]> git.proxmox.com Git - qemu.git/blob - vl.c
53f475a89efa2128b3bfc349db82cea7cb74e73f
[qemu.git] / vl.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include <stdarg.h>
27 #include <string.h>
28 #include <getopt.h>
29 #include <inttypes.h>
30 #include <unistd.h>
31 #include <sys/mman.h>
32 #include <fcntl.h>
33 #include <signal.h>
34 #include <time.h>
35 #include <sys/time.h>
36 #include <malloc.h>
37 #include <termios.h>
38 #include <sys/poll.h>
39 #include <errno.h>
40 #include <sys/wait.h>
41
42 #include <sys/ioctl.h>
43 #include <sys/socket.h>
44 #include <linux/if.h>
45 #include <linux/if_tun.h>
46
47 #include "cpu-i386.h"
48 #include "disas.h"
49 #include "thunk.h"
50
51 #include "vl.h"
52
53 #define DEBUG_LOGFILE "/tmp/vl.log"
54 #define DEFAULT_NETWORK_SCRIPT "/etc/vl-ifup"
55
56 //#define DEBUG_UNUSED_IOPORT
57 //#define DEBUG_IRQ_LATENCY
58
59 #define PHYS_RAM_BASE 0xa8000000
60 #define KERNEL_LOAD_ADDR 0x00100000
61 #define INITRD_LOAD_ADDR 0x00400000
62 #define KERNEL_PARAMS_ADDR 0x00090000
63
64 /* from plex86 (BSD license) */
65 struct __attribute__ ((packed)) linux_params {
66 // For 0x00..0x3f, see 'struct screen_info' in linux/include/linux/tty.h.
67 // I just padded out the VESA parts, rather than define them.
68
69 /* 0x000 */ uint8_t orig_x;
70 /* 0x001 */ uint8_t orig_y;
71 /* 0x002 */ uint16_t ext_mem_k;
72 /* 0x004 */ uint16_t orig_video_page;
73 /* 0x006 */ uint8_t orig_video_mode;
74 /* 0x007 */ uint8_t orig_video_cols;
75 /* 0x008 */ uint16_t unused1;
76 /* 0x00a */ uint16_t orig_video_ega_bx;
77 /* 0x00c */ uint16_t unused2;
78 /* 0x00e */ uint8_t orig_video_lines;
79 /* 0x00f */ uint8_t orig_video_isVGA;
80 /* 0x010 */ uint16_t orig_video_points;
81 /* 0x012 */ uint8_t pad0[0x20 - 0x12]; // VESA info.
82 /* 0x020 */ uint16_t cl_magic; // Commandline magic number (0xA33F)
83 /* 0x022 */ uint16_t cl_offset; // Commandline offset. Address of commandline
84 // is calculated as 0x90000 + cl_offset, bu
85 // only if cl_magic == 0xA33F.
86 /* 0x024 */ uint8_t pad1[0x40 - 0x24]; // VESA info.
87
88 /* 0x040 */ uint8_t apm_bios_info[20]; // struct apm_bios_info
89 /* 0x054 */ uint8_t pad2[0x80 - 0x54];
90
91 // Following 2 from 'struct drive_info_struct' in drivers/block/cciss.h.
92 // Might be truncated?
93 /* 0x080 */ uint8_t hd0_info[16]; // hd0-disk-parameter from intvector 0x41
94 /* 0x090 */ uint8_t hd1_info[16]; // hd1-disk-parameter from intvector 0x46
95
96 // System description table truncated to 16 bytes
97 // From 'struct sys_desc_table_struct' in linux/arch/i386/kernel/setup.c.
98 /* 0x0a0 */ uint16_t sys_description_len;
99 /* 0x0a2 */ uint8_t sys_description_table[14];
100 // [0] machine id
101 // [1] machine submodel id
102 // [2] BIOS revision
103 // [3] bit1: MCA bus
104
105 /* 0x0b0 */ uint8_t pad3[0x1e0 - 0xb0];
106 /* 0x1e0 */ uint32_t alt_mem_k;
107 /* 0x1e4 */ uint8_t pad4[4];
108 /* 0x1e8 */ uint8_t e820map_entries;
109 /* 0x1e9 */ uint8_t eddbuf_entries; // EDD_NR
110 /* 0x1ea */ uint8_t pad5[0x1f1 - 0x1ea];
111 /* 0x1f1 */ uint8_t setup_sects; // size of setup.S, number of sectors
112 /* 0x1f2 */ uint16_t mount_root_rdonly; // MOUNT_ROOT_RDONLY (if !=0)
113 /* 0x1f4 */ uint16_t sys_size; // size of compressed kernel-part in the
114 // (b)zImage-file (in 16 byte units, rounded up)
115 /* 0x1f6 */ uint16_t swap_dev; // (unused AFAIK)
116 /* 0x1f8 */ uint16_t ramdisk_flags;
117 /* 0x1fa */ uint16_t vga_mode; // (old one)
118 /* 0x1fc */ uint16_t orig_root_dev; // (high=Major, low=minor)
119 /* 0x1fe */ uint8_t pad6[1];
120 /* 0x1ff */ uint8_t aux_device_info;
121 /* 0x200 */ uint16_t jump_setup; // Jump to start of setup code,
122 // aka "reserved" field.
123 /* 0x202 */ uint8_t setup_signature[4]; // Signature for SETUP-header, ="HdrS"
124 /* 0x206 */ uint16_t header_format_version; // Version number of header format;
125 /* 0x208 */ uint8_t setup_S_temp0[8]; // Used by setup.S for communication with
126 // boot loaders, look there.
127 /* 0x210 */ uint8_t loader_type;
128 // 0 for old one.
129 // else 0xTV:
130 // T=0: LILO
131 // T=1: Loadlin
132 // T=2: bootsect-loader
133 // T=3: SYSLINUX
134 // T=4: ETHERBOOT
135 // V=version
136 /* 0x211 */ uint8_t loadflags;
137 // bit0 = 1: kernel is loaded high (bzImage)
138 // bit7 = 1: Heap and pointer (see below) set by boot
139 // loader.
140 /* 0x212 */ uint16_t setup_S_temp1;
141 /* 0x214 */ uint32_t kernel_start;
142 /* 0x218 */ uint32_t initrd_start;
143 /* 0x21c */ uint32_t initrd_size;
144 /* 0x220 */ uint8_t setup_S_temp2[4];
145 /* 0x224 */ uint16_t setup_S_heap_end_pointer;
146 /* 0x226 */ uint8_t pad7[0x2d0 - 0x226];
147
148 /* 0x2d0 : Int 15, ax=e820 memory map. */
149 // (linux/include/asm-i386/e820.h, 'struct e820entry')
150 #define E820MAX 32
151 #define E820_RAM 1
152 #define E820_RESERVED 2
153 #define E820_ACPI 3 /* usable as RAM once ACPI tables have been read */
154 #define E820_NVS 4
155 struct {
156 uint64_t addr;
157 uint64_t size;
158 uint32_t type;
159 } e820map[E820MAX];
160
161 /* 0x550 */ uint8_t pad8[0x600 - 0x550];
162
163 // BIOS Enhanced Disk Drive Services.
164 // (From linux/include/asm-i386/edd.h, 'struct edd_info')
165 // Each 'struct edd_info is 78 bytes, times a max of 6 structs in array.
166 /* 0x600 */ uint8_t eddbuf[0x7d4 - 0x600];
167
168 /* 0x7d4 */ uint8_t pad9[0x800 - 0x7d4];
169 /* 0x800 */ uint8_t commandline[0x800];
170
171 /* 0x1000 */
172 uint64_t gdt_table[256];
173 uint64_t idt_table[48];
174 };
175
176 #define KERNEL_CS 0x10
177 #define KERNEL_DS 0x18
178
179 typedef void (IOPortWriteFunc)(CPUX86State *env, uint32_t address, uint32_t data);
180 typedef uint32_t (IOPortReadFunc)(CPUX86State *env, uint32_t address);
181
182 #define MAX_IOPORTS 4096
183
184 char phys_ram_file[1024];
185 CPUX86State *global_env;
186 CPUX86State *cpu_single_env;
187 FILE *logfile = NULL;
188 int loglevel;
189 IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
190 IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
191
192 /***********************************************************/
193 /* x86 io ports */
194
195 uint32_t default_ioport_readb(CPUX86State *env, uint32_t address)
196 {
197 #ifdef DEBUG_UNUSED_IOPORT
198 fprintf(stderr, "inb: port=0x%04x\n", address);
199 #endif
200 return 0xff;
201 }
202
203 void default_ioport_writeb(CPUX86State *env, uint32_t address, uint32_t data)
204 {
205 #ifdef DEBUG_UNUSED_IOPORT
206 fprintf(stderr, "outb: port=0x%04x data=0x%02x\n", address, data);
207 #endif
208 }
209
210 /* default is to make two byte accesses */
211 uint32_t default_ioport_readw(CPUX86State *env, uint32_t address)
212 {
213 uint32_t data;
214 data = ioport_read_table[0][address](env, address);
215 data |= ioport_read_table[0][address + 1](env, address + 1) << 8;
216 return data;
217 }
218
219 void default_ioport_writew(CPUX86State *env, uint32_t address, uint32_t data)
220 {
221 ioport_write_table[0][address](env, address, data & 0xff);
222 ioport_write_table[0][address + 1](env, address + 1, (data >> 8) & 0xff);
223 }
224
225 uint32_t default_ioport_readl(CPUX86State *env, uint32_t address)
226 {
227 #ifdef DEBUG_UNUSED_IOPORT
228 fprintf(stderr, "inl: port=0x%04x\n", address);
229 #endif
230 return 0xffffffff;
231 }
232
233 void default_ioport_writel(CPUX86State *env, uint32_t address, uint32_t data)
234 {
235 #ifdef DEBUG_UNUSED_IOPORT
236 fprintf(stderr, "outl: port=0x%04x data=0x%02x\n", address, data);
237 #endif
238 }
239
240 void init_ioports(void)
241 {
242 int i;
243
244 for(i = 0; i < MAX_IOPORTS; i++) {
245 ioport_read_table[0][i] = default_ioport_readb;
246 ioport_write_table[0][i] = default_ioport_writeb;
247 ioport_read_table[1][i] = default_ioport_readw;
248 ioport_write_table[1][i] = default_ioport_writew;
249 ioport_read_table[2][i] = default_ioport_readl;
250 ioport_write_table[2][i] = default_ioport_writel;
251 }
252 }
253
254 /* size is the word size in byte */
255 int register_ioport_read(int start, int length, IOPortReadFunc *func, int size)
256 {
257 int i, bsize;
258
259 if (size == 1)
260 bsize = 0;
261 else if (size == 2)
262 bsize = 1;
263 else if (size == 4)
264 bsize = 2;
265 else
266 return -1;
267 for(i = start; i < start + length; i += size)
268 ioport_read_table[bsize][i] = func;
269 return 0;
270 }
271
272 /* size is the word size in byte */
273 int register_ioport_write(int start, int length, IOPortWriteFunc *func, int size)
274 {
275 int i, bsize;
276
277 if (size == 1)
278 bsize = 0;
279 else if (size == 2)
280 bsize = 1;
281 else if (size == 4)
282 bsize = 2;
283 else
284 return -1;
285 for(i = start; i < start + length; i += size)
286 ioport_write_table[bsize][i] = func;
287 return 0;
288 }
289
290 void pstrcpy(char *buf, int buf_size, const char *str)
291 {
292 int c;
293 char *q = buf;
294
295 if (buf_size <= 0)
296 return;
297
298 for(;;) {
299 c = *str++;
300 if (c == 0 || q >= buf + buf_size - 1)
301 break;
302 *q++ = c;
303 }
304 *q = '\0';
305 }
306
307 /* strcat and truncate. */
308 char *pstrcat(char *buf, int buf_size, const char *s)
309 {
310 int len;
311 len = strlen(buf);
312 if (len < buf_size)
313 pstrcpy(buf + len, buf_size - len, s);
314 return buf;
315 }
316
317 int load_kernel(const char *filename, uint8_t *addr)
318 {
319 int fd, size, setup_sects;
320 uint8_t bootsect[512];
321
322 fd = open(filename, O_RDONLY);
323 if (fd < 0)
324 return -1;
325 if (read(fd, bootsect, 512) != 512)
326 goto fail;
327 setup_sects = bootsect[0x1F1];
328 if (!setup_sects)
329 setup_sects = 4;
330 /* skip 16 bit setup code */
331 lseek(fd, (setup_sects + 1) * 512, SEEK_SET);
332 size = read(fd, addr, 16 * 1024 * 1024);
333 if (size < 0)
334 goto fail;
335 close(fd);
336 return size;
337 fail:
338 close(fd);
339 return -1;
340 }
341
342 /* return the size or -1 if error */
343 int load_image(const char *filename, uint8_t *addr)
344 {
345 int fd, size;
346 fd = open(filename, O_RDONLY);
347 if (fd < 0)
348 return -1;
349 size = lseek(fd, 0, SEEK_END);
350 lseek(fd, 0, SEEK_SET);
351 if (read(fd, addr, size) != size) {
352 close(fd);
353 return -1;
354 }
355 close(fd);
356 return size;
357 }
358
359 void cpu_x86_outb(CPUX86State *env, int addr, int val)
360 {
361 ioport_write_table[0][addr & (MAX_IOPORTS - 1)](env, addr, val);
362 }
363
364 void cpu_x86_outw(CPUX86State *env, int addr, int val)
365 {
366 ioport_write_table[1][addr & (MAX_IOPORTS - 1)](env, addr, val);
367 }
368
369 void cpu_x86_outl(CPUX86State *env, int addr, int val)
370 {
371 ioport_write_table[2][addr & (MAX_IOPORTS - 1)](env, addr, val);
372 }
373
374 int cpu_x86_inb(CPUX86State *env, int addr)
375 {
376 return ioport_read_table[0][addr & (MAX_IOPORTS - 1)](env, addr);
377 }
378
379 int cpu_x86_inw(CPUX86State *env, int addr)
380 {
381 return ioport_read_table[1][addr & (MAX_IOPORTS - 1)](env, addr);
382 }
383
384 int cpu_x86_inl(CPUX86State *env, int addr)
385 {
386 return ioport_read_table[2][addr & (MAX_IOPORTS - 1)](env, addr);
387 }
388
389 /***********************************************************/
390 void ioport80_write(CPUX86State *env, uint32_t addr, uint32_t data)
391 {
392 }
393
394 void hw_error(const char *fmt, ...)
395 {
396 va_list ap;
397
398 va_start(ap, fmt);
399 fprintf(stderr, "qemu: hardware error: ");
400 vfprintf(stderr, fmt, ap);
401 fprintf(stderr, "\n");
402 #ifdef TARGET_I386
403 cpu_x86_dump_state(global_env, stderr, X86_DUMP_FPU | X86_DUMP_CCOP);
404 #endif
405 va_end(ap);
406 abort();
407 }
408
409 /***********************************************************/
410 /* vga emulation */
411 static uint8_t vga_index;
412 static uint8_t vga_regs[256];
413 static int last_cursor_pos;
414
415 void update_console_messages(void)
416 {
417 int c, i, cursor_pos, eol;
418
419 cursor_pos = vga_regs[0x0f] | (vga_regs[0x0e] << 8);
420 eol = 0;
421 for(i = last_cursor_pos; i < cursor_pos; i++) {
422 c = phys_ram_base[0xb8000 + (i) * 2];
423 if (c >= ' ') {
424 putchar(c);
425 eol = 0;
426 } else {
427 if (!eol)
428 putchar('\n');
429 eol = 1;
430 }
431 }
432 fflush(stdout);
433 last_cursor_pos = cursor_pos;
434 }
435
436 /* just to see first Linux console messages, we intercept cursor position */
437 void vga_ioport_write(CPUX86State *env, uint32_t addr, uint32_t data)
438 {
439 switch(addr) {
440 case 0x3d4:
441 vga_index = data;
442 break;
443 case 0x3d5:
444 vga_regs[vga_index] = data;
445 if (vga_index == 0x0f)
446 update_console_messages();
447 break;
448 }
449
450 }
451
452 /***********************************************************/
453 /* cmos emulation */
454
455 #define RTC_SECONDS 0
456 #define RTC_SECONDS_ALARM 1
457 #define RTC_MINUTES 2
458 #define RTC_MINUTES_ALARM 3
459 #define RTC_HOURS 4
460 #define RTC_HOURS_ALARM 5
461 #define RTC_ALARM_DONT_CARE 0xC0
462
463 #define RTC_DAY_OF_WEEK 6
464 #define RTC_DAY_OF_MONTH 7
465 #define RTC_MONTH 8
466 #define RTC_YEAR 9
467
468 #define RTC_REG_A 10
469 #define RTC_REG_B 11
470 #define RTC_REG_C 12
471 #define RTC_REG_D 13
472
473 /* PC cmos mappings */
474 #define REG_EQUIPMENT_BYTE 0x14
475
476 uint8_t cmos_data[128];
477 uint8_t cmos_index;
478
479 void cmos_ioport_write(CPUX86State *env, uint32_t addr, uint32_t data)
480 {
481 if (addr == 0x70) {
482 cmos_index = data & 0x7f;
483 }
484 }
485
486 uint32_t cmos_ioport_read(CPUX86State *env, uint32_t addr)
487 {
488 int ret;
489
490 if (addr == 0x70) {
491 return 0xff;
492 } else {
493 /* toggle update-in-progress bit for Linux (same hack as
494 plex86) */
495 ret = cmos_data[cmos_index];
496 if (cmos_index == RTC_REG_A)
497 cmos_data[RTC_REG_A] ^= 0x80;
498 else if (cmos_index == RTC_REG_C)
499 cmos_data[RTC_REG_C] = 0x00;
500 return ret;
501 }
502 }
503
504
505 static inline int to_bcd(int a)
506 {
507 return ((a / 10) << 4) | (a % 10);
508 }
509
510 void cmos_init(void)
511 {
512 struct tm *tm;
513 time_t ti;
514
515 ti = time(NULL);
516 tm = gmtime(&ti);
517 cmos_data[RTC_SECONDS] = to_bcd(tm->tm_sec);
518 cmos_data[RTC_MINUTES] = to_bcd(tm->tm_min);
519 cmos_data[RTC_HOURS] = to_bcd(tm->tm_hour);
520 cmos_data[RTC_DAY_OF_WEEK] = to_bcd(tm->tm_wday);
521 cmos_data[RTC_DAY_OF_MONTH] = to_bcd(tm->tm_mday);
522 cmos_data[RTC_MONTH] = to_bcd(tm->tm_mon);
523 cmos_data[RTC_YEAR] = to_bcd(tm->tm_year % 100);
524
525 cmos_data[RTC_REG_A] = 0x26;
526 cmos_data[RTC_REG_B] = 0x02;
527 cmos_data[RTC_REG_C] = 0x00;
528 cmos_data[RTC_REG_D] = 0x80;
529
530 cmos_data[REG_EQUIPMENT_BYTE] = 0x02; /* FPU is there */
531
532 register_ioport_write(0x70, 2, cmos_ioport_write, 1);
533 register_ioport_read(0x70, 2, cmos_ioport_read, 1);
534 }
535
536 /***********************************************************/
537 /* 8259 pic emulation */
538
539 //#define DEBUG_PIC
540
541 typedef struct PicState {
542 uint8_t last_irr; /* edge detection */
543 uint8_t irr; /* interrupt request register */
544 uint8_t imr; /* interrupt mask register */
545 uint8_t isr; /* interrupt service register */
546 uint8_t priority_add; /* used to compute irq priority */
547 uint8_t irq_base;
548 uint8_t read_reg_select;
549 uint8_t special_mask;
550 uint8_t init_state;
551 uint8_t auto_eoi;
552 uint8_t rotate_on_autoeoi;
553 uint8_t init4; /* true if 4 byte init */
554 } PicState;
555
556 /* 0 is master pic, 1 is slave pic */
557 PicState pics[2];
558 int pic_irq_requested;
559
560 /* set irq level. If an edge is detected, then the IRR is set to 1 */
561 static inline void pic_set_irq1(PicState *s, int irq, int level)
562 {
563 int mask;
564 mask = 1 << irq;
565 if (level) {
566 if ((s->last_irr & mask) == 0)
567 s->irr |= mask;
568 s->last_irr |= mask;
569 } else {
570 s->last_irr &= ~mask;
571 }
572 }
573
574 static inline int get_priority(PicState *s, int mask)
575 {
576 int priority;
577 if (mask == 0)
578 return -1;
579 priority = 7;
580 while ((mask & (1 << ((priority + s->priority_add) & 7))) == 0)
581 priority--;
582 return priority;
583 }
584
585 /* return the pic wanted interrupt. return -1 if none */
586 static int pic_get_irq(PicState *s)
587 {
588 int mask, cur_priority, priority;
589
590 mask = s->irr & ~s->imr;
591 priority = get_priority(s, mask);
592 if (priority < 0)
593 return -1;
594 /* compute current priority */
595 cur_priority = get_priority(s, s->isr);
596 if (priority > cur_priority) {
597 /* higher priority found: an irq should be generated */
598 return priority;
599 } else {
600 return -1;
601 }
602 }
603
604 /* raise irq to CPU if necessary. must be called every time the active
605 irq may change */
606 static void pic_update_irq(void)
607 {
608 int irq2, irq;
609
610 /* first look at slave pic */
611 irq2 = pic_get_irq(&pics[1]);
612 if (irq2 >= 0) {
613 /* if irq request by slave pic, signal master PIC */
614 pic_set_irq1(&pics[0], 2, 1);
615 pic_set_irq1(&pics[0], 2, 0);
616 }
617 /* look at requested irq */
618 irq = pic_get_irq(&pics[0]);
619 if (irq >= 0) {
620 if (irq == 2) {
621 /* from slave pic */
622 pic_irq_requested = 8 + irq2;
623 } else {
624 /* from master pic */
625 pic_irq_requested = irq;
626 }
627 cpu_x86_interrupt(global_env, CPU_INTERRUPT_HARD);
628 }
629 }
630
631 #ifdef DEBUG_IRQ_LATENCY
632 int64_t irq_time[16];
633 int64_t cpu_get_ticks(void);
634 #endif
635 #ifdef DEBUG_PIC
636 int irq_level[16];
637 #endif
638
639 void pic_set_irq(int irq, int level)
640 {
641 #ifdef DEBUG_PIC
642 if (level != irq_level[irq]) {
643 printf("pic_set_irq: irq=%d level=%d\n", irq, level);
644 irq_level[irq] = level;
645 }
646 #endif
647 #ifdef DEBUG_IRQ_LATENCY
648 if (level) {
649 irq_time[irq] = cpu_get_ticks();
650 }
651 #endif
652 pic_set_irq1(&pics[irq >> 3], irq & 7, level);
653 pic_update_irq();
654 }
655
656 int cpu_x86_get_pic_interrupt(CPUX86State *env)
657 {
658 int irq, irq2, intno;
659
660 /* signal the pic that the irq was acked by the CPU */
661 irq = pic_irq_requested;
662 #ifdef DEBUG_IRQ_LATENCY
663 printf("IRQ%d latency=%Ld\n", irq, cpu_get_ticks() - irq_time[irq]);
664 #endif
665 #ifdef DEBUG_PIC
666 printf("pic_interrupt: irq=%d\n", irq);
667 #endif
668
669 if (irq >= 8) {
670 irq2 = irq & 7;
671 pics[1].isr |= (1 << irq2);
672 pics[1].irr &= ~(1 << irq2);
673 irq = 2;
674 intno = pics[1].irq_base + irq2;
675 } else {
676 intno = pics[0].irq_base + irq;
677 }
678 pics[0].isr |= (1 << irq);
679 pics[0].irr &= ~(1 << irq);
680 return intno;
681 }
682
683 void pic_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
684 {
685 PicState *s;
686 int priority;
687
688 #ifdef DEBUG_PIC
689 printf("pic_write: addr=0x%02x val=0x%02x\n", addr, val);
690 #endif
691 s = &pics[addr >> 7];
692 addr &= 1;
693 if (addr == 0) {
694 if (val & 0x10) {
695 /* init */
696 memset(s, 0, sizeof(PicState));
697 s->init_state = 1;
698 s->init4 = val & 1;
699 if (val & 0x02)
700 hw_error("single mode not supported");
701 if (val & 0x08)
702 hw_error("level sensitive irq not supported");
703 } else if (val & 0x08) {
704 if (val & 0x02)
705 s->read_reg_select = val & 1;
706 if (val & 0x40)
707 s->special_mask = (val >> 5) & 1;
708 } else {
709 switch(val) {
710 case 0x00:
711 case 0x80:
712 s->rotate_on_autoeoi = val >> 7;
713 break;
714 case 0x20: /* end of interrupt */
715 case 0xa0:
716 priority = get_priority(s, s->isr);
717 if (priority >= 0) {
718 s->isr &= ~(1 << ((priority + s->priority_add) & 7));
719 }
720 if (val == 0xa0)
721 s->priority_add = (s->priority_add + 1) & 7;
722 break;
723 case 0x60 ... 0x67:
724 priority = val & 7;
725 s->isr &= ~(1 << priority);
726 break;
727 case 0xc0 ... 0xc7:
728 s->priority_add = (val + 1) & 7;
729 break;
730 case 0xe0 ... 0xe7:
731 priority = val & 7;
732 s->isr &= ~(1 << priority);
733 s->priority_add = (priority + 1) & 7;
734 break;
735 }
736 }
737 } else {
738 switch(s->init_state) {
739 case 0:
740 /* normal mode */
741 s->imr = val;
742 pic_update_irq();
743 break;
744 case 1:
745 s->irq_base = val & 0xf8;
746 s->init_state = 2;
747 break;
748 case 2:
749 if (s->init4) {
750 s->init_state = 3;
751 } else {
752 s->init_state = 0;
753 }
754 break;
755 case 3:
756 s->auto_eoi = (val >> 1) & 1;
757 s->init_state = 0;
758 break;
759 }
760 }
761 }
762
763 uint32_t pic_ioport_read(CPUX86State *env, uint32_t addr1)
764 {
765 PicState *s;
766 unsigned int addr;
767 int ret;
768
769 addr = addr1;
770 s = &pics[addr >> 7];
771 addr &= 1;
772 if (addr == 0) {
773 if (s->read_reg_select)
774 ret = s->isr;
775 else
776 ret = s->irr;
777 } else {
778 ret = s->imr;
779 }
780 #ifdef DEBUG_PIC
781 printf("pic_read: addr=0x%02x val=0x%02x\n", addr1, ret);
782 #endif
783 return ret;
784 }
785
786 void pic_init(void)
787 {
788 register_ioport_write(0x20, 2, pic_ioport_write, 1);
789 register_ioport_read(0x20, 2, pic_ioport_read, 1);
790 register_ioport_write(0xa0, 2, pic_ioport_write, 1);
791 register_ioport_read(0xa0, 2, pic_ioport_read, 1);
792 }
793
794 /***********************************************************/
795 /* 8253 PIT emulation */
796
797 #define PIT_FREQ 1193182
798
799 #define RW_STATE_LSB 0
800 #define RW_STATE_MSB 1
801 #define RW_STATE_WORD0 2
802 #define RW_STATE_WORD1 3
803 #define RW_STATE_LATCHED_WORD0 4
804 #define RW_STATE_LATCHED_WORD1 5
805
806 typedef struct PITChannelState {
807 int count; /* can be 65536 */
808 uint16_t latched_count;
809 uint8_t rw_state;
810 uint8_t mode;
811 uint8_t bcd; /* not supported */
812 uint8_t gate; /* timer start */
813 int64_t count_load_time;
814 int64_t count_last_edge_check_time;
815 } PITChannelState;
816
817 PITChannelState pit_channels[3];
818 int speaker_data_on;
819 int pit_min_timer_count = 0;
820
821 int64_t ticks_per_sec;
822
823 int64_t get_clock(void)
824 {
825 struct timeval tv;
826 gettimeofday(&tv, NULL);
827 return tv.tv_sec * 1000000LL + tv.tv_usec;
828 }
829
830 int64_t cpu_get_ticks(void)
831 {
832 int64_t val;
833 asm("rdtsc" : "=A" (val));
834 return val;
835 }
836
837 void cpu_calibrate_ticks(void)
838 {
839 int64_t usec, ticks;
840
841 usec = get_clock();
842 ticks = cpu_get_ticks();
843 usleep(50 * 1000);
844 usec = get_clock() - usec;
845 ticks = cpu_get_ticks() - ticks;
846 ticks_per_sec = (ticks * 1000000LL + (usec >> 1)) / usec;
847 }
848
849 /* compute with 96 bit intermediate result: (a*b)/c */
850 static uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
851 {
852 union {
853 uint64_t ll;
854 struct {
855 #ifdef WORDS_BIGENDIAN
856 uint32_t high, low;
857 #else
858 uint32_t low, high;
859 #endif
860 } l;
861 } u, res;
862 uint64_t rl, rh;
863
864 u.ll = a;
865 rl = (uint64_t)u.l.low * (uint64_t)b;
866 rh = (uint64_t)u.l.high * (uint64_t)b;
867 rh += (rl >> 32);
868 res.l.high = rh / c;
869 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
870 return res.ll;
871 }
872
873 static int pit_get_count(PITChannelState *s)
874 {
875 uint64_t d;
876 int counter;
877
878 d = muldiv64(cpu_get_ticks() - s->count_load_time, PIT_FREQ, ticks_per_sec);
879 switch(s->mode) {
880 case 0:
881 case 1:
882 case 4:
883 case 5:
884 counter = (s->count - d) & 0xffff;
885 break;
886 default:
887 counter = s->count - (d % s->count);
888 break;
889 }
890 return counter;
891 }
892
893 /* get pit output bit */
894 static int pit_get_out(PITChannelState *s)
895 {
896 uint64_t d;
897 int out;
898
899 d = muldiv64(cpu_get_ticks() - s->count_load_time, PIT_FREQ, ticks_per_sec);
900 switch(s->mode) {
901 default:
902 case 0:
903 out = (d >= s->count);
904 break;
905 case 1:
906 out = (d < s->count);
907 break;
908 case 2:
909 if ((d % s->count) == 0 && d != 0)
910 out = 1;
911 else
912 out = 0;
913 break;
914 case 3:
915 out = (d % s->count) < (s->count >> 1);
916 break;
917 case 4:
918 case 5:
919 out = (d == s->count);
920 break;
921 }
922 return out;
923 }
924
925 /* get the number of 0 to 1 transitions we had since we call this
926 function */
927 /* XXX: maybe better to use ticks precision to avoid getting edges
928 twice if checks are done at very small intervals */
929 static int pit_get_out_edges(PITChannelState *s)
930 {
931 uint64_t d1, d2;
932 int64_t ticks;
933 int ret, v;
934
935 ticks = cpu_get_ticks();
936 d1 = muldiv64(s->count_last_edge_check_time - s->count_load_time,
937 PIT_FREQ, ticks_per_sec);
938 d2 = muldiv64(ticks - s->count_load_time,
939 PIT_FREQ, ticks_per_sec);
940 s->count_last_edge_check_time = ticks;
941 switch(s->mode) {
942 default:
943 case 0:
944 if (d1 < s->count && d2 >= s->count)
945 ret = 1;
946 else
947 ret = 0;
948 break;
949 case 1:
950 ret = 0;
951 break;
952 case 2:
953 d1 /= s->count;
954 d2 /= s->count;
955 ret = d2 - d1;
956 break;
957 case 3:
958 v = s->count - (s->count >> 1);
959 d1 = (d1 + v) / s->count;
960 d2 = (d2 + v) / s->count;
961 ret = d2 - d1;
962 break;
963 case 4:
964 case 5:
965 if (d1 < s->count && d2 >= s->count)
966 ret = 1;
967 else
968 ret = 0;
969 break;
970 }
971 return ret;
972 }
973
974 static inline void pit_load_count(PITChannelState *s, int val)
975 {
976 if (val == 0)
977 val = 0x10000;
978 s->count_load_time = cpu_get_ticks();
979 s->count_last_edge_check_time = s->count_load_time;
980 s->count = val;
981 if (s == &pit_channels[0] && val <= pit_min_timer_count) {
982 fprintf(stderr,
983 "\nWARNING: vl: on your system, accurate timer emulation is impossible if its frequency is more than %d Hz. If using a 2.5.xx Linux kernel, you must patch asm/param.h to change HZ from 1000 to 100.\n\n",
984 PIT_FREQ / pit_min_timer_count);
985 }
986 }
987
988 void pit_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
989 {
990 int channel, access;
991 PITChannelState *s;
992
993 addr &= 3;
994 if (addr == 3) {
995 channel = val >> 6;
996 if (channel == 3)
997 return;
998 s = &pit_channels[channel];
999 access = (val >> 4) & 3;
1000 switch(access) {
1001 case 0:
1002 s->latched_count = pit_get_count(s);
1003 s->rw_state = RW_STATE_LATCHED_WORD0;
1004 break;
1005 default:
1006 s->mode = (val >> 1) & 7;
1007 s->bcd = val & 1;
1008 s->rw_state = access - 1 + RW_STATE_LSB;
1009 break;
1010 }
1011 } else {
1012 s = &pit_channels[addr];
1013 switch(s->rw_state) {
1014 case RW_STATE_LSB:
1015 pit_load_count(s, val);
1016 break;
1017 case RW_STATE_MSB:
1018 pit_load_count(s, val << 8);
1019 break;
1020 case RW_STATE_WORD0:
1021 case RW_STATE_WORD1:
1022 if (s->rw_state & 1) {
1023 pit_load_count(s, (s->latched_count & 0xff) | (val << 8));
1024 } else {
1025 s->latched_count = val;
1026 }
1027 s->rw_state ^= 1;
1028 break;
1029 }
1030 }
1031 }
1032
1033 uint32_t pit_ioport_read(CPUX86State *env, uint32_t addr)
1034 {
1035 int ret, count;
1036 PITChannelState *s;
1037
1038 addr &= 3;
1039 s = &pit_channels[addr];
1040 switch(s->rw_state) {
1041 case RW_STATE_LSB:
1042 case RW_STATE_MSB:
1043 case RW_STATE_WORD0:
1044 case RW_STATE_WORD1:
1045 count = pit_get_count(s);
1046 if (s->rw_state & 1)
1047 ret = (count >> 8) & 0xff;
1048 else
1049 ret = count & 0xff;
1050 if (s->rw_state & 2)
1051 s->rw_state ^= 1;
1052 break;
1053 default:
1054 case RW_STATE_LATCHED_WORD0:
1055 case RW_STATE_LATCHED_WORD1:
1056 if (s->rw_state & 1)
1057 ret = s->latched_count >> 8;
1058 else
1059 ret = s->latched_count & 0xff;
1060 s->rw_state ^= 1;
1061 break;
1062 }
1063 return ret;
1064 }
1065
1066 void speaker_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1067 {
1068 speaker_data_on = (val >> 1) & 1;
1069 pit_channels[2].gate = val & 1;
1070 }
1071
1072 uint32_t speaker_ioport_read(CPUX86State *env, uint32_t addr)
1073 {
1074 int out;
1075 out = pit_get_out(&pit_channels[2]);
1076 return (speaker_data_on << 1) | pit_channels[2].gate | (out << 5);
1077 }
1078
1079 void pit_init(void)
1080 {
1081 PITChannelState *s;
1082 int i;
1083
1084 cpu_calibrate_ticks();
1085
1086 for(i = 0;i < 3; i++) {
1087 s = &pit_channels[i];
1088 s->mode = 3;
1089 s->gate = (i != 2);
1090 pit_load_count(s, 0);
1091 }
1092
1093 register_ioport_write(0x40, 4, pit_ioport_write, 1);
1094 register_ioport_read(0x40, 3, pit_ioport_read, 1);
1095
1096 register_ioport_read(0x61, 1, speaker_ioport_read, 1);
1097 register_ioport_write(0x61, 1, speaker_ioport_write, 1);
1098 }
1099
1100 /***********************************************************/
1101 /* serial port emulation */
1102
1103 #define UART_IRQ 4
1104
1105 #define UART_LCR_DLAB 0x80 /* Divisor latch access bit */
1106
1107 #define UART_IER_MSI 0x08 /* Enable Modem status interrupt */
1108 #define UART_IER_RLSI 0x04 /* Enable receiver line status interrupt */
1109 #define UART_IER_THRI 0x02 /* Enable Transmitter holding register int. */
1110 #define UART_IER_RDI 0x01 /* Enable receiver data interrupt */
1111
1112 #define UART_IIR_NO_INT 0x01 /* No interrupts pending */
1113 #define UART_IIR_ID 0x06 /* Mask for the interrupt ID */
1114
1115 #define UART_IIR_MSI 0x00 /* Modem status interrupt */
1116 #define UART_IIR_THRI 0x02 /* Transmitter holding register empty */
1117 #define UART_IIR_RDI 0x04 /* Receiver data interrupt */
1118 #define UART_IIR_RLSI 0x06 /* Receiver line status interrupt */
1119
1120 #define UART_LSR_TEMT 0x40 /* Transmitter empty */
1121 #define UART_LSR_THRE 0x20 /* Transmit-hold-register empty */
1122 #define UART_LSR_BI 0x10 /* Break interrupt indicator */
1123 #define UART_LSR_FE 0x08 /* Frame error indicator */
1124 #define UART_LSR_PE 0x04 /* Parity error indicator */
1125 #define UART_LSR_OE 0x02 /* Overrun error indicator */
1126 #define UART_LSR_DR 0x01 /* Receiver data ready */
1127
1128 typedef struct SerialState {
1129 uint8_t divider;
1130 uint8_t rbr; /* receive register */
1131 uint8_t ier;
1132 uint8_t iir; /* read only */
1133 uint8_t lcr;
1134 uint8_t mcr;
1135 uint8_t lsr; /* read only */
1136 uint8_t msr;
1137 uint8_t scr;
1138 } SerialState;
1139
1140 SerialState serial_ports[1];
1141
1142 void serial_update_irq(void)
1143 {
1144 SerialState *s = &serial_ports[0];
1145
1146 if ((s->lsr & UART_LSR_DR) && (s->ier & UART_IER_RDI)) {
1147 s->iir = UART_IIR_RDI;
1148 } else if ((s->lsr & UART_LSR_THRE) && (s->ier & UART_IER_THRI)) {
1149 s->iir = UART_IIR_THRI;
1150 } else {
1151 s->iir = UART_IIR_NO_INT;
1152 }
1153 if (s->iir != UART_IIR_NO_INT) {
1154 pic_set_irq(UART_IRQ, 1);
1155 } else {
1156 pic_set_irq(UART_IRQ, 0);
1157 }
1158 }
1159
1160 void serial_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1161 {
1162 SerialState *s = &serial_ports[0];
1163 unsigned char ch;
1164 int ret;
1165
1166 addr &= 7;
1167 switch(addr) {
1168 default:
1169 case 0:
1170 if (s->lcr & UART_LCR_DLAB) {
1171 s->divider = (s->divider & 0xff00) | val;
1172 } else {
1173 s->lsr &= ~UART_LSR_THRE;
1174 serial_update_irq();
1175
1176 ch = val;
1177 do {
1178 ret = write(1, &ch, 1);
1179 } while (ret != 1);
1180 s->lsr |= UART_LSR_THRE;
1181 s->lsr |= UART_LSR_TEMT;
1182 serial_update_irq();
1183 }
1184 break;
1185 case 1:
1186 if (s->lcr & UART_LCR_DLAB) {
1187 s->divider = (s->divider & 0x00ff) | (val << 8);
1188 } else {
1189 s->ier = val;
1190 serial_update_irq();
1191 }
1192 break;
1193 case 2:
1194 break;
1195 case 3:
1196 s->lcr = val;
1197 break;
1198 case 4:
1199 s->mcr = val;
1200 break;
1201 case 5:
1202 break;
1203 case 6:
1204 s->msr = val;
1205 break;
1206 case 7:
1207 s->scr = val;
1208 break;
1209 }
1210 }
1211
1212 uint32_t serial_ioport_read(CPUX86State *env, uint32_t addr)
1213 {
1214 SerialState *s = &serial_ports[0];
1215 uint32_t ret;
1216
1217 addr &= 7;
1218 switch(addr) {
1219 default:
1220 case 0:
1221 if (s->lcr & UART_LCR_DLAB) {
1222 ret = s->divider & 0xff;
1223 } else {
1224 ret = s->rbr;
1225 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
1226 serial_update_irq();
1227 }
1228 break;
1229 case 1:
1230 if (s->lcr & UART_LCR_DLAB) {
1231 ret = (s->divider >> 8) & 0xff;
1232 } else {
1233 ret = s->ier;
1234 }
1235 break;
1236 case 2:
1237 ret = s->iir;
1238 break;
1239 case 3:
1240 ret = s->lcr;
1241 break;
1242 case 4:
1243 ret = s->mcr;
1244 break;
1245 case 5:
1246 ret = s->lsr;
1247 break;
1248 case 6:
1249 ret = s->msr;
1250 break;
1251 case 7:
1252 ret = s->scr;
1253 break;
1254 }
1255 return ret;
1256 }
1257
1258 #define TERM_ESCAPE 0x01 /* ctrl-a is used for escape */
1259 static int term_got_escape;
1260
1261 void term_print_help(void)
1262 {
1263 printf("\n"
1264 "C-a h print this help\n"
1265 "C-a x exit emulatior\n"
1266 "C-a b send break (magic sysrq)\n"
1267 "C-a C-a send C-a\n"
1268 );
1269 }
1270
1271 /* called when a char is received */
1272 void serial_received_byte(SerialState *s, int ch)
1273 {
1274 if (term_got_escape) {
1275 term_got_escape = 0;
1276 switch(ch) {
1277 case 'h':
1278 term_print_help();
1279 break;
1280 case 'x':
1281 exit(0);
1282 break;
1283 case 'b':
1284 /* send break */
1285 s->rbr = 0;
1286 s->lsr |= UART_LSR_BI | UART_LSR_DR;
1287 serial_update_irq();
1288 break;
1289 case TERM_ESCAPE:
1290 goto send_char;
1291 }
1292 } else if (ch == TERM_ESCAPE) {
1293 term_got_escape = 1;
1294 } else {
1295 send_char:
1296 s->rbr = ch;
1297 s->lsr |= UART_LSR_DR;
1298 serial_update_irq();
1299 }
1300 }
1301
1302 /* init terminal so that we can grab keys */
1303 static struct termios oldtty;
1304
1305 static void term_exit(void)
1306 {
1307 tcsetattr (0, TCSANOW, &oldtty);
1308 }
1309
1310 static void term_init(void)
1311 {
1312 struct termios tty;
1313
1314 tcgetattr (0, &tty);
1315 oldtty = tty;
1316
1317 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1318 |INLCR|IGNCR|ICRNL|IXON);
1319 tty.c_oflag |= OPOST;
1320 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
1321 tty.c_cflag &= ~(CSIZE|PARENB);
1322 tty.c_cflag |= CS8;
1323 tty.c_cc[VMIN] = 1;
1324 tty.c_cc[VTIME] = 0;
1325
1326 tcsetattr (0, TCSANOW, &tty);
1327
1328 atexit(term_exit);
1329
1330 fcntl(0, F_SETFL, O_NONBLOCK);
1331 }
1332
1333 void serial_init(void)
1334 {
1335 SerialState *s = &serial_ports[0];
1336
1337 s->lsr = UART_LSR_TEMT | UART_LSR_THRE;
1338
1339 register_ioport_write(0x3f8, 8, serial_ioport_write, 1);
1340 register_ioport_read(0x3f8, 8, serial_ioport_read, 1);
1341
1342 term_init();
1343 }
1344
1345 /***********************************************************/
1346 /* ne2000 emulation */
1347
1348 //#define DEBUG_NE2000
1349
1350 #define NE2000_IOPORT 0x300
1351 #define NE2000_IRQ 9
1352
1353 #define MAX_ETH_FRAME_SIZE 1514
1354
1355 #define E8390_CMD 0x00 /* The command register (for all pages) */
1356 /* Page 0 register offsets. */
1357 #define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
1358 #define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
1359 #define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
1360 #define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
1361 #define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
1362 #define EN0_TSR 0x04 /* Transmit status reg RD */
1363 #define EN0_TPSR 0x04 /* Transmit starting page WR */
1364 #define EN0_NCR 0x05 /* Number of collision reg RD */
1365 #define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
1366 #define EN0_FIFO 0x06 /* FIFO RD */
1367 #define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
1368 #define EN0_ISR 0x07 /* Interrupt status reg RD WR */
1369 #define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
1370 #define EN0_RSARLO 0x08 /* Remote start address reg 0 */
1371 #define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
1372 #define EN0_RSARHI 0x09 /* Remote start address reg 1 */
1373 #define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
1374 #define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
1375 #define EN0_RSR 0x0c /* rx status reg RD */
1376 #define EN0_RXCR 0x0c /* RX configuration reg WR */
1377 #define EN0_TXCR 0x0d /* TX configuration reg WR */
1378 #define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
1379 #define EN0_DCFG 0x0e /* Data configuration reg WR */
1380 #define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
1381 #define EN0_IMR 0x0f /* Interrupt mask reg WR */
1382 #define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
1383
1384 #define EN1_PHYS 0x11
1385 #define EN1_CURPAG 0x17
1386 #define EN1_MULT 0x18
1387
1388 /* Register accessed at EN_CMD, the 8390 base addr. */
1389 #define E8390_STOP 0x01 /* Stop and reset the chip */
1390 #define E8390_START 0x02 /* Start the chip, clear reset */
1391 #define E8390_TRANS 0x04 /* Transmit a frame */
1392 #define E8390_RREAD 0x08 /* Remote read */
1393 #define E8390_RWRITE 0x10 /* Remote write */
1394 #define E8390_NODMA 0x20 /* Remote DMA */
1395 #define E8390_PAGE0 0x00 /* Select page chip registers */
1396 #define E8390_PAGE1 0x40 /* using the two high-order bits */
1397 #define E8390_PAGE2 0x80 /* Page 3 is invalid. */
1398
1399 /* Bits in EN0_ISR - Interrupt status register */
1400 #define ENISR_RX 0x01 /* Receiver, no error */
1401 #define ENISR_TX 0x02 /* Transmitter, no error */
1402 #define ENISR_RX_ERR 0x04 /* Receiver, with error */
1403 #define ENISR_TX_ERR 0x08 /* Transmitter, with error */
1404 #define ENISR_OVER 0x10 /* Receiver overwrote the ring */
1405 #define ENISR_COUNTERS 0x20 /* Counters need emptying */
1406 #define ENISR_RDC 0x40 /* remote dma complete */
1407 #define ENISR_RESET 0x80 /* Reset completed */
1408 #define ENISR_ALL 0x3f /* Interrupts we will enable */
1409
1410 /* Bits in received packet status byte and EN0_RSR*/
1411 #define ENRSR_RXOK 0x01 /* Received a good packet */
1412 #define ENRSR_CRC 0x02 /* CRC error */
1413 #define ENRSR_FAE 0x04 /* frame alignment error */
1414 #define ENRSR_FO 0x08 /* FIFO overrun */
1415 #define ENRSR_MPA 0x10 /* missed pkt */
1416 #define ENRSR_PHY 0x20 /* physical/multicast address */
1417 #define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
1418 #define ENRSR_DEF 0x80 /* deferring */
1419
1420 /* Transmitted packet status, EN0_TSR. */
1421 #define ENTSR_PTX 0x01 /* Packet transmitted without error */
1422 #define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
1423 #define ENTSR_COL 0x04 /* The transmit collided at least once. */
1424 #define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
1425 #define ENTSR_CRS 0x10 /* The carrier sense was lost. */
1426 #define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
1427 #define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
1428 #define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
1429
1430 #define NE2000_MEM_SIZE 32768
1431
1432 typedef struct NE2000State {
1433 uint8_t cmd;
1434 uint32_t start;
1435 uint32_t stop;
1436 uint8_t boundary;
1437 uint8_t tsr;
1438 uint8_t tpsr;
1439 uint16_t tcnt;
1440 uint16_t rcnt;
1441 uint32_t rsar;
1442 uint8_t isr;
1443 uint8_t dcfg;
1444 uint8_t imr;
1445 uint8_t phys[6]; /* mac address */
1446 uint8_t curpag;
1447 uint8_t mult[8]; /* multicast mask array */
1448 uint8_t mem[NE2000_MEM_SIZE];
1449 } NE2000State;
1450
1451 NE2000State ne2000_state;
1452 int net_fd = -1;
1453 char network_script[1024];
1454
1455 void ne2000_reset(void)
1456 {
1457 NE2000State *s = &ne2000_state;
1458 int i;
1459
1460 s->isr = ENISR_RESET;
1461 s->mem[0] = 0x52;
1462 s->mem[1] = 0x54;
1463 s->mem[2] = 0x00;
1464 s->mem[3] = 0x12;
1465 s->mem[4] = 0x34;
1466 s->mem[5] = 0x56;
1467 s->mem[14] = 0x57;
1468 s->mem[15] = 0x57;
1469
1470 /* duplicate prom data */
1471 for(i = 15;i >= 0; i--) {
1472 s->mem[2 * i] = s->mem[i];
1473 s->mem[2 * i + 1] = s->mem[i];
1474 }
1475 }
1476
1477 void ne2000_update_irq(NE2000State *s)
1478 {
1479 int isr;
1480 isr = s->isr & s->imr;
1481 if (isr)
1482 pic_set_irq(NE2000_IRQ, 1);
1483 else
1484 pic_set_irq(NE2000_IRQ, 0);
1485 }
1486
1487 int net_init(void)
1488 {
1489 struct ifreq ifr;
1490 int fd, ret, pid, status;
1491
1492 fd = open("/dev/net/tun", O_RDWR);
1493 if (fd < 0) {
1494 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
1495 return -1;
1496 }
1497 memset(&ifr, 0, sizeof(ifr));
1498 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
1499 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tun%d");
1500 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
1501 if (ret != 0) {
1502 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
1503 close(fd);
1504 return -1;
1505 }
1506 printf("Connected to host network interface: %s\n", ifr.ifr_name);
1507 fcntl(fd, F_SETFL, O_NONBLOCK);
1508 net_fd = fd;
1509
1510 /* try to launch network init script */
1511 pid = fork();
1512 if (pid >= 0) {
1513 if (pid == 0) {
1514 execl(network_script, network_script, ifr.ifr_name, NULL);
1515 exit(1);
1516 }
1517 while (waitpid(pid, &status, 0) != pid);
1518 if (!WIFEXITED(status) ||
1519 WEXITSTATUS(status) != 0) {
1520 fprintf(stderr, "%s: could not launch network script for '%s'\n",
1521 network_script, ifr.ifr_name);
1522 }
1523 }
1524 return 0;
1525 }
1526
1527 void net_send_packet(NE2000State *s, const uint8_t *buf, int size)
1528 {
1529 #ifdef DEBUG_NE2000
1530 printf("NE2000: sending packet size=%d\n", size);
1531 #endif
1532 write(net_fd, buf, size);
1533 }
1534
1535 /* return true if the NE2000 can receive more data */
1536 int ne2000_can_receive(NE2000State *s)
1537 {
1538 int avail, index, boundary;
1539
1540 if (s->cmd & E8390_STOP)
1541 return 0;
1542 index = s->curpag << 8;
1543 boundary = s->boundary << 8;
1544 if (index < boundary)
1545 avail = boundary - index;
1546 else
1547 avail = (s->stop - s->start) - (index - boundary);
1548 if (avail < (MAX_ETH_FRAME_SIZE + 4))
1549 return 0;
1550 return 1;
1551 }
1552
1553 void ne2000_receive(NE2000State *s, uint8_t *buf, int size)
1554 {
1555 uint8_t *p;
1556 int total_len, next, avail, len, index;
1557
1558 #if defined(DEBUG_NE2000)
1559 printf("NE2000: received len=%d\n", size);
1560 #endif
1561
1562 index = s->curpag << 8;
1563 /* 4 bytes for header */
1564 total_len = size + 4;
1565 /* address for next packet (4 bytes for CRC) */
1566 next = index + ((total_len + 4 + 255) & ~0xff);
1567 if (next >= s->stop)
1568 next -= (s->stop - s->start);
1569 /* prepare packet header */
1570 p = s->mem + index;
1571 p[0] = ENRSR_RXOK; /* receive status */
1572 p[1] = next >> 8;
1573 p[2] = total_len;
1574 p[3] = total_len >> 8;
1575 index += 4;
1576
1577 /* write packet data */
1578 while (size > 0) {
1579 avail = s->stop - index;
1580 len = size;
1581 if (len > avail)
1582 len = avail;
1583 memcpy(s->mem + index, buf, len);
1584 buf += len;
1585 index += len;
1586 if (index == s->stop)
1587 index = s->start;
1588 size -= len;
1589 }
1590 s->curpag = next >> 8;
1591
1592 /* now we can signal we have receive something */
1593 s->isr |= ENISR_RX;
1594 ne2000_update_irq(s);
1595 }
1596
1597 void ne2000_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1598 {
1599 NE2000State *s = &ne2000_state;
1600 int offset, page;
1601
1602 addr &= 0xf;
1603 #ifdef DEBUG_NE2000
1604 printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
1605 #endif
1606 if (addr == E8390_CMD) {
1607 /* control register */
1608 s->cmd = val;
1609 if (val & E8390_START) {
1610 /* test specific case: zero length transfert */
1611 if ((val & (E8390_RREAD | E8390_RWRITE)) &&
1612 s->rcnt == 0) {
1613 s->isr |= ENISR_RDC;
1614 ne2000_update_irq(s);
1615 }
1616 if (val & E8390_TRANS) {
1617 net_send_packet(s, s->mem + (s->tpsr << 8), s->tcnt);
1618 /* signal end of transfert */
1619 s->tsr = ENTSR_PTX;
1620 s->isr |= ENISR_TX;
1621 ne2000_update_irq(s);
1622 }
1623 }
1624 } else {
1625 page = s->cmd >> 6;
1626 offset = addr | (page << 4);
1627 switch(offset) {
1628 case EN0_STARTPG:
1629 s->start = val << 8;
1630 break;
1631 case EN0_STOPPG:
1632 s->stop = val << 8;
1633 break;
1634 case EN0_BOUNDARY:
1635 s->boundary = val;
1636 break;
1637 case EN0_IMR:
1638 s->imr = val;
1639 ne2000_update_irq(s);
1640 break;
1641 case EN0_TPSR:
1642 s->tpsr = val;
1643 break;
1644 case EN0_TCNTLO:
1645 s->tcnt = (s->tcnt & 0xff00) | val;
1646 break;
1647 case EN0_TCNTHI:
1648 s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
1649 break;
1650 case EN0_RSARLO:
1651 s->rsar = (s->rsar & 0xff00) | val;
1652 break;
1653 case EN0_RSARHI:
1654 s->rsar = (s->rsar & 0x00ff) | (val << 8);
1655 break;
1656 case EN0_RCNTLO:
1657 s->rcnt = (s->rcnt & 0xff00) | val;
1658 break;
1659 case EN0_RCNTHI:
1660 s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
1661 break;
1662 case EN0_DCFG:
1663 s->dcfg = val;
1664 break;
1665 case EN0_ISR:
1666 s->isr &= ~val;
1667 ne2000_update_irq(s);
1668 break;
1669 case EN1_PHYS ... EN1_PHYS + 5:
1670 s->phys[offset - EN1_PHYS] = val;
1671 break;
1672 case EN1_CURPAG:
1673 s->curpag = val;
1674 break;
1675 case EN1_MULT ... EN1_MULT + 7:
1676 s->mult[offset - EN1_MULT] = val;
1677 break;
1678 }
1679 }
1680 }
1681
1682 uint32_t ne2000_ioport_read(CPUX86State *env, uint32_t addr)
1683 {
1684 NE2000State *s = &ne2000_state;
1685 int offset, page, ret;
1686
1687 addr &= 0xf;
1688 if (addr == E8390_CMD) {
1689 ret = s->cmd;
1690 } else {
1691 page = s->cmd >> 6;
1692 offset = addr | (page << 4);
1693 switch(offset) {
1694 case EN0_TSR:
1695 ret = s->tsr;
1696 break;
1697 case EN0_BOUNDARY:
1698 ret = s->boundary;
1699 break;
1700 case EN0_ISR:
1701 ret = s->isr;
1702 break;
1703 case EN1_PHYS ... EN1_PHYS + 5:
1704 ret = s->phys[offset - EN1_PHYS];
1705 break;
1706 case EN1_CURPAG:
1707 ret = s->curpag;
1708 break;
1709 case EN1_MULT ... EN1_MULT + 7:
1710 ret = s->mult[offset - EN1_MULT];
1711 break;
1712 default:
1713 ret = 0x00;
1714 break;
1715 }
1716 }
1717 #ifdef DEBUG_NE2000
1718 printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
1719 #endif
1720 return ret;
1721 }
1722
1723 void ne2000_asic_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1724 {
1725 NE2000State *s = &ne2000_state;
1726 uint8_t *p;
1727
1728 #ifdef DEBUG_NE2000
1729 printf("NE2000: asic write val=0x%04x\n", val);
1730 #endif
1731 p = s->mem + s->rsar;
1732 if (s->dcfg & 0x01) {
1733 /* 16 bit access */
1734 p[0] = val;
1735 p[1] = val >> 8;
1736 s->rsar += 2;
1737 s->rcnt -= 2;
1738 } else {
1739 /* 8 bit access */
1740 p[0] = val;
1741 s->rsar++;
1742 s->rcnt--;
1743 }
1744 /* wrap */
1745 if (s->rsar == s->stop)
1746 s->rsar = s->start;
1747 if (s->rcnt == 0) {
1748 /* signal end of transfert */
1749 s->isr |= ENISR_RDC;
1750 ne2000_update_irq(s);
1751 }
1752 }
1753
1754 uint32_t ne2000_asic_ioport_read(CPUX86State *env, uint32_t addr)
1755 {
1756 NE2000State *s = &ne2000_state;
1757 uint8_t *p;
1758 int ret;
1759
1760 p = s->mem + s->rsar;
1761 if (s->dcfg & 0x01) {
1762 /* 16 bit access */
1763 ret = p[0] | (p[1] << 8);
1764 s->rsar += 2;
1765 s->rcnt -= 2;
1766 } else {
1767 /* 8 bit access */
1768 ret = p[0];
1769 s->rsar++;
1770 s->rcnt--;
1771 }
1772 /* wrap */
1773 if (s->rsar == s->stop)
1774 s->rsar = s->start;
1775 if (s->rcnt == 0) {
1776 /* signal end of transfert */
1777 s->isr |= ENISR_RDC;
1778 ne2000_update_irq(s);
1779 }
1780 #ifdef DEBUG_NE2000
1781 printf("NE2000: asic read val=0x%04x\n", ret);
1782 #endif
1783 return ret;
1784 }
1785
1786 void ne2000_reset_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1787 {
1788 /* nothing to do (end of reset pulse) */
1789 }
1790
1791 uint32_t ne2000_reset_ioport_read(CPUX86State *env, uint32_t addr)
1792 {
1793 ne2000_reset();
1794 return 0;
1795 }
1796
1797 void ne2000_init(void)
1798 {
1799 register_ioport_write(NE2000_IOPORT, 16, ne2000_ioport_write, 1);
1800 register_ioport_read(NE2000_IOPORT, 16, ne2000_ioport_read, 1);
1801
1802 register_ioport_write(NE2000_IOPORT + 0x10, 1, ne2000_asic_ioport_write, 1);
1803 register_ioport_read(NE2000_IOPORT + 0x10, 1, ne2000_asic_ioport_read, 1);
1804 register_ioport_write(NE2000_IOPORT + 0x10, 2, ne2000_asic_ioport_write, 2);
1805 register_ioport_read(NE2000_IOPORT + 0x10, 2, ne2000_asic_ioport_read, 2);
1806
1807 register_ioport_write(NE2000_IOPORT + 0x1f, 1, ne2000_reset_ioport_write, 1);
1808 register_ioport_read(NE2000_IOPORT + 0x1f, 1, ne2000_reset_ioport_read, 1);
1809 ne2000_reset();
1810 }
1811
1812 /***********************************************************/
1813 /* ide emulation */
1814
1815 //#define DEBUG_IDE
1816
1817 /* Bits of HD_STATUS */
1818 #define ERR_STAT 0x01
1819 #define INDEX_STAT 0x02
1820 #define ECC_STAT 0x04 /* Corrected error */
1821 #define DRQ_STAT 0x08
1822 #define SEEK_STAT 0x10
1823 #define SRV_STAT 0x10
1824 #define WRERR_STAT 0x20
1825 #define READY_STAT 0x40
1826 #define BUSY_STAT 0x80
1827
1828 /* Bits for HD_ERROR */
1829 #define MARK_ERR 0x01 /* Bad address mark */
1830 #define TRK0_ERR 0x02 /* couldn't find track 0 */
1831 #define ABRT_ERR 0x04 /* Command aborted */
1832 #define MCR_ERR 0x08 /* media change request */
1833 #define ID_ERR 0x10 /* ID field not found */
1834 #define MC_ERR 0x20 /* media changed */
1835 #define ECC_ERR 0x40 /* Uncorrectable ECC error */
1836 #define BBD_ERR 0x80 /* pre-EIDE meaning: block marked bad */
1837 #define ICRC_ERR 0x80 /* new meaning: CRC error during transfer */
1838
1839 /* Bits of HD_NSECTOR */
1840 #define CD 0x01
1841 #define IO 0x02
1842 #define REL 0x04
1843 #define TAG_MASK 0xf8
1844
1845 #define IDE_CMD_RESET 0x04
1846 #define IDE_CMD_DISABLE_IRQ 0x02
1847
1848 /* ATA/ATAPI Commands pre T13 Spec */
1849 #define WIN_NOP 0x00
1850 /*
1851 * 0x01->0x02 Reserved
1852 */
1853 #define CFA_REQ_EXT_ERROR_CODE 0x03 /* CFA Request Extended Error Code */
1854 /*
1855 * 0x04->0x07 Reserved
1856 */
1857 #define WIN_SRST 0x08 /* ATAPI soft reset command */
1858 #define WIN_DEVICE_RESET 0x08
1859 /*
1860 * 0x09->0x0F Reserved
1861 */
1862 #define WIN_RECAL 0x10
1863 #define WIN_RESTORE WIN_RECAL
1864 /*
1865 * 0x10->0x1F Reserved
1866 */
1867 #define WIN_READ 0x20 /* 28-Bit */
1868 #define WIN_READ_ONCE 0x21 /* 28-Bit without retries */
1869 #define WIN_READ_LONG 0x22 /* 28-Bit */
1870 #define WIN_READ_LONG_ONCE 0x23 /* 28-Bit without retries */
1871 #define WIN_READ_EXT 0x24 /* 48-Bit */
1872 #define WIN_READDMA_EXT 0x25 /* 48-Bit */
1873 #define WIN_READDMA_QUEUED_EXT 0x26 /* 48-Bit */
1874 #define WIN_READ_NATIVE_MAX_EXT 0x27 /* 48-Bit */
1875 /*
1876 * 0x28
1877 */
1878 #define WIN_MULTREAD_EXT 0x29 /* 48-Bit */
1879 /*
1880 * 0x2A->0x2F Reserved
1881 */
1882 #define WIN_WRITE 0x30 /* 28-Bit */
1883 #define WIN_WRITE_ONCE 0x31 /* 28-Bit without retries */
1884 #define WIN_WRITE_LONG 0x32 /* 28-Bit */
1885 #define WIN_WRITE_LONG_ONCE 0x33 /* 28-Bit without retries */
1886 #define WIN_WRITE_EXT 0x34 /* 48-Bit */
1887 #define WIN_WRITEDMA_EXT 0x35 /* 48-Bit */
1888 #define WIN_WRITEDMA_QUEUED_EXT 0x36 /* 48-Bit */
1889 #define WIN_SET_MAX_EXT 0x37 /* 48-Bit */
1890 #define CFA_WRITE_SECT_WO_ERASE 0x38 /* CFA Write Sectors without erase */
1891 #define WIN_MULTWRITE_EXT 0x39 /* 48-Bit */
1892 /*
1893 * 0x3A->0x3B Reserved
1894 */
1895 #define WIN_WRITE_VERIFY 0x3C /* 28-Bit */
1896 /*
1897 * 0x3D->0x3F Reserved
1898 */
1899 #define WIN_VERIFY 0x40 /* 28-Bit - Read Verify Sectors */
1900 #define WIN_VERIFY_ONCE 0x41 /* 28-Bit - without retries */
1901 #define WIN_VERIFY_EXT 0x42 /* 48-Bit */
1902 /*
1903 * 0x43->0x4F Reserved
1904 */
1905 #define WIN_FORMAT 0x50
1906 /*
1907 * 0x51->0x5F Reserved
1908 */
1909 #define WIN_INIT 0x60
1910 /*
1911 * 0x61->0x5F Reserved
1912 */
1913 #define WIN_SEEK 0x70 /* 0x70-0x7F Reserved */
1914 #define CFA_TRANSLATE_SECTOR 0x87 /* CFA Translate Sector */
1915 #define WIN_DIAGNOSE 0x90
1916 #define WIN_SPECIFY 0x91 /* set drive geometry translation */
1917 #define WIN_DOWNLOAD_MICROCODE 0x92
1918 #define WIN_STANDBYNOW2 0x94
1919 #define WIN_STANDBY2 0x96
1920 #define WIN_SETIDLE2 0x97
1921 #define WIN_CHECKPOWERMODE2 0x98
1922 #define WIN_SLEEPNOW2 0x99
1923 /*
1924 * 0x9A VENDOR
1925 */
1926 #define WIN_PACKETCMD 0xA0 /* Send a packet command. */
1927 #define WIN_PIDENTIFY 0xA1 /* identify ATAPI device */
1928 #define WIN_QUEUED_SERVICE 0xA2
1929 #define WIN_SMART 0xB0 /* self-monitoring and reporting */
1930 #define CFA_ERASE_SECTORS 0xC0
1931 #define WIN_MULTREAD 0xC4 /* read sectors using multiple mode*/
1932 #define WIN_MULTWRITE 0xC5 /* write sectors using multiple mode */
1933 #define WIN_SETMULT 0xC6 /* enable/disable multiple mode */
1934 #define WIN_READDMA_QUEUED 0xC7 /* read sectors using Queued DMA transfers */
1935 #define WIN_READDMA 0xC8 /* read sectors using DMA transfers */
1936 #define WIN_READDMA_ONCE 0xC9 /* 28-Bit - without retries */
1937 #define WIN_WRITEDMA 0xCA /* write sectors using DMA transfers */
1938 #define WIN_WRITEDMA_ONCE 0xCB /* 28-Bit - without retries */
1939 #define WIN_WRITEDMA_QUEUED 0xCC /* write sectors using Queued DMA transfers */
1940 #define CFA_WRITE_MULTI_WO_ERASE 0xCD /* CFA Write multiple without erase */
1941 #define WIN_GETMEDIASTATUS 0xDA
1942 #define WIN_ACKMEDIACHANGE 0xDB /* ATA-1, ATA-2 vendor */
1943 #define WIN_POSTBOOT 0xDC
1944 #define WIN_PREBOOT 0xDD
1945 #define WIN_DOORLOCK 0xDE /* lock door on removable drives */
1946 #define WIN_DOORUNLOCK 0xDF /* unlock door on removable drives */
1947 #define WIN_STANDBYNOW1 0xE0
1948 #define WIN_IDLEIMMEDIATE 0xE1 /* force drive to become "ready" */
1949 #define WIN_STANDBY 0xE2 /* Set device in Standby Mode */
1950 #define WIN_SETIDLE1 0xE3
1951 #define WIN_READ_BUFFER 0xE4 /* force read only 1 sector */
1952 #define WIN_CHECKPOWERMODE1 0xE5
1953 #define WIN_SLEEPNOW1 0xE6
1954 #define WIN_FLUSH_CACHE 0xE7
1955 #define WIN_WRITE_BUFFER 0xE8 /* force write only 1 sector */
1956 #define WIN_WRITE_SAME 0xE9 /* read ata-2 to use */
1957 /* SET_FEATURES 0x22 or 0xDD */
1958 #define WIN_FLUSH_CACHE_EXT 0xEA /* 48-Bit */
1959 #define WIN_IDENTIFY 0xEC /* ask drive to identify itself */
1960 #define WIN_MEDIAEJECT 0xED
1961 #define WIN_IDENTIFY_DMA 0xEE /* same as WIN_IDENTIFY, but DMA */
1962 #define WIN_SETFEATURES 0xEF /* set special drive features */
1963 #define EXABYTE_ENABLE_NEST 0xF0
1964 #define WIN_SECURITY_SET_PASS 0xF1
1965 #define WIN_SECURITY_UNLOCK 0xF2
1966 #define WIN_SECURITY_ERASE_PREPARE 0xF3
1967 #define WIN_SECURITY_ERASE_UNIT 0xF4
1968 #define WIN_SECURITY_FREEZE_LOCK 0xF5
1969 #define WIN_SECURITY_DISABLE 0xF6
1970 #define WIN_READ_NATIVE_MAX 0xF8 /* return the native maximum address */
1971 #define WIN_SET_MAX 0xF9
1972 #define DISABLE_SEAGATE 0xFB
1973
1974 /* set to 1 set disable mult support */
1975 #define MAX_MULT_SECTORS 8
1976
1977 #define MAX_DISKS 2
1978
1979 struct IDEState;
1980
1981 typedef void EndTransferFunc(struct IDEState *);
1982
1983 typedef struct IDEState {
1984 /* ide config */
1985 int cylinders, heads, sectors;
1986 int64_t nb_sectors;
1987 int mult_sectors;
1988 int irq;
1989 /* ide regs */
1990 uint8_t feature;
1991 uint8_t error;
1992 uint16_t nsector; /* 0 is 256 to ease computations */
1993 uint8_t sector;
1994 uint8_t lcyl;
1995 uint8_t hcyl;
1996 uint8_t select;
1997 uint8_t status;
1998 /* 0x3f6 command, only meaningful for drive 0 */
1999 uint8_t cmd;
2000 /* depends on bit 4 in select, only meaningful for drive 0 */
2001 struct IDEState *cur_drive;
2002 BlockDriverState *bs;
2003 int req_nb_sectors; /* number of sectors per interrupt */
2004 EndTransferFunc *end_transfer_func;
2005 uint8_t *data_ptr;
2006 uint8_t *data_end;
2007 uint8_t io_buffer[MAX_MULT_SECTORS*512 + 4];
2008 } IDEState;
2009
2010 BlockDriverState *bs_table[MAX_DISKS];
2011 IDEState ide_state[MAX_DISKS];
2012
2013 static void padstr(char *str, const char *src, int len)
2014 {
2015 int i, v;
2016 for(i = 0; i < len; i++) {
2017 if (*src)
2018 v = *src++;
2019 else
2020 v = ' ';
2021 *(char *)((long)str ^ 1) = v;
2022 str++;
2023 }
2024 }
2025
2026 static void ide_identify(IDEState *s)
2027 {
2028 uint16_t *p;
2029 unsigned int oldsize;
2030
2031 memset(s->io_buffer, 0, 512);
2032 p = (uint16_t *)s->io_buffer;
2033 stw(p + 0, 0x0040);
2034 stw(p + 1, s->cylinders);
2035 stw(p + 3, s->heads);
2036 stw(p + 4, 512 * s->sectors); /* sectors */
2037 stw(p + 5, 512); /* sector size */
2038 stw(p + 6, s->sectors);
2039 stw(p + 20, 3); /* buffer type */
2040 stw(p + 21, 512); /* cache size in sectors */
2041 stw(p + 22, 4); /* ecc bytes */
2042 padstr((uint8_t *)(p + 27), "QEMU HARDDISK", 40);
2043 #if MAX_MULT_SECTORS > 1
2044 stw(p + 47, MAX_MULT_SECTORS);
2045 #endif
2046 stw(p + 48, 1); /* dword I/O */
2047 stw(p + 49, 1 << 9); /* LBA supported, no DMA */
2048 stw(p + 51, 0x200); /* PIO transfer cycle */
2049 stw(p + 52, 0x200); /* DMA transfer cycle */
2050 stw(p + 54, s->cylinders);
2051 stw(p + 55, s->heads);
2052 stw(p + 56, s->sectors);
2053 oldsize = s->cylinders * s->heads * s->sectors;
2054 stw(p + 57, oldsize);
2055 stw(p + 58, oldsize >> 16);
2056 if (s->mult_sectors)
2057 stw(p + 59, 0x100 | s->mult_sectors);
2058 stw(p + 60, s->nb_sectors);
2059 stw(p + 61, s->nb_sectors >> 16);
2060 stw(p + 80, (1 << 1) | (1 << 2));
2061 stw(p + 82, (1 << 14));
2062 stw(p + 83, (1 << 14));
2063 stw(p + 84, (1 << 14));
2064 stw(p + 85, (1 << 14));
2065 stw(p + 86, 0);
2066 stw(p + 87, (1 << 14));
2067 }
2068
2069 static inline void ide_abort_command(IDEState *s)
2070 {
2071 s->status = READY_STAT | ERR_STAT;
2072 s->error = ABRT_ERR;
2073 }
2074
2075 static inline void ide_set_irq(IDEState *s)
2076 {
2077 if (!(ide_state[0].cmd & IDE_CMD_DISABLE_IRQ)) {
2078 pic_set_irq(s->irq, 1);
2079 }
2080 }
2081
2082 /* prepare data transfer and tell what to do after */
2083 static void ide_transfer_start(IDEState *s, int size,
2084 EndTransferFunc *end_transfer_func)
2085 {
2086 s->end_transfer_func = end_transfer_func;
2087 s->data_ptr = s->io_buffer;
2088 s->data_end = s->io_buffer + size;
2089 s->status |= DRQ_STAT;
2090 }
2091
2092 static void ide_transfer_stop(IDEState *s)
2093 {
2094 s->end_transfer_func = ide_transfer_stop;
2095 s->data_ptr = s->io_buffer;
2096 s->data_end = s->io_buffer;
2097 s->status &= ~DRQ_STAT;
2098 }
2099
2100 static int64_t ide_get_sector(IDEState *s)
2101 {
2102 int64_t sector_num;
2103 if (s->select & 0x40) {
2104 /* lba */
2105 sector_num = ((s->select & 0x0f) << 24) | (s->hcyl << 16) |
2106 (s->lcyl << 8) | s->sector;
2107 } else {
2108 sector_num = ((s->hcyl << 8) | s->lcyl) * s->heads * s->sectors +
2109 (s->select & 0x0f) * s->sectors +
2110 (s->sector - 1);
2111 }
2112 return sector_num;
2113 }
2114
2115 static void ide_set_sector(IDEState *s, int64_t sector_num)
2116 {
2117 unsigned int cyl, r;
2118 if (s->select & 0x40) {
2119 s->select = (s->select & 0xf0) | (sector_num >> 24);
2120 s->hcyl = (sector_num >> 16);
2121 s->lcyl = (sector_num >> 8);
2122 s->sector = (sector_num);
2123 } else {
2124 cyl = sector_num / (s->heads * s->sectors);
2125 r = sector_num % (s->heads * s->sectors);
2126 s->hcyl = cyl >> 8;
2127 s->lcyl = cyl;
2128 s->select = (s->select & 0xf0) | (r / s->sectors);
2129 s->sector = (r % s->sectors) + 1;
2130 }
2131 }
2132
2133 static void ide_sector_read(IDEState *s)
2134 {
2135 int64_t sector_num;
2136 int ret, n;
2137
2138 s->status = READY_STAT | SEEK_STAT;
2139 sector_num = ide_get_sector(s);
2140 n = s->nsector;
2141 if (n == 0) {
2142 /* no more sector to read from disk */
2143 ide_transfer_stop(s);
2144 } else {
2145 #if defined(DEBUG_IDE)
2146 printf("read sector=%Ld\n", sector_num);
2147 #endif
2148 if (n > s->req_nb_sectors)
2149 n = s->req_nb_sectors;
2150 ret = bdrv_read(s->bs, sector_num, s->io_buffer, n);
2151 ide_transfer_start(s, 512 * n, ide_sector_read);
2152 ide_set_irq(s);
2153 ide_set_sector(s, sector_num + n);
2154 s->nsector -= n;
2155 }
2156 }
2157
2158 static void ide_sector_write(IDEState *s)
2159 {
2160 int64_t sector_num;
2161 int ret, n, n1;
2162
2163 s->status = READY_STAT | SEEK_STAT;
2164 sector_num = ide_get_sector(s);
2165 #if defined(DEBUG_IDE)
2166 printf("write sector=%Ld\n", sector_num);
2167 #endif
2168 n = s->nsector;
2169 if (n > s->req_nb_sectors)
2170 n = s->req_nb_sectors;
2171 ret = bdrv_write(s->bs, sector_num, s->io_buffer, n);
2172 s->nsector -= n;
2173 if (s->nsector == 0) {
2174 /* no more sector to write */
2175 ide_transfer_stop(s);
2176 } else {
2177 n1 = s->nsector;
2178 if (n1 > s->req_nb_sectors)
2179 n1 = s->req_nb_sectors;
2180 ide_transfer_start(s, 512 * n1, ide_sector_write);
2181 }
2182 ide_set_sector(s, sector_num + n);
2183 ide_set_irq(s);
2184 }
2185
2186 void ide_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
2187 {
2188 IDEState *s = ide_state[0].cur_drive;
2189 int unit, n;
2190
2191 addr &= 7;
2192 #ifdef DEBUG_IDE
2193 printf("IDE: write addr=0x%x val=0x%02x\n", addr, val);
2194 #endif
2195 switch(addr) {
2196 case 0:
2197 break;
2198 case 1:
2199 s->feature = val;
2200 break;
2201 case 2:
2202 if (val == 0)
2203 val = 256;
2204 s->nsector = val;
2205 break;
2206 case 3:
2207 s->sector = val;
2208 break;
2209 case 4:
2210 s->lcyl = val;
2211 break;
2212 case 5:
2213 s->hcyl = val;
2214 break;
2215 case 6:
2216 /* select drive */
2217 unit = (val >> 4) & 1;
2218 s = &ide_state[unit];
2219 ide_state[0].cur_drive = s;
2220 s->select = val;
2221 break;
2222 default:
2223 case 7:
2224 /* command */
2225 #if defined(DEBUG_IDE)
2226 printf("ide: CMD=%02x\n", val);
2227 #endif
2228 switch(val) {
2229 case WIN_PIDENTIFY:
2230 case WIN_IDENTIFY:
2231 if (s->bs) {
2232 ide_identify(s);
2233 s->status = READY_STAT;
2234 ide_transfer_start(s, 512, ide_transfer_stop);
2235 } else {
2236 ide_abort_command(s);
2237 }
2238 ide_set_irq(s);
2239 break;
2240 case WIN_SPECIFY:
2241 case WIN_RECAL:
2242 s->status = READY_STAT;
2243 ide_set_irq(s);
2244 break;
2245 case WIN_SETMULT:
2246 if (s->nsector > MAX_MULT_SECTORS ||
2247 s->nsector == 0 ||
2248 (s->nsector & (s->nsector - 1)) != 0) {
2249 ide_abort_command(s);
2250 } else {
2251 s->mult_sectors = s->nsector;
2252 s->status = READY_STAT;
2253 }
2254 ide_set_irq(s);
2255 break;
2256 case WIN_READ:
2257 case WIN_READ_ONCE:
2258 s->req_nb_sectors = 1;
2259 ide_sector_read(s);
2260 break;
2261 case WIN_WRITE:
2262 case WIN_WRITE_ONCE:
2263 s->status = SEEK_STAT;
2264 s->req_nb_sectors = 1;
2265 ide_transfer_start(s, 512, ide_sector_write);
2266 break;
2267 case WIN_MULTREAD:
2268 if (!s->mult_sectors)
2269 goto abort_cmd;
2270 s->req_nb_sectors = s->mult_sectors;
2271 ide_sector_read(s);
2272 break;
2273 case WIN_MULTWRITE:
2274 if (!s->mult_sectors)
2275 goto abort_cmd;
2276 s->status = SEEK_STAT;
2277 s->req_nb_sectors = s->mult_sectors;
2278 n = s->nsector;
2279 if (n > s->req_nb_sectors)
2280 n = s->req_nb_sectors;
2281 ide_transfer_start(s, 512 * n, ide_sector_write);
2282 break;
2283 default:
2284 abort_cmd:
2285 ide_abort_command(s);
2286 ide_set_irq(s);
2287 break;
2288 }
2289 }
2290 }
2291
2292 uint32_t ide_ioport_read(CPUX86State *env, uint32_t addr)
2293 {
2294 IDEState *s = ide_state[0].cur_drive;
2295 int ret;
2296
2297 addr &= 7;
2298 switch(addr) {
2299 case 0:
2300 ret = 0xff;
2301 break;
2302 case 1:
2303 ret = s->error;
2304 break;
2305 case 2:
2306 ret = s->nsector & 0xff;
2307 break;
2308 case 3:
2309 ret = s->sector;
2310 break;
2311 case 4:
2312 ret = s->lcyl;
2313 break;
2314 case 5:
2315 ret = s->hcyl;
2316 break;
2317 case 6:
2318 ret = s->select;
2319 break;
2320 default:
2321 case 7:
2322 ret = s->status;
2323 pic_set_irq(s->irq, 0);
2324 break;
2325 }
2326 #ifdef DEBUG_IDE
2327 printf("ide: read addr=0x%x val=%02x\n", addr, ret);
2328 #endif
2329 return ret;
2330 }
2331
2332 uint32_t ide_status_read(CPUX86State *env, uint32_t addr)
2333 {
2334 IDEState *s = ide_state[0].cur_drive;
2335 int ret;
2336 ret = s->status;
2337 #ifdef DEBUG_IDE
2338 printf("ide: read addr=0x%x val=%02x\n", addr, ret);
2339 #endif
2340 return ret;
2341 }
2342
2343 void ide_cmd_write(CPUX86State *env, uint32_t addr, uint32_t val)
2344 {
2345 IDEState *s = &ide_state[0];
2346 /* common for both drives */
2347 s->cmd = val;
2348 }
2349
2350 void ide_data_writew(CPUX86State *env, uint32_t addr, uint32_t val)
2351 {
2352 IDEState *s = ide_state[0].cur_drive;
2353 uint8_t *p;
2354
2355 p = s->data_ptr;
2356 *(uint16_t *)p = tswap16(val);
2357 p += 2;
2358 s->data_ptr = p;
2359 if (p >= s->data_end)
2360 s->end_transfer_func(s);
2361 }
2362
2363 uint32_t ide_data_readw(CPUX86State *env, uint32_t addr)
2364 {
2365 IDEState *s = ide_state[0].cur_drive;
2366 uint8_t *p;
2367 int ret;
2368
2369 p = s->data_ptr;
2370 ret = tswap16(*(uint16_t *)p);
2371 p += 2;
2372 s->data_ptr = p;
2373 if (p >= s->data_end)
2374 s->end_transfer_func(s);
2375 return ret;
2376 }
2377
2378 void ide_data_writel(CPUX86State *env, uint32_t addr, uint32_t val)
2379 {
2380 IDEState *s = ide_state[0].cur_drive;
2381 uint8_t *p;
2382
2383 p = s->data_ptr;
2384 *(uint32_t *)p = tswap32(val);
2385 p += 4;
2386 s->data_ptr = p;
2387 if (p >= s->data_end)
2388 s->end_transfer_func(s);
2389 }
2390
2391 uint32_t ide_data_readl(CPUX86State *env, uint32_t addr)
2392 {
2393 IDEState *s = ide_state[0].cur_drive;
2394 uint8_t *p;
2395 int ret;
2396
2397 p = s->data_ptr;
2398 ret = tswap32(*(uint32_t *)p);
2399 p += 4;
2400 s->data_ptr = p;
2401 if (p >= s->data_end)
2402 s->end_transfer_func(s);
2403 return ret;
2404 }
2405
2406 void ide_reset(IDEState *s)
2407 {
2408 s->mult_sectors = MAX_MULT_SECTORS;
2409 s->status = READY_STAT;
2410 s->cur_drive = s;
2411 s->select = 0xa0;
2412 }
2413
2414 void ide_init(void)
2415 {
2416 IDEState *s;
2417 int i, cylinders;
2418 int64_t nb_sectors;
2419
2420 for(i = 0; i < MAX_DISKS; i++) {
2421 s = &ide_state[i];
2422 s->bs = bs_table[i];
2423 if (s->bs) {
2424 bdrv_get_geometry(s->bs, &nb_sectors);
2425 cylinders = nb_sectors / (16 * 63);
2426 if (cylinders > 16383)
2427 cylinders = 16383;
2428 else if (cylinders < 2)
2429 cylinders = 2;
2430 s->cylinders = cylinders;
2431 s->heads = 16;
2432 s->sectors = 63;
2433 s->nb_sectors = nb_sectors;
2434 }
2435 s->irq = 14;
2436 ide_reset(s);
2437 }
2438 register_ioport_write(0x1f0, 8, ide_ioport_write, 1);
2439 register_ioport_read(0x1f0, 8, ide_ioport_read, 1);
2440 register_ioport_read(0x3f6, 1, ide_status_read, 1);
2441 register_ioport_write(0x3f6, 1, ide_cmd_write, 1);
2442
2443 /* data ports */
2444 register_ioport_write(0x1f0, 2, ide_data_writew, 2);
2445 register_ioport_read(0x1f0, 2, ide_data_readw, 2);
2446 register_ioport_write(0x1f0, 4, ide_data_writel, 4);
2447 register_ioport_read(0x1f0, 4, ide_data_readl, 4);
2448 }
2449
2450 /***********************************************************/
2451 /* cpu signal handler */
2452 static void host_segv_handler(int host_signum, siginfo_t *info,
2453 void *puc)
2454 {
2455 if (cpu_signal_handler(host_signum, info, puc))
2456 return;
2457 term_exit();
2458 abort();
2459 }
2460
2461 static int timer_irq_pending;
2462 static int timer_irq_count;
2463
2464 static void host_alarm_handler(int host_signum, siginfo_t *info,
2465 void *puc)
2466 {
2467 /* NOTE: since usually the OS asks a 100 Hz clock, there can be
2468 some drift between cpu_get_ticks() and the interrupt time. So
2469 we queue some interrupts to avoid missing some */
2470 timer_irq_count += pit_get_out_edges(&pit_channels[0]);
2471 if (timer_irq_count) {
2472 if (timer_irq_count > 2)
2473 timer_irq_count = 2;
2474 timer_irq_count--;
2475 /* just exit from the cpu to have a chance to handle timers */
2476 cpu_x86_interrupt(global_env, CPU_INTERRUPT_EXIT);
2477 timer_irq_pending = 1;
2478 }
2479 }
2480
2481 /* main execution loop */
2482
2483 CPUState *cpu_gdbstub_get_env(void *opaque)
2484 {
2485 return global_env;
2486 }
2487
2488 void main_loop(void *opaque)
2489 {
2490 struct pollfd ufds[2], *pf, *serial_ufd, *net_ufd, *gdb_ufd;
2491 int ret, n, timeout;
2492 uint8_t ch;
2493 CPUState *env = global_env;
2494
2495 for(;;) {
2496
2497 ret = cpu_x86_exec(env);
2498
2499 /* if hlt instruction, we wait until the next IRQ */
2500 if (ret == EXCP_HLT)
2501 timeout = 10;
2502 else
2503 timeout = 0;
2504 /* poll any events */
2505 serial_ufd = NULL;
2506 pf = ufds;
2507 if (!(serial_ports[0].lsr & UART_LSR_DR)) {
2508 serial_ufd = pf;
2509 pf->fd = 0;
2510 pf->events = POLLIN;
2511 pf++;
2512 }
2513 net_ufd = NULL;
2514 if (net_fd > 0 && ne2000_can_receive(&ne2000_state)) {
2515 net_ufd = pf;
2516 pf->fd = net_fd;
2517 pf->events = POLLIN;
2518 pf++;
2519 }
2520 gdb_ufd = NULL;
2521 if (gdbstub_fd > 0) {
2522 gdb_ufd = pf;
2523 pf->fd = gdbstub_fd;
2524 pf->events = POLLIN;
2525 pf++;
2526 }
2527
2528 ret = poll(ufds, pf - ufds, timeout);
2529 if (ret > 0) {
2530 if (serial_ufd && (serial_ufd->revents & POLLIN)) {
2531 n = read(0, &ch, 1);
2532 if (n == 1) {
2533 serial_received_byte(&serial_ports[0], ch);
2534 }
2535 }
2536 if (net_ufd && (net_ufd->revents & POLLIN)) {
2537 uint8_t buf[MAX_ETH_FRAME_SIZE];
2538
2539 n = read(net_fd, buf, MAX_ETH_FRAME_SIZE);
2540 if (n > 0) {
2541 if (n < 60) {
2542 memset(buf + n, 0, 60 - n);
2543 n = 60;
2544 }
2545 ne2000_receive(&ne2000_state, buf, n);
2546 }
2547 }
2548 if (gdb_ufd && (gdb_ufd->revents & POLLIN)) {
2549 uint8_t buf[1];
2550 /* stop emulation if requested by gdb */
2551 n = read(gdbstub_fd, buf, 1);
2552 if (n == 1)
2553 break;
2554 }
2555 }
2556
2557 /* timer IRQ */
2558 if (timer_irq_pending) {
2559 pic_set_irq(0, 1);
2560 pic_set_irq(0, 0);
2561 timer_irq_pending = 0;
2562 }
2563 }
2564 }
2565
2566 void help(void)
2567 {
2568 printf("Virtual Linux version " QEMU_VERSION ", Copyright (c) 2003 Fabrice Bellard\n"
2569 "usage: vl [options] bzImage [kernel parameters...]\n"
2570 "\n"
2571 "'bzImage' is a Linux kernel image (PAGE_OFFSET must be defined\n"
2572 "to 0x90000000 in asm/page.h and arch/i386/vmlinux.lds)\n"
2573 "\n"
2574 "General options:\n"
2575 "-initrd file use 'file' as initial ram disk\n"
2576 "-hda file use 'file' as hard disk 0 image\n"
2577 "-hdb file use 'file' as hard disk 1 image\n"
2578 "-m megs set virtual RAM size to megs MB\n"
2579 "-n script set network init script [default=%s]\n"
2580 "\n"
2581 "Debug options:\n"
2582 "-s wait gdb connection to port %d\n"
2583 "-p port change gdb connection port\n"
2584 "-d output log in /tmp/vl.log\n"
2585 "\n"
2586 "During emulation, use C-a h to get terminal commands:\n",
2587 DEFAULT_NETWORK_SCRIPT, DEFAULT_GDBSTUB_PORT);
2588 term_print_help();
2589 exit(1);
2590 }
2591
2592 struct option long_options[] = {
2593 { "initrd", 1, NULL, 0, },
2594 { "hda", 1, NULL, 0, },
2595 { "hdb", 1, NULL, 0, },
2596 { NULL, 0, NULL, 0 },
2597 };
2598
2599 int main(int argc, char **argv)
2600 {
2601 int c, ret, initrd_size, i, use_gdbstub, gdbstub_port, long_index;
2602 struct linux_params *params;
2603 struct sigaction act;
2604 struct itimerval itv;
2605 CPUX86State *env;
2606 const char *tmpdir, *initrd_filename;
2607 const char *hd_filename[MAX_DISKS];
2608
2609 /* we never want that malloc() uses mmap() */
2610 mallopt(M_MMAP_THRESHOLD, 4096 * 1024);
2611 initrd_filename = NULL;
2612 for(i = 0; i < MAX_DISKS; i++)
2613 hd_filename[i] = NULL;
2614 phys_ram_size = 32 * 1024 * 1024;
2615 pstrcpy(network_script, sizeof(network_script), DEFAULT_NETWORK_SCRIPT);
2616 use_gdbstub = 0;
2617 gdbstub_port = DEFAULT_GDBSTUB_PORT;
2618 for(;;) {
2619 c = getopt_long_only(argc, argv, "hm:dn:sp:", long_options, &long_index);
2620 if (c == -1)
2621 break;
2622 switch(c) {
2623 case 0:
2624 switch(long_index) {
2625 case 0:
2626 initrd_filename = optarg;
2627 break;
2628 case 1:
2629 hd_filename[0] = optarg;
2630 break;
2631 case 2:
2632 hd_filename[1] = optarg;
2633 break;
2634 }
2635 break;
2636 case 'h':
2637 help();
2638 break;
2639 case 'm':
2640 phys_ram_size = atoi(optarg) * 1024 * 1024;
2641 if (phys_ram_size <= 0)
2642 help();
2643 break;
2644 case 'd':
2645 loglevel = 1;
2646 break;
2647 case 'n':
2648 pstrcpy(network_script, sizeof(network_script), optarg);
2649 break;
2650 case 's':
2651 use_gdbstub = 1;
2652 break;
2653 case 'p':
2654 gdbstub_port = atoi(optarg);
2655 break;
2656 }
2657 }
2658 if (optind >= argc)
2659 help();
2660
2661 /* init debug */
2662 setvbuf(stdout, NULL, _IOLBF, 0);
2663 if (loglevel) {
2664 logfile = fopen(DEBUG_LOGFILE, "w");
2665 if (!logfile) {
2666 perror(DEBUG_LOGFILE);
2667 _exit(1);
2668 }
2669 setvbuf(logfile, NULL, _IOLBF, 0);
2670 }
2671
2672 /* open the virtual block devices */
2673 for(i = 0; i < MAX_DISKS; i++) {
2674 if (hd_filename[i]) {
2675 bs_table[i] = bdrv_open(hd_filename[i]);
2676 if (!bs_table[i]) {
2677 fprintf(stderr, "vl: could not open hard disk image '%s\n",
2678 hd_filename[i]);
2679 exit(1);
2680 }
2681 }
2682 }
2683
2684 /* init network tun interface */
2685 net_init();
2686
2687 /* init the memory */
2688 tmpdir = getenv("VLTMPDIR");
2689 if (!tmpdir)
2690 tmpdir = "/tmp";
2691 snprintf(phys_ram_file, sizeof(phys_ram_file), "%s/vlXXXXXX", tmpdir);
2692 if (mkstemp(phys_ram_file) < 0) {
2693 fprintf(stderr, "Could not create temporary memory file '%s'\n",
2694 phys_ram_file);
2695 exit(1);
2696 }
2697 phys_ram_fd = open(phys_ram_file, O_CREAT | O_TRUNC | O_RDWR, 0600);
2698 if (phys_ram_fd < 0) {
2699 fprintf(stderr, "Could not open temporary memory file '%s'\n",
2700 phys_ram_file);
2701 exit(1);
2702 }
2703 ftruncate(phys_ram_fd, phys_ram_size);
2704 unlink(phys_ram_file);
2705 phys_ram_base = mmap((void *)PHYS_RAM_BASE, phys_ram_size,
2706 PROT_WRITE | PROT_READ, MAP_SHARED | MAP_FIXED,
2707 phys_ram_fd, 0);
2708 if (phys_ram_base == MAP_FAILED) {
2709 fprintf(stderr, "Could not map physical memory\n");
2710 exit(1);
2711 }
2712
2713 /* now we can load the kernel */
2714 ret = load_kernel(argv[optind], phys_ram_base + KERNEL_LOAD_ADDR);
2715 if (ret < 0) {
2716 fprintf(stderr, "vl: could not load kernel '%s'\n", argv[optind]);
2717 exit(1);
2718 }
2719
2720 /* load initrd */
2721 initrd_size = 0;
2722 if (initrd_filename) {
2723 initrd_size = load_image(initrd_filename, phys_ram_base + INITRD_LOAD_ADDR);
2724 if (initrd_size < 0) {
2725 fprintf(stderr, "vl: could not load initial ram disk '%s'\n",
2726 initrd_filename);
2727 exit(1);
2728 }
2729 }
2730
2731 /* init kernel params */
2732 params = (void *)(phys_ram_base + KERNEL_PARAMS_ADDR);
2733 memset(params, 0, sizeof(struct linux_params));
2734 params->mount_root_rdonly = 0;
2735 params->cl_magic = 0xA33F;
2736 params->cl_offset = params->commandline - (uint8_t *)params;
2737 params->ext_mem_k = (phys_ram_size / 1024) - 1024;
2738 for(i = optind + 1; i < argc; i++) {
2739 if (i != optind + 1)
2740 pstrcat(params->commandline, sizeof(params->commandline), " ");
2741 pstrcat(params->commandline, sizeof(params->commandline), argv[i]);
2742 }
2743 params->loader_type = 0x01;
2744 if (initrd_size > 0) {
2745 params->initrd_start = INITRD_LOAD_ADDR;
2746 params->initrd_size = initrd_size;
2747 }
2748 params->orig_video_lines = 25;
2749 params->orig_video_cols = 80;
2750
2751 /* init basic PC hardware */
2752 init_ioports();
2753 register_ioport_write(0x80, 1, ioport80_write, 1);
2754
2755 register_ioport_write(0x3d4, 2, vga_ioport_write, 1);
2756
2757 cmos_init();
2758 pic_init();
2759 pit_init();
2760 serial_init();
2761 ne2000_init();
2762 ide_init();
2763
2764 /* setup cpu signal handlers for MMU / self modifying code handling */
2765 sigfillset(&act.sa_mask);
2766 act.sa_flags = SA_SIGINFO;
2767 act.sa_sigaction = host_segv_handler;
2768 sigaction(SIGSEGV, &act, NULL);
2769 sigaction(SIGBUS, &act, NULL);
2770
2771 act.sa_sigaction = host_alarm_handler;
2772 sigaction(SIGALRM, &act, NULL);
2773
2774 /* init CPU state */
2775 env = cpu_init();
2776 global_env = env;
2777 cpu_single_env = env;
2778
2779 /* setup basic memory access */
2780 env->cr[0] = 0x00000033;
2781 cpu_x86_init_mmu(env);
2782
2783 memset(params->idt_table, 0, sizeof(params->idt_table));
2784
2785 params->gdt_table[2] = 0x00cf9a000000ffffLL; /* KERNEL_CS */
2786 params->gdt_table[3] = 0x00cf92000000ffffLL; /* KERNEL_DS */
2787
2788 env->idt.base = (void *)params->idt_table;
2789 env->idt.limit = sizeof(params->idt_table) - 1;
2790 env->gdt.base = (void *)params->gdt_table;
2791 env->gdt.limit = sizeof(params->gdt_table) - 1;
2792
2793 cpu_x86_load_seg(env, R_CS, KERNEL_CS);
2794 cpu_x86_load_seg(env, R_DS, KERNEL_DS);
2795 cpu_x86_load_seg(env, R_ES, KERNEL_DS);
2796 cpu_x86_load_seg(env, R_SS, KERNEL_DS);
2797 cpu_x86_load_seg(env, R_FS, KERNEL_DS);
2798 cpu_x86_load_seg(env, R_GS, KERNEL_DS);
2799
2800 env->eip = KERNEL_LOAD_ADDR;
2801 env->regs[R_ESI] = KERNEL_PARAMS_ADDR;
2802 env->eflags = 0x2;
2803
2804 itv.it_interval.tv_sec = 0;
2805 itv.it_interval.tv_usec = 1000;
2806 itv.it_value.tv_sec = 0;
2807 itv.it_value.tv_usec = 10 * 1000;
2808 setitimer(ITIMER_REAL, &itv, NULL);
2809 /* we probe the tick duration of the kernel to inform the user if
2810 the emulated kernel requested a too high timer frequency */
2811 getitimer(ITIMER_REAL, &itv);
2812 pit_min_timer_count = ((uint64_t)itv.it_interval.tv_usec * PIT_FREQ) /
2813 1000000;
2814
2815 if (use_gdbstub) {
2816 cpu_gdbstub(NULL, main_loop, gdbstub_port);
2817 } else {
2818 main_loop(NULL);
2819 }
2820 return 0;
2821 }