]> git.proxmox.com Git - mirror_qemu.git/blob - vl.c
ram migration: Stop loading on error
[mirror_qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
31
32 /* Needed early for CONFIG_BSD etc. */
33 #include "config-host.h"
34
35 #ifndef _WIN32
36 #include <libgen.h>
37 #include <pwd.h>
38 #include <sys/times.h>
39 #include <sys/wait.h>
40 #include <termios.h>
41 #include <sys/mman.h>
42 #include <sys/ioctl.h>
43 #include <sys/resource.h>
44 #include <sys/socket.h>
45 #include <netinet/in.h>
46 #include <net/if.h>
47 #include <arpa/inet.h>
48 #include <dirent.h>
49 #include <netdb.h>
50 #include <sys/select.h>
51 #ifdef CONFIG_BSD
52 #include <sys/stat.h>
53 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
54 #include <libutil.h>
55 #else
56 #include <util.h>
57 #endif
58 #else
59 #ifdef __linux__
60 #include <pty.h>
61 #include <malloc.h>
62 #include <linux/rtc.h>
63 #include <sys/prctl.h>
64
65 /* For the benefit of older linux systems which don't supply it,
66 we use a local copy of hpet.h. */
67 /* #include <linux/hpet.h> */
68 #include "hpet.h"
69
70 #include <linux/ppdev.h>
71 #include <linux/parport.h>
72 #endif
73 #ifdef __sun__
74 #include <sys/stat.h>
75 #include <sys/ethernet.h>
76 #include <sys/sockio.h>
77 #include <netinet/arp.h>
78 #include <netinet/in.h>
79 #include <netinet/in_systm.h>
80 #include <netinet/ip.h>
81 #include <netinet/ip_icmp.h> // must come after ip.h
82 #include <netinet/udp.h>
83 #include <netinet/tcp.h>
84 #include <net/if.h>
85 #include <syslog.h>
86 #include <stropts.h>
87 /* See MySQL bug #7156 (http://bugs.mysql.com/bug.php?id=7156) for
88 discussion about Solaris header problems */
89 extern int madvise(caddr_t, size_t, int);
90 #endif
91 #endif
92 #endif
93
94 #if defined(__OpenBSD__)
95 #include <util.h>
96 #endif
97
98 #if defined(CONFIG_VDE)
99 #include <libvdeplug.h>
100 #endif
101
102 #ifdef _WIN32
103 #include <windows.h>
104 #include <mmsystem.h>
105 #endif
106
107 #ifdef CONFIG_SDL
108 #if defined(__APPLE__) || defined(main)
109 #include <SDL.h>
110 int qemu_main(int argc, char **argv, char **envp);
111 int main(int argc, char **argv)
112 {
113 return qemu_main(argc, argv, NULL);
114 }
115 #undef main
116 #define main qemu_main
117 #endif
118 #endif /* CONFIG_SDL */
119
120 #ifdef CONFIG_COCOA
121 #undef main
122 #define main qemu_main
123 #endif /* CONFIG_COCOA */
124
125 #include "hw/hw.h"
126 #include "hw/boards.h"
127 #include "hw/usb.h"
128 #include "hw/pcmcia.h"
129 #include "hw/pc.h"
130 #include "hw/audiodev.h"
131 #include "hw/isa.h"
132 #include "hw/baum.h"
133 #include "hw/bt.h"
134 #include "hw/watchdog.h"
135 #include "hw/smbios.h"
136 #include "hw/xen.h"
137 #include "hw/qdev.h"
138 #include "hw/loader.h"
139 #include "bt-host.h"
140 #include "net.h"
141 #include "net/slirp.h"
142 #include "monitor.h"
143 #include "console.h"
144 #include "sysemu.h"
145 #include "gdbstub.h"
146 #include "qemu-timer.h"
147 #include "qemu-char.h"
148 #include "cache-utils.h"
149 #include "block.h"
150 #include "block_int.h"
151 #include "block-migration.h"
152 #include "dma.h"
153 #include "audio/audio.h"
154 #include "migration.h"
155 #include "kvm.h"
156 #include "balloon.h"
157 #include "qemu-option.h"
158 #include "qemu-config.h"
159
160 #include "disas.h"
161
162 #include "exec-all.h"
163
164 #include "qemu_socket.h"
165
166 #include "slirp/libslirp.h"
167
168 #include "qemu-queue.h"
169
170 //#define DEBUG_NET
171 //#define DEBUG_SLIRP
172
173 #define DEFAULT_RAM_SIZE 128
174
175 /* Maximum number of monitor devices */
176 #define MAX_MONITOR_DEVICES 10
177
178 static const char *data_dir;
179 const char *bios_name = NULL;
180 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
181 to store the VM snapshots */
182 struct drivelist drives = QTAILQ_HEAD_INITIALIZER(drives);
183 struct driveoptlist driveopts = QTAILQ_HEAD_INITIALIZER(driveopts);
184 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
185 static DisplayState *display_state;
186 DisplayType display_type = DT_DEFAULT;
187 const char* keyboard_layout = NULL;
188 ram_addr_t ram_size;
189 int nb_nics;
190 NICInfo nd_table[MAX_NICS];
191 int vm_running;
192 int autostart;
193 static int rtc_utc = 1;
194 static int rtc_date_offset = -1; /* -1 means no change */
195 QEMUClock *rtc_clock;
196 int vga_interface_type = VGA_CIRRUS;
197 #ifdef TARGET_SPARC
198 int graphic_width = 1024;
199 int graphic_height = 768;
200 int graphic_depth = 8;
201 #else
202 int graphic_width = 800;
203 int graphic_height = 600;
204 int graphic_depth = 15;
205 #endif
206 static int full_screen = 0;
207 #ifdef CONFIG_SDL
208 static int no_frame = 0;
209 #endif
210 int no_quit = 0;
211 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
212 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
213 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
214 #ifdef TARGET_I386
215 int win2k_install_hack = 0;
216 int rtc_td_hack = 0;
217 #endif
218 int usb_enabled = 0;
219 int singlestep = 0;
220 int smp_cpus = 1;
221 int max_cpus = 0;
222 int smp_cores = 1;
223 int smp_threads = 1;
224 const char *vnc_display;
225 int acpi_enabled = 1;
226 int no_hpet = 0;
227 int fd_bootchk = 1;
228 int no_reboot = 0;
229 int no_shutdown = 0;
230 int cursor_hide = 1;
231 int graphic_rotate = 0;
232 uint8_t irq0override = 1;
233 #ifndef _WIN32
234 int daemonize = 0;
235 #endif
236 const char *watchdog;
237 const char *option_rom[MAX_OPTION_ROMS];
238 int nb_option_roms;
239 int semihosting_enabled = 0;
240 #ifdef TARGET_ARM
241 int old_param = 0;
242 #endif
243 const char *qemu_name;
244 int alt_grab = 0;
245 int ctrl_grab = 0;
246 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
247 unsigned int nb_prom_envs = 0;
248 const char *prom_envs[MAX_PROM_ENVS];
249 #endif
250 int boot_menu;
251
252 int nb_numa_nodes;
253 uint64_t node_mem[MAX_NODES];
254 uint64_t node_cpumask[MAX_NODES];
255
256 static CPUState *cur_cpu;
257 static CPUState *next_cpu;
258 static int timer_alarm_pending = 1;
259 /* Conversion factor from emulated instructions to virtual clock ticks. */
260 static int icount_time_shift;
261 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
262 #define MAX_ICOUNT_SHIFT 10
263 /* Compensate for varying guest execution speed. */
264 static int64_t qemu_icount_bias;
265 static QEMUTimer *icount_rt_timer;
266 static QEMUTimer *icount_vm_timer;
267 static QEMUTimer *nographic_timer;
268
269 uint8_t qemu_uuid[16];
270
271 static QEMUBootSetHandler *boot_set_handler;
272 static void *boot_set_opaque;
273
274 /***********************************************************/
275 /* x86 ISA bus support */
276
277 target_phys_addr_t isa_mem_base = 0;
278 PicState2 *isa_pic;
279
280 /***********************************************************/
281 void hw_error(const char *fmt, ...)
282 {
283 va_list ap;
284 CPUState *env;
285
286 va_start(ap, fmt);
287 fprintf(stderr, "qemu: hardware error: ");
288 vfprintf(stderr, fmt, ap);
289 fprintf(stderr, "\n");
290 for(env = first_cpu; env != NULL; env = env->next_cpu) {
291 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
292 #ifdef TARGET_I386
293 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
294 #else
295 cpu_dump_state(env, stderr, fprintf, 0);
296 #endif
297 }
298 va_end(ap);
299 abort();
300 }
301
302 static void set_proc_name(const char *s)
303 {
304 #if defined(__linux__) && defined(PR_SET_NAME)
305 char name[16];
306 if (!s)
307 return;
308 name[sizeof(name) - 1] = 0;
309 strncpy(name, s, sizeof(name));
310 /* Could rewrite argv[0] too, but that's a bit more complicated.
311 This simple way is enough for `top'. */
312 prctl(PR_SET_NAME, name);
313 #endif
314 }
315
316 /***************/
317 /* ballooning */
318
319 static QEMUBalloonEvent *qemu_balloon_event;
320 void *qemu_balloon_event_opaque;
321
322 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
323 {
324 qemu_balloon_event = func;
325 qemu_balloon_event_opaque = opaque;
326 }
327
328 void qemu_balloon(ram_addr_t target)
329 {
330 if (qemu_balloon_event)
331 qemu_balloon_event(qemu_balloon_event_opaque, target);
332 }
333
334 ram_addr_t qemu_balloon_status(void)
335 {
336 if (qemu_balloon_event)
337 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
338 return 0;
339 }
340
341 /***********************************************************/
342 /* keyboard/mouse */
343
344 static QEMUPutKBDEvent *qemu_put_kbd_event;
345 static void *qemu_put_kbd_event_opaque;
346 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
347 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
348
349 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
350 {
351 qemu_put_kbd_event_opaque = opaque;
352 qemu_put_kbd_event = func;
353 }
354
355 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
356 void *opaque, int absolute,
357 const char *name)
358 {
359 QEMUPutMouseEntry *s, *cursor;
360
361 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
362
363 s->qemu_put_mouse_event = func;
364 s->qemu_put_mouse_event_opaque = opaque;
365 s->qemu_put_mouse_event_absolute = absolute;
366 s->qemu_put_mouse_event_name = qemu_strdup(name);
367 s->next = NULL;
368
369 if (!qemu_put_mouse_event_head) {
370 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
371 return s;
372 }
373
374 cursor = qemu_put_mouse_event_head;
375 while (cursor->next != NULL)
376 cursor = cursor->next;
377
378 cursor->next = s;
379 qemu_put_mouse_event_current = s;
380
381 return s;
382 }
383
384 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
385 {
386 QEMUPutMouseEntry *prev = NULL, *cursor;
387
388 if (!qemu_put_mouse_event_head || entry == NULL)
389 return;
390
391 cursor = qemu_put_mouse_event_head;
392 while (cursor != NULL && cursor != entry) {
393 prev = cursor;
394 cursor = cursor->next;
395 }
396
397 if (cursor == NULL) // does not exist or list empty
398 return;
399 else if (prev == NULL) { // entry is head
400 qemu_put_mouse_event_head = cursor->next;
401 if (qemu_put_mouse_event_current == entry)
402 qemu_put_mouse_event_current = cursor->next;
403 qemu_free(entry->qemu_put_mouse_event_name);
404 qemu_free(entry);
405 return;
406 }
407
408 prev->next = entry->next;
409
410 if (qemu_put_mouse_event_current == entry)
411 qemu_put_mouse_event_current = prev;
412
413 qemu_free(entry->qemu_put_mouse_event_name);
414 qemu_free(entry);
415 }
416
417 void kbd_put_keycode(int keycode)
418 {
419 if (qemu_put_kbd_event) {
420 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
421 }
422 }
423
424 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
425 {
426 QEMUPutMouseEvent *mouse_event;
427 void *mouse_event_opaque;
428 int width;
429
430 if (!qemu_put_mouse_event_current) {
431 return;
432 }
433
434 mouse_event =
435 qemu_put_mouse_event_current->qemu_put_mouse_event;
436 mouse_event_opaque =
437 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
438
439 if (mouse_event) {
440 if (graphic_rotate) {
441 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
442 width = 0x7fff;
443 else
444 width = graphic_width - 1;
445 mouse_event(mouse_event_opaque,
446 width - dy, dx, dz, buttons_state);
447 } else
448 mouse_event(mouse_event_opaque,
449 dx, dy, dz, buttons_state);
450 }
451 }
452
453 int kbd_mouse_is_absolute(void)
454 {
455 if (!qemu_put_mouse_event_current)
456 return 0;
457
458 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
459 }
460
461 void do_info_mice(Monitor *mon)
462 {
463 QEMUPutMouseEntry *cursor;
464 int index = 0;
465
466 if (!qemu_put_mouse_event_head) {
467 monitor_printf(mon, "No mouse devices connected\n");
468 return;
469 }
470
471 monitor_printf(mon, "Mouse devices available:\n");
472 cursor = qemu_put_mouse_event_head;
473 while (cursor != NULL) {
474 monitor_printf(mon, "%c Mouse #%d: %s\n",
475 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
476 index, cursor->qemu_put_mouse_event_name);
477 index++;
478 cursor = cursor->next;
479 }
480 }
481
482 void do_mouse_set(Monitor *mon, const QDict *qdict)
483 {
484 QEMUPutMouseEntry *cursor;
485 int i = 0;
486 int index = qdict_get_int(qdict, "index");
487
488 if (!qemu_put_mouse_event_head) {
489 monitor_printf(mon, "No mouse devices connected\n");
490 return;
491 }
492
493 cursor = qemu_put_mouse_event_head;
494 while (cursor != NULL && index != i) {
495 i++;
496 cursor = cursor->next;
497 }
498
499 if (cursor != NULL)
500 qemu_put_mouse_event_current = cursor;
501 else
502 monitor_printf(mon, "Mouse at given index not found\n");
503 }
504
505 /* compute with 96 bit intermediate result: (a*b)/c */
506 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
507 {
508 union {
509 uint64_t ll;
510 struct {
511 #ifdef HOST_WORDS_BIGENDIAN
512 uint32_t high, low;
513 #else
514 uint32_t low, high;
515 #endif
516 } l;
517 } u, res;
518 uint64_t rl, rh;
519
520 u.ll = a;
521 rl = (uint64_t)u.l.low * (uint64_t)b;
522 rh = (uint64_t)u.l.high * (uint64_t)b;
523 rh += (rl >> 32);
524 res.l.high = rh / c;
525 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
526 return res.ll;
527 }
528
529 /***********************************************************/
530 /* real time host monotonic timer */
531
532 static int64_t get_clock_realtime(void)
533 {
534 struct timeval tv;
535
536 gettimeofday(&tv, NULL);
537 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
538 }
539
540 #ifdef WIN32
541
542 static int64_t clock_freq;
543
544 static void init_get_clock(void)
545 {
546 LARGE_INTEGER freq;
547 int ret;
548 ret = QueryPerformanceFrequency(&freq);
549 if (ret == 0) {
550 fprintf(stderr, "Could not calibrate ticks\n");
551 exit(1);
552 }
553 clock_freq = freq.QuadPart;
554 }
555
556 static int64_t get_clock(void)
557 {
558 LARGE_INTEGER ti;
559 QueryPerformanceCounter(&ti);
560 return muldiv64(ti.QuadPart, get_ticks_per_sec(), clock_freq);
561 }
562
563 #else
564
565 static int use_rt_clock;
566
567 static void init_get_clock(void)
568 {
569 use_rt_clock = 0;
570 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
571 || defined(__DragonFly__) || defined(__FreeBSD_kernel__)
572 {
573 struct timespec ts;
574 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
575 use_rt_clock = 1;
576 }
577 }
578 #endif
579 }
580
581 static int64_t get_clock(void)
582 {
583 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
584 || defined(__DragonFly__) || defined(__FreeBSD_kernel__)
585 if (use_rt_clock) {
586 struct timespec ts;
587 clock_gettime(CLOCK_MONOTONIC, &ts);
588 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
589 } else
590 #endif
591 {
592 /* XXX: using gettimeofday leads to problems if the date
593 changes, so it should be avoided. */
594 return get_clock_realtime();
595 }
596 }
597 #endif
598
599 /* Return the virtual CPU time, based on the instruction counter. */
600 static int64_t cpu_get_icount(void)
601 {
602 int64_t icount;
603 CPUState *env = cpu_single_env;;
604 icount = qemu_icount;
605 if (env) {
606 if (!can_do_io(env))
607 fprintf(stderr, "Bad clock read\n");
608 icount -= (env->icount_decr.u16.low + env->icount_extra);
609 }
610 return qemu_icount_bias + (icount << icount_time_shift);
611 }
612
613 /***********************************************************/
614 /* guest cycle counter */
615
616 typedef struct TimersState {
617 int64_t cpu_ticks_prev;
618 int64_t cpu_ticks_offset;
619 int64_t cpu_clock_offset;
620 int32_t cpu_ticks_enabled;
621 int64_t dummy;
622 } TimersState;
623
624 TimersState timers_state;
625
626 /* return the host CPU cycle counter and handle stop/restart */
627 int64_t cpu_get_ticks(void)
628 {
629 if (use_icount) {
630 return cpu_get_icount();
631 }
632 if (!timers_state.cpu_ticks_enabled) {
633 return timers_state.cpu_ticks_offset;
634 } else {
635 int64_t ticks;
636 ticks = cpu_get_real_ticks();
637 if (timers_state.cpu_ticks_prev > ticks) {
638 /* Note: non increasing ticks may happen if the host uses
639 software suspend */
640 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
641 }
642 timers_state.cpu_ticks_prev = ticks;
643 return ticks + timers_state.cpu_ticks_offset;
644 }
645 }
646
647 /* return the host CPU monotonic timer and handle stop/restart */
648 static int64_t cpu_get_clock(void)
649 {
650 int64_t ti;
651 if (!timers_state.cpu_ticks_enabled) {
652 return timers_state.cpu_clock_offset;
653 } else {
654 ti = get_clock();
655 return ti + timers_state.cpu_clock_offset;
656 }
657 }
658
659 /* enable cpu_get_ticks() */
660 void cpu_enable_ticks(void)
661 {
662 if (!timers_state.cpu_ticks_enabled) {
663 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
664 timers_state.cpu_clock_offset -= get_clock();
665 timers_state.cpu_ticks_enabled = 1;
666 }
667 }
668
669 /* disable cpu_get_ticks() : the clock is stopped. You must not call
670 cpu_get_ticks() after that. */
671 void cpu_disable_ticks(void)
672 {
673 if (timers_state.cpu_ticks_enabled) {
674 timers_state.cpu_ticks_offset = cpu_get_ticks();
675 timers_state.cpu_clock_offset = cpu_get_clock();
676 timers_state.cpu_ticks_enabled = 0;
677 }
678 }
679
680 /***********************************************************/
681 /* timers */
682
683 #define QEMU_CLOCK_REALTIME 0
684 #define QEMU_CLOCK_VIRTUAL 1
685 #define QEMU_CLOCK_HOST 2
686
687 struct QEMUClock {
688 int type;
689 /* XXX: add frequency */
690 };
691
692 struct QEMUTimer {
693 QEMUClock *clock;
694 int64_t expire_time;
695 QEMUTimerCB *cb;
696 void *opaque;
697 struct QEMUTimer *next;
698 };
699
700 struct qemu_alarm_timer {
701 char const *name;
702 unsigned int flags;
703
704 int (*start)(struct qemu_alarm_timer *t);
705 void (*stop)(struct qemu_alarm_timer *t);
706 void (*rearm)(struct qemu_alarm_timer *t);
707 void *priv;
708 };
709
710 #define ALARM_FLAG_DYNTICKS 0x1
711 #define ALARM_FLAG_EXPIRED 0x2
712
713 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
714 {
715 return t && (t->flags & ALARM_FLAG_DYNTICKS);
716 }
717
718 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
719 {
720 if (!alarm_has_dynticks(t))
721 return;
722
723 t->rearm(t);
724 }
725
726 /* TODO: MIN_TIMER_REARM_US should be optimized */
727 #define MIN_TIMER_REARM_US 250
728
729 static struct qemu_alarm_timer *alarm_timer;
730
731 #ifdef _WIN32
732
733 struct qemu_alarm_win32 {
734 MMRESULT timerId;
735 unsigned int period;
736 } alarm_win32_data = {0, -1};
737
738 static int win32_start_timer(struct qemu_alarm_timer *t);
739 static void win32_stop_timer(struct qemu_alarm_timer *t);
740 static void win32_rearm_timer(struct qemu_alarm_timer *t);
741
742 #else
743
744 static int unix_start_timer(struct qemu_alarm_timer *t);
745 static void unix_stop_timer(struct qemu_alarm_timer *t);
746
747 #ifdef __linux__
748
749 static int dynticks_start_timer(struct qemu_alarm_timer *t);
750 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
751 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
752
753 static int hpet_start_timer(struct qemu_alarm_timer *t);
754 static void hpet_stop_timer(struct qemu_alarm_timer *t);
755
756 static int rtc_start_timer(struct qemu_alarm_timer *t);
757 static void rtc_stop_timer(struct qemu_alarm_timer *t);
758
759 #endif /* __linux__ */
760
761 #endif /* _WIN32 */
762
763 /* Correlation between real and virtual time is always going to be
764 fairly approximate, so ignore small variation.
765 When the guest is idle real and virtual time will be aligned in
766 the IO wait loop. */
767 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
768
769 static void icount_adjust(void)
770 {
771 int64_t cur_time;
772 int64_t cur_icount;
773 int64_t delta;
774 static int64_t last_delta;
775 /* If the VM is not running, then do nothing. */
776 if (!vm_running)
777 return;
778
779 cur_time = cpu_get_clock();
780 cur_icount = qemu_get_clock(vm_clock);
781 delta = cur_icount - cur_time;
782 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
783 if (delta > 0
784 && last_delta + ICOUNT_WOBBLE < delta * 2
785 && icount_time_shift > 0) {
786 /* The guest is getting too far ahead. Slow time down. */
787 icount_time_shift--;
788 }
789 if (delta < 0
790 && last_delta - ICOUNT_WOBBLE > delta * 2
791 && icount_time_shift < MAX_ICOUNT_SHIFT) {
792 /* The guest is getting too far behind. Speed time up. */
793 icount_time_shift++;
794 }
795 last_delta = delta;
796 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
797 }
798
799 static void icount_adjust_rt(void * opaque)
800 {
801 qemu_mod_timer(icount_rt_timer,
802 qemu_get_clock(rt_clock) + 1000);
803 icount_adjust();
804 }
805
806 static void icount_adjust_vm(void * opaque)
807 {
808 qemu_mod_timer(icount_vm_timer,
809 qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
810 icount_adjust();
811 }
812
813 static void init_icount_adjust(void)
814 {
815 /* Have both realtime and virtual time triggers for speed adjustment.
816 The realtime trigger catches emulated time passing too slowly,
817 the virtual time trigger catches emulated time passing too fast.
818 Realtime triggers occur even when idle, so use them less frequently
819 than VM triggers. */
820 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
821 qemu_mod_timer(icount_rt_timer,
822 qemu_get_clock(rt_clock) + 1000);
823 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
824 qemu_mod_timer(icount_vm_timer,
825 qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
826 }
827
828 static struct qemu_alarm_timer alarm_timers[] = {
829 #ifndef _WIN32
830 #ifdef __linux__
831 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
832 dynticks_stop_timer, dynticks_rearm_timer, NULL},
833 /* HPET - if available - is preferred */
834 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
835 /* ...otherwise try RTC */
836 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
837 #endif
838 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
839 #else
840 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
841 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
842 {"win32", 0, win32_start_timer,
843 win32_stop_timer, NULL, &alarm_win32_data},
844 #endif
845 {NULL, }
846 };
847
848 static void show_available_alarms(void)
849 {
850 int i;
851
852 printf("Available alarm timers, in order of precedence:\n");
853 for (i = 0; alarm_timers[i].name; i++)
854 printf("%s\n", alarm_timers[i].name);
855 }
856
857 static void configure_alarms(char const *opt)
858 {
859 int i;
860 int cur = 0;
861 int count = ARRAY_SIZE(alarm_timers) - 1;
862 char *arg;
863 char *name;
864 struct qemu_alarm_timer tmp;
865
866 if (!strcmp(opt, "?")) {
867 show_available_alarms();
868 exit(0);
869 }
870
871 arg = qemu_strdup(opt);
872
873 /* Reorder the array */
874 name = strtok(arg, ",");
875 while (name) {
876 for (i = 0; i < count && alarm_timers[i].name; i++) {
877 if (!strcmp(alarm_timers[i].name, name))
878 break;
879 }
880
881 if (i == count) {
882 fprintf(stderr, "Unknown clock %s\n", name);
883 goto next;
884 }
885
886 if (i < cur)
887 /* Ignore */
888 goto next;
889
890 /* Swap */
891 tmp = alarm_timers[i];
892 alarm_timers[i] = alarm_timers[cur];
893 alarm_timers[cur] = tmp;
894
895 cur++;
896 next:
897 name = strtok(NULL, ",");
898 }
899
900 qemu_free(arg);
901
902 if (cur) {
903 /* Disable remaining timers */
904 for (i = cur; i < count; i++)
905 alarm_timers[i].name = NULL;
906 } else {
907 show_available_alarms();
908 exit(1);
909 }
910 }
911
912 #define QEMU_NUM_CLOCKS 3
913
914 QEMUClock *rt_clock;
915 QEMUClock *vm_clock;
916 QEMUClock *host_clock;
917
918 static QEMUTimer *active_timers[QEMU_NUM_CLOCKS];
919
920 static QEMUClock *qemu_new_clock(int type)
921 {
922 QEMUClock *clock;
923 clock = qemu_mallocz(sizeof(QEMUClock));
924 clock->type = type;
925 return clock;
926 }
927
928 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
929 {
930 QEMUTimer *ts;
931
932 ts = qemu_mallocz(sizeof(QEMUTimer));
933 ts->clock = clock;
934 ts->cb = cb;
935 ts->opaque = opaque;
936 return ts;
937 }
938
939 void qemu_free_timer(QEMUTimer *ts)
940 {
941 qemu_free(ts);
942 }
943
944 /* stop a timer, but do not dealloc it */
945 void qemu_del_timer(QEMUTimer *ts)
946 {
947 QEMUTimer **pt, *t;
948
949 /* NOTE: this code must be signal safe because
950 qemu_timer_expired() can be called from a signal. */
951 pt = &active_timers[ts->clock->type];
952 for(;;) {
953 t = *pt;
954 if (!t)
955 break;
956 if (t == ts) {
957 *pt = t->next;
958 break;
959 }
960 pt = &t->next;
961 }
962 }
963
964 /* modify the current timer so that it will be fired when current_time
965 >= expire_time. The corresponding callback will be called. */
966 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
967 {
968 QEMUTimer **pt, *t;
969
970 qemu_del_timer(ts);
971
972 /* add the timer in the sorted list */
973 /* NOTE: this code must be signal safe because
974 qemu_timer_expired() can be called from a signal. */
975 pt = &active_timers[ts->clock->type];
976 for(;;) {
977 t = *pt;
978 if (!t)
979 break;
980 if (t->expire_time > expire_time)
981 break;
982 pt = &t->next;
983 }
984 ts->expire_time = expire_time;
985 ts->next = *pt;
986 *pt = ts;
987
988 /* Rearm if necessary */
989 if (pt == &active_timers[ts->clock->type]) {
990 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
991 qemu_rearm_alarm_timer(alarm_timer);
992 }
993 /* Interrupt execution to force deadline recalculation. */
994 if (use_icount)
995 qemu_notify_event();
996 }
997 }
998
999 int qemu_timer_pending(QEMUTimer *ts)
1000 {
1001 QEMUTimer *t;
1002 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1003 if (t == ts)
1004 return 1;
1005 }
1006 return 0;
1007 }
1008
1009 int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1010 {
1011 if (!timer_head)
1012 return 0;
1013 return (timer_head->expire_time <= current_time);
1014 }
1015
1016 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1017 {
1018 QEMUTimer *ts;
1019
1020 for(;;) {
1021 ts = *ptimer_head;
1022 if (!ts || ts->expire_time > current_time)
1023 break;
1024 /* remove timer from the list before calling the callback */
1025 *ptimer_head = ts->next;
1026 ts->next = NULL;
1027
1028 /* run the callback (the timer list can be modified) */
1029 ts->cb(ts->opaque);
1030 }
1031 }
1032
1033 int64_t qemu_get_clock(QEMUClock *clock)
1034 {
1035 switch(clock->type) {
1036 case QEMU_CLOCK_REALTIME:
1037 return get_clock() / 1000000;
1038 default:
1039 case QEMU_CLOCK_VIRTUAL:
1040 if (use_icount) {
1041 return cpu_get_icount();
1042 } else {
1043 return cpu_get_clock();
1044 }
1045 case QEMU_CLOCK_HOST:
1046 return get_clock_realtime();
1047 }
1048 }
1049
1050 static void init_clocks(void)
1051 {
1052 init_get_clock();
1053 rt_clock = qemu_new_clock(QEMU_CLOCK_REALTIME);
1054 vm_clock = qemu_new_clock(QEMU_CLOCK_VIRTUAL);
1055 host_clock = qemu_new_clock(QEMU_CLOCK_HOST);
1056
1057 rtc_clock = host_clock;
1058 }
1059
1060 /* save a timer */
1061 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1062 {
1063 uint64_t expire_time;
1064
1065 if (qemu_timer_pending(ts)) {
1066 expire_time = ts->expire_time;
1067 } else {
1068 expire_time = -1;
1069 }
1070 qemu_put_be64(f, expire_time);
1071 }
1072
1073 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1074 {
1075 uint64_t expire_time;
1076
1077 expire_time = qemu_get_be64(f);
1078 if (expire_time != -1) {
1079 qemu_mod_timer(ts, expire_time);
1080 } else {
1081 qemu_del_timer(ts);
1082 }
1083 }
1084
1085 static const VMStateDescription vmstate_timers = {
1086 .name = "timer",
1087 .version_id = 2,
1088 .minimum_version_id = 1,
1089 .minimum_version_id_old = 1,
1090 .fields = (VMStateField []) {
1091 VMSTATE_INT64(cpu_ticks_offset, TimersState),
1092 VMSTATE_INT64(dummy, TimersState),
1093 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
1094 VMSTATE_END_OF_LIST()
1095 }
1096 };
1097
1098 static void qemu_event_increment(void);
1099
1100 #ifdef _WIN32
1101 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1102 DWORD_PTR dwUser, DWORD_PTR dw1,
1103 DWORD_PTR dw2)
1104 #else
1105 static void host_alarm_handler(int host_signum)
1106 #endif
1107 {
1108 #if 0
1109 #define DISP_FREQ 1000
1110 {
1111 static int64_t delta_min = INT64_MAX;
1112 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1113 static int count;
1114 ti = qemu_get_clock(vm_clock);
1115 if (last_clock != 0) {
1116 delta = ti - last_clock;
1117 if (delta < delta_min)
1118 delta_min = delta;
1119 if (delta > delta_max)
1120 delta_max = delta;
1121 delta_cum += delta;
1122 if (++count == DISP_FREQ) {
1123 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1124 muldiv64(delta_min, 1000000, get_ticks_per_sec()),
1125 muldiv64(delta_max, 1000000, get_ticks_per_sec()),
1126 muldiv64(delta_cum, 1000000 / DISP_FREQ, get_ticks_per_sec()),
1127 (double)get_ticks_per_sec() / ((double)delta_cum / DISP_FREQ));
1128 count = 0;
1129 delta_min = INT64_MAX;
1130 delta_max = 0;
1131 delta_cum = 0;
1132 }
1133 }
1134 last_clock = ti;
1135 }
1136 #endif
1137 if (alarm_has_dynticks(alarm_timer) ||
1138 (!use_icount &&
1139 qemu_timer_expired(active_timers[QEMU_CLOCK_VIRTUAL],
1140 qemu_get_clock(vm_clock))) ||
1141 qemu_timer_expired(active_timers[QEMU_CLOCK_REALTIME],
1142 qemu_get_clock(rt_clock)) ||
1143 qemu_timer_expired(active_timers[QEMU_CLOCK_HOST],
1144 qemu_get_clock(host_clock))) {
1145 qemu_event_increment();
1146 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1147
1148 #ifndef CONFIG_IOTHREAD
1149 if (next_cpu) {
1150 /* stop the currently executing cpu because a timer occured */
1151 cpu_exit(next_cpu);
1152 }
1153 #endif
1154 timer_alarm_pending = 1;
1155 qemu_notify_event();
1156 }
1157 }
1158
1159 static int64_t qemu_next_deadline(void)
1160 {
1161 /* To avoid problems with overflow limit this to 2^32. */
1162 int64_t delta = INT32_MAX;
1163
1164 if (active_timers[QEMU_CLOCK_VIRTUAL]) {
1165 delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
1166 qemu_get_clock(vm_clock);
1167 }
1168 if (active_timers[QEMU_CLOCK_HOST]) {
1169 int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time -
1170 qemu_get_clock(host_clock);
1171 if (hdelta < delta)
1172 delta = hdelta;
1173 }
1174
1175 if (delta < 0)
1176 delta = 0;
1177
1178 return delta;
1179 }
1180
1181 #if defined(__linux__)
1182 static uint64_t qemu_next_deadline_dyntick(void)
1183 {
1184 int64_t delta;
1185 int64_t rtdelta;
1186
1187 if (use_icount)
1188 delta = INT32_MAX;
1189 else
1190 delta = (qemu_next_deadline() + 999) / 1000;
1191
1192 if (active_timers[QEMU_CLOCK_REALTIME]) {
1193 rtdelta = (active_timers[QEMU_CLOCK_REALTIME]->expire_time -
1194 qemu_get_clock(rt_clock))*1000;
1195 if (rtdelta < delta)
1196 delta = rtdelta;
1197 }
1198
1199 if (delta < MIN_TIMER_REARM_US)
1200 delta = MIN_TIMER_REARM_US;
1201
1202 return delta;
1203 }
1204 #endif
1205
1206 #ifndef _WIN32
1207
1208 /* Sets a specific flag */
1209 static int fcntl_setfl(int fd, int flag)
1210 {
1211 int flags;
1212
1213 flags = fcntl(fd, F_GETFL);
1214 if (flags == -1)
1215 return -errno;
1216
1217 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1218 return -errno;
1219
1220 return 0;
1221 }
1222
1223 #if defined(__linux__)
1224
1225 #define RTC_FREQ 1024
1226
1227 static void enable_sigio_timer(int fd)
1228 {
1229 struct sigaction act;
1230
1231 /* timer signal */
1232 sigfillset(&act.sa_mask);
1233 act.sa_flags = 0;
1234 act.sa_handler = host_alarm_handler;
1235
1236 sigaction(SIGIO, &act, NULL);
1237 fcntl_setfl(fd, O_ASYNC);
1238 fcntl(fd, F_SETOWN, getpid());
1239 }
1240
1241 static int hpet_start_timer(struct qemu_alarm_timer *t)
1242 {
1243 struct hpet_info info;
1244 int r, fd;
1245
1246 fd = open("/dev/hpet", O_RDONLY);
1247 if (fd < 0)
1248 return -1;
1249
1250 /* Set frequency */
1251 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1252 if (r < 0) {
1253 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1254 "error, but for better emulation accuracy type:\n"
1255 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1256 goto fail;
1257 }
1258
1259 /* Check capabilities */
1260 r = ioctl(fd, HPET_INFO, &info);
1261 if (r < 0)
1262 goto fail;
1263
1264 /* Enable periodic mode */
1265 r = ioctl(fd, HPET_EPI, 0);
1266 if (info.hi_flags && (r < 0))
1267 goto fail;
1268
1269 /* Enable interrupt */
1270 r = ioctl(fd, HPET_IE_ON, 0);
1271 if (r < 0)
1272 goto fail;
1273
1274 enable_sigio_timer(fd);
1275 t->priv = (void *)(long)fd;
1276
1277 return 0;
1278 fail:
1279 close(fd);
1280 return -1;
1281 }
1282
1283 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1284 {
1285 int fd = (long)t->priv;
1286
1287 close(fd);
1288 }
1289
1290 static int rtc_start_timer(struct qemu_alarm_timer *t)
1291 {
1292 int rtc_fd;
1293 unsigned long current_rtc_freq = 0;
1294
1295 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1296 if (rtc_fd < 0)
1297 return -1;
1298 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1299 if (current_rtc_freq != RTC_FREQ &&
1300 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1301 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1302 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1303 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1304 goto fail;
1305 }
1306 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1307 fail:
1308 close(rtc_fd);
1309 return -1;
1310 }
1311
1312 enable_sigio_timer(rtc_fd);
1313
1314 t->priv = (void *)(long)rtc_fd;
1315
1316 return 0;
1317 }
1318
1319 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1320 {
1321 int rtc_fd = (long)t->priv;
1322
1323 close(rtc_fd);
1324 }
1325
1326 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1327 {
1328 struct sigevent ev;
1329 timer_t host_timer;
1330 struct sigaction act;
1331
1332 sigfillset(&act.sa_mask);
1333 act.sa_flags = 0;
1334 act.sa_handler = host_alarm_handler;
1335
1336 sigaction(SIGALRM, &act, NULL);
1337
1338 /*
1339 * Initialize ev struct to 0 to avoid valgrind complaining
1340 * about uninitialized data in timer_create call
1341 */
1342 memset(&ev, 0, sizeof(ev));
1343 ev.sigev_value.sival_int = 0;
1344 ev.sigev_notify = SIGEV_SIGNAL;
1345 ev.sigev_signo = SIGALRM;
1346
1347 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1348 perror("timer_create");
1349
1350 /* disable dynticks */
1351 fprintf(stderr, "Dynamic Ticks disabled\n");
1352
1353 return -1;
1354 }
1355
1356 t->priv = (void *)(long)host_timer;
1357
1358 return 0;
1359 }
1360
1361 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1362 {
1363 timer_t host_timer = (timer_t)(long)t->priv;
1364
1365 timer_delete(host_timer);
1366 }
1367
1368 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1369 {
1370 timer_t host_timer = (timer_t)(long)t->priv;
1371 struct itimerspec timeout;
1372 int64_t nearest_delta_us = INT64_MAX;
1373 int64_t current_us;
1374
1375 if (!active_timers[QEMU_CLOCK_REALTIME] &&
1376 !active_timers[QEMU_CLOCK_VIRTUAL] &&
1377 !active_timers[QEMU_CLOCK_HOST])
1378 return;
1379
1380 nearest_delta_us = qemu_next_deadline_dyntick();
1381
1382 /* check whether a timer is already running */
1383 if (timer_gettime(host_timer, &timeout)) {
1384 perror("gettime");
1385 fprintf(stderr, "Internal timer error: aborting\n");
1386 exit(1);
1387 }
1388 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1389 if (current_us && current_us <= nearest_delta_us)
1390 return;
1391
1392 timeout.it_interval.tv_sec = 0;
1393 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1394 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1395 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1396 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1397 perror("settime");
1398 fprintf(stderr, "Internal timer error: aborting\n");
1399 exit(1);
1400 }
1401 }
1402
1403 #endif /* defined(__linux__) */
1404
1405 static int unix_start_timer(struct qemu_alarm_timer *t)
1406 {
1407 struct sigaction act;
1408 struct itimerval itv;
1409 int err;
1410
1411 /* timer signal */
1412 sigfillset(&act.sa_mask);
1413 act.sa_flags = 0;
1414 act.sa_handler = host_alarm_handler;
1415
1416 sigaction(SIGALRM, &act, NULL);
1417
1418 itv.it_interval.tv_sec = 0;
1419 /* for i386 kernel 2.6 to get 1 ms */
1420 itv.it_interval.tv_usec = 999;
1421 itv.it_value.tv_sec = 0;
1422 itv.it_value.tv_usec = 10 * 1000;
1423
1424 err = setitimer(ITIMER_REAL, &itv, NULL);
1425 if (err)
1426 return -1;
1427
1428 return 0;
1429 }
1430
1431 static void unix_stop_timer(struct qemu_alarm_timer *t)
1432 {
1433 struct itimerval itv;
1434
1435 memset(&itv, 0, sizeof(itv));
1436 setitimer(ITIMER_REAL, &itv, NULL);
1437 }
1438
1439 #endif /* !defined(_WIN32) */
1440
1441
1442 #ifdef _WIN32
1443
1444 static int win32_start_timer(struct qemu_alarm_timer *t)
1445 {
1446 TIMECAPS tc;
1447 struct qemu_alarm_win32 *data = t->priv;
1448 UINT flags;
1449
1450 memset(&tc, 0, sizeof(tc));
1451 timeGetDevCaps(&tc, sizeof(tc));
1452
1453 if (data->period < tc.wPeriodMin)
1454 data->period = tc.wPeriodMin;
1455
1456 timeBeginPeriod(data->period);
1457
1458 flags = TIME_CALLBACK_FUNCTION;
1459 if (alarm_has_dynticks(t))
1460 flags |= TIME_ONESHOT;
1461 else
1462 flags |= TIME_PERIODIC;
1463
1464 data->timerId = timeSetEvent(1, // interval (ms)
1465 data->period, // resolution
1466 host_alarm_handler, // function
1467 (DWORD)t, // parameter
1468 flags);
1469
1470 if (!data->timerId) {
1471 fprintf(stderr, "Failed to initialize win32 alarm timer: %ld\n",
1472 GetLastError());
1473 timeEndPeriod(data->period);
1474 return -1;
1475 }
1476
1477 return 0;
1478 }
1479
1480 static void win32_stop_timer(struct qemu_alarm_timer *t)
1481 {
1482 struct qemu_alarm_win32 *data = t->priv;
1483
1484 timeKillEvent(data->timerId);
1485 timeEndPeriod(data->period);
1486 }
1487
1488 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1489 {
1490 struct qemu_alarm_win32 *data = t->priv;
1491
1492 if (!active_timers[QEMU_CLOCK_REALTIME] &&
1493 !active_timers[QEMU_CLOCK_VIRTUAL] &&
1494 !active_timers[QEMU_CLOCK_HOST])
1495 return;
1496
1497 timeKillEvent(data->timerId);
1498
1499 data->timerId = timeSetEvent(1,
1500 data->period,
1501 host_alarm_handler,
1502 (DWORD)t,
1503 TIME_ONESHOT | TIME_PERIODIC);
1504
1505 if (!data->timerId) {
1506 fprintf(stderr, "Failed to re-arm win32 alarm timer %ld\n",
1507 GetLastError());
1508
1509 timeEndPeriod(data->period);
1510 exit(1);
1511 }
1512 }
1513
1514 #endif /* _WIN32 */
1515
1516 static int init_timer_alarm(void)
1517 {
1518 struct qemu_alarm_timer *t = NULL;
1519 int i, err = -1;
1520
1521 for (i = 0; alarm_timers[i].name; i++) {
1522 t = &alarm_timers[i];
1523
1524 err = t->start(t);
1525 if (!err)
1526 break;
1527 }
1528
1529 if (err) {
1530 err = -ENOENT;
1531 goto fail;
1532 }
1533
1534 alarm_timer = t;
1535
1536 return 0;
1537
1538 fail:
1539 return err;
1540 }
1541
1542 static void quit_timers(void)
1543 {
1544 alarm_timer->stop(alarm_timer);
1545 alarm_timer = NULL;
1546 }
1547
1548 /***********************************************************/
1549 /* host time/date access */
1550 void qemu_get_timedate(struct tm *tm, int offset)
1551 {
1552 time_t ti;
1553 struct tm *ret;
1554
1555 time(&ti);
1556 ti += offset;
1557 if (rtc_date_offset == -1) {
1558 if (rtc_utc)
1559 ret = gmtime(&ti);
1560 else
1561 ret = localtime(&ti);
1562 } else {
1563 ti -= rtc_date_offset;
1564 ret = gmtime(&ti);
1565 }
1566
1567 memcpy(tm, ret, sizeof(struct tm));
1568 }
1569
1570 int qemu_timedate_diff(struct tm *tm)
1571 {
1572 time_t seconds;
1573
1574 if (rtc_date_offset == -1)
1575 if (rtc_utc)
1576 seconds = mktimegm(tm);
1577 else
1578 seconds = mktime(tm);
1579 else
1580 seconds = mktimegm(tm) + rtc_date_offset;
1581
1582 return seconds - time(NULL);
1583 }
1584
1585 static void configure_rtc_date_offset(const char *startdate, int legacy)
1586 {
1587 time_t rtc_start_date;
1588 struct tm tm;
1589
1590 if (!strcmp(startdate, "now") && legacy) {
1591 rtc_date_offset = -1;
1592 } else {
1593 if (sscanf(startdate, "%d-%d-%dT%d:%d:%d",
1594 &tm.tm_year,
1595 &tm.tm_mon,
1596 &tm.tm_mday,
1597 &tm.tm_hour,
1598 &tm.tm_min,
1599 &tm.tm_sec) == 6) {
1600 /* OK */
1601 } else if (sscanf(startdate, "%d-%d-%d",
1602 &tm.tm_year,
1603 &tm.tm_mon,
1604 &tm.tm_mday) == 3) {
1605 tm.tm_hour = 0;
1606 tm.tm_min = 0;
1607 tm.tm_sec = 0;
1608 } else {
1609 goto date_fail;
1610 }
1611 tm.tm_year -= 1900;
1612 tm.tm_mon--;
1613 rtc_start_date = mktimegm(&tm);
1614 if (rtc_start_date == -1) {
1615 date_fail:
1616 fprintf(stderr, "Invalid date format. Valid formats are:\n"
1617 "'2006-06-17T16:01:21' or '2006-06-17'\n");
1618 exit(1);
1619 }
1620 rtc_date_offset = time(NULL) - rtc_start_date;
1621 }
1622 }
1623
1624 static void configure_rtc(QemuOpts *opts)
1625 {
1626 const char *value;
1627
1628 value = qemu_opt_get(opts, "base");
1629 if (value) {
1630 if (!strcmp(value, "utc")) {
1631 rtc_utc = 1;
1632 } else if (!strcmp(value, "localtime")) {
1633 rtc_utc = 0;
1634 } else {
1635 configure_rtc_date_offset(value, 0);
1636 }
1637 }
1638 value = qemu_opt_get(opts, "clock");
1639 if (value) {
1640 if (!strcmp(value, "host")) {
1641 rtc_clock = host_clock;
1642 } else if (!strcmp(value, "vm")) {
1643 rtc_clock = vm_clock;
1644 } else {
1645 fprintf(stderr, "qemu: invalid option value '%s'\n", value);
1646 exit(1);
1647 }
1648 }
1649 #ifdef CONFIG_TARGET_I386
1650 value = qemu_opt_get(opts, "driftfix");
1651 if (value) {
1652 if (!strcmp(buf, "slew")) {
1653 rtc_td_hack = 1;
1654 } else if (!strcmp(buf, "none")) {
1655 rtc_td_hack = 0;
1656 } else {
1657 fprintf(stderr, "qemu: invalid option value '%s'\n", value);
1658 exit(1);
1659 }
1660 }
1661 #endif
1662 }
1663
1664 #ifdef _WIN32
1665 static void socket_cleanup(void)
1666 {
1667 WSACleanup();
1668 }
1669
1670 static int socket_init(void)
1671 {
1672 WSADATA Data;
1673 int ret, err;
1674
1675 ret = WSAStartup(MAKEWORD(2,2), &Data);
1676 if (ret != 0) {
1677 err = WSAGetLastError();
1678 fprintf(stderr, "WSAStartup: %d\n", err);
1679 return -1;
1680 }
1681 atexit(socket_cleanup);
1682 return 0;
1683 }
1684 #endif
1685
1686 /***********************************************************/
1687 /* Bluetooth support */
1688 static int nb_hcis;
1689 static int cur_hci;
1690 static struct HCIInfo *hci_table[MAX_NICS];
1691
1692 static struct bt_vlan_s {
1693 struct bt_scatternet_s net;
1694 int id;
1695 struct bt_vlan_s *next;
1696 } *first_bt_vlan;
1697
1698 /* find or alloc a new bluetooth "VLAN" */
1699 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1700 {
1701 struct bt_vlan_s **pvlan, *vlan;
1702 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1703 if (vlan->id == id)
1704 return &vlan->net;
1705 }
1706 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1707 vlan->id = id;
1708 pvlan = &first_bt_vlan;
1709 while (*pvlan != NULL)
1710 pvlan = &(*pvlan)->next;
1711 *pvlan = vlan;
1712 return &vlan->net;
1713 }
1714
1715 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1716 {
1717 }
1718
1719 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1720 {
1721 return -ENOTSUP;
1722 }
1723
1724 static struct HCIInfo null_hci = {
1725 .cmd_send = null_hci_send,
1726 .sco_send = null_hci_send,
1727 .acl_send = null_hci_send,
1728 .bdaddr_set = null_hci_addr_set,
1729 };
1730
1731 struct HCIInfo *qemu_next_hci(void)
1732 {
1733 if (cur_hci == nb_hcis)
1734 return &null_hci;
1735
1736 return hci_table[cur_hci++];
1737 }
1738
1739 static struct HCIInfo *hci_init(const char *str)
1740 {
1741 char *endp;
1742 struct bt_scatternet_s *vlan = 0;
1743
1744 if (!strcmp(str, "null"))
1745 /* null */
1746 return &null_hci;
1747 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1748 /* host[:hciN] */
1749 return bt_host_hci(str[4] ? str + 5 : "hci0");
1750 else if (!strncmp(str, "hci", 3)) {
1751 /* hci[,vlan=n] */
1752 if (str[3]) {
1753 if (!strncmp(str + 3, ",vlan=", 6)) {
1754 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1755 if (*endp)
1756 vlan = 0;
1757 }
1758 } else
1759 vlan = qemu_find_bt_vlan(0);
1760 if (vlan)
1761 return bt_new_hci(vlan);
1762 }
1763
1764 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1765
1766 return 0;
1767 }
1768
1769 static int bt_hci_parse(const char *str)
1770 {
1771 struct HCIInfo *hci;
1772 bdaddr_t bdaddr;
1773
1774 if (nb_hcis >= MAX_NICS) {
1775 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1776 return -1;
1777 }
1778
1779 hci = hci_init(str);
1780 if (!hci)
1781 return -1;
1782
1783 bdaddr.b[0] = 0x52;
1784 bdaddr.b[1] = 0x54;
1785 bdaddr.b[2] = 0x00;
1786 bdaddr.b[3] = 0x12;
1787 bdaddr.b[4] = 0x34;
1788 bdaddr.b[5] = 0x56 + nb_hcis;
1789 hci->bdaddr_set(hci, bdaddr.b);
1790
1791 hci_table[nb_hcis++] = hci;
1792
1793 return 0;
1794 }
1795
1796 static void bt_vhci_add(int vlan_id)
1797 {
1798 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1799
1800 if (!vlan->slave)
1801 fprintf(stderr, "qemu: warning: adding a VHCI to "
1802 "an empty scatternet %i\n", vlan_id);
1803
1804 bt_vhci_init(bt_new_hci(vlan));
1805 }
1806
1807 static struct bt_device_s *bt_device_add(const char *opt)
1808 {
1809 struct bt_scatternet_s *vlan;
1810 int vlan_id = 0;
1811 char *endp = strstr(opt, ",vlan=");
1812 int len = (endp ? endp - opt : strlen(opt)) + 1;
1813 char devname[10];
1814
1815 pstrcpy(devname, MIN(sizeof(devname), len), opt);
1816
1817 if (endp) {
1818 vlan_id = strtol(endp + 6, &endp, 0);
1819 if (*endp) {
1820 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
1821 return 0;
1822 }
1823 }
1824
1825 vlan = qemu_find_bt_vlan(vlan_id);
1826
1827 if (!vlan->slave)
1828 fprintf(stderr, "qemu: warning: adding a slave device to "
1829 "an empty scatternet %i\n", vlan_id);
1830
1831 if (!strcmp(devname, "keyboard"))
1832 return bt_keyboard_init(vlan);
1833
1834 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
1835 return 0;
1836 }
1837
1838 static int bt_parse(const char *opt)
1839 {
1840 const char *endp, *p;
1841 int vlan;
1842
1843 if (strstart(opt, "hci", &endp)) {
1844 if (!*endp || *endp == ',') {
1845 if (*endp)
1846 if (!strstart(endp, ",vlan=", 0))
1847 opt = endp + 1;
1848
1849 return bt_hci_parse(opt);
1850 }
1851 } else if (strstart(opt, "vhci", &endp)) {
1852 if (!*endp || *endp == ',') {
1853 if (*endp) {
1854 if (strstart(endp, ",vlan=", &p)) {
1855 vlan = strtol(p, (char **) &endp, 0);
1856 if (*endp) {
1857 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
1858 return 1;
1859 }
1860 } else {
1861 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
1862 return 1;
1863 }
1864 } else
1865 vlan = 0;
1866
1867 bt_vhci_add(vlan);
1868 return 0;
1869 }
1870 } else if (strstart(opt, "device:", &endp))
1871 return !bt_device_add(endp);
1872
1873 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
1874 return 1;
1875 }
1876
1877 /***********************************************************/
1878 /* QEMU Block devices */
1879
1880 #define HD_ALIAS "index=%d,media=disk"
1881 #define CDROM_ALIAS "index=2,media=cdrom"
1882 #define FD_ALIAS "index=%d,if=floppy"
1883 #define PFLASH_ALIAS "if=pflash"
1884 #define MTD_ALIAS "if=mtd"
1885 #define SD_ALIAS "index=0,if=sd"
1886
1887 QemuOpts *drive_add(const char *file, const char *fmt, ...)
1888 {
1889 va_list ap;
1890 char optstr[1024];
1891 QemuOpts *opts;
1892
1893 va_start(ap, fmt);
1894 vsnprintf(optstr, sizeof(optstr), fmt, ap);
1895 va_end(ap);
1896
1897 opts = qemu_opts_parse(&qemu_drive_opts, optstr, NULL);
1898 if (!opts) {
1899 fprintf(stderr, "%s: huh? duplicate? (%s)\n",
1900 __FUNCTION__, optstr);
1901 return NULL;
1902 }
1903 if (file)
1904 qemu_opt_set(opts, "file", file);
1905 return opts;
1906 }
1907
1908 DriveInfo *drive_get(BlockInterfaceType type, int bus, int unit)
1909 {
1910 DriveInfo *dinfo;
1911
1912 /* seek interface, bus and unit */
1913
1914 QTAILQ_FOREACH(dinfo, &drives, next) {
1915 if (dinfo->type == type &&
1916 dinfo->bus == bus &&
1917 dinfo->unit == unit)
1918 return dinfo;
1919 }
1920
1921 return NULL;
1922 }
1923
1924 DriveInfo *drive_get_by_id(const char *id)
1925 {
1926 DriveInfo *dinfo;
1927
1928 QTAILQ_FOREACH(dinfo, &drives, next) {
1929 if (strcmp(id, dinfo->id))
1930 continue;
1931 return dinfo;
1932 }
1933 return NULL;
1934 }
1935
1936 int drive_get_max_bus(BlockInterfaceType type)
1937 {
1938 int max_bus;
1939 DriveInfo *dinfo;
1940
1941 max_bus = -1;
1942 QTAILQ_FOREACH(dinfo, &drives, next) {
1943 if(dinfo->type == type &&
1944 dinfo->bus > max_bus)
1945 max_bus = dinfo->bus;
1946 }
1947 return max_bus;
1948 }
1949
1950 const char *drive_get_serial(BlockDriverState *bdrv)
1951 {
1952 DriveInfo *dinfo;
1953
1954 QTAILQ_FOREACH(dinfo, &drives, next) {
1955 if (dinfo->bdrv == bdrv)
1956 return dinfo->serial;
1957 }
1958
1959 return "\0";
1960 }
1961
1962 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
1963 {
1964 DriveInfo *dinfo;
1965
1966 QTAILQ_FOREACH(dinfo, &drives, next) {
1967 if (dinfo->bdrv == bdrv)
1968 return dinfo->onerror;
1969 }
1970
1971 return BLOCK_ERR_STOP_ENOSPC;
1972 }
1973
1974 static void bdrv_format_print(void *opaque, const char *name)
1975 {
1976 fprintf(stderr, " %s", name);
1977 }
1978
1979 void drive_uninit(DriveInfo *dinfo)
1980 {
1981 qemu_opts_del(dinfo->opts);
1982 bdrv_delete(dinfo->bdrv);
1983 QTAILQ_REMOVE(&drives, dinfo, next);
1984 qemu_free(dinfo);
1985 }
1986
1987 DriveInfo *drive_init(QemuOpts *opts, void *opaque,
1988 int *fatal_error)
1989 {
1990 const char *buf;
1991 const char *file = NULL;
1992 char devname[128];
1993 const char *serial;
1994 const char *mediastr = "";
1995 BlockInterfaceType type;
1996 enum { MEDIA_DISK, MEDIA_CDROM } media;
1997 int bus_id, unit_id;
1998 int cyls, heads, secs, translation;
1999 BlockDriver *drv = NULL;
2000 QEMUMachine *machine = opaque;
2001 int max_devs;
2002 int index;
2003 int cache;
2004 int aio = 0;
2005 int ro = 0;
2006 int bdrv_flags, onerror;
2007 const char *devaddr;
2008 DriveInfo *dinfo;
2009 int snapshot = 0;
2010
2011 *fatal_error = 1;
2012
2013 translation = BIOS_ATA_TRANSLATION_AUTO;
2014 cache = 1;
2015
2016 if (machine && machine->use_scsi) {
2017 type = IF_SCSI;
2018 max_devs = MAX_SCSI_DEVS;
2019 pstrcpy(devname, sizeof(devname), "scsi");
2020 } else {
2021 type = IF_IDE;
2022 max_devs = MAX_IDE_DEVS;
2023 pstrcpy(devname, sizeof(devname), "ide");
2024 }
2025 media = MEDIA_DISK;
2026
2027 /* extract parameters */
2028 bus_id = qemu_opt_get_number(opts, "bus", 0);
2029 unit_id = qemu_opt_get_number(opts, "unit", -1);
2030 index = qemu_opt_get_number(opts, "index", -1);
2031
2032 cyls = qemu_opt_get_number(opts, "cyls", 0);
2033 heads = qemu_opt_get_number(opts, "heads", 0);
2034 secs = qemu_opt_get_number(opts, "secs", 0);
2035
2036 snapshot = qemu_opt_get_bool(opts, "snapshot", 0);
2037 ro = qemu_opt_get_bool(opts, "readonly", 0);
2038
2039 file = qemu_opt_get(opts, "file");
2040 serial = qemu_opt_get(opts, "serial");
2041
2042 if ((buf = qemu_opt_get(opts, "if")) != NULL) {
2043 pstrcpy(devname, sizeof(devname), buf);
2044 if (!strcmp(buf, "ide")) {
2045 type = IF_IDE;
2046 max_devs = MAX_IDE_DEVS;
2047 } else if (!strcmp(buf, "scsi")) {
2048 type = IF_SCSI;
2049 max_devs = MAX_SCSI_DEVS;
2050 } else if (!strcmp(buf, "floppy")) {
2051 type = IF_FLOPPY;
2052 max_devs = 0;
2053 } else if (!strcmp(buf, "pflash")) {
2054 type = IF_PFLASH;
2055 max_devs = 0;
2056 } else if (!strcmp(buf, "mtd")) {
2057 type = IF_MTD;
2058 max_devs = 0;
2059 } else if (!strcmp(buf, "sd")) {
2060 type = IF_SD;
2061 max_devs = 0;
2062 } else if (!strcmp(buf, "virtio")) {
2063 type = IF_VIRTIO;
2064 max_devs = 0;
2065 } else if (!strcmp(buf, "xen")) {
2066 type = IF_XEN;
2067 max_devs = 0;
2068 } else if (!strcmp(buf, "none")) {
2069 type = IF_NONE;
2070 max_devs = 0;
2071 } else {
2072 fprintf(stderr, "qemu: unsupported bus type '%s'\n", buf);
2073 return NULL;
2074 }
2075 }
2076
2077 if (cyls || heads || secs) {
2078 if (cyls < 1 || (type == IF_IDE && cyls > 16383)) {
2079 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", buf);
2080 return NULL;
2081 }
2082 if (heads < 1 || (type == IF_IDE && heads > 16)) {
2083 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", buf);
2084 return NULL;
2085 }
2086 if (secs < 1 || (type == IF_IDE && secs > 63)) {
2087 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", buf);
2088 return NULL;
2089 }
2090 }
2091
2092 if ((buf = qemu_opt_get(opts, "trans")) != NULL) {
2093 if (!cyls) {
2094 fprintf(stderr,
2095 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2096 buf);
2097 return NULL;
2098 }
2099 if (!strcmp(buf, "none"))
2100 translation = BIOS_ATA_TRANSLATION_NONE;
2101 else if (!strcmp(buf, "lba"))
2102 translation = BIOS_ATA_TRANSLATION_LBA;
2103 else if (!strcmp(buf, "auto"))
2104 translation = BIOS_ATA_TRANSLATION_AUTO;
2105 else {
2106 fprintf(stderr, "qemu: '%s' invalid translation type\n", buf);
2107 return NULL;
2108 }
2109 }
2110
2111 if ((buf = qemu_opt_get(opts, "media")) != NULL) {
2112 if (!strcmp(buf, "disk")) {
2113 media = MEDIA_DISK;
2114 } else if (!strcmp(buf, "cdrom")) {
2115 if (cyls || secs || heads) {
2116 fprintf(stderr,
2117 "qemu: '%s' invalid physical CHS format\n", buf);
2118 return NULL;
2119 }
2120 media = MEDIA_CDROM;
2121 } else {
2122 fprintf(stderr, "qemu: '%s' invalid media\n", buf);
2123 return NULL;
2124 }
2125 }
2126
2127 if ((buf = qemu_opt_get(opts, "cache")) != NULL) {
2128 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2129 cache = 0;
2130 else if (!strcmp(buf, "writethrough"))
2131 cache = 1;
2132 else if (!strcmp(buf, "writeback"))
2133 cache = 2;
2134 else {
2135 fprintf(stderr, "qemu: invalid cache option\n");
2136 return NULL;
2137 }
2138 }
2139
2140 #ifdef CONFIG_LINUX_AIO
2141 if ((buf = qemu_opt_get(opts, "aio")) != NULL) {
2142 if (!strcmp(buf, "threads"))
2143 aio = 0;
2144 else if (!strcmp(buf, "native"))
2145 aio = 1;
2146 else {
2147 fprintf(stderr, "qemu: invalid aio option\n");
2148 return NULL;
2149 }
2150 }
2151 #endif
2152
2153 if ((buf = qemu_opt_get(opts, "format")) != NULL) {
2154 if (strcmp(buf, "?") == 0) {
2155 fprintf(stderr, "qemu: Supported formats:");
2156 bdrv_iterate_format(bdrv_format_print, NULL);
2157 fprintf(stderr, "\n");
2158 return NULL;
2159 }
2160 drv = bdrv_find_whitelisted_format(buf);
2161 if (!drv) {
2162 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2163 return NULL;
2164 }
2165 }
2166
2167 onerror = BLOCK_ERR_STOP_ENOSPC;
2168 if ((buf = qemu_opt_get(opts, "werror")) != NULL) {
2169 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2170 fprintf(stderr, "werror is no supported by this format\n");
2171 return NULL;
2172 }
2173 if (!strcmp(buf, "ignore"))
2174 onerror = BLOCK_ERR_IGNORE;
2175 else if (!strcmp(buf, "enospc"))
2176 onerror = BLOCK_ERR_STOP_ENOSPC;
2177 else if (!strcmp(buf, "stop"))
2178 onerror = BLOCK_ERR_STOP_ANY;
2179 else if (!strcmp(buf, "report"))
2180 onerror = BLOCK_ERR_REPORT;
2181 else {
2182 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2183 return NULL;
2184 }
2185 }
2186
2187 if ((devaddr = qemu_opt_get(opts, "addr")) != NULL) {
2188 if (type != IF_VIRTIO) {
2189 fprintf(stderr, "addr is not supported\n");
2190 return NULL;
2191 }
2192 }
2193
2194 /* compute bus and unit according index */
2195
2196 if (index != -1) {
2197 if (bus_id != 0 || unit_id != -1) {
2198 fprintf(stderr,
2199 "qemu: index cannot be used with bus and unit\n");
2200 return NULL;
2201 }
2202 if (max_devs == 0)
2203 {
2204 unit_id = index;
2205 bus_id = 0;
2206 } else {
2207 unit_id = index % max_devs;
2208 bus_id = index / max_devs;
2209 }
2210 }
2211
2212 /* if user doesn't specify a unit_id,
2213 * try to find the first free
2214 */
2215
2216 if (unit_id == -1) {
2217 unit_id = 0;
2218 while (drive_get(type, bus_id, unit_id) != NULL) {
2219 unit_id++;
2220 if (max_devs && unit_id >= max_devs) {
2221 unit_id -= max_devs;
2222 bus_id++;
2223 }
2224 }
2225 }
2226
2227 /* check unit id */
2228
2229 if (max_devs && unit_id >= max_devs) {
2230 fprintf(stderr, "qemu: unit %d too big (max is %d)\n",
2231 unit_id, max_devs - 1);
2232 return NULL;
2233 }
2234
2235 /*
2236 * ignore multiple definitions
2237 */
2238
2239 if (drive_get(type, bus_id, unit_id) != NULL) {
2240 *fatal_error = 0;
2241 return NULL;
2242 }
2243
2244 /* init */
2245
2246 dinfo = qemu_mallocz(sizeof(*dinfo));
2247 if ((buf = qemu_opts_id(opts)) != NULL) {
2248 dinfo->id = qemu_strdup(buf);
2249 } else {
2250 /* no id supplied -> create one */
2251 dinfo->id = qemu_mallocz(32);
2252 if (type == IF_IDE || type == IF_SCSI)
2253 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2254 if (max_devs)
2255 snprintf(dinfo->id, 32, "%s%i%s%i",
2256 devname, bus_id, mediastr, unit_id);
2257 else
2258 snprintf(dinfo->id, 32, "%s%s%i",
2259 devname, mediastr, unit_id);
2260 }
2261 dinfo->bdrv = bdrv_new(dinfo->id);
2262 dinfo->devaddr = devaddr;
2263 dinfo->type = type;
2264 dinfo->bus = bus_id;
2265 dinfo->unit = unit_id;
2266 dinfo->onerror = onerror;
2267 dinfo->opts = opts;
2268 if (serial)
2269 strncpy(dinfo->serial, serial, sizeof(serial));
2270 QTAILQ_INSERT_TAIL(&drives, dinfo, next);
2271
2272 switch(type) {
2273 case IF_IDE:
2274 case IF_SCSI:
2275 case IF_XEN:
2276 case IF_NONE:
2277 switch(media) {
2278 case MEDIA_DISK:
2279 if (cyls != 0) {
2280 bdrv_set_geometry_hint(dinfo->bdrv, cyls, heads, secs);
2281 bdrv_set_translation_hint(dinfo->bdrv, translation);
2282 }
2283 break;
2284 case MEDIA_CDROM:
2285 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_CDROM);
2286 break;
2287 }
2288 break;
2289 case IF_SD:
2290 /* FIXME: This isn't really a floppy, but it's a reasonable
2291 approximation. */
2292 case IF_FLOPPY:
2293 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_FLOPPY);
2294 break;
2295 case IF_PFLASH:
2296 case IF_MTD:
2297 break;
2298 case IF_VIRTIO:
2299 /* add virtio block device */
2300 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
2301 qemu_opt_set(opts, "driver", "virtio-blk-pci");
2302 qemu_opt_set(opts, "drive", dinfo->id);
2303 if (devaddr)
2304 qemu_opt_set(opts, "addr", devaddr);
2305 break;
2306 case IF_COUNT:
2307 abort();
2308 }
2309 if (!file) {
2310 *fatal_error = 0;
2311 return NULL;
2312 }
2313 bdrv_flags = 0;
2314 if (snapshot) {
2315 bdrv_flags |= BDRV_O_SNAPSHOT;
2316 cache = 2; /* always use write-back with snapshot */
2317 }
2318 if (cache == 0) /* no caching */
2319 bdrv_flags |= BDRV_O_NOCACHE;
2320 else if (cache == 2) /* write-back */
2321 bdrv_flags |= BDRV_O_CACHE_WB;
2322
2323 if (aio == 1) {
2324 bdrv_flags |= BDRV_O_NATIVE_AIO;
2325 } else {
2326 bdrv_flags &= ~BDRV_O_NATIVE_AIO;
2327 }
2328
2329 if (ro == 1) {
2330 if (type == IF_IDE) {
2331 fprintf(stderr, "qemu: readonly flag not supported for drive with ide interface\n");
2332 return NULL;
2333 }
2334 (void)bdrv_set_read_only(dinfo->bdrv, 1);
2335 }
2336
2337 if (bdrv_open2(dinfo->bdrv, file, bdrv_flags, drv) < 0) {
2338 fprintf(stderr, "qemu: could not open disk image %s: %s\n",
2339 file, strerror(errno));
2340 return NULL;
2341 }
2342
2343 if (bdrv_key_required(dinfo->bdrv))
2344 autostart = 0;
2345 *fatal_error = 0;
2346 return dinfo;
2347 }
2348
2349 static int drive_init_func(QemuOpts *opts, void *opaque)
2350 {
2351 QEMUMachine *machine = opaque;
2352 int fatal_error = 0;
2353
2354 if (drive_init(opts, machine, &fatal_error) == NULL) {
2355 if (fatal_error)
2356 return 1;
2357 }
2358 return 0;
2359 }
2360
2361 static int drive_enable_snapshot(QemuOpts *opts, void *opaque)
2362 {
2363 if (NULL == qemu_opt_get(opts, "snapshot")) {
2364 qemu_opt_set(opts, "snapshot", "on");
2365 }
2366 return 0;
2367 }
2368
2369 void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque)
2370 {
2371 boot_set_handler = func;
2372 boot_set_opaque = opaque;
2373 }
2374
2375 int qemu_boot_set(const char *boot_devices)
2376 {
2377 if (!boot_set_handler) {
2378 return -EINVAL;
2379 }
2380 return boot_set_handler(boot_set_opaque, boot_devices);
2381 }
2382
2383 static int parse_bootdevices(char *devices)
2384 {
2385 /* We just do some generic consistency checks */
2386 const char *p;
2387 int bitmap = 0;
2388
2389 for (p = devices; *p != '\0'; p++) {
2390 /* Allowed boot devices are:
2391 * a-b: floppy disk drives
2392 * c-f: IDE disk drives
2393 * g-m: machine implementation dependant drives
2394 * n-p: network devices
2395 * It's up to each machine implementation to check if the given boot
2396 * devices match the actual hardware implementation and firmware
2397 * features.
2398 */
2399 if (*p < 'a' || *p > 'p') {
2400 fprintf(stderr, "Invalid boot device '%c'\n", *p);
2401 exit(1);
2402 }
2403 if (bitmap & (1 << (*p - 'a'))) {
2404 fprintf(stderr, "Boot device '%c' was given twice\n", *p);
2405 exit(1);
2406 }
2407 bitmap |= 1 << (*p - 'a');
2408 }
2409 return bitmap;
2410 }
2411
2412 static void restore_boot_devices(void *opaque)
2413 {
2414 char *standard_boot_devices = opaque;
2415
2416 qemu_boot_set(standard_boot_devices);
2417
2418 qemu_unregister_reset(restore_boot_devices, standard_boot_devices);
2419 qemu_free(standard_boot_devices);
2420 }
2421
2422 static void numa_add(const char *optarg)
2423 {
2424 char option[128];
2425 char *endptr;
2426 unsigned long long value, endvalue;
2427 int nodenr;
2428
2429 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2430 if (!strcmp(option, "node")) {
2431 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2432 nodenr = nb_numa_nodes;
2433 } else {
2434 nodenr = strtoull(option, NULL, 10);
2435 }
2436
2437 if (get_param_value(option, 128, "mem", optarg) == 0) {
2438 node_mem[nodenr] = 0;
2439 } else {
2440 value = strtoull(option, &endptr, 0);
2441 switch (*endptr) {
2442 case 0: case 'M': case 'm':
2443 value <<= 20;
2444 break;
2445 case 'G': case 'g':
2446 value <<= 30;
2447 break;
2448 }
2449 node_mem[nodenr] = value;
2450 }
2451 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2452 node_cpumask[nodenr] = 0;
2453 } else {
2454 value = strtoull(option, &endptr, 10);
2455 if (value >= 64) {
2456 value = 63;
2457 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2458 } else {
2459 if (*endptr == '-') {
2460 endvalue = strtoull(endptr+1, &endptr, 10);
2461 if (endvalue >= 63) {
2462 endvalue = 62;
2463 fprintf(stderr,
2464 "only 63 CPUs in NUMA mode supported.\n");
2465 }
2466 value = (1 << (endvalue + 1)) - (1 << value);
2467 } else {
2468 value = 1 << value;
2469 }
2470 }
2471 node_cpumask[nodenr] = value;
2472 }
2473 nb_numa_nodes++;
2474 }
2475 return;
2476 }
2477
2478 static void smp_parse(const char *optarg)
2479 {
2480 int smp, sockets = 0, threads = 0, cores = 0;
2481 char *endptr;
2482 char option[128];
2483
2484 smp = strtoul(optarg, &endptr, 10);
2485 if (endptr != optarg) {
2486 if (*endptr == ',') {
2487 endptr++;
2488 }
2489 }
2490 if (get_param_value(option, 128, "sockets", endptr) != 0)
2491 sockets = strtoull(option, NULL, 10);
2492 if (get_param_value(option, 128, "cores", endptr) != 0)
2493 cores = strtoull(option, NULL, 10);
2494 if (get_param_value(option, 128, "threads", endptr) != 0)
2495 threads = strtoull(option, NULL, 10);
2496 if (get_param_value(option, 128, "maxcpus", endptr) != 0)
2497 max_cpus = strtoull(option, NULL, 10);
2498
2499 /* compute missing values, prefer sockets over cores over threads */
2500 if (smp == 0 || sockets == 0) {
2501 sockets = sockets > 0 ? sockets : 1;
2502 cores = cores > 0 ? cores : 1;
2503 threads = threads > 0 ? threads : 1;
2504 if (smp == 0) {
2505 smp = cores * threads * sockets;
2506 } else {
2507 sockets = smp / (cores * threads);
2508 }
2509 } else {
2510 if (cores == 0) {
2511 threads = threads > 0 ? threads : 1;
2512 cores = smp / (sockets * threads);
2513 } else {
2514 if (sockets == 0) {
2515 sockets = smp / (cores * threads);
2516 } else {
2517 threads = smp / (cores * sockets);
2518 }
2519 }
2520 }
2521 smp_cpus = smp;
2522 smp_cores = cores > 0 ? cores : 1;
2523 smp_threads = threads > 0 ? threads : 1;
2524 if (max_cpus == 0)
2525 max_cpus = smp_cpus;
2526 }
2527
2528 /***********************************************************/
2529 /* USB devices */
2530
2531 static int usb_device_add(const char *devname, int is_hotplug)
2532 {
2533 const char *p;
2534 USBDevice *dev = NULL;
2535
2536 if (!usb_enabled)
2537 return -1;
2538
2539 /* drivers with .usbdevice_name entry in USBDeviceInfo */
2540 dev = usbdevice_create(devname);
2541 if (dev)
2542 goto done;
2543
2544 /* the other ones */
2545 if (strstart(devname, "host:", &p)) {
2546 dev = usb_host_device_open(p);
2547 } else if (strstart(devname, "net:", &p)) {
2548 QemuOpts *opts;
2549 int idx;
2550
2551 opts = qemu_opts_parse(&qemu_net_opts, p, NULL);
2552 if (!opts) {
2553 return -1;
2554 }
2555
2556 qemu_opt_set(opts, "type", "nic");
2557 qemu_opt_set(opts, "model", "usb");
2558
2559 idx = net_client_init(NULL, opts, 0);
2560 if (idx == -1) {
2561 return -1;
2562 }
2563
2564 dev = usb_net_init(&nd_table[idx]);
2565 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2566 dev = usb_bt_init(devname[2] ? hci_init(p) :
2567 bt_new_hci(qemu_find_bt_vlan(0)));
2568 } else {
2569 return -1;
2570 }
2571 if (!dev)
2572 return -1;
2573
2574 done:
2575 return 0;
2576 }
2577
2578 static int usb_device_del(const char *devname)
2579 {
2580 int bus_num, addr;
2581 const char *p;
2582
2583 if (strstart(devname, "host:", &p))
2584 return usb_host_device_close(p);
2585
2586 if (!usb_enabled)
2587 return -1;
2588
2589 p = strchr(devname, '.');
2590 if (!p)
2591 return -1;
2592 bus_num = strtoul(devname, NULL, 0);
2593 addr = strtoul(p + 1, NULL, 0);
2594
2595 return usb_device_delete_addr(bus_num, addr);
2596 }
2597
2598 static int usb_parse(const char *cmdline)
2599 {
2600 return usb_device_add(cmdline, 0);
2601 }
2602
2603 void do_usb_add(Monitor *mon, const QDict *qdict)
2604 {
2605 usb_device_add(qdict_get_str(qdict, "devname"), 1);
2606 }
2607
2608 void do_usb_del(Monitor *mon, const QDict *qdict)
2609 {
2610 usb_device_del(qdict_get_str(qdict, "devname"));
2611 }
2612
2613 /***********************************************************/
2614 /* PCMCIA/Cardbus */
2615
2616 static struct pcmcia_socket_entry_s {
2617 PCMCIASocket *socket;
2618 struct pcmcia_socket_entry_s *next;
2619 } *pcmcia_sockets = 0;
2620
2621 void pcmcia_socket_register(PCMCIASocket *socket)
2622 {
2623 struct pcmcia_socket_entry_s *entry;
2624
2625 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2626 entry->socket = socket;
2627 entry->next = pcmcia_sockets;
2628 pcmcia_sockets = entry;
2629 }
2630
2631 void pcmcia_socket_unregister(PCMCIASocket *socket)
2632 {
2633 struct pcmcia_socket_entry_s *entry, **ptr;
2634
2635 ptr = &pcmcia_sockets;
2636 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2637 if (entry->socket == socket) {
2638 *ptr = entry->next;
2639 qemu_free(entry);
2640 }
2641 }
2642
2643 void pcmcia_info(Monitor *mon)
2644 {
2645 struct pcmcia_socket_entry_s *iter;
2646
2647 if (!pcmcia_sockets)
2648 monitor_printf(mon, "No PCMCIA sockets\n");
2649
2650 for (iter = pcmcia_sockets; iter; iter = iter->next)
2651 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2652 iter->socket->attached ? iter->socket->card_string :
2653 "Empty");
2654 }
2655
2656 /***********************************************************/
2657 /* register display */
2658
2659 struct DisplayAllocator default_allocator = {
2660 defaultallocator_create_displaysurface,
2661 defaultallocator_resize_displaysurface,
2662 defaultallocator_free_displaysurface
2663 };
2664
2665 void register_displaystate(DisplayState *ds)
2666 {
2667 DisplayState **s;
2668 s = &display_state;
2669 while (*s != NULL)
2670 s = &(*s)->next;
2671 ds->next = NULL;
2672 *s = ds;
2673 }
2674
2675 DisplayState *get_displaystate(void)
2676 {
2677 return display_state;
2678 }
2679
2680 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2681 {
2682 if(ds->allocator == &default_allocator) ds->allocator = da;
2683 return ds->allocator;
2684 }
2685
2686 /* dumb display */
2687
2688 static void dumb_display_init(void)
2689 {
2690 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2691 ds->allocator = &default_allocator;
2692 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2693 register_displaystate(ds);
2694 }
2695
2696 /***********************************************************/
2697 /* I/O handling */
2698
2699 typedef struct IOHandlerRecord {
2700 int fd;
2701 IOCanRWHandler *fd_read_poll;
2702 IOHandler *fd_read;
2703 IOHandler *fd_write;
2704 int deleted;
2705 void *opaque;
2706 /* temporary data */
2707 struct pollfd *ufd;
2708 struct IOHandlerRecord *next;
2709 } IOHandlerRecord;
2710
2711 static IOHandlerRecord *first_io_handler;
2712
2713 /* XXX: fd_read_poll should be suppressed, but an API change is
2714 necessary in the character devices to suppress fd_can_read(). */
2715 int qemu_set_fd_handler2(int fd,
2716 IOCanRWHandler *fd_read_poll,
2717 IOHandler *fd_read,
2718 IOHandler *fd_write,
2719 void *opaque)
2720 {
2721 IOHandlerRecord **pioh, *ioh;
2722
2723 if (!fd_read && !fd_write) {
2724 pioh = &first_io_handler;
2725 for(;;) {
2726 ioh = *pioh;
2727 if (ioh == NULL)
2728 break;
2729 if (ioh->fd == fd) {
2730 ioh->deleted = 1;
2731 break;
2732 }
2733 pioh = &ioh->next;
2734 }
2735 } else {
2736 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2737 if (ioh->fd == fd)
2738 goto found;
2739 }
2740 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2741 ioh->next = first_io_handler;
2742 first_io_handler = ioh;
2743 found:
2744 ioh->fd = fd;
2745 ioh->fd_read_poll = fd_read_poll;
2746 ioh->fd_read = fd_read;
2747 ioh->fd_write = fd_write;
2748 ioh->opaque = opaque;
2749 ioh->deleted = 0;
2750 }
2751 return 0;
2752 }
2753
2754 int qemu_set_fd_handler(int fd,
2755 IOHandler *fd_read,
2756 IOHandler *fd_write,
2757 void *opaque)
2758 {
2759 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2760 }
2761
2762 #ifdef _WIN32
2763 /***********************************************************/
2764 /* Polling handling */
2765
2766 typedef struct PollingEntry {
2767 PollingFunc *func;
2768 void *opaque;
2769 struct PollingEntry *next;
2770 } PollingEntry;
2771
2772 static PollingEntry *first_polling_entry;
2773
2774 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2775 {
2776 PollingEntry **ppe, *pe;
2777 pe = qemu_mallocz(sizeof(PollingEntry));
2778 pe->func = func;
2779 pe->opaque = opaque;
2780 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2781 *ppe = pe;
2782 return 0;
2783 }
2784
2785 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2786 {
2787 PollingEntry **ppe, *pe;
2788 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2789 pe = *ppe;
2790 if (pe->func == func && pe->opaque == opaque) {
2791 *ppe = pe->next;
2792 qemu_free(pe);
2793 break;
2794 }
2795 }
2796 }
2797
2798 /***********************************************************/
2799 /* Wait objects support */
2800 typedef struct WaitObjects {
2801 int num;
2802 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2803 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2804 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2805 } WaitObjects;
2806
2807 static WaitObjects wait_objects = {0};
2808
2809 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2810 {
2811 WaitObjects *w = &wait_objects;
2812
2813 if (w->num >= MAXIMUM_WAIT_OBJECTS)
2814 return -1;
2815 w->events[w->num] = handle;
2816 w->func[w->num] = func;
2817 w->opaque[w->num] = opaque;
2818 w->num++;
2819 return 0;
2820 }
2821
2822 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2823 {
2824 int i, found;
2825 WaitObjects *w = &wait_objects;
2826
2827 found = 0;
2828 for (i = 0; i < w->num; i++) {
2829 if (w->events[i] == handle)
2830 found = 1;
2831 if (found) {
2832 w->events[i] = w->events[i + 1];
2833 w->func[i] = w->func[i + 1];
2834 w->opaque[i] = w->opaque[i + 1];
2835 }
2836 }
2837 if (found)
2838 w->num--;
2839 }
2840 #endif
2841
2842 /***********************************************************/
2843 /* ram save/restore */
2844
2845 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
2846 #define RAM_SAVE_FLAG_COMPRESS 0x02
2847 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
2848 #define RAM_SAVE_FLAG_PAGE 0x08
2849 #define RAM_SAVE_FLAG_EOS 0x10
2850
2851 static int is_dup_page(uint8_t *page, uint8_t ch)
2852 {
2853 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
2854 uint32_t *array = (uint32_t *)page;
2855 int i;
2856
2857 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
2858 if (array[i] != val)
2859 return 0;
2860 }
2861
2862 return 1;
2863 }
2864
2865 static int ram_save_block(QEMUFile *f)
2866 {
2867 static ram_addr_t current_addr = 0;
2868 ram_addr_t saved_addr = current_addr;
2869 ram_addr_t addr = 0;
2870 int found = 0;
2871
2872 while (addr < last_ram_offset) {
2873 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
2874 uint8_t *p;
2875
2876 cpu_physical_memory_reset_dirty(current_addr,
2877 current_addr + TARGET_PAGE_SIZE,
2878 MIGRATION_DIRTY_FLAG);
2879
2880 p = qemu_get_ram_ptr(current_addr);
2881
2882 if (is_dup_page(p, *p)) {
2883 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
2884 qemu_put_byte(f, *p);
2885 } else {
2886 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
2887 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
2888 }
2889
2890 found = 1;
2891 break;
2892 }
2893 addr += TARGET_PAGE_SIZE;
2894 current_addr = (saved_addr + addr) % last_ram_offset;
2895 }
2896
2897 return found;
2898 }
2899
2900 static uint64_t bytes_transferred = 0;
2901
2902 static ram_addr_t ram_save_remaining(void)
2903 {
2904 ram_addr_t addr;
2905 ram_addr_t count = 0;
2906
2907 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2908 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2909 count++;
2910 }
2911
2912 return count;
2913 }
2914
2915 uint64_t ram_bytes_remaining(void)
2916 {
2917 return ram_save_remaining() * TARGET_PAGE_SIZE;
2918 }
2919
2920 uint64_t ram_bytes_transferred(void)
2921 {
2922 return bytes_transferred;
2923 }
2924
2925 uint64_t ram_bytes_total(void)
2926 {
2927 return last_ram_offset;
2928 }
2929
2930 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
2931 {
2932 ram_addr_t addr;
2933 uint64_t bytes_transferred_last;
2934 double bwidth = 0;
2935 uint64_t expected_time = 0;
2936
2937 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
2938 qemu_file_set_error(f);
2939 return 0;
2940 }
2941
2942 if (stage == 1) {
2943 /* Make sure all dirty bits are set */
2944 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2945 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2946 cpu_physical_memory_set_dirty(addr);
2947 }
2948
2949 /* Enable dirty memory tracking */
2950 cpu_physical_memory_set_dirty_tracking(1);
2951
2952 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
2953 }
2954
2955 bytes_transferred_last = bytes_transferred;
2956 bwidth = get_clock();
2957
2958 while (!qemu_file_rate_limit(f)) {
2959 int ret;
2960
2961 ret = ram_save_block(f);
2962 bytes_transferred += ret * TARGET_PAGE_SIZE;
2963 if (ret == 0) /* no more blocks */
2964 break;
2965 }
2966
2967 bwidth = get_clock() - bwidth;
2968 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
2969
2970 /* if we haven't transferred anything this round, force expected_time to a
2971 * a very high value, but without crashing */
2972 if (bwidth == 0)
2973 bwidth = 0.000001;
2974
2975 /* try transferring iterative blocks of memory */
2976 if (stage == 3) {
2977 /* flush all remaining blocks regardless of rate limiting */
2978 while (ram_save_block(f) != 0) {
2979 bytes_transferred += TARGET_PAGE_SIZE;
2980 }
2981 cpu_physical_memory_set_dirty_tracking(0);
2982 }
2983
2984 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2985
2986 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
2987
2988 return (stage == 2) && (expected_time <= migrate_max_downtime());
2989 }
2990
2991 static int ram_load(QEMUFile *f, void *opaque, int version_id)
2992 {
2993 ram_addr_t addr;
2994 int flags;
2995
2996 if (version_id != 3)
2997 return -EINVAL;
2998
2999 do {
3000 addr = qemu_get_be64(f);
3001
3002 flags = addr & ~TARGET_PAGE_MASK;
3003 addr &= TARGET_PAGE_MASK;
3004
3005 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3006 if (addr != last_ram_offset)
3007 return -EINVAL;
3008 }
3009
3010 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3011 uint8_t ch = qemu_get_byte(f);
3012 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3013 #ifndef _WIN32
3014 if (ch == 0 &&
3015 (!kvm_enabled() || kvm_has_sync_mmu())) {
3016 madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED);
3017 }
3018 #endif
3019 } else if (flags & RAM_SAVE_FLAG_PAGE) {
3020 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3021 }
3022 if (qemu_file_has_error(f)) {
3023 return -EIO;
3024 }
3025 } while (!(flags & RAM_SAVE_FLAG_EOS));
3026
3027 return 0;
3028 }
3029
3030 void qemu_service_io(void)
3031 {
3032 qemu_notify_event();
3033 }
3034
3035 /***********************************************************/
3036 /* machine registration */
3037
3038 static QEMUMachine *first_machine = NULL;
3039 QEMUMachine *current_machine = NULL;
3040
3041 int qemu_register_machine(QEMUMachine *m)
3042 {
3043 QEMUMachine **pm;
3044 pm = &first_machine;
3045 while (*pm != NULL)
3046 pm = &(*pm)->next;
3047 m->next = NULL;
3048 *pm = m;
3049 return 0;
3050 }
3051
3052 static QEMUMachine *find_machine(const char *name)
3053 {
3054 QEMUMachine *m;
3055
3056 for(m = first_machine; m != NULL; m = m->next) {
3057 if (!strcmp(m->name, name))
3058 return m;
3059 if (m->alias && !strcmp(m->alias, name))
3060 return m;
3061 }
3062 return NULL;
3063 }
3064
3065 static QEMUMachine *find_default_machine(void)
3066 {
3067 QEMUMachine *m;
3068
3069 for(m = first_machine; m != NULL; m = m->next) {
3070 if (m->is_default) {
3071 return m;
3072 }
3073 }
3074 return NULL;
3075 }
3076
3077 /***********************************************************/
3078 /* main execution loop */
3079
3080 static void gui_update(void *opaque)
3081 {
3082 uint64_t interval = GUI_REFRESH_INTERVAL;
3083 DisplayState *ds = opaque;
3084 DisplayChangeListener *dcl = ds->listeners;
3085
3086 dpy_refresh(ds);
3087
3088 while (dcl != NULL) {
3089 if (dcl->gui_timer_interval &&
3090 dcl->gui_timer_interval < interval)
3091 interval = dcl->gui_timer_interval;
3092 dcl = dcl->next;
3093 }
3094 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3095 }
3096
3097 static void nographic_update(void *opaque)
3098 {
3099 uint64_t interval = GUI_REFRESH_INTERVAL;
3100
3101 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3102 }
3103
3104 struct vm_change_state_entry {
3105 VMChangeStateHandler *cb;
3106 void *opaque;
3107 QLIST_ENTRY (vm_change_state_entry) entries;
3108 };
3109
3110 static QLIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3111
3112 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3113 void *opaque)
3114 {
3115 VMChangeStateEntry *e;
3116
3117 e = qemu_mallocz(sizeof (*e));
3118
3119 e->cb = cb;
3120 e->opaque = opaque;
3121 QLIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3122 return e;
3123 }
3124
3125 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3126 {
3127 QLIST_REMOVE (e, entries);
3128 qemu_free (e);
3129 }
3130
3131 static void vm_state_notify(int running, int reason)
3132 {
3133 VMChangeStateEntry *e;
3134
3135 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3136 e->cb(e->opaque, running, reason);
3137 }
3138 }
3139
3140 static void resume_all_vcpus(void);
3141 static void pause_all_vcpus(void);
3142
3143 void vm_start(void)
3144 {
3145 if (!vm_running) {
3146 cpu_enable_ticks();
3147 vm_running = 1;
3148 vm_state_notify(1, 0);
3149 qemu_rearm_alarm_timer(alarm_timer);
3150 resume_all_vcpus();
3151 }
3152 }
3153
3154 /* reset/shutdown handler */
3155
3156 typedef struct QEMUResetEntry {
3157 QTAILQ_ENTRY(QEMUResetEntry) entry;
3158 QEMUResetHandler *func;
3159 void *opaque;
3160 } QEMUResetEntry;
3161
3162 static QTAILQ_HEAD(reset_handlers, QEMUResetEntry) reset_handlers =
3163 QTAILQ_HEAD_INITIALIZER(reset_handlers);
3164 static int reset_requested;
3165 static int shutdown_requested;
3166 static int powerdown_requested;
3167 static int debug_requested;
3168 static int vmstop_requested;
3169
3170 int qemu_shutdown_requested(void)
3171 {
3172 int r = shutdown_requested;
3173 shutdown_requested = 0;
3174 return r;
3175 }
3176
3177 int qemu_reset_requested(void)
3178 {
3179 int r = reset_requested;
3180 reset_requested = 0;
3181 return r;
3182 }
3183
3184 int qemu_powerdown_requested(void)
3185 {
3186 int r = powerdown_requested;
3187 powerdown_requested = 0;
3188 return r;
3189 }
3190
3191 static int qemu_debug_requested(void)
3192 {
3193 int r = debug_requested;
3194 debug_requested = 0;
3195 return r;
3196 }
3197
3198 static int qemu_vmstop_requested(void)
3199 {
3200 int r = vmstop_requested;
3201 vmstop_requested = 0;
3202 return r;
3203 }
3204
3205 static void do_vm_stop(int reason)
3206 {
3207 if (vm_running) {
3208 cpu_disable_ticks();
3209 vm_running = 0;
3210 pause_all_vcpus();
3211 vm_state_notify(0, reason);
3212 }
3213 }
3214
3215 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3216 {
3217 QEMUResetEntry *re = qemu_mallocz(sizeof(QEMUResetEntry));
3218
3219 re->func = func;
3220 re->opaque = opaque;
3221 QTAILQ_INSERT_TAIL(&reset_handlers, re, entry);
3222 }
3223
3224 void qemu_unregister_reset(QEMUResetHandler *func, void *opaque)
3225 {
3226 QEMUResetEntry *re;
3227
3228 QTAILQ_FOREACH(re, &reset_handlers, entry) {
3229 if (re->func == func && re->opaque == opaque) {
3230 QTAILQ_REMOVE(&reset_handlers, re, entry);
3231 qemu_free(re);
3232 return;
3233 }
3234 }
3235 }
3236
3237 void qemu_system_reset(void)
3238 {
3239 QEMUResetEntry *re, *nre;
3240
3241 /* reset all devices */
3242 QTAILQ_FOREACH_SAFE(re, &reset_handlers, entry, nre) {
3243 re->func(re->opaque);
3244 }
3245 }
3246
3247 void qemu_system_reset_request(void)
3248 {
3249 if (no_reboot) {
3250 shutdown_requested = 1;
3251 } else {
3252 reset_requested = 1;
3253 }
3254 qemu_notify_event();
3255 }
3256
3257 void qemu_system_shutdown_request(void)
3258 {
3259 shutdown_requested = 1;
3260 qemu_notify_event();
3261 }
3262
3263 void qemu_system_powerdown_request(void)
3264 {
3265 powerdown_requested = 1;
3266 qemu_notify_event();
3267 }
3268
3269 #ifdef CONFIG_IOTHREAD
3270 static void qemu_system_vmstop_request(int reason)
3271 {
3272 vmstop_requested = reason;
3273 qemu_notify_event();
3274 }
3275 #endif
3276
3277 #ifndef _WIN32
3278 static int io_thread_fd = -1;
3279
3280 static void qemu_event_increment(void)
3281 {
3282 static const char byte = 0;
3283
3284 if (io_thread_fd == -1)
3285 return;
3286
3287 write(io_thread_fd, &byte, sizeof(byte));
3288 }
3289
3290 static void qemu_event_read(void *opaque)
3291 {
3292 int fd = (unsigned long)opaque;
3293 ssize_t len;
3294
3295 /* Drain the notify pipe */
3296 do {
3297 char buffer[512];
3298 len = read(fd, buffer, sizeof(buffer));
3299 } while ((len == -1 && errno == EINTR) || len > 0);
3300 }
3301
3302 static int qemu_event_init(void)
3303 {
3304 int err;
3305 int fds[2];
3306
3307 err = pipe(fds);
3308 if (err == -1)
3309 return -errno;
3310
3311 err = fcntl_setfl(fds[0], O_NONBLOCK);
3312 if (err < 0)
3313 goto fail;
3314
3315 err = fcntl_setfl(fds[1], O_NONBLOCK);
3316 if (err < 0)
3317 goto fail;
3318
3319 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3320 (void *)(unsigned long)fds[0]);
3321
3322 io_thread_fd = fds[1];
3323 return 0;
3324
3325 fail:
3326 close(fds[0]);
3327 close(fds[1]);
3328 return err;
3329 }
3330 #else
3331 HANDLE qemu_event_handle;
3332
3333 static void dummy_event_handler(void *opaque)
3334 {
3335 }
3336
3337 static int qemu_event_init(void)
3338 {
3339 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3340 if (!qemu_event_handle) {
3341 fprintf(stderr, "Failed CreateEvent: %ld\n", GetLastError());
3342 return -1;
3343 }
3344 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3345 return 0;
3346 }
3347
3348 static void qemu_event_increment(void)
3349 {
3350 if (!SetEvent(qemu_event_handle)) {
3351 fprintf(stderr, "qemu_event_increment: SetEvent failed: %ld\n",
3352 GetLastError());
3353 exit (1);
3354 }
3355 }
3356 #endif
3357
3358 static int cpu_can_run(CPUState *env)
3359 {
3360 if (env->stop)
3361 return 0;
3362 if (env->stopped)
3363 return 0;
3364 return 1;
3365 }
3366
3367 #ifndef CONFIG_IOTHREAD
3368 static int qemu_init_main_loop(void)
3369 {
3370 return qemu_event_init();
3371 }
3372
3373 void qemu_init_vcpu(void *_env)
3374 {
3375 CPUState *env = _env;
3376
3377 if (kvm_enabled())
3378 kvm_init_vcpu(env);
3379 env->nr_cores = smp_cores;
3380 env->nr_threads = smp_threads;
3381 return;
3382 }
3383
3384 int qemu_cpu_self(void *env)
3385 {
3386 return 1;
3387 }
3388
3389 static void resume_all_vcpus(void)
3390 {
3391 }
3392
3393 static void pause_all_vcpus(void)
3394 {
3395 }
3396
3397 void qemu_cpu_kick(void *env)
3398 {
3399 return;
3400 }
3401
3402 void qemu_notify_event(void)
3403 {
3404 CPUState *env = cpu_single_env;
3405
3406 if (env) {
3407 cpu_exit(env);
3408 }
3409 }
3410
3411 void qemu_mutex_lock_iothread(void) {}
3412 void qemu_mutex_unlock_iothread(void) {}
3413
3414 void vm_stop(int reason)
3415 {
3416 do_vm_stop(reason);
3417 }
3418
3419 #else /* CONFIG_IOTHREAD */
3420
3421 #include "qemu-thread.h"
3422
3423 QemuMutex qemu_global_mutex;
3424 static QemuMutex qemu_fair_mutex;
3425
3426 static QemuThread io_thread;
3427
3428 static QemuThread *tcg_cpu_thread;
3429 static QemuCond *tcg_halt_cond;
3430
3431 static int qemu_system_ready;
3432 /* cpu creation */
3433 static QemuCond qemu_cpu_cond;
3434 /* system init */
3435 static QemuCond qemu_system_cond;
3436 static QemuCond qemu_pause_cond;
3437
3438 static void block_io_signals(void);
3439 static void unblock_io_signals(void);
3440 static int tcg_has_work(void);
3441
3442 static int qemu_init_main_loop(void)
3443 {
3444 int ret;
3445
3446 ret = qemu_event_init();
3447 if (ret)
3448 return ret;
3449
3450 qemu_cond_init(&qemu_pause_cond);
3451 qemu_mutex_init(&qemu_fair_mutex);
3452 qemu_mutex_init(&qemu_global_mutex);
3453 qemu_mutex_lock(&qemu_global_mutex);
3454
3455 unblock_io_signals();
3456 qemu_thread_self(&io_thread);
3457
3458 return 0;
3459 }
3460
3461 static void qemu_wait_io_event(CPUState *env)
3462 {
3463 while (!tcg_has_work())
3464 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3465
3466 qemu_mutex_unlock(&qemu_global_mutex);
3467
3468 /*
3469 * Users of qemu_global_mutex can be starved, having no chance
3470 * to acquire it since this path will get to it first.
3471 * So use another lock to provide fairness.
3472 */
3473 qemu_mutex_lock(&qemu_fair_mutex);
3474 qemu_mutex_unlock(&qemu_fair_mutex);
3475
3476 qemu_mutex_lock(&qemu_global_mutex);
3477 if (env->stop) {
3478 env->stop = 0;
3479 env->stopped = 1;
3480 qemu_cond_signal(&qemu_pause_cond);
3481 }
3482 }
3483
3484 static int qemu_cpu_exec(CPUState *env);
3485
3486 static void *kvm_cpu_thread_fn(void *arg)
3487 {
3488 CPUState *env = arg;
3489
3490 block_io_signals();
3491 qemu_thread_self(env->thread);
3492 if (kvm_enabled())
3493 kvm_init_vcpu(env);
3494
3495 /* signal CPU creation */
3496 qemu_mutex_lock(&qemu_global_mutex);
3497 env->created = 1;
3498 qemu_cond_signal(&qemu_cpu_cond);
3499
3500 /* and wait for machine initialization */
3501 while (!qemu_system_ready)
3502 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3503
3504 while (1) {
3505 if (cpu_can_run(env))
3506 qemu_cpu_exec(env);
3507 qemu_wait_io_event(env);
3508 }
3509
3510 return NULL;
3511 }
3512
3513 static void tcg_cpu_exec(void);
3514
3515 static void *tcg_cpu_thread_fn(void *arg)
3516 {
3517 CPUState *env = arg;
3518
3519 block_io_signals();
3520 qemu_thread_self(env->thread);
3521
3522 /* signal CPU creation */
3523 qemu_mutex_lock(&qemu_global_mutex);
3524 for (env = first_cpu; env != NULL; env = env->next_cpu)
3525 env->created = 1;
3526 qemu_cond_signal(&qemu_cpu_cond);
3527
3528 /* and wait for machine initialization */
3529 while (!qemu_system_ready)
3530 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3531
3532 while (1) {
3533 tcg_cpu_exec();
3534 qemu_wait_io_event(cur_cpu);
3535 }
3536
3537 return NULL;
3538 }
3539
3540 void qemu_cpu_kick(void *_env)
3541 {
3542 CPUState *env = _env;
3543 qemu_cond_broadcast(env->halt_cond);
3544 if (kvm_enabled())
3545 qemu_thread_signal(env->thread, SIGUSR1);
3546 }
3547
3548 int qemu_cpu_self(void *_env)
3549 {
3550 CPUState *env = _env;
3551 QemuThread this;
3552
3553 qemu_thread_self(&this);
3554
3555 return qemu_thread_equal(&this, env->thread);
3556 }
3557
3558 static void cpu_signal(int sig)
3559 {
3560 if (cpu_single_env)
3561 cpu_exit(cpu_single_env);
3562 }
3563
3564 static void block_io_signals(void)
3565 {
3566 sigset_t set;
3567 struct sigaction sigact;
3568
3569 sigemptyset(&set);
3570 sigaddset(&set, SIGUSR2);
3571 sigaddset(&set, SIGIO);
3572 sigaddset(&set, SIGALRM);
3573 pthread_sigmask(SIG_BLOCK, &set, NULL);
3574
3575 sigemptyset(&set);
3576 sigaddset(&set, SIGUSR1);
3577 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3578
3579 memset(&sigact, 0, sizeof(sigact));
3580 sigact.sa_handler = cpu_signal;
3581 sigaction(SIGUSR1, &sigact, NULL);
3582 }
3583
3584 static void unblock_io_signals(void)
3585 {
3586 sigset_t set;
3587
3588 sigemptyset(&set);
3589 sigaddset(&set, SIGUSR2);
3590 sigaddset(&set, SIGIO);
3591 sigaddset(&set, SIGALRM);
3592 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3593
3594 sigemptyset(&set);
3595 sigaddset(&set, SIGUSR1);
3596 pthread_sigmask(SIG_BLOCK, &set, NULL);
3597 }
3598
3599 static void qemu_signal_lock(unsigned int msecs)
3600 {
3601 qemu_mutex_lock(&qemu_fair_mutex);
3602
3603 while (qemu_mutex_trylock(&qemu_global_mutex)) {
3604 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
3605 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
3606 break;
3607 }
3608 qemu_mutex_unlock(&qemu_fair_mutex);
3609 }
3610
3611 void qemu_mutex_lock_iothread(void)
3612 {
3613 if (kvm_enabled()) {
3614 qemu_mutex_lock(&qemu_fair_mutex);
3615 qemu_mutex_lock(&qemu_global_mutex);
3616 qemu_mutex_unlock(&qemu_fair_mutex);
3617 } else
3618 qemu_signal_lock(100);
3619 }
3620
3621 void qemu_mutex_unlock_iothread(void)
3622 {
3623 qemu_mutex_unlock(&qemu_global_mutex);
3624 }
3625
3626 static int all_vcpus_paused(void)
3627 {
3628 CPUState *penv = first_cpu;
3629
3630 while (penv) {
3631 if (!penv->stopped)
3632 return 0;
3633 penv = (CPUState *)penv->next_cpu;
3634 }
3635
3636 return 1;
3637 }
3638
3639 static void pause_all_vcpus(void)
3640 {
3641 CPUState *penv = first_cpu;
3642
3643 while (penv) {
3644 penv->stop = 1;
3645 qemu_thread_signal(penv->thread, SIGUSR1);
3646 qemu_cpu_kick(penv);
3647 penv = (CPUState *)penv->next_cpu;
3648 }
3649
3650 while (!all_vcpus_paused()) {
3651 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
3652 penv = first_cpu;
3653 while (penv) {
3654 qemu_thread_signal(penv->thread, SIGUSR1);
3655 penv = (CPUState *)penv->next_cpu;
3656 }
3657 }
3658 }
3659
3660 static void resume_all_vcpus(void)
3661 {
3662 CPUState *penv = first_cpu;
3663
3664 while (penv) {
3665 penv->stop = 0;
3666 penv->stopped = 0;
3667 qemu_thread_signal(penv->thread, SIGUSR1);
3668 qemu_cpu_kick(penv);
3669 penv = (CPUState *)penv->next_cpu;
3670 }
3671 }
3672
3673 static void tcg_init_vcpu(void *_env)
3674 {
3675 CPUState *env = _env;
3676 /* share a single thread for all cpus with TCG */
3677 if (!tcg_cpu_thread) {
3678 env->thread = qemu_mallocz(sizeof(QemuThread));
3679 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3680 qemu_cond_init(env->halt_cond);
3681 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
3682 while (env->created == 0)
3683 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3684 tcg_cpu_thread = env->thread;
3685 tcg_halt_cond = env->halt_cond;
3686 } else {
3687 env->thread = tcg_cpu_thread;
3688 env->halt_cond = tcg_halt_cond;
3689 }
3690 }
3691
3692 static void kvm_start_vcpu(CPUState *env)
3693 {
3694 env->thread = qemu_mallocz(sizeof(QemuThread));
3695 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3696 qemu_cond_init(env->halt_cond);
3697 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
3698 while (env->created == 0)
3699 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3700 }
3701
3702 void qemu_init_vcpu(void *_env)
3703 {
3704 CPUState *env = _env;
3705
3706 if (kvm_enabled())
3707 kvm_start_vcpu(env);
3708 else
3709 tcg_init_vcpu(env);
3710 env->nr_cores = smp_cores;
3711 env->nr_threads = smp_threads;
3712 }
3713
3714 void qemu_notify_event(void)
3715 {
3716 qemu_event_increment();
3717 }
3718
3719 void vm_stop(int reason)
3720 {
3721 QemuThread me;
3722 qemu_thread_self(&me);
3723
3724 if (!qemu_thread_equal(&me, &io_thread)) {
3725 qemu_system_vmstop_request(reason);
3726 /*
3727 * FIXME: should not return to device code in case
3728 * vm_stop() has been requested.
3729 */
3730 if (cpu_single_env) {
3731 cpu_exit(cpu_single_env);
3732 cpu_single_env->stop = 1;
3733 }
3734 return;
3735 }
3736 do_vm_stop(reason);
3737 }
3738
3739 #endif
3740
3741
3742 #ifdef _WIN32
3743 static void host_main_loop_wait(int *timeout)
3744 {
3745 int ret, ret2, i;
3746 PollingEntry *pe;
3747
3748
3749 /* XXX: need to suppress polling by better using win32 events */
3750 ret = 0;
3751 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3752 ret |= pe->func(pe->opaque);
3753 }
3754 if (ret == 0) {
3755 int err;
3756 WaitObjects *w = &wait_objects;
3757
3758 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3759 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3760 if (w->func[ret - WAIT_OBJECT_0])
3761 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3762
3763 /* Check for additional signaled events */
3764 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3765
3766 /* Check if event is signaled */
3767 ret2 = WaitForSingleObject(w->events[i], 0);
3768 if(ret2 == WAIT_OBJECT_0) {
3769 if (w->func[i])
3770 w->func[i](w->opaque[i]);
3771 } else if (ret2 == WAIT_TIMEOUT) {
3772 } else {
3773 err = GetLastError();
3774 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3775 }
3776 }
3777 } else if (ret == WAIT_TIMEOUT) {
3778 } else {
3779 err = GetLastError();
3780 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3781 }
3782 }
3783
3784 *timeout = 0;
3785 }
3786 #else
3787 static void host_main_loop_wait(int *timeout)
3788 {
3789 }
3790 #endif
3791
3792 void main_loop_wait(int timeout)
3793 {
3794 IOHandlerRecord *ioh;
3795 fd_set rfds, wfds, xfds;
3796 int ret, nfds;
3797 struct timeval tv;
3798
3799 qemu_bh_update_timeout(&timeout);
3800
3801 host_main_loop_wait(&timeout);
3802
3803 /* poll any events */
3804 /* XXX: separate device handlers from system ones */
3805 nfds = -1;
3806 FD_ZERO(&rfds);
3807 FD_ZERO(&wfds);
3808 FD_ZERO(&xfds);
3809 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3810 if (ioh->deleted)
3811 continue;
3812 if (ioh->fd_read &&
3813 (!ioh->fd_read_poll ||
3814 ioh->fd_read_poll(ioh->opaque) != 0)) {
3815 FD_SET(ioh->fd, &rfds);
3816 if (ioh->fd > nfds)
3817 nfds = ioh->fd;
3818 }
3819 if (ioh->fd_write) {
3820 FD_SET(ioh->fd, &wfds);
3821 if (ioh->fd > nfds)
3822 nfds = ioh->fd;
3823 }
3824 }
3825
3826 tv.tv_sec = timeout / 1000;
3827 tv.tv_usec = (timeout % 1000) * 1000;
3828
3829 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3830
3831 qemu_mutex_unlock_iothread();
3832 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3833 qemu_mutex_lock_iothread();
3834 if (ret > 0) {
3835 IOHandlerRecord **pioh;
3836
3837 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3838 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3839 ioh->fd_read(ioh->opaque);
3840 }
3841 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3842 ioh->fd_write(ioh->opaque);
3843 }
3844 }
3845
3846 /* remove deleted IO handlers */
3847 pioh = &first_io_handler;
3848 while (*pioh) {
3849 ioh = *pioh;
3850 if (ioh->deleted) {
3851 *pioh = ioh->next;
3852 qemu_free(ioh);
3853 } else
3854 pioh = &ioh->next;
3855 }
3856 }
3857
3858 slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
3859
3860 /* rearm timer, if not periodic */
3861 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
3862 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
3863 qemu_rearm_alarm_timer(alarm_timer);
3864 }
3865
3866 /* vm time timers */
3867 if (vm_running) {
3868 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3869 qemu_run_timers(&active_timers[QEMU_CLOCK_VIRTUAL],
3870 qemu_get_clock(vm_clock));
3871 }
3872
3873 /* real time timers */
3874 qemu_run_timers(&active_timers[QEMU_CLOCK_REALTIME],
3875 qemu_get_clock(rt_clock));
3876
3877 qemu_run_timers(&active_timers[QEMU_CLOCK_HOST],
3878 qemu_get_clock(host_clock));
3879
3880 /* Check bottom-halves last in case any of the earlier events triggered
3881 them. */
3882 qemu_bh_poll();
3883
3884 }
3885
3886 static int qemu_cpu_exec(CPUState *env)
3887 {
3888 int ret;
3889 #ifdef CONFIG_PROFILER
3890 int64_t ti;
3891 #endif
3892
3893 #ifdef CONFIG_PROFILER
3894 ti = profile_getclock();
3895 #endif
3896 if (use_icount) {
3897 int64_t count;
3898 int decr;
3899 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
3900 env->icount_decr.u16.low = 0;
3901 env->icount_extra = 0;
3902 count = qemu_next_deadline();
3903 count = (count + (1 << icount_time_shift) - 1)
3904 >> icount_time_shift;
3905 qemu_icount += count;
3906 decr = (count > 0xffff) ? 0xffff : count;
3907 count -= decr;
3908 env->icount_decr.u16.low = decr;
3909 env->icount_extra = count;
3910 }
3911 ret = cpu_exec(env);
3912 #ifdef CONFIG_PROFILER
3913 qemu_time += profile_getclock() - ti;
3914 #endif
3915 if (use_icount) {
3916 /* Fold pending instructions back into the
3917 instruction counter, and clear the interrupt flag. */
3918 qemu_icount -= (env->icount_decr.u16.low
3919 + env->icount_extra);
3920 env->icount_decr.u32 = 0;
3921 env->icount_extra = 0;
3922 }
3923 return ret;
3924 }
3925
3926 static void tcg_cpu_exec(void)
3927 {
3928 int ret = 0;
3929
3930 if (next_cpu == NULL)
3931 next_cpu = first_cpu;
3932 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
3933 CPUState *env = cur_cpu = next_cpu;
3934
3935 if (!vm_running)
3936 break;
3937 if (timer_alarm_pending) {
3938 timer_alarm_pending = 0;
3939 break;
3940 }
3941 if (cpu_can_run(env))
3942 ret = qemu_cpu_exec(env);
3943 if (ret == EXCP_DEBUG) {
3944 gdb_set_stop_cpu(env);
3945 debug_requested = 1;
3946 break;
3947 }
3948 }
3949 }
3950
3951 static int cpu_has_work(CPUState *env)
3952 {
3953 if (env->stop)
3954 return 1;
3955 if (env->stopped)
3956 return 0;
3957 if (!env->halted)
3958 return 1;
3959 if (qemu_cpu_has_work(env))
3960 return 1;
3961 return 0;
3962 }
3963
3964 static int tcg_has_work(void)
3965 {
3966 CPUState *env;
3967
3968 for (env = first_cpu; env != NULL; env = env->next_cpu)
3969 if (cpu_has_work(env))
3970 return 1;
3971 return 0;
3972 }
3973
3974 static int qemu_calculate_timeout(void)
3975 {
3976 #ifndef CONFIG_IOTHREAD
3977 int timeout;
3978
3979 if (!vm_running)
3980 timeout = 5000;
3981 else if (tcg_has_work())
3982 timeout = 0;
3983 else if (!use_icount)
3984 timeout = 5000;
3985 else {
3986 /* XXX: use timeout computed from timers */
3987 int64_t add;
3988 int64_t delta;
3989 /* Advance virtual time to the next event. */
3990 if (use_icount == 1) {
3991 /* When not using an adaptive execution frequency
3992 we tend to get badly out of sync with real time,
3993 so just delay for a reasonable amount of time. */
3994 delta = 0;
3995 } else {
3996 delta = cpu_get_icount() - cpu_get_clock();
3997 }
3998 if (delta > 0) {
3999 /* If virtual time is ahead of real time then just
4000 wait for IO. */
4001 timeout = (delta / 1000000) + 1;
4002 } else {
4003 /* Wait for either IO to occur or the next
4004 timer event. */
4005 add = qemu_next_deadline();
4006 /* We advance the timer before checking for IO.
4007 Limit the amount we advance so that early IO
4008 activity won't get the guest too far ahead. */
4009 if (add > 10000000)
4010 add = 10000000;
4011 delta += add;
4012 add = (add + (1 << icount_time_shift) - 1)
4013 >> icount_time_shift;
4014 qemu_icount += add;
4015 timeout = delta / 1000000;
4016 if (timeout < 0)
4017 timeout = 0;
4018 }
4019 }
4020
4021 return timeout;
4022 #else /* CONFIG_IOTHREAD */
4023 return 1000;
4024 #endif
4025 }
4026
4027 static int vm_can_run(void)
4028 {
4029 if (powerdown_requested)
4030 return 0;
4031 if (reset_requested)
4032 return 0;
4033 if (shutdown_requested)
4034 return 0;
4035 if (debug_requested)
4036 return 0;
4037 return 1;
4038 }
4039
4040 qemu_irq qemu_system_powerdown;
4041
4042 static void main_loop(void)
4043 {
4044 int r;
4045
4046 #ifdef CONFIG_IOTHREAD
4047 qemu_system_ready = 1;
4048 qemu_cond_broadcast(&qemu_system_cond);
4049 #endif
4050
4051 for (;;) {
4052 do {
4053 #ifdef CONFIG_PROFILER
4054 int64_t ti;
4055 #endif
4056 #ifndef CONFIG_IOTHREAD
4057 tcg_cpu_exec();
4058 #endif
4059 #ifdef CONFIG_PROFILER
4060 ti = profile_getclock();
4061 #endif
4062 main_loop_wait(qemu_calculate_timeout());
4063 #ifdef CONFIG_PROFILER
4064 dev_time += profile_getclock() - ti;
4065 #endif
4066 } while (vm_can_run());
4067
4068 if (qemu_debug_requested()) {
4069 monitor_protocol_event(EVENT_DEBUG, NULL);
4070 vm_stop(EXCP_DEBUG);
4071 }
4072 if (qemu_shutdown_requested()) {
4073 monitor_protocol_event(EVENT_SHUTDOWN, NULL);
4074 if (no_shutdown) {
4075 vm_stop(0);
4076 no_shutdown = 0;
4077 } else
4078 break;
4079 }
4080 if (qemu_reset_requested()) {
4081 monitor_protocol_event(EVENT_RESET, NULL);
4082 pause_all_vcpus();
4083 qemu_system_reset();
4084 resume_all_vcpus();
4085 }
4086 if (qemu_powerdown_requested()) {
4087 monitor_protocol_event(EVENT_POWERDOWN, NULL);
4088 qemu_irq_raise(qemu_system_powerdown);
4089 }
4090 if ((r = qemu_vmstop_requested())) {
4091 monitor_protocol_event(EVENT_STOP, NULL);
4092 vm_stop(r);
4093 }
4094 }
4095 pause_all_vcpus();
4096 }
4097
4098 static void version(void)
4099 {
4100 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4101 }
4102
4103 static void help(int exitcode)
4104 {
4105 version();
4106 printf("usage: %s [options] [disk_image]\n"
4107 "\n"
4108 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4109 "\n"
4110 #define DEF(option, opt_arg, opt_enum, opt_help) \
4111 opt_help
4112 #define DEFHEADING(text) stringify(text) "\n"
4113 #include "qemu-options.h"
4114 #undef DEF
4115 #undef DEFHEADING
4116 #undef GEN_DOCS
4117 "\n"
4118 "During emulation, the following keys are useful:\n"
4119 "ctrl-alt-f toggle full screen\n"
4120 "ctrl-alt-n switch to virtual console 'n'\n"
4121 "ctrl-alt toggle mouse and keyboard grab\n"
4122 "\n"
4123 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4124 ,
4125 "qemu",
4126 DEFAULT_RAM_SIZE,
4127 #ifndef _WIN32
4128 DEFAULT_NETWORK_SCRIPT,
4129 DEFAULT_NETWORK_DOWN_SCRIPT,
4130 #endif
4131 DEFAULT_GDBSTUB_PORT,
4132 "/tmp/qemu.log");
4133 exit(exitcode);
4134 }
4135
4136 #define HAS_ARG 0x0001
4137
4138 enum {
4139 #define DEF(option, opt_arg, opt_enum, opt_help) \
4140 opt_enum,
4141 #define DEFHEADING(text)
4142 #include "qemu-options.h"
4143 #undef DEF
4144 #undef DEFHEADING
4145 #undef GEN_DOCS
4146 };
4147
4148 typedef struct QEMUOption {
4149 const char *name;
4150 int flags;
4151 int index;
4152 } QEMUOption;
4153
4154 static const QEMUOption qemu_options[] = {
4155 { "h", 0, QEMU_OPTION_h },
4156 #define DEF(option, opt_arg, opt_enum, opt_help) \
4157 { option, opt_arg, opt_enum },
4158 #define DEFHEADING(text)
4159 #include "qemu-options.h"
4160 #undef DEF
4161 #undef DEFHEADING
4162 #undef GEN_DOCS
4163 { NULL },
4164 };
4165
4166 #ifdef HAS_AUDIO
4167 struct soundhw soundhw[] = {
4168 #ifdef HAS_AUDIO_CHOICE
4169 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4170 {
4171 "pcspk",
4172 "PC speaker",
4173 0,
4174 1,
4175 { .init_isa = pcspk_audio_init }
4176 },
4177 #endif
4178
4179 #ifdef CONFIG_SB16
4180 {
4181 "sb16",
4182 "Creative Sound Blaster 16",
4183 0,
4184 1,
4185 { .init_isa = SB16_init }
4186 },
4187 #endif
4188
4189 #ifdef CONFIG_CS4231A
4190 {
4191 "cs4231a",
4192 "CS4231A",
4193 0,
4194 1,
4195 { .init_isa = cs4231a_init }
4196 },
4197 #endif
4198
4199 #ifdef CONFIG_ADLIB
4200 {
4201 "adlib",
4202 #ifdef HAS_YMF262
4203 "Yamaha YMF262 (OPL3)",
4204 #else
4205 "Yamaha YM3812 (OPL2)",
4206 #endif
4207 0,
4208 1,
4209 { .init_isa = Adlib_init }
4210 },
4211 #endif
4212
4213 #ifdef CONFIG_GUS
4214 {
4215 "gus",
4216 "Gravis Ultrasound GF1",
4217 0,
4218 1,
4219 { .init_isa = GUS_init }
4220 },
4221 #endif
4222
4223 #ifdef CONFIG_AC97
4224 {
4225 "ac97",
4226 "Intel 82801AA AC97 Audio",
4227 0,
4228 0,
4229 { .init_pci = ac97_init }
4230 },
4231 #endif
4232
4233 #ifdef CONFIG_ES1370
4234 {
4235 "es1370",
4236 "ENSONIQ AudioPCI ES1370",
4237 0,
4238 0,
4239 { .init_pci = es1370_init }
4240 },
4241 #endif
4242
4243 #endif /* HAS_AUDIO_CHOICE */
4244
4245 { NULL, NULL, 0, 0, { NULL } }
4246 };
4247
4248 static void select_soundhw (const char *optarg)
4249 {
4250 struct soundhw *c;
4251
4252 if (*optarg == '?') {
4253 show_valid_cards:
4254
4255 printf ("Valid sound card names (comma separated):\n");
4256 for (c = soundhw; c->name; ++c) {
4257 printf ("%-11s %s\n", c->name, c->descr);
4258 }
4259 printf ("\n-soundhw all will enable all of the above\n");
4260 exit (*optarg != '?');
4261 }
4262 else {
4263 size_t l;
4264 const char *p;
4265 char *e;
4266 int bad_card = 0;
4267
4268 if (!strcmp (optarg, "all")) {
4269 for (c = soundhw; c->name; ++c) {
4270 c->enabled = 1;
4271 }
4272 return;
4273 }
4274
4275 p = optarg;
4276 while (*p) {
4277 e = strchr (p, ',');
4278 l = !e ? strlen (p) : (size_t) (e - p);
4279
4280 for (c = soundhw; c->name; ++c) {
4281 if (!strncmp (c->name, p, l) && !c->name[l]) {
4282 c->enabled = 1;
4283 break;
4284 }
4285 }
4286
4287 if (!c->name) {
4288 if (l > 80) {
4289 fprintf (stderr,
4290 "Unknown sound card name (too big to show)\n");
4291 }
4292 else {
4293 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4294 (int) l, p);
4295 }
4296 bad_card = 1;
4297 }
4298 p += l + (e != NULL);
4299 }
4300
4301 if (bad_card)
4302 goto show_valid_cards;
4303 }
4304 }
4305 #endif
4306
4307 static void select_vgahw (const char *p)
4308 {
4309 const char *opts;
4310
4311 vga_interface_type = VGA_NONE;
4312 if (strstart(p, "std", &opts)) {
4313 vga_interface_type = VGA_STD;
4314 } else if (strstart(p, "cirrus", &opts)) {
4315 vga_interface_type = VGA_CIRRUS;
4316 } else if (strstart(p, "vmware", &opts)) {
4317 vga_interface_type = VGA_VMWARE;
4318 } else if (strstart(p, "xenfb", &opts)) {
4319 vga_interface_type = VGA_XENFB;
4320 } else if (!strstart(p, "none", &opts)) {
4321 invalid_vga:
4322 fprintf(stderr, "Unknown vga type: %s\n", p);
4323 exit(1);
4324 }
4325 while (*opts) {
4326 const char *nextopt;
4327
4328 if (strstart(opts, ",retrace=", &nextopt)) {
4329 opts = nextopt;
4330 if (strstart(opts, "dumb", &nextopt))
4331 vga_retrace_method = VGA_RETRACE_DUMB;
4332 else if (strstart(opts, "precise", &nextopt))
4333 vga_retrace_method = VGA_RETRACE_PRECISE;
4334 else goto invalid_vga;
4335 } else goto invalid_vga;
4336 opts = nextopt;
4337 }
4338 }
4339
4340 #ifdef TARGET_I386
4341 static int balloon_parse(const char *arg)
4342 {
4343 QemuOpts *opts;
4344
4345 if (strcmp(arg, "none") == 0) {
4346 return 0;
4347 }
4348
4349 if (!strncmp(arg, "virtio", 6)) {
4350 if (arg[6] == ',') {
4351 /* have params -> parse them */
4352 opts = qemu_opts_parse(&qemu_device_opts, arg+7, NULL);
4353 if (!opts)
4354 return -1;
4355 } else {
4356 /* create empty opts */
4357 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
4358 }
4359 qemu_opt_set(opts, "driver", "virtio-balloon-pci");
4360 return 0;
4361 }
4362
4363 return -1;
4364 }
4365 #endif
4366
4367 #ifdef _WIN32
4368 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4369 {
4370 exit(STATUS_CONTROL_C_EXIT);
4371 return TRUE;
4372 }
4373 #endif
4374
4375 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4376 {
4377 int ret;
4378
4379 if(strlen(str) != 36)
4380 return -1;
4381
4382 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4383 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4384 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4385
4386 if(ret != 16)
4387 return -1;
4388
4389 #ifdef TARGET_I386
4390 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4391 #endif
4392
4393 return 0;
4394 }
4395
4396 #ifndef _WIN32
4397
4398 static void termsig_handler(int signal)
4399 {
4400 qemu_system_shutdown_request();
4401 }
4402
4403 static void sigchld_handler(int signal)
4404 {
4405 waitpid(-1, NULL, WNOHANG);
4406 }
4407
4408 static void sighandler_setup(void)
4409 {
4410 struct sigaction act;
4411
4412 memset(&act, 0, sizeof(act));
4413 act.sa_handler = termsig_handler;
4414 sigaction(SIGINT, &act, NULL);
4415 sigaction(SIGHUP, &act, NULL);
4416 sigaction(SIGTERM, &act, NULL);
4417
4418 act.sa_handler = sigchld_handler;
4419 act.sa_flags = SA_NOCLDSTOP;
4420 sigaction(SIGCHLD, &act, NULL);
4421 }
4422
4423 #endif
4424
4425 #ifdef _WIN32
4426 /* Look for support files in the same directory as the executable. */
4427 static char *find_datadir(const char *argv0)
4428 {
4429 char *p;
4430 char buf[MAX_PATH];
4431 DWORD len;
4432
4433 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4434 if (len == 0) {
4435 return NULL;
4436 }
4437
4438 buf[len] = 0;
4439 p = buf + len - 1;
4440 while (p != buf && *p != '\\')
4441 p--;
4442 *p = 0;
4443 if (access(buf, R_OK) == 0) {
4444 return qemu_strdup(buf);
4445 }
4446 return NULL;
4447 }
4448 #else /* !_WIN32 */
4449
4450 /* Find a likely location for support files using the location of the binary.
4451 For installed binaries this will be "$bindir/../share/qemu". When
4452 running from the build tree this will be "$bindir/../pc-bios". */
4453 #define SHARE_SUFFIX "/share/qemu"
4454 #define BUILD_SUFFIX "/pc-bios"
4455 static char *find_datadir(const char *argv0)
4456 {
4457 char *dir;
4458 char *p = NULL;
4459 char *res;
4460 char buf[PATH_MAX];
4461 size_t max_len;
4462
4463 #if defined(__linux__)
4464 {
4465 int len;
4466 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4467 if (len > 0) {
4468 buf[len] = 0;
4469 p = buf;
4470 }
4471 }
4472 #elif defined(__FreeBSD__)
4473 {
4474 int len;
4475 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4476 if (len > 0) {
4477 buf[len] = 0;
4478 p = buf;
4479 }
4480 }
4481 #endif
4482 /* If we don't have any way of figuring out the actual executable
4483 location then try argv[0]. */
4484 if (!p) {
4485 p = realpath(argv0, buf);
4486 if (!p) {
4487 return NULL;
4488 }
4489 }
4490 dir = dirname(p);
4491 dir = dirname(dir);
4492
4493 max_len = strlen(dir) +
4494 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4495 res = qemu_mallocz(max_len);
4496 snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4497 if (access(res, R_OK)) {
4498 snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4499 if (access(res, R_OK)) {
4500 qemu_free(res);
4501 res = NULL;
4502 }
4503 }
4504
4505 return res;
4506 }
4507 #undef SHARE_SUFFIX
4508 #undef BUILD_SUFFIX
4509 #endif
4510
4511 char *qemu_find_file(int type, const char *name)
4512 {
4513 int len;
4514 const char *subdir;
4515 char *buf;
4516
4517 /* If name contains path separators then try it as a straight path. */
4518 if ((strchr(name, '/') || strchr(name, '\\'))
4519 && access(name, R_OK) == 0) {
4520 return qemu_strdup(name);
4521 }
4522 switch (type) {
4523 case QEMU_FILE_TYPE_BIOS:
4524 subdir = "";
4525 break;
4526 case QEMU_FILE_TYPE_KEYMAP:
4527 subdir = "keymaps/";
4528 break;
4529 default:
4530 abort();
4531 }
4532 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4533 buf = qemu_mallocz(len);
4534 snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4535 if (access(buf, R_OK)) {
4536 qemu_free(buf);
4537 return NULL;
4538 }
4539 return buf;
4540 }
4541
4542 static int device_init_func(QemuOpts *opts, void *opaque)
4543 {
4544 DeviceState *dev;
4545
4546 dev = qdev_device_add(opts);
4547 if (!dev)
4548 return -1;
4549 return 0;
4550 }
4551
4552 struct device_config {
4553 enum {
4554 DEV_USB, /* -usbdevice */
4555 DEV_BT, /* -bt */
4556 } type;
4557 const char *cmdline;
4558 QTAILQ_ENTRY(device_config) next;
4559 };
4560 QTAILQ_HEAD(, device_config) device_configs = QTAILQ_HEAD_INITIALIZER(device_configs);
4561
4562 static void add_device_config(int type, const char *cmdline)
4563 {
4564 struct device_config *conf;
4565
4566 conf = qemu_mallocz(sizeof(*conf));
4567 conf->type = type;
4568 conf->cmdline = cmdline;
4569 QTAILQ_INSERT_TAIL(&device_configs, conf, next);
4570 }
4571
4572 static int foreach_device_config(int type, int (*func)(const char *cmdline))
4573 {
4574 struct device_config *conf;
4575 int rc;
4576
4577 QTAILQ_FOREACH(conf, &device_configs, next) {
4578 if (conf->type != type)
4579 continue;
4580 rc = func(conf->cmdline);
4581 if (0 != rc)
4582 return rc;
4583 }
4584 return 0;
4585 }
4586
4587 int main(int argc, char **argv, char **envp)
4588 {
4589 const char *gdbstub_dev = NULL;
4590 uint32_t boot_devices_bitmap = 0;
4591 int i;
4592 int snapshot, linux_boot, net_boot;
4593 const char *initrd_filename;
4594 const char *kernel_filename, *kernel_cmdline;
4595 char boot_devices[33] = "cad"; /* default to HD->floppy->CD-ROM */
4596 DisplayState *ds;
4597 DisplayChangeListener *dcl;
4598 int cyls, heads, secs, translation;
4599 QemuOpts *hda_opts = NULL, *opts;
4600 int optind;
4601 const char *r, *optarg;
4602 CharDriverState *monitor_hds[MAX_MONITOR_DEVICES];
4603 const char *monitor_devices[MAX_MONITOR_DEVICES];
4604 int monitor_flags[MAX_MONITOR_DEVICES];
4605 int monitor_device_index;
4606 const char *serial_devices[MAX_SERIAL_PORTS];
4607 int serial_device_index;
4608 const char *parallel_devices[MAX_PARALLEL_PORTS];
4609 int parallel_device_index;
4610 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4611 int virtio_console_index;
4612 const char *loadvm = NULL;
4613 QEMUMachine *machine;
4614 const char *cpu_model;
4615 #ifndef _WIN32
4616 int fds[2];
4617 #endif
4618 int tb_size;
4619 const char *pid_file = NULL;
4620 const char *incoming = NULL;
4621 #ifndef _WIN32
4622 int fd = 0;
4623 struct passwd *pwd = NULL;
4624 const char *chroot_dir = NULL;
4625 const char *run_as = NULL;
4626 #endif
4627 CPUState *env;
4628 int show_vnc_port = 0;
4629
4630 init_clocks();
4631
4632 qemu_errors_to_file(stderr);
4633 qemu_cache_utils_init(envp);
4634
4635 QLIST_INIT (&vm_change_state_head);
4636 #ifndef _WIN32
4637 {
4638 struct sigaction act;
4639 sigfillset(&act.sa_mask);
4640 act.sa_flags = 0;
4641 act.sa_handler = SIG_IGN;
4642 sigaction(SIGPIPE, &act, NULL);
4643 }
4644 #else
4645 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4646 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4647 QEMU to run on a single CPU */
4648 {
4649 HANDLE h;
4650 DWORD mask, smask;
4651 int i;
4652 h = GetCurrentProcess();
4653 if (GetProcessAffinityMask(h, &mask, &smask)) {
4654 for(i = 0; i < 32; i++) {
4655 if (mask & (1 << i))
4656 break;
4657 }
4658 if (i != 32) {
4659 mask = 1 << i;
4660 SetProcessAffinityMask(h, mask);
4661 }
4662 }
4663 }
4664 #endif
4665
4666 module_call_init(MODULE_INIT_MACHINE);
4667 machine = find_default_machine();
4668 cpu_model = NULL;
4669 initrd_filename = NULL;
4670 ram_size = 0;
4671 snapshot = 0;
4672 kernel_filename = NULL;
4673 kernel_cmdline = "";
4674 cyls = heads = secs = 0;
4675 translation = BIOS_ATA_TRANSLATION_AUTO;
4676
4677 serial_devices[0] = "vc:80Cx24C";
4678 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4679 serial_devices[i] = NULL;
4680 serial_device_index = 0;
4681
4682 parallel_devices[0] = "vc:80Cx24C";
4683 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4684 parallel_devices[i] = NULL;
4685 parallel_device_index = 0;
4686
4687 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4688 virtio_consoles[i] = NULL;
4689 virtio_console_index = 0;
4690
4691 monitor_devices[0] = "vc:80Cx24C";
4692 monitor_flags[0] = MONITOR_IS_DEFAULT | MONITOR_USE_READLINE;
4693 for (i = 1; i < MAX_MONITOR_DEVICES; i++) {
4694 monitor_devices[i] = NULL;
4695 monitor_flags[i] = MONITOR_USE_READLINE;
4696 }
4697 monitor_device_index = 0;
4698
4699 for (i = 0; i < MAX_NODES; i++) {
4700 node_mem[i] = 0;
4701 node_cpumask[i] = 0;
4702 }
4703
4704 nb_numa_nodes = 0;
4705 nb_nics = 0;
4706
4707 tb_size = 0;
4708 autostart= 1;
4709
4710 optind = 1;
4711 for(;;) {
4712 if (optind >= argc)
4713 break;
4714 r = argv[optind];
4715 if (r[0] != '-') {
4716 hda_opts = drive_add(argv[optind++], HD_ALIAS, 0);
4717 } else {
4718 const QEMUOption *popt;
4719
4720 optind++;
4721 /* Treat --foo the same as -foo. */
4722 if (r[1] == '-')
4723 r++;
4724 popt = qemu_options;
4725 for(;;) {
4726 if (!popt->name) {
4727 fprintf(stderr, "%s: invalid option -- '%s'\n",
4728 argv[0], r);
4729 exit(1);
4730 }
4731 if (!strcmp(popt->name, r + 1))
4732 break;
4733 popt++;
4734 }
4735 if (popt->flags & HAS_ARG) {
4736 if (optind >= argc) {
4737 fprintf(stderr, "%s: option '%s' requires an argument\n",
4738 argv[0], r);
4739 exit(1);
4740 }
4741 optarg = argv[optind++];
4742 } else {
4743 optarg = NULL;
4744 }
4745
4746 switch(popt->index) {
4747 case QEMU_OPTION_M:
4748 machine = find_machine(optarg);
4749 if (!machine) {
4750 QEMUMachine *m;
4751 printf("Supported machines are:\n");
4752 for(m = first_machine; m != NULL; m = m->next) {
4753 if (m->alias)
4754 printf("%-10s %s (alias of %s)\n",
4755 m->alias, m->desc, m->name);
4756 printf("%-10s %s%s\n",
4757 m->name, m->desc,
4758 m->is_default ? " (default)" : "");
4759 }
4760 exit(*optarg != '?');
4761 }
4762 break;
4763 case QEMU_OPTION_cpu:
4764 /* hw initialization will check this */
4765 if (*optarg == '?') {
4766 /* XXX: implement xxx_cpu_list for targets that still miss it */
4767 #if defined(cpu_list)
4768 cpu_list(stdout, &fprintf);
4769 #endif
4770 exit(0);
4771 } else {
4772 cpu_model = optarg;
4773 }
4774 break;
4775 case QEMU_OPTION_initrd:
4776 initrd_filename = optarg;
4777 break;
4778 case QEMU_OPTION_hda:
4779 if (cyls == 0)
4780 hda_opts = drive_add(optarg, HD_ALIAS, 0);
4781 else
4782 hda_opts = drive_add(optarg, HD_ALIAS
4783 ",cyls=%d,heads=%d,secs=%d%s",
4784 0, cyls, heads, secs,
4785 translation == BIOS_ATA_TRANSLATION_LBA ?
4786 ",trans=lba" :
4787 translation == BIOS_ATA_TRANSLATION_NONE ?
4788 ",trans=none" : "");
4789 break;
4790 case QEMU_OPTION_hdb:
4791 case QEMU_OPTION_hdc:
4792 case QEMU_OPTION_hdd:
4793 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4794 break;
4795 case QEMU_OPTION_drive:
4796 drive_add(NULL, "%s", optarg);
4797 break;
4798 case QEMU_OPTION_set:
4799 if (qemu_set_option(optarg) != 0)
4800 exit(1);
4801 break;
4802 case QEMU_OPTION_mtdblock:
4803 drive_add(optarg, MTD_ALIAS);
4804 break;
4805 case QEMU_OPTION_sd:
4806 drive_add(optarg, SD_ALIAS);
4807 break;
4808 case QEMU_OPTION_pflash:
4809 drive_add(optarg, PFLASH_ALIAS);
4810 break;
4811 case QEMU_OPTION_snapshot:
4812 snapshot = 1;
4813 break;
4814 case QEMU_OPTION_hdachs:
4815 {
4816 const char *p;
4817 p = optarg;
4818 cyls = strtol(p, (char **)&p, 0);
4819 if (cyls < 1 || cyls > 16383)
4820 goto chs_fail;
4821 if (*p != ',')
4822 goto chs_fail;
4823 p++;
4824 heads = strtol(p, (char **)&p, 0);
4825 if (heads < 1 || heads > 16)
4826 goto chs_fail;
4827 if (*p != ',')
4828 goto chs_fail;
4829 p++;
4830 secs = strtol(p, (char **)&p, 0);
4831 if (secs < 1 || secs > 63)
4832 goto chs_fail;
4833 if (*p == ',') {
4834 p++;
4835 if (!strcmp(p, "none"))
4836 translation = BIOS_ATA_TRANSLATION_NONE;
4837 else if (!strcmp(p, "lba"))
4838 translation = BIOS_ATA_TRANSLATION_LBA;
4839 else if (!strcmp(p, "auto"))
4840 translation = BIOS_ATA_TRANSLATION_AUTO;
4841 else
4842 goto chs_fail;
4843 } else if (*p != '\0') {
4844 chs_fail:
4845 fprintf(stderr, "qemu: invalid physical CHS format\n");
4846 exit(1);
4847 }
4848 if (hda_opts != NULL) {
4849 char num[16];
4850 snprintf(num, sizeof(num), "%d", cyls);
4851 qemu_opt_set(hda_opts, "cyls", num);
4852 snprintf(num, sizeof(num), "%d", heads);
4853 qemu_opt_set(hda_opts, "heads", num);
4854 snprintf(num, sizeof(num), "%d", secs);
4855 qemu_opt_set(hda_opts, "secs", num);
4856 if (translation == BIOS_ATA_TRANSLATION_LBA)
4857 qemu_opt_set(hda_opts, "trans", "lba");
4858 if (translation == BIOS_ATA_TRANSLATION_NONE)
4859 qemu_opt_set(hda_opts, "trans", "none");
4860 }
4861 }
4862 break;
4863 case QEMU_OPTION_numa:
4864 if (nb_numa_nodes >= MAX_NODES) {
4865 fprintf(stderr, "qemu: too many NUMA nodes\n");
4866 exit(1);
4867 }
4868 numa_add(optarg);
4869 break;
4870 case QEMU_OPTION_nographic:
4871 display_type = DT_NOGRAPHIC;
4872 break;
4873 #ifdef CONFIG_CURSES
4874 case QEMU_OPTION_curses:
4875 display_type = DT_CURSES;
4876 break;
4877 #endif
4878 case QEMU_OPTION_portrait:
4879 graphic_rotate = 1;
4880 break;
4881 case QEMU_OPTION_kernel:
4882 kernel_filename = optarg;
4883 break;
4884 case QEMU_OPTION_append:
4885 kernel_cmdline = optarg;
4886 break;
4887 case QEMU_OPTION_cdrom:
4888 drive_add(optarg, CDROM_ALIAS);
4889 break;
4890 case QEMU_OPTION_boot:
4891 {
4892 static const char * const params[] = {
4893 "order", "once", "menu", NULL
4894 };
4895 char buf[sizeof(boot_devices)];
4896 char *standard_boot_devices;
4897 int legacy = 0;
4898
4899 if (!strchr(optarg, '=')) {
4900 legacy = 1;
4901 pstrcpy(buf, sizeof(buf), optarg);
4902 } else if (check_params(buf, sizeof(buf), params, optarg) < 0) {
4903 fprintf(stderr,
4904 "qemu: unknown boot parameter '%s' in '%s'\n",
4905 buf, optarg);
4906 exit(1);
4907 }
4908
4909 if (legacy ||
4910 get_param_value(buf, sizeof(buf), "order", optarg)) {
4911 boot_devices_bitmap = parse_bootdevices(buf);
4912 pstrcpy(boot_devices, sizeof(boot_devices), buf);
4913 }
4914 if (!legacy) {
4915 if (get_param_value(buf, sizeof(buf),
4916 "once", optarg)) {
4917 boot_devices_bitmap |= parse_bootdevices(buf);
4918 standard_boot_devices = qemu_strdup(boot_devices);
4919 pstrcpy(boot_devices, sizeof(boot_devices), buf);
4920 qemu_register_reset(restore_boot_devices,
4921 standard_boot_devices);
4922 }
4923 if (get_param_value(buf, sizeof(buf),
4924 "menu", optarg)) {
4925 if (!strcmp(buf, "on")) {
4926 boot_menu = 1;
4927 } else if (!strcmp(buf, "off")) {
4928 boot_menu = 0;
4929 } else {
4930 fprintf(stderr,
4931 "qemu: invalid option value '%s'\n",
4932 buf);
4933 exit(1);
4934 }
4935 }
4936 }
4937 }
4938 break;
4939 case QEMU_OPTION_fda:
4940 case QEMU_OPTION_fdb:
4941 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
4942 break;
4943 #ifdef TARGET_I386
4944 case QEMU_OPTION_no_fd_bootchk:
4945 fd_bootchk = 0;
4946 break;
4947 #endif
4948 case QEMU_OPTION_netdev:
4949 if (net_client_parse(&qemu_netdev_opts, optarg) == -1) {
4950 exit(1);
4951 }
4952 break;
4953 case QEMU_OPTION_net:
4954 if (net_client_parse(&qemu_net_opts, optarg) == -1) {
4955 exit(1);
4956 }
4957 break;
4958 #ifdef CONFIG_SLIRP
4959 case QEMU_OPTION_tftp:
4960 legacy_tftp_prefix = optarg;
4961 break;
4962 case QEMU_OPTION_bootp:
4963 legacy_bootp_filename = optarg;
4964 break;
4965 #ifndef _WIN32
4966 case QEMU_OPTION_smb:
4967 if (net_slirp_smb(optarg) < 0)
4968 exit(1);
4969 break;
4970 #endif
4971 case QEMU_OPTION_redir:
4972 if (net_slirp_redir(optarg) < 0)
4973 exit(1);
4974 break;
4975 #endif
4976 case QEMU_OPTION_bt:
4977 add_device_config(DEV_BT, optarg);
4978 break;
4979 #ifdef HAS_AUDIO
4980 case QEMU_OPTION_audio_help:
4981 AUD_help ();
4982 exit (0);
4983 break;
4984 case QEMU_OPTION_soundhw:
4985 select_soundhw (optarg);
4986 break;
4987 #endif
4988 case QEMU_OPTION_h:
4989 help(0);
4990 break;
4991 case QEMU_OPTION_version:
4992 version();
4993 exit(0);
4994 break;
4995 case QEMU_OPTION_m: {
4996 uint64_t value;
4997 char *ptr;
4998
4999 value = strtoul(optarg, &ptr, 10);
5000 switch (*ptr) {
5001 case 0: case 'M': case 'm':
5002 value <<= 20;
5003 break;
5004 case 'G': case 'g':
5005 value <<= 30;
5006 break;
5007 default:
5008 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5009 exit(1);
5010 }
5011
5012 /* On 32-bit hosts, QEMU is limited by virtual address space */
5013 if (value > (2047 << 20) && HOST_LONG_BITS == 32) {
5014 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5015 exit(1);
5016 }
5017 if (value != (uint64_t)(ram_addr_t)value) {
5018 fprintf(stderr, "qemu: ram size too large\n");
5019 exit(1);
5020 }
5021 ram_size = value;
5022 break;
5023 }
5024 case QEMU_OPTION_d:
5025 {
5026 int mask;
5027 const CPULogItem *item;
5028
5029 mask = cpu_str_to_log_mask(optarg);
5030 if (!mask) {
5031 printf("Log items (comma separated):\n");
5032 for(item = cpu_log_items; item->mask != 0; item++) {
5033 printf("%-10s %s\n", item->name, item->help);
5034 }
5035 exit(1);
5036 }
5037 cpu_set_log(mask);
5038 }
5039 break;
5040 case QEMU_OPTION_s:
5041 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5042 break;
5043 case QEMU_OPTION_gdb:
5044 gdbstub_dev = optarg;
5045 break;
5046 case QEMU_OPTION_L:
5047 data_dir = optarg;
5048 break;
5049 case QEMU_OPTION_bios:
5050 bios_name = optarg;
5051 break;
5052 case QEMU_OPTION_singlestep:
5053 singlestep = 1;
5054 break;
5055 case QEMU_OPTION_S:
5056 autostart = 0;
5057 break;
5058 case QEMU_OPTION_k:
5059 keyboard_layout = optarg;
5060 break;
5061 case QEMU_OPTION_localtime:
5062 rtc_utc = 0;
5063 break;
5064 case QEMU_OPTION_vga:
5065 select_vgahw (optarg);
5066 break;
5067 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5068 case QEMU_OPTION_g:
5069 {
5070 const char *p;
5071 int w, h, depth;
5072 p = optarg;
5073 w = strtol(p, (char **)&p, 10);
5074 if (w <= 0) {
5075 graphic_error:
5076 fprintf(stderr, "qemu: invalid resolution or depth\n");
5077 exit(1);
5078 }
5079 if (*p != 'x')
5080 goto graphic_error;
5081 p++;
5082 h = strtol(p, (char **)&p, 10);
5083 if (h <= 0)
5084 goto graphic_error;
5085 if (*p == 'x') {
5086 p++;
5087 depth = strtol(p, (char **)&p, 10);
5088 if (depth != 8 && depth != 15 && depth != 16 &&
5089 depth != 24 && depth != 32)
5090 goto graphic_error;
5091 } else if (*p == '\0') {
5092 depth = graphic_depth;
5093 } else {
5094 goto graphic_error;
5095 }
5096
5097 graphic_width = w;
5098 graphic_height = h;
5099 graphic_depth = depth;
5100 }
5101 break;
5102 #endif
5103 case QEMU_OPTION_echr:
5104 {
5105 char *r;
5106 term_escape_char = strtol(optarg, &r, 0);
5107 if (r == optarg)
5108 printf("Bad argument to echr\n");
5109 break;
5110 }
5111 case QEMU_OPTION_monitor:
5112 if (monitor_device_index >= MAX_MONITOR_DEVICES) {
5113 fprintf(stderr, "qemu: too many monitor devices\n");
5114 exit(1);
5115 }
5116 monitor_devices[monitor_device_index] =
5117 monitor_cmdline_parse(optarg,
5118 &monitor_flags[monitor_device_index]);
5119 monitor_device_index++;
5120 break;
5121 case QEMU_OPTION_chardev:
5122 opts = qemu_opts_parse(&qemu_chardev_opts, optarg, "backend");
5123 if (!opts) {
5124 fprintf(stderr, "parse error: %s\n", optarg);
5125 exit(1);
5126 }
5127 if (qemu_chr_open_opts(opts, NULL) == NULL) {
5128 exit(1);
5129 }
5130 break;
5131 case QEMU_OPTION_serial:
5132 if (serial_device_index >= MAX_SERIAL_PORTS) {
5133 fprintf(stderr, "qemu: too many serial ports\n");
5134 exit(1);
5135 }
5136 serial_devices[serial_device_index] = optarg;
5137 serial_device_index++;
5138 break;
5139 case QEMU_OPTION_watchdog:
5140 if (watchdog) {
5141 fprintf(stderr,
5142 "qemu: only one watchdog option may be given\n");
5143 return 1;
5144 }
5145 watchdog = optarg;
5146 break;
5147 case QEMU_OPTION_watchdog_action:
5148 if (select_watchdog_action(optarg) == -1) {
5149 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5150 exit(1);
5151 }
5152 break;
5153 case QEMU_OPTION_virtiocon:
5154 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5155 fprintf(stderr, "qemu: too many virtio consoles\n");
5156 exit(1);
5157 }
5158 virtio_consoles[virtio_console_index] = optarg;
5159 virtio_console_index++;
5160 break;
5161 case QEMU_OPTION_parallel:
5162 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5163 fprintf(stderr, "qemu: too many parallel ports\n");
5164 exit(1);
5165 }
5166 parallel_devices[parallel_device_index] = optarg;
5167 parallel_device_index++;
5168 break;
5169 case QEMU_OPTION_loadvm:
5170 loadvm = optarg;
5171 break;
5172 case QEMU_OPTION_full_screen:
5173 full_screen = 1;
5174 break;
5175 #ifdef CONFIG_SDL
5176 case QEMU_OPTION_no_frame:
5177 no_frame = 1;
5178 break;
5179 case QEMU_OPTION_alt_grab:
5180 alt_grab = 1;
5181 break;
5182 case QEMU_OPTION_ctrl_grab:
5183 ctrl_grab = 1;
5184 break;
5185 case QEMU_OPTION_no_quit:
5186 no_quit = 1;
5187 break;
5188 case QEMU_OPTION_sdl:
5189 display_type = DT_SDL;
5190 break;
5191 #endif
5192 case QEMU_OPTION_pidfile:
5193 pid_file = optarg;
5194 break;
5195 #ifdef TARGET_I386
5196 case QEMU_OPTION_win2k_hack:
5197 win2k_install_hack = 1;
5198 break;
5199 case QEMU_OPTION_rtc_td_hack:
5200 rtc_td_hack = 1;
5201 break;
5202 case QEMU_OPTION_acpitable:
5203 if(acpi_table_add(optarg) < 0) {
5204 fprintf(stderr, "Wrong acpi table provided\n");
5205 exit(1);
5206 }
5207 break;
5208 case QEMU_OPTION_smbios:
5209 if(smbios_entry_add(optarg) < 0) {
5210 fprintf(stderr, "Wrong smbios provided\n");
5211 exit(1);
5212 }
5213 break;
5214 #endif
5215 #ifdef CONFIG_KVM
5216 case QEMU_OPTION_enable_kvm:
5217 kvm_allowed = 1;
5218 break;
5219 #endif
5220 case QEMU_OPTION_usb:
5221 usb_enabled = 1;
5222 break;
5223 case QEMU_OPTION_usbdevice:
5224 usb_enabled = 1;
5225 add_device_config(DEV_USB, optarg);
5226 break;
5227 case QEMU_OPTION_device:
5228 if (!qemu_opts_parse(&qemu_device_opts, optarg, "driver")) {
5229 exit(1);
5230 }
5231 break;
5232 case QEMU_OPTION_smp:
5233 smp_parse(optarg);
5234 if (smp_cpus < 1) {
5235 fprintf(stderr, "Invalid number of CPUs\n");
5236 exit(1);
5237 }
5238 if (max_cpus < smp_cpus) {
5239 fprintf(stderr, "maxcpus must be equal to or greater than "
5240 "smp\n");
5241 exit(1);
5242 }
5243 if (max_cpus > 255) {
5244 fprintf(stderr, "Unsupported number of maxcpus\n");
5245 exit(1);
5246 }
5247 break;
5248 case QEMU_OPTION_vnc:
5249 display_type = DT_VNC;
5250 vnc_display = optarg;
5251 break;
5252 #ifdef TARGET_I386
5253 case QEMU_OPTION_no_acpi:
5254 acpi_enabled = 0;
5255 break;
5256 case QEMU_OPTION_no_hpet:
5257 no_hpet = 1;
5258 break;
5259 case QEMU_OPTION_balloon:
5260 if (balloon_parse(optarg) < 0) {
5261 fprintf(stderr, "Unknown -balloon argument %s\n", optarg);
5262 exit(1);
5263 }
5264 break;
5265 #endif
5266 case QEMU_OPTION_no_reboot:
5267 no_reboot = 1;
5268 break;
5269 case QEMU_OPTION_no_shutdown:
5270 no_shutdown = 1;
5271 break;
5272 case QEMU_OPTION_show_cursor:
5273 cursor_hide = 0;
5274 break;
5275 case QEMU_OPTION_uuid:
5276 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5277 fprintf(stderr, "Fail to parse UUID string."
5278 " Wrong format.\n");
5279 exit(1);
5280 }
5281 break;
5282 #ifndef _WIN32
5283 case QEMU_OPTION_daemonize:
5284 daemonize = 1;
5285 break;
5286 #endif
5287 case QEMU_OPTION_option_rom:
5288 if (nb_option_roms >= MAX_OPTION_ROMS) {
5289 fprintf(stderr, "Too many option ROMs\n");
5290 exit(1);
5291 }
5292 option_rom[nb_option_roms] = optarg;
5293 nb_option_roms++;
5294 break;
5295 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5296 case QEMU_OPTION_semihosting:
5297 semihosting_enabled = 1;
5298 break;
5299 #endif
5300 case QEMU_OPTION_name:
5301 qemu_name = qemu_strdup(optarg);
5302 {
5303 char *p = strchr(qemu_name, ',');
5304 if (p != NULL) {
5305 *p++ = 0;
5306 if (strncmp(p, "process=", 8)) {
5307 fprintf(stderr, "Unknown subargument %s to -name", p);
5308 exit(1);
5309 }
5310 p += 8;
5311 set_proc_name(p);
5312 }
5313 }
5314 break;
5315 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5316 case QEMU_OPTION_prom_env:
5317 if (nb_prom_envs >= MAX_PROM_ENVS) {
5318 fprintf(stderr, "Too many prom variables\n");
5319 exit(1);
5320 }
5321 prom_envs[nb_prom_envs] = optarg;
5322 nb_prom_envs++;
5323 break;
5324 #endif
5325 #ifdef TARGET_ARM
5326 case QEMU_OPTION_old_param:
5327 old_param = 1;
5328 break;
5329 #endif
5330 case QEMU_OPTION_clock:
5331 configure_alarms(optarg);
5332 break;
5333 case QEMU_OPTION_startdate:
5334 configure_rtc_date_offset(optarg, 1);
5335 break;
5336 case QEMU_OPTION_rtc:
5337 opts = qemu_opts_parse(&qemu_rtc_opts, optarg, NULL);
5338 if (!opts) {
5339 fprintf(stderr, "parse error: %s\n", optarg);
5340 exit(1);
5341 }
5342 configure_rtc(opts);
5343 break;
5344 case QEMU_OPTION_tb_size:
5345 tb_size = strtol(optarg, NULL, 0);
5346 if (tb_size < 0)
5347 tb_size = 0;
5348 break;
5349 case QEMU_OPTION_icount:
5350 use_icount = 1;
5351 if (strcmp(optarg, "auto") == 0) {
5352 icount_time_shift = -1;
5353 } else {
5354 icount_time_shift = strtol(optarg, NULL, 0);
5355 }
5356 break;
5357 case QEMU_OPTION_incoming:
5358 incoming = optarg;
5359 break;
5360 #ifndef _WIN32
5361 case QEMU_OPTION_chroot:
5362 chroot_dir = optarg;
5363 break;
5364 case QEMU_OPTION_runas:
5365 run_as = optarg;
5366 break;
5367 #endif
5368 #ifdef CONFIG_XEN
5369 case QEMU_OPTION_xen_domid:
5370 xen_domid = atoi(optarg);
5371 break;
5372 case QEMU_OPTION_xen_create:
5373 xen_mode = XEN_CREATE;
5374 break;
5375 case QEMU_OPTION_xen_attach:
5376 xen_mode = XEN_ATTACH;
5377 break;
5378 #endif
5379 case QEMU_OPTION_readconfig:
5380 {
5381 FILE *fp;
5382 fp = fopen(optarg, "r");
5383 if (fp == NULL) {
5384 fprintf(stderr, "open %s: %s\n", optarg, strerror(errno));
5385 exit(1);
5386 }
5387 if (qemu_config_parse(fp) != 0) {
5388 exit(1);
5389 }
5390 fclose(fp);
5391 break;
5392 }
5393 case QEMU_OPTION_writeconfig:
5394 {
5395 FILE *fp;
5396 if (strcmp(optarg, "-") == 0) {
5397 fp = stdout;
5398 } else {
5399 fp = fopen(optarg, "w");
5400 if (fp == NULL) {
5401 fprintf(stderr, "open %s: %s\n", optarg, strerror(errno));
5402 exit(1);
5403 }
5404 }
5405 qemu_config_write(fp);
5406 fclose(fp);
5407 break;
5408 }
5409 }
5410 }
5411 }
5412
5413 /* If no data_dir is specified then try to find it relative to the
5414 executable path. */
5415 if (!data_dir) {
5416 data_dir = find_datadir(argv[0]);
5417 }
5418 /* If all else fails use the install patch specified when building. */
5419 if (!data_dir) {
5420 data_dir = CONFIG_QEMU_SHAREDIR;
5421 }
5422
5423 /*
5424 * Default to max_cpus = smp_cpus, in case the user doesn't
5425 * specify a max_cpus value.
5426 */
5427 if (!max_cpus)
5428 max_cpus = smp_cpus;
5429
5430 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5431 if (smp_cpus > machine->max_cpus) {
5432 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5433 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5434 machine->max_cpus);
5435 exit(1);
5436 }
5437
5438 if (display_type == DT_NOGRAPHIC) {
5439 if (serial_device_index == 0)
5440 serial_devices[0] = "stdio";
5441 if (parallel_device_index == 0)
5442 parallel_devices[0] = "null";
5443 if (strncmp(monitor_devices[0], "vc", 2) == 0) {
5444 monitor_devices[0] = "stdio";
5445 }
5446 }
5447
5448 #ifndef _WIN32
5449 if (daemonize) {
5450 pid_t pid;
5451
5452 if (pipe(fds) == -1)
5453 exit(1);
5454
5455 pid = fork();
5456 if (pid > 0) {
5457 uint8_t status;
5458 ssize_t len;
5459
5460 close(fds[1]);
5461
5462 again:
5463 len = read(fds[0], &status, 1);
5464 if (len == -1 && (errno == EINTR))
5465 goto again;
5466
5467 if (len != 1)
5468 exit(1);
5469 else if (status == 1) {
5470 fprintf(stderr, "Could not acquire pidfile: %s\n", strerror(errno));
5471 exit(1);
5472 } else
5473 exit(0);
5474 } else if (pid < 0)
5475 exit(1);
5476
5477 setsid();
5478
5479 pid = fork();
5480 if (pid > 0)
5481 exit(0);
5482 else if (pid < 0)
5483 exit(1);
5484
5485 umask(027);
5486
5487 signal(SIGTSTP, SIG_IGN);
5488 signal(SIGTTOU, SIG_IGN);
5489 signal(SIGTTIN, SIG_IGN);
5490 }
5491
5492 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5493 if (daemonize) {
5494 uint8_t status = 1;
5495 write(fds[1], &status, 1);
5496 } else
5497 fprintf(stderr, "Could not acquire pid file: %s\n", strerror(errno));
5498 exit(1);
5499 }
5500 #endif
5501
5502 if (kvm_enabled()) {
5503 int ret;
5504
5505 ret = kvm_init(smp_cpus);
5506 if (ret < 0) {
5507 fprintf(stderr, "failed to initialize KVM\n");
5508 exit(1);
5509 }
5510 }
5511
5512 if (qemu_init_main_loop()) {
5513 fprintf(stderr, "qemu_init_main_loop failed\n");
5514 exit(1);
5515 }
5516 linux_boot = (kernel_filename != NULL);
5517
5518 if (!linux_boot && *kernel_cmdline != '\0') {
5519 fprintf(stderr, "-append only allowed with -kernel option\n");
5520 exit(1);
5521 }
5522
5523 if (!linux_boot && initrd_filename != NULL) {
5524 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5525 exit(1);
5526 }
5527
5528 #ifndef _WIN32
5529 /* Win32 doesn't support line-buffering and requires size >= 2 */
5530 setvbuf(stdout, NULL, _IOLBF, 0);
5531 #endif
5532
5533 if (init_timer_alarm() < 0) {
5534 fprintf(stderr, "could not initialize alarm timer\n");
5535 exit(1);
5536 }
5537 if (use_icount && icount_time_shift < 0) {
5538 use_icount = 2;
5539 /* 125MIPS seems a reasonable initial guess at the guest speed.
5540 It will be corrected fairly quickly anyway. */
5541 icount_time_shift = 3;
5542 init_icount_adjust();
5543 }
5544
5545 #ifdef _WIN32
5546 socket_init();
5547 #endif
5548
5549 if (net_init_clients() < 0) {
5550 exit(1);
5551 }
5552
5553 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5554 net_set_boot_mask(net_boot);
5555
5556 /* init the bluetooth world */
5557 if (foreach_device_config(DEV_BT, bt_parse))
5558 exit(1);
5559
5560 /* init the memory */
5561 if (ram_size == 0)
5562 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5563
5564 /* init the dynamic translator */
5565 cpu_exec_init_all(tb_size * 1024 * 1024);
5566
5567 bdrv_init_with_whitelist();
5568
5569 blk_mig_init();
5570
5571 /* we always create the cdrom drive, even if no disk is there */
5572 drive_add(NULL, CDROM_ALIAS);
5573
5574 /* we always create at least one floppy */
5575 drive_add(NULL, FD_ALIAS, 0);
5576
5577 /* we always create one sd slot, even if no card is in it */
5578 drive_add(NULL, SD_ALIAS);
5579
5580 /* open the virtual block devices */
5581 if (snapshot)
5582 qemu_opts_foreach(&qemu_drive_opts, drive_enable_snapshot, NULL, 0);
5583 if (qemu_opts_foreach(&qemu_drive_opts, drive_init_func, machine, 1) != 0)
5584 exit(1);
5585
5586 vmstate_register(0, &vmstate_timers ,&timers_state);
5587 register_savevm_live("ram", 0, 3, NULL, ram_save_live, NULL,
5588 ram_load, NULL);
5589
5590 /* Maintain compatibility with multiple stdio monitors */
5591 if (!strcmp(monitor_devices[0],"stdio")) {
5592 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5593 const char *devname = serial_devices[i];
5594 if (devname && !strcmp(devname,"mon:stdio")) {
5595 monitor_devices[0] = NULL;
5596 break;
5597 } else if (devname && !strcmp(devname,"stdio")) {
5598 monitor_devices[0] = NULL;
5599 serial_devices[i] = "mon:stdio";
5600 break;
5601 }
5602 }
5603 }
5604
5605 if (nb_numa_nodes > 0) {
5606 int i;
5607
5608 if (nb_numa_nodes > smp_cpus) {
5609 nb_numa_nodes = smp_cpus;
5610 }
5611
5612 /* If no memory size if given for any node, assume the default case
5613 * and distribute the available memory equally across all nodes
5614 */
5615 for (i = 0; i < nb_numa_nodes; i++) {
5616 if (node_mem[i] != 0)
5617 break;
5618 }
5619 if (i == nb_numa_nodes) {
5620 uint64_t usedmem = 0;
5621
5622 /* On Linux, the each node's border has to be 8MB aligned,
5623 * the final node gets the rest.
5624 */
5625 for (i = 0; i < nb_numa_nodes - 1; i++) {
5626 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5627 usedmem += node_mem[i];
5628 }
5629 node_mem[i] = ram_size - usedmem;
5630 }
5631
5632 for (i = 0; i < nb_numa_nodes; i++) {
5633 if (node_cpumask[i] != 0)
5634 break;
5635 }
5636 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5637 * must cope with this anyway, because there are BIOSes out there in
5638 * real machines which also use this scheme.
5639 */
5640 if (i == nb_numa_nodes) {
5641 for (i = 0; i < smp_cpus; i++) {
5642 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5643 }
5644 }
5645 }
5646
5647 for (i = 0; i < MAX_MONITOR_DEVICES; i++) {
5648 const char *devname = monitor_devices[i];
5649 if (devname && strcmp(devname, "none")) {
5650 char label[32];
5651 if (i == 0) {
5652 snprintf(label, sizeof(label), "monitor");
5653 } else {
5654 snprintf(label, sizeof(label), "monitor%d", i);
5655 }
5656 monitor_hds[i] = qemu_chr_open(label, devname, NULL);
5657 if (!monitor_hds[i]) {
5658 fprintf(stderr, "qemu: could not open monitor device '%s'\n",
5659 devname);
5660 exit(1);
5661 }
5662 }
5663 }
5664
5665 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5666 const char *devname = serial_devices[i];
5667 if (devname && strcmp(devname, "none")) {
5668 char label[32];
5669 snprintf(label, sizeof(label), "serial%d", i);
5670 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5671 if (!serial_hds[i]) {
5672 fprintf(stderr, "qemu: could not open serial device '%s': %s\n",
5673 devname, strerror(errno));
5674 exit(1);
5675 }
5676 }
5677 }
5678
5679 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5680 const char *devname = parallel_devices[i];
5681 if (devname && strcmp(devname, "none")) {
5682 char label[32];
5683 snprintf(label, sizeof(label), "parallel%d", i);
5684 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5685 if (!parallel_hds[i]) {
5686 fprintf(stderr, "qemu: could not open parallel device '%s': %s\n",
5687 devname, strerror(errno));
5688 exit(1);
5689 }
5690 }
5691 }
5692
5693 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5694 const char *devname = virtio_consoles[i];
5695 if (devname && strcmp(devname, "none")) {
5696 char label[32];
5697 snprintf(label, sizeof(label), "virtcon%d", i);
5698 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5699 if (!virtcon_hds[i]) {
5700 fprintf(stderr, "qemu: could not open virtio console '%s': %s\n",
5701 devname, strerror(errno));
5702 exit(1);
5703 }
5704 }
5705 }
5706
5707 module_call_init(MODULE_INIT_DEVICE);
5708
5709 if (watchdog) {
5710 i = select_watchdog(watchdog);
5711 if (i > 0)
5712 exit (i == 1 ? 1 : 0);
5713 }
5714
5715 if (machine->compat_props) {
5716 qdev_prop_register_compat(machine->compat_props);
5717 }
5718 machine->init(ram_size, boot_devices,
5719 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5720
5721
5722 #ifndef _WIN32
5723 /* must be after terminal init, SDL library changes signal handlers */
5724 sighandler_setup();
5725 #endif
5726
5727 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5728 for (i = 0; i < nb_numa_nodes; i++) {
5729 if (node_cpumask[i] & (1 << env->cpu_index)) {
5730 env->numa_node = i;
5731 }
5732 }
5733 }
5734
5735 current_machine = machine;
5736
5737 /* init USB devices */
5738 if (usb_enabled) {
5739 if (foreach_device_config(DEV_USB, usb_parse) < 0)
5740 exit(1);
5741 }
5742
5743 /* init generic devices */
5744 if (qemu_opts_foreach(&qemu_device_opts, device_init_func, NULL, 1) != 0)
5745 exit(1);
5746
5747 if (!display_state)
5748 dumb_display_init();
5749 /* just use the first displaystate for the moment */
5750 ds = display_state;
5751
5752 if (display_type == DT_DEFAULT) {
5753 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5754 display_type = DT_SDL;
5755 #else
5756 display_type = DT_VNC;
5757 vnc_display = "localhost:0,to=99";
5758 show_vnc_port = 1;
5759 #endif
5760 }
5761
5762
5763 switch (display_type) {
5764 case DT_NOGRAPHIC:
5765 break;
5766 #if defined(CONFIG_CURSES)
5767 case DT_CURSES:
5768 curses_display_init(ds, full_screen);
5769 break;
5770 #endif
5771 #if defined(CONFIG_SDL)
5772 case DT_SDL:
5773 sdl_display_init(ds, full_screen, no_frame);
5774 break;
5775 #elif defined(CONFIG_COCOA)
5776 case DT_SDL:
5777 cocoa_display_init(ds, full_screen);
5778 break;
5779 #endif
5780 case DT_VNC:
5781 vnc_display_init(ds);
5782 if (vnc_display_open(ds, vnc_display) < 0)
5783 exit(1);
5784
5785 if (show_vnc_port) {
5786 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
5787 }
5788 break;
5789 default:
5790 break;
5791 }
5792 dpy_resize(ds);
5793
5794 dcl = ds->listeners;
5795 while (dcl != NULL) {
5796 if (dcl->dpy_refresh != NULL) {
5797 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5798 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5799 }
5800 dcl = dcl->next;
5801 }
5802
5803 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
5804 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5805 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5806 }
5807
5808 text_consoles_set_display(display_state);
5809
5810 for (i = 0; i < MAX_MONITOR_DEVICES; i++) {
5811 if (monitor_devices[i] && monitor_hds[i]) {
5812 monitor_init(monitor_hds[i], monitor_flags[i]);
5813 }
5814 }
5815
5816 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5817 const char *devname = serial_devices[i];
5818 if (devname && strcmp(devname, "none")) {
5819 if (strstart(devname, "vc", 0))
5820 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5821 }
5822 }
5823
5824 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5825 const char *devname = parallel_devices[i];
5826 if (devname && strcmp(devname, "none")) {
5827 if (strstart(devname, "vc", 0))
5828 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5829 }
5830 }
5831
5832 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5833 const char *devname = virtio_consoles[i];
5834 if (virtcon_hds[i] && devname) {
5835 if (strstart(devname, "vc", 0))
5836 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
5837 }
5838 }
5839
5840 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
5841 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
5842 gdbstub_dev);
5843 exit(1);
5844 }
5845
5846 qdev_machine_creation_done();
5847
5848 rom_load_all();
5849
5850 qemu_system_reset();
5851 if (loadvm) {
5852 if (load_vmstate(cur_mon, loadvm) < 0) {
5853 autostart = 0;
5854 }
5855 }
5856
5857 if (incoming) {
5858 qemu_start_incoming_migration(incoming);
5859 } else if (autostart) {
5860 vm_start();
5861 }
5862
5863 #ifndef _WIN32
5864 if (daemonize) {
5865 uint8_t status = 0;
5866 ssize_t len;
5867
5868 again1:
5869 len = write(fds[1], &status, 1);
5870 if (len == -1 && (errno == EINTR))
5871 goto again1;
5872
5873 if (len != 1)
5874 exit(1);
5875
5876 chdir("/");
5877 TFR(fd = open("/dev/null", O_RDWR));
5878 if (fd == -1)
5879 exit(1);
5880 }
5881
5882 if (run_as) {
5883 pwd = getpwnam(run_as);
5884 if (!pwd) {
5885 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
5886 exit(1);
5887 }
5888 }
5889
5890 if (chroot_dir) {
5891 if (chroot(chroot_dir) < 0) {
5892 fprintf(stderr, "chroot failed\n");
5893 exit(1);
5894 }
5895 chdir("/");
5896 }
5897
5898 if (run_as) {
5899 if (setgid(pwd->pw_gid) < 0) {
5900 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
5901 exit(1);
5902 }
5903 if (setuid(pwd->pw_uid) < 0) {
5904 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
5905 exit(1);
5906 }
5907 if (setuid(0) != -1) {
5908 fprintf(stderr, "Dropping privileges failed\n");
5909 exit(1);
5910 }
5911 }
5912
5913 if (daemonize) {
5914 dup2(fd, 0);
5915 dup2(fd, 1);
5916 dup2(fd, 2);
5917
5918 close(fd);
5919 }
5920 #endif
5921
5922 main_loop();
5923 quit_timers();
5924 net_cleanup();
5925
5926 return 0;
5927 }