_paused()) {
3572 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
3573 penv = first_cpu;
3574 while (penv) {
3575 qemu_thread_signal(penv->thread, SIGUSR1);
3576 penv = (CPUState *)penv->next_cpu;
3577 }
3578 }
3579 }
3580
3581 static void resume_all_vcpus(void)
3582 {
3583 CPUState *penv = first_cpu;
3584
3585 while (penv) {
3586 penv->stop = 0;
3587 penv->stopped = 0;
3588 qemu_thread_signal(penv->thread, SIGUSR1);
3589 qemu_cpu_kick(penv);
3590 penv = (CPUState *)penv->next_cpu;
3591 }
3592 }
3593
3594 static void tcg_init_vcpu(void *_env)
3595 {
3596 CPUState *env = _env;
3597 /* share a single thread for all cpus with TCG */
3598 if (!tcg_cpu_thread) {
3599 env->thread = qemu_mallocz(sizeof(QemuThread));
3600 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3601 qemu_cond_init(env->halt_cond);
3602 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
3603 while (env->created == 0)
3604 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3605 tcg_cpu_thread = env->thread;
3606 tcg_halt_cond = env->halt_cond;
3607 } else {
3608 env->thread = tcg_cpu_thread;
3609 env->halt_cond = tcg_halt_cond;
3610 }
3611 }
3612
3613 static void kvm_start_vcpu(CPUState *env)
3614 {
3615 env->thread = qemu_mallocz(sizeof(QemuThread));
3616 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3617 qemu_cond_init(env->halt_cond);
3618 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
3619 while (env->created == 0)
3620 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3621 }
3622
3623 void qemu_init_vcpu(void *_env)
3624 {
3625 CPUState *env = _env;
3626
3627 env->nr_cores = smp_cores;
3628 env->nr_threads = smp_threads;
3629 if (kvm_enabled())
3630 kvm_start_vcpu(env);
3631 else
3632 tcg_init_vcpu(env);
3633 }
3634
3635 void qemu_notify_event(void)
3636 {
3637 qemu_event_increment();
3638 }
3639
3640 void vm_stop(int reason)
3641 {
3642 QemuThread me;
3643 qemu_thread_self(&me);
3644
3645 if (!qemu_thread_equal(&me, &io_thread)) {
3646 qemu_system_vmstop_request(reason);
3647 /*
3648 * FIXME: should not return to device code in case
3649 * vm_stop() has been requested.
3650 */
3651 if (cpu_single_env) {
3652 cpu_exit(cpu_single_env);
3653 cpu_single_env->stop = 1;
3654 }
3655 return;
3656 }
3657 do_vm_stop(reason);
3658 }
3659
3660 #endif
3661
3662
3663 #ifdef _WIN32
3664 static void host_main_loop_wait(int *timeout)
3665 {
3666 int ret, ret2, i;
3667 PollingEntry *pe;
3668
3669
3670 /* XXX: need to suppress polling by better using win32 events */
3671 ret = 0;
3672 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3673 ret |= pe->func(pe->opaque);
3674 }
3675 if (ret == 0) {
3676 int err;
3677 WaitObjects *w = &wait_objects;
3678
3679 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3680 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3681 if (w->func[ret - WAIT_OBJECT_0])
3682 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3683
3684 /* Check for additional signaled events */
3685 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3686
3687 /* Check if event is signaled */
3688 ret2 = WaitForSingleObject(w->events[i], 0);
3689 if(ret2 == WAIT_OBJECT_0) {
3690 if (w->func[i])
3691 w->func[i](w->opaque[i]);
3692 } else if (ret2 == WAIT_TIMEOUT) {
3693 } else {
3694 err = GetLastError();
3695 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3696 }
3697 }
3698 } else if (ret == WAIT_TIMEOUT) {
3699 } else {
3700 err = GetLastError();
3701 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3702 }
3703 }
3704
3705 *timeout = 0;
3706 }
3707 #else
3708 static void host_main_loop_wait(int *timeout)
3709 {
3710 }
3711 #endif
3712
3713 void main_loop_wait(int timeout)
3714 {
3715 IOHandlerRecord *ioh;
3716 fd_set rfds, wfds, xfds;
3717 int ret, nfds;
3718 struct timeval tv;
3719
3720 qemu_bh_update_timeout(&timeout);
3721
3722 host_main_loop_wait(&timeout);
3723
3724 /* poll any events */
3725 /* XXX: separate device handlers from system ones */
3726 nfds = -1;
3727 FD_ZERO(&rfds);
3728 FD_ZERO(&wfds);
3729 FD_ZERO(&xfds);
3730 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3731 if (ioh->deleted)
3732 continue;
3733 if (ioh->fd_read &&
3734 (!ioh->fd_read_poll ||
3735 ioh->fd_read_poll(ioh->opaque) != 0)) {
3736 FD_SET(ioh->fd, &rfds);
3737 if (ioh->fd > nfds)
3738 nfds = ioh->fd;
3739 }
3740 if (ioh->fd_write) {
3741 FD_SET(ioh->fd, &wfds);
3742 if (ioh->fd > nfds)
3743 nfds = ioh->fd;
3744 }
3745 }
3746
3747 tv.tv_sec = timeout / 1000;
3748 tv.tv_usec = (timeout % 1000) * 1000;
3749
3750 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3751
3752 qemu_mutex_unlock_iothread();
3753 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3754 qemu_mutex_lock_iothread();
3755 if (ret > 0) {
3756 IOHandlerRecord **pioh;
3757
3758 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3759 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3760 ioh->fd_read(ioh->opaque);
3761 }
3762 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3763 ioh->fd_write(ioh->opaque);
3764 }
3765 }
3766
3767 /* remove deleted IO handlers */
3768 pioh = &first_io_handler;
3769 while (*pioh) {
3770 ioh = *pioh;
3771 if (ioh->deleted) {
3772 *pioh = ioh->next;
3773 qemu_free(ioh);
3774 } else
3775 pioh = &ioh->next;
3776 }
3777 }
3778
3779 slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
3780
3781 /* rearm timer, if not periodic */
3782 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
3783 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
3784 qemu_rearm_alarm_timer(alarm_timer);
3785 }
3786
3787 /* vm time timers */
3788 if (vm_running) {
3789 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3790 qemu_run_timers(&active_timers[QEMU_CLOCK_VIRTUAL],
3791 qemu_get_clock(vm_clock));
3792 }
3793
3794 /* real time timers */
3795 qemu_run_timers(&active_timers[QEMU_CLOCK_REALTIME],
3796 qemu_get_clock(rt_clock));
3797
3798 qemu_run_timers(&active_timers[QEMU_CLOCK_HOST],
3799 qemu_get_clock(host_clock));
3800
3801 /* Check bottom-halves last in case any of the earlier events triggered
3802 them. */
3803 qemu_bh_poll();
3804
3805 }
3806
3807 static int qemu_cpu_exec(CPUState *env)
3808 {
3809 int ret;
3810 #ifdef CONFIG_PROFILER
3811 int64_t ti;
3812 #endif
3813
3814 #ifdef CONFIG_PROFILER
3815 ti = profile_getclock();
3816 #endif
3817 if (use_icount) {
3818 int64_t count;
3819 int decr;
3820 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
3821 env->icount_decr.u16.low = 0;
3822 env->icount_extra = 0;
3823 count = qemu_next_deadline();
3824 count = (count + (1 << icount_time_shift) - 1)
3825 >> icount_time_shift;
3826 qemu_icount += count;
3827 decr = (count > 0xffff) ? 0xffff : count;
3828 count -= decr;
3829 env->icount_decr.u16.low = decr;
3830 env->icount_extra = count;
3831 }
3832 ret = cpu_exec(env);
3833 #ifdef CONFIG_PROFILER
3834 qemu_time += profile_getclock() - ti;
3835 #endif
3836 if (use_icount) {
3837 /* Fold pending instructions back into the
3838 instruction counter, and clear the interrupt flag. */
3839 qemu_icount -= (env->icount_decr.u16.low
3840 + env->icount_extra);
3841 env->icount_decr.u32 = 0;
3842 env->icount_extra = 0;
3843 }
3844 return ret;
3845 }
3846
3847 static void tcg_cpu_exec(void)
3848 {
3849 int ret = 0;
3850
3851 if (next_cpu == NULL)
3852 next_cpu = first_cpu;
3853 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
3854 CPUState *env = cur_cpu = next_cpu;
3855
3856 if (!vm_running)
3857 break;
3858 if (timer_alarm_pending) {
3859 timer_alarm_pending = 0;
3860 break;
3861 }
3862 if (cpu_can_run(env))
3863 ret = qemu_cpu_exec(env);
3864 if (ret == EXCP_DEBUG) {
3865 gdb_set_stop_cpu(env);
3866 debug_requested = 1;
3867 break;
3868 }
3869 }
3870 }
3871
3872 static int cpu_has_work(CPUState *env)
3873 {
3874 if (env->stop)
3875 return 1;
3876 if (env->stopped)
3877 return 0;
3878 if (!env->halted)
3879 return 1;
3880 if (qemu_cpu_has_work(env))
3881 return 1;
3882 return 0;
3883 }
3884
3885 static int tcg_has_work(void)
3886 {
3887 CPUState *env;
3888
3889 for (env = first_cpu; env != NULL; env = env->next_cpu)
3890 if (cpu_has_work(env))
3891 return 1;
3892 return 0;
3893 }
3894
3895 static int qemu_calculate_timeout(void)
3896 {
3897 #ifndef CONFIG_IOTHREAD
3898 int timeout;
3899
3900 if (!vm_running)
3901 timeout = 5000;
3902 else if (tcg_has_work())
3903 timeout = 0;
3904 else if (!use_icount)
3905 timeout = 5000;
3906 else {
3907 /* XXX: use timeout computed from timers */
3908 int64_t add;
3909 int64_t delta;
3910 /* Advance virtual time to the next event. */
3911 if (use_icount == 1) {
3912 /* When not using an adaptive execution frequency
3913 we tend to get badly out of sync with real time,
3914 so just delay for a reasonable amount of time. */
3915 delta = 0;
3916 } else {
3917 delta = cpu_get_icount() - cpu_get_clock();
3918 }
3919 if (delta > 0) {
3920 /* If virtual time is ahead of real time then just
3921 wait for IO. */
3922 timeout = (delta / 1000000) + 1;
3923 } else {
3924 /* Wait for either IO to occur or the next
3925 timer event. */
3926 add = qemu_next_deadline();
3927 /* We advance the timer before checking for IO.
3928 Limit the amount we advance so that early IO
3929 activity won't get the guest too far ahead. */
3930 if (add > 10000000)
3931 add = 10000000;
3932 delta += add;
3933 add = (add + (1 << icount_time_shift) - 1)
3934 >> icount_time_shift;
3935 qemu_icount += add;
3936 timeout = delta / 1000000;
3937 if (timeout < 0)
3938 timeout = 0;
3939 }
3940 }
3941
3942 return timeout;
3943 #else /* CONFIG_IOTHREAD */
3944 return 1000;
3945 #endif
3946 }
3947
3948 static int vm_can_run(void)
3949 {
3950 if (powerdown_requested)
3951 return 0;
3952 if (reset_requested)
3953 return 0;
3954 if (shutdown_requested)
3955 return 0;
3956 if (debug_requested)
3957 return 0;
3958 return 1;
3959 }
3960
3961 qemu_irq qemu_system_powerdown;
3962
3963 static void main_loop(void)
3964 {
3965 int r;
3966
3967 #ifdef CONFIG_IOTHREAD
3968 qemu_system_ready = 1;
3969 qemu_cond_broadcast(&qemu_system_cond);
3970 #endif
3971
3972 for (;;) {
3973 do {
3974 #ifdef CONFIG_PROFILER
3975 int64_t ti;
3976 #endif
3977 #ifndef CONFIG_IOTHREAD
3978 tcg_cpu_exec();
3979 #endif
3980 #ifdef CONFIG_PROFILER
3981 ti = profile_getclock();
3982 #endif
3983 main_loop_wait(qemu_calculate_timeout());
3984 #ifdef CONFIG_PROFILER
3985 dev_time += profile_getclock() - ti;
3986 #endif
3987 } while (vm_can_run());
3988
3989 if (qemu_debug_requested()) {
3990 monitor_protocol_event(QEVENT_DEBUG, NULL);
3991 vm_stop(EXCP_DEBUG);
3992 }
3993 if (qemu_shutdown_requested()) {
3994 monitor_protocol_event(QEVENT_SHUTDOWN, NULL);
3995 if (no_shutdown) {
3996 vm_stop(0);
3997 no_shutdown = 0;
3998 } else
3999 break;
4000 }
4001 if (qemu_reset_requested()) {
4002 monitor_protocol_event(QEVENT_RESET, NULL);
4003 pause_all_vcpus();
4004 qemu_system_reset();
4005 resume_all_vcpus();
4006 }
4007 if (qemu_powerdown_requested()) {
4008 monitor_protocol_event(QEVENT_POWERDOWN, NULL);
4009 qemu_irq_raise(qemu_system_powerdown);
4010 }
4011 if ((r = qemu_vmstop_requested())) {
4012 monitor_protocol_event(QEVENT_STOP, NULL);
4013 vm_stop(r);
4014 }
4015 }
4016 pause_all_vcpus();
4017 }
4018
4019 static void version(void)
4020 {
4021 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4022 }
4023
4024 static void help(int exitcode)
4025 {
4026 version();
4027 printf("usage: %s [options] [disk_image]\n"
4028 "\n"
4029 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4030 "\n"
4031 #define DEF(option, opt_arg, opt_enum, opt_help) \
4032 opt_help
4033 #define DEFHEADING(text) stringify(text) "\n"
4034 #include "qemu-options.h"
4035 #undef DEF
4036 #undef DEFHEADING
4037 #undef GEN_DOCS
4038 "\n"
4039 "During emulation, the following keys are useful:\n"
4040 "ctrl-alt-f toggle full screen\n"
4041 "ctrl-alt-n switch to virtual console 'n'\n"
4042 "ctrl-alt toggle mouse and keyboard grab\n"
4043 "\n"
4044 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4045 ,
4046 "qemu",
4047 DEFAULT_RAM_SIZE,
4048 #ifndef _WIN32
4049 DEFAULT_NETWORK_SCRIPT,
4050 DEFAULT_NETWORK_DOWN_SCRIPT,
4051 #endif
4052 DEFAULT_GDBSTUB_PORT,
4053 "/tmp/qemu.log");
4054 exit(exitcode);
4055 }
4056
4057 #define HAS_ARG 0x0001
4058
4059 enum {
4060 #define DEF(option, opt_arg, opt_enum, opt_help) \
4061 opt_enum,
4062 #define DEFHEADING(text)
4063 #include "qemu-options.h"
4064 #undef DEF
4065 #undef DEFHEADING
4066 #undef GEN_DOCS
4067 };
4068
4069 typedef struct QEMUOption {
4070 const char *name;
4071 int flags;
4072 int index;
4073 } QEMUOption;
4074
4075 static const QEMUOption qemu_options[] = {
4076 { "h", 0, QEMU_OPTION_h },
4077 #define DEF(option, opt_arg, opt_enum, opt_help) \
4078 { option, opt_arg, opt_enum },
4079 #define DEFHEADING(text)
4080 #include "qemu-options.h"
4081 #undef DEF
4082 #undef DEFHEADING
4083 #undef GEN_DOCS
4084 { NULL },
4085 };
4086
4087 #ifdef HAS_AUDIO
4088 struct soundhw soundhw[] = {
4089 #ifdef HAS_AUDIO_CHOICE
4090 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4091 {
4092 "pcspk",
4093 "PC speaker",
4094 0,
4095 1,
4096 { .init_isa = pcspk_audio_init }
4097 },
4098 #endif
4099
4100 #ifdef CONFIG_SB16
4101 {
4102 "sb16",
4103 "Creative Sound Blaster 16",
4104 0,
4105 1,
4106 { .init_isa = SB16_init }
4107 },
4108 #endif
4109
4110 #ifdef CONFIG_CS4231A
4111 {
4112 "cs4231a",
4113 "CS4231A",
4114 0,
4115 1,
4116 { .init_isa = cs4231a_init }
4117 },
4118 #endif
4119
4120 #ifdef CONFIG_ADLIB
4121 {
4122 "adlib",
4123 #ifdef HAS_YMF262
4124 "Yamaha YMF262 (OPL3)",
4125 #else
4126 "Yamaha YM3812 (OPL2)",
4127 #endif
4128 0,
4129 1,
4130 { .init_isa = Adlib_init }
4131 },
4132 #endif
4133
4134 #ifdef CONFIG_GUS
4135 {
4136 "gus",
4137 "Gravis Ultrasound GF1",
4138 0,
4139 1,
4140 { .init_isa = GUS_init }
4141 },
4142 #endif
4143
4144 #ifdef CONFIG_AC97
4145 {
4146 "ac97",
4147 "Intel 82801AA AC97 Audio",
4148 0,
4149 0,
4150 { .init_pci = ac97_init }
4151 },
4152 #endif
4153
4154 #ifdef CONFIG_ES1370
4155 {
4156 "es1370",
4157 "ENSONIQ AudioPCI ES1370",
4158 0,
4159 0,
4160 { .init_pci = es1370_init }
4161 },
4162 #endif
4163
4164 #endif /* HAS_AUDIO_CHOICE */
4165
4166 { NULL, NULL, 0, 0, { NULL } }
4167 };
4168
4169 static void select_soundhw (const char *optarg)
4170 {
4171 struct soundhw *c;
4172
4173 if (*optarg == '?') {
4174 show_valid_cards:
4175
4176 printf ("Valid sound card names (comma separated):\n");
4177 for (c = soundhw; c->name; ++c) {
4178 printf ("%-11s %s\n", c->name, c->descr);
4179 }
4180 printf ("\n-soundhw all will enable all of the above\n");
4181 exit (*optarg != '?');
4182 }
4183 else {
4184 size_t l;
4185 const char *p;
4186 char *e;
4187 int bad_card = 0;
4188
4189 if (!strcmp (optarg, "all")) {
4190 for (c = soundhw; c->name; ++c) {
4191 c->enabled = 1;
4192 }
4193 return;
4194 }
4195
4196 p = optarg;
4197 while (*p) {
4198 e = strchr (p, ',');
4199 l = !e ? strlen (p) : (size_t) (e - p);
4200
4201 for (c = soundhw; c->name; ++c) {
4202 if (!strncmp (c->name, p, l) && !c->name[l]) {
4203 c->enabled = 1;
4204 break;
4205 }
4206 }
4207
4208 if (!c->name) {
4209 if (l > 80) {
4210 fprintf (stderr,
4211 "Unknown sound card name (too big to show)\n");
4212 }
4213 else {
4214 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4215 (int) l, p);
4216 }
4217 bad_card = 1;
4218 }
4219 p += l + (e != NULL);
4220 }
4221
4222 if (bad_card)
4223 goto show_valid_cards;
4224 }
4225 }
4226 #endif
4227
4228 static void select_vgahw (const char *p)
4229 {
4230 const char *opts;
4231
4232 default_vga = 0;
4233 vga_interface_type = VGA_NONE;
4234 if (strstart(p, "std", &opts)) {
4235 vga_interface_type = VGA_STD;
4236 } else if (strstart(p, "cirrus", &opts)) {
4237 vga_interface_type = VGA_CIRRUS;
4238 } else if (strstart(p, "vmware", &opts)) {
4239 vga_interface_type = VGA_VMWARE;
4240 } else if (strstart(p, "xenfb", &opts)) {
4241 vga_interface_type = VGA_XENFB;
4242 } else if (!strstart(p, "none", &opts)) {
4243 invalid_vga:
4244 fprintf(stderr, "Unknown vga type: %s\n", p);
4245 exit(1);
4246 }
4247 while (*opts) {
4248 const char *nextopt;
4249
4250 if (strstart(opts, ",retrace=", &nextopt)) {
4251 opts = nextopt;
4252 if (strstart(opts, "dumb", &nextopt))
4253 vga_retrace_method = VGA_RETRACE_DUMB;
4254 else if (strstart(opts, "precise", &nextopt))
4255 vga_retrace_method = VGA_RETRACE_PRECISE;
4256 else goto invalid_vga;
4257 } else goto invalid_vga;
4258 opts = nextopt;
4259 }
4260 }
4261
4262 #ifdef TARGET_I386
4263 static int balloon_parse(const char *arg)
4264 {
4265 QemuOpts *opts;
4266
4267 if (strcmp(arg, "none") == 0) {
4268 return 0;
4269 }
4270
4271 if (!strncmp(arg, "virtio", 6)) {
4272 if (arg[6] == ',') {
4273 /* have params -> parse them */
4274 opts = qemu_opts_parse(&qemu_device_opts, arg+7, NULL);
4275 if (!opts)
4276 return -1;
4277 } else {
4278 /* create empty opts */
4279 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
4280 }
4281 qemu_opt_set(opts, "driver", "virtio-balloon-pci");
4282 return 0;
4283 }
4284
4285 return -1;
4286 }
4287 #endif
4288
4289 #ifdef _WIN32
4290 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4291 {
4292 exit(STATUS_CONTROL_C_EXIT);
4293 return TRUE;
4294 }
4295 #endif
4296
4297 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4298 {
4299 int ret;
4300
4301 if(strlen(str) != 36)
4302 return -1;
4303
4304 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4305 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4306 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4307
4308 if(ret != 16)
4309 return -1;
4310
4311 #ifdef TARGET_I386
4312 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4313 #endif
4314
4315 return 0;
4316 }
4317
4318 #ifndef _WIN32
4319
4320 static void termsig_handler(int signal)
4321 {
4322 qemu_system_shutdown_request();
4323 }
4324
4325 static void sigchld_handler(int signal)
4326 {
4327 waitpid(-1, NULL, WNOHANG);
4328 }
4329
4330 static void sighandler_setup(void)
4331 {
4332 struct sigaction act;
4333
4334 memset(&act, 0, sizeof(act));
4335 act.sa_handler = termsig_handler;
4336 sigaction(SIGINT, &act, NULL);
4337 sigaction(SIGHUP, &act, NULL);
4338 sigaction(SIGTERM, &act, NULL);
4339
4340 act.sa_handler = sigchld_handler;
4341 act.sa_flags = SA_NOCLDSTOP;
4342 sigaction(SIGCHLD, &act, NULL);
4343 }
4344
4345 #endif
4346
4347 #ifdef _WIN32
4348 /* Look for support files in the same directory as the executable. */
4349 static char *find_datadir(const char *argv0)
4350 {
4351 char *p;
4352 char buf[MAX_PATH];
4353 DWORD len;
4354
4355 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4356 if (len == 0) {
4357 return NULL;
4358 }
4359
4360 buf[len] = 0;
4361 p = buf + len - 1;
4362 while (p != buf && *p != '\\')
4363 p--;
4364 *p = 0;
4365 if (access(buf, R_OK) == 0) {
4366 return qemu_strdup(buf);
4367 }
4368 return NULL;
4369 }
4370 #else /* !_WIN32 */
4371
4372 /* Find a likely location for support files using the location of the binary.
4373 For installed binaries this will be "$bindir/../share/qemu". When
4374 running from the build tree this will be "$bindir/../pc-bios". */
4375 #define SHARE_SUFFIX "/share/qemu"
4376 #define BUILD_SUFFIX "/pc-bios"
4377 static char *find_datadir(const char *argv0)
4378 {
4379 char *dir;
4380 char *p = NULL;
4381 char *res;
4382 char buf[PATH_MAX];
4383 size_t max_len;
4384
4385 #if defined(__linux__)
4386 {
4387 int len;
4388 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4389 if (len > 0) {
4390 buf[len] = 0;
4391 p = buf;
4392 }
4393 }
4394 #elif defined(__FreeBSD__)
4395 {
4396 int len;
4397 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4398 if (len > 0) {
4399 buf[len] = 0;
4400 p = buf;
4401 }
4402 }
4403 #endif
4404 /* If we don't have any way of figuring out the actual executable
4405 location then try argv[0]. */
4406 if (!p) {
4407 p = realpath(argv0, buf);
4408 if (!p) {
4409 return NULL;
4410 }
4411 }
4412 dir = dirname(p);
4413 dir = dirname(dir);
4414
4415 max_len = strlen(dir) +
4416 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4417 res = qemu_mallocz(max_len);
4418 snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4419 if (access(res, R_OK)) {
4420 snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4421 if (access(res, R_OK)) {
4422 qemu_free(res);
4423 res = NULL;
4424 }
4425 }
4426
4427 return res;
4428 }
4429 #undef SHARE_SUFFIX
4430 #undef BUILD_SUFFIX
4431 #endif
4432
4433 char *qemu_find_file(int type, const char *name)
4434 {
4435 int len;
4436 const char *subdir;
4437 char *buf;
4438
4439 /* If name contains path separators then try it as a straight path. */
4440 if ((strchr(name, '/') || strchr(name, '\\'))
4441 && access(name, R_OK) == 0) {
4442 return qemu_strdup(name);
4443 }
4444 switch (type) {
4445 case QEMU_FILE_TYPE_BIOS:
4446 subdir = "";
4447 break;
4448 case QEMU_FILE_TYPE_KEYMAP:
4449 subdir = "keymaps/";
4450 break;
4451 default:
4452 abort();
4453 }
4454 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4455 buf = qemu_mallocz(len);
4456 snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4457 if (access(buf, R_OK)) {
4458 qemu_free(buf);
4459 return NULL;
4460 }
4461 return buf;
4462 }
4463
4464 static int device_help_func(QemuOpts *opts, void *opaque)
4465 {
4466 return qdev_device_help(opts);
4467 }
4468
4469 static int device_init_func(QemuOpts *opts, void *opaque)
4470 {
4471 DeviceState *dev;
4472
4473 dev = qdev_device_add(opts);
4474 if (!dev)
4475 return -1;
4476 return 0;
4477 }
4478
4479 static int chardev_init_func(QemuOpts *opts, void *opaque)
4480 {
4481 CharDriverState *chr;
4482
4483 chr = qemu_chr_open_opts(opts, NULL);
4484 if (!chr)
4485 return -1;
4486 return 0;
4487 }
4488
4489 static int mon_init_func(QemuOpts *opts, void *opaque)
4490 {
4491 CharDriverState *chr;
4492 const char *chardev;
4493 const char *mode;
4494 int flags;
4495
4496 mode = qemu_opt_get(opts, "mode");
4497 if (mode == NULL) {
4498 mode = "readline";
4499 }
4500 if (strcmp(mode, "readline") == 0) {
4501 flags = MONITOR_USE_READLINE;
4502 } else if (strcmp(mode, "control") == 0) {
4503 flags = MONITOR_USE_CONTROL;
4504 } else {
4505 fprintf(stderr, "unknown monitor mode \"%s\"\n", mode);
4506 exit(1);
4507 }
4508
4509 if (qemu_opt_get_bool(opts, "default", 0))
4510 flags |= MONITOR_IS_DEFAULT;
4511
4512 chardev = qemu_opt_get(opts, "chardev");
4513 chr = qemu_chr_find(chardev);
4514 if (chr == NULL) {
4515 fprintf(stderr, "chardev \"%s\" not found\n", chardev);
4516 exit(1);
4517 }
4518
4519 monitor_init(chr, flags);
4520 return 0;
4521 }
4522
4523 static void monitor_parse(const char *optarg, const char *mode)
4524 {
4525 static int monitor_device_index = 0;
4526 QemuOpts *opts;
4527 const char *p;
4528 char label[32];
4529 int def = 0;
4530
4531 if (strstart(optarg, "chardev:", &p)) {
4532 snprintf(label, sizeof(label), "%s", p);
4533 } else {
4534 if (monitor_device_index) {
4535 snprintf(label, sizeof(label), "monitor%d",
4536 monitor_device_index);
4537 } else {
4538 snprintf(label, sizeof(label), "monitor");
4539 def = 1;
4540 }
4541 opts = qemu_chr_parse_compat(label, optarg);
4542 if (!opts) {
4543 fprintf(stderr, "parse error: %s\n", optarg);
4544 exit(1);
4545 }
4546 }
4547
4548 opts = qemu_opts_create(&qemu_mon_opts, label, 1);
4549 if (!opts) {
4550 fprintf(stderr, "duplicate chardev: %s\n", label);
4551 exit(1);
4552 }
4553 qemu_opt_set(opts, "mode", mode);
4554 qemu_opt_set(opts, "chardev", label);
4555 if (def)
4556 qemu_opt_set(opts, "default", "on");
4557 monitor_device_index++;
4558 }
4559
4560 struct device_config {
4561 enum {
4562 DEV_USB, /* -usbdevice */
4563 DEV_BT, /* -bt */
4564 DEV_SERIAL, /* -serial */
4565 DEV_PARALLEL, /* -parallel */
4566 DEV_VIRTCON, /* -virtioconsole */
4567 DEV_DEBUGCON, /* -debugcon */
4568 } type;
4569 const char *cmdline;
4570 QTAILQ_ENTRY(device_config) next;
4571 };
4572 QTAILQ_HEAD(, device_config) device_configs = QTAILQ_HEAD_INITIALIZER(device_configs);
4573
4574 static void add_device_config(int type, const char *cmdline)
4575 {
4576 struct device_config *conf;
4577
4578 conf = qemu_mallocz(sizeof(*conf));
4579 conf->type = type;
4580 conf->cmdline = cmdline;
4581 QTAILQ_INSERT_TAIL(&device_configs, conf, next);
4582 }
4583
4584 static int foreach_device_config(int type, int (*func)(const char *cmdline))
4585 {
4586 struct device_config *conf;
4587 int rc;
4588
4589 QTAILQ_FOREACH(conf, &device_configs, next) {
4590 if (conf->type != type)
4591 continue;
4592 rc = func(conf->cmdline);
4593 if (0 != rc)
4594 return rc;
4595 }
4596 return 0;
4597 }
4598
4599 static int serial_parse(const char *devname)
4600 {
4601 static int index = 0;
4602 char label[32];
4603
4604 if (strcmp(devname, "none") == 0)
4605 return 0;
4606 if (index == MAX_SERIAL_PORTS) {
4607 fprintf(stderr, "qemu: too many serial ports\n");
4608 exit(1);
4609 }
4610 snprintf(label, sizeof(label), "serial%d", index);
4611 serial_hds[index] = qemu_chr_open(label, devname, NULL);
4612 if (!serial_hds[index]) {
4613 fprintf(stderr, "qemu: could not open serial device '%s': %s\n",
4614 devname, strerror(errno));
4615 return -1;
4616 }
4617 index++;
4618 return 0;
4619 }
4620
4621 static int parallel_parse(const char *devname)
4622 {
4623 static int index = 0;
4624 char label[32];
4625
4626 if (strcmp(devname, "none") == 0)
4627 return 0;
4628 if (index == MAX_PARALLEL_PORTS) {
4629 fprintf(stderr, "qemu: too many parallel ports\n");
4630 exit(1);
4631 }
4632 snprintf(label, sizeof(label), "parallel%d", index);
4633 parallel_hds[index] = qemu_chr_open(label, devname, NULL);
4634 if (!parallel_hds[index]) {
4635 fprintf(stderr, "qemu: could not open parallel device '%s': %s\n",
4636 devname, strerror(errno));
4637 return -1;
4638 }
4639 index++;
4640 return 0;
4641 }
4642
4643 static int virtcon_parse(const char *devname)
4644 {
4645 static int index = 0;
4646 char label[32];
4647 QemuOpts *bus_opts, *dev_opts;
4648
4649 if (strcmp(devname, "none") == 0)
4650 return 0;
4651 if (index == MAX_VIRTIO_CONSOLES) {
4652 fprintf(stderr, "qemu: too many virtio consoles\n");
4653 exit(1);
4654 }
4655
4656 bus_opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
4657 qemu_opt_set(bus_opts, "driver", "virtio-serial");
4658
4659 dev_opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
4660 qemu_opt_set(dev_opts, "driver", "virtconsole");
4661
4662 snprintf(label, sizeof(label), "virtcon%d", index);
4663 virtcon_hds[index] = qemu_chr_open(label, devname, NULL);
4664 if (!virtcon_hds[index]) {
4665 fprintf(stderr, "qemu: could not open virtio console '%s': %s\n",
4666 devname, strerror(errno));
4667 return -1;
4668 }
4669 qemu_opt_set(dev_opts, "chardev", label);
4670
4671 index++;
4672 return 0;
4673 }
4674
4675 static int debugcon_parse(const char *devname)
4676 {
4677 QemuOpts *opts;
4678
4679 if (!qemu_chr_open("debugcon", devname, NULL)) {
4680 exit(1);
4681 }
4682 opts = qemu_opts_create(&qemu_device_opts, "debugcon", 1);
4683 if (!opts) {
4684 fprintf(stderr, "qemu: already have a debugcon device\n");
4685 exit(1);
4686 }
4687 qemu_opt_set(opts, "driver", "isa-debugcon");
4688 qemu_opt_set(opts, "chardev", "debugcon");
4689 return 0;
4690 }
4691
4692 static const QEMUOption *lookup_opt(int argc, char **argv,
4693 const char **poptarg, int *poptind)
4694 {
4695 const QEMUOption *popt;
4696 int optind = *poptind;
4697 char *r = argv[optind];
4698 const char *optarg;
4699
4700 optind++;
4701 /* Treat --foo the same as -foo. */
4702 if (r[1] == '-')
4703 r++;
4704 popt = qemu_options;
4705 for(;;) {
4706 if (!popt->name) {
4707 fprintf(stderr, "%s: invalid option -- '%s'\n",
4708 argv[0], r);
4709 exit(1);
4710 }
4711 if (!strcmp(popt->name, r + 1))
4712 break;
4713 popt++;
4714 }
4715 if (popt->flags & HAS_ARG) {
4716 if (optind >= argc) {
4717 fprintf(stderr, "%s: option '%s' requires an argument\n",
4718 argv[0], r);
4719 exit(1);
4720 }
4721 optarg = argv[optind++];
4722 } else {
4723 optarg = NULL;
4724 }
4725
4726 *poptarg = optarg;
4727 *poptind = optind;
4728
4729 return popt;
4730 }
4731
4732 int main(int argc, char **argv, char **envp)
4733 {
4734 const char *gdbstub_dev = NULL;
4735 uint32_t boot_devices_bitmap = 0;
4736 int i;
4737 int snapshot, linux_boot, net_boot;
4738 const char *initrd_filename;
4739 const char *kernel_filename, *kernel_cmdline;
4740 char boot_devices[33] = "cad"; /* default to HD->floppy->CD-ROM */
4741 DisplayState *ds;
4742 DisplayChangeListener *dcl;
4743 int cyls, heads, secs, translation;
4744 QemuOpts *hda_opts = NULL, *opts;
4745 int optind;
4746 const char *optarg;
4747 const char *loadvm = NULL;
4748 QEMUMachine *machine;
4749 const char *cpu_model;
4750 #ifndef _WIN32
4751 int fds[2];
4752 #endif
4753 int tb_size;
4754 const char *pid_file = NULL;
4755 const char *incoming = NULL;
4756 #ifndef _WIN32
4757 int fd = 0;
4758 struct passwd *pwd = NULL;
4759 const char *chroot_dir = NULL;
4760 const char *run_as = NULL;
4761 #endif
4762 CPUState *env;
4763 int show_vnc_port = 0;
4764 int defconfig = 1;
4765
4766 init_clocks();
4767
4768 qemu_errors_to_file(stderr);
4769 qemu_cache_utils_init(envp);
4770
4771 QLIST_INIT (&vm_change_state_head);
4772 #ifndef _WIN32
4773 {
4774 struct sigaction act;
4775 sigfillset(&act.sa_mask);
4776 act.sa_flags = 0;
4777 act.sa_handler = SIG_IGN;
4778 sigaction(SIGPIPE, &act, NULL);
4779 }
4780 #else
4781 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4782 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4783 QEMU to run on a single CPU */
4784 {
4785 HANDLE h;
4786 DWORD mask, smask;
4787 int i;
4788 h = GetCurrentProcess();
4789 if (GetProcessAffinityMask(h, &mask, &smask)) {
4790 for(i = 0; i < 32; i++) {
4791 if (mask & (1 << i))
4792 break;
4793 }
4794 if (i != 32) {
4795 mask = 1 << i;
4796 SetProcessAffinityMask(h, mask);
4797 }
4798 }
4799 }
4800 #endif
4801
4802 module_call_init(MODULE_INIT_MACHINE);
4803 machine = find_default_machine();
4804 cpu_model = NULL;
4805 initrd_filename = NULL;
4806 ram_size = 0;
4807 snapshot = 0;
4808 kernel_filename = NULL;
4809 kernel_cmdline = "";
4810 cyls = heads = secs = 0;
4811 translation = BIOS_ATA_TRANSLATION_AUTO;
4812
4813 for (i = 0; i < MAX_NODES; i++) {
4814 node_mem[i] = 0;
4815 node_cpumask[i] = 0;
4816 }
4817
4818 nb_numa_nodes = 0;
4819 nb_nics = 0;
4820
4821 tb_size = 0;
4822 autostart= 1;
4823
4824 /* first pass of option parsing */
4825 optind = 1;
4826 while (optind < argc) {
4827 if (argv[optind][0] != '-') {
4828 /* disk image */
4829 optind++;
4830 continue;
4831 } else {
4832 const QEMUOption *popt;
4833
4834 popt = lookup_opt(argc, argv, &optarg, &optind);
4835 switch (popt->index) {
4836 case QEMU_OPTION_nodefconfig:
4837 defconfig=0;
4838 break;
4839 }
4840 }
4841 }
4842
4843 if (defconfig) {
4844 FILE *fp;
4845 fp = fopen(CONFIG_QEMU_CONFDIR "/qemu.conf", "r");
4846 if (fp) {
4847 if (qemu_config_parse(fp) != 0) {
4848 exit(1);
4849 }
4850 fclose(fp);
4851 }
4852
4853 fp = fopen(CONFIG_QEMU_CONFDIR "/target-" TARGET_ARCH ".conf", "r");
4854 if (fp) {
4855 if (qemu_config_parse(fp) != 0) {
4856 exit(1);
4857 }
4858 fclose(fp);
4859 }
4860 }
4861
4862 /* second pass of option parsing */
4863 optind = 1;
4864 for(;;) {
4865 if (optind >= argc)
4866 break;
4867 if (argv[optind][0] != '-') {
4868 hda_opts = drive_add(argv[optind++], HD_ALIAS, 0);
4869 } else {
4870 const QEMUOption *popt;
4871
4872 popt = lookup_opt(argc, argv, &optarg, &optind);
4873 switch(popt->index) {
4874 case QEMU_OPTION_M:
4875 machine = find_machine(optarg);
4876 if (!machine) {
4877 QEMUMachine *m;
4878 printf("Supported machines are:\n");
4879 for(m = first_machine; m != NULL; m = m->next) {
4880 if (m->alias)
4881 printf("%-10s %s (alias of %s)\n",
4882 m->alias, m->desc, m->name);
4883 printf("%-10s %s%s\n",
4884 m->name, m->desc,
4885 m->is_default ? " (default)" : "");
4886 }
4887 exit(*optarg != '?');
4888 }
4889 break;
4890 case QEMU_OPTION_cpu:
4891 /* hw initialization will check this */
4892 if (*optarg == '?') {
4893 /* XXX: implement xxx_cpu_list for targets that still miss it */
4894 #if defined(cpu_list)
4895 cpu_list(stdout, &fprintf);
4896 #endif
4897 exit(0);
4898 } else {
4899 cpu_model = optarg;
4900 }
4901 break;
4902 case QEMU_OPTION_initrd:
4903 initrd_filename = optarg;
4904 break;
4905 case QEMU_OPTION_hda:
4906 if (cyls == 0)
4907 hda_opts = drive_add(optarg, HD_ALIAS, 0);
4908 else
4909 hda_opts = drive_add(optarg, HD_ALIAS
4910 ",cyls=%d,heads=%d,secs=%d%s",
4911 0, cyls, heads, secs,
4912 translation == BIOS_ATA_TRANSLATION_LBA ?
4913 ",trans=lba" :
4914 translation == BIOS_ATA_TRANSLATION_NONE ?
4915 ",trans=none" : "");
4916 break;
4917 case QEMU_OPTION_hdb:
4918 case QEMU_OPTION_hdc:
4919 case QEMU_OPTION_hdd:
4920 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4921 break;
4922 case QEMU_OPTION_drive:
4923 drive_add(NULL, "%s", optarg);
4924 break;
4925 case QEMU_OPTION_set:
4926 if (qemu_set_option(optarg) != 0)
4927 exit(1);
4928 break;
4929 case QEMU_OPTION_global:
4930 if (qemu_global_option(optarg) != 0)
4931 exit(1);
4932 break;
4933 case QEMU_OPTION_mtdblock:
4934 drive_add(optarg, MTD_ALIAS);
4935 break;
4936 case QEMU_OPTION_sd:
4937 drive_add(optarg, SD_ALIAS);
4938 break;
4939 case QEMU_OPTION_pflash:
4940 drive_add(optarg, PFLASH_ALIAS);
4941 break;
4942 case QEMU_OPTION_snapshot:
4943 snapshot = 1;
4944 break;
4945 case QEMU_OPTION_hdachs:
4946 {
4947 const char *p;
4948 p = optarg;
4949 cyls = strtol(p, (char **)&p, 0);
4950 if (cyls < 1 || cyls > 16383)
4951 goto chs_fail;
4952 if (*p != ',')
4953 goto chs_fail;
4954 p++;
4955 heads = strtol(p, (char **)&p, 0);
4956 if (heads < 1 || heads > 16)
4957 goto chs_fail;
4958 if (*p != ',')
4959 goto chs_fail;
4960 p++;
4961 secs = strtol(p, (char **)&p, 0);
4962 if (secs < 1 || secs > 63)
4963 goto chs_fail;
4964 if (*p == ',') {
4965 p++;
4966 if (!strcmp(p, "none"))
4967 translation = BIOS_ATA_TRANSLATION_NONE;
4968 else if (!strcmp(p, "lba"))
4969 translation = BIOS_ATA_TRANSLATION_LBA;
4970 else if (!strcmp(p, "auto"))
4971 translation = BIOS_ATA_TRANSLATION_AUTO;
4972 else
4973 goto chs_fail;
4974 } else if (*p != '\0') {
4975 chs_fail:
4976 fprintf(stderr, "qemu: invalid physical CHS format\n");
4977 exit(1);
4978 }
4979 if (hda_opts != NULL) {
4980 char num[16];
4981 snprintf(num, sizeof(num), "%d", cyls);
4982 qemu_opt_set(hda_opts, "cyls", num);
4983 snprintf(num, sizeof(num), "%d", heads);
4984 qemu_opt_set(hda_opts, "heads", num);
4985 snprintf(num, sizeof(num), "%d", secs);
4986 qemu_opt_set(hda_opts, "secs", num);
4987 if (translation == BIOS_ATA_TRANSLATION_LBA)
4988 qemu_opt_set(hda_opts, "trans", "lba");
4989 if (translation == BIOS_ATA_TRANSLATION_NONE)
4990 qemu_opt_set(hda_opts, "trans", "none");
4991 }
4992 }
4993 break;
4994 case QEMU_OPTION_numa:
4995 if (nb_numa_nodes >= MAX_NODES) {
4996 fprintf(stderr, "qemu: too many NUMA nodes\n");
4997 exit(1);
4998 }
4999 numa_add(optarg);
5000 break;
5001 case QEMU_OPTION_nographic:
5002 display_type = DT_NOGRAPHIC;
5003 break;
5004 #ifdef CONFIG_CURSES
5005 case QEMU_OPTION_curses:
5006 display_type = DT_CURSES;
5007 break;
5008 #endif
5009 case QEMU_OPTION_portrait:
5010 graphic_rotate = 1;
5011 break;
5012 case QEMU_OPTION_kernel:
5013 kernel_filename = optarg;
5014 break;
5015 case QEMU_OPTION_append:
5016 kernel_cmdline = optarg;
5017 break;
5018 case QEMU_OPTION_cdrom:
5019 drive_add(optarg, CDROM_ALIAS);
5020 break;
5021 case QEMU_OPTION_boot:
5022 {
5023 static const char * const params[] = {
5024 "order", "once", "menu", NULL
5025 };
5026 char buf[sizeof(boot_devices)];
5027 char *standard_boot_devices;
5028 int legacy = 0;
5029
5030 if (!strchr(optarg, '=')) {
5031 legacy = 1;
5032 pstrcpy(buf, sizeof(buf), optarg);
5033 } else if (check_params(buf, sizeof(buf), params, optarg) < 0) {
5034 fprintf(stderr,
5035 "qemu: unknown boot parameter '%s' in '%s'\n",
5036 buf, optarg);
5037 exit(1);
5038 }
5039
5040 if (legacy ||
5041 get_param_value(buf, sizeof(buf), "order", optarg)) {
5042 boot_devices_bitmap = parse_bootdevices(buf);
5043 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5044 }
5045 if (!legacy) {
5046 if (get_param_value(buf, sizeof(buf),
5047 "once", optarg)) {
5048 boot_devices_bitmap |= parse_bootdevices(buf);
5049 standard_boot_devices = qemu_strdup(boot_devices);
5050 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5051 qemu_register_reset(restore_boot_devices,
5052 standard_boot_devices);
5053 }
5054 if (get_param_value(buf, sizeof(buf),
5055 "menu", optarg)) {
5056 if (!strcmp(buf, "on")) {
5057 boot_menu = 1;
5058 } else if (!strcmp(buf, "off")) {
5059 boot_menu = 0;
5060 } else {
5061 fprintf(stderr,
5062 "qemu: invalid option value '%s'\n",
5063 buf);
5064 exit(1);
5065 }
5066 }
5067 }
5068 }
5069 break;
5070 case QEMU_OPTION_fda:
5071 case QEMU_OPTION_fdb:
5072 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5073 break;
5074 #ifdef TARGET_I386
5075 case QEMU_OPTION_no_fd_bootchk:
5076 fd_bootchk = 0;
5077 break;
5078 #endif
5079 case QEMU_OPTION_netdev:
5080 if (net_client_parse(&qemu_netdev_opts, optarg) == -1) {
5081 exit(1);
5082 }
5083 break;
5084 case QEMU_OPTION_net:
5085 if (net_client_parse(&qemu_net_opts, optarg) == -1) {
5086 exit(1);
5087 }
5088 break;
5089 #ifdef CONFIG_SLIRP
5090 case QEMU_OPTION_tftp:
5091 legacy_tftp_prefix = optarg;
5092 break;
5093 case QEMU_OPTION_bootp:
5094 legacy_bootp_filename = optarg;
5095 break;
5096 #ifndef _WIN32
5097 case QEMU_OPTION_smb:
5098 if (net_slirp_smb(optarg) < 0)
5099 exit(1);
5100 break;
5101 #endif
5102 case QEMU_OPTION_redir:
5103 if (net_slirp_redir(optarg) < 0)
5104 exit(1);
5105 break;
5106 #endif
5107 case QEMU_OPTION_bt:
5108 add_device_config(DEV_BT, optarg);
5109 break;
5110 #ifdef HAS_AUDIO
5111 case QEMU_OPTION_audio_help:
5112 AUD_help ();
5113 exit (0);
5114 break;
5115 case QEMU_OPTION_soundhw:
5116 select_soundhw (optarg);
5117 break;
5118 #endif
5119 case QEMU_OPTION_h:
5120 help(0);
5121 break;
5122 case QEMU_OPTION_version:
5123 version();
5124 exit(0);
5125 break;
5126 case QEMU_OPTION_m: {
5127 uint64_t value;
5128 char *ptr;
5129
5130 value = strtoul(optarg, &ptr, 10);
5131 switch (*ptr) {
5132 case 0: case 'M': case 'm':
5133 value <<= 20;
5134 break;
5135 case 'G': case 'g':
5136 value <<= 30;
5137 break;
5138 default:
5139 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5140 exit(1);
5141 }
5142
5143 /* On 32-bit hosts, QEMU is limited by virtual address space */
5144 if (value > (2047 << 20) && HOST_LONG_BITS == 32) {
5145 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5146 exit(1);
5147 }
5148 if (value != (uint64_t)(ram_addr_t)value) {
5149 fprintf(stderr, "qemu: ram size too large\n");
5150 exit(1);
5151 }
5152 ram_size = value;
5153 break;
5154 }
5155 case QEMU_OPTION_d:
5156 {
5157 int mask;
5158 const CPULogItem *item;
5159
5160 mask = cpu_str_to_log_mask(optarg);
5161 if (!mask) {
5162 printf("Log items (comma separated):\n");
5163 for(item = cpu_log_items; item->mask != 0; item++) {
5164 printf("%-10s %s\n", item->name, item->help);
5165 }
5166 exit(1);
5167 }
5168 cpu_set_log(mask);
5169 }
5170 break;
5171 case QEMU_OPTION_s:
5172 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5173 break;
5174 case QEMU_OPTION_gdb:
5175 gdbstub_dev = optarg;
5176 break;
5177 case QEMU_OPTION_L:
5178 data_dir = optarg;
5179 break;
5180 case QEMU_OPTION_bios:
5181 bios_name = optarg;
5182 break;
5183 case QEMU_OPTION_singlestep:
5184 singlestep = 1;
5185 break;
5186 case QEMU_OPTION_S:
5187 autostart = 0;
5188 break;
5189 case QEMU_OPTION_k:
5190 keyboard_layout = optarg;
5191 break;
5192 case QEMU_OPTION_localtime:
5193 rtc_utc = 0;
5194 break;
5195 case QEMU_OPTION_vga:
5196 select_vgahw (optarg);
5197 break;
5198 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5199 case QEMU_OPTION_g:
5200 {
5201 const char *p;
5202 int w, h, depth;
5203 p = optarg;
5204 w = strtol(p, (char **)&p, 10);
5205 if (w <= 0) {
5206 graphic_error:
5207 fprintf(stderr, "qemu: invalid resolution or depth\n");
5208 exit(1);
5209 }
5210 if (*p != 'x')
5211 goto graphic_error;
5212 p++;
5213 h = strtol(p, (char **)&p, 10);
5214 if (h <= 0)
5215 goto graphic_error;
5216 if (*p == 'x') {
5217 p++;
5218 depth = strtol(p, (char **)&p, 10);
5219 if (depth != 8 && depth != 15 && depth != 16 &&
5220 depth != 24 && depth != 32)
5221 goto graphic_error;
5222 } else if (*p == '\0') {
5223 depth = graphic_depth;
5224 } else {
5225 goto graphic_error;
5226 }
5227
5228 graphic_width = w;
5229 graphic_height = h;
5230 graphic_depth = depth;
5231 }
5232 break;
5233 #endif
5234 case QEMU_OPTION_echr:
5235 {
5236 char *r;
5237 term_escape_char = strtol(optarg, &r, 0);
5238 if (r == optarg)
5239 printf("Bad argument to echr\n");
5240 break;
5241 }
5242 case QEMU_OPTION_monitor:
5243 monitor_parse(optarg, "readline");
5244 default_monitor = 0;
5245 break;
5246 case QEMU_OPTION_qmp:
5247 monitor_parse(optarg, "control");
5248 default_monitor = 0;
5249 break;
5250 case QEMU_OPTION_mon:
5251 opts = qemu_opts_parse(&qemu_mon_opts, optarg, "chardev");
5252 if (!opts) {
5253 fprintf(stderr, "parse error: %s\n", optarg);
5254 exit(1);
5255 }
5256 default_monitor = 0;
5257 break;
5258 case QEMU_OPTION_chardev:
5259 opts = qemu_opts_parse(&qemu_chardev_opts, optarg, "backend");
5260 if (!opts) {
5261 fprintf(stderr, "parse error: %s\n", optarg);
5262 exit(1);
5263 }
5264 break;
5265 case QEMU_OPTION_serial:
5266 add_device_config(DEV_SERIAL, optarg);
5267 default_serial = 0;
5268 break;
5269 case QEMU_OPTION_watchdog:
5270 if (watchdog) {
5271 fprintf(stderr,
5272 "qemu: only one watchdog option may be given\n");
5273 return 1;
5274 }
5275 watchdog = optarg;
5276 break;
5277 case QEMU_OPTION_watchdog_action:
5278 if (select_watchdog_action(optarg) == -1) {
5279 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5280 exit(1);
5281 }
5282 break;
5283 case QEMU_OPTION_virtiocon:
5284 add_device_config(DEV_VIRTCON, optarg);
5285 default_virtcon = 0;
5286 break;
5287 case QEMU_OPTION_parallel:
5288 add_device_config(DEV_PARALLEL, optarg);
5289 default_parallel = 0;
5290 break;
5291 case QEMU_OPTION_debugcon:
5292 add_device_config(DEV_DEBUGCON, optarg);
5293 break;
5294 case QEMU_OPTION_loadvm:
5295 loadvm = optarg;
5296 break;
5297 case QEMU_OPTION_full_screen:
5298 full_screen = 1;
5299 break;
5300 #ifdef CONFIG_SDL
5301 case QEMU_OPTION_no_frame:
5302 no_frame = 1;
5303 break;
5304 case QEMU_OPTION_alt_grab:
5305 alt_grab = 1;
5306 break;
5307 case QEMU_OPTION_ctrl_grab:
5308 ctrl_grab = 1;
5309 break;
5310 case QEMU_OPTION_no_quit:
5311 no_quit = 1;
5312 break;
5313 case QEMU_OPTION_sdl:
5314 display_type = DT_SDL;
5315 break;
5316 #endif
5317 case QEMU_OPTION_pidfile:
5318 pid_file = optarg;
5319 break;
5320 #ifdef TARGET_I386
5321 case QEMU_OPTION_win2k_hack:
5322 win2k_install_hack = 1;
5323 break;
5324 case QEMU_OPTION_rtc_td_hack:
5325 rtc_td_hack = 1;
5326 break;
5327 case QEMU_OPTION_acpitable:
5328 if(acpi_table_add(optarg) < 0) {
5329 fprintf(stderr, "Wrong acpi table provided\n");
5330 exit(1);
5331 }
5332 break;
5333 case QEMU_OPTION_smbios:
5334 if(smbios_entry_add(optarg) < 0) {
5335 fprintf(stderr, "Wrong smbios provided\n");
5336 exit(1);
5337 }
5338 break;
5339 #endif
5340 #ifdef CONFIG_KVM
5341 case QEMU_OPTION_enable_kvm:
5342 kvm_allowed = 1;
5343 break;
5344 #endif
5345 case QEMU_OPTION_usb:
5346 usb_enabled = 1;
5347 break;
5348 case QEMU_OPTION_usbdevice:
5349 usb_enabled = 1;
5350 add_device_config(DEV_USB, optarg);
5351 break;
5352 case QEMU_OPTION_device:
5353 if (!qemu_opts_parse(&qemu_device_opts, optarg, "driver")) {
5354 exit(1);
5355 }
5356 break;
5357 case QEMU_OPTION_smp:
5358 smp_parse(optarg);
5359 if (smp_cpus < 1) {
5360 fprintf(stderr, "Invalid number of CPUs\n");
5361 exit(1);
5362 }
5363 if (max_cpus < smp_cpus) {
5364 fprintf(stderr, "maxcpus must be equal to or greater than "
5365 "smp\n");
5366 exit(1);
5367 }
5368 if (max_cpus > 255) {
5369 fprintf(stderr, "Unsupported number of maxcpus\n");
5370 exit(1);
5371 }
5372 break;
5373 case QEMU_OPTION_vnc:
5374 display_type = DT_VNC;
5375 vnc_display = optarg;
5376 break;
5377 #ifdef TARGET_I386
5378 case QEMU_OPTION_no_acpi:
5379 acpi_enabled = 0;
5380 break;
5381 case QEMU_OPTION_no_hpet:
5382 no_hpet = 1;
5383 break;
5384 case QEMU_OPTION_balloon:
5385 if (balloon_parse(optarg) < 0) {
5386 fprintf(stderr, "Unknown -balloon argument %s\n", optarg);
5387 exit(1);
5388 }
5389 break;
5390 #endif
5391 case QEMU_OPTION_no_reboot:
5392 no_reboot = 1;
5393 break;
5394 case QEMU_OPTION_no_shutdown:
5395 no_shutdown = 1;
5396 break;
5397 case QEMU_OPTION_show_cursor:
5398 cursor_hide = 0;
5399 break;
5400 case QEMU_OPTION_uuid:
5401 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5402 fprintf(stderr, "Fail to parse UUID string."
5403 " Wrong format.\n");
5404 exit(1);
5405 }
5406 break;
5407 #ifndef _WIN32
5408 case QEMU_OPTION_daemonize:
5409 daemonize = 1;
5410 break;
5411 #endif
5412 case QEMU_OPTION_option_rom:
5413 if (nb_option_roms >= MAX_OPTION_ROMS) {
5414 fprintf(stderr, "Too many option ROMs\n");
5415 exit(1);
5416 }
5417 option_rom[nb_option_roms] = optarg;
5418 nb_option_roms++;
5419 break;
5420 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5421 case QEMU_OPTION_semihosting:
5422 semihosting_enabled = 1;
5423 break;
5424 #endif
5425 case QEMU_OPTION_name:
5426 qemu_name = qemu_strdup(optarg);
5427 {
5428 char *p = strchr(qemu_name, ',');
5429 if (p != NULL) {
5430 *p++ = 0;
5431 if (strncmp(p, "process=", 8)) {
5432 fprintf(stderr, "Unknown subargument %s to -name", p);
5433 exit(1);
5434 }
5435 p += 8;
5436 set_proc_name(p);
5437 }
5438 }
5439 break;
5440 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5441 case QEMU_OPTION_prom_env:
5442 if (nb_prom_envs >= MAX_PROM_ENVS) {
5443 fprintf(stderr, "Too many prom variables\n");
5444 exit(1);
5445 }
5446 prom_envs[nb_prom_envs] = optarg;
5447 nb_prom_envs++;
5448 break;
5449 #endif
5450 #ifdef TARGET_ARM
5451 case QEMU_OPTION_old_param:
5452 old_param = 1;
5453 break;
5454 #endif
5455 case QEMU_OPTION_clock:
5456 configure_alarms(optarg);
5457 break;
5458 case QEMU_OPTION_startdate:
5459 configure_rtc_date_offset(optarg, 1);
5460 break;
5461 case QEMU_OPTION_rtc:
5462 opts = qemu_opts_parse(&qemu_rtc_opts, optarg, NULL);
5463 if (!opts) {
5464 fprintf(stderr, "parse error: %s\n", optarg);
5465 exit(1);
5466 }
5467 configure_rtc(opts);
5468 break;
5469 case QEMU_OPTION_tb_size:
5470 tb_size = strtol(optarg, NULL, 0);
5471 if (tb_size < 0)
5472 tb_size = 0;
5473 break;
5474 case QEMU_OPTION_icount:
5475 use_icount = 1;
5476 if (strcmp(optarg, "auto") == 0) {
5477 icount_time_shift = -1;
5478 } else {
5479 icount_time_shift = strtol(optarg, NULL, 0);
5480 }
5481 break;
5482 case QEMU_OPTION_incoming:
5483 incoming = optarg;
5484 break;
5485 case QEMU_OPTION_nodefaults:
5486 default_serial = 0;
5487 default_parallel = 0;
5488 default_virtcon = 0;
5489 default_monitor = 0;
5490 default_vga = 0;
5491 default_net = 0;
5492 default_floppy = 0;
5493 default_cdrom = 0;
5494 default_sdcard = 0;
5495 break;
5496 #ifndef _WIN32
5497 case QEMU_OPTION_chroot:
5498 chroot_dir = optarg;
5499 break;
5500 case QEMU_OPTION_runas:
5501 run_as = optarg;
5502 break;
5503 #endif
5504 #ifdef CONFIG_XEN
5505 case QEMU_OPTION_xen_domid:
5506 xen_domid = atoi(optarg);
5507 break;
5508 case QEMU_OPTION_xen_create:
5509 xen_mode = XEN_CREATE;
5510 break;
5511 case QEMU_OPTION_xen_attach:
5512 xen_mode = XEN_ATTACH;
5513 break;
5514 #endif
5515 case QEMU_OPTION_readconfig:
5516 {
5517 FILE *fp;
5518 fp = fopen(optarg, "r");
5519 if (fp == NULL) {
5520 fprintf(stderr, "open %s: %s\n", optarg, strerror(errno));
5521 exit(1);
5522 }
5523 if (qemu_config_parse(fp) != 0) {
5524 exit(1);
5525 }
5526 fclose(fp);
5527 break;
5528 }
5529 case QEMU_OPTION_writeconfig:
5530 {
5531 FILE *fp;
5532 if (strcmp(optarg, "-") == 0) {
5533 fp = stdout;
5534 } else {
5535 fp = fopen(optarg, "w");
5536 if (fp == NULL) {
5537 fprintf(stderr, "open %s: %s\n", optarg, strerror(errno));
5538 exit(1);
5539 }
5540 }
5541 qemu_config_write(fp);
5542 fclose(fp);
5543 break;
5544 }
5545 }
5546 }
5547 }
5548
5549 /* If no data_dir is specified then try to find it relative to the
5550 executable path. */
5551 if (!data_dir) {
5552 data_dir = find_datadir(argv[0]);
5553 }
5554 /* If all else fails use the install patch specified when building. */
5555 if (!data_dir) {
5556 data_dir = CONFIG_QEMU_SHAREDIR;
5557 }
5558
5559 /*
5560 * Default to max_cpus = smp_cpus, in case the user doesn't
5561 * specify a max_cpus value.
5562 */
5563 if (!max_cpus)
5564 max_cpus = smp_cpus;
5565
5566 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5567 if (smp_cpus > machine->max_cpus) {
5568 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5569 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5570 machine->max_cpus);
5571 exit(1);
5572 }
5573
5574 qemu_opts_foreach(&qemu_device_opts, default_driver_check, NULL, 0);
5575 qemu_opts_foreach(&qemu_global_opts, default_driver_check, NULL, 0);
5576
5577 if (machine->no_serial) {
5578 default_serial = 0;
5579 }
5580 if (machine->no_parallel) {
5581 default_parallel = 0;
5582 }
5583 if (!machine->use_virtcon) {
5584 default_virtcon = 0;
5585 }
5586 if (machine->no_vga) {
5587 default_vga = 0;
5588 }
5589 if (machine->no_floppy) {
5590 default_floppy = 0;
5591 }
5592 if (machine->no_cdrom) {
5593 default_cdrom = 0;
5594 }
5595 if (machine->no_sdcard) {
5596 default_sdcard = 0;
5597 }
5598
5599 if (display_type == DT_NOGRAPHIC) {
5600 if (default_parallel)
5601 add_device_config(DEV_PARALLEL, "null");
5602 if (default_serial && default_monitor) {
5603 add_device_config(DEV_SERIAL, "mon:stdio");
5604 } else if (default_virtcon && default_monitor) {
5605 add_device_config(DEV_VIRTCON, "mon:stdio");
5606 } else {
5607 if (default_serial)
5608 add_device_config(DEV_SERIAL, "stdio");
5609 if (default_virtcon)
5610 add_device_config(DEV_VIRTCON, "stdio");
5611 if (default_monitor)
5612 monitor_parse("stdio", "readline");
5613 }
5614 } else {
5615 if (default_serial)
5616 add_device_config(DEV_SERIAL, "vc:80Cx24C");
5617 if (default_parallel)
5618 add_device_config(DEV_PARALLEL, "vc:80Cx24C");
5619 if (default_monitor)
5620 monitor_parse("vc:80Cx24C", "readline");
5621 if (default_virtcon)
5622 add_device_config(DEV_VIRTCON, "vc:80Cx24C");
5623 }
5624 if (default_vga)
5625 vga_interface_type = VGA_CIRRUS;
5626
5627 if (qemu_opts_foreach(&qemu_chardev_opts, chardev_init_func, NULL, 1) != 0)
5628 exit(1);
5629
5630 #ifndef _WIN32
5631 if (daemonize) {
5632 pid_t pid;
5633
5634 if (pipe(fds) == -1)
5635 exit(1);
5636
5637 pid = fork();
5638 if (pid > 0) {
5639 uint8_t status;
5640 ssize_t len;
5641
5642 close(fds[1]);
5643
5644 again:
5645 len = read(fds[0], &status, 1);
5646 if (len == -1 && (errno == EINTR))
5647 goto again;
5648
5649 if (len != 1)
5650 exit(1);
5651 else if (status == 1) {
5652 fprintf(stderr, "Could not acquire pidfile: %s\n", strerror(errno));
5653 exit(1);
5654 } else
5655 exit(0);
5656 } else if (pid < 0)
5657 exit(1);
5658
5659 close(fds[0]);
5660 qemu_set_cloexec(fds[1]);
5661
5662 setsid();
5663
5664 pid = fork();
5665 if (pid > 0)
5666 exit(0);
5667 else if (pid < 0)
5668 exit(1);
5669
5670 umask(027);
5671
5672 signal(SIGTSTP, SIG_IGN);
5673 signal(SIGTTOU, SIG_IGN);
5674 signal(SIGTTIN, SIG_IGN);
5675 }
5676 #endif
5677
5678 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5679 #ifndef _WIN32
5680 if (daemonize) {
5681 uint8_t status = 1;
5682 if (write(fds[1], &status, 1) != 1) {
5683 perror("daemonize. Writing to pipe\n");
5684 }
5685 } else
5686 #endif
5687 fprintf(stderr, "Could not acquire pid file: %s\n", strerror(errno));
5688 exit(1);
5689 }
5690
5691 if (kvm_enabled()) {
5692 int ret;
5693
5694 ret = kvm_init(smp_cpus);
5695 if (ret < 0) {
5696 fprintf(stderr, "failed to initialize KVM\n");
5697 exit(1);
5698 }
5699 }
5700
5701 if (qemu_init_main_loop()) {
5702 fprintf(stderr, "qemu_init_main_loop failed\n");
5703 exit(1);
5704 }
5705 linux_boot = (kernel_filename != NULL);
5706
5707 if (!linux_boot && *kernel_cmdline != '\0') {
5708 fprintf(stderr, "-append only allowed with -kernel option\n");
5709 exit(1);
5710 }
5711
5712 if (!linux_boot && initrd_filename != NULL) {
5713 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5714 exit(1);
5715 }
5716
5717 #ifndef _WIN32
5718 /* Win32 doesn't support line-buffering and requires size >= 2 */
5719 setvbuf(stdout, NULL, _IOLBF, 0);
5720 #endif
5721
5722 if (init_timer_alarm() < 0) {
5723 fprintf(stderr, "could not initialize alarm timer\n");
5724 exit(1);
5725 }
5726 if (use_icount && icount_time_shift < 0) {
5727 use_icount = 2;
5728 /* 125MIPS seems a reasonable initial guess at the guest speed.
5729 It will be corrected fairly quickly anyway. */
5730 icount_time_shift = 3;
5731 init_icount_adjust();
5732 }
5733
5734 #ifdef _WIN32
5735 socket_init();
5736 #endif
5737
5738 if (net_init_clients() < 0) {
5739 exit(1);
5740 }
5741
5742 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5743 net_set_boot_mask(net_boot);
5744
5745 /* init the bluetooth world */
5746 if (foreach_device_config(DEV_BT, bt_parse))
5747 exit(1);
5748
5749 /* init the memory */
5750 if (ram_size == 0)
5751 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5752
5753 /* init the dynamic translator */
5754 cpu_exec_init_all(tb_size * 1024 * 1024);
5755
5756 bdrv_init_with_whitelist();
5757
5758 blk_mig_init();
5759
5760 if (default_cdrom) {
5761 /* we always create the cdrom drive, even if no disk is there */
5762 drive_add(NULL, CDROM_ALIAS);
5763 }
5764
5765 if (default_floppy) {
5766 /* we always create at least one floppy */
5767 drive_add(NULL, FD_ALIAS, 0);
5768 }
5769
5770 if (default_sdcard) {
5771 /* we always create one sd slot, even if no card is in it */
5772 drive_add(NULL, SD_ALIAS);
5773 }
5774
5775 /* open the virtual block devices */
5776 if (snapshot)
5777 qemu_opts_foreach(&qemu_drive_opts, drive_enable_snapshot, NULL, 0);
5778 if (qemu_opts_foreach(&qemu_drive_opts, drive_init_func, machine, 1) != 0)
5779 exit(1);
5780
5781 vmstate_register(0, &vmstate_timers ,&timers_state);
5782 register_savevm_live("ram", 0, 3, NULL, ram_save_live, NULL,
5783 ram_load, NULL);
5784
5785 if (nb_numa_nodes > 0) {
5786 int i;
5787
5788 if (nb_numa_nodes > smp_cpus) {
5789 nb_numa_nodes = smp_cpus;
5790 }
5791
5792 /* If no memory size if given for any node, assume the default case
5793 * and distribute the available memory equally across all nodes
5794 */
5795 for (i = 0; i < nb_numa_nodes; i++) {
5796 if (node_mem[i] != 0)
5797 break;
5798 }
5799 if (i == nb_numa_nodes) {
5800 uint64_t usedmem = 0;
5801
5802 /* On Linux, the each node's border has to be 8MB aligned,
5803 * the final node gets the rest.
5804 */
5805 for (i = 0; i < nb_numa_nodes - 1; i++) {
5806 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5807 usedmem += node_mem[i];
5808 }
5809 node_mem[i] = ram_size - usedmem;
5810 }
5811
5812 for (i = 0; i < nb_numa_nodes; i++) {
5813 if (node_cpumask[i] != 0)
5814 break;
5815 }
5816 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5817 * must cope with this anyway, because there are BIOSes out there in
5818 * real machines which also use this scheme.
5819 */
5820 if (i == nb_numa_nodes) {
5821 for (i = 0; i < smp_cpus; i++) {
5822 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5823 }
5824 }
5825 }
5826
5827 if (foreach_device_config(DEV_SERIAL, serial_parse) < 0)
5828 exit(1);
5829 if (foreach_device_config(DEV_PARALLEL, parallel_parse) < 0)
5830 exit(1);
5831 if (foreach_device_config(DEV_VIRTCON, virtcon_parse) < 0)
5832 exit(1);
5833 if (foreach_device_config(DEV_DEBUGCON, debugcon_parse) < 0)
5834 exit(1);
5835
5836 module_call_init(MODULE_INIT_DEVICE);
5837
5838 if (qemu_opts_foreach(&qemu_device_opts, device_help_func, NULL, 0) != 0)
5839 exit(0);
5840
5841 if (watchdog) {
5842 i = select_watchdog(watchdog);
5843 if (i > 0)
5844 exit (i == 1 ? 1 : 0);
5845 }
5846
5847 if (machine->compat_props) {
5848 qdev_prop_register_global_list(machine->compat_props);
5849 }
5850 qemu_add_globals();
5851
5852 machine->init(ram_size, boot_devices,
5853 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5854
5855
5856 #ifndef _WIN32
5857 /* must be after terminal init, SDL library changes signal handlers */
5858 sighandler_setup();
5859 #endif
5860
5861 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5862 for (i = 0; i < nb_numa_nodes; i++) {
5863 if (node_cpumask[i] & (1 << env->cpu_index)) {
5864 env->numa_node = i;
5865 }
5866 }
5867 }
5868
5869 current_machine = machine;
5870
5871 /* init USB devices */
5872 if (usb_enabled) {
5873 if (foreach_device_config(DEV_USB, usb_parse) < 0)
5874 exit(1);
5875 }
5876
5877 /* init generic devices */
5878 if (qemu_opts_foreach(&qemu_device_opts, device_init_func, NULL, 1) != 0)
5879 exit(1);
5880
5881 if (!display_state)
5882 dumb_display_init();
5883 /* just use the first displaystate for the moment */
5884 ds = display_state;
5885
5886 if (display_type == DT_DEFAULT) {
5887 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5888 display_type = DT_SDL;
5889 #else
5890 display_type = DT_VNC;
5891 vnc_display = "localhost:0,to=99";
5892 show_vnc_port = 1;
5893 #endif
5894 }
5895
5896
5897 switch (display_type) {
5898 case DT_NOGRAPHIC:
5899 break;
5900 #if defined(CONFIG_CURSES)
5901 case DT_CURSES:
5902 curses_display_init(ds, full_screen);
5903 break;
5904 #endif
5905 #if defined(CONFIG_SDL)
5906 case DT_SDL:
5907 sdl_display_init(ds, full_screen, no_frame);
5908 break;
5909 #elif defined(CONFIG_COCOA)
5910 case DT_SDL:
5911 cocoa_display_init(ds, full_screen);
5912 break;
5913 #endif
5914 case DT_VNC:
5915 vnc_display_init(ds);
5916 if (vnc_display_open(ds, vnc_display) < 0)
5917 exit(1);
5918
5919 if (show_vnc_port) {
5920 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
5921 }
5922 break;
5923 default:
5924 break;
5925 }
5926 dpy_resize(ds);
5927
5928 dcl = ds->listeners;
5929 while (dcl != NULL) {
5930 if (dcl->dpy_refresh != NULL) {
5931 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5932 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5933 }
5934 dcl = dcl->next;
5935 }
5936
5937 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
5938 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5939 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5940 }
5941
5942 text_consoles_set_display(display_state);
5943
5944 if (qemu_opts_foreach(&qemu_mon_opts, mon_init_func, NULL, 1) != 0)
5945 exit(1);
5946
5947 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
5948 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
5949 gdbstub_dev);
5950 exit(1);
5951 }
5952
5953 qdev_machine_creation_done();
5954
5955 if (rom_load_all() != 0) {
5956 fprintf(stderr, "rom loading failed\n");
5957 exit(1);
5958 }
5959
5960 qemu_system_reset();
5961 if (loadvm) {
5962 if (load_vmstate(cur_mon, loadvm) < 0) {
5963 autostart = 0;
5964 }
5965 }
5966
5967 if (incoming) {
5968 qemu_start_incoming_migration(incoming);
5969 } else if (autostart) {
5970 vm_start();
5971 }
5972
5973 #ifndef _WIN32
5974 if (daemonize) {
5975 uint8_t status = 0;
5976 ssize_t len;
5977
5978 again1:
5979 len = write(fds[1], &status, 1);
5980 if (len == -1 && (errno == EINTR))
5981 goto again1;
5982
5983 if (len != 1)
5984 exit(1);
5985
5986 if (chdir("/")) {
5987 perror("not able to chdir to /");
5988 exit(1);
5989 }
5990 TFR(fd = qemu_open("/dev/null", O_RDWR));
5991 if (fd == -1)
5992 exit(1);
5993 }
5994
5995 if (run_as) {
5996 pwd = getpwnam(run_as);
5997 if (!pwd) {
5998 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
5999 exit(1);
6000 }
6001 }
6002
6003 if (chroot_dir) {
6004 if (chroot(chroot_dir) < 0) {
6005 fprintf(stderr, "chroot failed\n");
6006 exit(1);
6007 }
6008 if (chdir("/")) {
6009 perror("not able to chdir to /");
6010 exit(1);
6011 }
6012 }
6013
6014 if (run_as) {
6015 if (setgid(pwd->pw_gid) < 0) {
6016 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6017 exit(1);
6018 }
6019 if (setuid(pwd->pw_uid) < 0) {
6020 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6021 exit(1);
6022 }
6023 if (setuid(0) != -1) {
6024 fprintf(stderr, "Dropping privileges failed\n");
6025 exit(1);
6026 }
6027 }
6028
6029 if (daemonize) {
6030 dup2(fd, 0);
6031 dup2(fd, 1);
6032 dup2(fd, 2);
6033
6034 close(fd);
6035 }
6036 #endif
6037
6038 main_loop();
6039 quit_timers();
6040 net_cleanup();
6041
6042 return 0;
6043 }