]> git.proxmox.com Git - mirror_qemu.git/blob - vl.c
6aa27c28090648aeb98ff6ae425986d64f1dfb73
[mirror_qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw/hw.h"
25 #include "hw/boards.h"
26 #include "hw/usb.h"
27 #include "hw/pcmcia.h"
28 #include "hw/pc.h"
29 #include "hw/audiodev.h"
30 #include "hw/isa.h"
31 #include "hw/baum.h"
32 #include "net.h"
33 #include "console.h"
34 #include "sysemu.h"
35 #include "gdbstub.h"
36 #include "qemu-timer.h"
37 #include "qemu-char.h"
38 #include "block.h"
39 #include "audio/audio.h"
40
41 #include <unistd.h>
42 #include <fcntl.h>
43 #include <signal.h>
44 #include <time.h>
45 #include <errno.h>
46 #include <sys/time.h>
47 #include <zlib.h>
48
49 #ifndef _WIN32
50 #include <sys/times.h>
51 #include <sys/wait.h>
52 #include <termios.h>
53 #include <sys/poll.h>
54 #include <sys/mman.h>
55 #include <sys/ioctl.h>
56 #include <sys/socket.h>
57 #include <netinet/in.h>
58 #include <dirent.h>
59 #include <netdb.h>
60 #include <sys/select.h>
61 #include <arpa/inet.h>
62 #ifdef _BSD
63 #include <sys/stat.h>
64 #ifndef __APPLE__
65 #include <libutil.h>
66 #endif
67 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
68 #include <freebsd/stdlib.h>
69 #else
70 #ifndef __sun__
71 #include <linux/if.h>
72 #include <linux/if_tun.h>
73 #include <pty.h>
74 #include <malloc.h>
75 #include <linux/rtc.h>
76
77 /* For the benefit of older linux systems which don't supply it,
78 we use a local copy of hpet.h. */
79 /* #include <linux/hpet.h> */
80 #include "hpet.h"
81
82 #include <linux/ppdev.h>
83 #include <linux/parport.h>
84 #else
85 #include <sys/stat.h>
86 #include <sys/ethernet.h>
87 #include <sys/sockio.h>
88 #include <netinet/arp.h>
89 #include <netinet/in.h>
90 #include <netinet/in_systm.h>
91 #include <netinet/ip.h>
92 #include <netinet/ip_icmp.h> // must come after ip.h
93 #include <netinet/udp.h>
94 #include <netinet/tcp.h>
95 #include <net/if.h>
96 #include <syslog.h>
97 #include <stropts.h>
98 #endif
99 #endif
100 #else
101 #include <winsock2.h>
102 int inet_aton(const char *cp, struct in_addr *ia);
103 #endif
104
105 #if defined(CONFIG_SLIRP)
106 #include "libslirp.h"
107 #endif
108
109 #ifdef _WIN32
110 #include <malloc.h>
111 #include <sys/timeb.h>
112 #include <mmsystem.h>
113 #define getopt_long_only getopt_long
114 #define memalign(align, size) malloc(size)
115 #endif
116
117 #include "qemu_socket.h"
118
119 #ifdef CONFIG_SDL
120 #ifdef __APPLE__
121 #include <SDL/SDL.h>
122 #endif
123 #endif /* CONFIG_SDL */
124
125 #ifdef CONFIG_COCOA
126 #undef main
127 #define main qemu_main
128 #endif /* CONFIG_COCOA */
129
130 #include "disas.h"
131
132 #include "exec-all.h"
133
134 #define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
135 #define DEFAULT_NETWORK_DOWN_SCRIPT "/etc/qemu-ifdown"
136 #ifdef __sun__
137 #define SMBD_COMMAND "/usr/sfw/sbin/smbd"
138 #else
139 #define SMBD_COMMAND "/usr/sbin/smbd"
140 #endif
141
142 //#define DEBUG_UNUSED_IOPORT
143 //#define DEBUG_IOPORT
144
145 #define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
146
147 #ifdef TARGET_PPC
148 #define DEFAULT_RAM_SIZE 144
149 #else
150 #define DEFAULT_RAM_SIZE 128
151 #endif
152 /* in ms */
153 #define GUI_REFRESH_INTERVAL 30
154
155 /* Max number of USB devices that can be specified on the commandline. */
156 #define MAX_USB_CMDLINE 8
157
158 /* XXX: use a two level table to limit memory usage */
159 #define MAX_IOPORTS 65536
160
161 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
162 const char *bios_name = NULL;
163 void *ioport_opaque[MAX_IOPORTS];
164 IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
165 IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
166 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
167 to store the VM snapshots */
168 DriveInfo drives_table[MAX_DRIVES+1];
169 int nb_drives;
170 /* point to the block driver where the snapshots are managed */
171 BlockDriverState *bs_snapshots;
172 int vga_ram_size;
173 static DisplayState display_state;
174 int nographic;
175 int curses;
176 const char* keyboard_layout = NULL;
177 int64_t ticks_per_sec;
178 int ram_size;
179 int pit_min_timer_count = 0;
180 int nb_nics;
181 NICInfo nd_table[MAX_NICS];
182 int vm_running;
183 static int rtc_utc = 1;
184 static int rtc_date_offset = -1; /* -1 means no change */
185 int cirrus_vga_enabled = 1;
186 int vmsvga_enabled = 0;
187 #ifdef TARGET_SPARC
188 int graphic_width = 1024;
189 int graphic_height = 768;
190 int graphic_depth = 8;
191 #else
192 int graphic_width = 800;
193 int graphic_height = 600;
194 int graphic_depth = 15;
195 #endif
196 int full_screen = 0;
197 int no_frame = 0;
198 int no_quit = 0;
199 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
200 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
201 #ifdef TARGET_I386
202 int win2k_install_hack = 0;
203 #endif
204 int usb_enabled = 0;
205 static VLANState *first_vlan;
206 int smp_cpus = 1;
207 const char *vnc_display;
208 #if defined(TARGET_SPARC)
209 #define MAX_CPUS 16
210 #elif defined(TARGET_I386)
211 #define MAX_CPUS 255
212 #else
213 #define MAX_CPUS 1
214 #endif
215 int acpi_enabled = 1;
216 int fd_bootchk = 1;
217 int no_reboot = 0;
218 int cursor_hide = 1;
219 int graphic_rotate = 0;
220 int daemonize = 0;
221 const char *option_rom[MAX_OPTION_ROMS];
222 int nb_option_roms;
223 int semihosting_enabled = 0;
224 int autostart = 1;
225 #ifdef TARGET_ARM
226 int old_param = 0;
227 #endif
228 const char *qemu_name;
229 int alt_grab = 0;
230 #ifdef TARGET_SPARC
231 unsigned int nb_prom_envs = 0;
232 const char *prom_envs[MAX_PROM_ENVS];
233 #endif
234 int nb_drives_opt;
235 struct drive_opt {
236 const char *file;
237 char opt[1024];
238 } drives_opt[MAX_DRIVES];
239
240 static CPUState *cur_cpu;
241 static CPUState *next_cpu;
242 static int event_pending = 1;
243
244 #define TFR(expr) do { if ((expr) != -1) break; } while (errno == EINTR)
245
246 /***********************************************************/
247 /* x86 ISA bus support */
248
249 target_phys_addr_t isa_mem_base = 0;
250 PicState2 *isa_pic;
251
252 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
253 {
254 #ifdef DEBUG_UNUSED_IOPORT
255 fprintf(stderr, "unused inb: port=0x%04x\n", address);
256 #endif
257 return 0xff;
258 }
259
260 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
261 {
262 #ifdef DEBUG_UNUSED_IOPORT
263 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
264 #endif
265 }
266
267 /* default is to make two byte accesses */
268 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
269 {
270 uint32_t data;
271 data = ioport_read_table[0][address](ioport_opaque[address], address);
272 address = (address + 1) & (MAX_IOPORTS - 1);
273 data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
274 return data;
275 }
276
277 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
278 {
279 ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
280 address = (address + 1) & (MAX_IOPORTS - 1);
281 ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
282 }
283
284 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
285 {
286 #ifdef DEBUG_UNUSED_IOPORT
287 fprintf(stderr, "unused inl: port=0x%04x\n", address);
288 #endif
289 return 0xffffffff;
290 }
291
292 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
293 {
294 #ifdef DEBUG_UNUSED_IOPORT
295 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
296 #endif
297 }
298
299 static void init_ioports(void)
300 {
301 int i;
302
303 for(i = 0; i < MAX_IOPORTS; i++) {
304 ioport_read_table[0][i] = default_ioport_readb;
305 ioport_write_table[0][i] = default_ioport_writeb;
306 ioport_read_table[1][i] = default_ioport_readw;
307 ioport_write_table[1][i] = default_ioport_writew;
308 ioport_read_table[2][i] = default_ioport_readl;
309 ioport_write_table[2][i] = default_ioport_writel;
310 }
311 }
312
313 /* size is the word size in byte */
314 int register_ioport_read(int start, int length, int size,
315 IOPortReadFunc *func, void *opaque)
316 {
317 int i, bsize;
318
319 if (size == 1) {
320 bsize = 0;
321 } else if (size == 2) {
322 bsize = 1;
323 } else if (size == 4) {
324 bsize = 2;
325 } else {
326 hw_error("register_ioport_read: invalid size");
327 return -1;
328 }
329 for(i = start; i < start + length; i += size) {
330 ioport_read_table[bsize][i] = func;
331 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
332 hw_error("register_ioport_read: invalid opaque");
333 ioport_opaque[i] = opaque;
334 }
335 return 0;
336 }
337
338 /* size is the word size in byte */
339 int register_ioport_write(int start, int length, int size,
340 IOPortWriteFunc *func, void *opaque)
341 {
342 int i, bsize;
343
344 if (size == 1) {
345 bsize = 0;
346 } else if (size == 2) {
347 bsize = 1;
348 } else if (size == 4) {
349 bsize = 2;
350 } else {
351 hw_error("register_ioport_write: invalid size");
352 return -1;
353 }
354 for(i = start; i < start + length; i += size) {
355 ioport_write_table[bsize][i] = func;
356 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
357 hw_error("register_ioport_write: invalid opaque");
358 ioport_opaque[i] = opaque;
359 }
360 return 0;
361 }
362
363 void isa_unassign_ioport(int start, int length)
364 {
365 int i;
366
367 for(i = start; i < start + length; i++) {
368 ioport_read_table[0][i] = default_ioport_readb;
369 ioport_read_table[1][i] = default_ioport_readw;
370 ioport_read_table[2][i] = default_ioport_readl;
371
372 ioport_write_table[0][i] = default_ioport_writeb;
373 ioport_write_table[1][i] = default_ioport_writew;
374 ioport_write_table[2][i] = default_ioport_writel;
375 }
376 }
377
378 /***********************************************************/
379
380 void cpu_outb(CPUState *env, int addr, int val)
381 {
382 #ifdef DEBUG_IOPORT
383 if (loglevel & CPU_LOG_IOPORT)
384 fprintf(logfile, "outb: %04x %02x\n", addr, val);
385 #endif
386 ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
387 #ifdef USE_KQEMU
388 if (env)
389 env->last_io_time = cpu_get_time_fast();
390 #endif
391 }
392
393 void cpu_outw(CPUState *env, int addr, int val)
394 {
395 #ifdef DEBUG_IOPORT
396 if (loglevel & CPU_LOG_IOPORT)
397 fprintf(logfile, "outw: %04x %04x\n", addr, val);
398 #endif
399 ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
400 #ifdef USE_KQEMU
401 if (env)
402 env->last_io_time = cpu_get_time_fast();
403 #endif
404 }
405
406 void cpu_outl(CPUState *env, int addr, int val)
407 {
408 #ifdef DEBUG_IOPORT
409 if (loglevel & CPU_LOG_IOPORT)
410 fprintf(logfile, "outl: %04x %08x\n", addr, val);
411 #endif
412 ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
413 #ifdef USE_KQEMU
414 if (env)
415 env->last_io_time = cpu_get_time_fast();
416 #endif
417 }
418
419 int cpu_inb(CPUState *env, int addr)
420 {
421 int val;
422 val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
423 #ifdef DEBUG_IOPORT
424 if (loglevel & CPU_LOG_IOPORT)
425 fprintf(logfile, "inb : %04x %02x\n", addr, val);
426 #endif
427 #ifdef USE_KQEMU
428 if (env)
429 env->last_io_time = cpu_get_time_fast();
430 #endif
431 return val;
432 }
433
434 int cpu_inw(CPUState *env, int addr)
435 {
436 int val;
437 val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
438 #ifdef DEBUG_IOPORT
439 if (loglevel & CPU_LOG_IOPORT)
440 fprintf(logfile, "inw : %04x %04x\n", addr, val);
441 #endif
442 #ifdef USE_KQEMU
443 if (env)
444 env->last_io_time = cpu_get_time_fast();
445 #endif
446 return val;
447 }
448
449 int cpu_inl(CPUState *env, int addr)
450 {
451 int val;
452 val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
453 #ifdef DEBUG_IOPORT
454 if (loglevel & CPU_LOG_IOPORT)
455 fprintf(logfile, "inl : %04x %08x\n", addr, val);
456 #endif
457 #ifdef USE_KQEMU
458 if (env)
459 env->last_io_time = cpu_get_time_fast();
460 #endif
461 return val;
462 }
463
464 /***********************************************************/
465 void hw_error(const char *fmt, ...)
466 {
467 va_list ap;
468 CPUState *env;
469
470 va_start(ap, fmt);
471 fprintf(stderr, "qemu: hardware error: ");
472 vfprintf(stderr, fmt, ap);
473 fprintf(stderr, "\n");
474 for(env = first_cpu; env != NULL; env = env->next_cpu) {
475 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
476 #ifdef TARGET_I386
477 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
478 #else
479 cpu_dump_state(env, stderr, fprintf, 0);
480 #endif
481 }
482 va_end(ap);
483 abort();
484 }
485
486 /***********************************************************/
487 /* keyboard/mouse */
488
489 static QEMUPutKBDEvent *qemu_put_kbd_event;
490 static void *qemu_put_kbd_event_opaque;
491 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
492 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
493
494 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
495 {
496 qemu_put_kbd_event_opaque = opaque;
497 qemu_put_kbd_event = func;
498 }
499
500 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
501 void *opaque, int absolute,
502 const char *name)
503 {
504 QEMUPutMouseEntry *s, *cursor;
505
506 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
507 if (!s)
508 return NULL;
509
510 s->qemu_put_mouse_event = func;
511 s->qemu_put_mouse_event_opaque = opaque;
512 s->qemu_put_mouse_event_absolute = absolute;
513 s->qemu_put_mouse_event_name = qemu_strdup(name);
514 s->next = NULL;
515
516 if (!qemu_put_mouse_event_head) {
517 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
518 return s;
519 }
520
521 cursor = qemu_put_mouse_event_head;
522 while (cursor->next != NULL)
523 cursor = cursor->next;
524
525 cursor->next = s;
526 qemu_put_mouse_event_current = s;
527
528 return s;
529 }
530
531 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
532 {
533 QEMUPutMouseEntry *prev = NULL, *cursor;
534
535 if (!qemu_put_mouse_event_head || entry == NULL)
536 return;
537
538 cursor = qemu_put_mouse_event_head;
539 while (cursor != NULL && cursor != entry) {
540 prev = cursor;
541 cursor = cursor->next;
542 }
543
544 if (cursor == NULL) // does not exist or list empty
545 return;
546 else if (prev == NULL) { // entry is head
547 qemu_put_mouse_event_head = cursor->next;
548 if (qemu_put_mouse_event_current == entry)
549 qemu_put_mouse_event_current = cursor->next;
550 qemu_free(entry->qemu_put_mouse_event_name);
551 qemu_free(entry);
552 return;
553 }
554
555 prev->next = entry->next;
556
557 if (qemu_put_mouse_event_current == entry)
558 qemu_put_mouse_event_current = prev;
559
560 qemu_free(entry->qemu_put_mouse_event_name);
561 qemu_free(entry);
562 }
563
564 void kbd_put_keycode(int keycode)
565 {
566 if (qemu_put_kbd_event) {
567 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
568 }
569 }
570
571 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
572 {
573 QEMUPutMouseEvent *mouse_event;
574 void *mouse_event_opaque;
575 int width;
576
577 if (!qemu_put_mouse_event_current) {
578 return;
579 }
580
581 mouse_event =
582 qemu_put_mouse_event_current->qemu_put_mouse_event;
583 mouse_event_opaque =
584 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
585
586 if (mouse_event) {
587 if (graphic_rotate) {
588 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
589 width = 0x7fff;
590 else
591 width = graphic_width - 1;
592 mouse_event(mouse_event_opaque,
593 width - dy, dx, dz, buttons_state);
594 } else
595 mouse_event(mouse_event_opaque,
596 dx, dy, dz, buttons_state);
597 }
598 }
599
600 int kbd_mouse_is_absolute(void)
601 {
602 if (!qemu_put_mouse_event_current)
603 return 0;
604
605 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
606 }
607
608 void do_info_mice(void)
609 {
610 QEMUPutMouseEntry *cursor;
611 int index = 0;
612
613 if (!qemu_put_mouse_event_head) {
614 term_printf("No mouse devices connected\n");
615 return;
616 }
617
618 term_printf("Mouse devices available:\n");
619 cursor = qemu_put_mouse_event_head;
620 while (cursor != NULL) {
621 term_printf("%c Mouse #%d: %s\n",
622 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
623 index, cursor->qemu_put_mouse_event_name);
624 index++;
625 cursor = cursor->next;
626 }
627 }
628
629 void do_mouse_set(int index)
630 {
631 QEMUPutMouseEntry *cursor;
632 int i = 0;
633
634 if (!qemu_put_mouse_event_head) {
635 term_printf("No mouse devices connected\n");
636 return;
637 }
638
639 cursor = qemu_put_mouse_event_head;
640 while (cursor != NULL && index != i) {
641 i++;
642 cursor = cursor->next;
643 }
644
645 if (cursor != NULL)
646 qemu_put_mouse_event_current = cursor;
647 else
648 term_printf("Mouse at given index not found\n");
649 }
650
651 /* compute with 96 bit intermediate result: (a*b)/c */
652 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
653 {
654 union {
655 uint64_t ll;
656 struct {
657 #ifdef WORDS_BIGENDIAN
658 uint32_t high, low;
659 #else
660 uint32_t low, high;
661 #endif
662 } l;
663 } u, res;
664 uint64_t rl, rh;
665
666 u.ll = a;
667 rl = (uint64_t)u.l.low * (uint64_t)b;
668 rh = (uint64_t)u.l.high * (uint64_t)b;
669 rh += (rl >> 32);
670 res.l.high = rh / c;
671 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
672 return res.ll;
673 }
674
675 /***********************************************************/
676 /* real time host monotonic timer */
677
678 #define QEMU_TIMER_BASE 1000000000LL
679
680 #ifdef WIN32
681
682 static int64_t clock_freq;
683
684 static void init_get_clock(void)
685 {
686 LARGE_INTEGER freq;
687 int ret;
688 ret = QueryPerformanceFrequency(&freq);
689 if (ret == 0) {
690 fprintf(stderr, "Could not calibrate ticks\n");
691 exit(1);
692 }
693 clock_freq = freq.QuadPart;
694 }
695
696 static int64_t get_clock(void)
697 {
698 LARGE_INTEGER ti;
699 QueryPerformanceCounter(&ti);
700 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
701 }
702
703 #else
704
705 static int use_rt_clock;
706
707 static void init_get_clock(void)
708 {
709 use_rt_clock = 0;
710 #if defined(__linux__)
711 {
712 struct timespec ts;
713 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
714 use_rt_clock = 1;
715 }
716 }
717 #endif
718 }
719
720 static int64_t get_clock(void)
721 {
722 #if defined(__linux__)
723 if (use_rt_clock) {
724 struct timespec ts;
725 clock_gettime(CLOCK_MONOTONIC, &ts);
726 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
727 } else
728 #endif
729 {
730 /* XXX: using gettimeofday leads to problems if the date
731 changes, so it should be avoided. */
732 struct timeval tv;
733 gettimeofday(&tv, NULL);
734 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
735 }
736 }
737
738 #endif
739
740 /***********************************************************/
741 /* guest cycle counter */
742
743 static int64_t cpu_ticks_prev;
744 static int64_t cpu_ticks_offset;
745 static int64_t cpu_clock_offset;
746 static int cpu_ticks_enabled;
747
748 /* return the host CPU cycle counter and handle stop/restart */
749 int64_t cpu_get_ticks(void)
750 {
751 if (!cpu_ticks_enabled) {
752 return cpu_ticks_offset;
753 } else {
754 int64_t ticks;
755 ticks = cpu_get_real_ticks();
756 if (cpu_ticks_prev > ticks) {
757 /* Note: non increasing ticks may happen if the host uses
758 software suspend */
759 cpu_ticks_offset += cpu_ticks_prev - ticks;
760 }
761 cpu_ticks_prev = ticks;
762 return ticks + cpu_ticks_offset;
763 }
764 }
765
766 /* return the host CPU monotonic timer and handle stop/restart */
767 static int64_t cpu_get_clock(void)
768 {
769 int64_t ti;
770 if (!cpu_ticks_enabled) {
771 return cpu_clock_offset;
772 } else {
773 ti = get_clock();
774 return ti + cpu_clock_offset;
775 }
776 }
777
778 /* enable cpu_get_ticks() */
779 void cpu_enable_ticks(void)
780 {
781 if (!cpu_ticks_enabled) {
782 cpu_ticks_offset -= cpu_get_real_ticks();
783 cpu_clock_offset -= get_clock();
784 cpu_ticks_enabled = 1;
785 }
786 }
787
788 /* disable cpu_get_ticks() : the clock is stopped. You must not call
789 cpu_get_ticks() after that. */
790 void cpu_disable_ticks(void)
791 {
792 if (cpu_ticks_enabled) {
793 cpu_ticks_offset = cpu_get_ticks();
794 cpu_clock_offset = cpu_get_clock();
795 cpu_ticks_enabled = 0;
796 }
797 }
798
799 /***********************************************************/
800 /* timers */
801
802 #define QEMU_TIMER_REALTIME 0
803 #define QEMU_TIMER_VIRTUAL 1
804
805 struct QEMUClock {
806 int type;
807 /* XXX: add frequency */
808 };
809
810 struct QEMUTimer {
811 QEMUClock *clock;
812 int64_t expire_time;
813 QEMUTimerCB *cb;
814 void *opaque;
815 struct QEMUTimer *next;
816 };
817
818 struct qemu_alarm_timer {
819 char const *name;
820 unsigned int flags;
821
822 int (*start)(struct qemu_alarm_timer *t);
823 void (*stop)(struct qemu_alarm_timer *t);
824 void (*rearm)(struct qemu_alarm_timer *t);
825 void *priv;
826 };
827
828 #define ALARM_FLAG_DYNTICKS 0x1
829 #define ALARM_FLAG_EXPIRED 0x2
830
831 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
832 {
833 return t->flags & ALARM_FLAG_DYNTICKS;
834 }
835
836 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
837 {
838 if (!alarm_has_dynticks(t))
839 return;
840
841 t->rearm(t);
842 }
843
844 /* TODO: MIN_TIMER_REARM_US should be optimized */
845 #define MIN_TIMER_REARM_US 250
846
847 static struct qemu_alarm_timer *alarm_timer;
848
849 #ifdef _WIN32
850
851 struct qemu_alarm_win32 {
852 MMRESULT timerId;
853 HANDLE host_alarm;
854 unsigned int period;
855 } alarm_win32_data = {0, NULL, -1};
856
857 static int win32_start_timer(struct qemu_alarm_timer *t);
858 static void win32_stop_timer(struct qemu_alarm_timer *t);
859 static void win32_rearm_timer(struct qemu_alarm_timer *t);
860
861 #else
862
863 static int unix_start_timer(struct qemu_alarm_timer *t);
864 static void unix_stop_timer(struct qemu_alarm_timer *t);
865
866 #ifdef __linux__
867
868 static int dynticks_start_timer(struct qemu_alarm_timer *t);
869 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
870 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
871
872 static int hpet_start_timer(struct qemu_alarm_timer *t);
873 static void hpet_stop_timer(struct qemu_alarm_timer *t);
874
875 static int rtc_start_timer(struct qemu_alarm_timer *t);
876 static void rtc_stop_timer(struct qemu_alarm_timer *t);
877
878 #endif /* __linux__ */
879
880 #endif /* _WIN32 */
881
882 static struct qemu_alarm_timer alarm_timers[] = {
883 #ifndef _WIN32
884 #ifdef __linux__
885 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
886 dynticks_stop_timer, dynticks_rearm_timer, NULL},
887 /* HPET - if available - is preferred */
888 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
889 /* ...otherwise try RTC */
890 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
891 #endif
892 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
893 #else
894 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
895 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
896 {"win32", 0, win32_start_timer,
897 win32_stop_timer, NULL, &alarm_win32_data},
898 #endif
899 {NULL, }
900 };
901
902 static void show_available_alarms(void)
903 {
904 int i;
905
906 printf("Available alarm timers, in order of precedence:\n");
907 for (i = 0; alarm_timers[i].name; i++)
908 printf("%s\n", alarm_timers[i].name);
909 }
910
911 static void configure_alarms(char const *opt)
912 {
913 int i;
914 int cur = 0;
915 int count = (sizeof(alarm_timers) / sizeof(*alarm_timers)) - 1;
916 char *arg;
917 char *name;
918
919 if (!strcmp(opt, "?")) {
920 show_available_alarms();
921 exit(0);
922 }
923
924 arg = strdup(opt);
925
926 /* Reorder the array */
927 name = strtok(arg, ",");
928 while (name) {
929 struct qemu_alarm_timer tmp;
930
931 for (i = 0; i < count && alarm_timers[i].name; i++) {
932 if (!strcmp(alarm_timers[i].name, name))
933 break;
934 }
935
936 if (i == count) {
937 fprintf(stderr, "Unknown clock %s\n", name);
938 goto next;
939 }
940
941 if (i < cur)
942 /* Ignore */
943 goto next;
944
945 /* Swap */
946 tmp = alarm_timers[i];
947 alarm_timers[i] = alarm_timers[cur];
948 alarm_timers[cur] = tmp;
949
950 cur++;
951 next:
952 name = strtok(NULL, ",");
953 }
954
955 free(arg);
956
957 if (cur) {
958 /* Disable remaining timers */
959 for (i = cur; i < count; i++)
960 alarm_timers[i].name = NULL;
961 } else {
962 show_available_alarms();
963 exit(1);
964 }
965 }
966
967 QEMUClock *rt_clock;
968 QEMUClock *vm_clock;
969
970 static QEMUTimer *active_timers[2];
971
972 static QEMUClock *qemu_new_clock(int type)
973 {
974 QEMUClock *clock;
975 clock = qemu_mallocz(sizeof(QEMUClock));
976 if (!clock)
977 return NULL;
978 clock->type = type;
979 return clock;
980 }
981
982 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
983 {
984 QEMUTimer *ts;
985
986 ts = qemu_mallocz(sizeof(QEMUTimer));
987 ts->clock = clock;
988 ts->cb = cb;
989 ts->opaque = opaque;
990 return ts;
991 }
992
993 void qemu_free_timer(QEMUTimer *ts)
994 {
995 qemu_free(ts);
996 }
997
998 /* stop a timer, but do not dealloc it */
999 void qemu_del_timer(QEMUTimer *ts)
1000 {
1001 QEMUTimer **pt, *t;
1002
1003 /* NOTE: this code must be signal safe because
1004 qemu_timer_expired() can be called from a signal. */
1005 pt = &active_timers[ts->clock->type];
1006 for(;;) {
1007 t = *pt;
1008 if (!t)
1009 break;
1010 if (t == ts) {
1011 *pt = t->next;
1012 break;
1013 }
1014 pt = &t->next;
1015 }
1016 }
1017
1018 /* modify the current timer so that it will be fired when current_time
1019 >= expire_time. The corresponding callback will be called. */
1020 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1021 {
1022 QEMUTimer **pt, *t;
1023
1024 qemu_del_timer(ts);
1025
1026 /* add the timer in the sorted list */
1027 /* NOTE: this code must be signal safe because
1028 qemu_timer_expired() can be called from a signal. */
1029 pt = &active_timers[ts->clock->type];
1030 for(;;) {
1031 t = *pt;
1032 if (!t)
1033 break;
1034 if (t->expire_time > expire_time)
1035 break;
1036 pt = &t->next;
1037 }
1038 ts->expire_time = expire_time;
1039 ts->next = *pt;
1040 *pt = ts;
1041
1042 /* Rearm if necessary */
1043 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0 &&
1044 pt == &active_timers[ts->clock->type])
1045 qemu_rearm_alarm_timer(alarm_timer);
1046 }
1047
1048 int qemu_timer_pending(QEMUTimer *ts)
1049 {
1050 QEMUTimer *t;
1051 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1052 if (t == ts)
1053 return 1;
1054 }
1055 return 0;
1056 }
1057
1058 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1059 {
1060 if (!timer_head)
1061 return 0;
1062 return (timer_head->expire_time <= current_time);
1063 }
1064
1065 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1066 {
1067 QEMUTimer *ts;
1068
1069 for(;;) {
1070 ts = *ptimer_head;
1071 if (!ts || ts->expire_time > current_time)
1072 break;
1073 /* remove timer from the list before calling the callback */
1074 *ptimer_head = ts->next;
1075 ts->next = NULL;
1076
1077 /* run the callback (the timer list can be modified) */
1078 ts->cb(ts->opaque);
1079 }
1080 }
1081
1082 int64_t qemu_get_clock(QEMUClock *clock)
1083 {
1084 switch(clock->type) {
1085 case QEMU_TIMER_REALTIME:
1086 return get_clock() / 1000000;
1087 default:
1088 case QEMU_TIMER_VIRTUAL:
1089 return cpu_get_clock();
1090 }
1091 }
1092
1093 static void init_timers(void)
1094 {
1095 init_get_clock();
1096 ticks_per_sec = QEMU_TIMER_BASE;
1097 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1098 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1099 }
1100
1101 /* save a timer */
1102 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1103 {
1104 uint64_t expire_time;
1105
1106 if (qemu_timer_pending(ts)) {
1107 expire_time = ts->expire_time;
1108 } else {
1109 expire_time = -1;
1110 }
1111 qemu_put_be64(f, expire_time);
1112 }
1113
1114 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1115 {
1116 uint64_t expire_time;
1117
1118 expire_time = qemu_get_be64(f);
1119 if (expire_time != -1) {
1120 qemu_mod_timer(ts, expire_time);
1121 } else {
1122 qemu_del_timer(ts);
1123 }
1124 }
1125
1126 static void timer_save(QEMUFile *f, void *opaque)
1127 {
1128 if (cpu_ticks_enabled) {
1129 hw_error("cannot save state if virtual timers are running");
1130 }
1131 qemu_put_be64(f, cpu_ticks_offset);
1132 qemu_put_be64(f, ticks_per_sec);
1133 qemu_put_be64(f, cpu_clock_offset);
1134 }
1135
1136 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1137 {
1138 if (version_id != 1 && version_id != 2)
1139 return -EINVAL;
1140 if (cpu_ticks_enabled) {
1141 return -EINVAL;
1142 }
1143 cpu_ticks_offset=qemu_get_be64(f);
1144 ticks_per_sec=qemu_get_be64(f);
1145 if (version_id == 2) {
1146 cpu_clock_offset=qemu_get_be64(f);
1147 }
1148 return 0;
1149 }
1150
1151 #ifdef _WIN32
1152 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1153 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1154 #else
1155 static void host_alarm_handler(int host_signum)
1156 #endif
1157 {
1158 #if 0
1159 #define DISP_FREQ 1000
1160 {
1161 static int64_t delta_min = INT64_MAX;
1162 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1163 static int count;
1164 ti = qemu_get_clock(vm_clock);
1165 if (last_clock != 0) {
1166 delta = ti - last_clock;
1167 if (delta < delta_min)
1168 delta_min = delta;
1169 if (delta > delta_max)
1170 delta_max = delta;
1171 delta_cum += delta;
1172 if (++count == DISP_FREQ) {
1173 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1174 muldiv64(delta_min, 1000000, ticks_per_sec),
1175 muldiv64(delta_max, 1000000, ticks_per_sec),
1176 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1177 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1178 count = 0;
1179 delta_min = INT64_MAX;
1180 delta_max = 0;
1181 delta_cum = 0;
1182 }
1183 }
1184 last_clock = ti;
1185 }
1186 #endif
1187 if (alarm_has_dynticks(alarm_timer) ||
1188 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1189 qemu_get_clock(vm_clock)) ||
1190 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1191 qemu_get_clock(rt_clock))) {
1192 #ifdef _WIN32
1193 struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1194 SetEvent(data->host_alarm);
1195 #endif
1196 CPUState *env = next_cpu;
1197
1198 alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1199
1200 if (env) {
1201 /* stop the currently executing cpu because a timer occured */
1202 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1203 #ifdef USE_KQEMU
1204 if (env->kqemu_enabled) {
1205 kqemu_cpu_interrupt(env);
1206 }
1207 #endif
1208 }
1209 event_pending = 1;
1210 }
1211 }
1212
1213 static uint64_t qemu_next_deadline(void)
1214 {
1215 int64_t nearest_delta_us = INT64_MAX;
1216 int64_t vmdelta_us;
1217
1218 if (active_timers[QEMU_TIMER_REALTIME])
1219 nearest_delta_us = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1220 qemu_get_clock(rt_clock))*1000;
1221
1222 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1223 /* round up */
1224 vmdelta_us = (active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1225 qemu_get_clock(vm_clock)+999)/1000;
1226 if (vmdelta_us < nearest_delta_us)
1227 nearest_delta_us = vmdelta_us;
1228 }
1229
1230 /* Avoid arming the timer to negative, zero, or too low values */
1231 if (nearest_delta_us <= MIN_TIMER_REARM_US)
1232 nearest_delta_us = MIN_TIMER_REARM_US;
1233
1234 return nearest_delta_us;
1235 }
1236
1237 #ifndef _WIN32
1238
1239 #if defined(__linux__)
1240
1241 #define RTC_FREQ 1024
1242
1243 static void enable_sigio_timer(int fd)
1244 {
1245 struct sigaction act;
1246
1247 /* timer signal */
1248 sigfillset(&act.sa_mask);
1249 act.sa_flags = 0;
1250 act.sa_handler = host_alarm_handler;
1251
1252 sigaction(SIGIO, &act, NULL);
1253 fcntl(fd, F_SETFL, O_ASYNC);
1254 fcntl(fd, F_SETOWN, getpid());
1255 }
1256
1257 static int hpet_start_timer(struct qemu_alarm_timer *t)
1258 {
1259 struct hpet_info info;
1260 int r, fd;
1261
1262 fd = open("/dev/hpet", O_RDONLY);
1263 if (fd < 0)
1264 return -1;
1265
1266 /* Set frequency */
1267 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1268 if (r < 0) {
1269 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1270 "error, but for better emulation accuracy type:\n"
1271 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1272 goto fail;
1273 }
1274
1275 /* Check capabilities */
1276 r = ioctl(fd, HPET_INFO, &info);
1277 if (r < 0)
1278 goto fail;
1279
1280 /* Enable periodic mode */
1281 r = ioctl(fd, HPET_EPI, 0);
1282 if (info.hi_flags && (r < 0))
1283 goto fail;
1284
1285 /* Enable interrupt */
1286 r = ioctl(fd, HPET_IE_ON, 0);
1287 if (r < 0)
1288 goto fail;
1289
1290 enable_sigio_timer(fd);
1291 t->priv = (void *)(long)fd;
1292
1293 return 0;
1294 fail:
1295 close(fd);
1296 return -1;
1297 }
1298
1299 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1300 {
1301 int fd = (long)t->priv;
1302
1303 close(fd);
1304 }
1305
1306 static int rtc_start_timer(struct qemu_alarm_timer *t)
1307 {
1308 int rtc_fd;
1309 unsigned long current_rtc_freq = 0;
1310
1311 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1312 if (rtc_fd < 0)
1313 return -1;
1314 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1315 if (current_rtc_freq != RTC_FREQ &&
1316 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1317 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1318 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1319 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1320 goto fail;
1321 }
1322 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1323 fail:
1324 close(rtc_fd);
1325 return -1;
1326 }
1327
1328 enable_sigio_timer(rtc_fd);
1329
1330 t->priv = (void *)(long)rtc_fd;
1331
1332 return 0;
1333 }
1334
1335 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1336 {
1337 int rtc_fd = (long)t->priv;
1338
1339 close(rtc_fd);
1340 }
1341
1342 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1343 {
1344 struct sigevent ev;
1345 timer_t host_timer;
1346 struct sigaction act;
1347
1348 sigfillset(&act.sa_mask);
1349 act.sa_flags = 0;
1350 act.sa_handler = host_alarm_handler;
1351
1352 sigaction(SIGALRM, &act, NULL);
1353
1354 ev.sigev_value.sival_int = 0;
1355 ev.sigev_notify = SIGEV_SIGNAL;
1356 ev.sigev_signo = SIGALRM;
1357
1358 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1359 perror("timer_create");
1360
1361 /* disable dynticks */
1362 fprintf(stderr, "Dynamic Ticks disabled\n");
1363
1364 return -1;
1365 }
1366
1367 t->priv = (void *)host_timer;
1368
1369 return 0;
1370 }
1371
1372 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1373 {
1374 timer_t host_timer = (timer_t)t->priv;
1375
1376 timer_delete(host_timer);
1377 }
1378
1379 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1380 {
1381 timer_t host_timer = (timer_t)t->priv;
1382 struct itimerspec timeout;
1383 int64_t nearest_delta_us = INT64_MAX;
1384 int64_t current_us;
1385
1386 if (!active_timers[QEMU_TIMER_REALTIME] &&
1387 !active_timers[QEMU_TIMER_VIRTUAL])
1388 return;
1389
1390 nearest_delta_us = qemu_next_deadline();
1391
1392 /* check whether a timer is already running */
1393 if (timer_gettime(host_timer, &timeout)) {
1394 perror("gettime");
1395 fprintf(stderr, "Internal timer error: aborting\n");
1396 exit(1);
1397 }
1398 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1399 if (current_us && current_us <= nearest_delta_us)
1400 return;
1401
1402 timeout.it_interval.tv_sec = 0;
1403 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1404 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1405 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1406 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1407 perror("settime");
1408 fprintf(stderr, "Internal timer error: aborting\n");
1409 exit(1);
1410 }
1411 }
1412
1413 #endif /* defined(__linux__) */
1414
1415 static int unix_start_timer(struct qemu_alarm_timer *t)
1416 {
1417 struct sigaction act;
1418 struct itimerval itv;
1419 int err;
1420
1421 /* timer signal */
1422 sigfillset(&act.sa_mask);
1423 act.sa_flags = 0;
1424 act.sa_handler = host_alarm_handler;
1425
1426 sigaction(SIGALRM, &act, NULL);
1427
1428 itv.it_interval.tv_sec = 0;
1429 /* for i386 kernel 2.6 to get 1 ms */
1430 itv.it_interval.tv_usec = 999;
1431 itv.it_value.tv_sec = 0;
1432 itv.it_value.tv_usec = 10 * 1000;
1433
1434 err = setitimer(ITIMER_REAL, &itv, NULL);
1435 if (err)
1436 return -1;
1437
1438 return 0;
1439 }
1440
1441 static void unix_stop_timer(struct qemu_alarm_timer *t)
1442 {
1443 struct itimerval itv;
1444
1445 memset(&itv, 0, sizeof(itv));
1446 setitimer(ITIMER_REAL, &itv, NULL);
1447 }
1448
1449 #endif /* !defined(_WIN32) */
1450
1451 #ifdef _WIN32
1452
1453 static int win32_start_timer(struct qemu_alarm_timer *t)
1454 {
1455 TIMECAPS tc;
1456 struct qemu_alarm_win32 *data = t->priv;
1457 UINT flags;
1458
1459 data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1460 if (!data->host_alarm) {
1461 perror("Failed CreateEvent");
1462 return -1;
1463 }
1464
1465 memset(&tc, 0, sizeof(tc));
1466 timeGetDevCaps(&tc, sizeof(tc));
1467
1468 if (data->period < tc.wPeriodMin)
1469 data->period = tc.wPeriodMin;
1470
1471 timeBeginPeriod(data->period);
1472
1473 flags = TIME_CALLBACK_FUNCTION;
1474 if (alarm_has_dynticks(t))
1475 flags |= TIME_ONESHOT;
1476 else
1477 flags |= TIME_PERIODIC;
1478
1479 data->timerId = timeSetEvent(1, // interval (ms)
1480 data->period, // resolution
1481 host_alarm_handler, // function
1482 (DWORD)t, // parameter
1483 flags);
1484
1485 if (!data->timerId) {
1486 perror("Failed to initialize win32 alarm timer");
1487
1488 timeEndPeriod(data->period);
1489 CloseHandle(data->host_alarm);
1490 return -1;
1491 }
1492
1493 qemu_add_wait_object(data->host_alarm, NULL, NULL);
1494
1495 return 0;
1496 }
1497
1498 static void win32_stop_timer(struct qemu_alarm_timer *t)
1499 {
1500 struct qemu_alarm_win32 *data = t->priv;
1501
1502 timeKillEvent(data->timerId);
1503 timeEndPeriod(data->period);
1504
1505 CloseHandle(data->host_alarm);
1506 }
1507
1508 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1509 {
1510 struct qemu_alarm_win32 *data = t->priv;
1511 uint64_t nearest_delta_us;
1512
1513 if (!active_timers[QEMU_TIMER_REALTIME] &&
1514 !active_timers[QEMU_TIMER_VIRTUAL])
1515 return;
1516
1517 nearest_delta_us = qemu_next_deadline();
1518 nearest_delta_us /= 1000;
1519
1520 timeKillEvent(data->timerId);
1521
1522 data->timerId = timeSetEvent(1,
1523 data->period,
1524 host_alarm_handler,
1525 (DWORD)t,
1526 TIME_ONESHOT | TIME_PERIODIC);
1527
1528 if (!data->timerId) {
1529 perror("Failed to re-arm win32 alarm timer");
1530
1531 timeEndPeriod(data->period);
1532 CloseHandle(data->host_alarm);
1533 exit(1);
1534 }
1535 }
1536
1537 #endif /* _WIN32 */
1538
1539 static void init_timer_alarm(void)
1540 {
1541 struct qemu_alarm_timer *t;
1542 int i, err = -1;
1543
1544 for (i = 0; alarm_timers[i].name; i++) {
1545 t = &alarm_timers[i];
1546
1547 err = t->start(t);
1548 if (!err)
1549 break;
1550 }
1551
1552 if (err) {
1553 fprintf(stderr, "Unable to find any suitable alarm timer.\n");
1554 fprintf(stderr, "Terminating\n");
1555 exit(1);
1556 }
1557
1558 alarm_timer = t;
1559 }
1560
1561 static void quit_timers(void)
1562 {
1563 alarm_timer->stop(alarm_timer);
1564 alarm_timer = NULL;
1565 }
1566
1567 /***********************************************************/
1568 /* host time/date access */
1569 void qemu_get_timedate(struct tm *tm, int offset)
1570 {
1571 time_t ti;
1572 struct tm *ret;
1573
1574 time(&ti);
1575 ti += offset;
1576 if (rtc_date_offset == -1) {
1577 if (rtc_utc)
1578 ret = gmtime(&ti);
1579 else
1580 ret = localtime(&ti);
1581 } else {
1582 ti -= rtc_date_offset;
1583 ret = gmtime(&ti);
1584 }
1585
1586 memcpy(tm, ret, sizeof(struct tm));
1587 }
1588
1589 int qemu_timedate_diff(struct tm *tm)
1590 {
1591 time_t seconds;
1592
1593 if (rtc_date_offset == -1)
1594 if (rtc_utc)
1595 seconds = mktimegm(tm);
1596 else
1597 seconds = mktime(tm);
1598 else
1599 seconds = mktimegm(tm) + rtc_date_offset;
1600
1601 return seconds - time(NULL);
1602 }
1603
1604 /***********************************************************/
1605 /* character device */
1606
1607 static void qemu_chr_event(CharDriverState *s, int event)
1608 {
1609 if (!s->chr_event)
1610 return;
1611 s->chr_event(s->handler_opaque, event);
1612 }
1613
1614 static void qemu_chr_reset_bh(void *opaque)
1615 {
1616 CharDriverState *s = opaque;
1617 qemu_chr_event(s, CHR_EVENT_RESET);
1618 qemu_bh_delete(s->bh);
1619 s->bh = NULL;
1620 }
1621
1622 void qemu_chr_reset(CharDriverState *s)
1623 {
1624 if (s->bh == NULL) {
1625 s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1626 qemu_bh_schedule(s->bh);
1627 }
1628 }
1629
1630 int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1631 {
1632 return s->chr_write(s, buf, len);
1633 }
1634
1635 int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1636 {
1637 if (!s->chr_ioctl)
1638 return -ENOTSUP;
1639 return s->chr_ioctl(s, cmd, arg);
1640 }
1641
1642 int qemu_chr_can_read(CharDriverState *s)
1643 {
1644 if (!s->chr_can_read)
1645 return 0;
1646 return s->chr_can_read(s->handler_opaque);
1647 }
1648
1649 void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1650 {
1651 s->chr_read(s->handler_opaque, buf, len);
1652 }
1653
1654 void qemu_chr_accept_input(CharDriverState *s)
1655 {
1656 if (s->chr_accept_input)
1657 s->chr_accept_input(s);
1658 }
1659
1660 void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1661 {
1662 char buf[4096];
1663 va_list ap;
1664 va_start(ap, fmt);
1665 vsnprintf(buf, sizeof(buf), fmt, ap);
1666 qemu_chr_write(s, (uint8_t *)buf, strlen(buf));
1667 va_end(ap);
1668 }
1669
1670 void qemu_chr_send_event(CharDriverState *s, int event)
1671 {
1672 if (s->chr_send_event)
1673 s->chr_send_event(s, event);
1674 }
1675
1676 void qemu_chr_add_handlers(CharDriverState *s,
1677 IOCanRWHandler *fd_can_read,
1678 IOReadHandler *fd_read,
1679 IOEventHandler *fd_event,
1680 void *opaque)
1681 {
1682 s->chr_can_read = fd_can_read;
1683 s->chr_read = fd_read;
1684 s->chr_event = fd_event;
1685 s->handler_opaque = opaque;
1686 if (s->chr_update_read_handler)
1687 s->chr_update_read_handler(s);
1688 }
1689
1690 static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1691 {
1692 return len;
1693 }
1694
1695 static CharDriverState *qemu_chr_open_null(void)
1696 {
1697 CharDriverState *chr;
1698
1699 chr = qemu_mallocz(sizeof(CharDriverState));
1700 if (!chr)
1701 return NULL;
1702 chr->chr_write = null_chr_write;
1703 return chr;
1704 }
1705
1706 /* MUX driver for serial I/O splitting */
1707 static int term_timestamps;
1708 static int64_t term_timestamps_start;
1709 #define MAX_MUX 4
1710 #define MUX_BUFFER_SIZE 32 /* Must be a power of 2. */
1711 #define MUX_BUFFER_MASK (MUX_BUFFER_SIZE - 1)
1712 typedef struct {
1713 IOCanRWHandler *chr_can_read[MAX_MUX];
1714 IOReadHandler *chr_read[MAX_MUX];
1715 IOEventHandler *chr_event[MAX_MUX];
1716 void *ext_opaque[MAX_MUX];
1717 CharDriverState *drv;
1718 unsigned char buffer[MUX_BUFFER_SIZE];
1719 int prod;
1720 int cons;
1721 int mux_cnt;
1722 int term_got_escape;
1723 int max_size;
1724 } MuxDriver;
1725
1726
1727 static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1728 {
1729 MuxDriver *d = chr->opaque;
1730 int ret;
1731 if (!term_timestamps) {
1732 ret = d->drv->chr_write(d->drv, buf, len);
1733 } else {
1734 int i;
1735
1736 ret = 0;
1737 for(i = 0; i < len; i++) {
1738 ret += d->drv->chr_write(d->drv, buf+i, 1);
1739 if (buf[i] == '\n') {
1740 char buf1[64];
1741 int64_t ti;
1742 int secs;
1743
1744 ti = get_clock();
1745 if (term_timestamps_start == -1)
1746 term_timestamps_start = ti;
1747 ti -= term_timestamps_start;
1748 secs = ti / 1000000000;
1749 snprintf(buf1, sizeof(buf1),
1750 "[%02d:%02d:%02d.%03d] ",
1751 secs / 3600,
1752 (secs / 60) % 60,
1753 secs % 60,
1754 (int)((ti / 1000000) % 1000));
1755 d->drv->chr_write(d->drv, (uint8_t *)buf1, strlen(buf1));
1756 }
1757 }
1758 }
1759 return ret;
1760 }
1761
1762 static char *mux_help[] = {
1763 "% h print this help\n\r",
1764 "% x exit emulator\n\r",
1765 "% s save disk data back to file (if -snapshot)\n\r",
1766 "% t toggle console timestamps\n\r"
1767 "% b send break (magic sysrq)\n\r",
1768 "% c switch between console and monitor\n\r",
1769 "% % sends %\n\r",
1770 NULL
1771 };
1772
1773 static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1774 static void mux_print_help(CharDriverState *chr)
1775 {
1776 int i, j;
1777 char ebuf[15] = "Escape-Char";
1778 char cbuf[50] = "\n\r";
1779
1780 if (term_escape_char > 0 && term_escape_char < 26) {
1781 sprintf(cbuf,"\n\r");
1782 sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a');
1783 } else {
1784 sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r",
1785 term_escape_char);
1786 }
1787 chr->chr_write(chr, (uint8_t *)cbuf, strlen(cbuf));
1788 for (i = 0; mux_help[i] != NULL; i++) {
1789 for (j=0; mux_help[i][j] != '\0'; j++) {
1790 if (mux_help[i][j] == '%')
1791 chr->chr_write(chr, (uint8_t *)ebuf, strlen(ebuf));
1792 else
1793 chr->chr_write(chr, (uint8_t *)&mux_help[i][j], 1);
1794 }
1795 }
1796 }
1797
1798 static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1799 {
1800 if (d->term_got_escape) {
1801 d->term_got_escape = 0;
1802 if (ch == term_escape_char)
1803 goto send_char;
1804 switch(ch) {
1805 case '?':
1806 case 'h':
1807 mux_print_help(chr);
1808 break;
1809 case 'x':
1810 {
1811 char *term = "QEMU: Terminated\n\r";
1812 chr->chr_write(chr,(uint8_t *)term,strlen(term));
1813 exit(0);
1814 break;
1815 }
1816 case 's':
1817 {
1818 int i;
1819 for (i = 0; i < nb_drives; i++) {
1820 bdrv_commit(drives_table[i].bdrv);
1821 }
1822 }
1823 break;
1824 case 'b':
1825 qemu_chr_event(chr, CHR_EVENT_BREAK);
1826 break;
1827 case 'c':
1828 /* Switch to the next registered device */
1829 chr->focus++;
1830 if (chr->focus >= d->mux_cnt)
1831 chr->focus = 0;
1832 break;
1833 case 't':
1834 term_timestamps = !term_timestamps;
1835 term_timestamps_start = -1;
1836 break;
1837 }
1838 } else if (ch == term_escape_char) {
1839 d->term_got_escape = 1;
1840 } else {
1841 send_char:
1842 return 1;
1843 }
1844 return 0;
1845 }
1846
1847 static void mux_chr_accept_input(CharDriverState *chr)
1848 {
1849 int m = chr->focus;
1850 MuxDriver *d = chr->opaque;
1851
1852 while (d->prod != d->cons &&
1853 d->chr_can_read[m] &&
1854 d->chr_can_read[m](d->ext_opaque[m])) {
1855 d->chr_read[m](d->ext_opaque[m],
1856 &d->buffer[d->cons++ & MUX_BUFFER_MASK], 1);
1857 }
1858 }
1859
1860 static int mux_chr_can_read(void *opaque)
1861 {
1862 CharDriverState *chr = opaque;
1863 MuxDriver *d = chr->opaque;
1864
1865 if ((d->prod - d->cons) < MUX_BUFFER_SIZE)
1866 return 1;
1867 if (d->chr_can_read[chr->focus])
1868 return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
1869 return 0;
1870 }
1871
1872 static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
1873 {
1874 CharDriverState *chr = opaque;
1875 MuxDriver *d = chr->opaque;
1876 int m = chr->focus;
1877 int i;
1878
1879 mux_chr_accept_input (opaque);
1880
1881 for(i = 0; i < size; i++)
1882 if (mux_proc_byte(chr, d, buf[i])) {
1883 if (d->prod == d->cons &&
1884 d->chr_can_read[m] &&
1885 d->chr_can_read[m](d->ext_opaque[m]))
1886 d->chr_read[m](d->ext_opaque[m], &buf[i], 1);
1887 else
1888 d->buffer[d->prod++ & MUX_BUFFER_MASK] = buf[i];
1889 }
1890 }
1891
1892 static void mux_chr_event(void *opaque, int event)
1893 {
1894 CharDriverState *chr = opaque;
1895 MuxDriver *d = chr->opaque;
1896 int i;
1897
1898 /* Send the event to all registered listeners */
1899 for (i = 0; i < d->mux_cnt; i++)
1900 if (d->chr_event[i])
1901 d->chr_event[i](d->ext_opaque[i], event);
1902 }
1903
1904 static void mux_chr_update_read_handler(CharDriverState *chr)
1905 {
1906 MuxDriver *d = chr->opaque;
1907
1908 if (d->mux_cnt >= MAX_MUX) {
1909 fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
1910 return;
1911 }
1912 d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
1913 d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
1914 d->chr_read[d->mux_cnt] = chr->chr_read;
1915 d->chr_event[d->mux_cnt] = chr->chr_event;
1916 /* Fix up the real driver with mux routines */
1917 if (d->mux_cnt == 0) {
1918 qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
1919 mux_chr_event, chr);
1920 }
1921 chr->focus = d->mux_cnt;
1922 d->mux_cnt++;
1923 }
1924
1925 static CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
1926 {
1927 CharDriverState *chr;
1928 MuxDriver *d;
1929
1930 chr = qemu_mallocz(sizeof(CharDriverState));
1931 if (!chr)
1932 return NULL;
1933 d = qemu_mallocz(sizeof(MuxDriver));
1934 if (!d) {
1935 free(chr);
1936 return NULL;
1937 }
1938
1939 chr->opaque = d;
1940 d->drv = drv;
1941 chr->focus = -1;
1942 chr->chr_write = mux_chr_write;
1943 chr->chr_update_read_handler = mux_chr_update_read_handler;
1944 chr->chr_accept_input = mux_chr_accept_input;
1945 return chr;
1946 }
1947
1948
1949 #ifdef _WIN32
1950
1951 static void socket_cleanup(void)
1952 {
1953 WSACleanup();
1954 }
1955
1956 static int socket_init(void)
1957 {
1958 WSADATA Data;
1959 int ret, err;
1960
1961 ret = WSAStartup(MAKEWORD(2,2), &Data);
1962 if (ret != 0) {
1963 err = WSAGetLastError();
1964 fprintf(stderr, "WSAStartup: %d\n", err);
1965 return -1;
1966 }
1967 atexit(socket_cleanup);
1968 return 0;
1969 }
1970
1971 static int send_all(int fd, const uint8_t *buf, int len1)
1972 {
1973 int ret, len;
1974
1975 len = len1;
1976 while (len > 0) {
1977 ret = send(fd, buf, len, 0);
1978 if (ret < 0) {
1979 int errno;
1980 errno = WSAGetLastError();
1981 if (errno != WSAEWOULDBLOCK) {
1982 return -1;
1983 }
1984 } else if (ret == 0) {
1985 break;
1986 } else {
1987 buf += ret;
1988 len -= ret;
1989 }
1990 }
1991 return len1 - len;
1992 }
1993
1994 void socket_set_nonblock(int fd)
1995 {
1996 unsigned long opt = 1;
1997 ioctlsocket(fd, FIONBIO, &opt);
1998 }
1999
2000 #else
2001
2002 static int unix_write(int fd, const uint8_t *buf, int len1)
2003 {
2004 int ret, len;
2005
2006 len = len1;
2007 while (len > 0) {
2008 ret = write(fd, buf, len);
2009 if (ret < 0) {
2010 if (errno != EINTR && errno != EAGAIN)
2011 return -1;
2012 } else if (ret == 0) {
2013 break;
2014 } else {
2015 buf += ret;
2016 len -= ret;
2017 }
2018 }
2019 return len1 - len;
2020 }
2021
2022 static inline int send_all(int fd, const uint8_t *buf, int len1)
2023 {
2024 return unix_write(fd, buf, len1);
2025 }
2026
2027 void socket_set_nonblock(int fd)
2028 {
2029 fcntl(fd, F_SETFL, O_NONBLOCK);
2030 }
2031 #endif /* !_WIN32 */
2032
2033 #ifndef _WIN32
2034
2035 typedef struct {
2036 int fd_in, fd_out;
2037 int max_size;
2038 } FDCharDriver;
2039
2040 #define STDIO_MAX_CLIENTS 1
2041 static int stdio_nb_clients = 0;
2042
2043 static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2044 {
2045 FDCharDriver *s = chr->opaque;
2046 return unix_write(s->fd_out, buf, len);
2047 }
2048
2049 static int fd_chr_read_poll(void *opaque)
2050 {
2051 CharDriverState *chr = opaque;
2052 FDCharDriver *s = chr->opaque;
2053
2054 s->max_size = qemu_chr_can_read(chr);
2055 return s->max_size;
2056 }
2057
2058 static void fd_chr_read(void *opaque)
2059 {
2060 CharDriverState *chr = opaque;
2061 FDCharDriver *s = chr->opaque;
2062 int size, len;
2063 uint8_t buf[1024];
2064
2065 len = sizeof(buf);
2066 if (len > s->max_size)
2067 len = s->max_size;
2068 if (len == 0)
2069 return;
2070 size = read(s->fd_in, buf, len);
2071 if (size == 0) {
2072 /* FD has been closed. Remove it from the active list. */
2073 qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
2074 return;
2075 }
2076 if (size > 0) {
2077 qemu_chr_read(chr, buf, size);
2078 }
2079 }
2080
2081 static void fd_chr_update_read_handler(CharDriverState *chr)
2082 {
2083 FDCharDriver *s = chr->opaque;
2084
2085 if (s->fd_in >= 0) {
2086 if (nographic && s->fd_in == 0) {
2087 } else {
2088 qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
2089 fd_chr_read, NULL, chr);
2090 }
2091 }
2092 }
2093
2094 static void fd_chr_close(struct CharDriverState *chr)
2095 {
2096 FDCharDriver *s = chr->opaque;
2097
2098 if (s->fd_in >= 0) {
2099 if (nographic && s->fd_in == 0) {
2100 } else {
2101 qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
2102 }
2103 }
2104
2105 qemu_free(s);
2106 }
2107
2108 /* open a character device to a unix fd */
2109 static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
2110 {
2111 CharDriverState *chr;
2112 FDCharDriver *s;
2113
2114 chr = qemu_mallocz(sizeof(CharDriverState));
2115 if (!chr)
2116 return NULL;
2117 s = qemu_mallocz(sizeof(FDCharDriver));
2118 if (!s) {
2119 free(chr);
2120 return NULL;
2121 }
2122 s->fd_in = fd_in;
2123 s->fd_out = fd_out;
2124 chr->opaque = s;
2125 chr->chr_write = fd_chr_write;
2126 chr->chr_update_read_handler = fd_chr_update_read_handler;
2127 chr->chr_close = fd_chr_close;
2128
2129 qemu_chr_reset(chr);
2130
2131 return chr;
2132 }
2133
2134 static CharDriverState *qemu_chr_open_file_out(const char *file_out)
2135 {
2136 int fd_out;
2137
2138 TFR(fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666));
2139 if (fd_out < 0)
2140 return NULL;
2141 return qemu_chr_open_fd(-1, fd_out);
2142 }
2143
2144 static CharDriverState *qemu_chr_open_pipe(const char *filename)
2145 {
2146 int fd_in, fd_out;
2147 char filename_in[256], filename_out[256];
2148
2149 snprintf(filename_in, 256, "%s.in", filename);
2150 snprintf(filename_out, 256, "%s.out", filename);
2151 TFR(fd_in = open(filename_in, O_RDWR | O_BINARY));
2152 TFR(fd_out = open(filename_out, O_RDWR | O_BINARY));
2153 if (fd_in < 0 || fd_out < 0) {
2154 if (fd_in >= 0)
2155 close(fd_in);
2156 if (fd_out >= 0)
2157 close(fd_out);
2158 TFR(fd_in = fd_out = open(filename, O_RDWR | O_BINARY));
2159 if (fd_in < 0)
2160 return NULL;
2161 }
2162 return qemu_chr_open_fd(fd_in, fd_out);
2163 }
2164
2165
2166 /* for STDIO, we handle the case where several clients use it
2167 (nographic mode) */
2168
2169 #define TERM_FIFO_MAX_SIZE 1
2170
2171 static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
2172 static int term_fifo_size;
2173
2174 static int stdio_read_poll(void *opaque)
2175 {
2176 CharDriverState *chr = opaque;
2177
2178 /* try to flush the queue if needed */
2179 if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
2180 qemu_chr_read(chr, term_fifo, 1);
2181 term_fifo_size = 0;
2182 }
2183 /* see if we can absorb more chars */
2184 if (term_fifo_size == 0)
2185 return 1;
2186 else
2187 return 0;
2188 }
2189
2190 static void stdio_read(void *opaque)
2191 {
2192 int size;
2193 uint8_t buf[1];
2194 CharDriverState *chr = opaque;
2195
2196 size = read(0, buf, 1);
2197 if (size == 0) {
2198 /* stdin has been closed. Remove it from the active list. */
2199 qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2200 return;
2201 }
2202 if (size > 0) {
2203 if (qemu_chr_can_read(chr) > 0) {
2204 qemu_chr_read(chr, buf, 1);
2205 } else if (term_fifo_size == 0) {
2206 term_fifo[term_fifo_size++] = buf[0];
2207 }
2208 }
2209 }
2210
2211 /* init terminal so that we can grab keys */
2212 static struct termios oldtty;
2213 static int old_fd0_flags;
2214 static int term_atexit_done;
2215
2216 static void term_exit(void)
2217 {
2218 tcsetattr (0, TCSANOW, &oldtty);
2219 fcntl(0, F_SETFL, old_fd0_flags);
2220 }
2221
2222 static void term_init(void)
2223 {
2224 struct termios tty;
2225
2226 tcgetattr (0, &tty);
2227 oldtty = tty;
2228 old_fd0_flags = fcntl(0, F_GETFL);
2229
2230 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2231 |INLCR|IGNCR|ICRNL|IXON);
2232 tty.c_oflag |= OPOST;
2233 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
2234 /* if graphical mode, we allow Ctrl-C handling */
2235 if (nographic)
2236 tty.c_lflag &= ~ISIG;
2237 tty.c_cflag &= ~(CSIZE|PARENB);
2238 tty.c_cflag |= CS8;
2239 tty.c_cc[VMIN] = 1;
2240 tty.c_cc[VTIME] = 0;
2241
2242 tcsetattr (0, TCSANOW, &tty);
2243
2244 if (!term_atexit_done++)
2245 atexit(term_exit);
2246
2247 fcntl(0, F_SETFL, O_NONBLOCK);
2248 }
2249
2250 static void qemu_chr_close_stdio(struct CharDriverState *chr)
2251 {
2252 term_exit();
2253 stdio_nb_clients--;
2254 qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2255 fd_chr_close(chr);
2256 }
2257
2258 static CharDriverState *qemu_chr_open_stdio(void)
2259 {
2260 CharDriverState *chr;
2261
2262 if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
2263 return NULL;
2264 chr = qemu_chr_open_fd(0, 1);
2265 chr->chr_close = qemu_chr_close_stdio;
2266 qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
2267 stdio_nb_clients++;
2268 term_init();
2269
2270 return chr;
2271 }
2272
2273 #if defined(__linux__) || defined(__sun__)
2274 static CharDriverState *qemu_chr_open_pty(void)
2275 {
2276 struct termios tty;
2277 char slave_name[1024];
2278 int master_fd, slave_fd;
2279
2280 #if defined(__linux__)
2281 /* Not satisfying */
2282 if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
2283 return NULL;
2284 }
2285 #endif
2286
2287 /* Disabling local echo and line-buffered output */
2288 tcgetattr (master_fd, &tty);
2289 tty.c_lflag &= ~(ECHO|ICANON|ISIG);
2290 tty.c_cc[VMIN] = 1;
2291 tty.c_cc[VTIME] = 0;
2292 tcsetattr (master_fd, TCSAFLUSH, &tty);
2293
2294 fprintf(stderr, "char device redirected to %s\n", slave_name);
2295 return qemu_chr_open_fd(master_fd, master_fd);
2296 }
2297
2298 static void tty_serial_init(int fd, int speed,
2299 int parity, int data_bits, int stop_bits)
2300 {
2301 struct termios tty;
2302 speed_t spd;
2303
2304 #if 0
2305 printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
2306 speed, parity, data_bits, stop_bits);
2307 #endif
2308 tcgetattr (fd, &tty);
2309
2310 #define MARGIN 1.1
2311 if (speed <= 50 * MARGIN)
2312 spd = B50;
2313 else if (speed <= 75 * MARGIN)
2314 spd = B75;
2315 else if (speed <= 300 * MARGIN)
2316 spd = B300;
2317 else if (speed <= 600 * MARGIN)
2318 spd = B600;
2319 else if (speed <= 1200 * MARGIN)
2320 spd = B1200;
2321 else if (speed <= 2400 * MARGIN)
2322 spd = B2400;
2323 else if (speed <= 4800 * MARGIN)
2324 spd = B4800;
2325 else if (speed <= 9600 * MARGIN)
2326 spd = B9600;
2327 else if (speed <= 19200 * MARGIN)
2328 spd = B19200;
2329 else if (speed <= 38400 * MARGIN)
2330 spd = B38400;
2331 else if (speed <= 57600 * MARGIN)
2332 spd = B57600;
2333 else if (speed <= 115200 * MARGIN)
2334 spd = B115200;
2335 else
2336 spd = B115200;
2337
2338 cfsetispeed(&tty, spd);
2339 cfsetospeed(&tty, spd);
2340
2341 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2342 |INLCR|IGNCR|ICRNL|IXON);
2343 tty.c_oflag |= OPOST;
2344 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
2345 tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
2346 switch(data_bits) {
2347 default:
2348 case 8:
2349 tty.c_cflag |= CS8;
2350 break;
2351 case 7:
2352 tty.c_cflag |= CS7;
2353 break;
2354 case 6:
2355 tty.c_cflag |= CS6;
2356 break;
2357 case 5:
2358 tty.c_cflag |= CS5;
2359 break;
2360 }
2361 switch(parity) {
2362 default:
2363 case 'N':
2364 break;
2365 case 'E':
2366 tty.c_cflag |= PARENB;
2367 break;
2368 case 'O':
2369 tty.c_cflag |= PARENB | PARODD;
2370 break;
2371 }
2372 if (stop_bits == 2)
2373 tty.c_cflag |= CSTOPB;
2374
2375 tcsetattr (fd, TCSANOW, &tty);
2376 }
2377
2378 static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
2379 {
2380 FDCharDriver *s = chr->opaque;
2381
2382 switch(cmd) {
2383 case CHR_IOCTL_SERIAL_SET_PARAMS:
2384 {
2385 QEMUSerialSetParams *ssp = arg;
2386 tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
2387 ssp->data_bits, ssp->stop_bits);
2388 }
2389 break;
2390 case CHR_IOCTL_SERIAL_SET_BREAK:
2391 {
2392 int enable = *(int *)arg;
2393 if (enable)
2394 tcsendbreak(s->fd_in, 1);
2395 }
2396 break;
2397 default:
2398 return -ENOTSUP;
2399 }
2400 return 0;
2401 }
2402
2403 static CharDriverState *qemu_chr_open_tty(const char *filename)
2404 {
2405 CharDriverState *chr;
2406 int fd;
2407
2408 TFR(fd = open(filename, O_RDWR | O_NONBLOCK));
2409 fcntl(fd, F_SETFL, O_NONBLOCK);
2410 tty_serial_init(fd, 115200, 'N', 8, 1);
2411 chr = qemu_chr_open_fd(fd, fd);
2412 if (!chr) {
2413 close(fd);
2414 return NULL;
2415 }
2416 chr->chr_ioctl = tty_serial_ioctl;
2417 qemu_chr_reset(chr);
2418 return chr;
2419 }
2420 #else /* ! __linux__ && ! __sun__ */
2421 static CharDriverState *qemu_chr_open_pty(void)
2422 {
2423 return NULL;
2424 }
2425 #endif /* __linux__ || __sun__ */
2426
2427 #if defined(__linux__)
2428 typedef struct {
2429 int fd;
2430 int mode;
2431 } ParallelCharDriver;
2432
2433 static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
2434 {
2435 if (s->mode != mode) {
2436 int m = mode;
2437 if (ioctl(s->fd, PPSETMODE, &m) < 0)
2438 return 0;
2439 s->mode = mode;
2440 }
2441 return 1;
2442 }
2443
2444 static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
2445 {
2446 ParallelCharDriver *drv = chr->opaque;
2447 int fd = drv->fd;
2448 uint8_t b;
2449
2450 switch(cmd) {
2451 case CHR_IOCTL_PP_READ_DATA:
2452 if (ioctl(fd, PPRDATA, &b) < 0)
2453 return -ENOTSUP;
2454 *(uint8_t *)arg = b;
2455 break;
2456 case CHR_IOCTL_PP_WRITE_DATA:
2457 b = *(uint8_t *)arg;
2458 if (ioctl(fd, PPWDATA, &b) < 0)
2459 return -ENOTSUP;
2460 break;
2461 case CHR_IOCTL_PP_READ_CONTROL:
2462 if (ioctl(fd, PPRCONTROL, &b) < 0)
2463 return -ENOTSUP;
2464 /* Linux gives only the lowest bits, and no way to know data
2465 direction! For better compatibility set the fixed upper
2466 bits. */
2467 *(uint8_t *)arg = b | 0xc0;
2468 break;
2469 case CHR_IOCTL_PP_WRITE_CONTROL:
2470 b = *(uint8_t *)arg;
2471 if (ioctl(fd, PPWCONTROL, &b) < 0)
2472 return -ENOTSUP;
2473 break;
2474 case CHR_IOCTL_PP_READ_STATUS:
2475 if (ioctl(fd, PPRSTATUS, &b) < 0)
2476 return -ENOTSUP;
2477 *(uint8_t *)arg = b;
2478 break;
2479 case CHR_IOCTL_PP_EPP_READ_ADDR:
2480 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2481 struct ParallelIOArg *parg = arg;
2482 int n = read(fd, parg->buffer, parg->count);
2483 if (n != parg->count) {
2484 return -EIO;
2485 }
2486 }
2487 break;
2488 case CHR_IOCTL_PP_EPP_READ:
2489 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2490 struct ParallelIOArg *parg = arg;
2491 int n = read(fd, parg->buffer, parg->count);
2492 if (n != parg->count) {
2493 return -EIO;
2494 }
2495 }
2496 break;
2497 case CHR_IOCTL_PP_EPP_WRITE_ADDR:
2498 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2499 struct ParallelIOArg *parg = arg;
2500 int n = write(fd, parg->buffer, parg->count);
2501 if (n != parg->count) {
2502 return -EIO;
2503 }
2504 }
2505 break;
2506 case CHR_IOCTL_PP_EPP_WRITE:
2507 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2508 struct ParallelIOArg *parg = arg;
2509 int n = write(fd, parg->buffer, parg->count);
2510 if (n != parg->count) {
2511 return -EIO;
2512 }
2513 }
2514 break;
2515 default:
2516 return -ENOTSUP;
2517 }
2518 return 0;
2519 }
2520
2521 static void pp_close(CharDriverState *chr)
2522 {
2523 ParallelCharDriver *drv = chr->opaque;
2524 int fd = drv->fd;
2525
2526 pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2527 ioctl(fd, PPRELEASE);
2528 close(fd);
2529 qemu_free(drv);
2530 }
2531
2532 static CharDriverState *qemu_chr_open_pp(const char *filename)
2533 {
2534 CharDriverState *chr;
2535 ParallelCharDriver *drv;
2536 int fd;
2537
2538 TFR(fd = open(filename, O_RDWR));
2539 if (fd < 0)
2540 return NULL;
2541
2542 if (ioctl(fd, PPCLAIM) < 0) {
2543 close(fd);
2544 return NULL;
2545 }
2546
2547 drv = qemu_mallocz(sizeof(ParallelCharDriver));
2548 if (!drv) {
2549 close(fd);
2550 return NULL;
2551 }
2552 drv->fd = fd;
2553 drv->mode = IEEE1284_MODE_COMPAT;
2554
2555 chr = qemu_mallocz(sizeof(CharDriverState));
2556 if (!chr) {
2557 qemu_free(drv);
2558 close(fd);
2559 return NULL;
2560 }
2561 chr->chr_write = null_chr_write;
2562 chr->chr_ioctl = pp_ioctl;
2563 chr->chr_close = pp_close;
2564 chr->opaque = drv;
2565
2566 qemu_chr_reset(chr);
2567
2568 return chr;
2569 }
2570 #endif /* __linux__ */
2571
2572 #else /* _WIN32 */
2573
2574 typedef struct {
2575 int max_size;
2576 HANDLE hcom, hrecv, hsend;
2577 OVERLAPPED orecv, osend;
2578 BOOL fpipe;
2579 DWORD len;
2580 } WinCharState;
2581
2582 #define NSENDBUF 2048
2583 #define NRECVBUF 2048
2584 #define MAXCONNECT 1
2585 #define NTIMEOUT 5000
2586
2587 static int win_chr_poll(void *opaque);
2588 static int win_chr_pipe_poll(void *opaque);
2589
2590 static void win_chr_close(CharDriverState *chr)
2591 {
2592 WinCharState *s = chr->opaque;
2593
2594 if (s->hsend) {
2595 CloseHandle(s->hsend);
2596 s->hsend = NULL;
2597 }
2598 if (s->hrecv) {
2599 CloseHandle(s->hrecv);
2600 s->hrecv = NULL;
2601 }
2602 if (s->hcom) {
2603 CloseHandle(s->hcom);
2604 s->hcom = NULL;
2605 }
2606 if (s->fpipe)
2607 qemu_del_polling_cb(win_chr_pipe_poll, chr);
2608 else
2609 qemu_del_polling_cb(win_chr_poll, chr);
2610 }
2611
2612 static int win_chr_init(CharDriverState *chr, const char *filename)
2613 {
2614 WinCharState *s = chr->opaque;
2615 COMMCONFIG comcfg;
2616 COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2617 COMSTAT comstat;
2618 DWORD size;
2619 DWORD err;
2620
2621 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2622 if (!s->hsend) {
2623 fprintf(stderr, "Failed CreateEvent\n");
2624 goto fail;
2625 }
2626 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2627 if (!s->hrecv) {
2628 fprintf(stderr, "Failed CreateEvent\n");
2629 goto fail;
2630 }
2631
2632 s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2633 OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2634 if (s->hcom == INVALID_HANDLE_VALUE) {
2635 fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2636 s->hcom = NULL;
2637 goto fail;
2638 }
2639
2640 if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
2641 fprintf(stderr, "Failed SetupComm\n");
2642 goto fail;
2643 }
2644
2645 ZeroMemory(&comcfg, sizeof(COMMCONFIG));
2646 size = sizeof(COMMCONFIG);
2647 GetDefaultCommConfig(filename, &comcfg, &size);
2648 comcfg.dcb.DCBlength = sizeof(DCB);
2649 CommConfigDialog(filename, NULL, &comcfg);
2650
2651 if (!SetCommState(s->hcom, &comcfg.dcb)) {
2652 fprintf(stderr, "Failed SetCommState\n");
2653 goto fail;
2654 }
2655
2656 if (!SetCommMask(s->hcom, EV_ERR)) {
2657 fprintf(stderr, "Failed SetCommMask\n");
2658 goto fail;
2659 }
2660
2661 cto.ReadIntervalTimeout = MAXDWORD;
2662 if (!SetCommTimeouts(s->hcom, &cto)) {
2663 fprintf(stderr, "Failed SetCommTimeouts\n");
2664 goto fail;
2665 }
2666
2667 if (!ClearCommError(s->hcom, &err, &comstat)) {
2668 fprintf(stderr, "Failed ClearCommError\n");
2669 goto fail;
2670 }
2671 qemu_add_polling_cb(win_chr_poll, chr);
2672 return 0;
2673
2674 fail:
2675 win_chr_close(chr);
2676 return -1;
2677 }
2678
2679 static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
2680 {
2681 WinCharState *s = chr->opaque;
2682 DWORD len, ret, size, err;
2683
2684 len = len1;
2685 ZeroMemory(&s->osend, sizeof(s->osend));
2686 s->osend.hEvent = s->hsend;
2687 while (len > 0) {
2688 if (s->hsend)
2689 ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
2690 else
2691 ret = WriteFile(s->hcom, buf, len, &size, NULL);
2692 if (!ret) {
2693 err = GetLastError();
2694 if (err == ERROR_IO_PENDING) {
2695 ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
2696 if (ret) {
2697 buf += size;
2698 len -= size;
2699 } else {
2700 break;
2701 }
2702 } else {
2703 break;
2704 }
2705 } else {
2706 buf += size;
2707 len -= size;
2708 }
2709 }
2710 return len1 - len;
2711 }
2712
2713 static int win_chr_read_poll(CharDriverState *chr)
2714 {
2715 WinCharState *s = chr->opaque;
2716
2717 s->max_size = qemu_chr_can_read(chr);
2718 return s->max_size;
2719 }
2720
2721 static void win_chr_readfile(CharDriverState *chr)
2722 {
2723 WinCharState *s = chr->opaque;
2724 int ret, err;
2725 uint8_t buf[1024];
2726 DWORD size;
2727
2728 ZeroMemory(&s->orecv, sizeof(s->orecv));
2729 s->orecv.hEvent = s->hrecv;
2730 ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
2731 if (!ret) {
2732 err = GetLastError();
2733 if (err == ERROR_IO_PENDING) {
2734 ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
2735 }
2736 }
2737
2738 if (size > 0) {
2739 qemu_chr_read(chr, buf, size);
2740 }
2741 }
2742
2743 static void win_chr_read(CharDriverState *chr)
2744 {
2745 WinCharState *s = chr->opaque;
2746
2747 if (s->len > s->max_size)
2748 s->len = s->max_size;
2749 if (s->len == 0)
2750 return;
2751
2752 win_chr_readfile(chr);
2753 }
2754
2755 static int win_chr_poll(void *opaque)
2756 {
2757 CharDriverState *chr = opaque;
2758 WinCharState *s = chr->opaque;
2759 COMSTAT status;
2760 DWORD comerr;
2761
2762 ClearCommError(s->hcom, &comerr, &status);
2763 if (status.cbInQue > 0) {
2764 s->len = status.cbInQue;
2765 win_chr_read_poll(chr);
2766 win_chr_read(chr);
2767 return 1;
2768 }
2769 return 0;
2770 }
2771
2772 static CharDriverState *qemu_chr_open_win(const char *filename)
2773 {
2774 CharDriverState *chr;
2775 WinCharState *s;
2776
2777 chr = qemu_mallocz(sizeof(CharDriverState));
2778 if (!chr)
2779 return NULL;
2780 s = qemu_mallocz(sizeof(WinCharState));
2781 if (!s) {
2782 free(chr);
2783 return NULL;
2784 }
2785 chr->opaque = s;
2786 chr->chr_write = win_chr_write;
2787 chr->chr_close = win_chr_close;
2788
2789 if (win_chr_init(chr, filename) < 0) {
2790 free(s);
2791 free(chr);
2792 return NULL;
2793 }
2794 qemu_chr_reset(chr);
2795 return chr;
2796 }
2797
2798 static int win_chr_pipe_poll(void *opaque)
2799 {
2800 CharDriverState *chr = opaque;
2801 WinCharState *s = chr->opaque;
2802 DWORD size;
2803
2804 PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
2805 if (size > 0) {
2806 s->len = size;
2807 win_chr_read_poll(chr);
2808 win_chr_read(chr);
2809 return 1;
2810 }
2811 return 0;
2812 }
2813
2814 static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
2815 {
2816 WinCharState *s = chr->opaque;
2817 OVERLAPPED ov;
2818 int ret;
2819 DWORD size;
2820 char openname[256];
2821
2822 s->fpipe = TRUE;
2823
2824 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2825 if (!s->hsend) {
2826 fprintf(stderr, "Failed CreateEvent\n");
2827 goto fail;
2828 }
2829 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2830 if (!s->hrecv) {
2831 fprintf(stderr, "Failed CreateEvent\n");
2832 goto fail;
2833 }
2834
2835 snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2836 s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2837 PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2838 PIPE_WAIT,
2839 MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2840 if (s->hcom == INVALID_HANDLE_VALUE) {
2841 fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2842 s->hcom = NULL;
2843 goto fail;
2844 }
2845
2846 ZeroMemory(&ov, sizeof(ov));
2847 ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2848 ret = ConnectNamedPipe(s->hcom, &ov);
2849 if (ret) {
2850 fprintf(stderr, "Failed ConnectNamedPipe\n");
2851 goto fail;
2852 }
2853
2854 ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2855 if (!ret) {
2856 fprintf(stderr, "Failed GetOverlappedResult\n");
2857 if (ov.hEvent) {
2858 CloseHandle(ov.hEvent);
2859 ov.hEvent = NULL;
2860 }
2861 goto fail;
2862 }
2863
2864 if (ov.hEvent) {
2865 CloseHandle(ov.hEvent);
2866 ov.hEvent = NULL;
2867 }
2868 qemu_add_polling_cb(win_chr_pipe_poll, chr);
2869 return 0;
2870
2871 fail:
2872 win_chr_close(chr);
2873 return -1;
2874 }
2875
2876
2877 static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2878 {
2879 CharDriverState *chr;
2880 WinCharState *s;
2881
2882 chr = qemu_mallocz(sizeof(CharDriverState));
2883 if (!chr)
2884 return NULL;
2885 s = qemu_mallocz(sizeof(WinCharState));
2886 if (!s) {
2887 free(chr);
2888 return NULL;
2889 }
2890 chr->opaque = s;
2891 chr->chr_write = win_chr_write;
2892 chr->chr_close = win_chr_close;
2893
2894 if (win_chr_pipe_init(chr, filename) < 0) {
2895 free(s);
2896 free(chr);
2897 return NULL;
2898 }
2899 qemu_chr_reset(chr);
2900 return chr;
2901 }
2902
2903 static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2904 {
2905 CharDriverState *chr;
2906 WinCharState *s;
2907
2908 chr = qemu_mallocz(sizeof(CharDriverState));
2909 if (!chr)
2910 return NULL;
2911 s = qemu_mallocz(sizeof(WinCharState));
2912 if (!s) {
2913 free(chr);
2914 return NULL;
2915 }
2916 s->hcom = fd_out;
2917 chr->opaque = s;
2918 chr->chr_write = win_chr_write;
2919 qemu_chr_reset(chr);
2920 return chr;
2921 }
2922
2923 static CharDriverState *qemu_chr_open_win_con(const char *filename)
2924 {
2925 return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
2926 }
2927
2928 static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2929 {
2930 HANDLE fd_out;
2931
2932 fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2933 OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2934 if (fd_out == INVALID_HANDLE_VALUE)
2935 return NULL;
2936
2937 return qemu_chr_open_win_file(fd_out);
2938 }
2939 #endif /* !_WIN32 */
2940
2941 /***********************************************************/
2942 /* UDP Net console */
2943
2944 typedef struct {
2945 int fd;
2946 struct sockaddr_in daddr;
2947 uint8_t buf[1024];
2948 int bufcnt;
2949 int bufptr;
2950 int max_size;
2951 } NetCharDriver;
2952
2953 static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2954 {
2955 NetCharDriver *s = chr->opaque;
2956
2957 return sendto(s->fd, buf, len, 0,
2958 (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
2959 }
2960
2961 static int udp_chr_read_poll(void *opaque)
2962 {
2963 CharDriverState *chr = opaque;
2964 NetCharDriver *s = chr->opaque;
2965
2966 s->max_size = qemu_chr_can_read(chr);
2967
2968 /* If there were any stray characters in the queue process them
2969 * first
2970 */
2971 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2972 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2973 s->bufptr++;
2974 s->max_size = qemu_chr_can_read(chr);
2975 }
2976 return s->max_size;
2977 }
2978
2979 static void udp_chr_read(void *opaque)
2980 {
2981 CharDriverState *chr = opaque;
2982 NetCharDriver *s = chr->opaque;
2983
2984 if (s->max_size == 0)
2985 return;
2986 s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
2987 s->bufptr = s->bufcnt;
2988 if (s->bufcnt <= 0)
2989 return;
2990
2991 s->bufptr = 0;
2992 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2993 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2994 s->bufptr++;
2995 s->max_size = qemu_chr_can_read(chr);
2996 }
2997 }
2998
2999 static void udp_chr_update_read_handler(CharDriverState *chr)
3000 {
3001 NetCharDriver *s = chr->opaque;
3002
3003 if (s->fd >= 0) {
3004 qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
3005 udp_chr_read, NULL, chr);
3006 }
3007 }
3008
3009 int parse_host_port(struct sockaddr_in *saddr, const char *str);
3010 #ifndef _WIN32
3011 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
3012 #endif
3013 int parse_host_src_port(struct sockaddr_in *haddr,
3014 struct sockaddr_in *saddr,
3015 const char *str);
3016
3017 static CharDriverState *qemu_chr_open_udp(const char *def)
3018 {
3019 CharDriverState *chr = NULL;
3020 NetCharDriver *s = NULL;
3021 int fd = -1;
3022 struct sockaddr_in saddr;
3023
3024 chr = qemu_mallocz(sizeof(CharDriverState));
3025 if (!chr)
3026 goto return_err;
3027 s = qemu_mallocz(sizeof(NetCharDriver));
3028 if (!s)
3029 goto return_err;
3030
3031 fd = socket(PF_INET, SOCK_DGRAM, 0);
3032 if (fd < 0) {
3033 perror("socket(PF_INET, SOCK_DGRAM)");
3034 goto return_err;
3035 }
3036
3037 if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
3038 printf("Could not parse: %s\n", def);
3039 goto return_err;
3040 }
3041
3042 if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
3043 {
3044 perror("bind");
3045 goto return_err;
3046 }
3047
3048 s->fd = fd;
3049 s->bufcnt = 0;
3050 s->bufptr = 0;
3051 chr->opaque = s;
3052 chr->chr_write = udp_chr_write;
3053 chr->chr_update_read_handler = udp_chr_update_read_handler;
3054 return chr;
3055
3056 return_err:
3057 if (chr)
3058 free(chr);
3059 if (s)
3060 free(s);
3061 if (fd >= 0)
3062 closesocket(fd);
3063 return NULL;
3064 }
3065
3066 /***********************************************************/
3067 /* TCP Net console */
3068
3069 typedef struct {
3070 int fd, listen_fd;
3071 int connected;
3072 int max_size;
3073 int do_telnetopt;
3074 int do_nodelay;
3075 int is_unix;
3076 } TCPCharDriver;
3077
3078 static void tcp_chr_accept(void *opaque);
3079
3080 static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
3081 {
3082 TCPCharDriver *s = chr->opaque;
3083 if (s->connected) {
3084 return send_all(s->fd, buf, len);
3085 } else {
3086 /* XXX: indicate an error ? */
3087 return len;
3088 }
3089 }
3090
3091 static int tcp_chr_read_poll(void *opaque)
3092 {
3093 CharDriverState *chr = opaque;
3094 TCPCharDriver *s = chr->opaque;
3095 if (!s->connected)
3096 return 0;
3097 s->max_size = qemu_chr_can_read(chr);
3098 return s->max_size;
3099 }
3100
3101 #define IAC 255
3102 #define IAC_BREAK 243
3103 static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
3104 TCPCharDriver *s,
3105 uint8_t *buf, int *size)
3106 {
3107 /* Handle any telnet client's basic IAC options to satisfy char by
3108 * char mode with no echo. All IAC options will be removed from
3109 * the buf and the do_telnetopt variable will be used to track the
3110 * state of the width of the IAC information.
3111 *
3112 * IAC commands come in sets of 3 bytes with the exception of the
3113 * "IAC BREAK" command and the double IAC.
3114 */
3115
3116 int i;
3117 int j = 0;
3118
3119 for (i = 0; i < *size; i++) {
3120 if (s->do_telnetopt > 1) {
3121 if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
3122 /* Double IAC means send an IAC */
3123 if (j != i)
3124 buf[j] = buf[i];
3125 j++;
3126 s->do_telnetopt = 1;
3127 } else {
3128 if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
3129 /* Handle IAC break commands by sending a serial break */
3130 qemu_chr_event(chr, CHR_EVENT_BREAK);
3131 s->do_telnetopt++;
3132 }
3133 s->do_telnetopt++;
3134 }
3135 if (s->do_telnetopt >= 4) {
3136 s->do_telnetopt = 1;
3137 }
3138 } else {
3139 if ((unsigned char)buf[i] == IAC) {
3140 s->do_telnetopt = 2;
3141 } else {
3142 if (j != i)
3143 buf[j] = buf[i];
3144 j++;
3145 }
3146 }
3147 }
3148 *size = j;
3149 }
3150
3151 static void tcp_chr_read(void *opaque)
3152 {
3153 CharDriverState *chr = opaque;
3154 TCPCharDriver *s = chr->opaque;
3155 uint8_t buf[1024];
3156 int len, size;
3157
3158 if (!s->connected || s->max_size <= 0)
3159 return;
3160 len = sizeof(buf);
3161 if (len > s->max_size)
3162 len = s->max_size;
3163 size = recv(s->fd, buf, len, 0);
3164 if (size == 0) {
3165 /* connection closed */
3166 s->connected = 0;
3167 if (s->listen_fd >= 0) {
3168 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3169 }
3170 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3171 closesocket(s->fd);
3172 s->fd = -1;
3173 } else if (size > 0) {
3174 if (s->do_telnetopt)
3175 tcp_chr_process_IAC_bytes(chr, s, buf, &size);
3176 if (size > 0)
3177 qemu_chr_read(chr, buf, size);
3178 }
3179 }
3180
3181 static void tcp_chr_connect(void *opaque)
3182 {
3183 CharDriverState *chr = opaque;
3184 TCPCharDriver *s = chr->opaque;
3185
3186 s->connected = 1;
3187 qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
3188 tcp_chr_read, NULL, chr);
3189 qemu_chr_reset(chr);
3190 }
3191
3192 #define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
3193 static void tcp_chr_telnet_init(int fd)
3194 {
3195 char buf[3];
3196 /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
3197 IACSET(buf, 0xff, 0xfb, 0x01); /* IAC WILL ECHO */
3198 send(fd, (char *)buf, 3, 0);
3199 IACSET(buf, 0xff, 0xfb, 0x03); /* IAC WILL Suppress go ahead */
3200 send(fd, (char *)buf, 3, 0);
3201 IACSET(buf, 0xff, 0xfb, 0x00); /* IAC WILL Binary */
3202 send(fd, (char *)buf, 3, 0);
3203 IACSET(buf, 0xff, 0xfd, 0x00); /* IAC DO Binary */
3204 send(fd, (char *)buf, 3, 0);
3205 }
3206
3207 static void socket_set_nodelay(int fd)
3208 {
3209 int val = 1;
3210 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
3211 }
3212
3213 static void tcp_chr_accept(void *opaque)
3214 {
3215 CharDriverState *chr = opaque;
3216 TCPCharDriver *s = chr->opaque;
3217 struct sockaddr_in saddr;
3218 #ifndef _WIN32
3219 struct sockaddr_un uaddr;
3220 #endif
3221 struct sockaddr *addr;
3222 socklen_t len;
3223 int fd;
3224
3225 for(;;) {
3226 #ifndef _WIN32
3227 if (s->is_unix) {
3228 len = sizeof(uaddr);
3229 addr = (struct sockaddr *)&uaddr;
3230 } else
3231 #endif
3232 {
3233 len = sizeof(saddr);
3234 addr = (struct sockaddr *)&saddr;
3235 }
3236 fd = accept(s->listen_fd, addr, &len);
3237 if (fd < 0 && errno != EINTR) {
3238 return;
3239 } else if (fd >= 0) {
3240 if (s->do_telnetopt)
3241 tcp_chr_telnet_init(fd);
3242 break;
3243 }
3244 }
3245 socket_set_nonblock(fd);
3246 if (s->do_nodelay)
3247 socket_set_nodelay(fd);
3248 s->fd = fd;
3249 qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
3250 tcp_chr_connect(chr);
3251 }
3252
3253 static void tcp_chr_close(CharDriverState *chr)
3254 {
3255 TCPCharDriver *s = chr->opaque;
3256 if (s->fd >= 0)
3257 closesocket(s->fd);
3258 if (s->listen_fd >= 0)
3259 closesocket(s->listen_fd);
3260 qemu_free(s);
3261 }
3262
3263 static CharDriverState *qemu_chr_open_tcp(const char *host_str,
3264 int is_telnet,
3265 int is_unix)
3266 {
3267 CharDriverState *chr = NULL;
3268 TCPCharDriver *s = NULL;
3269 int fd = -1, ret, err, val;
3270 int is_listen = 0;
3271 int is_waitconnect = 1;
3272 int do_nodelay = 0;
3273 const char *ptr;
3274 struct sockaddr_in saddr;
3275 #ifndef _WIN32
3276 struct sockaddr_un uaddr;
3277 #endif
3278 struct sockaddr *addr;
3279 socklen_t addrlen;
3280
3281 #ifndef _WIN32
3282 if (is_unix) {
3283 addr = (struct sockaddr *)&uaddr;
3284 addrlen = sizeof(uaddr);
3285 if (parse_unix_path(&uaddr, host_str) < 0)
3286 goto fail;
3287 } else
3288 #endif
3289 {
3290 addr = (struct sockaddr *)&saddr;
3291 addrlen = sizeof(saddr);
3292 if (parse_host_port(&saddr, host_str) < 0)
3293 goto fail;
3294 }
3295
3296 ptr = host_str;
3297 while((ptr = strchr(ptr,','))) {
3298 ptr++;
3299 if (!strncmp(ptr,"server",6)) {
3300 is_listen = 1;
3301 } else if (!strncmp(ptr,"nowait",6)) {
3302 is_waitconnect = 0;
3303 } else if (!strncmp(ptr,"nodelay",6)) {
3304 do_nodelay = 1;
3305 } else {
3306 printf("Unknown option: %s\n", ptr);
3307 goto fail;
3308 }
3309 }
3310 if (!is_listen)
3311 is_waitconnect = 0;
3312
3313 chr = qemu_mallocz(sizeof(CharDriverState));
3314 if (!chr)
3315 goto fail;
3316 s = qemu_mallocz(sizeof(TCPCharDriver));
3317 if (!s)
3318 goto fail;
3319
3320 #ifndef _WIN32
3321 if (is_unix)
3322 fd = socket(PF_UNIX, SOCK_STREAM, 0);
3323 else
3324 #endif
3325 fd = socket(PF_INET, SOCK_STREAM, 0);
3326
3327 if (fd < 0)
3328 goto fail;
3329
3330 if (!is_waitconnect)
3331 socket_set_nonblock(fd);
3332
3333 s->connected = 0;
3334 s->fd = -1;
3335 s->listen_fd = -1;
3336 s->is_unix = is_unix;
3337 s->do_nodelay = do_nodelay && !is_unix;
3338
3339 chr->opaque = s;
3340 chr->chr_write = tcp_chr_write;
3341 chr->chr_close = tcp_chr_close;
3342
3343 if (is_listen) {
3344 /* allow fast reuse */
3345 #ifndef _WIN32
3346 if (is_unix) {
3347 char path[109];
3348 strncpy(path, uaddr.sun_path, 108);
3349 path[108] = 0;
3350 unlink(path);
3351 } else
3352 #endif
3353 {
3354 val = 1;
3355 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3356 }
3357
3358 ret = bind(fd, addr, addrlen);
3359 if (ret < 0)
3360 goto fail;
3361
3362 ret = listen(fd, 0);
3363 if (ret < 0)
3364 goto fail;
3365
3366 s->listen_fd = fd;
3367 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3368 if (is_telnet)
3369 s->do_telnetopt = 1;
3370 } else {
3371 for(;;) {
3372 ret = connect(fd, addr, addrlen);
3373 if (ret < 0) {
3374 err = socket_error();
3375 if (err == EINTR || err == EWOULDBLOCK) {
3376 } else if (err == EINPROGRESS) {
3377 break;
3378 #ifdef _WIN32
3379 } else if (err == WSAEALREADY) {
3380 break;
3381 #endif
3382 } else {
3383 goto fail;
3384 }
3385 } else {
3386 s->connected = 1;
3387 break;
3388 }
3389 }
3390 s->fd = fd;
3391 socket_set_nodelay(fd);
3392 if (s->connected)
3393 tcp_chr_connect(chr);
3394 else
3395 qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
3396 }
3397
3398 if (is_listen && is_waitconnect) {
3399 printf("QEMU waiting for connection on: %s\n", host_str);
3400 tcp_chr_accept(chr);
3401 socket_set_nonblock(s->listen_fd);
3402 }
3403
3404 return chr;
3405 fail:
3406 if (fd >= 0)
3407 closesocket(fd);
3408 qemu_free(s);
3409 qemu_free(chr);
3410 return NULL;
3411 }
3412
3413 CharDriverState *qemu_chr_open(const char *filename)
3414 {
3415 const char *p;
3416
3417 if (!strcmp(filename, "vc")) {
3418 return text_console_init(&display_state, 0);
3419 } else if (strstart(filename, "vc:", &p)) {
3420 return text_console_init(&display_state, p);
3421 } else if (!strcmp(filename, "null")) {
3422 return qemu_chr_open_null();
3423 } else
3424 if (strstart(filename, "tcp:", &p)) {
3425 return qemu_chr_open_tcp(p, 0, 0);
3426 } else
3427 if (strstart(filename, "telnet:", &p)) {
3428 return qemu_chr_open_tcp(p, 1, 0);
3429 } else
3430 if (strstart(filename, "udp:", &p)) {
3431 return qemu_chr_open_udp(p);
3432 } else
3433 if (strstart(filename, "mon:", &p)) {
3434 CharDriverState *drv = qemu_chr_open(p);
3435 if (drv) {
3436 drv = qemu_chr_open_mux(drv);
3437 monitor_init(drv, !nographic);
3438 return drv;
3439 }
3440 printf("Unable to open driver: %s\n", p);
3441 return 0;
3442 } else
3443 #ifndef _WIN32
3444 if (strstart(filename, "unix:", &p)) {
3445 return qemu_chr_open_tcp(p, 0, 1);
3446 } else if (strstart(filename, "file:", &p)) {
3447 return qemu_chr_open_file_out(p);
3448 } else if (strstart(filename, "pipe:", &p)) {
3449 return qemu_chr_open_pipe(p);
3450 } else if (!strcmp(filename, "pty")) {
3451 return qemu_chr_open_pty();
3452 } else if (!strcmp(filename, "stdio")) {
3453 return qemu_chr_open_stdio();
3454 } else
3455 #if defined(__linux__)
3456 if (strstart(filename, "/dev/parport", NULL)) {
3457 return qemu_chr_open_pp(filename);
3458 } else
3459 #endif
3460 #if defined(__linux__) || defined(__sun__)
3461 if (strstart(filename, "/dev/", NULL)) {
3462 return qemu_chr_open_tty(filename);
3463 } else
3464 #endif
3465 #else /* !_WIN32 */
3466 if (strstart(filename, "COM", NULL)) {
3467 return qemu_chr_open_win(filename);
3468 } else
3469 if (strstart(filename, "pipe:", &p)) {
3470 return qemu_chr_open_win_pipe(p);
3471 } else
3472 if (strstart(filename, "con:", NULL)) {
3473 return qemu_chr_open_win_con(filename);
3474 } else
3475 if (strstart(filename, "file:", &p)) {
3476 return qemu_chr_open_win_file_out(p);
3477 } else
3478 #endif
3479 #ifdef CONFIG_BRLAPI
3480 if (!strcmp(filename, "braille")) {
3481 return chr_baum_init();
3482 } else
3483 #endif
3484 {
3485 return NULL;
3486 }
3487 }
3488
3489 void qemu_chr_close(CharDriverState *chr)
3490 {
3491 if (chr->chr_close)
3492 chr->chr_close(chr);
3493 qemu_free(chr);
3494 }
3495
3496 /***********************************************************/
3497 /* network device redirectors */
3498
3499 __attribute__ (( unused ))
3500 static void hex_dump(FILE *f, const uint8_t *buf, int size)
3501 {
3502 int len, i, j, c;
3503
3504 for(i=0;i<size;i+=16) {
3505 len = size - i;
3506 if (len > 16)
3507 len = 16;
3508 fprintf(f, "%08x ", i);
3509 for(j=0;j<16;j++) {
3510 if (j < len)
3511 fprintf(f, " %02x", buf[i+j]);
3512 else
3513 fprintf(f, " ");
3514 }
3515 fprintf(f, " ");
3516 for(j=0;j<len;j++) {
3517 c = buf[i+j];
3518 if (c < ' ' || c > '~')
3519 c = '.';
3520 fprintf(f, "%c", c);
3521 }
3522 fprintf(f, "\n");
3523 }
3524 }
3525
3526 static int parse_macaddr(uint8_t *macaddr, const char *p)
3527 {
3528 int i;
3529 char *last_char;
3530 long int offset;
3531
3532 errno = 0;
3533 offset = strtol(p, &last_char, 0);
3534 if (0 == errno && '\0' == *last_char &&
3535 offset >= 0 && offset <= 0xFFFFFF) {
3536 macaddr[3] = (offset & 0xFF0000) >> 16;
3537 macaddr[4] = (offset & 0xFF00) >> 8;
3538 macaddr[5] = offset & 0xFF;
3539 return 0;
3540 } else {
3541 for(i = 0; i < 6; i++) {
3542 macaddr[i] = strtol(p, (char **)&p, 16);
3543 if (i == 5) {
3544 if (*p != '\0')
3545 return -1;
3546 } else {
3547 if (*p != ':' && *p != '-')
3548 return -1;
3549 p++;
3550 }
3551 }
3552 return 0;
3553 }
3554
3555 return -1;
3556 }
3557
3558 static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3559 {
3560 const char *p, *p1;
3561 int len;
3562 p = *pp;
3563 p1 = strchr(p, sep);
3564 if (!p1)
3565 return -1;
3566 len = p1 - p;
3567 p1++;
3568 if (buf_size > 0) {
3569 if (len > buf_size - 1)
3570 len = buf_size - 1;
3571 memcpy(buf, p, len);
3572 buf[len] = '\0';
3573 }
3574 *pp = p1;
3575 return 0;
3576 }
3577
3578 int parse_host_src_port(struct sockaddr_in *haddr,
3579 struct sockaddr_in *saddr,
3580 const char *input_str)
3581 {
3582 char *str = strdup(input_str);
3583 char *host_str = str;
3584 char *src_str;
3585 char *ptr;
3586
3587 /*
3588 * Chop off any extra arguments at the end of the string which
3589 * would start with a comma, then fill in the src port information
3590 * if it was provided else use the "any address" and "any port".
3591 */
3592 if ((ptr = strchr(str,',')))
3593 *ptr = '\0';
3594
3595 if ((src_str = strchr(input_str,'@'))) {
3596 *src_str = '\0';
3597 src_str++;
3598 }
3599
3600 if (parse_host_port(haddr, host_str) < 0)
3601 goto fail;
3602
3603 if (!src_str || *src_str == '\0')
3604 src_str = ":0";
3605
3606 if (parse_host_port(saddr, src_str) < 0)
3607 goto fail;
3608
3609 free(str);
3610 return(0);
3611
3612 fail:
3613 free(str);
3614 return -1;
3615 }
3616
3617 int parse_host_port(struct sockaddr_in *saddr, const char *str)
3618 {
3619 char buf[512];
3620 struct hostent *he;
3621 const char *p, *r;
3622 int port;
3623
3624 p = str;
3625 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3626 return -1;
3627 saddr->sin_family = AF_INET;
3628 if (buf[0] == '\0') {
3629 saddr->sin_addr.s_addr = 0;
3630 } else {
3631 if (isdigit(buf[0])) {
3632 if (!inet_aton(buf, &saddr->sin_addr))
3633 return -1;
3634 } else {
3635 if ((he = gethostbyname(buf)) == NULL)
3636 return - 1;
3637 saddr->sin_addr = *(struct in_addr *)he->h_addr;
3638 }
3639 }
3640 port = strtol(p, (char **)&r, 0);
3641 if (r == p)
3642 return -1;
3643 saddr->sin_port = htons(port);
3644 return 0;
3645 }
3646
3647 #ifndef _WIN32
3648 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
3649 {
3650 const char *p;
3651 int len;
3652
3653 len = MIN(108, strlen(str));
3654 p = strchr(str, ',');
3655 if (p)
3656 len = MIN(len, p - str);
3657
3658 memset(uaddr, 0, sizeof(*uaddr));
3659
3660 uaddr->sun_family = AF_UNIX;
3661 memcpy(uaddr->sun_path, str, len);
3662
3663 return 0;
3664 }
3665 #endif
3666
3667 /* find or alloc a new VLAN */
3668 VLANState *qemu_find_vlan(int id)
3669 {
3670 VLANState **pvlan, *vlan;
3671 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3672 if (vlan->id == id)
3673 return vlan;
3674 }
3675 vlan = qemu_mallocz(sizeof(VLANState));
3676 if (!vlan)
3677 return NULL;
3678 vlan->id = id;
3679 vlan->next = NULL;
3680 pvlan = &first_vlan;
3681 while (*pvlan != NULL)
3682 pvlan = &(*pvlan)->next;
3683 *pvlan = vlan;
3684 return vlan;
3685 }
3686
3687 VLANClientState *qemu_new_vlan_client(VLANState *vlan,
3688 IOReadHandler *fd_read,
3689 IOCanRWHandler *fd_can_read,
3690 void *opaque)
3691 {
3692 VLANClientState *vc, **pvc;
3693 vc = qemu_mallocz(sizeof(VLANClientState));
3694 if (!vc)
3695 return NULL;
3696 vc->fd_read = fd_read;
3697 vc->fd_can_read = fd_can_read;
3698 vc->opaque = opaque;
3699 vc->vlan = vlan;
3700
3701 vc->next = NULL;
3702 pvc = &vlan->first_client;
3703 while (*pvc != NULL)
3704 pvc = &(*pvc)->next;
3705 *pvc = vc;
3706 return vc;
3707 }
3708
3709 int qemu_can_send_packet(VLANClientState *vc1)
3710 {
3711 VLANState *vlan = vc1->vlan;
3712 VLANClientState *vc;
3713
3714 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3715 if (vc != vc1) {
3716 if (vc->fd_can_read && vc->fd_can_read(vc->opaque))
3717 return 1;
3718 }
3719 }
3720 return 0;
3721 }
3722
3723 void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
3724 {
3725 VLANState *vlan = vc1->vlan;
3726 VLANClientState *vc;
3727
3728 #if 0
3729 printf("vlan %d send:\n", vlan->id);
3730 hex_dump(stdout, buf, size);
3731 #endif
3732 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3733 if (vc != vc1) {
3734 vc->fd_read(vc->opaque, buf, size);
3735 }
3736 }
3737 }
3738
3739 #if defined(CONFIG_SLIRP)
3740
3741 /* slirp network adapter */
3742
3743 static int slirp_inited;
3744 static VLANClientState *slirp_vc;
3745
3746 int slirp_can_output(void)
3747 {
3748 return !slirp_vc || qemu_can_send_packet(slirp_vc);
3749 }
3750
3751 void slirp_output(const uint8_t *pkt, int pkt_len)
3752 {
3753 #if 0
3754 printf("slirp output:\n");
3755 hex_dump(stdout, pkt, pkt_len);
3756 #endif
3757 if (!slirp_vc)
3758 return;
3759 qemu_send_packet(slirp_vc, pkt, pkt_len);
3760 }
3761
3762 static void slirp_receive(void *opaque, const uint8_t *buf, int size)
3763 {
3764 #if 0
3765 printf("slirp input:\n");
3766 hex_dump(stdout, buf, size);
3767 #endif
3768 slirp_input(buf, size);
3769 }
3770
3771 static int net_slirp_init(VLANState *vlan)
3772 {
3773 if (!slirp_inited) {
3774 slirp_inited = 1;
3775 slirp_init();
3776 }
3777 slirp_vc = qemu_new_vlan_client(vlan,
3778 slirp_receive, NULL, NULL);
3779 snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
3780 return 0;
3781 }
3782
3783 static void net_slirp_redir(const char *redir_str)
3784 {
3785 int is_udp;
3786 char buf[256], *r;
3787 const char *p;
3788 struct in_addr guest_addr;
3789 int host_port, guest_port;
3790
3791 if (!slirp_inited) {
3792 slirp_inited = 1;
3793 slirp_init();
3794 }
3795
3796 p = redir_str;
3797 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3798 goto fail;
3799 if (!strcmp(buf, "tcp")) {
3800 is_udp = 0;
3801 } else if (!strcmp(buf, "udp")) {
3802 is_udp = 1;
3803 } else {
3804 goto fail;
3805 }
3806
3807 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3808 goto fail;
3809 host_port = strtol(buf, &r, 0);
3810 if (r == buf)
3811 goto fail;
3812
3813 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3814 goto fail;
3815 if (buf[0] == '\0') {
3816 pstrcpy(buf, sizeof(buf), "10.0.2.15");
3817 }
3818 if (!inet_aton(buf, &guest_addr))
3819 goto fail;
3820
3821 guest_port = strtol(p, &r, 0);
3822 if (r == p)
3823 goto fail;
3824
3825 if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
3826 fprintf(stderr, "qemu: could not set up redirection\n");
3827 exit(1);
3828 }
3829 return;
3830 fail:
3831 fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
3832 exit(1);
3833 }
3834
3835 #ifndef _WIN32
3836
3837 char smb_dir[1024];
3838
3839 static void erase_dir(char *dir_name)
3840 {
3841 DIR *d;
3842 struct dirent *de;
3843 char filename[1024];
3844
3845 /* erase all the files in the directory */
3846 if ((d = opendir(dir_name)) != 0) {
3847 for(;;) {
3848 de = readdir(d);
3849 if (!de)
3850 break;
3851 if (strcmp(de->d_name, ".") != 0 &&
3852 strcmp(de->d_name, "..") != 0) {
3853 snprintf(filename, sizeof(filename), "%s/%s",
3854 smb_dir, de->d_name);
3855 if (unlink(filename) != 0) /* is it a directory? */
3856 erase_dir(filename);
3857 }
3858 }
3859 closedir(d);
3860 rmdir(dir_name);
3861 }
3862 }
3863
3864 /* automatic user mode samba server configuration */
3865 static void smb_exit(void)
3866 {
3867 erase_dir(smb_dir);
3868 }
3869
3870 /* automatic user mode samba server configuration */
3871 static void net_slirp_smb(const char *exported_dir)
3872 {
3873 char smb_conf[1024];
3874 char smb_cmdline[1024];
3875 FILE *f;
3876
3877 if (!slirp_inited) {
3878 slirp_inited = 1;
3879 slirp_init();
3880 }
3881
3882 /* XXX: better tmp dir construction */
3883 snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
3884 if (mkdir(smb_dir, 0700) < 0) {
3885 fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
3886 exit(1);
3887 }
3888 snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
3889
3890 f = fopen(smb_conf, "w");
3891 if (!f) {
3892 fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
3893 exit(1);
3894 }
3895 fprintf(f,
3896 "[global]\n"
3897 "private dir=%s\n"
3898 "smb ports=0\n"
3899 "socket address=127.0.0.1\n"
3900 "pid directory=%s\n"
3901 "lock directory=%s\n"
3902 "log file=%s/log.smbd\n"
3903 "smb passwd file=%s/smbpasswd\n"
3904 "security = share\n"
3905 "[qemu]\n"
3906 "path=%s\n"
3907 "read only=no\n"
3908 "guest ok=yes\n",
3909 smb_dir,
3910 smb_dir,
3911 smb_dir,
3912 smb_dir,
3913 smb_dir,
3914 exported_dir
3915 );
3916 fclose(f);
3917 atexit(smb_exit);
3918
3919 snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
3920 SMBD_COMMAND, smb_conf);
3921
3922 slirp_add_exec(0, smb_cmdline, 4, 139);
3923 }
3924
3925 #endif /* !defined(_WIN32) */
3926 void do_info_slirp(void)
3927 {
3928 slirp_stats();
3929 }
3930
3931 #endif /* CONFIG_SLIRP */
3932
3933 #if !defined(_WIN32)
3934
3935 typedef struct TAPState {
3936 VLANClientState *vc;
3937 int fd;
3938 char down_script[1024];
3939 } TAPState;
3940
3941 static void tap_receive(void *opaque, const uint8_t *buf, int size)
3942 {
3943 TAPState *s = opaque;
3944 int ret;
3945 for(;;) {
3946 ret = write(s->fd, buf, size);
3947 if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
3948 } else {
3949 break;
3950 }
3951 }
3952 }
3953
3954 static void tap_send(void *opaque)
3955 {
3956 TAPState *s = opaque;
3957 uint8_t buf[4096];
3958 int size;
3959
3960 #ifdef __sun__
3961 struct strbuf sbuf;
3962 int f = 0;
3963 sbuf.maxlen = sizeof(buf);
3964 sbuf.buf = buf;
3965 size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
3966 #else
3967 size = read(s->fd, buf, sizeof(buf));
3968 #endif
3969 if (size > 0) {
3970 qemu_send_packet(s->vc, buf, size);
3971 }
3972 }
3973
3974 /* fd support */
3975
3976 static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
3977 {
3978 TAPState *s;
3979
3980 s = qemu_mallocz(sizeof(TAPState));
3981 if (!s)
3982 return NULL;
3983 s->fd = fd;
3984 s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
3985 qemu_set_fd_handler(s->fd, tap_send, NULL, s);
3986 snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
3987 return s;
3988 }
3989
3990 #if defined (_BSD) || defined (__FreeBSD_kernel__)
3991 static int tap_open(char *ifname, int ifname_size)
3992 {
3993 int fd;
3994 char *dev;
3995 struct stat s;
3996
3997 TFR(fd = open("/dev/tap", O_RDWR));
3998 if (fd < 0) {
3999 fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
4000 return -1;
4001 }
4002
4003 fstat(fd, &s);
4004 dev = devname(s.st_rdev, S_IFCHR);
4005 pstrcpy(ifname, ifname_size, dev);
4006
4007 fcntl(fd, F_SETFL, O_NONBLOCK);
4008 return fd;
4009 }
4010 #elif defined(__sun__)
4011 #define TUNNEWPPA (('T'<<16) | 0x0001)
4012 /*
4013 * Allocate TAP device, returns opened fd.
4014 * Stores dev name in the first arg(must be large enough).
4015 */
4016 int tap_alloc(char *dev)
4017 {
4018 int tap_fd, if_fd, ppa = -1;
4019 static int ip_fd = 0;
4020 char *ptr;
4021
4022 static int arp_fd = 0;
4023 int ip_muxid, arp_muxid;
4024 struct strioctl strioc_if, strioc_ppa;
4025 int link_type = I_PLINK;;
4026 struct lifreq ifr;
4027 char actual_name[32] = "";
4028
4029 memset(&ifr, 0x0, sizeof(ifr));
4030
4031 if( *dev ){
4032 ptr = dev;
4033 while( *ptr && !isdigit((int)*ptr) ) ptr++;
4034 ppa = atoi(ptr);
4035 }
4036
4037 /* Check if IP device was opened */
4038 if( ip_fd )
4039 close(ip_fd);
4040
4041 TFR(ip_fd = open("/dev/udp", O_RDWR, 0));
4042 if (ip_fd < 0) {
4043 syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
4044 return -1;
4045 }
4046
4047 TFR(tap_fd = open("/dev/tap", O_RDWR, 0));
4048 if (tap_fd < 0) {
4049 syslog(LOG_ERR, "Can't open /dev/tap");
4050 return -1;
4051 }
4052
4053 /* Assign a new PPA and get its unit number. */
4054 strioc_ppa.ic_cmd = TUNNEWPPA;
4055 strioc_ppa.ic_timout = 0;
4056 strioc_ppa.ic_len = sizeof(ppa);
4057 strioc_ppa.ic_dp = (char *)&ppa;
4058 if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
4059 syslog (LOG_ERR, "Can't assign new interface");
4060
4061 TFR(if_fd = open("/dev/tap", O_RDWR, 0));
4062 if (if_fd < 0) {
4063 syslog(LOG_ERR, "Can't open /dev/tap (2)");
4064 return -1;
4065 }
4066 if(ioctl(if_fd, I_PUSH, "ip") < 0){
4067 syslog(LOG_ERR, "Can't push IP module");
4068 return -1;
4069 }
4070
4071 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
4072 syslog(LOG_ERR, "Can't get flags\n");
4073
4074 snprintf (actual_name, 32, "tap%d", ppa);
4075 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
4076
4077 ifr.lifr_ppa = ppa;
4078 /* Assign ppa according to the unit number returned by tun device */
4079
4080 if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
4081 syslog (LOG_ERR, "Can't set PPA %d", ppa);
4082 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
4083 syslog (LOG_ERR, "Can't get flags\n");
4084 /* Push arp module to if_fd */
4085 if (ioctl (if_fd, I_PUSH, "arp") < 0)
4086 syslog (LOG_ERR, "Can't push ARP module (2)");
4087
4088 /* Push arp module to ip_fd */
4089 if (ioctl (ip_fd, I_POP, NULL) < 0)
4090 syslog (LOG_ERR, "I_POP failed\n");
4091 if (ioctl (ip_fd, I_PUSH, "arp") < 0)
4092 syslog (LOG_ERR, "Can't push ARP module (3)\n");
4093 /* Open arp_fd */
4094 TFR(arp_fd = open ("/dev/tap", O_RDWR, 0));
4095 if (arp_fd < 0)
4096 syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
4097
4098 /* Set ifname to arp */
4099 strioc_if.ic_cmd = SIOCSLIFNAME;
4100 strioc_if.ic_timout = 0;
4101 strioc_if.ic_len = sizeof(ifr);
4102 strioc_if.ic_dp = (char *)&ifr;
4103 if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
4104 syslog (LOG_ERR, "Can't set ifname to arp\n");
4105 }
4106
4107 if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
4108 syslog(LOG_ERR, "Can't link TAP device to IP");
4109 return -1;
4110 }
4111
4112 if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
4113 syslog (LOG_ERR, "Can't link TAP device to ARP");
4114
4115 close (if_fd);
4116
4117 memset(&ifr, 0x0, sizeof(ifr));
4118 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
4119 ifr.lifr_ip_muxid = ip_muxid;
4120 ifr.lifr_arp_muxid = arp_muxid;
4121
4122 if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
4123 {
4124 ioctl (ip_fd, I_PUNLINK , arp_muxid);
4125 ioctl (ip_fd, I_PUNLINK, ip_muxid);
4126 syslog (LOG_ERR, "Can't set multiplexor id");
4127 }
4128
4129 sprintf(dev, "tap%d", ppa);
4130 return tap_fd;
4131 }
4132
4133 static int tap_open(char *ifname, int ifname_size)
4134 {
4135 char dev[10]="";
4136 int fd;
4137 if( (fd = tap_alloc(dev)) < 0 ){
4138 fprintf(stderr, "Cannot allocate TAP device\n");
4139 return -1;
4140 }
4141 pstrcpy(ifname, ifname_size, dev);
4142 fcntl(fd, F_SETFL, O_NONBLOCK);
4143 return fd;
4144 }
4145 #else
4146 static int tap_open(char *ifname, int ifname_size)
4147 {
4148 struct ifreq ifr;
4149 int fd, ret;
4150
4151 TFR(fd = open("/dev/net/tun", O_RDWR));
4152 if (fd < 0) {
4153 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
4154 return -1;
4155 }
4156 memset(&ifr, 0, sizeof(ifr));
4157 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
4158 if (ifname[0] != '\0')
4159 pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
4160 else
4161 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
4162 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
4163 if (ret != 0) {
4164 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
4165 close(fd);
4166 return -1;
4167 }
4168 pstrcpy(ifname, ifname_size, ifr.ifr_name);
4169 fcntl(fd, F_SETFL, O_NONBLOCK);
4170 return fd;
4171 }
4172 #endif
4173
4174 static int launch_script(const char *setup_script, const char *ifname, int fd)
4175 {
4176 int pid, status;
4177 char *args[3];
4178 char **parg;
4179
4180 /* try to launch network script */
4181 pid = fork();
4182 if (pid >= 0) {
4183 if (pid == 0) {
4184 int open_max = sysconf (_SC_OPEN_MAX), i;
4185 for (i = 0; i < open_max; i++)
4186 if (i != STDIN_FILENO &&
4187 i != STDOUT_FILENO &&
4188 i != STDERR_FILENO &&
4189 i != fd)
4190 close(i);
4191
4192 parg = args;
4193 *parg++ = (char *)setup_script;
4194 *parg++ = (char *)ifname;
4195 *parg++ = NULL;
4196 execv(setup_script, args);
4197 _exit(1);
4198 }
4199 while (waitpid(pid, &status, 0) != pid);
4200 if (!WIFEXITED(status) ||
4201 WEXITSTATUS(status) != 0) {
4202 fprintf(stderr, "%s: could not launch network script\n",
4203 setup_script);
4204 return -1;
4205 }
4206 }
4207 return 0;
4208 }
4209
4210 static int net_tap_init(VLANState *vlan, const char *ifname1,
4211 const char *setup_script, const char *down_script)
4212 {
4213 TAPState *s;
4214 int fd;
4215 char ifname[128];
4216
4217 if (ifname1 != NULL)
4218 pstrcpy(ifname, sizeof(ifname), ifname1);
4219 else
4220 ifname[0] = '\0';
4221 TFR(fd = tap_open(ifname, sizeof(ifname)));
4222 if (fd < 0)
4223 return -1;
4224
4225 if (!setup_script || !strcmp(setup_script, "no"))
4226 setup_script = "";
4227 if (setup_script[0] != '\0') {
4228 if (launch_script(setup_script, ifname, fd))
4229 return -1;
4230 }
4231 s = net_tap_fd_init(vlan, fd);
4232 if (!s)
4233 return -1;
4234 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4235 "tap: ifname=%s setup_script=%s", ifname, setup_script);
4236 if (down_script && strcmp(down_script, "no"))
4237 snprintf(s->down_script, sizeof(s->down_script), "%s", down_script);
4238 return 0;
4239 }
4240
4241 #endif /* !_WIN32 */
4242
4243 /* network connection */
4244 typedef struct NetSocketState {
4245 VLANClientState *vc;
4246 int fd;
4247 int state; /* 0 = getting length, 1 = getting data */
4248 int index;
4249 int packet_len;
4250 uint8_t buf[4096];
4251 struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
4252 } NetSocketState;
4253
4254 typedef struct NetSocketListenState {
4255 VLANState *vlan;
4256 int fd;
4257 } NetSocketListenState;
4258
4259 /* XXX: we consider we can send the whole packet without blocking */
4260 static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
4261 {
4262 NetSocketState *s = opaque;
4263 uint32_t len;
4264 len = htonl(size);
4265
4266 send_all(s->fd, (const uint8_t *)&len, sizeof(len));
4267 send_all(s->fd, buf, size);
4268 }
4269
4270 static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
4271 {
4272 NetSocketState *s = opaque;
4273 sendto(s->fd, buf, size, 0,
4274 (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
4275 }
4276
4277 static void net_socket_send(void *opaque)
4278 {
4279 NetSocketState *s = opaque;
4280 int l, size, err;
4281 uint8_t buf1[4096];
4282 const uint8_t *buf;
4283
4284 size = recv(s->fd, buf1, sizeof(buf1), 0);
4285 if (size < 0) {
4286 err = socket_error();
4287 if (err != EWOULDBLOCK)
4288 goto eoc;
4289 } else if (size == 0) {
4290 /* end of connection */
4291 eoc:
4292 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4293 closesocket(s->fd);
4294 return;
4295 }
4296 buf = buf1;
4297 while (size > 0) {
4298 /* reassemble a packet from the network */
4299 switch(s->state) {
4300 case 0:
4301 l = 4 - s->index;
4302 if (l > size)
4303 l = size;
4304 memcpy(s->buf + s->index, buf, l);
4305 buf += l;
4306 size -= l;
4307 s->index += l;
4308 if (s->index == 4) {
4309 /* got length */
4310 s->packet_len = ntohl(*(uint32_t *)s->buf);
4311 s->index = 0;
4312 s->state = 1;
4313 }
4314 break;
4315 case 1:
4316 l = s->packet_len - s->index;
4317 if (l > size)
4318 l = size;
4319 memcpy(s->buf + s->index, buf, l);
4320 s->index += l;
4321 buf += l;
4322 size -= l;
4323 if (s->index >= s->packet_len) {
4324 qemu_send_packet(s->vc, s->buf, s->packet_len);
4325 s->index = 0;
4326 s->state = 0;
4327 }
4328 break;
4329 }
4330 }
4331 }
4332
4333 static void net_socket_send_dgram(void *opaque)
4334 {
4335 NetSocketState *s = opaque;
4336 int size;
4337
4338 size = recv(s->fd, s->buf, sizeof(s->buf), 0);
4339 if (size < 0)
4340 return;
4341 if (size == 0) {
4342 /* end of connection */
4343 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4344 return;
4345 }
4346 qemu_send_packet(s->vc, s->buf, size);
4347 }
4348
4349 static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
4350 {
4351 struct ip_mreq imr;
4352 int fd;
4353 int val, ret;
4354 if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
4355 fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
4356 inet_ntoa(mcastaddr->sin_addr),
4357 (int)ntohl(mcastaddr->sin_addr.s_addr));
4358 return -1;
4359
4360 }
4361 fd = socket(PF_INET, SOCK_DGRAM, 0);
4362 if (fd < 0) {
4363 perror("socket(PF_INET, SOCK_DGRAM)");
4364 return -1;
4365 }
4366
4367 val = 1;
4368 ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
4369 (const char *)&val, sizeof(val));
4370 if (ret < 0) {
4371 perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
4372 goto fail;
4373 }
4374
4375 ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
4376 if (ret < 0) {
4377 perror("bind");
4378 goto fail;
4379 }
4380
4381 /* Add host to multicast group */
4382 imr.imr_multiaddr = mcastaddr->sin_addr;
4383 imr.imr_interface.s_addr = htonl(INADDR_ANY);
4384
4385 ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
4386 (const char *)&imr, sizeof(struct ip_mreq));
4387 if (ret < 0) {
4388 perror("setsockopt(IP_ADD_MEMBERSHIP)");
4389 goto fail;
4390 }
4391
4392 /* Force mcast msgs to loopback (eg. several QEMUs in same host */
4393 val = 1;
4394 ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
4395 (const char *)&val, sizeof(val));
4396 if (ret < 0) {
4397 perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
4398 goto fail;
4399 }
4400
4401 socket_set_nonblock(fd);
4402 return fd;
4403 fail:
4404 if (fd >= 0)
4405 closesocket(fd);
4406 return -1;
4407 }
4408
4409 static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
4410 int is_connected)
4411 {
4412 struct sockaddr_in saddr;
4413 int newfd;
4414 socklen_t saddr_len;
4415 NetSocketState *s;
4416
4417 /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
4418 * Because this may be "shared" socket from a "master" process, datagrams would be recv()
4419 * by ONLY ONE process: we must "clone" this dgram socket --jjo
4420 */
4421
4422 if (is_connected) {
4423 if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
4424 /* must be bound */
4425 if (saddr.sin_addr.s_addr==0) {
4426 fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
4427 fd);
4428 return NULL;
4429 }
4430 /* clone dgram socket */
4431 newfd = net_socket_mcast_create(&saddr);
4432 if (newfd < 0) {
4433 /* error already reported by net_socket_mcast_create() */
4434 close(fd);
4435 return NULL;
4436 }
4437 /* clone newfd to fd, close newfd */
4438 dup2(newfd, fd);
4439 close(newfd);
4440
4441 } else {
4442 fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
4443 fd, strerror(errno));
4444 return NULL;
4445 }
4446 }
4447
4448 s = qemu_mallocz(sizeof(NetSocketState));
4449 if (!s)
4450 return NULL;
4451 s->fd = fd;
4452
4453 s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
4454 qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
4455
4456 /* mcast: save bound address as dst */
4457 if (is_connected) s->dgram_dst=saddr;
4458
4459 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4460 "socket: fd=%d (%s mcast=%s:%d)",
4461 fd, is_connected? "cloned" : "",
4462 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4463 return s;
4464 }
4465
4466 static void net_socket_connect(void *opaque)
4467 {
4468 NetSocketState *s = opaque;
4469 qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
4470 }
4471
4472 static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
4473 int is_connected)
4474 {
4475 NetSocketState *s;
4476 s = qemu_mallocz(sizeof(NetSocketState));
4477 if (!s)
4478 return NULL;
4479 s->fd = fd;
4480 s->vc = qemu_new_vlan_client(vlan,
4481 net_socket_receive, NULL, s);
4482 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4483 "socket: fd=%d", fd);
4484 if (is_connected) {
4485 net_socket_connect(s);
4486 } else {
4487 qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
4488 }
4489 return s;
4490 }
4491
4492 static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
4493 int is_connected)
4494 {
4495 int so_type=-1, optlen=sizeof(so_type);
4496
4497 if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type,
4498 (socklen_t *)&optlen)< 0) {
4499 fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
4500 return NULL;
4501 }
4502 switch(so_type) {
4503 case SOCK_DGRAM:
4504 return net_socket_fd_init_dgram(vlan, fd, is_connected);
4505 case SOCK_STREAM:
4506 return net_socket_fd_init_stream(vlan, fd, is_connected);
4507 default:
4508 /* who knows ... this could be a eg. a pty, do warn and continue as stream */
4509 fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
4510 return net_socket_fd_init_stream(vlan, fd, is_connected);
4511 }
4512 return NULL;
4513 }
4514
4515 static void net_socket_accept(void *opaque)
4516 {
4517 NetSocketListenState *s = opaque;
4518 NetSocketState *s1;
4519 struct sockaddr_in saddr;
4520 socklen_t len;
4521 int fd;
4522
4523 for(;;) {
4524 len = sizeof(saddr);
4525 fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
4526 if (fd < 0 && errno != EINTR) {
4527 return;
4528 } else if (fd >= 0) {
4529 break;
4530 }
4531 }
4532 s1 = net_socket_fd_init(s->vlan, fd, 1);
4533 if (!s1) {
4534 closesocket(fd);
4535 } else {
4536 snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
4537 "socket: connection from %s:%d",
4538 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4539 }
4540 }
4541
4542 static int net_socket_listen_init(VLANState *vlan, const char *host_str)
4543 {
4544 NetSocketListenState *s;
4545 int fd, val, ret;
4546 struct sockaddr_in saddr;
4547
4548 if (parse_host_port(&saddr, host_str) < 0)
4549 return -1;
4550
4551 s = qemu_mallocz(sizeof(NetSocketListenState));
4552 if (!s)
4553 return -1;
4554
4555 fd = socket(PF_INET, SOCK_STREAM, 0);
4556 if (fd < 0) {
4557 perror("socket");
4558 return -1;
4559 }
4560 socket_set_nonblock(fd);
4561
4562 /* allow fast reuse */
4563 val = 1;
4564 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
4565
4566 ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4567 if (ret < 0) {
4568 perror("bind");
4569 return -1;
4570 }
4571 ret = listen(fd, 0);
4572 if (ret < 0) {
4573 perror("listen");
4574 return -1;
4575 }
4576 s->vlan = vlan;
4577 s->fd = fd;
4578 qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
4579 return 0;
4580 }
4581
4582 static int net_socket_connect_init(VLANState *vlan, const char *host_str)
4583 {
4584 NetSocketState *s;
4585 int fd, connected, ret, err;
4586 struct sockaddr_in saddr;
4587
4588 if (parse_host_port(&saddr, host_str) < 0)
4589 return -1;
4590
4591 fd = socket(PF_INET, SOCK_STREAM, 0);
4592 if (fd < 0) {
4593 perror("socket");
4594 return -1;
4595 }
4596 socket_set_nonblock(fd);
4597
4598 connected = 0;
4599 for(;;) {
4600 ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4601 if (ret < 0) {
4602 err = socket_error();
4603 if (err == EINTR || err == EWOULDBLOCK) {
4604 } else if (err == EINPROGRESS) {
4605 break;
4606 #ifdef _WIN32
4607 } else if (err == WSAEALREADY) {
4608 break;
4609 #endif
4610 } else {
4611 perror("connect");
4612 closesocket(fd);
4613 return -1;
4614 }
4615 } else {
4616 connected = 1;
4617 break;
4618 }
4619 }
4620 s = net_socket_fd_init(vlan, fd, connected);
4621 if (!s)
4622 return -1;
4623 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4624 "socket: connect to %s:%d",
4625 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4626 return 0;
4627 }
4628
4629 static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
4630 {
4631 NetSocketState *s;
4632 int fd;
4633 struct sockaddr_in saddr;
4634
4635 if (parse_host_port(&saddr, host_str) < 0)
4636 return -1;
4637
4638
4639 fd = net_socket_mcast_create(&saddr);
4640 if (fd < 0)
4641 return -1;
4642
4643 s = net_socket_fd_init(vlan, fd, 0);
4644 if (!s)
4645 return -1;
4646
4647 s->dgram_dst = saddr;
4648
4649 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4650 "socket: mcast=%s:%d",
4651 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4652 return 0;
4653
4654 }
4655
4656 static const char *get_opt_name(char *buf, int buf_size, const char *p)
4657 {
4658 char *q;
4659
4660 q = buf;
4661 while (*p != '\0' && *p != '=') {
4662 if (q && (q - buf) < buf_size - 1)
4663 *q++ = *p;
4664 p++;
4665 }
4666 if (q)
4667 *q = '\0';
4668
4669 return p;
4670 }
4671
4672 static const char *get_opt_value(char *buf, int buf_size, const char *p)
4673 {
4674 char *q;
4675
4676 q = buf;
4677 while (*p != '\0') {
4678 if (*p == ',') {
4679 if (*(p + 1) != ',')
4680 break;
4681 p++;
4682 }
4683 if (q && (q - buf) < buf_size - 1)
4684 *q++ = *p;
4685 p++;
4686 }
4687 if (q)
4688 *q = '\0';
4689
4690 return p;
4691 }
4692
4693 static int get_param_value(char *buf, int buf_size,
4694 const char *tag, const char *str)
4695 {
4696 const char *p;
4697 char option[128];
4698
4699 p = str;
4700 for(;;) {
4701 p = get_opt_name(option, sizeof(option), p);
4702 if (*p != '=')
4703 break;
4704 p++;
4705 if (!strcmp(tag, option)) {
4706 (void)get_opt_value(buf, buf_size, p);
4707 return strlen(buf);
4708 } else {
4709 p = get_opt_value(NULL, 0, p);
4710 }
4711 if (*p != ',')
4712 break;
4713 p++;
4714 }
4715 return 0;
4716 }
4717
4718 static int check_params(char *buf, int buf_size,
4719 char **params, const char *str)
4720 {
4721 const char *p;
4722 int i;
4723
4724 p = str;
4725 for(;;) {
4726 p = get_opt_name(buf, buf_size, p);
4727 if (*p != '=')
4728 return -1;
4729 p++;
4730 for(i = 0; params[i] != NULL; i++)
4731 if (!strcmp(params[i], buf))
4732 break;
4733 if (params[i] == NULL)
4734 return -1;
4735 p = get_opt_value(NULL, 0, p);
4736 if (*p != ',')
4737 break;
4738 p++;
4739 }
4740 return 0;
4741 }
4742
4743
4744 static int net_client_init(const char *str)
4745 {
4746 const char *p;
4747 char *q;
4748 char device[64];
4749 char buf[1024];
4750 int vlan_id, ret;
4751 VLANState *vlan;
4752
4753 p = str;
4754 q = device;
4755 while (*p != '\0' && *p != ',') {
4756 if ((q - device) < sizeof(device) - 1)
4757 *q++ = *p;
4758 p++;
4759 }
4760 *q = '\0';
4761 if (*p == ',')
4762 p++;
4763 vlan_id = 0;
4764 if (get_param_value(buf, sizeof(buf), "vlan", p)) {
4765 vlan_id = strtol(buf, NULL, 0);
4766 }
4767 vlan = qemu_find_vlan(vlan_id);
4768 if (!vlan) {
4769 fprintf(stderr, "Could not create vlan %d\n", vlan_id);
4770 return -1;
4771 }
4772 if (!strcmp(device, "nic")) {
4773 NICInfo *nd;
4774 uint8_t *macaddr;
4775
4776 if (nb_nics >= MAX_NICS) {
4777 fprintf(stderr, "Too Many NICs\n");
4778 return -1;
4779 }
4780 nd = &nd_table[nb_nics];
4781 macaddr = nd->macaddr;
4782 macaddr[0] = 0x52;
4783 macaddr[1] = 0x54;
4784 macaddr[2] = 0x00;
4785 macaddr[3] = 0x12;
4786 macaddr[4] = 0x34;
4787 macaddr[5] = 0x56 + nb_nics;
4788
4789 if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
4790 if (parse_macaddr(macaddr, buf) < 0) {
4791 fprintf(stderr, "invalid syntax for ethernet address\n");
4792 return -1;
4793 }
4794 }
4795 if (get_param_value(buf, sizeof(buf), "model", p)) {
4796 nd->model = strdup(buf);
4797 }
4798 nd->vlan = vlan;
4799 nb_nics++;
4800 vlan->nb_guest_devs++;
4801 ret = 0;
4802 } else
4803 if (!strcmp(device, "none")) {
4804 /* does nothing. It is needed to signal that no network cards
4805 are wanted */
4806 ret = 0;
4807 } else
4808 #ifdef CONFIG_SLIRP
4809 if (!strcmp(device, "user")) {
4810 if (get_param_value(buf, sizeof(buf), "hostname", p)) {
4811 pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
4812 }
4813 vlan->nb_host_devs++;
4814 ret = net_slirp_init(vlan);
4815 } else
4816 #endif
4817 #ifdef _WIN32
4818 if (!strcmp(device, "tap")) {
4819 char ifname[64];
4820 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4821 fprintf(stderr, "tap: no interface name\n");
4822 return -1;
4823 }
4824 vlan->nb_host_devs++;
4825 ret = tap_win32_init(vlan, ifname);
4826 } else
4827 #else
4828 if (!strcmp(device, "tap")) {
4829 char ifname[64];
4830 char setup_script[1024], down_script[1024];
4831 int fd;
4832 vlan->nb_host_devs++;
4833 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4834 fd = strtol(buf, NULL, 0);
4835 fcntl(fd, F_SETFL, O_NONBLOCK);
4836 ret = -1;
4837 if (net_tap_fd_init(vlan, fd))
4838 ret = 0;
4839 } else {
4840 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4841 ifname[0] = '\0';
4842 }
4843 if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
4844 pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
4845 }
4846 if (get_param_value(down_script, sizeof(down_script), "downscript", p) == 0) {
4847 pstrcpy(down_script, sizeof(down_script), DEFAULT_NETWORK_DOWN_SCRIPT);
4848 }
4849 ret = net_tap_init(vlan, ifname, setup_script, down_script);
4850 }
4851 } else
4852 #endif
4853 if (!strcmp(device, "socket")) {
4854 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4855 int fd;
4856 fd = strtol(buf, NULL, 0);
4857 ret = -1;
4858 if (net_socket_fd_init(vlan, fd, 1))
4859 ret = 0;
4860 } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
4861 ret = net_socket_listen_init(vlan, buf);
4862 } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
4863 ret = net_socket_connect_init(vlan, buf);
4864 } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
4865 ret = net_socket_mcast_init(vlan, buf);
4866 } else {
4867 fprintf(stderr, "Unknown socket options: %s\n", p);
4868 return -1;
4869 }
4870 vlan->nb_host_devs++;
4871 } else
4872 {
4873 fprintf(stderr, "Unknown network device: %s\n", device);
4874 return -1;
4875 }
4876 if (ret < 0) {
4877 fprintf(stderr, "Could not initialize device '%s'\n", device);
4878 }
4879
4880 return ret;
4881 }
4882
4883 void do_info_network(void)
4884 {
4885 VLANState *vlan;
4886 VLANClientState *vc;
4887
4888 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4889 term_printf("VLAN %d devices:\n", vlan->id);
4890 for(vc = vlan->first_client; vc != NULL; vc = vc->next)
4891 term_printf(" %s\n", vc->info_str);
4892 }
4893 }
4894
4895 #define HD_ALIAS "index=%d,media=disk"
4896 #ifdef TARGET_PPC
4897 #define CDROM_ALIAS "index=1,media=cdrom"
4898 #else
4899 #define CDROM_ALIAS "index=2,media=cdrom"
4900 #endif
4901 #define FD_ALIAS "index=%d,if=floppy"
4902 #define PFLASH_ALIAS "if=pflash"
4903 #define MTD_ALIAS "if=mtd"
4904 #define SD_ALIAS "index=0,if=sd"
4905
4906 static int drive_add(const char *file, const char *fmt, ...)
4907 {
4908 va_list ap;
4909
4910 if (nb_drives_opt >= MAX_DRIVES) {
4911 fprintf(stderr, "qemu: too many drives\n");
4912 exit(1);
4913 }
4914
4915 drives_opt[nb_drives_opt].file = file;
4916 va_start(ap, fmt);
4917 vsnprintf(drives_opt[nb_drives_opt].opt,
4918 sizeof(drives_opt[0].opt), fmt, ap);
4919 va_end(ap);
4920
4921 return nb_drives_opt++;
4922 }
4923
4924 int drive_get_index(BlockInterfaceType type, int bus, int unit)
4925 {
4926 int index;
4927
4928 /* seek interface, bus and unit */
4929
4930 for (index = 0; index < nb_drives; index++)
4931 if (drives_table[index].type == type &&
4932 drives_table[index].bus == bus &&
4933 drives_table[index].unit == unit)
4934 return index;
4935
4936 return -1;
4937 }
4938
4939 int drive_get_max_bus(BlockInterfaceType type)
4940 {
4941 int max_bus;
4942 int index;
4943
4944 max_bus = -1;
4945 for (index = 0; index < nb_drives; index++) {
4946 if(drives_table[index].type == type &&
4947 drives_table[index].bus > max_bus)
4948 max_bus = drives_table[index].bus;
4949 }
4950 return max_bus;
4951 }
4952
4953 static int drive_init(struct drive_opt *arg, int snapshot,
4954 QEMUMachine *machine)
4955 {
4956 char buf[128];
4957 char file[1024];
4958 char devname[128];
4959 const char *mediastr = "";
4960 BlockInterfaceType type;
4961 enum { MEDIA_DISK, MEDIA_CDROM } media;
4962 int bus_id, unit_id;
4963 int cyls, heads, secs, translation;
4964 BlockDriverState *bdrv;
4965 int max_devs;
4966 int index;
4967 int cache;
4968 int bdrv_flags;
4969 char *str = arg->opt;
4970 char *params[] = { "bus", "unit", "if", "index", "cyls", "heads",
4971 "secs", "trans", "media", "snapshot", "file",
4972 "cache", NULL };
4973
4974 if (check_params(buf, sizeof(buf), params, str) < 0) {
4975 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
4976 buf, str);
4977 return -1;
4978 }
4979
4980 file[0] = 0;
4981 cyls = heads = secs = 0;
4982 bus_id = 0;
4983 unit_id = -1;
4984 translation = BIOS_ATA_TRANSLATION_AUTO;
4985 index = -1;
4986 cache = 1;
4987
4988 if (!strcmp(machine->name, "realview") ||
4989 !strcmp(machine->name, "SS-5") ||
4990 !strcmp(machine->name, "SS-10") ||
4991 !strcmp(machine->name, "SS-600MP") ||
4992 !strcmp(machine->name, "versatilepb") ||
4993 !strcmp(machine->name, "versatileab")) {
4994 type = IF_SCSI;
4995 max_devs = MAX_SCSI_DEVS;
4996 strcpy(devname, "scsi");
4997 } else {
4998 type = IF_IDE;
4999 max_devs = MAX_IDE_DEVS;
5000 strcpy(devname, "ide");
5001 }
5002 media = MEDIA_DISK;
5003
5004 /* extract parameters */
5005
5006 if (get_param_value(buf, sizeof(buf), "bus", str)) {
5007 bus_id = strtol(buf, NULL, 0);
5008 if (bus_id < 0) {
5009 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
5010 return -1;
5011 }
5012 }
5013
5014 if (get_param_value(buf, sizeof(buf), "unit", str)) {
5015 unit_id = strtol(buf, NULL, 0);
5016 if (unit_id < 0) {
5017 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
5018 return -1;
5019 }
5020 }
5021
5022 if (get_param_value(buf, sizeof(buf), "if", str)) {
5023 strncpy(devname, buf, sizeof(devname));
5024 if (!strcmp(buf, "ide")) {
5025 type = IF_IDE;
5026 max_devs = MAX_IDE_DEVS;
5027 } else if (!strcmp(buf, "scsi")) {
5028 type = IF_SCSI;
5029 max_devs = MAX_SCSI_DEVS;
5030 } else if (!strcmp(buf, "floppy")) {
5031 type = IF_FLOPPY;
5032 max_devs = 0;
5033 } else if (!strcmp(buf, "pflash")) {
5034 type = IF_PFLASH;
5035 max_devs = 0;
5036 } else if (!strcmp(buf, "mtd")) {
5037 type = IF_MTD;
5038 max_devs = 0;
5039 } else if (!strcmp(buf, "sd")) {
5040 type = IF_SD;
5041 max_devs = 0;
5042 } else {
5043 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
5044 return -1;
5045 }
5046 }
5047
5048 if (get_param_value(buf, sizeof(buf), "index", str)) {
5049 index = strtol(buf, NULL, 0);
5050 if (index < 0) {
5051 fprintf(stderr, "qemu: '%s' invalid index\n", str);
5052 return -1;
5053 }
5054 }
5055
5056 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
5057 cyls = strtol(buf, NULL, 0);
5058 }
5059
5060 if (get_param_value(buf, sizeof(buf), "heads", str)) {
5061 heads = strtol(buf, NULL, 0);
5062 }
5063
5064 if (get_param_value(buf, sizeof(buf), "secs", str)) {
5065 secs = strtol(buf, NULL, 0);
5066 }
5067
5068 if (cyls || heads || secs) {
5069 if (cyls < 1 || cyls > 16383) {
5070 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
5071 return -1;
5072 }
5073 if (heads < 1 || heads > 16) {
5074 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
5075 return -1;
5076 }
5077 if (secs < 1 || secs > 63) {
5078 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
5079 return -1;
5080 }
5081 }
5082
5083 if (get_param_value(buf, sizeof(buf), "trans", str)) {
5084 if (!cyls) {
5085 fprintf(stderr,
5086 "qemu: '%s' trans must be used with cyls,heads and secs\n",
5087 str);
5088 return -1;
5089 }
5090 if (!strcmp(buf, "none"))
5091 translation = BIOS_ATA_TRANSLATION_NONE;
5092 else if (!strcmp(buf, "lba"))
5093 translation = BIOS_ATA_TRANSLATION_LBA;
5094 else if (!strcmp(buf, "auto"))
5095 translation = BIOS_ATA_TRANSLATION_AUTO;
5096 else {
5097 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
5098 return -1;
5099 }
5100 }
5101
5102 if (get_param_value(buf, sizeof(buf), "media", str)) {
5103 if (!strcmp(buf, "disk")) {
5104 media = MEDIA_DISK;
5105 } else if (!strcmp(buf, "cdrom")) {
5106 if (cyls || secs || heads) {
5107 fprintf(stderr,
5108 "qemu: '%s' invalid physical CHS format\n", str);
5109 return -1;
5110 }
5111 media = MEDIA_CDROM;
5112 } else {
5113 fprintf(stderr, "qemu: '%s' invalid media\n", str);
5114 return -1;
5115 }
5116 }
5117
5118 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
5119 if (!strcmp(buf, "on"))
5120 snapshot = 1;
5121 else if (!strcmp(buf, "off"))
5122 snapshot = 0;
5123 else {
5124 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
5125 return -1;
5126 }
5127 }
5128
5129 if (get_param_value(buf, sizeof(buf), "cache", str)) {
5130 if (!strcmp(buf, "off"))
5131 cache = 0;
5132 else if (!strcmp(buf, "on"))
5133 cache = 1;
5134 else {
5135 fprintf(stderr, "qemu: invalid cache option\n");
5136 return -1;
5137 }
5138 }
5139
5140 if (arg->file == NULL)
5141 get_param_value(file, sizeof(file), "file", str);
5142 else
5143 pstrcpy(file, sizeof(file), arg->file);
5144
5145 /* compute bus and unit according index */
5146
5147 if (index != -1) {
5148 if (bus_id != 0 || unit_id != -1) {
5149 fprintf(stderr,
5150 "qemu: '%s' index cannot be used with bus and unit\n", str);
5151 return -1;
5152 }
5153 if (max_devs == 0)
5154 {
5155 unit_id = index;
5156 bus_id = 0;
5157 } else {
5158 unit_id = index % max_devs;
5159 bus_id = index / max_devs;
5160 }
5161 }
5162
5163 /* if user doesn't specify a unit_id,
5164 * try to find the first free
5165 */
5166
5167 if (unit_id == -1) {
5168 unit_id = 0;
5169 while (drive_get_index(type, bus_id, unit_id) != -1) {
5170 unit_id++;
5171 if (max_devs && unit_id >= max_devs) {
5172 unit_id -= max_devs;
5173 bus_id++;
5174 }
5175 }
5176 }
5177
5178 /* check unit id */
5179
5180 if (max_devs && unit_id >= max_devs) {
5181 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
5182 str, unit_id, max_devs - 1);
5183 return -1;
5184 }
5185
5186 /*
5187 * ignore multiple definitions
5188 */
5189
5190 if (drive_get_index(type, bus_id, unit_id) != -1)
5191 return 0;
5192
5193 /* init */
5194
5195 if (type == IF_IDE || type == IF_SCSI)
5196 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
5197 if (max_devs)
5198 snprintf(buf, sizeof(buf), "%s%i%s%i",
5199 devname, bus_id, mediastr, unit_id);
5200 else
5201 snprintf(buf, sizeof(buf), "%s%s%i",
5202 devname, mediastr, unit_id);
5203 bdrv = bdrv_new(buf);
5204 drives_table[nb_drives].bdrv = bdrv;
5205 drives_table[nb_drives].type = type;
5206 drives_table[nb_drives].bus = bus_id;
5207 drives_table[nb_drives].unit = unit_id;
5208 nb_drives++;
5209
5210 switch(type) {
5211 case IF_IDE:
5212 case IF_SCSI:
5213 switch(media) {
5214 case MEDIA_DISK:
5215 if (cyls != 0) {
5216 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
5217 bdrv_set_translation_hint(bdrv, translation);
5218 }
5219 break;
5220 case MEDIA_CDROM:
5221 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
5222 break;
5223 }
5224 break;
5225 case IF_SD:
5226 /* FIXME: This isn't really a floppy, but it's a reasonable
5227 approximation. */
5228 case IF_FLOPPY:
5229 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
5230 break;
5231 case IF_PFLASH:
5232 case IF_MTD:
5233 break;
5234 }
5235 if (!file[0])
5236 return 0;
5237 bdrv_flags = 0;
5238 if (snapshot)
5239 bdrv_flags |= BDRV_O_SNAPSHOT;
5240 if (!cache)
5241 bdrv_flags |= BDRV_O_DIRECT;
5242 if (bdrv_open(bdrv, file, bdrv_flags) < 0 || qemu_key_check(bdrv, file)) {
5243 fprintf(stderr, "qemu: could not open disk image %s\n",
5244 file);
5245 return -1;
5246 }
5247 return 0;
5248 }
5249
5250 /***********************************************************/
5251 /* USB devices */
5252
5253 static USBPort *used_usb_ports;
5254 static USBPort *free_usb_ports;
5255
5256 /* ??? Maybe change this to register a hub to keep track of the topology. */
5257 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
5258 usb_attachfn attach)
5259 {
5260 port->opaque = opaque;
5261 port->index = index;
5262 port->attach = attach;
5263 port->next = free_usb_ports;
5264 free_usb_ports = port;
5265 }
5266
5267 static int usb_device_add(const char *devname)
5268 {
5269 const char *p;
5270 USBDevice *dev;
5271 USBPort *port;
5272
5273 if (!free_usb_ports)
5274 return -1;
5275
5276 if (strstart(devname, "host:", &p)) {
5277 dev = usb_host_device_open(p);
5278 } else if (!strcmp(devname, "mouse")) {
5279 dev = usb_mouse_init();
5280 } else if (!strcmp(devname, "tablet")) {
5281 dev = usb_tablet_init();
5282 } else if (!strcmp(devname, "keyboard")) {
5283 dev = usb_keyboard_init();
5284 } else if (strstart(devname, "disk:", &p)) {
5285 dev = usb_msd_init(p);
5286 } else if (!strcmp(devname, "wacom-tablet")) {
5287 dev = usb_wacom_init();
5288 } else if (strstart(devname, "serial:", &p)) {
5289 dev = usb_serial_init(p);
5290 #ifdef CONFIG_BRLAPI
5291 } else if (!strcmp(devname, "braille")) {
5292 dev = usb_baum_init();
5293 #endif
5294 } else {
5295 return -1;
5296 }
5297 if (!dev)
5298 return -1;
5299
5300 /* Find a USB port to add the device to. */
5301 port = free_usb_ports;
5302 if (!port->next) {
5303 USBDevice *hub;
5304
5305 /* Create a new hub and chain it on. */
5306 free_usb_ports = NULL;
5307 port->next = used_usb_ports;
5308 used_usb_ports = port;
5309
5310 hub = usb_hub_init(VM_USB_HUB_SIZE);
5311 usb_attach(port, hub);
5312 port = free_usb_ports;
5313 }
5314
5315 free_usb_ports = port->next;
5316 port->next = used_usb_ports;
5317 used_usb_ports = port;
5318 usb_attach(port, dev);
5319 return 0;
5320 }
5321
5322 static int usb_device_del(const char *devname)
5323 {
5324 USBPort *port;
5325 USBPort **lastp;
5326 USBDevice *dev;
5327 int bus_num, addr;
5328 const char *p;
5329
5330 if (!used_usb_ports)
5331 return -1;
5332
5333 p = strchr(devname, '.');
5334 if (!p)
5335 return -1;
5336 bus_num = strtoul(devname, NULL, 0);
5337 addr = strtoul(p + 1, NULL, 0);
5338 if (bus_num != 0)
5339 return -1;
5340
5341 lastp = &used_usb_ports;
5342 port = used_usb_ports;
5343 while (port && port->dev->addr != addr) {
5344 lastp = &port->next;
5345 port = port->next;
5346 }
5347
5348 if (!port)
5349 return -1;
5350
5351 dev = port->dev;
5352 *lastp = port->next;
5353 usb_attach(port, NULL);
5354 dev->handle_destroy(dev);
5355 port->next = free_usb_ports;
5356 free_usb_ports = port;
5357 return 0;
5358 }
5359
5360 void do_usb_add(const char *devname)
5361 {
5362 int ret;
5363 ret = usb_device_add(devname);
5364 if (ret < 0)
5365 term_printf("Could not add USB device '%s'\n", devname);
5366 }
5367
5368 void do_usb_del(const char *devname)
5369 {
5370 int ret;
5371 ret = usb_device_del(devname);
5372 if (ret < 0)
5373 term_printf("Could not remove USB device '%s'\n", devname);
5374 }
5375
5376 void usb_info(void)
5377 {
5378 USBDevice *dev;
5379 USBPort *port;
5380 const char *speed_str;
5381
5382 if (!usb_enabled) {
5383 term_printf("USB support not enabled\n");
5384 return;
5385 }
5386
5387 for (port = used_usb_ports; port; port = port->next) {
5388 dev = port->dev;
5389 if (!dev)
5390 continue;
5391 switch(dev->speed) {
5392 case USB_SPEED_LOW:
5393 speed_str = "1.5";
5394 break;
5395 case USB_SPEED_FULL:
5396 speed_str = "12";
5397 break;
5398 case USB_SPEED_HIGH:
5399 speed_str = "480";
5400 break;
5401 default:
5402 speed_str = "?";
5403 break;
5404 }
5405 term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n",
5406 0, dev->addr, speed_str, dev->devname);
5407 }
5408 }
5409
5410 /***********************************************************/
5411 /* PCMCIA/Cardbus */
5412
5413 static struct pcmcia_socket_entry_s {
5414 struct pcmcia_socket_s *socket;
5415 struct pcmcia_socket_entry_s *next;
5416 } *pcmcia_sockets = 0;
5417
5418 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
5419 {
5420 struct pcmcia_socket_entry_s *entry;
5421
5422 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
5423 entry->socket = socket;
5424 entry->next = pcmcia_sockets;
5425 pcmcia_sockets = entry;
5426 }
5427
5428 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
5429 {
5430 struct pcmcia_socket_entry_s *entry, **ptr;
5431
5432 ptr = &pcmcia_sockets;
5433 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
5434 if (entry->socket == socket) {
5435 *ptr = entry->next;
5436 qemu_free(entry);
5437 }
5438 }
5439
5440 void pcmcia_info(void)
5441 {
5442 struct pcmcia_socket_entry_s *iter;
5443 if (!pcmcia_sockets)
5444 term_printf("No PCMCIA sockets\n");
5445
5446 for (iter = pcmcia_sockets; iter; iter = iter->next)
5447 term_printf("%s: %s\n", iter->socket->slot_string,
5448 iter->socket->attached ? iter->socket->card_string :
5449 "Empty");
5450 }
5451
5452 /***********************************************************/
5453 /* dumb display */
5454
5455 static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
5456 {
5457 }
5458
5459 static void dumb_resize(DisplayState *ds, int w, int h)
5460 {
5461 }
5462
5463 static void dumb_refresh(DisplayState *ds)
5464 {
5465 #if defined(CONFIG_SDL)
5466 vga_hw_update();
5467 #endif
5468 }
5469
5470 static void dumb_display_init(DisplayState *ds)
5471 {
5472 ds->data = NULL;
5473 ds->linesize = 0;
5474 ds->depth = 0;
5475 ds->dpy_update = dumb_update;
5476 ds->dpy_resize = dumb_resize;
5477 ds->dpy_refresh = dumb_refresh;
5478 }
5479
5480 /***********************************************************/
5481 /* I/O handling */
5482
5483 #define MAX_IO_HANDLERS 64
5484
5485 typedef struct IOHandlerRecord {
5486 int fd;
5487 IOCanRWHandler *fd_read_poll;
5488 IOHandler *fd_read;
5489 IOHandler *fd_write;
5490 int deleted;
5491 void *opaque;
5492 /* temporary data */
5493 struct pollfd *ufd;
5494 struct IOHandlerRecord *next;
5495 } IOHandlerRecord;
5496
5497 static IOHandlerRecord *first_io_handler;
5498
5499 /* XXX: fd_read_poll should be suppressed, but an API change is
5500 necessary in the character devices to suppress fd_can_read(). */
5501 int qemu_set_fd_handler2(int fd,
5502 IOCanRWHandler *fd_read_poll,
5503 IOHandler *fd_read,
5504 IOHandler *fd_write,
5505 void *opaque)
5506 {
5507 IOHandlerRecord **pioh, *ioh;
5508
5509 if (!fd_read && !fd_write) {
5510 pioh = &first_io_handler;
5511 for(;;) {
5512 ioh = *pioh;
5513 if (ioh == NULL)
5514 break;
5515 if (ioh->fd == fd) {
5516 ioh->deleted = 1;
5517 break;
5518 }
5519 pioh = &ioh->next;
5520 }
5521 } else {
5522 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
5523 if (ioh->fd == fd)
5524 goto found;
5525 }
5526 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
5527 if (!ioh)
5528 return -1;
5529 ioh->next = first_io_handler;
5530 first_io_handler = ioh;
5531 found:
5532 ioh->fd = fd;
5533 ioh->fd_read_poll = fd_read_poll;
5534 ioh->fd_read = fd_read;
5535 ioh->fd_write = fd_write;
5536 ioh->opaque = opaque;
5537 ioh->deleted = 0;
5538 }
5539 return 0;
5540 }
5541
5542 int qemu_set_fd_handler(int fd,
5543 IOHandler *fd_read,
5544 IOHandler *fd_write,
5545 void *opaque)
5546 {
5547 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
5548 }
5549
5550 /***********************************************************/
5551 /* Polling handling */
5552
5553 typedef struct PollingEntry {
5554 PollingFunc *func;
5555 void *opaque;
5556 struct PollingEntry *next;
5557 } PollingEntry;
5558
5559 static PollingEntry *first_polling_entry;
5560
5561 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
5562 {
5563 PollingEntry **ppe, *pe;
5564 pe = qemu_mallocz(sizeof(PollingEntry));
5565 if (!pe)
5566 return -1;
5567 pe->func = func;
5568 pe->opaque = opaque;
5569 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
5570 *ppe = pe;
5571 return 0;
5572 }
5573
5574 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
5575 {
5576 PollingEntry **ppe, *pe;
5577 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
5578 pe = *ppe;
5579 if (pe->func == func && pe->opaque == opaque) {
5580 *ppe = pe->next;
5581 qemu_free(pe);
5582 break;
5583 }
5584 }
5585 }
5586
5587 #ifdef _WIN32
5588 /***********************************************************/
5589 /* Wait objects support */
5590 typedef struct WaitObjects {
5591 int num;
5592 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
5593 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
5594 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
5595 } WaitObjects;
5596
5597 static WaitObjects wait_objects = {0};
5598
5599 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5600 {
5601 WaitObjects *w = &wait_objects;
5602
5603 if (w->num >= MAXIMUM_WAIT_OBJECTS)
5604 return -1;
5605 w->events[w->num] = handle;
5606 w->func[w->num] = func;
5607 w->opaque[w->num] = opaque;
5608 w->num++;
5609 return 0;
5610 }
5611
5612 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5613 {
5614 int i, found;
5615 WaitObjects *w = &wait_objects;
5616
5617 found = 0;
5618 for (i = 0; i < w->num; i++) {
5619 if (w->events[i] == handle)
5620 found = 1;
5621 if (found) {
5622 w->events[i] = w->events[i + 1];
5623 w->func[i] = w->func[i + 1];
5624 w->opaque[i] = w->opaque[i + 1];
5625 }
5626 }
5627 if (found)
5628 w->num--;
5629 }
5630 #endif
5631
5632 /***********************************************************/
5633 /* savevm/loadvm support */
5634
5635 #define IO_BUF_SIZE 32768
5636
5637 struct QEMUFile {
5638 FILE *outfile;
5639 BlockDriverState *bs;
5640 int is_file;
5641 int is_writable;
5642 int64_t base_offset;
5643 int64_t buf_offset; /* start of buffer when writing, end of buffer
5644 when reading */
5645 int buf_index;
5646 int buf_size; /* 0 when writing */
5647 uint8_t buf[IO_BUF_SIZE];
5648 };
5649
5650 QEMUFile *qemu_fopen(const char *filename, const char *mode)
5651 {
5652 QEMUFile *f;
5653
5654 f = qemu_mallocz(sizeof(QEMUFile));
5655 if (!f)
5656 return NULL;
5657 if (!strcmp(mode, "wb")) {
5658 f->is_writable = 1;
5659 } else if (!strcmp(mode, "rb")) {
5660 f->is_writable = 0;
5661 } else {
5662 goto fail;
5663 }
5664 f->outfile = fopen(filename, mode);
5665 if (!f->outfile)
5666 goto fail;
5667 f->is_file = 1;
5668 return f;
5669 fail:
5670 if (f->outfile)
5671 fclose(f->outfile);
5672 qemu_free(f);
5673 return NULL;
5674 }
5675
5676 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
5677 {
5678 QEMUFile *f;
5679
5680 f = qemu_mallocz(sizeof(QEMUFile));
5681 if (!f)
5682 return NULL;
5683 f->is_file = 0;
5684 f->bs = bs;
5685 f->is_writable = is_writable;
5686 f->base_offset = offset;
5687 return f;
5688 }
5689
5690 void qemu_fflush(QEMUFile *f)
5691 {
5692 if (!f->is_writable)
5693 return;
5694 if (f->buf_index > 0) {
5695 if (f->is_file) {
5696 fseek(f->outfile, f->buf_offset, SEEK_SET);
5697 fwrite(f->buf, 1, f->buf_index, f->outfile);
5698 } else {
5699 bdrv_pwrite(f->bs, f->base_offset + f->buf_offset,
5700 f->buf, f->buf_index);
5701 }
5702 f->buf_offset += f->buf_index;
5703 f->buf_index = 0;
5704 }
5705 }
5706
5707 static void qemu_fill_buffer(QEMUFile *f)
5708 {
5709 int len;
5710
5711 if (f->is_writable)
5712 return;
5713 if (f->is_file) {
5714 fseek(f->outfile, f->buf_offset, SEEK_SET);
5715 len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
5716 if (len < 0)
5717 len = 0;
5718 } else {
5719 len = bdrv_pread(f->bs, f->base_offset + f->buf_offset,
5720 f->buf, IO_BUF_SIZE);
5721 if (len < 0)
5722 len = 0;
5723 }
5724 f->buf_index = 0;
5725 f->buf_size = len;
5726 f->buf_offset += len;
5727 }
5728
5729 void qemu_fclose(QEMUFile *f)
5730 {
5731 if (f->is_writable)
5732 qemu_fflush(f);
5733 if (f->is_file) {
5734 fclose(f->outfile);
5735 }
5736 qemu_free(f);
5737 }
5738
5739 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
5740 {
5741 int l;
5742 while (size > 0) {
5743 l = IO_BUF_SIZE - f->buf_index;
5744 if (l > size)
5745 l = size;
5746 memcpy(f->buf + f->buf_index, buf, l);
5747 f->buf_index += l;
5748 buf += l;
5749 size -= l;
5750 if (f->buf_index >= IO_BUF_SIZE)
5751 qemu_fflush(f);
5752 }
5753 }
5754
5755 void qemu_put_byte(QEMUFile *f, int v)
5756 {
5757 f->buf[f->buf_index++] = v;
5758 if (f->buf_index >= IO_BUF_SIZE)
5759 qemu_fflush(f);
5760 }
5761
5762 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
5763 {
5764 int size, l;
5765
5766 size = size1;
5767 while (size > 0) {
5768 l = f->buf_size - f->buf_index;
5769 if (l == 0) {
5770 qemu_fill_buffer(f);
5771 l = f->buf_size - f->buf_index;
5772 if (l == 0)
5773 break;
5774 }
5775 if (l > size)
5776 l = size;
5777 memcpy(buf, f->buf + f->buf_index, l);
5778 f->buf_index += l;
5779 buf += l;
5780 size -= l;
5781 }
5782 return size1 - size;
5783 }
5784
5785 int qemu_get_byte(QEMUFile *f)
5786 {
5787 if (f->buf_index >= f->buf_size) {
5788 qemu_fill_buffer(f);
5789 if (f->buf_index >= f->buf_size)
5790 return 0;
5791 }
5792 return f->buf[f->buf_index++];
5793 }
5794
5795 int64_t qemu_ftell(QEMUFile *f)
5796 {
5797 return f->buf_offset - f->buf_size + f->buf_index;
5798 }
5799
5800 int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
5801 {
5802 if (whence == SEEK_SET) {
5803 /* nothing to do */
5804 } else if (whence == SEEK_CUR) {
5805 pos += qemu_ftell(f);
5806 } else {
5807 /* SEEK_END not supported */
5808 return -1;
5809 }
5810 if (f->is_writable) {
5811 qemu_fflush(f);
5812 f->buf_offset = pos;
5813 } else {
5814 f->buf_offset = pos;
5815 f->buf_index = 0;
5816 f->buf_size = 0;
5817 }
5818 return pos;
5819 }
5820
5821 void qemu_put_be16(QEMUFile *f, unsigned int v)
5822 {
5823 qemu_put_byte(f, v >> 8);
5824 qemu_put_byte(f, v);
5825 }
5826
5827 void qemu_put_be32(QEMUFile *f, unsigned int v)
5828 {
5829 qemu_put_byte(f, v >> 24);
5830 qemu_put_byte(f, v >> 16);
5831 qemu_put_byte(f, v >> 8);
5832 qemu_put_byte(f, v);
5833 }
5834
5835 void qemu_put_be64(QEMUFile *f, uint64_t v)
5836 {
5837 qemu_put_be32(f, v >> 32);
5838 qemu_put_be32(f, v);
5839 }
5840
5841 unsigned int qemu_get_be16(QEMUFile *f)
5842 {
5843 unsigned int v;
5844 v = qemu_get_byte(f) << 8;
5845 v |= qemu_get_byte(f);
5846 return v;
5847 }
5848
5849 unsigned int qemu_get_be32(QEMUFile *f)
5850 {
5851 unsigned int v;
5852 v = qemu_get_byte(f) << 24;
5853 v |= qemu_get_byte(f) << 16;
5854 v |= qemu_get_byte(f) << 8;
5855 v |= qemu_get_byte(f);
5856 return v;
5857 }
5858
5859 uint64_t qemu_get_be64(QEMUFile *f)
5860 {
5861 uint64_t v;
5862 v = (uint64_t)qemu_get_be32(f) << 32;
5863 v |= qemu_get_be32(f);
5864 return v;
5865 }
5866
5867 typedef struct SaveStateEntry {
5868 char idstr[256];
5869 int instance_id;
5870 int version_id;
5871 SaveStateHandler *save_state;
5872 LoadStateHandler *load_state;
5873 void *opaque;
5874 struct SaveStateEntry *next;
5875 } SaveStateEntry;
5876
5877 static SaveStateEntry *first_se;
5878
5879 int register_savevm(const char *idstr,
5880 int instance_id,
5881 int version_id,
5882 SaveStateHandler *save_state,
5883 LoadStateHandler *load_state,
5884 void *opaque)
5885 {
5886 SaveStateEntry *se, **pse;
5887
5888 se = qemu_malloc(sizeof(SaveStateEntry));
5889 if (!se)
5890 return -1;
5891 pstrcpy(se->idstr, sizeof(se->idstr), idstr);
5892 se->instance_id = instance_id;
5893 se->version_id = version_id;
5894 se->save_state = save_state;
5895 se->load_state = load_state;
5896 se->opaque = opaque;
5897 se->next = NULL;
5898
5899 /* add at the end of list */
5900 pse = &first_se;
5901 while (*pse != NULL)
5902 pse = &(*pse)->next;
5903 *pse = se;
5904 return 0;
5905 }
5906
5907 #define QEMU_VM_FILE_MAGIC 0x5145564d
5908 #define QEMU_VM_FILE_VERSION 0x00000002
5909
5910 static int qemu_savevm_state(QEMUFile *f)
5911 {
5912 SaveStateEntry *se;
5913 int len, ret;
5914 int64_t cur_pos, len_pos, total_len_pos;
5915
5916 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
5917 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
5918 total_len_pos = qemu_ftell(f);
5919 qemu_put_be64(f, 0); /* total size */
5920
5921 for(se = first_se; se != NULL; se = se->next) {
5922 /* ID string */
5923 len = strlen(se->idstr);
5924 qemu_put_byte(f, len);
5925 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
5926
5927 qemu_put_be32(f, se->instance_id);
5928 qemu_put_be32(f, se->version_id);
5929
5930 /* record size: filled later */
5931 len_pos = qemu_ftell(f);
5932 qemu_put_be32(f, 0);
5933 se->save_state(f, se->opaque);
5934
5935 /* fill record size */
5936 cur_pos = qemu_ftell(f);
5937 len = cur_pos - len_pos - 4;
5938 qemu_fseek(f, len_pos, SEEK_SET);
5939 qemu_put_be32(f, len);
5940 qemu_fseek(f, cur_pos, SEEK_SET);
5941 }
5942 cur_pos = qemu_ftell(f);
5943 qemu_fseek(f, total_len_pos, SEEK_SET);
5944 qemu_put_be64(f, cur_pos - total_len_pos - 8);
5945 qemu_fseek(f, cur_pos, SEEK_SET);
5946
5947 ret = 0;
5948 return ret;
5949 }
5950
5951 static SaveStateEntry *find_se(const char *idstr, int instance_id)
5952 {
5953 SaveStateEntry *se;
5954
5955 for(se = first_se; se != NULL; se = se->next) {
5956 if (!strcmp(se->idstr, idstr) &&
5957 instance_id == se->instance_id)
5958 return se;
5959 }
5960 return NULL;
5961 }
5962
5963 static int qemu_loadvm_state(QEMUFile *f)
5964 {
5965 SaveStateEntry *se;
5966 int len, ret, instance_id, record_len, version_id;
5967 int64_t total_len, end_pos, cur_pos;
5968 unsigned int v;
5969 char idstr[256];
5970
5971 v = qemu_get_be32(f);
5972 if (v != QEMU_VM_FILE_MAGIC)
5973 goto fail;
5974 v = qemu_get_be32(f);
5975 if (v != QEMU_VM_FILE_VERSION) {
5976 fail:
5977 ret = -1;
5978 goto the_end;
5979 }
5980 total_len = qemu_get_be64(f);
5981 end_pos = total_len + qemu_ftell(f);
5982 for(;;) {
5983 if (qemu_ftell(f) >= end_pos)
5984 break;
5985 len = qemu_get_byte(f);
5986 qemu_get_buffer(f, (uint8_t *)idstr, len);
5987 idstr[len] = '\0';
5988 instance_id = qemu_get_be32(f);
5989 version_id = qemu_get_be32(f);
5990 record_len = qemu_get_be32(f);
5991 #if 0
5992 printf("idstr=%s instance=0x%x version=%d len=%d\n",
5993 idstr, instance_id, version_id, record_len);
5994 #endif
5995 cur_pos = qemu_ftell(f);
5996 se = find_se(idstr, instance_id);
5997 if (!se) {
5998 fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
5999 instance_id, idstr);
6000 } else {
6001 ret = se->load_state(f, se->opaque, version_id);
6002 if (ret < 0) {
6003 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
6004 instance_id, idstr);
6005 }
6006 }
6007 /* always seek to exact end of record */
6008 qemu_fseek(f, cur_pos + record_len, SEEK_SET);
6009 }
6010 ret = 0;
6011 the_end:
6012 return ret;
6013 }
6014
6015 /* device can contain snapshots */
6016 static int bdrv_can_snapshot(BlockDriverState *bs)
6017 {
6018 return (bs &&
6019 !bdrv_is_removable(bs) &&
6020 !bdrv_is_read_only(bs));
6021 }
6022
6023 /* device must be snapshots in order to have a reliable snapshot */
6024 static int bdrv_has_snapshot(BlockDriverState *bs)
6025 {
6026 return (bs &&
6027 !bdrv_is_removable(bs) &&
6028 !bdrv_is_read_only(bs));
6029 }
6030
6031 static BlockDriverState *get_bs_snapshots(void)
6032 {
6033 BlockDriverState *bs;
6034 int i;
6035
6036 if (bs_snapshots)
6037 return bs_snapshots;
6038 for(i = 0; i <= nb_drives; i++) {
6039 bs = drives_table[i].bdrv;
6040 if (bdrv_can_snapshot(bs))
6041 goto ok;
6042 }
6043 return NULL;
6044 ok:
6045 bs_snapshots = bs;
6046 return bs;
6047 }
6048
6049 static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
6050 const char *name)
6051 {
6052 QEMUSnapshotInfo *sn_tab, *sn;
6053 int nb_sns, i, ret;
6054
6055 ret = -ENOENT;
6056 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
6057 if (nb_sns < 0)
6058 return ret;
6059 for(i = 0; i < nb_sns; i++) {
6060 sn = &sn_tab[i];
6061 if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
6062 *sn_info = *sn;
6063 ret = 0;
6064 break;
6065 }
6066 }
6067 qemu_free(sn_tab);
6068 return ret;
6069 }
6070
6071 void do_savevm(const char *name)
6072 {
6073 BlockDriverState *bs, *bs1;
6074 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
6075 int must_delete, ret, i;
6076 BlockDriverInfo bdi1, *bdi = &bdi1;
6077 QEMUFile *f;
6078 int saved_vm_running;
6079 #ifdef _WIN32
6080 struct _timeb tb;
6081 #else
6082 struct timeval tv;
6083 #endif
6084
6085 bs = get_bs_snapshots();
6086 if (!bs) {
6087 term_printf("No block device can accept snapshots\n");
6088 return;
6089 }
6090
6091 /* ??? Should this occur after vm_stop? */
6092 qemu_aio_flush();
6093
6094 saved_vm_running = vm_running;
6095 vm_stop(0);
6096
6097 must_delete = 0;
6098 if (name) {
6099 ret = bdrv_snapshot_find(bs, old_sn, name);
6100 if (ret >= 0) {
6101 must_delete = 1;
6102 }
6103 }
6104 memset(sn, 0, sizeof(*sn));
6105 if (must_delete) {
6106 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
6107 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
6108 } else {
6109 if (name)
6110 pstrcpy(sn->name, sizeof(sn->name), name);
6111 }
6112
6113 /* fill auxiliary fields */
6114 #ifdef _WIN32
6115 _ftime(&tb);
6116 sn->date_sec = tb.time;
6117 sn->date_nsec = tb.millitm * 1000000;
6118 #else
6119 gettimeofday(&tv, NULL);
6120 sn->date_sec = tv.tv_sec;
6121 sn->date_nsec = tv.tv_usec * 1000;
6122 #endif
6123 sn->vm_clock_nsec = qemu_get_clock(vm_clock);
6124
6125 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
6126 term_printf("Device %s does not support VM state snapshots\n",
6127 bdrv_get_device_name(bs));
6128 goto the_end;
6129 }
6130
6131 /* save the VM state */
6132 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
6133 if (!f) {
6134 term_printf("Could not open VM state file\n");
6135 goto the_end;
6136 }
6137 ret = qemu_savevm_state(f);
6138 sn->vm_state_size = qemu_ftell(f);
6139 qemu_fclose(f);
6140 if (ret < 0) {
6141 term_printf("Error %d while writing VM\n", ret);
6142 goto the_end;
6143 }
6144
6145 /* create the snapshots */
6146
6147 for(i = 0; i < nb_drives; i++) {
6148 bs1 = drives_table[i].bdrv;
6149 if (bdrv_has_snapshot(bs1)) {
6150 if (must_delete) {
6151 ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
6152 if (ret < 0) {
6153 term_printf("Error while deleting snapshot on '%s'\n",
6154 bdrv_get_device_name(bs1));
6155 }
6156 }
6157 ret = bdrv_snapshot_create(bs1, sn);
6158 if (ret < 0) {
6159 term_printf("Error while creating snapshot on '%s'\n",
6160 bdrv_get_device_name(bs1));
6161 }
6162 }
6163 }
6164
6165 the_end:
6166 if (saved_vm_running)
6167 vm_start();
6168 }
6169
6170 void do_loadvm(const char *name)
6171 {
6172 BlockDriverState *bs, *bs1;
6173 BlockDriverInfo bdi1, *bdi = &bdi1;
6174 QEMUFile *f;
6175 int i, ret;
6176 int saved_vm_running;
6177
6178 bs = get_bs_snapshots();
6179 if (!bs) {
6180 term_printf("No block device supports snapshots\n");
6181 return;
6182 }
6183
6184 /* Flush all IO requests so they don't interfere with the new state. */
6185 qemu_aio_flush();
6186
6187 saved_vm_running = vm_running;
6188 vm_stop(0);
6189
6190 for(i = 0; i <= nb_drives; i++) {
6191 bs1 = drives_table[i].bdrv;
6192 if (bdrv_has_snapshot(bs1)) {
6193 ret = bdrv_snapshot_goto(bs1, name);
6194 if (ret < 0) {
6195 if (bs != bs1)
6196 term_printf("Warning: ");
6197 switch(ret) {
6198 case -ENOTSUP:
6199 term_printf("Snapshots not supported on device '%s'\n",
6200 bdrv_get_device_name(bs1));
6201 break;
6202 case -ENOENT:
6203 term_printf("Could not find snapshot '%s' on device '%s'\n",
6204 name, bdrv_get_device_name(bs1));
6205 break;
6206 default:
6207 term_printf("Error %d while activating snapshot on '%s'\n",
6208 ret, bdrv_get_device_name(bs1));
6209 break;
6210 }
6211 /* fatal on snapshot block device */
6212 if (bs == bs1)
6213 goto the_end;
6214 }
6215 }
6216 }
6217
6218 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
6219 term_printf("Device %s does not support VM state snapshots\n",
6220 bdrv_get_device_name(bs));
6221 return;
6222 }
6223
6224 /* restore the VM state */
6225 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
6226 if (!f) {
6227 term_printf("Could not open VM state file\n");
6228 goto the_end;
6229 }
6230 ret = qemu_loadvm_state(f);
6231 qemu_fclose(f);
6232 if (ret < 0) {
6233 term_printf("Error %d while loading VM state\n", ret);
6234 }
6235 the_end:
6236 if (saved_vm_running)
6237 vm_start();
6238 }
6239
6240 void do_delvm(const char *name)
6241 {
6242 BlockDriverState *bs, *bs1;
6243 int i, ret;
6244
6245 bs = get_bs_snapshots();
6246 if (!bs) {
6247 term_printf("No block device supports snapshots\n");
6248 return;
6249 }
6250
6251 for(i = 0; i <= nb_drives; i++) {
6252 bs1 = drives_table[i].bdrv;
6253 if (bdrv_has_snapshot(bs1)) {
6254 ret = bdrv_snapshot_delete(bs1, name);
6255 if (ret < 0) {
6256 if (ret == -ENOTSUP)
6257 term_printf("Snapshots not supported on device '%s'\n",
6258 bdrv_get_device_name(bs1));
6259 else
6260 term_printf("Error %d while deleting snapshot on '%s'\n",
6261 ret, bdrv_get_device_name(bs1));
6262 }
6263 }
6264 }
6265 }
6266
6267 void do_info_snapshots(void)
6268 {
6269 BlockDriverState *bs, *bs1;
6270 QEMUSnapshotInfo *sn_tab, *sn;
6271 int nb_sns, i;
6272 char buf[256];
6273
6274 bs = get_bs_snapshots();
6275 if (!bs) {
6276 term_printf("No available block device supports snapshots\n");
6277 return;
6278 }
6279 term_printf("Snapshot devices:");
6280 for(i = 0; i <= nb_drives; i++) {
6281 bs1 = drives_table[i].bdrv;
6282 if (bdrv_has_snapshot(bs1)) {
6283 if (bs == bs1)
6284 term_printf(" %s", bdrv_get_device_name(bs1));
6285 }
6286 }
6287 term_printf("\n");
6288
6289 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
6290 if (nb_sns < 0) {
6291 term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
6292 return;
6293 }
6294 term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
6295 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
6296 for(i = 0; i < nb_sns; i++) {
6297 sn = &sn_tab[i];
6298 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
6299 }
6300 qemu_free(sn_tab);
6301 }
6302
6303 /***********************************************************/
6304 /* cpu save/restore */
6305
6306 #if defined(TARGET_I386)
6307
6308 static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
6309 {
6310 qemu_put_be32(f, dt->selector);
6311 qemu_put_betl(f, dt->base);
6312 qemu_put_be32(f, dt->limit);
6313 qemu_put_be32(f, dt->flags);
6314 }
6315
6316 static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
6317 {
6318 dt->selector = qemu_get_be32(f);
6319 dt->base = qemu_get_betl(f);
6320 dt->limit = qemu_get_be32(f);
6321 dt->flags = qemu_get_be32(f);
6322 }
6323
6324 void cpu_save(QEMUFile *f, void *opaque)
6325 {
6326 CPUState *env = opaque;
6327 uint16_t fptag, fpus, fpuc, fpregs_format;
6328 uint32_t hflags;
6329 int i;
6330
6331 for(i = 0; i < CPU_NB_REGS; i++)
6332 qemu_put_betls(f, &env->regs[i]);
6333 qemu_put_betls(f, &env->eip);
6334 qemu_put_betls(f, &env->eflags);
6335 hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
6336 qemu_put_be32s(f, &hflags);
6337
6338 /* FPU */
6339 fpuc = env->fpuc;
6340 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
6341 fptag = 0;
6342 for(i = 0; i < 8; i++) {
6343 fptag |= ((!env->fptags[i]) << i);
6344 }
6345
6346 qemu_put_be16s(f, &fpuc);
6347 qemu_put_be16s(f, &fpus);
6348 qemu_put_be16s(f, &fptag);
6349
6350 #ifdef USE_X86LDOUBLE
6351 fpregs_format = 0;
6352 #else
6353 fpregs_format = 1;
6354 #endif
6355 qemu_put_be16s(f, &fpregs_format);
6356
6357 for(i = 0; i < 8; i++) {
6358 #ifdef USE_X86LDOUBLE
6359 {
6360 uint64_t mant;
6361 uint16_t exp;
6362 /* we save the real CPU data (in case of MMX usage only 'mant'
6363 contains the MMX register */
6364 cpu_get_fp80(&mant, &exp, env->fpregs[i].d);
6365 qemu_put_be64(f, mant);
6366 qemu_put_be16(f, exp);
6367 }
6368 #else
6369 /* if we use doubles for float emulation, we save the doubles to
6370 avoid losing information in case of MMX usage. It can give
6371 problems if the image is restored on a CPU where long
6372 doubles are used instead. */
6373 qemu_put_be64(f, env->fpregs[i].mmx.MMX_Q(0));
6374 #endif
6375 }
6376
6377 for(i = 0; i < 6; i++)
6378 cpu_put_seg(f, &env->segs[i]);
6379 cpu_put_seg(f, &env->ldt);
6380 cpu_put_seg(f, &env->tr);
6381 cpu_put_seg(f, &env->gdt);
6382 cpu_put_seg(f, &env->idt);
6383
6384 qemu_put_be32s(f, &env->sysenter_cs);
6385 qemu_put_be32s(f, &env->sysenter_esp);
6386 qemu_put_be32s(f, &env->sysenter_eip);
6387
6388 qemu_put_betls(f, &env->cr[0]);
6389 qemu_put_betls(f, &env->cr[2]);
6390 qemu_put_betls(f, &env->cr[3]);
6391 qemu_put_betls(f, &env->cr[4]);
6392
6393 for(i = 0; i < 8; i++)
6394 qemu_put_betls(f, &env->dr[i]);
6395
6396 /* MMU */
6397 qemu_put_be32s(f, &env->a20_mask);
6398
6399 /* XMM */
6400 qemu_put_be32s(f, &env->mxcsr);
6401 for(i = 0; i < CPU_NB_REGS; i++) {
6402 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(0));
6403 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(1));
6404 }
6405
6406 #ifdef TARGET_X86_64
6407 qemu_put_be64s(f, &env->efer);
6408 qemu_put_be64s(f, &env->star);
6409 qemu_put_be64s(f, &env->lstar);
6410 qemu_put_be64s(f, &env->cstar);
6411 qemu_put_be64s(f, &env->fmask);
6412 qemu_put_be64s(f, &env->kernelgsbase);
6413 #endif
6414 qemu_put_be32s(f, &env->smbase);
6415 }
6416
6417 #ifdef USE_X86LDOUBLE
6418 /* XXX: add that in a FPU generic layer */
6419 union x86_longdouble {
6420 uint64_t mant;
6421 uint16_t exp;
6422 };
6423
6424 #define MANTD1(fp) (fp & ((1LL << 52) - 1))
6425 #define EXPBIAS1 1023
6426 #define EXPD1(fp) ((fp >> 52) & 0x7FF)
6427 #define SIGND1(fp) ((fp >> 32) & 0x80000000)
6428
6429 static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
6430 {
6431 int e;
6432 /* mantissa */
6433 p->mant = (MANTD1(temp) << 11) | (1LL << 63);
6434 /* exponent + sign */
6435 e = EXPD1(temp) - EXPBIAS1 + 16383;
6436 e |= SIGND1(temp) >> 16;
6437 p->exp = e;
6438 }
6439 #endif
6440
6441 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6442 {
6443 CPUState *env = opaque;
6444 int i, guess_mmx;
6445 uint32_t hflags;
6446 uint16_t fpus, fpuc, fptag, fpregs_format;
6447
6448 if (version_id != 3 && version_id != 4)
6449 return -EINVAL;
6450 for(i = 0; i < CPU_NB_REGS; i++)
6451 qemu_get_betls(f, &env->regs[i]);
6452 qemu_get_betls(f, &env->eip);
6453 qemu_get_betls(f, &env->eflags);
6454 qemu_get_be32s(f, &hflags);
6455
6456 qemu_get_be16s(f, &fpuc);
6457 qemu_get_be16s(f, &fpus);
6458 qemu_get_be16s(f, &fptag);
6459 qemu_get_be16s(f, &fpregs_format);
6460
6461 /* NOTE: we cannot always restore the FPU state if the image come
6462 from a host with a different 'USE_X86LDOUBLE' define. We guess
6463 if we are in an MMX state to restore correctly in that case. */
6464 guess_mmx = ((fptag == 0xff) && (fpus & 0x3800) == 0);
6465 for(i = 0; i < 8; i++) {
6466 uint64_t mant;
6467 uint16_t exp;
6468
6469 switch(fpregs_format) {
6470 case 0:
6471 mant = qemu_get_be64(f);
6472 exp = qemu_get_be16(f);
6473 #ifdef USE_X86LDOUBLE
6474 env->fpregs[i].d = cpu_set_fp80(mant, exp);
6475 #else
6476 /* difficult case */
6477 if (guess_mmx)
6478 env->fpregs[i].mmx.MMX_Q(0) = mant;
6479 else
6480 env->fpregs[i].d = cpu_set_fp80(mant, exp);
6481 #endif
6482 break;
6483 case 1:
6484 mant = qemu_get_be64(f);
6485 #ifdef USE_X86LDOUBLE
6486 {
6487 union x86_longdouble *p;
6488 /* difficult case */
6489 p = (void *)&env->fpregs[i];
6490 if (guess_mmx) {
6491 p->mant = mant;
6492 p->exp = 0xffff;
6493 } else {
6494 fp64_to_fp80(p, mant);
6495 }
6496 }
6497 #else
6498 env->fpregs[i].mmx.MMX_Q(0) = mant;
6499 #endif
6500 break;
6501 default:
6502 return -EINVAL;
6503 }
6504 }
6505
6506 env->fpuc = fpuc;
6507 /* XXX: restore FPU round state */
6508 env->fpstt = (fpus >> 11) & 7;
6509 env->fpus = fpus & ~0x3800;
6510 fptag ^= 0xff;
6511 for(i = 0; i < 8; i++) {
6512 env->fptags[i] = (fptag >> i) & 1;
6513 }
6514
6515 for(i = 0; i < 6; i++)
6516 cpu_get_seg(f, &env->segs[i]);
6517 cpu_get_seg(f, &env->ldt);
6518 cpu_get_seg(f, &env->tr);
6519 cpu_get_seg(f, &env->gdt);
6520 cpu_get_seg(f, &env->idt);
6521
6522 qemu_get_be32s(f, &env->sysenter_cs);
6523 qemu_get_be32s(f, &env->sysenter_esp);
6524 qemu_get_be32s(f, &env->sysenter_eip);
6525
6526 qemu_get_betls(f, &env->cr[0]);
6527 qemu_get_betls(f, &env->cr[2]);
6528 qemu_get_betls(f, &env->cr[3]);
6529 qemu_get_betls(f, &env->cr[4]);
6530
6531 for(i = 0; i < 8; i++)
6532 qemu_get_betls(f, &env->dr[i]);
6533
6534 /* MMU */
6535 qemu_get_be32s(f, &env->a20_mask);
6536
6537 qemu_get_be32s(f, &env->mxcsr);
6538 for(i = 0; i < CPU_NB_REGS; i++) {
6539 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(0));
6540 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(1));
6541 }
6542
6543 #ifdef TARGET_X86_64
6544 qemu_get_be64s(f, &env->efer);
6545 qemu_get_be64s(f, &env->star);
6546 qemu_get_be64s(f, &env->lstar);
6547 qemu_get_be64s(f, &env->cstar);
6548 qemu_get_be64s(f, &env->fmask);
6549 qemu_get_be64s(f, &env->kernelgsbase);
6550 #endif
6551 if (version_id >= 4)
6552 qemu_get_be32s(f, &env->smbase);
6553
6554 /* XXX: compute hflags from scratch, except for CPL and IIF */
6555 env->hflags = hflags;
6556 tlb_flush(env, 1);
6557 return 0;
6558 }
6559
6560 #elif defined(TARGET_PPC)
6561 void cpu_save(QEMUFile *f, void *opaque)
6562 {
6563 }
6564
6565 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6566 {
6567 return 0;
6568 }
6569
6570 #elif defined(TARGET_MIPS)
6571 void cpu_save(QEMUFile *f, void *opaque)
6572 {
6573 }
6574
6575 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6576 {
6577 return 0;
6578 }
6579
6580 #elif defined(TARGET_SPARC)
6581 void cpu_save(QEMUFile *f, void *opaque)
6582 {
6583 CPUState *env = opaque;
6584 int i;
6585 uint32_t tmp;
6586
6587 for(i = 0; i < 8; i++)
6588 qemu_put_betls(f, &env->gregs[i]);
6589 for(i = 0; i < NWINDOWS * 16; i++)
6590 qemu_put_betls(f, &env->regbase[i]);
6591
6592 /* FPU */
6593 for(i = 0; i < TARGET_FPREGS; i++) {
6594 union {
6595 float32 f;
6596 uint32_t i;
6597 } u;
6598 u.f = env->fpr[i];
6599 qemu_put_be32(f, u.i);
6600 }
6601
6602 qemu_put_betls(f, &env->pc);
6603 qemu_put_betls(f, &env->npc);
6604 qemu_put_betls(f, &env->y);
6605 tmp = GET_PSR(env);
6606 qemu_put_be32(f, tmp);
6607 qemu_put_betls(f, &env->fsr);
6608 qemu_put_betls(f, &env->tbr);
6609 #ifndef TARGET_SPARC64
6610 qemu_put_be32s(f, &env->wim);
6611 /* MMU */
6612 for(i = 0; i < 16; i++)
6613 qemu_put_be32s(f, &env->mmuregs[i]);
6614 #endif
6615 }
6616
6617 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6618 {
6619 CPUState *env = opaque;
6620 int i;
6621 uint32_t tmp;
6622
6623 for(i = 0; i < 8; i++)
6624 qemu_get_betls(f, &env->gregs[i]);
6625 for(i = 0; i < NWINDOWS * 16; i++)
6626 qemu_get_betls(f, &env->regbase[i]);
6627
6628 /* FPU */
6629 for(i = 0; i < TARGET_FPREGS; i++) {
6630 union {
6631 float32 f;
6632 uint32_t i;
6633 } u;
6634 u.i = qemu_get_be32(f);
6635 env->fpr[i] = u.f;
6636 }
6637
6638 qemu_get_betls(f, &env->pc);
6639 qemu_get_betls(f, &env->npc);
6640 qemu_get_betls(f, &env->y);
6641 tmp = qemu_get_be32(f);
6642 env->cwp = 0; /* needed to ensure that the wrapping registers are
6643 correctly updated */
6644 PUT_PSR(env, tmp);
6645 qemu_get_betls(f, &env->fsr);
6646 qemu_get_betls(f, &env->tbr);
6647 #ifndef TARGET_SPARC64
6648 qemu_get_be32s(f, &env->wim);
6649 /* MMU */
6650 for(i = 0; i < 16; i++)
6651 qemu_get_be32s(f, &env->mmuregs[i]);
6652 #endif
6653 tlb_flush(env, 1);
6654 return 0;
6655 }
6656
6657 #elif defined(TARGET_ARM)
6658
6659 void cpu_save(QEMUFile *f, void *opaque)
6660 {
6661 int i;
6662 CPUARMState *env = (CPUARMState *)opaque;
6663
6664 for (i = 0; i < 16; i++) {
6665 qemu_put_be32(f, env->regs[i]);
6666 }
6667 qemu_put_be32(f, cpsr_read(env));
6668 qemu_put_be32(f, env->spsr);
6669 for (i = 0; i < 6; i++) {
6670 qemu_put_be32(f, env->banked_spsr[i]);
6671 qemu_put_be32(f, env->banked_r13[i]);
6672 qemu_put_be32(f, env->banked_r14[i]);
6673 }
6674 for (i = 0; i < 5; i++) {
6675 qemu_put_be32(f, env->usr_regs[i]);
6676 qemu_put_be32(f, env->fiq_regs[i]);
6677 }
6678 qemu_put_be32(f, env->cp15.c0_cpuid);
6679 qemu_put_be32(f, env->cp15.c0_cachetype);
6680 qemu_put_be32(f, env->cp15.c1_sys);
6681 qemu_put_be32(f, env->cp15.c1_coproc);
6682 qemu_put_be32(f, env->cp15.c1_xscaleauxcr);
6683 qemu_put_be32(f, env->cp15.c2_base0);
6684 qemu_put_be32(f, env->cp15.c2_base1);
6685 qemu_put_be32(f, env->cp15.c2_mask);
6686 qemu_put_be32(f, env->cp15.c2_data);
6687 qemu_put_be32(f, env->cp15.c2_insn);
6688 qemu_put_be32(f, env->cp15.c3);
6689 qemu_put_be32(f, env->cp15.c5_insn);
6690 qemu_put_be32(f, env->cp15.c5_data);
6691 for (i = 0; i < 8; i++) {
6692 qemu_put_be32(f, env->cp15.c6_region[i]);
6693 }
6694 qemu_put_be32(f, env->cp15.c6_insn);
6695 qemu_put_be32(f, env->cp15.c6_data);
6696 qemu_put_be32(f, env->cp15.c9_insn);
6697 qemu_put_be32(f, env->cp15.c9_data);
6698 qemu_put_be32(f, env->cp15.c13_fcse);
6699 qemu_put_be32(f, env->cp15.c13_context);
6700 qemu_put_be32(f, env->cp15.c13_tls1);
6701 qemu_put_be32(f, env->cp15.c13_tls2);
6702 qemu_put_be32(f, env->cp15.c13_tls3);
6703 qemu_put_be32(f, env->cp15.c15_cpar);
6704
6705 qemu_put_be32(f, env->features);
6706
6707 if (arm_feature(env, ARM_FEATURE_VFP)) {
6708 for (i = 0; i < 16; i++) {
6709 CPU_DoubleU u;
6710 u.d = env->vfp.regs[i];
6711 qemu_put_be32(f, u.l.upper);
6712 qemu_put_be32(f, u.l.lower);
6713 }
6714 for (i = 0; i < 16; i++) {
6715 qemu_put_be32(f, env->vfp.xregs[i]);
6716 }
6717
6718 /* TODO: Should use proper FPSCR access functions. */
6719 qemu_put_be32(f, env->vfp.vec_len);
6720 qemu_put_be32(f, env->vfp.vec_stride);
6721
6722 if (arm_feature(env, ARM_FEATURE_VFP3)) {
6723 for (i = 16; i < 32; i++) {
6724 CPU_DoubleU u;
6725 u.d = env->vfp.regs[i];
6726 qemu_put_be32(f, u.l.upper);
6727 qemu_put_be32(f, u.l.lower);
6728 }
6729 }
6730 }
6731
6732 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6733 for (i = 0; i < 16; i++) {
6734 qemu_put_be64(f, env->iwmmxt.regs[i]);
6735 }
6736 for (i = 0; i < 16; i++) {
6737 qemu_put_be32(f, env->iwmmxt.cregs[i]);
6738 }
6739 }
6740
6741 if (arm_feature(env, ARM_FEATURE_M)) {
6742 qemu_put_be32(f, env->v7m.other_sp);
6743 qemu_put_be32(f, env->v7m.vecbase);
6744 qemu_put_be32(f, env->v7m.basepri);
6745 qemu_put_be32(f, env->v7m.control);
6746 qemu_put_be32(f, env->v7m.current_sp);
6747 qemu_put_be32(f, env->v7m.exception);
6748 }
6749 }
6750
6751 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6752 {
6753 CPUARMState *env = (CPUARMState *)opaque;
6754 int i;
6755
6756 if (version_id != ARM_CPU_SAVE_VERSION)
6757 return -EINVAL;
6758
6759 for (i = 0; i < 16; i++) {
6760 env->regs[i] = qemu_get_be32(f);
6761 }
6762 cpsr_write(env, qemu_get_be32(f), 0xffffffff);
6763 env->spsr = qemu_get_be32(f);
6764 for (i = 0; i < 6; i++) {
6765 env->banked_spsr[i] = qemu_get_be32(f);
6766 env->banked_r13[i] = qemu_get_be32(f);
6767 env->banked_r14[i] = qemu_get_be32(f);
6768 }
6769 for (i = 0; i < 5; i++) {
6770 env->usr_regs[i] = qemu_get_be32(f);
6771 env->fiq_regs[i] = qemu_get_be32(f);
6772 }
6773 env->cp15.c0_cpuid = qemu_get_be32(f);
6774 env->cp15.c0_cachetype = qemu_get_be32(f);
6775 env->cp15.c1_sys = qemu_get_be32(f);
6776 env->cp15.c1_coproc = qemu_get_be32(f);
6777 env->cp15.c1_xscaleauxcr = qemu_get_be32(f);
6778 env->cp15.c2_base0 = qemu_get_be32(f);
6779 env->cp15.c2_base1 = qemu_get_be32(f);
6780 env->cp15.c2_mask = qemu_get_be32(f);
6781 env->cp15.c2_data = qemu_get_be32(f);
6782 env->cp15.c2_insn = qemu_get_be32(f);
6783 env->cp15.c3 = qemu_get_be32(f);
6784 env->cp15.c5_insn = qemu_get_be32(f);
6785 env->cp15.c5_data = qemu_get_be32(f);
6786 for (i = 0; i < 8; i++) {
6787 env->cp15.c6_region[i] = qemu_get_be32(f);
6788 }
6789 env->cp15.c6_insn = qemu_get_be32(f);
6790 env->cp15.c6_data = qemu_get_be32(f);
6791 env->cp15.c9_insn = qemu_get_be32(f);
6792 env->cp15.c9_data = qemu_get_be32(f);
6793 env->cp15.c13_fcse = qemu_get_be32(f);
6794 env->cp15.c13_context = qemu_get_be32(f);
6795 env->cp15.c13_tls1 = qemu_get_be32(f);
6796 env->cp15.c13_tls2 = qemu_get_be32(f);
6797 env->cp15.c13_tls3 = qemu_get_be32(f);
6798 env->cp15.c15_cpar = qemu_get_be32(f);
6799
6800 env->features = qemu_get_be32(f);
6801
6802 if (arm_feature(env, ARM_FEATURE_VFP)) {
6803 for (i = 0; i < 16; i++) {
6804 CPU_DoubleU u;
6805 u.l.upper = qemu_get_be32(f);
6806 u.l.lower = qemu_get_be32(f);
6807 env->vfp.regs[i] = u.d;
6808 }
6809 for (i = 0; i < 16; i++) {
6810 env->vfp.xregs[i] = qemu_get_be32(f);
6811 }
6812
6813 /* TODO: Should use proper FPSCR access functions. */
6814 env->vfp.vec_len = qemu_get_be32(f);
6815 env->vfp.vec_stride = qemu_get_be32(f);
6816
6817 if (arm_feature(env, ARM_FEATURE_VFP3)) {
6818 for (i = 0; i < 16; i++) {
6819 CPU_DoubleU u;
6820 u.l.upper = qemu_get_be32(f);
6821 u.l.lower = qemu_get_be32(f);
6822 env->vfp.regs[i] = u.d;
6823 }
6824 }
6825 }
6826
6827 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6828 for (i = 0; i < 16; i++) {
6829 env->iwmmxt.regs[i] = qemu_get_be64(f);
6830 }
6831 for (i = 0; i < 16; i++) {
6832 env->iwmmxt.cregs[i] = qemu_get_be32(f);
6833 }
6834 }
6835
6836 if (arm_feature(env, ARM_FEATURE_M)) {
6837 env->v7m.other_sp = qemu_get_be32(f);
6838 env->v7m.vecbase = qemu_get_be32(f);
6839 env->v7m.basepri = qemu_get_be32(f);
6840 env->v7m.control = qemu_get_be32(f);
6841 env->v7m.current_sp = qemu_get_be32(f);
6842 env->v7m.exception = qemu_get_be32(f);
6843 }
6844
6845 return 0;
6846 }
6847
6848 #else
6849
6850 //#warning No CPU save/restore functions
6851
6852 #endif
6853
6854 /***********************************************************/
6855 /* ram save/restore */
6856
6857 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
6858 {
6859 int v;
6860
6861 v = qemu_get_byte(f);
6862 switch(v) {
6863 case 0:
6864 if (qemu_get_buffer(f, buf, len) != len)
6865 return -EIO;
6866 break;
6867 case 1:
6868 v = qemu_get_byte(f);
6869 memset(buf, v, len);
6870 break;
6871 default:
6872 return -EINVAL;
6873 }
6874 return 0;
6875 }
6876
6877 static int ram_load_v1(QEMUFile *f, void *opaque)
6878 {
6879 int i, ret;
6880
6881 if (qemu_get_be32(f) != phys_ram_size)
6882 return -EINVAL;
6883 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
6884 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
6885 if (ret)
6886 return ret;
6887 }
6888 return 0;
6889 }
6890
6891 #define BDRV_HASH_BLOCK_SIZE 1024
6892 #define IOBUF_SIZE 4096
6893 #define RAM_CBLOCK_MAGIC 0xfabe
6894
6895 typedef struct RamCompressState {
6896 z_stream zstream;
6897 QEMUFile *f;
6898 uint8_t buf[IOBUF_SIZE];
6899 } RamCompressState;
6900
6901 static int ram_compress_open(RamCompressState *s, QEMUFile *f)
6902 {
6903 int ret;
6904 memset(s, 0, sizeof(*s));
6905 s->f = f;
6906 ret = deflateInit2(&s->zstream, 1,
6907 Z_DEFLATED, 15,
6908 9, Z_DEFAULT_STRATEGY);
6909 if (ret != Z_OK)
6910 return -1;
6911 s->zstream.avail_out = IOBUF_SIZE;
6912 s->zstream.next_out = s->buf;
6913 return 0;
6914 }
6915
6916 static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
6917 {
6918 qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
6919 qemu_put_be16(s->f, len);
6920 qemu_put_buffer(s->f, buf, len);
6921 }
6922
6923 static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
6924 {
6925 int ret;
6926
6927 s->zstream.avail_in = len;
6928 s->zstream.next_in = (uint8_t *)buf;
6929 while (s->zstream.avail_in > 0) {
6930 ret = deflate(&s->zstream, Z_NO_FLUSH);
6931 if (ret != Z_OK)
6932 return -1;
6933 if (s->zstream.avail_out == 0) {
6934 ram_put_cblock(s, s->buf, IOBUF_SIZE);
6935 s->zstream.avail_out = IOBUF_SIZE;
6936 s->zstream.next_out = s->buf;
6937 }
6938 }
6939 return 0;
6940 }
6941
6942 static void ram_compress_close(RamCompressState *s)
6943 {
6944 int len, ret;
6945
6946 /* compress last bytes */
6947 for(;;) {
6948 ret = deflate(&s->zstream, Z_FINISH);
6949 if (ret == Z_OK || ret == Z_STREAM_END) {
6950 len = IOBUF_SIZE - s->zstream.avail_out;
6951 if (len > 0) {
6952 ram_put_cblock(s, s->buf, len);
6953 }
6954 s->zstream.avail_out = IOBUF_SIZE;
6955 s->zstream.next_out = s->buf;
6956 if (ret == Z_STREAM_END)
6957 break;
6958 } else {
6959 goto fail;
6960 }
6961 }
6962 fail:
6963 deflateEnd(&s->zstream);
6964 }
6965
6966 typedef struct RamDecompressState {
6967 z_stream zstream;
6968 QEMUFile *f;
6969 uint8_t buf[IOBUF_SIZE];
6970 } RamDecompressState;
6971
6972 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
6973 {
6974 int ret;
6975 memset(s, 0, sizeof(*s));
6976 s->f = f;
6977 ret = inflateInit(&s->zstream);
6978 if (ret != Z_OK)
6979 return -1;
6980 return 0;
6981 }
6982
6983 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
6984 {
6985 int ret, clen;
6986
6987 s->zstream.avail_out = len;
6988 s->zstream.next_out = buf;
6989 while (s->zstream.avail_out > 0) {
6990 if (s->zstream.avail_in == 0) {
6991 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
6992 return -1;
6993 clen = qemu_get_be16(s->f);
6994 if (clen > IOBUF_SIZE)
6995 return -1;
6996 qemu_get_buffer(s->f, s->buf, clen);
6997 s->zstream.avail_in = clen;
6998 s->zstream.next_in = s->buf;
6999 }
7000 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
7001 if (ret != Z_OK && ret != Z_STREAM_END) {
7002 return -1;
7003 }
7004 }
7005 return 0;
7006 }
7007
7008 static void ram_decompress_close(RamDecompressState *s)
7009 {
7010 inflateEnd(&s->zstream);
7011 }
7012
7013 static void ram_save(QEMUFile *f, void *opaque)
7014 {
7015 int i;
7016 RamCompressState s1, *s = &s1;
7017 uint8_t buf[10];
7018
7019 qemu_put_be32(f, phys_ram_size);
7020 if (ram_compress_open(s, f) < 0)
7021 return;
7022 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
7023 #if 0
7024 if (tight_savevm_enabled) {
7025 int64_t sector_num;
7026 int j;
7027
7028 /* find if the memory block is available on a virtual
7029 block device */
7030 sector_num = -1;
7031 for(j = 0; j < nb_drives; j++) {
7032 sector_num = bdrv_hash_find(drives_table[j].bdrv,
7033 phys_ram_base + i,
7034 BDRV_HASH_BLOCK_SIZE);
7035 if (sector_num >= 0)
7036 break;
7037 }
7038 if (j == nb_drives)
7039 goto normal_compress;
7040 buf[0] = 1;
7041 buf[1] = j;
7042 cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
7043 ram_compress_buf(s, buf, 10);
7044 } else
7045 #endif
7046 {
7047 // normal_compress:
7048 buf[0] = 0;
7049 ram_compress_buf(s, buf, 1);
7050 ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
7051 }
7052 }
7053 ram_compress_close(s);
7054 }
7055
7056 static int ram_load(QEMUFile *f, void *opaque, int version_id)
7057 {
7058 RamDecompressState s1, *s = &s1;
7059 uint8_t buf[10];
7060 int i;
7061
7062 if (version_id == 1)
7063 return ram_load_v1(f, opaque);
7064 if (version_id != 2)
7065 return -EINVAL;
7066 if (qemu_get_be32(f) != phys_ram_size)
7067 return -EINVAL;
7068 if (ram_decompress_open(s, f) < 0)
7069 return -EINVAL;
7070 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
7071 if (ram_decompress_buf(s, buf, 1) < 0) {
7072 fprintf(stderr, "Error while reading ram block header\n");
7073 goto error;
7074 }
7075 if (buf[0] == 0) {
7076 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
7077 fprintf(stderr, "Error while reading ram block address=0x%08x", i);
7078 goto error;
7079 }
7080 } else
7081 #if 0
7082 if (buf[0] == 1) {
7083 int bs_index;
7084 int64_t sector_num;
7085
7086 ram_decompress_buf(s, buf + 1, 9);
7087 bs_index = buf[1];
7088 sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
7089 if (bs_index >= nb_drives) {
7090 fprintf(stderr, "Invalid block device index %d\n", bs_index);
7091 goto error;
7092 }
7093 if (bdrv_read(drives_table[bs_index].bdrv, sector_num,
7094 phys_ram_base + i,
7095 BDRV_HASH_BLOCK_SIZE / 512) < 0) {
7096 fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
7097 bs_index, sector_num);
7098 goto error;
7099 }
7100 } else
7101 #endif
7102 {
7103 error:
7104 printf("Error block header\n");
7105 return -EINVAL;
7106 }
7107 }
7108 ram_decompress_close(s);
7109 return 0;
7110 }
7111
7112 /***********************************************************/
7113 /* bottom halves (can be seen as timers which expire ASAP) */
7114
7115 struct QEMUBH {
7116 QEMUBHFunc *cb;
7117 void *opaque;
7118 int scheduled;
7119 QEMUBH *next;
7120 };
7121
7122 static QEMUBH *first_bh = NULL;
7123
7124 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
7125 {
7126 QEMUBH *bh;
7127 bh = qemu_mallocz(sizeof(QEMUBH));
7128 if (!bh)
7129 return NULL;
7130 bh->cb = cb;
7131 bh->opaque = opaque;
7132 return bh;
7133 }
7134
7135 int qemu_bh_poll(void)
7136 {
7137 QEMUBH *bh, **pbh;
7138 int ret;
7139
7140 ret = 0;
7141 for(;;) {
7142 pbh = &first_bh;
7143 bh = *pbh;
7144 if (!bh)
7145 break;
7146 ret = 1;
7147 *pbh = bh->next;
7148 bh->scheduled = 0;
7149 bh->cb(bh->opaque);
7150 }
7151 return ret;
7152 }
7153
7154 void qemu_bh_schedule(QEMUBH *bh)
7155 {
7156 CPUState *env = cpu_single_env;
7157 if (bh->scheduled)
7158 return;
7159 bh->scheduled = 1;
7160 bh->next = first_bh;
7161 first_bh = bh;
7162
7163 /* stop the currently executing CPU to execute the BH ASAP */
7164 if (env) {
7165 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
7166 }
7167 }
7168
7169 void qemu_bh_cancel(QEMUBH *bh)
7170 {
7171 QEMUBH **pbh;
7172 if (bh->scheduled) {
7173 pbh = &first_bh;
7174 while (*pbh != bh)
7175 pbh = &(*pbh)->next;
7176 *pbh = bh->next;
7177 bh->scheduled = 0;
7178 }
7179 }
7180
7181 void qemu_bh_delete(QEMUBH *bh)
7182 {
7183 qemu_bh_cancel(bh);
7184 qemu_free(bh);
7185 }
7186
7187 /***********************************************************/
7188 /* machine registration */
7189
7190 QEMUMachine *first_machine = NULL;
7191
7192 int qemu_register_machine(QEMUMachine *m)
7193 {
7194 QEMUMachine **pm;
7195 pm = &first_machine;
7196 while (*pm != NULL)
7197 pm = &(*pm)->next;
7198 m->next = NULL;
7199 *pm = m;
7200 return 0;
7201 }
7202
7203 static QEMUMachine *find_machine(const char *name)
7204 {
7205 QEMUMachine *m;
7206
7207 for(m = first_machine; m != NULL; m = m->next) {
7208 if (!strcmp(m->name, name))
7209 return m;
7210 }
7211 return NULL;
7212 }
7213
7214 /***********************************************************/
7215 /* main execution loop */
7216
7217 static void gui_update(void *opaque)
7218 {
7219 DisplayState *ds = opaque;
7220 ds->dpy_refresh(ds);
7221 qemu_mod_timer(ds->gui_timer,
7222 (ds->gui_timer_interval ?
7223 ds->gui_timer_interval :
7224 GUI_REFRESH_INTERVAL)
7225 + qemu_get_clock(rt_clock));
7226 }
7227
7228 struct vm_change_state_entry {
7229 VMChangeStateHandler *cb;
7230 void *opaque;
7231 LIST_ENTRY (vm_change_state_entry) entries;
7232 };
7233
7234 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
7235
7236 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
7237 void *opaque)
7238 {
7239 VMChangeStateEntry *e;
7240
7241 e = qemu_mallocz(sizeof (*e));
7242 if (!e)
7243 return NULL;
7244
7245 e->cb = cb;
7246 e->opaque = opaque;
7247 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
7248 return e;
7249 }
7250
7251 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
7252 {
7253 LIST_REMOVE (e, entries);
7254 qemu_free (e);
7255 }
7256
7257 static void vm_state_notify(int running)
7258 {
7259 VMChangeStateEntry *e;
7260
7261 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
7262 e->cb(e->opaque, running);
7263 }
7264 }
7265
7266 /* XXX: support several handlers */
7267 static VMStopHandler *vm_stop_cb;
7268 static void *vm_stop_opaque;
7269
7270 int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
7271 {
7272 vm_stop_cb = cb;
7273 vm_stop_opaque = opaque;
7274 return 0;
7275 }
7276
7277 void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
7278 {
7279 vm_stop_cb = NULL;
7280 }
7281
7282 void vm_start(void)
7283 {
7284 if (!vm_running) {
7285 cpu_enable_ticks();
7286 vm_running = 1;
7287 vm_state_notify(1);
7288 qemu_rearm_alarm_timer(alarm_timer);
7289 }
7290 }
7291
7292 void vm_stop(int reason)
7293 {
7294 if (vm_running) {
7295 cpu_disable_ticks();
7296 vm_running = 0;
7297 if (reason != 0) {
7298 if (vm_stop_cb) {
7299 vm_stop_cb(vm_stop_opaque, reason);
7300 }
7301 }
7302 vm_state_notify(0);
7303 }
7304 }
7305
7306 /* reset/shutdown handler */
7307
7308 typedef struct QEMUResetEntry {
7309 QEMUResetHandler *func;
7310 void *opaque;
7311 struct QEMUResetEntry *next;
7312 } QEMUResetEntry;
7313
7314 static QEMUResetEntry *first_reset_entry;
7315 static int reset_requested;
7316 static int shutdown_requested;
7317 static int powerdown_requested;
7318
7319 int qemu_shutdown_requested(void)
7320 {
7321 int r = shutdown_requested;
7322 shutdown_requested = 0;
7323 return r;
7324 }
7325
7326 int qemu_reset_requested(void)
7327 {
7328 int r = reset_requested;
7329 reset_requested = 0;
7330 return r;
7331 }
7332
7333 int qemu_powerdown_requested(void)
7334 {
7335 int r = powerdown_requested;
7336 powerdown_requested = 0;
7337 return r;
7338 }
7339
7340 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
7341 {
7342 QEMUResetEntry **pre, *re;
7343
7344 pre = &first_reset_entry;
7345 while (*pre != NULL)
7346 pre = &(*pre)->next;
7347 re = qemu_mallocz(sizeof(QEMUResetEntry));
7348 re->func = func;
7349 re->opaque = opaque;
7350 re->next = NULL;
7351 *pre = re;
7352 }
7353
7354 void qemu_system_reset(void)
7355 {
7356 QEMUResetEntry *re;
7357
7358 /* reset all devices */
7359 for(re = first_reset_entry; re != NULL; re = re->next) {
7360 re->func(re->opaque);
7361 }
7362 }
7363
7364 void qemu_system_reset_request(void)
7365 {
7366 if (no_reboot) {
7367 shutdown_requested = 1;
7368 } else {
7369 reset_requested = 1;
7370 }
7371 if (cpu_single_env)
7372 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7373 }
7374
7375 void qemu_system_shutdown_request(void)
7376 {
7377 shutdown_requested = 1;
7378 if (cpu_single_env)
7379 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7380 }
7381
7382 void qemu_system_powerdown_request(void)
7383 {
7384 powerdown_requested = 1;
7385 if (cpu_single_env)
7386 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7387 }
7388
7389 void main_loop_wait(int timeout)
7390 {
7391 IOHandlerRecord *ioh;
7392 fd_set rfds, wfds, xfds;
7393 int ret, nfds;
7394 #ifdef _WIN32
7395 int ret2, i;
7396 #endif
7397 struct timeval tv;
7398 PollingEntry *pe;
7399
7400
7401 /* XXX: need to suppress polling by better using win32 events */
7402 ret = 0;
7403 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
7404 ret |= pe->func(pe->opaque);
7405 }
7406 #ifdef _WIN32
7407 if (ret == 0) {
7408 int err;
7409 WaitObjects *w = &wait_objects;
7410
7411 ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
7412 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
7413 if (w->func[ret - WAIT_OBJECT_0])
7414 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
7415
7416 /* Check for additional signaled events */
7417 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
7418
7419 /* Check if event is signaled */
7420 ret2 = WaitForSingleObject(w->events[i], 0);
7421 if(ret2 == WAIT_OBJECT_0) {
7422 if (w->func[i])
7423 w->func[i](w->opaque[i]);
7424 } else if (ret2 == WAIT_TIMEOUT) {
7425 } else {
7426 err = GetLastError();
7427 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
7428 }
7429 }
7430 } else if (ret == WAIT_TIMEOUT) {
7431 } else {
7432 err = GetLastError();
7433 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
7434 }
7435 }
7436 #endif
7437 /* poll any events */
7438 /* XXX: separate device handlers from system ones */
7439 nfds = -1;
7440 FD_ZERO(&rfds);
7441 FD_ZERO(&wfds);
7442 FD_ZERO(&xfds);
7443 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
7444 if (ioh->deleted)
7445 continue;
7446 if (ioh->fd_read &&
7447 (!ioh->fd_read_poll ||
7448 ioh->fd_read_poll(ioh->opaque) != 0)) {
7449 FD_SET(ioh->fd, &rfds);
7450 if (ioh->fd > nfds)
7451 nfds = ioh->fd;
7452 }
7453 if (ioh->fd_write) {
7454 FD_SET(ioh->fd, &wfds);
7455 if (ioh->fd > nfds)
7456 nfds = ioh->fd;
7457 }
7458 }
7459
7460 tv.tv_sec = 0;
7461 #ifdef _WIN32
7462 tv.tv_usec = 0;
7463 #else
7464 tv.tv_usec = timeout * 1000;
7465 #endif
7466 #if defined(CONFIG_SLIRP)
7467 if (slirp_inited) {
7468 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
7469 }
7470 #endif
7471 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
7472 if (ret > 0) {
7473 IOHandlerRecord **pioh;
7474
7475 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
7476 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
7477 ioh->fd_read(ioh->opaque);
7478 }
7479 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
7480 ioh->fd_write(ioh->opaque);
7481 }
7482 }
7483
7484 /* remove deleted IO handlers */
7485 pioh = &first_io_handler;
7486 while (*pioh) {
7487 ioh = *pioh;
7488 if (ioh->deleted) {
7489 *pioh = ioh->next;
7490 qemu_free(ioh);
7491 } else
7492 pioh = &ioh->next;
7493 }
7494 }
7495 #if defined(CONFIG_SLIRP)
7496 if (slirp_inited) {
7497 if (ret < 0) {
7498 FD_ZERO(&rfds);
7499 FD_ZERO(&wfds);
7500 FD_ZERO(&xfds);
7501 }
7502 slirp_select_poll(&rfds, &wfds, &xfds);
7503 }
7504 #endif
7505 qemu_aio_poll();
7506
7507 if (vm_running) {
7508 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
7509 qemu_get_clock(vm_clock));
7510 /* run dma transfers, if any */
7511 DMA_run();
7512 }
7513
7514 /* real time timers */
7515 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
7516 qemu_get_clock(rt_clock));
7517
7518 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
7519 alarm_timer->flags &= ~(ALARM_FLAG_EXPIRED);
7520 qemu_rearm_alarm_timer(alarm_timer);
7521 }
7522
7523 /* Check bottom-halves last in case any of the earlier events triggered
7524 them. */
7525 qemu_bh_poll();
7526
7527 }
7528
7529 static int main_loop(void)
7530 {
7531 int ret, timeout;
7532 #ifdef CONFIG_PROFILER
7533 int64_t ti;
7534 #endif
7535 CPUState *env;
7536
7537 cur_cpu = first_cpu;
7538 next_cpu = cur_cpu->next_cpu ?: first_cpu;
7539 for(;;) {
7540 if (vm_running) {
7541
7542 for(;;) {
7543 /* get next cpu */
7544 env = next_cpu;
7545 #ifdef CONFIG_PROFILER
7546 ti = profile_getclock();
7547 #endif
7548 ret = cpu_exec(env);
7549 #ifdef CONFIG_PROFILER
7550 qemu_time += profile_getclock() - ti;
7551 #endif
7552 next_cpu = env->next_cpu ?: first_cpu;
7553 if (event_pending && likely(ret != EXCP_DEBUG)) {
7554 ret = EXCP_INTERRUPT;
7555 event_pending = 0;
7556 break;
7557 }
7558 if (ret == EXCP_HLT) {
7559 /* Give the next CPU a chance to run. */
7560 cur_cpu = env;
7561 continue;
7562 }
7563 if (ret != EXCP_HALTED)
7564 break;
7565 /* all CPUs are halted ? */
7566 if (env == cur_cpu)
7567 break;
7568 }
7569 cur_cpu = env;
7570
7571 if (shutdown_requested) {
7572 ret = EXCP_INTERRUPT;
7573 break;
7574 }
7575 if (reset_requested) {
7576 reset_requested = 0;
7577 qemu_system_reset();
7578 ret = EXCP_INTERRUPT;
7579 }
7580 if (powerdown_requested) {
7581 powerdown_requested = 0;
7582 qemu_system_powerdown();
7583 ret = EXCP_INTERRUPT;
7584 }
7585 if (unlikely(ret == EXCP_DEBUG)) {
7586 vm_stop(EXCP_DEBUG);
7587 }
7588 /* If all cpus are halted then wait until the next IRQ */
7589 /* XXX: use timeout computed from timers */
7590 if (ret == EXCP_HALTED)
7591 timeout = 10;
7592 else
7593 timeout = 0;
7594 } else {
7595 timeout = 10;
7596 }
7597 #ifdef CONFIG_PROFILER
7598 ti = profile_getclock();
7599 #endif
7600 main_loop_wait(timeout);
7601 #ifdef CONFIG_PROFILER
7602 dev_time += profile_getclock() - ti;
7603 #endif
7604 }
7605 cpu_disable_ticks();
7606 return ret;
7607 }
7608
7609 static void help(int exitcode)
7610 {
7611 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
7612 "usage: %s [options] [disk_image]\n"
7613 "\n"
7614 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
7615 "\n"
7616 "Standard options:\n"
7617 "-M machine select emulated machine (-M ? for list)\n"
7618 "-cpu cpu select CPU (-cpu ? for list)\n"
7619 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
7620 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
7621 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
7622 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
7623 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][index=i]\n"
7624 " [,cyls=c,heads=h,secs=s[,trans=t]][snapshot=on|off]"
7625 " [,cache=on|off]\n"
7626 " use 'file' as a drive image\n"
7627 "-mtdblock file use 'file' as on-board Flash memory image\n"
7628 "-sd file use 'file' as SecureDigital card image\n"
7629 "-pflash file use 'file' as a parallel flash image\n"
7630 "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
7631 "-snapshot write to temporary files instead of disk image files\n"
7632 #ifdef CONFIG_SDL
7633 "-no-frame open SDL window without a frame and window decorations\n"
7634 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
7635 "-no-quit disable SDL window close capability\n"
7636 #endif
7637 #ifdef TARGET_I386
7638 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
7639 #endif
7640 "-m megs set virtual RAM size to megs MB [default=%d]\n"
7641 "-smp n set the number of CPUs to 'n' [default=1]\n"
7642 "-nographic disable graphical output and redirect serial I/Os to console\n"
7643 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n"
7644 #ifndef _WIN32
7645 "-k language use keyboard layout (for example \"fr\" for French)\n"
7646 #endif
7647 #ifdef HAS_AUDIO
7648 "-audio-help print list of audio drivers and their options\n"
7649 "-soundhw c1,... enable audio support\n"
7650 " and only specified sound cards (comma separated list)\n"
7651 " use -soundhw ? to get the list of supported cards\n"
7652 " use -soundhw all to enable all of them\n"
7653 #endif
7654 "-localtime set the real time clock to local time [default=utc]\n"
7655 "-full-screen start in full screen\n"
7656 #ifdef TARGET_I386
7657 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
7658 #endif
7659 "-usb enable the USB driver (will be the default soon)\n"
7660 "-usbdevice name add the host or guest USB device 'name'\n"
7661 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
7662 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
7663 #endif
7664 "-name string set the name of the guest\n"
7665 "\n"
7666 "Network options:\n"
7667 "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
7668 " create a new Network Interface Card and connect it to VLAN 'n'\n"
7669 #ifdef CONFIG_SLIRP
7670 "-net user[,vlan=n][,hostname=host]\n"
7671 " connect the user mode network stack to VLAN 'n' and send\n"
7672 " hostname 'host' to DHCP clients\n"
7673 #endif
7674 #ifdef _WIN32
7675 "-net tap[,vlan=n],ifname=name\n"
7676 " connect the host TAP network interface to VLAN 'n'\n"
7677 #else
7678 "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
7679 " connect the host TAP network interface to VLAN 'n' and use the\n"
7680 " network scripts 'file' (default=%s)\n"
7681 " and 'dfile' (default=%s);\n"
7682 " use '[down]script=no' to disable script execution;\n"
7683 " use 'fd=h' to connect to an already opened TAP interface\n"
7684 #endif
7685 "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
7686 " connect the vlan 'n' to another VLAN using a socket connection\n"
7687 "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
7688 " connect the vlan 'n' to multicast maddr and port\n"
7689 "-net none use it alone to have zero network devices; if no -net option\n"
7690 " is provided, the default is '-net nic -net user'\n"
7691 "\n"
7692 #ifdef CONFIG_SLIRP
7693 "-tftp dir allow tftp access to files in dir [-net user]\n"
7694 "-bootp file advertise file in BOOTP replies\n"
7695 #ifndef _WIN32
7696 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
7697 #endif
7698 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
7699 " redirect TCP or UDP connections from host to guest [-net user]\n"
7700 #endif
7701 "\n"
7702 "Linux boot specific:\n"
7703 "-kernel bzImage use 'bzImage' as kernel image\n"
7704 "-append cmdline use 'cmdline' as kernel command line\n"
7705 "-initrd file use 'file' as initial ram disk\n"
7706 "\n"
7707 "Debug/Expert options:\n"
7708 "-monitor dev redirect the monitor to char device 'dev'\n"
7709 "-serial dev redirect the serial port to char device 'dev'\n"
7710 "-parallel dev redirect the parallel port to char device 'dev'\n"
7711 "-pidfile file Write PID to 'file'\n"
7712 "-S freeze CPU at startup (use 'c' to start execution)\n"
7713 "-s wait gdb connection to port\n"
7714 "-p port set gdb connection port [default=%s]\n"
7715 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
7716 "-hdachs c,h,s[,t] force hard disk 0 physical geometry and the optional BIOS\n"
7717 " translation (t=none or lba) (usually qemu can guess them)\n"
7718 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
7719 #ifdef USE_KQEMU
7720 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
7721 "-no-kqemu disable KQEMU kernel module usage\n"
7722 #endif
7723 #ifdef TARGET_I386
7724 "-std-vga simulate a standard VGA card with VESA Bochs Extensions\n"
7725 " (default is CL-GD5446 PCI VGA)\n"
7726 "-no-acpi disable ACPI\n"
7727 #endif
7728 #ifdef CONFIG_CURSES
7729 "-curses use a curses/ncurses interface instead of SDL\n"
7730 #endif
7731 "-no-reboot exit instead of rebooting\n"
7732 "-loadvm file start right away with a saved state (loadvm in monitor)\n"
7733 "-vnc display start a VNC server on display\n"
7734 #ifndef _WIN32
7735 "-daemonize daemonize QEMU after initializing\n"
7736 #endif
7737 "-option-rom rom load a file, rom, into the option ROM space\n"
7738 #ifdef TARGET_SPARC
7739 "-prom-env variable=value set OpenBIOS nvram variables\n"
7740 #endif
7741 "-clock force the use of the given methods for timer alarm.\n"
7742 " To see what timers are available use -clock ?\n"
7743 "-startdate select initial date of the clock\n"
7744 "\n"
7745 "During emulation, the following keys are useful:\n"
7746 "ctrl-alt-f toggle full screen\n"
7747 "ctrl-alt-n switch to virtual console 'n'\n"
7748 "ctrl-alt toggle mouse and keyboard grab\n"
7749 "\n"
7750 "When using -nographic, press 'ctrl-a h' to get some help.\n"
7751 ,
7752 "qemu",
7753 DEFAULT_RAM_SIZE,
7754 #ifndef _WIN32
7755 DEFAULT_NETWORK_SCRIPT,
7756 DEFAULT_NETWORK_DOWN_SCRIPT,
7757 #endif
7758 DEFAULT_GDBSTUB_PORT,
7759 "/tmp/qemu.log");
7760 exit(exitcode);
7761 }
7762
7763 #define HAS_ARG 0x0001
7764
7765 enum {
7766 QEMU_OPTION_h,
7767
7768 QEMU_OPTION_M,
7769 QEMU_OPTION_cpu,
7770 QEMU_OPTION_fda,
7771 QEMU_OPTION_fdb,
7772 QEMU_OPTION_hda,
7773 QEMU_OPTION_hdb,
7774 QEMU_OPTION_hdc,
7775 QEMU_OPTION_hdd,
7776 QEMU_OPTION_drive,
7777 QEMU_OPTION_cdrom,
7778 QEMU_OPTION_mtdblock,
7779 QEMU_OPTION_sd,
7780 QEMU_OPTION_pflash,
7781 QEMU_OPTION_boot,
7782 QEMU_OPTION_snapshot,
7783 #ifdef TARGET_I386
7784 QEMU_OPTION_no_fd_bootchk,
7785 #endif
7786 QEMU_OPTION_m,
7787 QEMU_OPTION_nographic,
7788 QEMU_OPTION_portrait,
7789 #ifdef HAS_AUDIO
7790 QEMU_OPTION_audio_help,
7791 QEMU_OPTION_soundhw,
7792 #endif
7793
7794 QEMU_OPTION_net,
7795 QEMU_OPTION_tftp,
7796 QEMU_OPTION_bootp,
7797 QEMU_OPTION_smb,
7798 QEMU_OPTION_redir,
7799
7800 QEMU_OPTION_kernel,
7801 QEMU_OPTION_append,
7802 QEMU_OPTION_initrd,
7803
7804 QEMU_OPTION_S,
7805 QEMU_OPTION_s,
7806 QEMU_OPTION_p,
7807 QEMU_OPTION_d,
7808 QEMU_OPTION_hdachs,
7809 QEMU_OPTION_L,
7810 QEMU_OPTION_bios,
7811 QEMU_OPTION_no_code_copy,
7812 QEMU_OPTION_k,
7813 QEMU_OPTION_localtime,
7814 QEMU_OPTION_cirrusvga,
7815 QEMU_OPTION_vmsvga,
7816 QEMU_OPTION_g,
7817 QEMU_OPTION_std_vga,
7818 QEMU_OPTION_echr,
7819 QEMU_OPTION_monitor,
7820 QEMU_OPTION_serial,
7821 QEMU_OPTION_parallel,
7822 QEMU_OPTION_loadvm,
7823 QEMU_OPTION_full_screen,
7824 QEMU_OPTION_no_frame,
7825 QEMU_OPTION_alt_grab,
7826 QEMU_OPTION_no_quit,
7827 QEMU_OPTION_pidfile,
7828 QEMU_OPTION_no_kqemu,
7829 QEMU_OPTION_kernel_kqemu,
7830 QEMU_OPTION_win2k_hack,
7831 QEMU_OPTION_usb,
7832 QEMU_OPTION_usbdevice,
7833 QEMU_OPTION_smp,
7834 QEMU_OPTION_vnc,
7835 QEMU_OPTION_no_acpi,
7836 QEMU_OPTION_curses,
7837 QEMU_OPTION_no_reboot,
7838 QEMU_OPTION_show_cursor,
7839 QEMU_OPTION_daemonize,
7840 QEMU_OPTION_option_rom,
7841 QEMU_OPTION_semihosting,
7842 QEMU_OPTION_name,
7843 QEMU_OPTION_prom_env,
7844 QEMU_OPTION_old_param,
7845 QEMU_OPTION_clock,
7846 QEMU_OPTION_startdate,
7847 };
7848
7849 typedef struct QEMUOption {
7850 const char *name;
7851 int flags;
7852 int index;
7853 } QEMUOption;
7854
7855 const QEMUOption qemu_options[] = {
7856 { "h", 0, QEMU_OPTION_h },
7857 { "help", 0, QEMU_OPTION_h },
7858
7859 { "M", HAS_ARG, QEMU_OPTION_M },
7860 { "cpu", HAS_ARG, QEMU_OPTION_cpu },
7861 { "fda", HAS_ARG, QEMU_OPTION_fda },
7862 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
7863 { "hda", HAS_ARG, QEMU_OPTION_hda },
7864 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
7865 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
7866 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
7867 { "drive", HAS_ARG, QEMU_OPTION_drive },
7868 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
7869 { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
7870 { "sd", HAS_ARG, QEMU_OPTION_sd },
7871 { "pflash", HAS_ARG, QEMU_OPTION_pflash },
7872 { "boot", HAS_ARG, QEMU_OPTION_boot },
7873 { "snapshot", 0, QEMU_OPTION_snapshot },
7874 #ifdef TARGET_I386
7875 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
7876 #endif
7877 { "m", HAS_ARG, QEMU_OPTION_m },
7878 { "nographic", 0, QEMU_OPTION_nographic },
7879 { "portrait", 0, QEMU_OPTION_portrait },
7880 { "k", HAS_ARG, QEMU_OPTION_k },
7881 #ifdef HAS_AUDIO
7882 { "audio-help", 0, QEMU_OPTION_audio_help },
7883 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
7884 #endif
7885
7886 { "net", HAS_ARG, QEMU_OPTION_net},
7887 #ifdef CONFIG_SLIRP
7888 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
7889 { "bootp", HAS_ARG, QEMU_OPTION_bootp },
7890 #ifndef _WIN32
7891 { "smb", HAS_ARG, QEMU_OPTION_smb },
7892 #endif
7893 { "redir", HAS_ARG, QEMU_OPTION_redir },
7894 #endif
7895
7896 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
7897 { "append", HAS_ARG, QEMU_OPTION_append },
7898 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
7899
7900 { "S", 0, QEMU_OPTION_S },
7901 { "s", 0, QEMU_OPTION_s },
7902 { "p", HAS_ARG, QEMU_OPTION_p },
7903 { "d", HAS_ARG, QEMU_OPTION_d },
7904 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
7905 { "L", HAS_ARG, QEMU_OPTION_L },
7906 { "bios", HAS_ARG, QEMU_OPTION_bios },
7907 { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
7908 #ifdef USE_KQEMU
7909 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
7910 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
7911 #endif
7912 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
7913 { "g", 1, QEMU_OPTION_g },
7914 #endif
7915 { "localtime", 0, QEMU_OPTION_localtime },
7916 { "std-vga", 0, QEMU_OPTION_std_vga },
7917 { "echr", HAS_ARG, QEMU_OPTION_echr },
7918 { "monitor", HAS_ARG, QEMU_OPTION_monitor },
7919 { "serial", HAS_ARG, QEMU_OPTION_serial },
7920 { "parallel", HAS_ARG, QEMU_OPTION_parallel },
7921 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
7922 { "full-screen", 0, QEMU_OPTION_full_screen },
7923 #ifdef CONFIG_SDL
7924 { "no-frame", 0, QEMU_OPTION_no_frame },
7925 { "alt-grab", 0, QEMU_OPTION_alt_grab },
7926 { "no-quit", 0, QEMU_OPTION_no_quit },
7927 #endif
7928 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
7929 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
7930 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
7931 { "smp", HAS_ARG, QEMU_OPTION_smp },
7932 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
7933 #ifdef CONFIG_CURSES
7934 { "curses", 0, QEMU_OPTION_curses },
7935 #endif
7936
7937 /* temporary options */
7938 { "usb", 0, QEMU_OPTION_usb },
7939 { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
7940 { "vmwarevga", 0, QEMU_OPTION_vmsvga },
7941 { "no-acpi", 0, QEMU_OPTION_no_acpi },
7942 { "no-reboot", 0, QEMU_OPTION_no_reboot },
7943 { "show-cursor", 0, QEMU_OPTION_show_cursor },
7944 { "daemonize", 0, QEMU_OPTION_daemonize },
7945 { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
7946 #if defined(TARGET_ARM) || defined(TARGET_M68K)
7947 { "semihosting", 0, QEMU_OPTION_semihosting },
7948 #endif
7949 { "name", HAS_ARG, QEMU_OPTION_name },
7950 #if defined(TARGET_SPARC)
7951 { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
7952 #endif
7953 #if defined(TARGET_ARM)
7954 { "old-param", 0, QEMU_OPTION_old_param },
7955 #endif
7956 { "clock", HAS_ARG, QEMU_OPTION_clock },
7957 { "startdate", HAS_ARG, QEMU_OPTION_startdate },
7958 { NULL },
7959 };
7960
7961 /* password input */
7962
7963 int qemu_key_check(BlockDriverState *bs, const char *name)
7964 {
7965 char password[256];
7966 int i;
7967
7968 if (!bdrv_is_encrypted(bs))
7969 return 0;
7970
7971 term_printf("%s is encrypted.\n", name);
7972 for(i = 0; i < 3; i++) {
7973 monitor_readline("Password: ", 1, password, sizeof(password));
7974 if (bdrv_set_key(bs, password) == 0)
7975 return 0;
7976 term_printf("invalid password\n");
7977 }
7978 return -EPERM;
7979 }
7980
7981 static BlockDriverState *get_bdrv(int index)
7982 {
7983 if (index > nb_drives)
7984 return NULL;
7985 return drives_table[index].bdrv;
7986 }
7987
7988 static void read_passwords(void)
7989 {
7990 BlockDriverState *bs;
7991 int i;
7992
7993 for(i = 0; i < 6; i++) {
7994 bs = get_bdrv(i);
7995 if (bs)
7996 qemu_key_check(bs, bdrv_get_device_name(bs));
7997 }
7998 }
7999
8000 /* XXX: currently we cannot use simultaneously different CPUs */
8001 static void register_machines(void)
8002 {
8003 #if defined(TARGET_I386)
8004 qemu_register_machine(&pc_machine);
8005 qemu_register_machine(&isapc_machine);
8006 #elif defined(TARGET_PPC)
8007 qemu_register_machine(&heathrow_machine);
8008 qemu_register_machine(&core99_machine);
8009 qemu_register_machine(&prep_machine);
8010 qemu_register_machine(&ref405ep_machine);
8011 qemu_register_machine(&taihu_machine);
8012 #elif defined(TARGET_MIPS)
8013 qemu_register_machine(&mips_machine);
8014 qemu_register_machine(&mips_magnum_machine);
8015 qemu_register_machine(&mips_malta_machine);
8016 qemu_register_machine(&mips_pica61_machine);
8017 qemu_register_machine(&mips_mipssim_machine);
8018 #elif defined(TARGET_SPARC)
8019 #ifdef TARGET_SPARC64
8020 qemu_register_machine(&sun4u_machine);
8021 #else
8022 qemu_register_machine(&ss5_machine);
8023 qemu_register_machine(&ss10_machine);
8024 qemu_register_machine(&ss600mp_machine);
8025 qemu_register_machine(&ss20_machine);
8026 qemu_register_machine(&ss2_machine);
8027 qemu_register_machine(&voyager_machine);
8028 qemu_register_machine(&ss_lx_machine);
8029 qemu_register_machine(&ss4_machine);
8030 qemu_register_machine(&scls_machine);
8031 qemu_register_machine(&sbook_machine);
8032 qemu_register_machine(&ss1000_machine);
8033 qemu_register_machine(&ss2000_machine);
8034 #endif
8035 #elif defined(TARGET_ARM)
8036 qemu_register_machine(&integratorcp_machine);
8037 qemu_register_machine(&versatilepb_machine);
8038 qemu_register_machine(&versatileab_machine);
8039 qemu_register_machine(&realview_machine);
8040 qemu_register_machine(&akitapda_machine);
8041 qemu_register_machine(&spitzpda_machine);
8042 qemu_register_machine(&borzoipda_machine);
8043 qemu_register_machine(&terrierpda_machine);
8044 qemu_register_machine(&palmte_machine);
8045 qemu_register_machine(&lm3s811evb_machine);
8046 qemu_register_machine(&lm3s6965evb_machine);
8047 qemu_register_machine(&connex_machine);
8048 qemu_register_machine(&verdex_machine);
8049 qemu_register_machine(&mainstone2_machine);
8050 #elif defined(TARGET_SH4)
8051 qemu_register_machine(&shix_machine);
8052 qemu_register_machine(&r2d_machine);
8053 #elif defined(TARGET_ALPHA)
8054 /* XXX: TODO */
8055 #elif defined(TARGET_M68K)
8056 qemu_register_machine(&mcf5208evb_machine);
8057 qemu_register_machine(&an5206_machine);
8058 qemu_register_machine(&dummy_m68k_machine);
8059 #elif defined(TARGET_CRIS)
8060 qemu_register_machine(&bareetraxfs_machine);
8061 #else
8062 #error unsupported CPU
8063 #endif
8064 }
8065
8066 #ifdef HAS_AUDIO
8067 struct soundhw soundhw[] = {
8068 #ifdef HAS_AUDIO_CHOICE
8069 #if defined(TARGET_I386) || defined(TARGET_MIPS)
8070 {
8071 "pcspk",
8072 "PC speaker",
8073 0,
8074 1,
8075 { .init_isa = pcspk_audio_init }
8076 },
8077 #endif
8078 {
8079 "sb16",
8080 "Creative Sound Blaster 16",
8081 0,
8082 1,
8083 { .init_isa = SB16_init }
8084 },
8085
8086 #ifdef CONFIG_ADLIB
8087 {
8088 "adlib",
8089 #ifdef HAS_YMF262
8090 "Yamaha YMF262 (OPL3)",
8091 #else
8092 "Yamaha YM3812 (OPL2)",
8093 #endif
8094 0,
8095 1,
8096 { .init_isa = Adlib_init }
8097 },
8098 #endif
8099
8100 #ifdef CONFIG_GUS
8101 {
8102 "gus",
8103 "Gravis Ultrasound GF1",
8104 0,
8105 1,
8106 { .init_isa = GUS_init }
8107 },
8108 #endif
8109
8110 #ifdef CONFIG_AC97
8111 {
8112 "ac97",
8113 "Intel 82801AA AC97 Audio",
8114 0,
8115 0,
8116 { .init_pci = ac97_init }
8117 },
8118 #endif
8119
8120 {
8121 "es1370",
8122 "ENSONIQ AudioPCI ES1370",
8123 0,
8124 0,
8125 { .init_pci = es1370_init }
8126 },
8127 #endif
8128
8129 { NULL, NULL, 0, 0, { NULL } }
8130 };
8131
8132 static void select_soundhw (const char *optarg)
8133 {
8134 struct soundhw *c;
8135
8136 if (*optarg == '?') {
8137 show_valid_cards:
8138
8139 printf ("Valid sound card names (comma separated):\n");
8140 for (c = soundhw; c->name; ++c) {
8141 printf ("%-11s %s\n", c->name, c->descr);
8142 }
8143 printf ("\n-soundhw all will enable all of the above\n");
8144 exit (*optarg != '?');
8145 }
8146 else {
8147 size_t l;
8148 const char *p;
8149 char *e;
8150 int bad_card = 0;
8151
8152 if (!strcmp (optarg, "all")) {
8153 for (c = soundhw; c->name; ++c) {
8154 c->enabled = 1;
8155 }
8156 return;
8157 }
8158
8159 p = optarg;
8160 while (*p) {
8161 e = strchr (p, ',');
8162 l = !e ? strlen (p) : (size_t) (e - p);
8163
8164 for (c = soundhw; c->name; ++c) {
8165 if (!strncmp (c->name, p, l)) {
8166 c->enabled = 1;
8167 break;
8168 }
8169 }
8170
8171 if (!c->name) {
8172 if (l > 80) {
8173 fprintf (stderr,
8174 "Unknown sound card name (too big to show)\n");
8175 }
8176 else {
8177 fprintf (stderr, "Unknown sound card name `%.*s'\n",
8178 (int) l, p);
8179 }
8180 bad_card = 1;
8181 }
8182 p += l + (e != NULL);
8183 }
8184
8185 if (bad_card)
8186 goto show_valid_cards;
8187 }
8188 }
8189 #endif
8190
8191 #ifdef _WIN32
8192 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
8193 {
8194 exit(STATUS_CONTROL_C_EXIT);
8195 return TRUE;
8196 }
8197 #endif
8198
8199 #define MAX_NET_CLIENTS 32
8200
8201 int main(int argc, char **argv)
8202 {
8203 #ifdef CONFIG_GDBSTUB
8204 int use_gdbstub;
8205 const char *gdbstub_port;
8206 #endif
8207 uint32_t boot_devices_bitmap = 0;
8208 int i;
8209 int snapshot, linux_boot, net_boot;
8210 const char *initrd_filename;
8211 const char *kernel_filename, *kernel_cmdline;
8212 const char *boot_devices = "";
8213 DisplayState *ds = &display_state;
8214 int cyls, heads, secs, translation;
8215 const char *net_clients[MAX_NET_CLIENTS];
8216 int nb_net_clients;
8217 int hda_index;
8218 int optind;
8219 const char *r, *optarg;
8220 CharDriverState *monitor_hd;
8221 const char *monitor_device;
8222 const char *serial_devices[MAX_SERIAL_PORTS];
8223 int serial_device_index;
8224 const char *parallel_devices[MAX_PARALLEL_PORTS];
8225 int parallel_device_index;
8226 const char *loadvm = NULL;
8227 QEMUMachine *machine;
8228 const char *cpu_model;
8229 const char *usb_devices[MAX_USB_CMDLINE];
8230 int usb_devices_index;
8231 int fds[2];
8232 const char *pid_file = NULL;
8233 VLANState *vlan;
8234
8235 LIST_INIT (&vm_change_state_head);
8236 #ifndef _WIN32
8237 {
8238 struct sigaction act;
8239 sigfillset(&act.sa_mask);
8240 act.sa_flags = 0;
8241 act.sa_handler = SIG_IGN;
8242 sigaction(SIGPIPE, &act, NULL);
8243 }
8244 #else
8245 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
8246 /* Note: cpu_interrupt() is currently not SMP safe, so we force
8247 QEMU to run on a single CPU */
8248 {
8249 HANDLE h;
8250 DWORD mask, smask;
8251 int i;
8252 h = GetCurrentProcess();
8253 if (GetProcessAffinityMask(h, &mask, &smask)) {
8254 for(i = 0; i < 32; i++) {
8255 if (mask & (1 << i))
8256 break;
8257 }
8258 if (i != 32) {
8259 mask = 1 << i;
8260 SetProcessAffinityMask(h, mask);
8261 }
8262 }
8263 }
8264 #endif
8265
8266 register_machines();
8267 machine = first_machine;
8268 cpu_model = NULL;
8269 initrd_filename = NULL;
8270 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
8271 vga_ram_size = VGA_RAM_SIZE;
8272 #ifdef CONFIG_GDBSTUB
8273 use_gdbstub = 0;
8274 gdbstub_port = DEFAULT_GDBSTUB_PORT;
8275 #endif
8276 snapshot = 0;
8277 nographic = 0;
8278 curses = 0;
8279 kernel_filename = NULL;
8280 kernel_cmdline = "";
8281 cyls = heads = secs = 0;
8282 translation = BIOS_ATA_TRANSLATION_AUTO;
8283 monitor_device = "vc";
8284
8285 serial_devices[0] = "vc";
8286 for(i = 1; i < MAX_SERIAL_PORTS; i++)
8287 serial_devices[i] = NULL;
8288 serial_device_index = 0;
8289
8290 parallel_devices[0] = "vc";
8291 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
8292 parallel_devices[i] = NULL;
8293 parallel_device_index = 0;
8294
8295 usb_devices_index = 0;
8296
8297 nb_net_clients = 0;
8298 nb_drives = 0;
8299 nb_drives_opt = 0;
8300 hda_index = -1;
8301
8302 nb_nics = 0;
8303 /* default mac address of the first network interface */
8304
8305 optind = 1;
8306 for(;;) {
8307 if (optind >= argc)
8308 break;
8309 r = argv[optind];
8310 if (r[0] != '-') {
8311 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
8312 } else {
8313 const QEMUOption *popt;
8314
8315 optind++;
8316 /* Treat --foo the same as -foo. */
8317 if (r[1] == '-')
8318 r++;
8319 popt = qemu_options;
8320 for(;;) {
8321 if (!popt->name) {
8322 fprintf(stderr, "%s: invalid option -- '%s'\n",
8323 argv[0], r);
8324 exit(1);
8325 }
8326 if (!strcmp(popt->name, r + 1))
8327 break;
8328 popt++;
8329 }
8330 if (popt->flags & HAS_ARG) {
8331 if (optind >= argc) {
8332 fprintf(stderr, "%s: option '%s' requires an argument\n",
8333 argv[0], r);
8334 exit(1);
8335 }
8336 optarg = argv[optind++];
8337 } else {
8338 optarg = NULL;
8339 }
8340
8341 switch(popt->index) {
8342 case QEMU_OPTION_M:
8343 machine = find_machine(optarg);
8344 if (!machine) {
8345 QEMUMachine *m;
8346 printf("Supported machines are:\n");
8347 for(m = first_machine; m != NULL; m = m->next) {
8348 printf("%-10s %s%s\n",
8349 m->name, m->desc,
8350 m == first_machine ? " (default)" : "");
8351 }
8352 exit(*optarg != '?');
8353 }
8354 break;
8355 case QEMU_OPTION_cpu:
8356 /* hw initialization will check this */
8357 if (*optarg == '?') {
8358 /* XXX: implement xxx_cpu_list for targets that still miss it */
8359 #if defined(cpu_list)
8360 cpu_list(stdout, &fprintf);
8361 #endif
8362 exit(0);
8363 } else {
8364 cpu_model = optarg;
8365 }
8366 break;
8367 case QEMU_OPTION_initrd:
8368 initrd_filename = optarg;
8369 break;
8370 case QEMU_OPTION_hda:
8371 if (cyls == 0)
8372 hda_index = drive_add(optarg, HD_ALIAS, 0);
8373 else
8374 hda_index = drive_add(optarg, HD_ALIAS
8375 ",cyls=%d,heads=%d,secs=%d%s",
8376 0, cyls, heads, secs,
8377 translation == BIOS_ATA_TRANSLATION_LBA ?
8378 ",trans=lba" :
8379 translation == BIOS_ATA_TRANSLATION_NONE ?
8380 ",trans=none" : "");
8381 break;
8382 case QEMU_OPTION_hdb:
8383 case QEMU_OPTION_hdc:
8384 case QEMU_OPTION_hdd:
8385 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
8386 break;
8387 case QEMU_OPTION_drive:
8388 drive_add(NULL, "%s", optarg);
8389 break;
8390 case QEMU_OPTION_mtdblock:
8391 drive_add(optarg, MTD_ALIAS);
8392 break;
8393 case QEMU_OPTION_sd:
8394 drive_add(optarg, SD_ALIAS);
8395 break;
8396 case QEMU_OPTION_pflash:
8397 drive_add(optarg, PFLASH_ALIAS);
8398 break;
8399 case QEMU_OPTION_snapshot:
8400 snapshot = 1;
8401 break;
8402 case QEMU_OPTION_hdachs:
8403 {
8404 const char *p;
8405 p = optarg;
8406 cyls = strtol(p, (char **)&p, 0);
8407 if (cyls < 1 || cyls > 16383)
8408 goto chs_fail;
8409 if (*p != ',')
8410 goto chs_fail;
8411 p++;
8412 heads = strtol(p, (char **)&p, 0);
8413 if (heads < 1 || heads > 16)
8414 goto chs_fail;
8415 if (*p != ',')
8416 goto chs_fail;
8417 p++;
8418 secs = strtol(p, (char **)&p, 0);
8419 if (secs < 1 || secs > 63)
8420 goto chs_fail;
8421 if (*p == ',') {
8422 p++;
8423 if (!strcmp(p, "none"))
8424 translation = BIOS_ATA_TRANSLATION_NONE;
8425 else if (!strcmp(p, "lba"))
8426 translation = BIOS_ATA_TRANSLATION_LBA;
8427 else if (!strcmp(p, "auto"))
8428 translation = BIOS_ATA_TRANSLATION_AUTO;
8429 else
8430 goto chs_fail;
8431 } else if (*p != '\0') {
8432 chs_fail:
8433 fprintf(stderr, "qemu: invalid physical CHS format\n");
8434 exit(1);
8435 }
8436 if (hda_index != -1)
8437 snprintf(drives_opt[hda_index].opt,
8438 sizeof(drives_opt[hda_index].opt),
8439 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
8440 0, cyls, heads, secs,
8441 translation == BIOS_ATA_TRANSLATION_LBA ?
8442 ",trans=lba" :
8443 translation == BIOS_ATA_TRANSLATION_NONE ?
8444 ",trans=none" : "");
8445 }
8446 break;
8447 case QEMU_OPTION_nographic:
8448 serial_devices[0] = "stdio";
8449 parallel_devices[0] = "null";
8450 monitor_device = "stdio";
8451 nographic = 1;
8452 break;
8453 #ifdef CONFIG_CURSES
8454 case QEMU_OPTION_curses:
8455 curses = 1;
8456 break;
8457 #endif
8458 case QEMU_OPTION_portrait:
8459 graphic_rotate = 1;
8460 break;
8461 case QEMU_OPTION_kernel:
8462 kernel_filename = optarg;
8463 break;
8464 case QEMU_OPTION_append:
8465 kernel_cmdline = optarg;
8466 break;
8467 case QEMU_OPTION_cdrom:
8468 drive_add(optarg, CDROM_ALIAS);
8469 break;
8470 case QEMU_OPTION_boot:
8471 boot_devices = optarg;
8472 /* We just do some generic consistency checks */
8473 {
8474 /* Could easily be extended to 64 devices if needed */
8475 const char *p;
8476
8477 boot_devices_bitmap = 0;
8478 for (p = boot_devices; *p != '\0'; p++) {
8479 /* Allowed boot devices are:
8480 * a b : floppy disk drives
8481 * c ... f : IDE disk drives
8482 * g ... m : machine implementation dependant drives
8483 * n ... p : network devices
8484 * It's up to each machine implementation to check
8485 * if the given boot devices match the actual hardware
8486 * implementation and firmware features.
8487 */
8488 if (*p < 'a' || *p > 'q') {
8489 fprintf(stderr, "Invalid boot device '%c'\n", *p);
8490 exit(1);
8491 }
8492 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
8493 fprintf(stderr,
8494 "Boot device '%c' was given twice\n",*p);
8495 exit(1);
8496 }
8497 boot_devices_bitmap |= 1 << (*p - 'a');
8498 }
8499 }
8500 break;
8501 case QEMU_OPTION_fda:
8502 case QEMU_OPTION_fdb:
8503 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
8504 break;
8505 #ifdef TARGET_I386
8506 case QEMU_OPTION_no_fd_bootchk:
8507 fd_bootchk = 0;
8508 break;
8509 #endif
8510 case QEMU_OPTION_no_code_copy:
8511 code_copy_enabled = 0;
8512 break;
8513 case QEMU_OPTION_net:
8514 if (nb_net_clients >= MAX_NET_CLIENTS) {
8515 fprintf(stderr, "qemu: too many network clients\n");
8516 exit(1);
8517 }
8518 net_clients[nb_net_clients] = optarg;
8519 nb_net_clients++;
8520 break;
8521 #ifdef CONFIG_SLIRP
8522 case QEMU_OPTION_tftp:
8523 tftp_prefix = optarg;
8524 break;
8525 case QEMU_OPTION_bootp:
8526 bootp_filename = optarg;
8527 break;
8528 #ifndef _WIN32
8529 case QEMU_OPTION_smb:
8530 net_slirp_smb(optarg);
8531 break;
8532 #endif
8533 case QEMU_OPTION_redir:
8534 net_slirp_redir(optarg);
8535 break;
8536 #endif
8537 #ifdef HAS_AUDIO
8538 case QEMU_OPTION_audio_help:
8539 AUD_help ();
8540 exit (0);
8541 break;
8542 case QEMU_OPTION_soundhw:
8543 select_soundhw (optarg);
8544 break;
8545 #endif
8546 case QEMU_OPTION_h:
8547 help(0);
8548 break;
8549 case QEMU_OPTION_m:
8550 ram_size = atoi(optarg) * 1024 * 1024;
8551 if (ram_size <= 0)
8552 help(1);
8553 if (ram_size > PHYS_RAM_MAX_SIZE) {
8554 fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
8555 PHYS_RAM_MAX_SIZE / (1024 * 1024));
8556 exit(1);
8557 }
8558 break;
8559 case QEMU_OPTION_d:
8560 {
8561 int mask;
8562 CPULogItem *item;
8563
8564 mask = cpu_str_to_log_mask(optarg);
8565 if (!mask) {
8566 printf("Log items (comma separated):\n");
8567 for(item = cpu_log_items; item->mask != 0; item++) {
8568 printf("%-10s %s\n", item->name, item->help);
8569 }
8570 exit(1);
8571 }
8572 cpu_set_log(mask);
8573 }
8574 break;
8575 #ifdef CONFIG_GDBSTUB
8576 case QEMU_OPTION_s:
8577 use_gdbstub = 1;
8578 break;
8579 case QEMU_OPTION_p:
8580 gdbstub_port = optarg;
8581 break;
8582 #endif
8583 case QEMU_OPTION_L:
8584 bios_dir = optarg;
8585 break;
8586 case QEMU_OPTION_bios:
8587 bios_name = optarg;
8588 break;
8589 case QEMU_OPTION_S:
8590 autostart = 0;
8591 break;
8592 case QEMU_OPTION_k:
8593 keyboard_layout = optarg;
8594 break;
8595 case QEMU_OPTION_localtime:
8596 rtc_utc = 0;
8597 break;
8598 case QEMU_OPTION_cirrusvga:
8599 cirrus_vga_enabled = 1;
8600 vmsvga_enabled = 0;
8601 break;
8602 case QEMU_OPTION_vmsvga:
8603 cirrus_vga_enabled = 0;
8604 vmsvga_enabled = 1;
8605 break;
8606 case QEMU_OPTION_std_vga:
8607 cirrus_vga_enabled = 0;
8608 vmsvga_enabled = 0;
8609 break;
8610 case QEMU_OPTION_g:
8611 {
8612 const char *p;
8613 int w, h, depth;
8614 p = optarg;
8615 w = strtol(p, (char **)&p, 10);
8616 if (w <= 0) {
8617 graphic_error:
8618 fprintf(stderr, "qemu: invalid resolution or depth\n");
8619 exit(1);
8620 }
8621 if (*p != 'x')
8622 goto graphic_error;
8623 p++;
8624 h = strtol(p, (char **)&p, 10);
8625 if (h <= 0)
8626 goto graphic_error;
8627 if (*p == 'x') {
8628 p++;
8629 depth = strtol(p, (char **)&p, 10);
8630 if (depth != 8 && depth != 15 && depth != 16 &&
8631 depth != 24 && depth != 32)
8632 goto graphic_error;
8633 } else if (*p == '\0') {
8634 depth = graphic_depth;
8635 } else {
8636 goto graphic_error;
8637 }
8638
8639 graphic_width = w;
8640 graphic_height = h;
8641 graphic_depth = depth;
8642 }
8643 break;
8644 case QEMU_OPTION_echr:
8645 {
8646 char *r;
8647 term_escape_char = strtol(optarg, &r, 0);
8648 if (r == optarg)
8649 printf("Bad argument to echr\n");
8650 break;
8651 }
8652 case QEMU_OPTION_monitor:
8653 monitor_device = optarg;
8654 break;
8655 case QEMU_OPTION_serial:
8656 if (serial_device_index >= MAX_SERIAL_PORTS) {
8657 fprintf(stderr, "qemu: too many serial ports\n");
8658 exit(1);
8659 }
8660 serial_devices[serial_device_index] = optarg;
8661 serial_device_index++;
8662 break;
8663 case QEMU_OPTION_parallel:
8664 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
8665 fprintf(stderr, "qemu: too many parallel ports\n");
8666 exit(1);
8667 }
8668 parallel_devices[parallel_device_index] = optarg;
8669 parallel_device_index++;
8670 break;
8671 case QEMU_OPTION_loadvm:
8672 loadvm = optarg;
8673 break;
8674 case QEMU_OPTION_full_screen:
8675 full_screen = 1;
8676 break;
8677 #ifdef CONFIG_SDL
8678 case QEMU_OPTION_no_frame:
8679 no_frame = 1;
8680 break;
8681 case QEMU_OPTION_alt_grab:
8682 alt_grab = 1;
8683 break;
8684 case QEMU_OPTION_no_quit:
8685 no_quit = 1;
8686 break;
8687 #endif
8688 case QEMU_OPTION_pidfile:
8689 pid_file = optarg;
8690 break;
8691 #ifdef TARGET_I386
8692 case QEMU_OPTION_win2k_hack:
8693 win2k_install_hack = 1;
8694 break;
8695 #endif
8696 #ifdef USE_KQEMU
8697 case QEMU_OPTION_no_kqemu:
8698 kqemu_allowed = 0;
8699 break;
8700 case QEMU_OPTION_kernel_kqemu:
8701 kqemu_allowed = 2;
8702 break;
8703 #endif
8704 case QEMU_OPTION_usb:
8705 usb_enabled = 1;
8706 break;
8707 case QEMU_OPTION_usbdevice:
8708 usb_enabled = 1;
8709 if (usb_devices_index >= MAX_USB_CMDLINE) {
8710 fprintf(stderr, "Too many USB devices\n");
8711 exit(1);
8712 }
8713 usb_devices[usb_devices_index] = optarg;
8714 usb_devices_index++;
8715 break;
8716 case QEMU_OPTION_smp:
8717 smp_cpus = atoi(optarg);
8718 if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
8719 fprintf(stderr, "Invalid number of CPUs\n");
8720 exit(1);
8721 }
8722 break;
8723 case QEMU_OPTION_vnc:
8724 vnc_display = optarg;
8725 break;
8726 case QEMU_OPTION_no_acpi:
8727 acpi_enabled = 0;
8728 break;
8729 case QEMU_OPTION_no_reboot:
8730 no_reboot = 1;
8731 break;
8732 case QEMU_OPTION_show_cursor:
8733 cursor_hide = 0;
8734 break;
8735 case QEMU_OPTION_daemonize:
8736 daemonize = 1;
8737 break;
8738 case QEMU_OPTION_option_rom:
8739 if (nb_option_roms >= MAX_OPTION_ROMS) {
8740 fprintf(stderr, "Too many option ROMs\n");
8741 exit(1);
8742 }
8743 option_rom[nb_option_roms] = optarg;
8744 nb_option_roms++;
8745 break;
8746 case QEMU_OPTION_semihosting:
8747 semihosting_enabled = 1;
8748 break;
8749 case QEMU_OPTION_name:
8750 qemu_name = optarg;
8751 break;
8752 #ifdef TARGET_SPARC
8753 case QEMU_OPTION_prom_env:
8754 if (nb_prom_envs >= MAX_PROM_ENVS) {
8755 fprintf(stderr, "Too many prom variables\n");
8756 exit(1);
8757 }
8758 prom_envs[nb_prom_envs] = optarg;
8759 nb_prom_envs++;
8760 break;
8761 #endif
8762 #ifdef TARGET_ARM
8763 case QEMU_OPTION_old_param:
8764 old_param = 1;
8765 break;
8766 #endif
8767 case QEMU_OPTION_clock:
8768 configure_alarms(optarg);
8769 break;
8770 case QEMU_OPTION_startdate:
8771 {
8772 struct tm tm;
8773 time_t rtc_start_date;
8774 if (!strcmp(optarg, "now")) {
8775 rtc_date_offset = -1;
8776 } else {
8777 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
8778 &tm.tm_year,
8779 &tm.tm_mon,
8780 &tm.tm_mday,
8781 &tm.tm_hour,
8782 &tm.tm_min,
8783 &tm.tm_sec) == 6) {
8784 /* OK */
8785 } else if (sscanf(optarg, "%d-%d-%d",
8786 &tm.tm_year,
8787 &tm.tm_mon,
8788 &tm.tm_mday) == 3) {
8789 tm.tm_hour = 0;
8790 tm.tm_min = 0;
8791 tm.tm_sec = 0;
8792 } else {
8793 goto date_fail;
8794 }
8795 tm.tm_year -= 1900;
8796 tm.tm_mon--;
8797 rtc_start_date = mktimegm(&tm);
8798 if (rtc_start_date == -1) {
8799 date_fail:
8800 fprintf(stderr, "Invalid date format. Valid format are:\n"
8801 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
8802 exit(1);
8803 }
8804 rtc_date_offset = time(NULL) - rtc_start_date;
8805 }
8806 }
8807 break;
8808 }
8809 }
8810 }
8811
8812 #ifndef _WIN32
8813 if (daemonize && !nographic && vnc_display == NULL) {
8814 fprintf(stderr, "Can only daemonize if using -nographic or -vnc\n");
8815 daemonize = 0;
8816 }
8817
8818 if (daemonize) {
8819 pid_t pid;
8820
8821 if (pipe(fds) == -1)
8822 exit(1);
8823
8824 pid = fork();
8825 if (pid > 0) {
8826 uint8_t status;
8827 ssize_t len;
8828
8829 close(fds[1]);
8830
8831 again:
8832 len = read(fds[0], &status, 1);
8833 if (len == -1 && (errno == EINTR))
8834 goto again;
8835
8836 if (len != 1)
8837 exit(1);
8838 else if (status == 1) {
8839 fprintf(stderr, "Could not acquire pidfile\n");
8840 exit(1);
8841 } else
8842 exit(0);
8843 } else if (pid < 0)
8844 exit(1);
8845
8846 setsid();
8847
8848 pid = fork();
8849 if (pid > 0)
8850 exit(0);
8851 else if (pid < 0)
8852 exit(1);
8853
8854 umask(027);
8855 chdir("/");
8856
8857 signal(SIGTSTP, SIG_IGN);
8858 signal(SIGTTOU, SIG_IGN);
8859 signal(SIGTTIN, SIG_IGN);
8860 }
8861 #endif
8862
8863 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
8864 if (daemonize) {
8865 uint8_t status = 1;
8866 write(fds[1], &status, 1);
8867 } else
8868 fprintf(stderr, "Could not acquire pid file\n");
8869 exit(1);
8870 }
8871
8872 #ifdef USE_KQEMU
8873 if (smp_cpus > 1)
8874 kqemu_allowed = 0;
8875 #endif
8876 linux_boot = (kernel_filename != NULL);
8877 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
8878
8879 /* XXX: this should not be: some embedded targets just have flash */
8880 if (!linux_boot && net_boot == 0 &&
8881 nb_drives_opt == 0)
8882 help(1);
8883
8884 /* boot to floppy or the default cd if no hard disk defined yet */
8885 if (!boot_devices[0]) {
8886 boot_devices = "cad";
8887 }
8888 setvbuf(stdout, NULL, _IOLBF, 0);
8889
8890 init_timers();
8891 init_timer_alarm();
8892 qemu_aio_init();
8893
8894 #ifdef _WIN32
8895 socket_init();
8896 #endif
8897
8898 /* init network clients */
8899 if (nb_net_clients == 0) {
8900 /* if no clients, we use a default config */
8901 net_clients[0] = "nic";
8902 net_clients[1] = "user";
8903 nb_net_clients = 2;
8904 }
8905
8906 for(i = 0;i < nb_net_clients; i++) {
8907 if (net_client_init(net_clients[i]) < 0)
8908 exit(1);
8909 }
8910 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
8911 if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
8912 continue;
8913 if (vlan->nb_guest_devs == 0) {
8914 fprintf(stderr, "Invalid vlan (%d) with no nics\n", vlan->id);
8915 exit(1);
8916 }
8917 if (vlan->nb_host_devs == 0)
8918 fprintf(stderr,
8919 "Warning: vlan %d is not connected to host network\n",
8920 vlan->id);
8921 }
8922
8923 #ifdef TARGET_I386
8924 /* XXX: this should be moved in the PC machine instantiation code */
8925 if (net_boot != 0) {
8926 int netroms = 0;
8927 for (i = 0; i < nb_nics && i < 4; i++) {
8928 const char *model = nd_table[i].model;
8929 char buf[1024];
8930 if (net_boot & (1 << i)) {
8931 if (model == NULL)
8932 model = "ne2k_pci";
8933 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
8934 if (get_image_size(buf) > 0) {
8935 if (nb_option_roms >= MAX_OPTION_ROMS) {
8936 fprintf(stderr, "Too many option ROMs\n");
8937 exit(1);
8938 }
8939 option_rom[nb_option_roms] = strdup(buf);
8940 nb_option_roms++;
8941 netroms++;
8942 }
8943 }
8944 }
8945 if (netroms == 0) {
8946 fprintf(stderr, "No valid PXE rom found for network device\n");
8947 exit(1);
8948 }
8949 }
8950 #endif
8951
8952 /* init the memory */
8953 phys_ram_size = ram_size + vga_ram_size + MAX_BIOS_SIZE;
8954
8955 phys_ram_base = qemu_vmalloc(phys_ram_size);
8956 if (!phys_ram_base) {
8957 fprintf(stderr, "Could not allocate physical memory\n");
8958 exit(1);
8959 }
8960
8961 bdrv_init();
8962
8963 /* we always create the cdrom drive, even if no disk is there */
8964
8965 if (nb_drives_opt < MAX_DRIVES)
8966 drive_add(NULL, CDROM_ALIAS);
8967
8968 /* we always create at least one floppy */
8969
8970 if (nb_drives_opt < MAX_DRIVES)
8971 drive_add(NULL, FD_ALIAS, 0);
8972
8973 /* we always create one sd slot, even if no card is in it */
8974
8975 if (nb_drives_opt < MAX_DRIVES)
8976 drive_add(NULL, SD_ALIAS);
8977
8978 /* open the virtual block devices */
8979
8980 for(i = 0; i < nb_drives_opt; i++)
8981 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
8982 exit(1);
8983
8984 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
8985 register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
8986
8987 init_ioports();
8988
8989 /* terminal init */
8990 memset(&display_state, 0, sizeof(display_state));
8991 if (nographic) {
8992 if (curses) {
8993 fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
8994 exit(1);
8995 }
8996 /* nearly nothing to do */
8997 dumb_display_init(ds);
8998 } else if (vnc_display != NULL) {
8999 vnc_display_init(ds);
9000 if (vnc_display_open(ds, vnc_display) < 0)
9001 exit(1);
9002 } else
9003 #if defined(CONFIG_CURSES)
9004 if (curses) {
9005 curses_display_init(ds, full_screen);
9006 } else
9007 #endif
9008 {
9009 #if defined(CONFIG_SDL)
9010 sdl_display_init(ds, full_screen, no_frame);
9011 #elif defined(CONFIG_COCOA)
9012 cocoa_display_init(ds, full_screen);
9013 #else
9014 dumb_display_init(ds);
9015 #endif
9016 }
9017
9018 /* Maintain compatibility with multiple stdio monitors */
9019 if (!strcmp(monitor_device,"stdio")) {
9020 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
9021 const char *devname = serial_devices[i];
9022 if (devname && !strcmp(devname,"mon:stdio")) {
9023 monitor_device = NULL;
9024 break;
9025 } else if (devname && !strcmp(devname,"stdio")) {
9026 monitor_device = NULL;
9027 serial_devices[i] = "mon:stdio";
9028 break;
9029 }
9030 }
9031 }
9032 if (monitor_device) {
9033 monitor_hd = qemu_chr_open(monitor_device);
9034 if (!monitor_hd) {
9035 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
9036 exit(1);
9037 }
9038 monitor_init(monitor_hd, !nographic);
9039 }
9040
9041 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
9042 const char *devname = serial_devices[i];
9043 if (devname && strcmp(devname, "none")) {
9044 serial_hds[i] = qemu_chr_open(devname);
9045 if (!serial_hds[i]) {
9046 fprintf(stderr, "qemu: could not open serial device '%s'\n",
9047 devname);
9048 exit(1);
9049 }
9050 if (strstart(devname, "vc", 0))
9051 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
9052 }
9053 }
9054
9055 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
9056 const char *devname = parallel_devices[i];
9057 if (devname && strcmp(devname, "none")) {
9058 parallel_hds[i] = qemu_chr_open(devname);
9059 if (!parallel_hds[i]) {
9060 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
9061 devname);
9062 exit(1);
9063 }
9064 if (strstart(devname, "vc", 0))
9065 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
9066 }
9067 }
9068
9069 machine->init(ram_size, vga_ram_size, boot_devices, ds,
9070 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
9071
9072 /* init USB devices */
9073 if (usb_enabled) {
9074 for(i = 0; i < usb_devices_index; i++) {
9075 if (usb_device_add(usb_devices[i]) < 0) {
9076 fprintf(stderr, "Warning: could not add USB device %s\n",
9077 usb_devices[i]);
9078 }
9079 }
9080 }
9081
9082 if (display_state.dpy_refresh) {
9083 display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
9084 qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
9085 }
9086
9087 #ifdef CONFIG_GDBSTUB
9088 if (use_gdbstub) {
9089 /* XXX: use standard host:port notation and modify options
9090 accordingly. */
9091 if (gdbserver_start(gdbstub_port) < 0) {
9092 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
9093 gdbstub_port);
9094 exit(1);
9095 }
9096 }
9097 #endif
9098
9099 if (loadvm)
9100 do_loadvm(loadvm);
9101
9102 {
9103 /* XXX: simplify init */
9104 read_passwords();
9105 if (autostart) {
9106 vm_start();
9107 }
9108 }
9109
9110 if (daemonize) {
9111 uint8_t status = 0;
9112 ssize_t len;
9113 int fd;
9114
9115 again1:
9116 len = write(fds[1], &status, 1);
9117 if (len == -1 && (errno == EINTR))
9118 goto again1;
9119
9120 if (len != 1)
9121 exit(1);
9122
9123 TFR(fd = open("/dev/null", O_RDWR));
9124 if (fd == -1)
9125 exit(1);
9126
9127 dup2(fd, 0);
9128 dup2(fd, 1);
9129 dup2(fd, 2);
9130
9131 close(fd);
9132 }
9133
9134 main_loop();
9135 quit_timers();
9136
9137 #if !defined(_WIN32)
9138 /* close network clients */
9139 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
9140 VLANClientState *vc;
9141
9142 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
9143 if (vc->fd_read == tap_receive) {
9144 char ifname[64];
9145 TAPState *s = vc->opaque;
9146
9147 if (sscanf(vc->info_str, "tap: ifname=%63s ", ifname) == 1 &&
9148 s->down_script[0])
9149 launch_script(s->down_script, ifname, s->fd);
9150 }
9151 }
9152 }
9153 #endif
9154 return 0;
9155 }