]> git.proxmox.com Git - mirror_qemu.git/blob - vl.c
monitor: Rework modal password input (Jan Kiszka)
[mirror_qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw/hw.h"
25 #include "hw/boards.h"
26 #include "hw/usb.h"
27 #include "hw/pcmcia.h"
28 #include "hw/pc.h"
29 #include "hw/audiodev.h"
30 #include "hw/isa.h"
31 #include "hw/baum.h"
32 #include "hw/bt.h"
33 #include "net.h"
34 #include "console.h"
35 #include "sysemu.h"
36 #include "gdbstub.h"
37 #include "qemu-timer.h"
38 #include "qemu-char.h"
39 #include "cache-utils.h"
40 #include "block.h"
41 #include "audio/audio.h"
42 #include "migration.h"
43 #include "kvm.h"
44 #include "balloon.h"
45
46 #include <unistd.h>
47 #include <fcntl.h>
48 #include <signal.h>
49 #include <time.h>
50 #include <errno.h>
51 #include <sys/time.h>
52 #include <zlib.h>
53
54 #ifndef _WIN32
55 #include <pwd.h>
56 #include <sys/times.h>
57 #include <sys/wait.h>
58 #include <termios.h>
59 #include <sys/mman.h>
60 #include <sys/ioctl.h>
61 #include <sys/resource.h>
62 #include <sys/socket.h>
63 #include <netinet/in.h>
64 #include <net/if.h>
65 #if defined(__NetBSD__)
66 #include <net/if_tap.h>
67 #endif
68 #ifdef __linux__
69 #include <linux/if_tun.h>
70 #endif
71 #include <arpa/inet.h>
72 #include <dirent.h>
73 #include <netdb.h>
74 #include <sys/select.h>
75 #ifdef _BSD
76 #include <sys/stat.h>
77 #ifdef __FreeBSD__
78 #include <libutil.h>
79 #else
80 #include <util.h>
81 #endif
82 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
83 #include <freebsd/stdlib.h>
84 #else
85 #ifdef __linux__
86 #include <pty.h>
87 #include <malloc.h>
88 #include <linux/rtc.h>
89
90 /* For the benefit of older linux systems which don't supply it,
91 we use a local copy of hpet.h. */
92 /* #include <linux/hpet.h> */
93 #include "hpet.h"
94
95 #include <linux/ppdev.h>
96 #include <linux/parport.h>
97 #endif
98 #ifdef __sun__
99 #include <sys/stat.h>
100 #include <sys/ethernet.h>
101 #include <sys/sockio.h>
102 #include <netinet/arp.h>
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/ip.h>
106 #include <netinet/ip_icmp.h> // must come after ip.h
107 #include <netinet/udp.h>
108 #include <netinet/tcp.h>
109 #include <net/if.h>
110 #include <syslog.h>
111 #include <stropts.h>
112 #endif
113 #endif
114 #endif
115
116 #include "qemu_socket.h"
117
118 #if defined(CONFIG_SLIRP)
119 #include "libslirp.h"
120 #endif
121
122 #if defined(__OpenBSD__)
123 #include <util.h>
124 #endif
125
126 #if defined(CONFIG_VDE)
127 #include <libvdeplug.h>
128 #endif
129
130 #ifdef _WIN32
131 #include <malloc.h>
132 #include <sys/timeb.h>
133 #include <mmsystem.h>
134 #define getopt_long_only getopt_long
135 #define memalign(align, size) malloc(size)
136 #endif
137
138 #ifdef CONFIG_SDL
139 #ifdef __APPLE__
140 #include <SDL/SDL.h>
141 int qemu_main(int argc, char **argv, char **envp);
142 int main(int argc, char **argv)
143 {
144 qemu_main(argc, argv, NULL);
145 }
146 #undef main
147 #define main qemu_main
148 #endif
149 #endif /* CONFIG_SDL */
150
151 #ifdef CONFIG_COCOA
152 #undef main
153 #define main qemu_main
154 #endif /* CONFIG_COCOA */
155
156 #include "disas.h"
157
158 #include "exec-all.h"
159
160 //#define DEBUG_UNUSED_IOPORT
161 //#define DEBUG_IOPORT
162 //#define DEBUG_NET
163 //#define DEBUG_SLIRP
164
165
166 #ifdef DEBUG_IOPORT
167 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
168 #else
169 # define LOG_IOPORT(...) do { } while (0)
170 #endif
171
172 #define DEFAULT_RAM_SIZE 128
173
174 /* Max number of USB devices that can be specified on the commandline. */
175 #define MAX_USB_CMDLINE 8
176
177 /* Max number of bluetooth switches on the commandline. */
178 #define MAX_BT_CMDLINE 10
179
180 /* XXX: use a two level table to limit memory usage */
181 #define MAX_IOPORTS 65536
182
183 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
184 const char *bios_name = NULL;
185 static void *ioport_opaque[MAX_IOPORTS];
186 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
187 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
188 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
189 to store the VM snapshots */
190 DriveInfo drives_table[MAX_DRIVES+1];
191 int nb_drives;
192 static int vga_ram_size;
193 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
194 static DisplayState *display_state;
195 int nographic;
196 static int curses;
197 static int sdl;
198 const char* keyboard_layout = NULL;
199 int64_t ticks_per_sec;
200 ram_addr_t ram_size;
201 int nb_nics;
202 NICInfo nd_table[MAX_NICS];
203 int vm_running;
204 static int autostart;
205 static int rtc_utc = 1;
206 static int rtc_date_offset = -1; /* -1 means no change */
207 int cirrus_vga_enabled = 1;
208 int std_vga_enabled = 0;
209 int vmsvga_enabled = 0;
210 #ifdef TARGET_SPARC
211 int graphic_width = 1024;
212 int graphic_height = 768;
213 int graphic_depth = 8;
214 #else
215 int graphic_width = 800;
216 int graphic_height = 600;
217 int graphic_depth = 15;
218 #endif
219 static int full_screen = 0;
220 #ifdef CONFIG_SDL
221 static int no_frame = 0;
222 #endif
223 int no_quit = 0;
224 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
225 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
226 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
227 #ifdef TARGET_I386
228 int win2k_install_hack = 0;
229 int rtc_td_hack = 0;
230 #endif
231 int usb_enabled = 0;
232 int smp_cpus = 1;
233 const char *vnc_display;
234 int acpi_enabled = 1;
235 int no_hpet = 0;
236 int fd_bootchk = 1;
237 int no_reboot = 0;
238 int no_shutdown = 0;
239 int cursor_hide = 1;
240 int graphic_rotate = 0;
241 int daemonize = 0;
242 const char *option_rom[MAX_OPTION_ROMS];
243 int nb_option_roms;
244 int semihosting_enabled = 0;
245 #ifdef TARGET_ARM
246 int old_param = 0;
247 #endif
248 const char *qemu_name;
249 int alt_grab = 0;
250 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
251 unsigned int nb_prom_envs = 0;
252 const char *prom_envs[MAX_PROM_ENVS];
253 #endif
254 int nb_drives_opt;
255 struct drive_opt drives_opt[MAX_DRIVES];
256
257 static CPUState *cur_cpu;
258 static CPUState *next_cpu;
259 static int event_pending = 1;
260 /* Conversion factor from emulated instructions to virtual clock ticks. */
261 static int icount_time_shift;
262 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
263 #define MAX_ICOUNT_SHIFT 10
264 /* Compensate for varying guest execution speed. */
265 static int64_t qemu_icount_bias;
266 static QEMUTimer *icount_rt_timer;
267 static QEMUTimer *icount_vm_timer;
268 static QEMUTimer *nographic_timer;
269
270 uint8_t qemu_uuid[16];
271
272 /***********************************************************/
273 /* x86 ISA bus support */
274
275 target_phys_addr_t isa_mem_base = 0;
276 PicState2 *isa_pic;
277
278 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
279 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
280
281 static uint32_t ioport_read(int index, uint32_t address)
282 {
283 static IOPortReadFunc *default_func[3] = {
284 default_ioport_readb,
285 default_ioport_readw,
286 default_ioport_readl
287 };
288 IOPortReadFunc *func = ioport_read_table[index][address];
289 if (!func)
290 func = default_func[index];
291 return func(ioport_opaque[address], address);
292 }
293
294 static void ioport_write(int index, uint32_t address, uint32_t data)
295 {
296 static IOPortWriteFunc *default_func[3] = {
297 default_ioport_writeb,
298 default_ioport_writew,
299 default_ioport_writel
300 };
301 IOPortWriteFunc *func = ioport_write_table[index][address];
302 if (!func)
303 func = default_func[index];
304 func(ioport_opaque[address], address, data);
305 }
306
307 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
308 {
309 #ifdef DEBUG_UNUSED_IOPORT
310 fprintf(stderr, "unused inb: port=0x%04x\n", address);
311 #endif
312 return 0xff;
313 }
314
315 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
316 {
317 #ifdef DEBUG_UNUSED_IOPORT
318 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
319 #endif
320 }
321
322 /* default is to make two byte accesses */
323 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
324 {
325 uint32_t data;
326 data = ioport_read(0, address);
327 address = (address + 1) & (MAX_IOPORTS - 1);
328 data |= ioport_read(0, address) << 8;
329 return data;
330 }
331
332 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
333 {
334 ioport_write(0, address, data & 0xff);
335 address = (address + 1) & (MAX_IOPORTS - 1);
336 ioport_write(0, address, (data >> 8) & 0xff);
337 }
338
339 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
340 {
341 #ifdef DEBUG_UNUSED_IOPORT
342 fprintf(stderr, "unused inl: port=0x%04x\n", address);
343 #endif
344 return 0xffffffff;
345 }
346
347 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
348 {
349 #ifdef DEBUG_UNUSED_IOPORT
350 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
351 #endif
352 }
353
354 /* size is the word size in byte */
355 int register_ioport_read(int start, int length, int size,
356 IOPortReadFunc *func, void *opaque)
357 {
358 int i, bsize;
359
360 if (size == 1) {
361 bsize = 0;
362 } else if (size == 2) {
363 bsize = 1;
364 } else if (size == 4) {
365 bsize = 2;
366 } else {
367 hw_error("register_ioport_read: invalid size");
368 return -1;
369 }
370 for(i = start; i < start + length; i += size) {
371 ioport_read_table[bsize][i] = func;
372 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
373 hw_error("register_ioport_read: invalid opaque");
374 ioport_opaque[i] = opaque;
375 }
376 return 0;
377 }
378
379 /* size is the word size in byte */
380 int register_ioport_write(int start, int length, int size,
381 IOPortWriteFunc *func, void *opaque)
382 {
383 int i, bsize;
384
385 if (size == 1) {
386 bsize = 0;
387 } else if (size == 2) {
388 bsize = 1;
389 } else if (size == 4) {
390 bsize = 2;
391 } else {
392 hw_error("register_ioport_write: invalid size");
393 return -1;
394 }
395 for(i = start; i < start + length; i += size) {
396 ioport_write_table[bsize][i] = func;
397 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
398 hw_error("register_ioport_write: invalid opaque");
399 ioport_opaque[i] = opaque;
400 }
401 return 0;
402 }
403
404 void isa_unassign_ioport(int start, int length)
405 {
406 int i;
407
408 for(i = start; i < start + length; i++) {
409 ioport_read_table[0][i] = default_ioport_readb;
410 ioport_read_table[1][i] = default_ioport_readw;
411 ioport_read_table[2][i] = default_ioport_readl;
412
413 ioport_write_table[0][i] = default_ioport_writeb;
414 ioport_write_table[1][i] = default_ioport_writew;
415 ioport_write_table[2][i] = default_ioport_writel;
416
417 ioport_opaque[i] = NULL;
418 }
419 }
420
421 /***********************************************************/
422
423 void cpu_outb(CPUState *env, int addr, int val)
424 {
425 LOG_IOPORT("outb: %04x %02x\n", addr, val);
426 ioport_write(0, addr, val);
427 #ifdef USE_KQEMU
428 if (env)
429 env->last_io_time = cpu_get_time_fast();
430 #endif
431 }
432
433 void cpu_outw(CPUState *env, int addr, int val)
434 {
435 LOG_IOPORT("outw: %04x %04x\n", addr, val);
436 ioport_write(1, addr, val);
437 #ifdef USE_KQEMU
438 if (env)
439 env->last_io_time = cpu_get_time_fast();
440 #endif
441 }
442
443 void cpu_outl(CPUState *env, int addr, int val)
444 {
445 LOG_IOPORT("outl: %04x %08x\n", addr, val);
446 ioport_write(2, addr, val);
447 #ifdef USE_KQEMU
448 if (env)
449 env->last_io_time = cpu_get_time_fast();
450 #endif
451 }
452
453 int cpu_inb(CPUState *env, int addr)
454 {
455 int val;
456 val = ioport_read(0, addr);
457 LOG_IOPORT("inb : %04x %02x\n", addr, val);
458 #ifdef USE_KQEMU
459 if (env)
460 env->last_io_time = cpu_get_time_fast();
461 #endif
462 return val;
463 }
464
465 int cpu_inw(CPUState *env, int addr)
466 {
467 int val;
468 val = ioport_read(1, addr);
469 LOG_IOPORT("inw : %04x %04x\n", addr, val);
470 #ifdef USE_KQEMU
471 if (env)
472 env->last_io_time = cpu_get_time_fast();
473 #endif
474 return val;
475 }
476
477 int cpu_inl(CPUState *env, int addr)
478 {
479 int val;
480 val = ioport_read(2, addr);
481 LOG_IOPORT("inl : %04x %08x\n", addr, val);
482 #ifdef USE_KQEMU
483 if (env)
484 env->last_io_time = cpu_get_time_fast();
485 #endif
486 return val;
487 }
488
489 /***********************************************************/
490 void hw_error(const char *fmt, ...)
491 {
492 va_list ap;
493 CPUState *env;
494
495 va_start(ap, fmt);
496 fprintf(stderr, "qemu: hardware error: ");
497 vfprintf(stderr, fmt, ap);
498 fprintf(stderr, "\n");
499 for(env = first_cpu; env != NULL; env = env->next_cpu) {
500 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
501 #ifdef TARGET_I386
502 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
503 #else
504 cpu_dump_state(env, stderr, fprintf, 0);
505 #endif
506 }
507 va_end(ap);
508 abort();
509 }
510
511 /***************/
512 /* ballooning */
513
514 static QEMUBalloonEvent *qemu_balloon_event;
515 void *qemu_balloon_event_opaque;
516
517 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
518 {
519 qemu_balloon_event = func;
520 qemu_balloon_event_opaque = opaque;
521 }
522
523 void qemu_balloon(ram_addr_t target)
524 {
525 if (qemu_balloon_event)
526 qemu_balloon_event(qemu_balloon_event_opaque, target);
527 }
528
529 ram_addr_t qemu_balloon_status(void)
530 {
531 if (qemu_balloon_event)
532 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
533 return 0;
534 }
535
536 /***********************************************************/
537 /* keyboard/mouse */
538
539 static QEMUPutKBDEvent *qemu_put_kbd_event;
540 static void *qemu_put_kbd_event_opaque;
541 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
542 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
543
544 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
545 {
546 qemu_put_kbd_event_opaque = opaque;
547 qemu_put_kbd_event = func;
548 }
549
550 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
551 void *opaque, int absolute,
552 const char *name)
553 {
554 QEMUPutMouseEntry *s, *cursor;
555
556 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
557
558 s->qemu_put_mouse_event = func;
559 s->qemu_put_mouse_event_opaque = opaque;
560 s->qemu_put_mouse_event_absolute = absolute;
561 s->qemu_put_mouse_event_name = qemu_strdup(name);
562 s->next = NULL;
563
564 if (!qemu_put_mouse_event_head) {
565 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
566 return s;
567 }
568
569 cursor = qemu_put_mouse_event_head;
570 while (cursor->next != NULL)
571 cursor = cursor->next;
572
573 cursor->next = s;
574 qemu_put_mouse_event_current = s;
575
576 return s;
577 }
578
579 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
580 {
581 QEMUPutMouseEntry *prev = NULL, *cursor;
582
583 if (!qemu_put_mouse_event_head || entry == NULL)
584 return;
585
586 cursor = qemu_put_mouse_event_head;
587 while (cursor != NULL && cursor != entry) {
588 prev = cursor;
589 cursor = cursor->next;
590 }
591
592 if (cursor == NULL) // does not exist or list empty
593 return;
594 else if (prev == NULL) { // entry is head
595 qemu_put_mouse_event_head = cursor->next;
596 if (qemu_put_mouse_event_current == entry)
597 qemu_put_mouse_event_current = cursor->next;
598 qemu_free(entry->qemu_put_mouse_event_name);
599 qemu_free(entry);
600 return;
601 }
602
603 prev->next = entry->next;
604
605 if (qemu_put_mouse_event_current == entry)
606 qemu_put_mouse_event_current = prev;
607
608 qemu_free(entry->qemu_put_mouse_event_name);
609 qemu_free(entry);
610 }
611
612 void kbd_put_keycode(int keycode)
613 {
614 if (qemu_put_kbd_event) {
615 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
616 }
617 }
618
619 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
620 {
621 QEMUPutMouseEvent *mouse_event;
622 void *mouse_event_opaque;
623 int width;
624
625 if (!qemu_put_mouse_event_current) {
626 return;
627 }
628
629 mouse_event =
630 qemu_put_mouse_event_current->qemu_put_mouse_event;
631 mouse_event_opaque =
632 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
633
634 if (mouse_event) {
635 if (graphic_rotate) {
636 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
637 width = 0x7fff;
638 else
639 width = graphic_width - 1;
640 mouse_event(mouse_event_opaque,
641 width - dy, dx, dz, buttons_state);
642 } else
643 mouse_event(mouse_event_opaque,
644 dx, dy, dz, buttons_state);
645 }
646 }
647
648 int kbd_mouse_is_absolute(void)
649 {
650 if (!qemu_put_mouse_event_current)
651 return 0;
652
653 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
654 }
655
656 void do_info_mice(void)
657 {
658 QEMUPutMouseEntry *cursor;
659 int index = 0;
660
661 if (!qemu_put_mouse_event_head) {
662 term_printf("No mouse devices connected\n");
663 return;
664 }
665
666 term_printf("Mouse devices available:\n");
667 cursor = qemu_put_mouse_event_head;
668 while (cursor != NULL) {
669 term_printf("%c Mouse #%d: %s\n",
670 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
671 index, cursor->qemu_put_mouse_event_name);
672 index++;
673 cursor = cursor->next;
674 }
675 }
676
677 void do_mouse_set(int index)
678 {
679 QEMUPutMouseEntry *cursor;
680 int i = 0;
681
682 if (!qemu_put_mouse_event_head) {
683 term_printf("No mouse devices connected\n");
684 return;
685 }
686
687 cursor = qemu_put_mouse_event_head;
688 while (cursor != NULL && index != i) {
689 i++;
690 cursor = cursor->next;
691 }
692
693 if (cursor != NULL)
694 qemu_put_mouse_event_current = cursor;
695 else
696 term_printf("Mouse at given index not found\n");
697 }
698
699 /* compute with 96 bit intermediate result: (a*b)/c */
700 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
701 {
702 union {
703 uint64_t ll;
704 struct {
705 #ifdef WORDS_BIGENDIAN
706 uint32_t high, low;
707 #else
708 uint32_t low, high;
709 #endif
710 } l;
711 } u, res;
712 uint64_t rl, rh;
713
714 u.ll = a;
715 rl = (uint64_t)u.l.low * (uint64_t)b;
716 rh = (uint64_t)u.l.high * (uint64_t)b;
717 rh += (rl >> 32);
718 res.l.high = rh / c;
719 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
720 return res.ll;
721 }
722
723 /***********************************************************/
724 /* real time host monotonic timer */
725
726 #define QEMU_TIMER_BASE 1000000000LL
727
728 #ifdef WIN32
729
730 static int64_t clock_freq;
731
732 static void init_get_clock(void)
733 {
734 LARGE_INTEGER freq;
735 int ret;
736 ret = QueryPerformanceFrequency(&freq);
737 if (ret == 0) {
738 fprintf(stderr, "Could not calibrate ticks\n");
739 exit(1);
740 }
741 clock_freq = freq.QuadPart;
742 }
743
744 static int64_t get_clock(void)
745 {
746 LARGE_INTEGER ti;
747 QueryPerformanceCounter(&ti);
748 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
749 }
750
751 #else
752
753 static int use_rt_clock;
754
755 static void init_get_clock(void)
756 {
757 use_rt_clock = 0;
758 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000)
759 {
760 struct timespec ts;
761 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
762 use_rt_clock = 1;
763 }
764 }
765 #endif
766 }
767
768 static int64_t get_clock(void)
769 {
770 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000)
771 if (use_rt_clock) {
772 struct timespec ts;
773 clock_gettime(CLOCK_MONOTONIC, &ts);
774 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
775 } else
776 #endif
777 {
778 /* XXX: using gettimeofday leads to problems if the date
779 changes, so it should be avoided. */
780 struct timeval tv;
781 gettimeofday(&tv, NULL);
782 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
783 }
784 }
785 #endif
786
787 /* Return the virtual CPU time, based on the instruction counter. */
788 static int64_t cpu_get_icount(void)
789 {
790 int64_t icount;
791 CPUState *env = cpu_single_env;;
792 icount = qemu_icount;
793 if (env) {
794 if (!can_do_io(env))
795 fprintf(stderr, "Bad clock read\n");
796 icount -= (env->icount_decr.u16.low + env->icount_extra);
797 }
798 return qemu_icount_bias + (icount << icount_time_shift);
799 }
800
801 /***********************************************************/
802 /* guest cycle counter */
803
804 static int64_t cpu_ticks_prev;
805 static int64_t cpu_ticks_offset;
806 static int64_t cpu_clock_offset;
807 static int cpu_ticks_enabled;
808
809 /* return the host CPU cycle counter and handle stop/restart */
810 int64_t cpu_get_ticks(void)
811 {
812 if (use_icount) {
813 return cpu_get_icount();
814 }
815 if (!cpu_ticks_enabled) {
816 return cpu_ticks_offset;
817 } else {
818 int64_t ticks;
819 ticks = cpu_get_real_ticks();
820 if (cpu_ticks_prev > ticks) {
821 /* Note: non increasing ticks may happen if the host uses
822 software suspend */
823 cpu_ticks_offset += cpu_ticks_prev - ticks;
824 }
825 cpu_ticks_prev = ticks;
826 return ticks + cpu_ticks_offset;
827 }
828 }
829
830 /* return the host CPU monotonic timer and handle stop/restart */
831 static int64_t cpu_get_clock(void)
832 {
833 int64_t ti;
834 if (!cpu_ticks_enabled) {
835 return cpu_clock_offset;
836 } else {
837 ti = get_clock();
838 return ti + cpu_clock_offset;
839 }
840 }
841
842 /* enable cpu_get_ticks() */
843 void cpu_enable_ticks(void)
844 {
845 if (!cpu_ticks_enabled) {
846 cpu_ticks_offset -= cpu_get_real_ticks();
847 cpu_clock_offset -= get_clock();
848 cpu_ticks_enabled = 1;
849 }
850 }
851
852 /* disable cpu_get_ticks() : the clock is stopped. You must not call
853 cpu_get_ticks() after that. */
854 void cpu_disable_ticks(void)
855 {
856 if (cpu_ticks_enabled) {
857 cpu_ticks_offset = cpu_get_ticks();
858 cpu_clock_offset = cpu_get_clock();
859 cpu_ticks_enabled = 0;
860 }
861 }
862
863 /***********************************************************/
864 /* timers */
865
866 #define QEMU_TIMER_REALTIME 0
867 #define QEMU_TIMER_VIRTUAL 1
868
869 struct QEMUClock {
870 int type;
871 /* XXX: add frequency */
872 };
873
874 struct QEMUTimer {
875 QEMUClock *clock;
876 int64_t expire_time;
877 QEMUTimerCB *cb;
878 void *opaque;
879 struct QEMUTimer *next;
880 };
881
882 struct qemu_alarm_timer {
883 char const *name;
884 unsigned int flags;
885
886 int (*start)(struct qemu_alarm_timer *t);
887 void (*stop)(struct qemu_alarm_timer *t);
888 void (*rearm)(struct qemu_alarm_timer *t);
889 void *priv;
890 };
891
892 #define ALARM_FLAG_DYNTICKS 0x1
893 #define ALARM_FLAG_EXPIRED 0x2
894
895 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
896 {
897 return t->flags & ALARM_FLAG_DYNTICKS;
898 }
899
900 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
901 {
902 if (!alarm_has_dynticks(t))
903 return;
904
905 t->rearm(t);
906 }
907
908 /* TODO: MIN_TIMER_REARM_US should be optimized */
909 #define MIN_TIMER_REARM_US 250
910
911 static struct qemu_alarm_timer *alarm_timer;
912 #ifndef _WIN32
913 static int alarm_timer_rfd, alarm_timer_wfd;
914 #endif
915
916 #ifdef _WIN32
917
918 struct qemu_alarm_win32 {
919 MMRESULT timerId;
920 HANDLE host_alarm;
921 unsigned int period;
922 } alarm_win32_data = {0, NULL, -1};
923
924 static int win32_start_timer(struct qemu_alarm_timer *t);
925 static void win32_stop_timer(struct qemu_alarm_timer *t);
926 static void win32_rearm_timer(struct qemu_alarm_timer *t);
927
928 #else
929
930 static int unix_start_timer(struct qemu_alarm_timer *t);
931 static void unix_stop_timer(struct qemu_alarm_timer *t);
932
933 #ifdef __linux__
934
935 static int dynticks_start_timer(struct qemu_alarm_timer *t);
936 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
937 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
938
939 static int hpet_start_timer(struct qemu_alarm_timer *t);
940 static void hpet_stop_timer(struct qemu_alarm_timer *t);
941
942 static int rtc_start_timer(struct qemu_alarm_timer *t);
943 static void rtc_stop_timer(struct qemu_alarm_timer *t);
944
945 #endif /* __linux__ */
946
947 #endif /* _WIN32 */
948
949 /* Correlation between real and virtual time is always going to be
950 fairly approximate, so ignore small variation.
951 When the guest is idle real and virtual time will be aligned in
952 the IO wait loop. */
953 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
954
955 static void icount_adjust(void)
956 {
957 int64_t cur_time;
958 int64_t cur_icount;
959 int64_t delta;
960 static int64_t last_delta;
961 /* If the VM is not running, then do nothing. */
962 if (!vm_running)
963 return;
964
965 cur_time = cpu_get_clock();
966 cur_icount = qemu_get_clock(vm_clock);
967 delta = cur_icount - cur_time;
968 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
969 if (delta > 0
970 && last_delta + ICOUNT_WOBBLE < delta * 2
971 && icount_time_shift > 0) {
972 /* The guest is getting too far ahead. Slow time down. */
973 icount_time_shift--;
974 }
975 if (delta < 0
976 && last_delta - ICOUNT_WOBBLE > delta * 2
977 && icount_time_shift < MAX_ICOUNT_SHIFT) {
978 /* The guest is getting too far behind. Speed time up. */
979 icount_time_shift++;
980 }
981 last_delta = delta;
982 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
983 }
984
985 static void icount_adjust_rt(void * opaque)
986 {
987 qemu_mod_timer(icount_rt_timer,
988 qemu_get_clock(rt_clock) + 1000);
989 icount_adjust();
990 }
991
992 static void icount_adjust_vm(void * opaque)
993 {
994 qemu_mod_timer(icount_vm_timer,
995 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
996 icount_adjust();
997 }
998
999 static void init_icount_adjust(void)
1000 {
1001 /* Have both realtime and virtual time triggers for speed adjustment.
1002 The realtime trigger catches emulated time passing too slowly,
1003 the virtual time trigger catches emulated time passing too fast.
1004 Realtime triggers occur even when idle, so use them less frequently
1005 than VM triggers. */
1006 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1007 qemu_mod_timer(icount_rt_timer,
1008 qemu_get_clock(rt_clock) + 1000);
1009 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1010 qemu_mod_timer(icount_vm_timer,
1011 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1012 }
1013
1014 static struct qemu_alarm_timer alarm_timers[] = {
1015 #ifndef _WIN32
1016 #ifdef __linux__
1017 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1018 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1019 /* HPET - if available - is preferred */
1020 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1021 /* ...otherwise try RTC */
1022 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1023 #endif
1024 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1025 #else
1026 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1027 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1028 {"win32", 0, win32_start_timer,
1029 win32_stop_timer, NULL, &alarm_win32_data},
1030 #endif
1031 {NULL, }
1032 };
1033
1034 static void show_available_alarms(void)
1035 {
1036 int i;
1037
1038 printf("Available alarm timers, in order of precedence:\n");
1039 for (i = 0; alarm_timers[i].name; i++)
1040 printf("%s\n", alarm_timers[i].name);
1041 }
1042
1043 static void configure_alarms(char const *opt)
1044 {
1045 int i;
1046 int cur = 0;
1047 int count = ARRAY_SIZE(alarm_timers) - 1;
1048 char *arg;
1049 char *name;
1050 struct qemu_alarm_timer tmp;
1051
1052 if (!strcmp(opt, "?")) {
1053 show_available_alarms();
1054 exit(0);
1055 }
1056
1057 arg = strdup(opt);
1058
1059 /* Reorder the array */
1060 name = strtok(arg, ",");
1061 while (name) {
1062 for (i = 0; i < count && alarm_timers[i].name; i++) {
1063 if (!strcmp(alarm_timers[i].name, name))
1064 break;
1065 }
1066
1067 if (i == count) {
1068 fprintf(stderr, "Unknown clock %s\n", name);
1069 goto next;
1070 }
1071
1072 if (i < cur)
1073 /* Ignore */
1074 goto next;
1075
1076 /* Swap */
1077 tmp = alarm_timers[i];
1078 alarm_timers[i] = alarm_timers[cur];
1079 alarm_timers[cur] = tmp;
1080
1081 cur++;
1082 next:
1083 name = strtok(NULL, ",");
1084 }
1085
1086 free(arg);
1087
1088 if (cur) {
1089 /* Disable remaining timers */
1090 for (i = cur; i < count; i++)
1091 alarm_timers[i].name = NULL;
1092 } else {
1093 show_available_alarms();
1094 exit(1);
1095 }
1096 }
1097
1098 QEMUClock *rt_clock;
1099 QEMUClock *vm_clock;
1100
1101 static QEMUTimer *active_timers[2];
1102
1103 static QEMUClock *qemu_new_clock(int type)
1104 {
1105 QEMUClock *clock;
1106 clock = qemu_mallocz(sizeof(QEMUClock));
1107 clock->type = type;
1108 return clock;
1109 }
1110
1111 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1112 {
1113 QEMUTimer *ts;
1114
1115 ts = qemu_mallocz(sizeof(QEMUTimer));
1116 ts->clock = clock;
1117 ts->cb = cb;
1118 ts->opaque = opaque;
1119 return ts;
1120 }
1121
1122 void qemu_free_timer(QEMUTimer *ts)
1123 {
1124 qemu_free(ts);
1125 }
1126
1127 /* stop a timer, but do not dealloc it */
1128 void qemu_del_timer(QEMUTimer *ts)
1129 {
1130 QEMUTimer **pt, *t;
1131
1132 /* NOTE: this code must be signal safe because
1133 qemu_timer_expired() can be called from a signal. */
1134 pt = &active_timers[ts->clock->type];
1135 for(;;) {
1136 t = *pt;
1137 if (!t)
1138 break;
1139 if (t == ts) {
1140 *pt = t->next;
1141 break;
1142 }
1143 pt = &t->next;
1144 }
1145 }
1146
1147 /* modify the current timer so that it will be fired when current_time
1148 >= expire_time. The corresponding callback will be called. */
1149 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1150 {
1151 QEMUTimer **pt, *t;
1152
1153 qemu_del_timer(ts);
1154
1155 /* add the timer in the sorted list */
1156 /* NOTE: this code must be signal safe because
1157 qemu_timer_expired() can be called from a signal. */
1158 pt = &active_timers[ts->clock->type];
1159 for(;;) {
1160 t = *pt;
1161 if (!t)
1162 break;
1163 if (t->expire_time > expire_time)
1164 break;
1165 pt = &t->next;
1166 }
1167 ts->expire_time = expire_time;
1168 ts->next = *pt;
1169 *pt = ts;
1170
1171 /* Rearm if necessary */
1172 if (pt == &active_timers[ts->clock->type]) {
1173 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1174 qemu_rearm_alarm_timer(alarm_timer);
1175 }
1176 /* Interrupt execution to force deadline recalculation. */
1177 if (use_icount && cpu_single_env) {
1178 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
1179 }
1180 }
1181 }
1182
1183 int qemu_timer_pending(QEMUTimer *ts)
1184 {
1185 QEMUTimer *t;
1186 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1187 if (t == ts)
1188 return 1;
1189 }
1190 return 0;
1191 }
1192
1193 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1194 {
1195 if (!timer_head)
1196 return 0;
1197 return (timer_head->expire_time <= current_time);
1198 }
1199
1200 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1201 {
1202 QEMUTimer *ts;
1203
1204 for(;;) {
1205 ts = *ptimer_head;
1206 if (!ts || ts->expire_time > current_time)
1207 break;
1208 /* remove timer from the list before calling the callback */
1209 *ptimer_head = ts->next;
1210 ts->next = NULL;
1211
1212 /* run the callback (the timer list can be modified) */
1213 ts->cb(ts->opaque);
1214 }
1215 }
1216
1217 int64_t qemu_get_clock(QEMUClock *clock)
1218 {
1219 switch(clock->type) {
1220 case QEMU_TIMER_REALTIME:
1221 return get_clock() / 1000000;
1222 default:
1223 case QEMU_TIMER_VIRTUAL:
1224 if (use_icount) {
1225 return cpu_get_icount();
1226 } else {
1227 return cpu_get_clock();
1228 }
1229 }
1230 }
1231
1232 static void init_timers(void)
1233 {
1234 init_get_clock();
1235 ticks_per_sec = QEMU_TIMER_BASE;
1236 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1237 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1238 }
1239
1240 /* save a timer */
1241 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1242 {
1243 uint64_t expire_time;
1244
1245 if (qemu_timer_pending(ts)) {
1246 expire_time = ts->expire_time;
1247 } else {
1248 expire_time = -1;
1249 }
1250 qemu_put_be64(f, expire_time);
1251 }
1252
1253 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1254 {
1255 uint64_t expire_time;
1256
1257 expire_time = qemu_get_be64(f);
1258 if (expire_time != -1) {
1259 qemu_mod_timer(ts, expire_time);
1260 } else {
1261 qemu_del_timer(ts);
1262 }
1263 }
1264
1265 static void timer_save(QEMUFile *f, void *opaque)
1266 {
1267 if (cpu_ticks_enabled) {
1268 hw_error("cannot save state if virtual timers are running");
1269 }
1270 qemu_put_be64(f, cpu_ticks_offset);
1271 qemu_put_be64(f, ticks_per_sec);
1272 qemu_put_be64(f, cpu_clock_offset);
1273 }
1274
1275 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1276 {
1277 if (version_id != 1 && version_id != 2)
1278 return -EINVAL;
1279 if (cpu_ticks_enabled) {
1280 return -EINVAL;
1281 }
1282 cpu_ticks_offset=qemu_get_be64(f);
1283 ticks_per_sec=qemu_get_be64(f);
1284 if (version_id == 2) {
1285 cpu_clock_offset=qemu_get_be64(f);
1286 }
1287 return 0;
1288 }
1289
1290 #ifdef _WIN32
1291 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1292 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1293 #else
1294 static void host_alarm_handler(int host_signum)
1295 #endif
1296 {
1297 #if 0
1298 #define DISP_FREQ 1000
1299 {
1300 static int64_t delta_min = INT64_MAX;
1301 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1302 static int count;
1303 ti = qemu_get_clock(vm_clock);
1304 if (last_clock != 0) {
1305 delta = ti - last_clock;
1306 if (delta < delta_min)
1307 delta_min = delta;
1308 if (delta > delta_max)
1309 delta_max = delta;
1310 delta_cum += delta;
1311 if (++count == DISP_FREQ) {
1312 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1313 muldiv64(delta_min, 1000000, ticks_per_sec),
1314 muldiv64(delta_max, 1000000, ticks_per_sec),
1315 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1316 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1317 count = 0;
1318 delta_min = INT64_MAX;
1319 delta_max = 0;
1320 delta_cum = 0;
1321 }
1322 }
1323 last_clock = ti;
1324 }
1325 #endif
1326 if (alarm_has_dynticks(alarm_timer) ||
1327 (!use_icount &&
1328 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1329 qemu_get_clock(vm_clock))) ||
1330 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1331 qemu_get_clock(rt_clock))) {
1332 CPUState *env = next_cpu;
1333
1334 #ifdef _WIN32
1335 struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1336 SetEvent(data->host_alarm);
1337 #else
1338 static const char byte = 0;
1339 write(alarm_timer_wfd, &byte, sizeof(byte));
1340 #endif
1341 alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1342
1343 if (env) {
1344 /* stop the currently executing cpu because a timer occured */
1345 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1346 #ifdef USE_KQEMU
1347 if (env->kqemu_enabled) {
1348 kqemu_cpu_interrupt(env);
1349 }
1350 #endif
1351 }
1352 event_pending = 1;
1353 }
1354 }
1355
1356 static int64_t qemu_next_deadline(void)
1357 {
1358 int64_t delta;
1359
1360 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1361 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1362 qemu_get_clock(vm_clock);
1363 } else {
1364 /* To avoid problems with overflow limit this to 2^32. */
1365 delta = INT32_MAX;
1366 }
1367
1368 if (delta < 0)
1369 delta = 0;
1370
1371 return delta;
1372 }
1373
1374 #if defined(__linux__) || defined(_WIN32)
1375 static uint64_t qemu_next_deadline_dyntick(void)
1376 {
1377 int64_t delta;
1378 int64_t rtdelta;
1379
1380 if (use_icount)
1381 delta = INT32_MAX;
1382 else
1383 delta = (qemu_next_deadline() + 999) / 1000;
1384
1385 if (active_timers[QEMU_TIMER_REALTIME]) {
1386 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1387 qemu_get_clock(rt_clock))*1000;
1388 if (rtdelta < delta)
1389 delta = rtdelta;
1390 }
1391
1392 if (delta < MIN_TIMER_REARM_US)
1393 delta = MIN_TIMER_REARM_US;
1394
1395 return delta;
1396 }
1397 #endif
1398
1399 #ifndef _WIN32
1400
1401 /* Sets a specific flag */
1402 static int fcntl_setfl(int fd, int flag)
1403 {
1404 int flags;
1405
1406 flags = fcntl(fd, F_GETFL);
1407 if (flags == -1)
1408 return -errno;
1409
1410 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1411 return -errno;
1412
1413 return 0;
1414 }
1415
1416 #if defined(__linux__)
1417
1418 #define RTC_FREQ 1024
1419
1420 static void enable_sigio_timer(int fd)
1421 {
1422 struct sigaction act;
1423
1424 /* timer signal */
1425 sigfillset(&act.sa_mask);
1426 act.sa_flags = 0;
1427 act.sa_handler = host_alarm_handler;
1428
1429 sigaction(SIGIO, &act, NULL);
1430 fcntl_setfl(fd, O_ASYNC);
1431 fcntl(fd, F_SETOWN, getpid());
1432 }
1433
1434 static int hpet_start_timer(struct qemu_alarm_timer *t)
1435 {
1436 struct hpet_info info;
1437 int r, fd;
1438
1439 fd = open("/dev/hpet", O_RDONLY);
1440 if (fd < 0)
1441 return -1;
1442
1443 /* Set frequency */
1444 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1445 if (r < 0) {
1446 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1447 "error, but for better emulation accuracy type:\n"
1448 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1449 goto fail;
1450 }
1451
1452 /* Check capabilities */
1453 r = ioctl(fd, HPET_INFO, &info);
1454 if (r < 0)
1455 goto fail;
1456
1457 /* Enable periodic mode */
1458 r = ioctl(fd, HPET_EPI, 0);
1459 if (info.hi_flags && (r < 0))
1460 goto fail;
1461
1462 /* Enable interrupt */
1463 r = ioctl(fd, HPET_IE_ON, 0);
1464 if (r < 0)
1465 goto fail;
1466
1467 enable_sigio_timer(fd);
1468 t->priv = (void *)(long)fd;
1469
1470 return 0;
1471 fail:
1472 close(fd);
1473 return -1;
1474 }
1475
1476 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1477 {
1478 int fd = (long)t->priv;
1479
1480 close(fd);
1481 }
1482
1483 static int rtc_start_timer(struct qemu_alarm_timer *t)
1484 {
1485 int rtc_fd;
1486 unsigned long current_rtc_freq = 0;
1487
1488 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1489 if (rtc_fd < 0)
1490 return -1;
1491 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1492 if (current_rtc_freq != RTC_FREQ &&
1493 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1494 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1495 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1496 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1497 goto fail;
1498 }
1499 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1500 fail:
1501 close(rtc_fd);
1502 return -1;
1503 }
1504
1505 enable_sigio_timer(rtc_fd);
1506
1507 t->priv = (void *)(long)rtc_fd;
1508
1509 return 0;
1510 }
1511
1512 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1513 {
1514 int rtc_fd = (long)t->priv;
1515
1516 close(rtc_fd);
1517 }
1518
1519 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1520 {
1521 struct sigevent ev;
1522 timer_t host_timer;
1523 struct sigaction act;
1524
1525 sigfillset(&act.sa_mask);
1526 act.sa_flags = 0;
1527 act.sa_handler = host_alarm_handler;
1528
1529 sigaction(SIGALRM, &act, NULL);
1530
1531 ev.sigev_value.sival_int = 0;
1532 ev.sigev_notify = SIGEV_SIGNAL;
1533 ev.sigev_signo = SIGALRM;
1534
1535 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1536 perror("timer_create");
1537
1538 /* disable dynticks */
1539 fprintf(stderr, "Dynamic Ticks disabled\n");
1540
1541 return -1;
1542 }
1543
1544 t->priv = (void *)(long)host_timer;
1545
1546 return 0;
1547 }
1548
1549 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1550 {
1551 timer_t host_timer = (timer_t)(long)t->priv;
1552
1553 timer_delete(host_timer);
1554 }
1555
1556 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1557 {
1558 timer_t host_timer = (timer_t)(long)t->priv;
1559 struct itimerspec timeout;
1560 int64_t nearest_delta_us = INT64_MAX;
1561 int64_t current_us;
1562
1563 if (!active_timers[QEMU_TIMER_REALTIME] &&
1564 !active_timers[QEMU_TIMER_VIRTUAL])
1565 return;
1566
1567 nearest_delta_us = qemu_next_deadline_dyntick();
1568
1569 /* check whether a timer is already running */
1570 if (timer_gettime(host_timer, &timeout)) {
1571 perror("gettime");
1572 fprintf(stderr, "Internal timer error: aborting\n");
1573 exit(1);
1574 }
1575 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1576 if (current_us && current_us <= nearest_delta_us)
1577 return;
1578
1579 timeout.it_interval.tv_sec = 0;
1580 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1581 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1582 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1583 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1584 perror("settime");
1585 fprintf(stderr, "Internal timer error: aborting\n");
1586 exit(1);
1587 }
1588 }
1589
1590 #endif /* defined(__linux__) */
1591
1592 static int unix_start_timer(struct qemu_alarm_timer *t)
1593 {
1594 struct sigaction act;
1595 struct itimerval itv;
1596 int err;
1597
1598 /* timer signal */
1599 sigfillset(&act.sa_mask);
1600 act.sa_flags = 0;
1601 act.sa_handler = host_alarm_handler;
1602
1603 sigaction(SIGALRM, &act, NULL);
1604
1605 itv.it_interval.tv_sec = 0;
1606 /* for i386 kernel 2.6 to get 1 ms */
1607 itv.it_interval.tv_usec = 999;
1608 itv.it_value.tv_sec = 0;
1609 itv.it_value.tv_usec = 10 * 1000;
1610
1611 err = setitimer(ITIMER_REAL, &itv, NULL);
1612 if (err)
1613 return -1;
1614
1615 return 0;
1616 }
1617
1618 static void unix_stop_timer(struct qemu_alarm_timer *t)
1619 {
1620 struct itimerval itv;
1621
1622 memset(&itv, 0, sizeof(itv));
1623 setitimer(ITIMER_REAL, &itv, NULL);
1624 }
1625
1626 #endif /* !defined(_WIN32) */
1627
1628 static void try_to_rearm_timer(void *opaque)
1629 {
1630 struct qemu_alarm_timer *t = opaque;
1631 #ifndef _WIN32
1632 ssize_t len;
1633
1634 /* Drain the notify pipe */
1635 do {
1636 char buffer[512];
1637 len = read(alarm_timer_rfd, buffer, sizeof(buffer));
1638 } while ((len == -1 && errno == EINTR) || len > 0);
1639 #endif
1640
1641 if (t->flags & ALARM_FLAG_EXPIRED) {
1642 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
1643 qemu_rearm_alarm_timer(alarm_timer);
1644 }
1645 }
1646
1647 #ifdef _WIN32
1648
1649 static int win32_start_timer(struct qemu_alarm_timer *t)
1650 {
1651 TIMECAPS tc;
1652 struct qemu_alarm_win32 *data = t->priv;
1653 UINT flags;
1654
1655 data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1656 if (!data->host_alarm) {
1657 perror("Failed CreateEvent");
1658 return -1;
1659 }
1660
1661 memset(&tc, 0, sizeof(tc));
1662 timeGetDevCaps(&tc, sizeof(tc));
1663
1664 if (data->period < tc.wPeriodMin)
1665 data->period = tc.wPeriodMin;
1666
1667 timeBeginPeriod(data->period);
1668
1669 flags = TIME_CALLBACK_FUNCTION;
1670 if (alarm_has_dynticks(t))
1671 flags |= TIME_ONESHOT;
1672 else
1673 flags |= TIME_PERIODIC;
1674
1675 data->timerId = timeSetEvent(1, // interval (ms)
1676 data->period, // resolution
1677 host_alarm_handler, // function
1678 (DWORD)t, // parameter
1679 flags);
1680
1681 if (!data->timerId) {
1682 perror("Failed to initialize win32 alarm timer");
1683
1684 timeEndPeriod(data->period);
1685 CloseHandle(data->host_alarm);
1686 return -1;
1687 }
1688
1689 qemu_add_wait_object(data->host_alarm, try_to_rearm_timer, t);
1690
1691 return 0;
1692 }
1693
1694 static void win32_stop_timer(struct qemu_alarm_timer *t)
1695 {
1696 struct qemu_alarm_win32 *data = t->priv;
1697
1698 timeKillEvent(data->timerId);
1699 timeEndPeriod(data->period);
1700
1701 CloseHandle(data->host_alarm);
1702 }
1703
1704 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1705 {
1706 struct qemu_alarm_win32 *data = t->priv;
1707 uint64_t nearest_delta_us;
1708
1709 if (!active_timers[QEMU_TIMER_REALTIME] &&
1710 !active_timers[QEMU_TIMER_VIRTUAL])
1711 return;
1712
1713 nearest_delta_us = qemu_next_deadline_dyntick();
1714 nearest_delta_us /= 1000;
1715
1716 timeKillEvent(data->timerId);
1717
1718 data->timerId = timeSetEvent(1,
1719 data->period,
1720 host_alarm_handler,
1721 (DWORD)t,
1722 TIME_ONESHOT | TIME_PERIODIC);
1723
1724 if (!data->timerId) {
1725 perror("Failed to re-arm win32 alarm timer");
1726
1727 timeEndPeriod(data->period);
1728 CloseHandle(data->host_alarm);
1729 exit(1);
1730 }
1731 }
1732
1733 #endif /* _WIN32 */
1734
1735 static int init_timer_alarm(void)
1736 {
1737 struct qemu_alarm_timer *t = NULL;
1738 int i, err = -1;
1739
1740 #ifndef _WIN32
1741 int fds[2];
1742
1743 err = pipe(fds);
1744 if (err == -1)
1745 return -errno;
1746
1747 err = fcntl_setfl(fds[0], O_NONBLOCK);
1748 if (err < 0)
1749 goto fail;
1750
1751 err = fcntl_setfl(fds[1], O_NONBLOCK);
1752 if (err < 0)
1753 goto fail;
1754
1755 alarm_timer_rfd = fds[0];
1756 alarm_timer_wfd = fds[1];
1757 #endif
1758
1759 for (i = 0; alarm_timers[i].name; i++) {
1760 t = &alarm_timers[i];
1761
1762 err = t->start(t);
1763 if (!err)
1764 break;
1765 }
1766
1767 if (err) {
1768 err = -ENOENT;
1769 goto fail;
1770 }
1771
1772 #ifndef _WIN32
1773 qemu_set_fd_handler2(alarm_timer_rfd, NULL,
1774 try_to_rearm_timer, NULL, t);
1775 #endif
1776
1777 alarm_timer = t;
1778
1779 return 0;
1780
1781 fail:
1782 #ifndef _WIN32
1783 close(fds[0]);
1784 close(fds[1]);
1785 #endif
1786 return err;
1787 }
1788
1789 static void quit_timers(void)
1790 {
1791 alarm_timer->stop(alarm_timer);
1792 alarm_timer = NULL;
1793 }
1794
1795 /***********************************************************/
1796 /* host time/date access */
1797 void qemu_get_timedate(struct tm *tm, int offset)
1798 {
1799 time_t ti;
1800 struct tm *ret;
1801
1802 time(&ti);
1803 ti += offset;
1804 if (rtc_date_offset == -1) {
1805 if (rtc_utc)
1806 ret = gmtime(&ti);
1807 else
1808 ret = localtime(&ti);
1809 } else {
1810 ti -= rtc_date_offset;
1811 ret = gmtime(&ti);
1812 }
1813
1814 memcpy(tm, ret, sizeof(struct tm));
1815 }
1816
1817 int qemu_timedate_diff(struct tm *tm)
1818 {
1819 time_t seconds;
1820
1821 if (rtc_date_offset == -1)
1822 if (rtc_utc)
1823 seconds = mktimegm(tm);
1824 else
1825 seconds = mktime(tm);
1826 else
1827 seconds = mktimegm(tm) + rtc_date_offset;
1828
1829 return seconds - time(NULL);
1830 }
1831
1832 #ifdef _WIN32
1833 static void socket_cleanup(void)
1834 {
1835 WSACleanup();
1836 }
1837
1838 static int socket_init(void)
1839 {
1840 WSADATA Data;
1841 int ret, err;
1842
1843 ret = WSAStartup(MAKEWORD(2,2), &Data);
1844 if (ret != 0) {
1845 err = WSAGetLastError();
1846 fprintf(stderr, "WSAStartup: %d\n", err);
1847 return -1;
1848 }
1849 atexit(socket_cleanup);
1850 return 0;
1851 }
1852 #endif
1853
1854 const char *get_opt_name(char *buf, int buf_size, const char *p)
1855 {
1856 char *q;
1857
1858 q = buf;
1859 while (*p != '\0' && *p != '=') {
1860 if (q && (q - buf) < buf_size - 1)
1861 *q++ = *p;
1862 p++;
1863 }
1864 if (q)
1865 *q = '\0';
1866
1867 return p;
1868 }
1869
1870 const char *get_opt_value(char *buf, int buf_size, const char *p)
1871 {
1872 char *q;
1873
1874 q = buf;
1875 while (*p != '\0') {
1876 if (*p == ',') {
1877 if (*(p + 1) != ',')
1878 break;
1879 p++;
1880 }
1881 if (q && (q - buf) < buf_size - 1)
1882 *q++ = *p;
1883 p++;
1884 }
1885 if (q)
1886 *q = '\0';
1887
1888 return p;
1889 }
1890
1891 int get_param_value(char *buf, int buf_size,
1892 const char *tag, const char *str)
1893 {
1894 const char *p;
1895 char option[128];
1896
1897 p = str;
1898 for(;;) {
1899 p = get_opt_name(option, sizeof(option), p);
1900 if (*p != '=')
1901 break;
1902 p++;
1903 if (!strcmp(tag, option)) {
1904 (void)get_opt_value(buf, buf_size, p);
1905 return strlen(buf);
1906 } else {
1907 p = get_opt_value(NULL, 0, p);
1908 }
1909 if (*p != ',')
1910 break;
1911 p++;
1912 }
1913 return 0;
1914 }
1915
1916 int check_params(char *buf, int buf_size,
1917 const char * const *params, const char *str)
1918 {
1919 const char *p;
1920 int i;
1921
1922 p = str;
1923 for(;;) {
1924 p = get_opt_name(buf, buf_size, p);
1925 if (*p != '=')
1926 return -1;
1927 p++;
1928 for(i = 0; params[i] != NULL; i++)
1929 if (!strcmp(params[i], buf))
1930 break;
1931 if (params[i] == NULL)
1932 return -1;
1933 p = get_opt_value(NULL, 0, p);
1934 if (*p != ',')
1935 break;
1936 p++;
1937 }
1938 return 0;
1939 }
1940
1941 /***********************************************************/
1942 /* Bluetooth support */
1943 static int nb_hcis;
1944 static int cur_hci;
1945 static struct HCIInfo *hci_table[MAX_NICS];
1946
1947 static struct bt_vlan_s {
1948 struct bt_scatternet_s net;
1949 int id;
1950 struct bt_vlan_s *next;
1951 } *first_bt_vlan;
1952
1953 /* find or alloc a new bluetooth "VLAN" */
1954 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1955 {
1956 struct bt_vlan_s **pvlan, *vlan;
1957 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1958 if (vlan->id == id)
1959 return &vlan->net;
1960 }
1961 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1962 vlan->id = id;
1963 pvlan = &first_bt_vlan;
1964 while (*pvlan != NULL)
1965 pvlan = &(*pvlan)->next;
1966 *pvlan = vlan;
1967 return &vlan->net;
1968 }
1969
1970 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1971 {
1972 }
1973
1974 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1975 {
1976 return -ENOTSUP;
1977 }
1978
1979 static struct HCIInfo null_hci = {
1980 .cmd_send = null_hci_send,
1981 .sco_send = null_hci_send,
1982 .acl_send = null_hci_send,
1983 .bdaddr_set = null_hci_addr_set,
1984 };
1985
1986 struct HCIInfo *qemu_next_hci(void)
1987 {
1988 if (cur_hci == nb_hcis)
1989 return &null_hci;
1990
1991 return hci_table[cur_hci++];
1992 }
1993
1994 static struct HCIInfo *hci_init(const char *str)
1995 {
1996 char *endp;
1997 struct bt_scatternet_s *vlan = 0;
1998
1999 if (!strcmp(str, "null"))
2000 /* null */
2001 return &null_hci;
2002 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
2003 /* host[:hciN] */
2004 return bt_host_hci(str[4] ? str + 5 : "hci0");
2005 else if (!strncmp(str, "hci", 3)) {
2006 /* hci[,vlan=n] */
2007 if (str[3]) {
2008 if (!strncmp(str + 3, ",vlan=", 6)) {
2009 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
2010 if (*endp)
2011 vlan = 0;
2012 }
2013 } else
2014 vlan = qemu_find_bt_vlan(0);
2015 if (vlan)
2016 return bt_new_hci(vlan);
2017 }
2018
2019 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
2020
2021 return 0;
2022 }
2023
2024 static int bt_hci_parse(const char *str)
2025 {
2026 struct HCIInfo *hci;
2027 bdaddr_t bdaddr;
2028
2029 if (nb_hcis >= MAX_NICS) {
2030 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
2031 return -1;
2032 }
2033
2034 hci = hci_init(str);
2035 if (!hci)
2036 return -1;
2037
2038 bdaddr.b[0] = 0x52;
2039 bdaddr.b[1] = 0x54;
2040 bdaddr.b[2] = 0x00;
2041 bdaddr.b[3] = 0x12;
2042 bdaddr.b[4] = 0x34;
2043 bdaddr.b[5] = 0x56 + nb_hcis;
2044 hci->bdaddr_set(hci, bdaddr.b);
2045
2046 hci_table[nb_hcis++] = hci;
2047
2048 return 0;
2049 }
2050
2051 static void bt_vhci_add(int vlan_id)
2052 {
2053 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
2054
2055 if (!vlan->slave)
2056 fprintf(stderr, "qemu: warning: adding a VHCI to "
2057 "an empty scatternet %i\n", vlan_id);
2058
2059 bt_vhci_init(bt_new_hci(vlan));
2060 }
2061
2062 static struct bt_device_s *bt_device_add(const char *opt)
2063 {
2064 struct bt_scatternet_s *vlan;
2065 int vlan_id = 0;
2066 char *endp = strstr(opt, ",vlan=");
2067 int len = (endp ? endp - opt : strlen(opt)) + 1;
2068 char devname[10];
2069
2070 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2071
2072 if (endp) {
2073 vlan_id = strtol(endp + 6, &endp, 0);
2074 if (*endp) {
2075 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2076 return 0;
2077 }
2078 }
2079
2080 vlan = qemu_find_bt_vlan(vlan_id);
2081
2082 if (!vlan->slave)
2083 fprintf(stderr, "qemu: warning: adding a slave device to "
2084 "an empty scatternet %i\n", vlan_id);
2085
2086 if (!strcmp(devname, "keyboard"))
2087 return bt_keyboard_init(vlan);
2088
2089 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2090 return 0;
2091 }
2092
2093 static int bt_parse(const char *opt)
2094 {
2095 const char *endp, *p;
2096 int vlan;
2097
2098 if (strstart(opt, "hci", &endp)) {
2099 if (!*endp || *endp == ',') {
2100 if (*endp)
2101 if (!strstart(endp, ",vlan=", 0))
2102 opt = endp + 1;
2103
2104 return bt_hci_parse(opt);
2105 }
2106 } else if (strstart(opt, "vhci", &endp)) {
2107 if (!*endp || *endp == ',') {
2108 if (*endp) {
2109 if (strstart(endp, ",vlan=", &p)) {
2110 vlan = strtol(p, (char **) &endp, 0);
2111 if (*endp) {
2112 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2113 return 1;
2114 }
2115 } else {
2116 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2117 return 1;
2118 }
2119 } else
2120 vlan = 0;
2121
2122 bt_vhci_add(vlan);
2123 return 0;
2124 }
2125 } else if (strstart(opt, "device:", &endp))
2126 return !bt_device_add(endp);
2127
2128 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2129 return 1;
2130 }
2131
2132 /***********************************************************/
2133 /* QEMU Block devices */
2134
2135 #define HD_ALIAS "index=%d,media=disk"
2136 #ifdef TARGET_PPC
2137 #define CDROM_ALIAS "index=1,media=cdrom"
2138 #else
2139 #define CDROM_ALIAS "index=2,media=cdrom"
2140 #endif
2141 #define FD_ALIAS "index=%d,if=floppy"
2142 #define PFLASH_ALIAS "if=pflash"
2143 #define MTD_ALIAS "if=mtd"
2144 #define SD_ALIAS "index=0,if=sd"
2145
2146 static int drive_opt_get_free_idx(void)
2147 {
2148 int index;
2149
2150 for (index = 0; index < MAX_DRIVES; index++)
2151 if (!drives_opt[index].used) {
2152 drives_opt[index].used = 1;
2153 return index;
2154 }
2155
2156 return -1;
2157 }
2158
2159 static int drive_get_free_idx(void)
2160 {
2161 int index;
2162
2163 for (index = 0; index < MAX_DRIVES; index++)
2164 if (!drives_table[index].used) {
2165 drives_table[index].used = 1;
2166 return index;
2167 }
2168
2169 return -1;
2170 }
2171
2172 int drive_add(const char *file, const char *fmt, ...)
2173 {
2174 va_list ap;
2175 int index = drive_opt_get_free_idx();
2176
2177 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2178 fprintf(stderr, "qemu: too many drives\n");
2179 return -1;
2180 }
2181
2182 drives_opt[index].file = file;
2183 va_start(ap, fmt);
2184 vsnprintf(drives_opt[index].opt,
2185 sizeof(drives_opt[0].opt), fmt, ap);
2186 va_end(ap);
2187
2188 nb_drives_opt++;
2189 return index;
2190 }
2191
2192 void drive_remove(int index)
2193 {
2194 drives_opt[index].used = 0;
2195 nb_drives_opt--;
2196 }
2197
2198 int drive_get_index(BlockInterfaceType type, int bus, int unit)
2199 {
2200 int index;
2201
2202 /* seek interface, bus and unit */
2203
2204 for (index = 0; index < MAX_DRIVES; index++)
2205 if (drives_table[index].type == type &&
2206 drives_table[index].bus == bus &&
2207 drives_table[index].unit == unit &&
2208 drives_table[index].used)
2209 return index;
2210
2211 return -1;
2212 }
2213
2214 int drive_get_max_bus(BlockInterfaceType type)
2215 {
2216 int max_bus;
2217 int index;
2218
2219 max_bus = -1;
2220 for (index = 0; index < nb_drives; index++) {
2221 if(drives_table[index].type == type &&
2222 drives_table[index].bus > max_bus)
2223 max_bus = drives_table[index].bus;
2224 }
2225 return max_bus;
2226 }
2227
2228 const char *drive_get_serial(BlockDriverState *bdrv)
2229 {
2230 int index;
2231
2232 for (index = 0; index < nb_drives; index++)
2233 if (drives_table[index].bdrv == bdrv)
2234 return drives_table[index].serial;
2235
2236 return "\0";
2237 }
2238
2239 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2240 {
2241 int index;
2242
2243 for (index = 0; index < nb_drives; index++)
2244 if (drives_table[index].bdrv == bdrv)
2245 return drives_table[index].onerror;
2246
2247 return BLOCK_ERR_STOP_ENOSPC;
2248 }
2249
2250 static void bdrv_format_print(void *opaque, const char *name)
2251 {
2252 fprintf(stderr, " %s", name);
2253 }
2254
2255 void drive_uninit(BlockDriverState *bdrv)
2256 {
2257 int i;
2258
2259 for (i = 0; i < MAX_DRIVES; i++)
2260 if (drives_table[i].bdrv == bdrv) {
2261 drives_table[i].bdrv = NULL;
2262 drives_table[i].used = 0;
2263 drive_remove(drives_table[i].drive_opt_idx);
2264 nb_drives--;
2265 break;
2266 }
2267 }
2268
2269 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2270 {
2271 char buf[128];
2272 char file[1024];
2273 char devname[128];
2274 char serial[21];
2275 const char *mediastr = "";
2276 BlockInterfaceType type;
2277 enum { MEDIA_DISK, MEDIA_CDROM } media;
2278 int bus_id, unit_id;
2279 int cyls, heads, secs, translation;
2280 BlockDriverState *bdrv;
2281 BlockDriver *drv = NULL;
2282 QEMUMachine *machine = opaque;
2283 int max_devs;
2284 int index;
2285 int cache;
2286 int bdrv_flags, onerror;
2287 int drives_table_idx;
2288 char *str = arg->opt;
2289 static const char * const params[] = { "bus", "unit", "if", "index",
2290 "cyls", "heads", "secs", "trans",
2291 "media", "snapshot", "file",
2292 "cache", "format", "serial", "werror",
2293 NULL };
2294
2295 if (check_params(buf, sizeof(buf), params, str) < 0) {
2296 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2297 buf, str);
2298 return -1;
2299 }
2300
2301 file[0] = 0;
2302 cyls = heads = secs = 0;
2303 bus_id = 0;
2304 unit_id = -1;
2305 translation = BIOS_ATA_TRANSLATION_AUTO;
2306 index = -1;
2307 cache = 3;
2308
2309 if (machine->use_scsi) {
2310 type = IF_SCSI;
2311 max_devs = MAX_SCSI_DEVS;
2312 pstrcpy(devname, sizeof(devname), "scsi");
2313 } else {
2314 type = IF_IDE;
2315 max_devs = MAX_IDE_DEVS;
2316 pstrcpy(devname, sizeof(devname), "ide");
2317 }
2318 media = MEDIA_DISK;
2319
2320 /* extract parameters */
2321
2322 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2323 bus_id = strtol(buf, NULL, 0);
2324 if (bus_id < 0) {
2325 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2326 return -1;
2327 }
2328 }
2329
2330 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2331 unit_id = strtol(buf, NULL, 0);
2332 if (unit_id < 0) {
2333 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2334 return -1;
2335 }
2336 }
2337
2338 if (get_param_value(buf, sizeof(buf), "if", str)) {
2339 pstrcpy(devname, sizeof(devname), buf);
2340 if (!strcmp(buf, "ide")) {
2341 type = IF_IDE;
2342 max_devs = MAX_IDE_DEVS;
2343 } else if (!strcmp(buf, "scsi")) {
2344 type = IF_SCSI;
2345 max_devs = MAX_SCSI_DEVS;
2346 } else if (!strcmp(buf, "floppy")) {
2347 type = IF_FLOPPY;
2348 max_devs = 0;
2349 } else if (!strcmp(buf, "pflash")) {
2350 type = IF_PFLASH;
2351 max_devs = 0;
2352 } else if (!strcmp(buf, "mtd")) {
2353 type = IF_MTD;
2354 max_devs = 0;
2355 } else if (!strcmp(buf, "sd")) {
2356 type = IF_SD;
2357 max_devs = 0;
2358 } else if (!strcmp(buf, "virtio")) {
2359 type = IF_VIRTIO;
2360 max_devs = 0;
2361 } else {
2362 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2363 return -1;
2364 }
2365 }
2366
2367 if (get_param_value(buf, sizeof(buf), "index", str)) {
2368 index = strtol(buf, NULL, 0);
2369 if (index < 0) {
2370 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2371 return -1;
2372 }
2373 }
2374
2375 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2376 cyls = strtol(buf, NULL, 0);
2377 }
2378
2379 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2380 heads = strtol(buf, NULL, 0);
2381 }
2382
2383 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2384 secs = strtol(buf, NULL, 0);
2385 }
2386
2387 if (cyls || heads || secs) {
2388 if (cyls < 1 || cyls > 16383) {
2389 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2390 return -1;
2391 }
2392 if (heads < 1 || heads > 16) {
2393 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2394 return -1;
2395 }
2396 if (secs < 1 || secs > 63) {
2397 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2398 return -1;
2399 }
2400 }
2401
2402 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2403 if (!cyls) {
2404 fprintf(stderr,
2405 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2406 str);
2407 return -1;
2408 }
2409 if (!strcmp(buf, "none"))
2410 translation = BIOS_ATA_TRANSLATION_NONE;
2411 else if (!strcmp(buf, "lba"))
2412 translation = BIOS_ATA_TRANSLATION_LBA;
2413 else if (!strcmp(buf, "auto"))
2414 translation = BIOS_ATA_TRANSLATION_AUTO;
2415 else {
2416 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2417 return -1;
2418 }
2419 }
2420
2421 if (get_param_value(buf, sizeof(buf), "media", str)) {
2422 if (!strcmp(buf, "disk")) {
2423 media = MEDIA_DISK;
2424 } else if (!strcmp(buf, "cdrom")) {
2425 if (cyls || secs || heads) {
2426 fprintf(stderr,
2427 "qemu: '%s' invalid physical CHS format\n", str);
2428 return -1;
2429 }
2430 media = MEDIA_CDROM;
2431 } else {
2432 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2433 return -1;
2434 }
2435 }
2436
2437 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2438 if (!strcmp(buf, "on"))
2439 snapshot = 1;
2440 else if (!strcmp(buf, "off"))
2441 snapshot = 0;
2442 else {
2443 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2444 return -1;
2445 }
2446 }
2447
2448 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2449 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2450 cache = 0;
2451 else if (!strcmp(buf, "writethrough"))
2452 cache = 1;
2453 else if (!strcmp(buf, "writeback"))
2454 cache = 2;
2455 else {
2456 fprintf(stderr, "qemu: invalid cache option\n");
2457 return -1;
2458 }
2459 }
2460
2461 if (get_param_value(buf, sizeof(buf), "format", str)) {
2462 if (strcmp(buf, "?") == 0) {
2463 fprintf(stderr, "qemu: Supported formats:");
2464 bdrv_iterate_format(bdrv_format_print, NULL);
2465 fprintf(stderr, "\n");
2466 return -1;
2467 }
2468 drv = bdrv_find_format(buf);
2469 if (!drv) {
2470 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2471 return -1;
2472 }
2473 }
2474
2475 if (arg->file == NULL)
2476 get_param_value(file, sizeof(file), "file", str);
2477 else
2478 pstrcpy(file, sizeof(file), arg->file);
2479
2480 if (!get_param_value(serial, sizeof(serial), "serial", str))
2481 memset(serial, 0, sizeof(serial));
2482
2483 onerror = BLOCK_ERR_STOP_ENOSPC;
2484 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2485 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2486 fprintf(stderr, "werror is no supported by this format\n");
2487 return -1;
2488 }
2489 if (!strcmp(buf, "ignore"))
2490 onerror = BLOCK_ERR_IGNORE;
2491 else if (!strcmp(buf, "enospc"))
2492 onerror = BLOCK_ERR_STOP_ENOSPC;
2493 else if (!strcmp(buf, "stop"))
2494 onerror = BLOCK_ERR_STOP_ANY;
2495 else if (!strcmp(buf, "report"))
2496 onerror = BLOCK_ERR_REPORT;
2497 else {
2498 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2499 return -1;
2500 }
2501 }
2502
2503 /* compute bus and unit according index */
2504
2505 if (index != -1) {
2506 if (bus_id != 0 || unit_id != -1) {
2507 fprintf(stderr,
2508 "qemu: '%s' index cannot be used with bus and unit\n", str);
2509 return -1;
2510 }
2511 if (max_devs == 0)
2512 {
2513 unit_id = index;
2514 bus_id = 0;
2515 } else {
2516 unit_id = index % max_devs;
2517 bus_id = index / max_devs;
2518 }
2519 }
2520
2521 /* if user doesn't specify a unit_id,
2522 * try to find the first free
2523 */
2524
2525 if (unit_id == -1) {
2526 unit_id = 0;
2527 while (drive_get_index(type, bus_id, unit_id) != -1) {
2528 unit_id++;
2529 if (max_devs && unit_id >= max_devs) {
2530 unit_id -= max_devs;
2531 bus_id++;
2532 }
2533 }
2534 }
2535
2536 /* check unit id */
2537
2538 if (max_devs && unit_id >= max_devs) {
2539 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2540 str, unit_id, max_devs - 1);
2541 return -1;
2542 }
2543
2544 /*
2545 * ignore multiple definitions
2546 */
2547
2548 if (drive_get_index(type, bus_id, unit_id) != -1)
2549 return -2;
2550
2551 /* init */
2552
2553 if (type == IF_IDE || type == IF_SCSI)
2554 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2555 if (max_devs)
2556 snprintf(buf, sizeof(buf), "%s%i%s%i",
2557 devname, bus_id, mediastr, unit_id);
2558 else
2559 snprintf(buf, sizeof(buf), "%s%s%i",
2560 devname, mediastr, unit_id);
2561 bdrv = bdrv_new(buf);
2562 drives_table_idx = drive_get_free_idx();
2563 drives_table[drives_table_idx].bdrv = bdrv;
2564 drives_table[drives_table_idx].type = type;
2565 drives_table[drives_table_idx].bus = bus_id;
2566 drives_table[drives_table_idx].unit = unit_id;
2567 drives_table[drives_table_idx].onerror = onerror;
2568 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2569 strncpy(drives_table[nb_drives].serial, serial, sizeof(serial));
2570 nb_drives++;
2571
2572 switch(type) {
2573 case IF_IDE:
2574 case IF_SCSI:
2575 switch(media) {
2576 case MEDIA_DISK:
2577 if (cyls != 0) {
2578 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2579 bdrv_set_translation_hint(bdrv, translation);
2580 }
2581 break;
2582 case MEDIA_CDROM:
2583 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2584 break;
2585 }
2586 break;
2587 case IF_SD:
2588 /* FIXME: This isn't really a floppy, but it's a reasonable
2589 approximation. */
2590 case IF_FLOPPY:
2591 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2592 break;
2593 case IF_PFLASH:
2594 case IF_MTD:
2595 case IF_VIRTIO:
2596 break;
2597 }
2598 if (!file[0])
2599 return -2;
2600 bdrv_flags = 0;
2601 if (snapshot) {
2602 bdrv_flags |= BDRV_O_SNAPSHOT;
2603 cache = 2; /* always use write-back with snapshot */
2604 }
2605 if (cache == 0) /* no caching */
2606 bdrv_flags |= BDRV_O_NOCACHE;
2607 else if (cache == 2) /* write-back */
2608 bdrv_flags |= BDRV_O_CACHE_WB;
2609 else if (cache == 3) /* not specified */
2610 bdrv_flags |= BDRV_O_CACHE_DEF;
2611 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2612 fprintf(stderr, "qemu: could not open disk image %s\n",
2613 file);
2614 return -1;
2615 }
2616 if (bdrv_key_required(bdrv))
2617 autostart = 0;
2618 return drives_table_idx;
2619 }
2620
2621 /***********************************************************/
2622 /* USB devices */
2623
2624 static USBPort *used_usb_ports;
2625 static USBPort *free_usb_ports;
2626
2627 /* ??? Maybe change this to register a hub to keep track of the topology. */
2628 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2629 usb_attachfn attach)
2630 {
2631 port->opaque = opaque;
2632 port->index = index;
2633 port->attach = attach;
2634 port->next = free_usb_ports;
2635 free_usb_ports = port;
2636 }
2637
2638 int usb_device_add_dev(USBDevice *dev)
2639 {
2640 USBPort *port;
2641
2642 /* Find a USB port to add the device to. */
2643 port = free_usb_ports;
2644 if (!port->next) {
2645 USBDevice *hub;
2646
2647 /* Create a new hub and chain it on. */
2648 free_usb_ports = NULL;
2649 port->next = used_usb_ports;
2650 used_usb_ports = port;
2651
2652 hub = usb_hub_init(VM_USB_HUB_SIZE);
2653 usb_attach(port, hub);
2654 port = free_usb_ports;
2655 }
2656
2657 free_usb_ports = port->next;
2658 port->next = used_usb_ports;
2659 used_usb_ports = port;
2660 usb_attach(port, dev);
2661 return 0;
2662 }
2663
2664 static void usb_msd_password_cb(void *opaque, int err)
2665 {
2666 USBDevice *dev = opaque;
2667
2668 if (!err)
2669 usb_device_add_dev(dev);
2670 else
2671 dev->handle_destroy(dev);
2672 }
2673
2674 static int usb_device_add(const char *devname, int is_hotplug)
2675 {
2676 const char *p;
2677 USBDevice *dev;
2678
2679 if (!free_usb_ports)
2680 return -1;
2681
2682 if (strstart(devname, "host:", &p)) {
2683 dev = usb_host_device_open(p);
2684 } else if (!strcmp(devname, "mouse")) {
2685 dev = usb_mouse_init();
2686 } else if (!strcmp(devname, "tablet")) {
2687 dev = usb_tablet_init();
2688 } else if (!strcmp(devname, "keyboard")) {
2689 dev = usb_keyboard_init();
2690 } else if (strstart(devname, "disk:", &p)) {
2691 BlockDriverState *bs;
2692
2693 dev = usb_msd_init(p);
2694 if (!dev)
2695 return -1;
2696 bs = usb_msd_get_bdrv(dev);
2697 if (bdrv_key_required(bs)) {
2698 autostart = 0;
2699 if (is_hotplug) {
2700 monitor_read_bdrv_key_start(bs, usb_msd_password_cb, dev);
2701 return 0;
2702 }
2703 }
2704 } else if (!strcmp(devname, "wacom-tablet")) {
2705 dev = usb_wacom_init();
2706 } else if (strstart(devname, "serial:", &p)) {
2707 dev = usb_serial_init(p);
2708 #ifdef CONFIG_BRLAPI
2709 } else if (!strcmp(devname, "braille")) {
2710 dev = usb_baum_init();
2711 #endif
2712 } else if (strstart(devname, "net:", &p)) {
2713 int nic = nb_nics;
2714
2715 if (net_client_init("nic", p) < 0)
2716 return -1;
2717 nd_table[nic].model = "usb";
2718 dev = usb_net_init(&nd_table[nic]);
2719 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2720 dev = usb_bt_init(devname[2] ? hci_init(p) :
2721 bt_new_hci(qemu_find_bt_vlan(0)));
2722 } else {
2723 return -1;
2724 }
2725 if (!dev)
2726 return -1;
2727
2728 return usb_device_add_dev(dev);
2729 }
2730
2731 int usb_device_del_addr(int bus_num, int addr)
2732 {
2733 USBPort *port;
2734 USBPort **lastp;
2735 USBDevice *dev;
2736
2737 if (!used_usb_ports)
2738 return -1;
2739
2740 if (bus_num != 0)
2741 return -1;
2742
2743 lastp = &used_usb_ports;
2744 port = used_usb_ports;
2745 while (port && port->dev->addr != addr) {
2746 lastp = &port->next;
2747 port = port->next;
2748 }
2749
2750 if (!port)
2751 return -1;
2752
2753 dev = port->dev;
2754 *lastp = port->next;
2755 usb_attach(port, NULL);
2756 dev->handle_destroy(dev);
2757 port->next = free_usb_ports;
2758 free_usb_ports = port;
2759 return 0;
2760 }
2761
2762 static int usb_device_del(const char *devname)
2763 {
2764 int bus_num, addr;
2765 const char *p;
2766
2767 if (strstart(devname, "host:", &p))
2768 return usb_host_device_close(p);
2769
2770 if (!used_usb_ports)
2771 return -1;
2772
2773 p = strchr(devname, '.');
2774 if (!p)
2775 return -1;
2776 bus_num = strtoul(devname, NULL, 0);
2777 addr = strtoul(p + 1, NULL, 0);
2778
2779 return usb_device_del_addr(bus_num, addr);
2780 }
2781
2782 void do_usb_add(const char *devname)
2783 {
2784 usb_device_add(devname, 1);
2785 }
2786
2787 void do_usb_del(const char *devname)
2788 {
2789 usb_device_del(devname);
2790 }
2791
2792 void usb_info(void)
2793 {
2794 USBDevice *dev;
2795 USBPort *port;
2796 const char *speed_str;
2797
2798 if (!usb_enabled) {
2799 term_printf("USB support not enabled\n");
2800 return;
2801 }
2802
2803 for (port = used_usb_ports; port; port = port->next) {
2804 dev = port->dev;
2805 if (!dev)
2806 continue;
2807 switch(dev->speed) {
2808 case USB_SPEED_LOW:
2809 speed_str = "1.5";
2810 break;
2811 case USB_SPEED_FULL:
2812 speed_str = "12";
2813 break;
2814 case USB_SPEED_HIGH:
2815 speed_str = "480";
2816 break;
2817 default:
2818 speed_str = "?";
2819 break;
2820 }
2821 term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n",
2822 0, dev->addr, speed_str, dev->devname);
2823 }
2824 }
2825
2826 /***********************************************************/
2827 /* PCMCIA/Cardbus */
2828
2829 static struct pcmcia_socket_entry_s {
2830 struct pcmcia_socket_s *socket;
2831 struct pcmcia_socket_entry_s *next;
2832 } *pcmcia_sockets = 0;
2833
2834 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
2835 {
2836 struct pcmcia_socket_entry_s *entry;
2837
2838 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2839 entry->socket = socket;
2840 entry->next = pcmcia_sockets;
2841 pcmcia_sockets = entry;
2842 }
2843
2844 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
2845 {
2846 struct pcmcia_socket_entry_s *entry, **ptr;
2847
2848 ptr = &pcmcia_sockets;
2849 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2850 if (entry->socket == socket) {
2851 *ptr = entry->next;
2852 qemu_free(entry);
2853 }
2854 }
2855
2856 void pcmcia_info(void)
2857 {
2858 struct pcmcia_socket_entry_s *iter;
2859 if (!pcmcia_sockets)
2860 term_printf("No PCMCIA sockets\n");
2861
2862 for (iter = pcmcia_sockets; iter; iter = iter->next)
2863 term_printf("%s: %s\n", iter->socket->slot_string,
2864 iter->socket->attached ? iter->socket->card_string :
2865 "Empty");
2866 }
2867
2868 /***********************************************************/
2869 /* register display */
2870
2871 void register_displaystate(DisplayState *ds)
2872 {
2873 DisplayState **s;
2874 s = &display_state;
2875 while (*s != NULL)
2876 s = &(*s)->next;
2877 ds->next = NULL;
2878 *s = ds;
2879 }
2880
2881 DisplayState *get_displaystate(void)
2882 {
2883 return display_state;
2884 }
2885
2886 /* dumb display */
2887
2888 static void dumb_display_init(void)
2889 {
2890 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2891 ds->surface = qemu_create_displaysurface(640, 480, 32, 640 * 4);
2892 register_displaystate(ds);
2893 }
2894
2895 /***********************************************************/
2896 /* I/O handling */
2897
2898 #define MAX_IO_HANDLERS 64
2899
2900 typedef struct IOHandlerRecord {
2901 int fd;
2902 IOCanRWHandler *fd_read_poll;
2903 IOHandler *fd_read;
2904 IOHandler *fd_write;
2905 int deleted;
2906 void *opaque;
2907 /* temporary data */
2908 struct pollfd *ufd;
2909 struct IOHandlerRecord *next;
2910 } IOHandlerRecord;
2911
2912 static IOHandlerRecord *first_io_handler;
2913
2914 /* XXX: fd_read_poll should be suppressed, but an API change is
2915 necessary in the character devices to suppress fd_can_read(). */
2916 int qemu_set_fd_handler2(int fd,
2917 IOCanRWHandler *fd_read_poll,
2918 IOHandler *fd_read,
2919 IOHandler *fd_write,
2920 void *opaque)
2921 {
2922 IOHandlerRecord **pioh, *ioh;
2923
2924 if (!fd_read && !fd_write) {
2925 pioh = &first_io_handler;
2926 for(;;) {
2927 ioh = *pioh;
2928 if (ioh == NULL)
2929 break;
2930 if (ioh->fd == fd) {
2931 ioh->deleted = 1;
2932 break;
2933 }
2934 pioh = &ioh->next;
2935 }
2936 } else {
2937 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2938 if (ioh->fd == fd)
2939 goto found;
2940 }
2941 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2942 ioh->next = first_io_handler;
2943 first_io_handler = ioh;
2944 found:
2945 ioh->fd = fd;
2946 ioh->fd_read_poll = fd_read_poll;
2947 ioh->fd_read = fd_read;
2948 ioh->fd_write = fd_write;
2949 ioh->opaque = opaque;
2950 ioh->deleted = 0;
2951 }
2952 return 0;
2953 }
2954
2955 int qemu_set_fd_handler(int fd,
2956 IOHandler *fd_read,
2957 IOHandler *fd_write,
2958 void *opaque)
2959 {
2960 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2961 }
2962
2963 #ifdef _WIN32
2964 /***********************************************************/
2965 /* Polling handling */
2966
2967 typedef struct PollingEntry {
2968 PollingFunc *func;
2969 void *opaque;
2970 struct PollingEntry *next;
2971 } PollingEntry;
2972
2973 static PollingEntry *first_polling_entry;
2974
2975 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2976 {
2977 PollingEntry **ppe, *pe;
2978 pe = qemu_mallocz(sizeof(PollingEntry));
2979 pe->func = func;
2980 pe->opaque = opaque;
2981 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2982 *ppe = pe;
2983 return 0;
2984 }
2985
2986 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2987 {
2988 PollingEntry **ppe, *pe;
2989 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2990 pe = *ppe;
2991 if (pe->func == func && pe->opaque == opaque) {
2992 *ppe = pe->next;
2993 qemu_free(pe);
2994 break;
2995 }
2996 }
2997 }
2998
2999 /***********************************************************/
3000 /* Wait objects support */
3001 typedef struct WaitObjects {
3002 int num;
3003 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
3004 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
3005 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
3006 } WaitObjects;
3007
3008 static WaitObjects wait_objects = {0};
3009
3010 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3011 {
3012 WaitObjects *w = &wait_objects;
3013
3014 if (w->num >= MAXIMUM_WAIT_OBJECTS)
3015 return -1;
3016 w->events[w->num] = handle;
3017 w->func[w->num] = func;
3018 w->opaque[w->num] = opaque;
3019 w->num++;
3020 return 0;
3021 }
3022
3023 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3024 {
3025 int i, found;
3026 WaitObjects *w = &wait_objects;
3027
3028 found = 0;
3029 for (i = 0; i < w->num; i++) {
3030 if (w->events[i] == handle)
3031 found = 1;
3032 if (found) {
3033 w->events[i] = w->events[i + 1];
3034 w->func[i] = w->func[i + 1];
3035 w->opaque[i] = w->opaque[i + 1];
3036 }
3037 }
3038 if (found)
3039 w->num--;
3040 }
3041 #endif
3042
3043 /***********************************************************/
3044 /* ram save/restore */
3045
3046 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3047 {
3048 int v;
3049
3050 v = qemu_get_byte(f);
3051 switch(v) {
3052 case 0:
3053 if (qemu_get_buffer(f, buf, len) != len)
3054 return -EIO;
3055 break;
3056 case 1:
3057 v = qemu_get_byte(f);
3058 memset(buf, v, len);
3059 break;
3060 default:
3061 return -EINVAL;
3062 }
3063
3064 if (qemu_file_has_error(f))
3065 return -EIO;
3066
3067 return 0;
3068 }
3069
3070 static int ram_load_v1(QEMUFile *f, void *opaque)
3071 {
3072 int ret;
3073 ram_addr_t i;
3074
3075 if (qemu_get_be32(f) != phys_ram_size)
3076 return -EINVAL;
3077 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
3078 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
3079 if (ret)
3080 return ret;
3081 }
3082 return 0;
3083 }
3084
3085 #define BDRV_HASH_BLOCK_SIZE 1024
3086 #define IOBUF_SIZE 4096
3087 #define RAM_CBLOCK_MAGIC 0xfabe
3088
3089 typedef struct RamDecompressState {
3090 z_stream zstream;
3091 QEMUFile *f;
3092 uint8_t buf[IOBUF_SIZE];
3093 } RamDecompressState;
3094
3095 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3096 {
3097 int ret;
3098 memset(s, 0, sizeof(*s));
3099 s->f = f;
3100 ret = inflateInit(&s->zstream);
3101 if (ret != Z_OK)
3102 return -1;
3103 return 0;
3104 }
3105
3106 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3107 {
3108 int ret, clen;
3109
3110 s->zstream.avail_out = len;
3111 s->zstream.next_out = buf;
3112 while (s->zstream.avail_out > 0) {
3113 if (s->zstream.avail_in == 0) {
3114 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3115 return -1;
3116 clen = qemu_get_be16(s->f);
3117 if (clen > IOBUF_SIZE)
3118 return -1;
3119 qemu_get_buffer(s->f, s->buf, clen);
3120 s->zstream.avail_in = clen;
3121 s->zstream.next_in = s->buf;
3122 }
3123 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3124 if (ret != Z_OK && ret != Z_STREAM_END) {
3125 return -1;
3126 }
3127 }
3128 return 0;
3129 }
3130
3131 static void ram_decompress_close(RamDecompressState *s)
3132 {
3133 inflateEnd(&s->zstream);
3134 }
3135
3136 #define RAM_SAVE_FLAG_FULL 0x01
3137 #define RAM_SAVE_FLAG_COMPRESS 0x02
3138 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3139 #define RAM_SAVE_FLAG_PAGE 0x08
3140 #define RAM_SAVE_FLAG_EOS 0x10
3141
3142 static int is_dup_page(uint8_t *page, uint8_t ch)
3143 {
3144 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3145 uint32_t *array = (uint32_t *)page;
3146 int i;
3147
3148 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3149 if (array[i] != val)
3150 return 0;
3151 }
3152
3153 return 1;
3154 }
3155
3156 static int ram_save_block(QEMUFile *f)
3157 {
3158 static ram_addr_t current_addr = 0;
3159 ram_addr_t saved_addr = current_addr;
3160 ram_addr_t addr = 0;
3161 int found = 0;
3162
3163 while (addr < phys_ram_size) {
3164 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3165 uint8_t ch;
3166
3167 cpu_physical_memory_reset_dirty(current_addr,
3168 current_addr + TARGET_PAGE_SIZE,
3169 MIGRATION_DIRTY_FLAG);
3170
3171 ch = *(phys_ram_base + current_addr);
3172
3173 if (is_dup_page(phys_ram_base + current_addr, ch)) {
3174 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3175 qemu_put_byte(f, ch);
3176 } else {
3177 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3178 qemu_put_buffer(f, phys_ram_base + current_addr, TARGET_PAGE_SIZE);
3179 }
3180
3181 found = 1;
3182 break;
3183 }
3184 addr += TARGET_PAGE_SIZE;
3185 current_addr = (saved_addr + addr) % phys_ram_size;
3186 }
3187
3188 return found;
3189 }
3190
3191 static ram_addr_t ram_save_threshold = 10;
3192
3193 static ram_addr_t ram_save_remaining(void)
3194 {
3195 ram_addr_t addr;
3196 ram_addr_t count = 0;
3197
3198 for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
3199 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3200 count++;
3201 }
3202
3203 return count;
3204 }
3205
3206 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3207 {
3208 ram_addr_t addr;
3209
3210 if (stage == 1) {
3211 /* Make sure all dirty bits are set */
3212 for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
3213 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3214 cpu_physical_memory_set_dirty(addr);
3215 }
3216
3217 /* Enable dirty memory tracking */
3218 cpu_physical_memory_set_dirty_tracking(1);
3219
3220 qemu_put_be64(f, phys_ram_size | RAM_SAVE_FLAG_MEM_SIZE);
3221 }
3222
3223 while (!qemu_file_rate_limit(f)) {
3224 int ret;
3225
3226 ret = ram_save_block(f);
3227 if (ret == 0) /* no more blocks */
3228 break;
3229 }
3230
3231 /* try transferring iterative blocks of memory */
3232
3233 if (stage == 3) {
3234 cpu_physical_memory_set_dirty_tracking(0);
3235
3236 /* flush all remaining blocks regardless of rate limiting */
3237 while (ram_save_block(f) != 0);
3238 }
3239
3240 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3241
3242 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3243 }
3244
3245 static int ram_load_dead(QEMUFile *f, void *opaque)
3246 {
3247 RamDecompressState s1, *s = &s1;
3248 uint8_t buf[10];
3249 ram_addr_t i;
3250
3251 if (ram_decompress_open(s, f) < 0)
3252 return -EINVAL;
3253 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
3254 if (ram_decompress_buf(s, buf, 1) < 0) {
3255 fprintf(stderr, "Error while reading ram block header\n");
3256 goto error;
3257 }
3258 if (buf[0] == 0) {
3259 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
3260 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3261 goto error;
3262 }
3263 } else {
3264 error:
3265 printf("Error block header\n");
3266 return -EINVAL;
3267 }
3268 }
3269 ram_decompress_close(s);
3270
3271 return 0;
3272 }
3273
3274 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3275 {
3276 ram_addr_t addr;
3277 int flags;
3278
3279 if (version_id == 1)
3280 return ram_load_v1(f, opaque);
3281
3282 if (version_id == 2) {
3283 if (qemu_get_be32(f) != phys_ram_size)
3284 return -EINVAL;
3285 return ram_load_dead(f, opaque);
3286 }
3287
3288 if (version_id != 3)
3289 return -EINVAL;
3290
3291 do {
3292 addr = qemu_get_be64(f);
3293
3294 flags = addr & ~TARGET_PAGE_MASK;
3295 addr &= TARGET_PAGE_MASK;
3296
3297 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3298 if (addr != phys_ram_size)
3299 return -EINVAL;
3300 }
3301
3302 if (flags & RAM_SAVE_FLAG_FULL) {
3303 if (ram_load_dead(f, opaque) < 0)
3304 return -EINVAL;
3305 }
3306
3307 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3308 uint8_t ch = qemu_get_byte(f);
3309 memset(phys_ram_base + addr, ch, TARGET_PAGE_SIZE);
3310 } else if (flags & RAM_SAVE_FLAG_PAGE)
3311 qemu_get_buffer(f, phys_ram_base + addr, TARGET_PAGE_SIZE);
3312 } while (!(flags & RAM_SAVE_FLAG_EOS));
3313
3314 return 0;
3315 }
3316
3317 void qemu_service_io(void)
3318 {
3319 CPUState *env = cpu_single_env;
3320 if (env) {
3321 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
3322 #ifdef USE_KQEMU
3323 if (env->kqemu_enabled) {
3324 kqemu_cpu_interrupt(env);
3325 }
3326 #endif
3327 }
3328 }
3329
3330 /***********************************************************/
3331 /* bottom halves (can be seen as timers which expire ASAP) */
3332
3333 struct QEMUBH {
3334 QEMUBHFunc *cb;
3335 void *opaque;
3336 int scheduled;
3337 int idle;
3338 int deleted;
3339 QEMUBH *next;
3340 };
3341
3342 static QEMUBH *first_bh = NULL;
3343
3344 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3345 {
3346 QEMUBH *bh;
3347 bh = qemu_mallocz(sizeof(QEMUBH));
3348 bh->cb = cb;
3349 bh->opaque = opaque;
3350 bh->next = first_bh;
3351 first_bh = bh;
3352 return bh;
3353 }
3354
3355 int qemu_bh_poll(void)
3356 {
3357 QEMUBH *bh, **bhp;
3358 int ret;
3359
3360 ret = 0;
3361 for (bh = first_bh; bh; bh = bh->next) {
3362 if (!bh->deleted && bh->scheduled) {
3363 bh->scheduled = 0;
3364 if (!bh->idle)
3365 ret = 1;
3366 bh->idle = 0;
3367 bh->cb(bh->opaque);
3368 }
3369 }
3370
3371 /* remove deleted bhs */
3372 bhp = &first_bh;
3373 while (*bhp) {
3374 bh = *bhp;
3375 if (bh->deleted) {
3376 *bhp = bh->next;
3377 qemu_free(bh);
3378 } else
3379 bhp = &bh->next;
3380 }
3381
3382 return ret;
3383 }
3384
3385 void qemu_bh_schedule_idle(QEMUBH *bh)
3386 {
3387 if (bh->scheduled)
3388 return;
3389 bh->scheduled = 1;
3390 bh->idle = 1;
3391 }
3392
3393 void qemu_bh_schedule(QEMUBH *bh)
3394 {
3395 CPUState *env = cpu_single_env;
3396 if (bh->scheduled)
3397 return;
3398 bh->scheduled = 1;
3399 bh->idle = 0;
3400 /* stop the currently executing CPU to execute the BH ASAP */
3401 if (env) {
3402 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
3403 }
3404 }
3405
3406 void qemu_bh_cancel(QEMUBH *bh)
3407 {
3408 bh->scheduled = 0;
3409 }
3410
3411 void qemu_bh_delete(QEMUBH *bh)
3412 {
3413 bh->scheduled = 0;
3414 bh->deleted = 1;
3415 }
3416
3417 static void qemu_bh_update_timeout(int *timeout)
3418 {
3419 QEMUBH *bh;
3420
3421 for (bh = first_bh; bh; bh = bh->next) {
3422 if (!bh->deleted && bh->scheduled) {
3423 if (bh->idle) {
3424 /* idle bottom halves will be polled at least
3425 * every 10ms */
3426 *timeout = MIN(10, *timeout);
3427 } else {
3428 /* non-idle bottom halves will be executed
3429 * immediately */
3430 *timeout = 0;
3431 break;
3432 }
3433 }
3434 }
3435 }
3436
3437 /***********************************************************/
3438 /* machine registration */
3439
3440 static QEMUMachine *first_machine = NULL;
3441 QEMUMachine *current_machine = NULL;
3442
3443 int qemu_register_machine(QEMUMachine *m)
3444 {
3445 QEMUMachine **pm;
3446 pm = &first_machine;
3447 while (*pm != NULL)
3448 pm = &(*pm)->next;
3449 m->next = NULL;
3450 *pm = m;
3451 return 0;
3452 }
3453
3454 static QEMUMachine *find_machine(const char *name)
3455 {
3456 QEMUMachine *m;
3457
3458 for(m = first_machine; m != NULL; m = m->next) {
3459 if (!strcmp(m->name, name))
3460 return m;
3461 }
3462 return NULL;
3463 }
3464
3465 /***********************************************************/
3466 /* main execution loop */
3467
3468 static void gui_update(void *opaque)
3469 {
3470 uint64_t interval = GUI_REFRESH_INTERVAL;
3471 DisplayState *ds = opaque;
3472 DisplayChangeListener *dcl = ds->listeners;
3473
3474 dpy_refresh(ds);
3475
3476 while (dcl != NULL) {
3477 if (dcl->gui_timer_interval &&
3478 dcl->gui_timer_interval < interval)
3479 interval = dcl->gui_timer_interval;
3480 dcl = dcl->next;
3481 }
3482 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3483 }
3484
3485 static void nographic_update(void *opaque)
3486 {
3487 uint64_t interval = GUI_REFRESH_INTERVAL;
3488
3489 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3490 }
3491
3492 struct vm_change_state_entry {
3493 VMChangeStateHandler *cb;
3494 void *opaque;
3495 LIST_ENTRY (vm_change_state_entry) entries;
3496 };
3497
3498 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3499
3500 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3501 void *opaque)
3502 {
3503 VMChangeStateEntry *e;
3504
3505 e = qemu_mallocz(sizeof (*e));
3506
3507 e->cb = cb;
3508 e->opaque = opaque;
3509 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3510 return e;
3511 }
3512
3513 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3514 {
3515 LIST_REMOVE (e, entries);
3516 qemu_free (e);
3517 }
3518
3519 static void vm_state_notify(int running, int reason)
3520 {
3521 VMChangeStateEntry *e;
3522
3523 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3524 e->cb(e->opaque, running, reason);
3525 }
3526 }
3527
3528 void vm_start(void)
3529 {
3530 if (!vm_running) {
3531 cpu_enable_ticks();
3532 vm_running = 1;
3533 vm_state_notify(1, 0);
3534 qemu_rearm_alarm_timer(alarm_timer);
3535 }
3536 }
3537
3538 void vm_stop(int reason)
3539 {
3540 if (vm_running) {
3541 cpu_disable_ticks();
3542 vm_running = 0;
3543 vm_state_notify(0, reason);
3544 }
3545 }
3546
3547 /* reset/shutdown handler */
3548
3549 typedef struct QEMUResetEntry {
3550 QEMUResetHandler *func;
3551 void *opaque;
3552 struct QEMUResetEntry *next;
3553 } QEMUResetEntry;
3554
3555 static QEMUResetEntry *first_reset_entry;
3556 static int reset_requested;
3557 static int shutdown_requested;
3558 static int powerdown_requested;
3559
3560 int qemu_shutdown_requested(void)
3561 {
3562 int r = shutdown_requested;
3563 shutdown_requested = 0;
3564 return r;
3565 }
3566
3567 int qemu_reset_requested(void)
3568 {
3569 int r = reset_requested;
3570 reset_requested = 0;
3571 return r;
3572 }
3573
3574 int qemu_powerdown_requested(void)
3575 {
3576 int r = powerdown_requested;
3577 powerdown_requested = 0;
3578 return r;
3579 }
3580
3581 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3582 {
3583 QEMUResetEntry **pre, *re;
3584
3585 pre = &first_reset_entry;
3586 while (*pre != NULL)
3587 pre = &(*pre)->next;
3588 re = qemu_mallocz(sizeof(QEMUResetEntry));
3589 re->func = func;
3590 re->opaque = opaque;
3591 re->next = NULL;
3592 *pre = re;
3593 }
3594
3595 void qemu_system_reset(void)
3596 {
3597 QEMUResetEntry *re;
3598
3599 /* reset all devices */
3600 for(re = first_reset_entry; re != NULL; re = re->next) {
3601 re->func(re->opaque);
3602 }
3603 }
3604
3605 void qemu_system_reset_request(void)
3606 {
3607 if (no_reboot) {
3608 shutdown_requested = 1;
3609 } else {
3610 reset_requested = 1;
3611 }
3612 if (cpu_single_env)
3613 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3614 }
3615
3616 void qemu_system_shutdown_request(void)
3617 {
3618 shutdown_requested = 1;
3619 if (cpu_single_env)
3620 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3621 }
3622
3623 void qemu_system_powerdown_request(void)
3624 {
3625 powerdown_requested = 1;
3626 if (cpu_single_env)
3627 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3628 }
3629
3630 #ifdef _WIN32
3631 static void host_main_loop_wait(int *timeout)
3632 {
3633 int ret, ret2, i;
3634 PollingEntry *pe;
3635
3636
3637 /* XXX: need to suppress polling by better using win32 events */
3638 ret = 0;
3639 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3640 ret |= pe->func(pe->opaque);
3641 }
3642 if (ret == 0) {
3643 int err;
3644 WaitObjects *w = &wait_objects;
3645
3646 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3647 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3648 if (w->func[ret - WAIT_OBJECT_0])
3649 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3650
3651 /* Check for additional signaled events */
3652 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3653
3654 /* Check if event is signaled */
3655 ret2 = WaitForSingleObject(w->events[i], 0);
3656 if(ret2 == WAIT_OBJECT_0) {
3657 if (w->func[i])
3658 w->func[i](w->opaque[i]);
3659 } else if (ret2 == WAIT_TIMEOUT) {
3660 } else {
3661 err = GetLastError();
3662 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3663 }
3664 }
3665 } else if (ret == WAIT_TIMEOUT) {
3666 } else {
3667 err = GetLastError();
3668 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3669 }
3670 }
3671
3672 *timeout = 0;
3673 }
3674 #else
3675 static void host_main_loop_wait(int *timeout)
3676 {
3677 }
3678 #endif
3679
3680 void main_loop_wait(int timeout)
3681 {
3682 IOHandlerRecord *ioh;
3683 fd_set rfds, wfds, xfds;
3684 int ret, nfds;
3685 struct timeval tv;
3686
3687 qemu_bh_update_timeout(&timeout);
3688
3689 host_main_loop_wait(&timeout);
3690
3691 /* poll any events */
3692 /* XXX: separate device handlers from system ones */
3693 nfds = -1;
3694 FD_ZERO(&rfds);
3695 FD_ZERO(&wfds);
3696 FD_ZERO(&xfds);
3697 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3698 if (ioh->deleted)
3699 continue;
3700 if (ioh->fd_read &&
3701 (!ioh->fd_read_poll ||
3702 ioh->fd_read_poll(ioh->opaque) != 0)) {
3703 FD_SET(ioh->fd, &rfds);
3704 if (ioh->fd > nfds)
3705 nfds = ioh->fd;
3706 }
3707 if (ioh->fd_write) {
3708 FD_SET(ioh->fd, &wfds);
3709 if (ioh->fd > nfds)
3710 nfds = ioh->fd;
3711 }
3712 }
3713
3714 tv.tv_sec = timeout / 1000;
3715 tv.tv_usec = (timeout % 1000) * 1000;
3716
3717 #if defined(CONFIG_SLIRP)
3718 if (slirp_is_inited()) {
3719 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3720 }
3721 #endif
3722 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3723 if (ret > 0) {
3724 IOHandlerRecord **pioh;
3725
3726 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3727 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3728 ioh->fd_read(ioh->opaque);
3729 }
3730 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3731 ioh->fd_write(ioh->opaque);
3732 }
3733 }
3734
3735 /* remove deleted IO handlers */
3736 pioh = &first_io_handler;
3737 while (*pioh) {
3738 ioh = *pioh;
3739 if (ioh->deleted) {
3740 *pioh = ioh->next;
3741 qemu_free(ioh);
3742 } else
3743 pioh = &ioh->next;
3744 }
3745 }
3746 #if defined(CONFIG_SLIRP)
3747 if (slirp_is_inited()) {
3748 if (ret < 0) {
3749 FD_ZERO(&rfds);
3750 FD_ZERO(&wfds);
3751 FD_ZERO(&xfds);
3752 }
3753 slirp_select_poll(&rfds, &wfds, &xfds);
3754 }
3755 #endif
3756
3757 /* vm time timers */
3758 if (vm_running && likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3759 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
3760 qemu_get_clock(vm_clock));
3761
3762 /* real time timers */
3763 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
3764 qemu_get_clock(rt_clock));
3765
3766 /* Check bottom-halves last in case any of the earlier events triggered
3767 them. */
3768 qemu_bh_poll();
3769
3770 }
3771
3772 static int main_loop(void)
3773 {
3774 int ret, timeout;
3775 #ifdef CONFIG_PROFILER
3776 int64_t ti;
3777 #endif
3778 CPUState *env;
3779
3780 cur_cpu = first_cpu;
3781 next_cpu = cur_cpu->next_cpu ?: first_cpu;
3782 for(;;) {
3783 if (vm_running) {
3784
3785 for(;;) {
3786 /* get next cpu */
3787 env = next_cpu;
3788 #ifdef CONFIG_PROFILER
3789 ti = profile_getclock();
3790 #endif
3791 if (use_icount) {
3792 int64_t count;
3793 int decr;
3794 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
3795 env->icount_decr.u16.low = 0;
3796 env->icount_extra = 0;
3797 count = qemu_next_deadline();
3798 count = (count + (1 << icount_time_shift) - 1)
3799 >> icount_time_shift;
3800 qemu_icount += count;
3801 decr = (count > 0xffff) ? 0xffff : count;
3802 count -= decr;
3803 env->icount_decr.u16.low = decr;
3804 env->icount_extra = count;
3805 }
3806 ret = cpu_exec(env);
3807 #ifdef CONFIG_PROFILER
3808 qemu_time += profile_getclock() - ti;
3809 #endif
3810 if (use_icount) {
3811 /* Fold pending instructions back into the
3812 instruction counter, and clear the interrupt flag. */
3813 qemu_icount -= (env->icount_decr.u16.low
3814 + env->icount_extra);
3815 env->icount_decr.u32 = 0;
3816 env->icount_extra = 0;
3817 }
3818 next_cpu = env->next_cpu ?: first_cpu;
3819 if (event_pending && likely(ret != EXCP_DEBUG)) {
3820 ret = EXCP_INTERRUPT;
3821 event_pending = 0;
3822 break;
3823 }
3824 if (ret == EXCP_HLT) {
3825 /* Give the next CPU a chance to run. */
3826 cur_cpu = env;
3827 continue;
3828 }
3829 if (ret != EXCP_HALTED)
3830 break;
3831 /* all CPUs are halted ? */
3832 if (env == cur_cpu)
3833 break;
3834 }
3835 cur_cpu = env;
3836
3837 if (shutdown_requested) {
3838 ret = EXCP_INTERRUPT;
3839 if (no_shutdown) {
3840 vm_stop(0);
3841 no_shutdown = 0;
3842 }
3843 else
3844 break;
3845 }
3846 if (reset_requested) {
3847 reset_requested = 0;
3848 qemu_system_reset();
3849 ret = EXCP_INTERRUPT;
3850 }
3851 if (powerdown_requested) {
3852 powerdown_requested = 0;
3853 qemu_system_powerdown();
3854 ret = EXCP_INTERRUPT;
3855 }
3856 if (unlikely(ret == EXCP_DEBUG)) {
3857 gdb_set_stop_cpu(cur_cpu);
3858 vm_stop(EXCP_DEBUG);
3859 }
3860 /* If all cpus are halted then wait until the next IRQ */
3861 /* XXX: use timeout computed from timers */
3862 if (ret == EXCP_HALTED) {
3863 if (use_icount) {
3864 int64_t add;
3865 int64_t delta;
3866 /* Advance virtual time to the next event. */
3867 if (use_icount == 1) {
3868 /* When not using an adaptive execution frequency
3869 we tend to get badly out of sync with real time,
3870 so just delay for a reasonable amount of time. */
3871 delta = 0;
3872 } else {
3873 delta = cpu_get_icount() - cpu_get_clock();
3874 }
3875 if (delta > 0) {
3876 /* If virtual time is ahead of real time then just
3877 wait for IO. */
3878 timeout = (delta / 1000000) + 1;
3879 } else {
3880 /* Wait for either IO to occur or the next
3881 timer event. */
3882 add = qemu_next_deadline();
3883 /* We advance the timer before checking for IO.
3884 Limit the amount we advance so that early IO
3885 activity won't get the guest too far ahead. */
3886 if (add > 10000000)
3887 add = 10000000;
3888 delta += add;
3889 add = (add + (1 << icount_time_shift) - 1)
3890 >> icount_time_shift;
3891 qemu_icount += add;
3892 timeout = delta / 1000000;
3893 if (timeout < 0)
3894 timeout = 0;
3895 }
3896 } else {
3897 timeout = 5000;
3898 }
3899 } else {
3900 timeout = 0;
3901 }
3902 } else {
3903 if (shutdown_requested) {
3904 ret = EXCP_INTERRUPT;
3905 break;
3906 }
3907 timeout = 5000;
3908 }
3909 #ifdef CONFIG_PROFILER
3910 ti = profile_getclock();
3911 #endif
3912 main_loop_wait(timeout);
3913 #ifdef CONFIG_PROFILER
3914 dev_time += profile_getclock() - ti;
3915 #endif
3916 }
3917 cpu_disable_ticks();
3918 return ret;
3919 }
3920
3921 static void help(int exitcode)
3922 {
3923 /* Please keep in synch with QEMU_OPTION_ enums, qemu_options[]
3924 and qemu-doc.texi */
3925 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
3926 "usage: %s [options] [disk_image]\n"
3927 "\n"
3928 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
3929 "\n"
3930 "Standard options:\n"
3931 "-h or -help display this help and exit\n"
3932 "-M machine select emulated machine (-M ? for list)\n"
3933 "-cpu cpu select CPU (-cpu ? for list)\n"
3934 "-smp n set the number of CPUs to 'n' [default=1]\n"
3935 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
3936 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
3937 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
3938 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
3939 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
3940 " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
3941 " [,cache=writethrough|writeback|none][,format=f][,serial=s]\n"
3942 " use 'file' as a drive image\n"
3943 "-mtdblock file use 'file' as on-board Flash memory image\n"
3944 "-sd file use 'file' as SecureDigital card image\n"
3945 "-pflash file use 'file' as a parallel flash image\n"
3946 "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
3947 "-snapshot write to temporary files instead of disk image files\n"
3948 "-m megs set virtual RAM size to megs MB [default=%d]\n"
3949 #ifndef _WIN32
3950 "-k language use keyboard layout (for example \"fr\" for French)\n"
3951 #endif
3952 #ifdef HAS_AUDIO
3953 "-audio-help print list of audio drivers and their options\n"
3954 "-soundhw c1,... enable audio support\n"
3955 " and only specified sound cards (comma separated list)\n"
3956 " use -soundhw ? to get the list of supported cards\n"
3957 " use -soundhw all to enable all of them\n"
3958 #endif
3959 "-usb enable the USB driver (will be the default soon)\n"
3960 "-usbdevice name add the host or guest USB device 'name'\n"
3961 "-name string set the name of the guest\n"
3962 "-uuid %%08x-%%04x-%%04x-%%04x-%%012x\n"
3963 " specify machine UUID\n"
3964 "\n"
3965 "Display options:\n"
3966 "-nographic disable graphical output and redirect serial I/Os to console\n"
3967 #ifdef CONFIG_CURSES
3968 "-curses use a curses/ncurses interface instead of SDL\n"
3969 #endif
3970 #ifdef CONFIG_SDL
3971 "-no-frame open SDL window without a frame and window decorations\n"
3972 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
3973 "-no-quit disable SDL window close capability\n"
3974 "-sdl enable SDL\n"
3975 #endif
3976 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n"
3977 "-vga [std|cirrus|vmware|none]\n"
3978 " select video card type\n"
3979 "-full-screen start in full screen\n"
3980 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
3981 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
3982 #endif
3983 "-vnc display start a VNC server on display\n"
3984 "\n"
3985 "Network options:\n"
3986 "-net nic[,vlan=n][,macaddr=addr][,model=type][,name=str]\n"
3987 " create a new Network Interface Card and connect it to VLAN 'n'\n"
3988 #ifdef CONFIG_SLIRP
3989 "-net user[,vlan=n][,name=str][,hostname=host]\n"
3990 " connect the user mode network stack to VLAN 'n' and send\n"
3991 " hostname 'host' to DHCP clients\n"
3992 #endif
3993 #ifdef _WIN32
3994 "-net tap[,vlan=n][,name=str],ifname=name\n"
3995 " connect the host TAP network interface to VLAN 'n'\n"
3996 #else
3997 "-net tap[,vlan=n][,name=str][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
3998 " connect the host TAP network interface to VLAN 'n' and use the\n"
3999 " network scripts 'file' (default=%s)\n"
4000 " and 'dfile' (default=%s);\n"
4001 " use '[down]script=no' to disable script execution;\n"
4002 " use 'fd=h' to connect to an already opened TAP interface\n"
4003 #endif
4004 "-net socket[,vlan=n][,name=str][,fd=h][,listen=[host]:port][,connect=host:port]\n"
4005 " connect the vlan 'n' to another VLAN using a socket connection\n"
4006 "-net socket[,vlan=n][,name=str][,fd=h][,mcast=maddr:port]\n"
4007 " connect the vlan 'n' to multicast maddr and port\n"
4008 #ifdef CONFIG_VDE
4009 "-net vde[,vlan=n][,name=str][,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
4010 " connect the vlan 'n' to port 'n' of a vde switch running\n"
4011 " on host and listening for incoming connections on 'socketpath'.\n"
4012 " Use group 'groupname' and mode 'octalmode' to change default\n"
4013 " ownership and permissions for communication port.\n"
4014 #endif
4015 "-net none use it alone to have zero network devices; if no -net option\n"
4016 " is provided, the default is '-net nic -net user'\n"
4017 #ifdef CONFIG_SLIRP
4018 "-tftp dir allow tftp access to files in dir [-net user]\n"
4019 "-bootp file advertise file in BOOTP replies\n"
4020 #ifndef _WIN32
4021 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
4022 #endif
4023 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
4024 " redirect TCP or UDP connections from host to guest [-net user]\n"
4025 #endif
4026 "\n"
4027 "-bt hci,null dumb bluetooth HCI - doesn't respond to commands\n"
4028 "-bt hci,host[:id]\n"
4029 " use host's HCI with the given name\n"
4030 "-bt hci[,vlan=n]\n"
4031 " emulate a standard HCI in virtual scatternet 'n'\n"
4032 "-bt vhci[,vlan=n]\n"
4033 " add host computer to virtual scatternet 'n' using VHCI\n"
4034 "-bt device:dev[,vlan=n]\n"
4035 " emulate a bluetooth device 'dev' in scatternet 'n'\n"
4036 "\n"
4037 #ifdef TARGET_I386
4038 "\n"
4039 "i386 target only:\n"
4040 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
4041 "-rtc-td-hack use it to fix time drift in Windows ACPI HAL\n"
4042 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
4043 "-no-acpi disable ACPI\n"
4044 "-no-hpet disable HPET\n"
4045 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,data=file1[:file2]...]\n"
4046 " ACPI table description\n"
4047 #endif
4048 "Linux boot specific:\n"
4049 "-kernel bzImage use 'bzImage' as kernel image\n"
4050 "-append cmdline use 'cmdline' as kernel command line\n"
4051 "-initrd file use 'file' as initial ram disk\n"
4052 "\n"
4053 "Debug/Expert options:\n"
4054 "-serial dev redirect the serial port to char device 'dev'\n"
4055 "-parallel dev redirect the parallel port to char device 'dev'\n"
4056 "-monitor dev redirect the monitor to char device 'dev'\n"
4057 "-pidfile file write PID to 'file'\n"
4058 "-S freeze CPU at startup (use 'c' to start execution)\n"
4059 "-s wait gdb connection to port\n"
4060 "-p port set gdb connection port [default=%s]\n"
4061 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
4062 "-hdachs c,h,s[,t]\n"
4063 " force hard disk 0 physical geometry and the optional BIOS\n"
4064 " translation (t=none or lba) (usually qemu can guess them)\n"
4065 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
4066 "-bios file set the filename for the BIOS\n"
4067 #ifdef USE_KQEMU
4068 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
4069 "-no-kqemu disable KQEMU kernel module usage\n"
4070 #endif
4071 #ifdef CONFIG_KVM
4072 "-enable-kvm enable KVM full virtualization support\n"
4073 #endif
4074 "-no-reboot exit instead of rebooting\n"
4075 "-no-shutdown stop before shutdown\n"
4076 "-loadvm [tag|id]\n"
4077 " start right away with a saved state (loadvm in monitor)\n"
4078 #ifndef _WIN32
4079 "-daemonize daemonize QEMU after initializing\n"
4080 #endif
4081 "-option-rom rom load a file, rom, into the option ROM space\n"
4082 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
4083 "-prom-env variable=value\n"
4084 " set OpenBIOS nvram variables\n"
4085 #endif
4086 "-clock force the use of the given methods for timer alarm.\n"
4087 " To see what timers are available use -clock ?\n"
4088 "-localtime set the real time clock to local time [default=utc]\n"
4089 "-startdate select initial date of the clock\n"
4090 "-icount [N|auto]\n"
4091 " enable virtual instruction counter with 2^N clock ticks per instruction\n"
4092 "-echr chr set terminal escape character instead of ctrl-a\n"
4093 "-virtioconsole c\n"
4094 " set virtio console\n"
4095 "-show-cursor show cursor\n"
4096 #if defined(TARGET_ARM) || defined(TARGET_M68K)
4097 "-semihosting semihosting mode\n"
4098 #endif
4099 #if defined(TARGET_ARM)
4100 "-old-param old param mode\n"
4101 #endif
4102 "-tb-size n set TB size\n"
4103 "-incoming p prepare for incoming migration, listen on port p\n"
4104 #ifndef _WIN32
4105 "-chroot dir Chroot to dir just before starting the VM.\n"
4106 "-runas user Change to user id user just before starting the VM.\n"
4107 #endif
4108 "\n"
4109 "During emulation, the following keys are useful:\n"
4110 "ctrl-alt-f toggle full screen\n"
4111 "ctrl-alt-n switch to virtual console 'n'\n"
4112 "ctrl-alt toggle mouse and keyboard grab\n"
4113 "\n"
4114 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4115 ,
4116 "qemu",
4117 DEFAULT_RAM_SIZE,
4118 #ifndef _WIN32
4119 DEFAULT_NETWORK_SCRIPT,
4120 DEFAULT_NETWORK_DOWN_SCRIPT,
4121 #endif
4122 DEFAULT_GDBSTUB_PORT,
4123 "/tmp/qemu.log");
4124 exit(exitcode);
4125 }
4126
4127 #define HAS_ARG 0x0001
4128
4129 enum {
4130 /* Please keep in synch with help, qemu_options[] and
4131 qemu-doc.texi */
4132 /* Standard options: */
4133 QEMU_OPTION_h,
4134 QEMU_OPTION_M,
4135 QEMU_OPTION_cpu,
4136 QEMU_OPTION_smp,
4137 QEMU_OPTION_fda,
4138 QEMU_OPTION_fdb,
4139 QEMU_OPTION_hda,
4140 QEMU_OPTION_hdb,
4141 QEMU_OPTION_hdc,
4142 QEMU_OPTION_hdd,
4143 QEMU_OPTION_cdrom,
4144 QEMU_OPTION_drive,
4145 QEMU_OPTION_mtdblock,
4146 QEMU_OPTION_sd,
4147 QEMU_OPTION_pflash,
4148 QEMU_OPTION_boot,
4149 QEMU_OPTION_snapshot,
4150 QEMU_OPTION_m,
4151 QEMU_OPTION_k,
4152 QEMU_OPTION_audio_help,
4153 QEMU_OPTION_soundhw,
4154 QEMU_OPTION_usb,
4155 QEMU_OPTION_usbdevice,
4156 QEMU_OPTION_name,
4157 QEMU_OPTION_uuid,
4158
4159 /* Display options: */
4160 QEMU_OPTION_nographic,
4161 QEMU_OPTION_curses,
4162 QEMU_OPTION_no_frame,
4163 QEMU_OPTION_alt_grab,
4164 QEMU_OPTION_no_quit,
4165 QEMU_OPTION_sdl,
4166 QEMU_OPTION_portrait,
4167 QEMU_OPTION_vga,
4168 QEMU_OPTION_full_screen,
4169 QEMU_OPTION_g,
4170 QEMU_OPTION_vnc,
4171
4172 /* Network options: */
4173 QEMU_OPTION_net,
4174 QEMU_OPTION_tftp,
4175 QEMU_OPTION_bootp,
4176 QEMU_OPTION_smb,
4177 QEMU_OPTION_redir,
4178 QEMU_OPTION_bt,
4179
4180 /* i386 target only: */
4181 QEMU_OPTION_win2k_hack,
4182 QEMU_OPTION_rtc_td_hack,
4183 QEMU_OPTION_no_fd_bootchk,
4184 QEMU_OPTION_no_acpi,
4185 QEMU_OPTION_no_hpet,
4186 QEMU_OPTION_acpitable,
4187
4188 /* Linux boot specific: */
4189 QEMU_OPTION_kernel,
4190 QEMU_OPTION_append,
4191 QEMU_OPTION_initrd,
4192
4193 /* Debug/Expert options: */
4194 QEMU_OPTION_serial,
4195 QEMU_OPTION_parallel,
4196 QEMU_OPTION_monitor,
4197 QEMU_OPTION_pidfile,
4198 QEMU_OPTION_S,
4199 QEMU_OPTION_s,
4200 QEMU_OPTION_p,
4201 QEMU_OPTION_d,
4202 QEMU_OPTION_hdachs,
4203 QEMU_OPTION_L,
4204 QEMU_OPTION_bios,
4205 QEMU_OPTION_kernel_kqemu,
4206 QEMU_OPTION_no_kqemu,
4207 QEMU_OPTION_enable_kvm,
4208 QEMU_OPTION_no_reboot,
4209 QEMU_OPTION_no_shutdown,
4210 QEMU_OPTION_loadvm,
4211 QEMU_OPTION_daemonize,
4212 QEMU_OPTION_option_rom,
4213 QEMU_OPTION_prom_env,
4214 QEMU_OPTION_clock,
4215 QEMU_OPTION_localtime,
4216 QEMU_OPTION_startdate,
4217 QEMU_OPTION_icount,
4218 QEMU_OPTION_echr,
4219 QEMU_OPTION_virtiocon,
4220 QEMU_OPTION_show_cursor,
4221 QEMU_OPTION_semihosting,
4222 QEMU_OPTION_old_param,
4223 QEMU_OPTION_tb_size,
4224 QEMU_OPTION_incoming,
4225 QEMU_OPTION_chroot,
4226 QEMU_OPTION_runas,
4227 };
4228
4229 typedef struct QEMUOption {
4230 const char *name;
4231 int flags;
4232 int index;
4233 } QEMUOption;
4234
4235 static const QEMUOption qemu_options[] = {
4236 /* Please keep in synch with help, QEMU_OPTION_ enums, and
4237 qemu-doc.texi */
4238 /* Standard options: */
4239 { "h", 0, QEMU_OPTION_h },
4240 { "help", 0, QEMU_OPTION_h },
4241 { "M", HAS_ARG, QEMU_OPTION_M },
4242 { "cpu", HAS_ARG, QEMU_OPTION_cpu },
4243 { "smp", HAS_ARG, QEMU_OPTION_smp },
4244 { "fda", HAS_ARG, QEMU_OPTION_fda },
4245 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
4246 { "hda", HAS_ARG, QEMU_OPTION_hda },
4247 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
4248 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
4249 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
4250 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
4251 { "drive", HAS_ARG, QEMU_OPTION_drive },
4252 { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
4253 { "sd", HAS_ARG, QEMU_OPTION_sd },
4254 { "pflash", HAS_ARG, QEMU_OPTION_pflash },
4255 { "boot", HAS_ARG, QEMU_OPTION_boot },
4256 { "snapshot", 0, QEMU_OPTION_snapshot },
4257 { "m", HAS_ARG, QEMU_OPTION_m },
4258 #ifndef _WIN32
4259 { "k", HAS_ARG, QEMU_OPTION_k },
4260 #endif
4261 #ifdef HAS_AUDIO
4262 { "audio-help", 0, QEMU_OPTION_audio_help },
4263 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
4264 #endif
4265 { "usb", 0, QEMU_OPTION_usb },
4266 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
4267 { "name", HAS_ARG, QEMU_OPTION_name },
4268 { "uuid", HAS_ARG, QEMU_OPTION_uuid },
4269
4270 /* Display options: */
4271 { "nographic", 0, QEMU_OPTION_nographic },
4272 #ifdef CONFIG_CURSES
4273 { "curses", 0, QEMU_OPTION_curses },
4274 #endif
4275 #ifdef CONFIG_SDL
4276 { "no-frame", 0, QEMU_OPTION_no_frame },
4277 { "alt-grab", 0, QEMU_OPTION_alt_grab },
4278 { "no-quit", 0, QEMU_OPTION_no_quit },
4279 { "sdl", 0, QEMU_OPTION_sdl },
4280 #endif
4281 { "portrait", 0, QEMU_OPTION_portrait },
4282 { "vga", HAS_ARG, QEMU_OPTION_vga },
4283 { "full-screen", 0, QEMU_OPTION_full_screen },
4284 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
4285 { "g", 1, QEMU_OPTION_g },
4286 #endif
4287 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
4288
4289 /* Network options: */
4290 { "net", HAS_ARG, QEMU_OPTION_net},
4291 #ifdef CONFIG_SLIRP
4292 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
4293 { "bootp", HAS_ARG, QEMU_OPTION_bootp },
4294 #ifndef _WIN32
4295 { "smb", HAS_ARG, QEMU_OPTION_smb },
4296 #endif
4297 { "redir", HAS_ARG, QEMU_OPTION_redir },
4298 #endif
4299 { "bt", HAS_ARG, QEMU_OPTION_bt },
4300 #ifdef TARGET_I386
4301 /* i386 target only: */
4302 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
4303 { "rtc-td-hack", 0, QEMU_OPTION_rtc_td_hack },
4304 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
4305 { "no-acpi", 0, QEMU_OPTION_no_acpi },
4306 { "no-hpet", 0, QEMU_OPTION_no_hpet },
4307 { "acpitable", HAS_ARG, QEMU_OPTION_acpitable },
4308 #endif
4309
4310 /* Linux boot specific: */
4311 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
4312 { "append", HAS_ARG, QEMU_OPTION_append },
4313 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
4314
4315 /* Debug/Expert options: */
4316 { "serial", HAS_ARG, QEMU_OPTION_serial },
4317 { "parallel", HAS_ARG, QEMU_OPTION_parallel },
4318 { "monitor", HAS_ARG, QEMU_OPTION_monitor },
4319 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
4320 { "S", 0, QEMU_OPTION_S },
4321 { "s", 0, QEMU_OPTION_s },
4322 { "p", HAS_ARG, QEMU_OPTION_p },
4323 { "d", HAS_ARG, QEMU_OPTION_d },
4324 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
4325 { "L", HAS_ARG, QEMU_OPTION_L },
4326 { "bios", HAS_ARG, QEMU_OPTION_bios },
4327 #ifdef USE_KQEMU
4328 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
4329 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
4330 #endif
4331 #ifdef CONFIG_KVM
4332 { "enable-kvm", 0, QEMU_OPTION_enable_kvm },
4333 #endif
4334 { "no-reboot", 0, QEMU_OPTION_no_reboot },
4335 { "no-shutdown", 0, QEMU_OPTION_no_shutdown },
4336 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
4337 { "daemonize", 0, QEMU_OPTION_daemonize },
4338 { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
4339 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
4340 { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
4341 #endif
4342 { "clock", HAS_ARG, QEMU_OPTION_clock },
4343 { "localtime", 0, QEMU_OPTION_localtime },
4344 { "startdate", HAS_ARG, QEMU_OPTION_startdate },
4345 { "icount", HAS_ARG, QEMU_OPTION_icount },
4346 { "echr", HAS_ARG, QEMU_OPTION_echr },
4347 { "virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon },
4348 { "show-cursor", 0, QEMU_OPTION_show_cursor },
4349 #if defined(TARGET_ARM) || defined(TARGET_M68K)
4350 { "semihosting", 0, QEMU_OPTION_semihosting },
4351 #endif
4352 #if defined(TARGET_ARM)
4353 { "old-param", 0, QEMU_OPTION_old_param },
4354 #endif
4355 { "tb-size", HAS_ARG, QEMU_OPTION_tb_size },
4356 { "incoming", HAS_ARG, QEMU_OPTION_incoming },
4357 { "chroot", HAS_ARG, QEMU_OPTION_chroot },
4358 { "runas", HAS_ARG, QEMU_OPTION_runas },
4359 { NULL },
4360 };
4361
4362 #ifdef HAS_AUDIO
4363 struct soundhw soundhw[] = {
4364 #ifdef HAS_AUDIO_CHOICE
4365 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4366 {
4367 "pcspk",
4368 "PC speaker",
4369 0,
4370 1,
4371 { .init_isa = pcspk_audio_init }
4372 },
4373 #endif
4374
4375 #ifdef CONFIG_SB16
4376 {
4377 "sb16",
4378 "Creative Sound Blaster 16",
4379 0,
4380 1,
4381 { .init_isa = SB16_init }
4382 },
4383 #endif
4384
4385 #ifdef CONFIG_CS4231A
4386 {
4387 "cs4231a",
4388 "CS4231A",
4389 0,
4390 1,
4391 { .init_isa = cs4231a_init }
4392 },
4393 #endif
4394
4395 #ifdef CONFIG_ADLIB
4396 {
4397 "adlib",
4398 #ifdef HAS_YMF262
4399 "Yamaha YMF262 (OPL3)",
4400 #else
4401 "Yamaha YM3812 (OPL2)",
4402 #endif
4403 0,
4404 1,
4405 { .init_isa = Adlib_init }
4406 },
4407 #endif
4408
4409 #ifdef CONFIG_GUS
4410 {
4411 "gus",
4412 "Gravis Ultrasound GF1",
4413 0,
4414 1,
4415 { .init_isa = GUS_init }
4416 },
4417 #endif
4418
4419 #ifdef CONFIG_AC97
4420 {
4421 "ac97",
4422 "Intel 82801AA AC97 Audio",
4423 0,
4424 0,
4425 { .init_pci = ac97_init }
4426 },
4427 #endif
4428
4429 #ifdef CONFIG_ES1370
4430 {
4431 "es1370",
4432 "ENSONIQ AudioPCI ES1370",
4433 0,
4434 0,
4435 { .init_pci = es1370_init }
4436 },
4437 #endif
4438
4439 #endif /* HAS_AUDIO_CHOICE */
4440
4441 { NULL, NULL, 0, 0, { NULL } }
4442 };
4443
4444 static void select_soundhw (const char *optarg)
4445 {
4446 struct soundhw *c;
4447
4448 if (*optarg == '?') {
4449 show_valid_cards:
4450
4451 printf ("Valid sound card names (comma separated):\n");
4452 for (c = soundhw; c->name; ++c) {
4453 printf ("%-11s %s\n", c->name, c->descr);
4454 }
4455 printf ("\n-soundhw all will enable all of the above\n");
4456 exit (*optarg != '?');
4457 }
4458 else {
4459 size_t l;
4460 const char *p;
4461 char *e;
4462 int bad_card = 0;
4463
4464 if (!strcmp (optarg, "all")) {
4465 for (c = soundhw; c->name; ++c) {
4466 c->enabled = 1;
4467 }
4468 return;
4469 }
4470
4471 p = optarg;
4472 while (*p) {
4473 e = strchr (p, ',');
4474 l = !e ? strlen (p) : (size_t) (e - p);
4475
4476 for (c = soundhw; c->name; ++c) {
4477 if (!strncmp (c->name, p, l)) {
4478 c->enabled = 1;
4479 break;
4480 }
4481 }
4482
4483 if (!c->name) {
4484 if (l > 80) {
4485 fprintf (stderr,
4486 "Unknown sound card name (too big to show)\n");
4487 }
4488 else {
4489 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4490 (int) l, p);
4491 }
4492 bad_card = 1;
4493 }
4494 p += l + (e != NULL);
4495 }
4496
4497 if (bad_card)
4498 goto show_valid_cards;
4499 }
4500 }
4501 #endif
4502
4503 static void select_vgahw (const char *p)
4504 {
4505 const char *opts;
4506
4507 if (strstart(p, "std", &opts)) {
4508 std_vga_enabled = 1;
4509 cirrus_vga_enabled = 0;
4510 vmsvga_enabled = 0;
4511 } else if (strstart(p, "cirrus", &opts)) {
4512 cirrus_vga_enabled = 1;
4513 std_vga_enabled = 0;
4514 vmsvga_enabled = 0;
4515 } else if (strstart(p, "vmware", &opts)) {
4516 cirrus_vga_enabled = 0;
4517 std_vga_enabled = 0;
4518 vmsvga_enabled = 1;
4519 } else if (strstart(p, "none", &opts)) {
4520 cirrus_vga_enabled = 0;
4521 std_vga_enabled = 0;
4522 vmsvga_enabled = 0;
4523 } else {
4524 invalid_vga:
4525 fprintf(stderr, "Unknown vga type: %s\n", p);
4526 exit(1);
4527 }
4528 while (*opts) {
4529 const char *nextopt;
4530
4531 if (strstart(opts, ",retrace=", &nextopt)) {
4532 opts = nextopt;
4533 if (strstart(opts, "dumb", &nextopt))
4534 vga_retrace_method = VGA_RETRACE_DUMB;
4535 else if (strstart(opts, "precise", &nextopt))
4536 vga_retrace_method = VGA_RETRACE_PRECISE;
4537 else goto invalid_vga;
4538 } else goto invalid_vga;
4539 opts = nextopt;
4540 }
4541 }
4542
4543 #ifdef _WIN32
4544 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4545 {
4546 exit(STATUS_CONTROL_C_EXIT);
4547 return TRUE;
4548 }
4549 #endif
4550
4551 static int qemu_uuid_parse(const char *str, uint8_t *uuid)
4552 {
4553 int ret;
4554
4555 if(strlen(str) != 36)
4556 return -1;
4557
4558 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4559 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4560 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4561
4562 if(ret != 16)
4563 return -1;
4564
4565 return 0;
4566 }
4567
4568 #define MAX_NET_CLIENTS 32
4569
4570 #ifndef _WIN32
4571
4572 static void termsig_handler(int signal)
4573 {
4574 qemu_system_shutdown_request();
4575 }
4576
4577 static void termsig_setup(void)
4578 {
4579 struct sigaction act;
4580
4581 memset(&act, 0, sizeof(act));
4582 act.sa_handler = termsig_handler;
4583 sigaction(SIGINT, &act, NULL);
4584 sigaction(SIGHUP, &act, NULL);
4585 sigaction(SIGTERM, &act, NULL);
4586 }
4587
4588 #endif
4589
4590 int main(int argc, char **argv, char **envp)
4591 {
4592 #ifdef CONFIG_GDBSTUB
4593 int use_gdbstub;
4594 const char *gdbstub_port;
4595 #endif
4596 uint32_t boot_devices_bitmap = 0;
4597 int i;
4598 int snapshot, linux_boot, net_boot;
4599 const char *initrd_filename;
4600 const char *kernel_filename, *kernel_cmdline;
4601 const char *boot_devices = "";
4602 DisplayState *ds;
4603 DisplayChangeListener *dcl;
4604 int cyls, heads, secs, translation;
4605 const char *net_clients[MAX_NET_CLIENTS];
4606 int nb_net_clients;
4607 const char *bt_opts[MAX_BT_CMDLINE];
4608 int nb_bt_opts;
4609 int hda_index;
4610 int optind;
4611 const char *r, *optarg;
4612 CharDriverState *monitor_hd = NULL;
4613 const char *monitor_device;
4614 const char *serial_devices[MAX_SERIAL_PORTS];
4615 int serial_device_index;
4616 const char *parallel_devices[MAX_PARALLEL_PORTS];
4617 int parallel_device_index;
4618 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4619 int virtio_console_index;
4620 const char *loadvm = NULL;
4621 QEMUMachine *machine;
4622 const char *cpu_model;
4623 const char *usb_devices[MAX_USB_CMDLINE];
4624 int usb_devices_index;
4625 int fds[2];
4626 int tb_size;
4627 const char *pid_file = NULL;
4628 const char *incoming = NULL;
4629 int fd = 0;
4630 struct passwd *pwd = NULL;
4631 const char *chroot_dir = NULL;
4632 const char *run_as = NULL;
4633
4634 qemu_cache_utils_init(envp);
4635
4636 LIST_INIT (&vm_change_state_head);
4637 #ifndef _WIN32
4638 {
4639 struct sigaction act;
4640 sigfillset(&act.sa_mask);
4641 act.sa_flags = 0;
4642 act.sa_handler = SIG_IGN;
4643 sigaction(SIGPIPE, &act, NULL);
4644 }
4645 #else
4646 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4647 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4648 QEMU to run on a single CPU */
4649 {
4650 HANDLE h;
4651 DWORD mask, smask;
4652 int i;
4653 h = GetCurrentProcess();
4654 if (GetProcessAffinityMask(h, &mask, &smask)) {
4655 for(i = 0; i < 32; i++) {
4656 if (mask & (1 << i))
4657 break;
4658 }
4659 if (i != 32) {
4660 mask = 1 << i;
4661 SetProcessAffinityMask(h, mask);
4662 }
4663 }
4664 }
4665 #endif
4666
4667 register_machines();
4668 machine = first_machine;
4669 cpu_model = NULL;
4670 initrd_filename = NULL;
4671 ram_size = 0;
4672 vga_ram_size = VGA_RAM_SIZE;
4673 #ifdef CONFIG_GDBSTUB
4674 use_gdbstub = 0;
4675 gdbstub_port = DEFAULT_GDBSTUB_PORT;
4676 #endif
4677 snapshot = 0;
4678 nographic = 0;
4679 curses = 0;
4680 kernel_filename = NULL;
4681 kernel_cmdline = "";
4682 cyls = heads = secs = 0;
4683 translation = BIOS_ATA_TRANSLATION_AUTO;
4684 monitor_device = "vc:80Cx24C";
4685
4686 serial_devices[0] = "vc:80Cx24C";
4687 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4688 serial_devices[i] = NULL;
4689 serial_device_index = 0;
4690
4691 parallel_devices[0] = "vc:80Cx24C";
4692 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4693 parallel_devices[i] = NULL;
4694 parallel_device_index = 0;
4695
4696 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4697 virtio_consoles[i] = NULL;
4698 virtio_console_index = 0;
4699
4700 usb_devices_index = 0;
4701
4702 nb_net_clients = 0;
4703 nb_bt_opts = 0;
4704 nb_drives = 0;
4705 nb_drives_opt = 0;
4706 hda_index = -1;
4707
4708 nb_nics = 0;
4709
4710 tb_size = 0;
4711 autostart= 1;
4712
4713 optind = 1;
4714 for(;;) {
4715 if (optind >= argc)
4716 break;
4717 r = argv[optind];
4718 if (r[0] != '-') {
4719 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4720 } else {
4721 const QEMUOption *popt;
4722
4723 optind++;
4724 /* Treat --foo the same as -foo. */
4725 if (r[1] == '-')
4726 r++;
4727 popt = qemu_options;
4728 for(;;) {
4729 if (!popt->name) {
4730 fprintf(stderr, "%s: invalid option -- '%s'\n",
4731 argv[0], r);
4732 exit(1);
4733 }
4734 if (!strcmp(popt->name, r + 1))
4735 break;
4736 popt++;
4737 }
4738 if (popt->flags & HAS_ARG) {
4739 if (optind >= argc) {
4740 fprintf(stderr, "%s: option '%s' requires an argument\n",
4741 argv[0], r);
4742 exit(1);
4743 }
4744 optarg = argv[optind++];
4745 } else {
4746 optarg = NULL;
4747 }
4748
4749 switch(popt->index) {
4750 case QEMU_OPTION_M:
4751 machine = find_machine(optarg);
4752 if (!machine) {
4753 QEMUMachine *m;
4754 printf("Supported machines are:\n");
4755 for(m = first_machine; m != NULL; m = m->next) {
4756 printf("%-10s %s%s\n",
4757 m->name, m->desc,
4758 m == first_machine ? " (default)" : "");
4759 }
4760 exit(*optarg != '?');
4761 }
4762 break;
4763 case QEMU_OPTION_cpu:
4764 /* hw initialization will check this */
4765 if (*optarg == '?') {
4766 /* XXX: implement xxx_cpu_list for targets that still miss it */
4767 #if defined(cpu_list)
4768 cpu_list(stdout, &fprintf);
4769 #endif
4770 exit(0);
4771 } else {
4772 cpu_model = optarg;
4773 }
4774 break;
4775 case QEMU_OPTION_initrd:
4776 initrd_filename = optarg;
4777 break;
4778 case QEMU_OPTION_hda:
4779 if (cyls == 0)
4780 hda_index = drive_add(optarg, HD_ALIAS, 0);
4781 else
4782 hda_index = drive_add(optarg, HD_ALIAS
4783 ",cyls=%d,heads=%d,secs=%d%s",
4784 0, cyls, heads, secs,
4785 translation == BIOS_ATA_TRANSLATION_LBA ?
4786 ",trans=lba" :
4787 translation == BIOS_ATA_TRANSLATION_NONE ?
4788 ",trans=none" : "");
4789 break;
4790 case QEMU_OPTION_hdb:
4791 case QEMU_OPTION_hdc:
4792 case QEMU_OPTION_hdd:
4793 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4794 break;
4795 case QEMU_OPTION_drive:
4796 drive_add(NULL, "%s", optarg);
4797 break;
4798 case QEMU_OPTION_mtdblock:
4799 drive_add(optarg, MTD_ALIAS);
4800 break;
4801 case QEMU_OPTION_sd:
4802 drive_add(optarg, SD_ALIAS);
4803 break;
4804 case QEMU_OPTION_pflash:
4805 drive_add(optarg, PFLASH_ALIAS);
4806 break;
4807 case QEMU_OPTION_snapshot:
4808 snapshot = 1;
4809 break;
4810 case QEMU_OPTION_hdachs:
4811 {
4812 const char *p;
4813 p = optarg;
4814 cyls = strtol(p, (char **)&p, 0);
4815 if (cyls < 1 || cyls > 16383)
4816 goto chs_fail;
4817 if (*p != ',')
4818 goto chs_fail;
4819 p++;
4820 heads = strtol(p, (char **)&p, 0);
4821 if (heads < 1 || heads > 16)
4822 goto chs_fail;
4823 if (*p != ',')
4824 goto chs_fail;
4825 p++;
4826 secs = strtol(p, (char **)&p, 0);
4827 if (secs < 1 || secs > 63)
4828 goto chs_fail;
4829 if (*p == ',') {
4830 p++;
4831 if (!strcmp(p, "none"))
4832 translation = BIOS_ATA_TRANSLATION_NONE;
4833 else if (!strcmp(p, "lba"))
4834 translation = BIOS_ATA_TRANSLATION_LBA;
4835 else if (!strcmp(p, "auto"))
4836 translation = BIOS_ATA_TRANSLATION_AUTO;
4837 else
4838 goto chs_fail;
4839 } else if (*p != '\0') {
4840 chs_fail:
4841 fprintf(stderr, "qemu: invalid physical CHS format\n");
4842 exit(1);
4843 }
4844 if (hda_index != -1)
4845 snprintf(drives_opt[hda_index].opt,
4846 sizeof(drives_opt[hda_index].opt),
4847 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
4848 0, cyls, heads, secs,
4849 translation == BIOS_ATA_TRANSLATION_LBA ?
4850 ",trans=lba" :
4851 translation == BIOS_ATA_TRANSLATION_NONE ?
4852 ",trans=none" : "");
4853 }
4854 break;
4855 case QEMU_OPTION_nographic:
4856 nographic = 1;
4857 break;
4858 #ifdef CONFIG_CURSES
4859 case QEMU_OPTION_curses:
4860 curses = 1;
4861 break;
4862 #endif
4863 case QEMU_OPTION_portrait:
4864 graphic_rotate = 1;
4865 break;
4866 case QEMU_OPTION_kernel:
4867 kernel_filename = optarg;
4868 break;
4869 case QEMU_OPTION_append:
4870 kernel_cmdline = optarg;
4871 break;
4872 case QEMU_OPTION_cdrom:
4873 drive_add(optarg, CDROM_ALIAS);
4874 break;
4875 case QEMU_OPTION_boot:
4876 boot_devices = optarg;
4877 /* We just do some generic consistency checks */
4878 {
4879 /* Could easily be extended to 64 devices if needed */
4880 const char *p;
4881
4882 boot_devices_bitmap = 0;
4883 for (p = boot_devices; *p != '\0'; p++) {
4884 /* Allowed boot devices are:
4885 * a b : floppy disk drives
4886 * c ... f : IDE disk drives
4887 * g ... m : machine implementation dependant drives
4888 * n ... p : network devices
4889 * It's up to each machine implementation to check
4890 * if the given boot devices match the actual hardware
4891 * implementation and firmware features.
4892 */
4893 if (*p < 'a' || *p > 'q') {
4894 fprintf(stderr, "Invalid boot device '%c'\n", *p);
4895 exit(1);
4896 }
4897 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
4898 fprintf(stderr,
4899 "Boot device '%c' was given twice\n",*p);
4900 exit(1);
4901 }
4902 boot_devices_bitmap |= 1 << (*p - 'a');
4903 }
4904 }
4905 break;
4906 case QEMU_OPTION_fda:
4907 case QEMU_OPTION_fdb:
4908 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
4909 break;
4910 #ifdef TARGET_I386
4911 case QEMU_OPTION_no_fd_bootchk:
4912 fd_bootchk = 0;
4913 break;
4914 #endif
4915 case QEMU_OPTION_net:
4916 if (nb_net_clients >= MAX_NET_CLIENTS) {
4917 fprintf(stderr, "qemu: too many network clients\n");
4918 exit(1);
4919 }
4920 net_clients[nb_net_clients] = optarg;
4921 nb_net_clients++;
4922 break;
4923 #ifdef CONFIG_SLIRP
4924 case QEMU_OPTION_tftp:
4925 tftp_prefix = optarg;
4926 break;
4927 case QEMU_OPTION_bootp:
4928 bootp_filename = optarg;
4929 break;
4930 #ifndef _WIN32
4931 case QEMU_OPTION_smb:
4932 net_slirp_smb(optarg);
4933 break;
4934 #endif
4935 case QEMU_OPTION_redir:
4936 net_slirp_redir(optarg);
4937 break;
4938 #endif
4939 case QEMU_OPTION_bt:
4940 if (nb_bt_opts >= MAX_BT_CMDLINE) {
4941 fprintf(stderr, "qemu: too many bluetooth options\n");
4942 exit(1);
4943 }
4944 bt_opts[nb_bt_opts++] = optarg;
4945 break;
4946 #ifdef HAS_AUDIO
4947 case QEMU_OPTION_audio_help:
4948 AUD_help ();
4949 exit (0);
4950 break;
4951 case QEMU_OPTION_soundhw:
4952 select_soundhw (optarg);
4953 break;
4954 #endif
4955 case QEMU_OPTION_h:
4956 help(0);
4957 break;
4958 case QEMU_OPTION_m: {
4959 uint64_t value;
4960 char *ptr;
4961
4962 value = strtoul(optarg, &ptr, 10);
4963 switch (*ptr) {
4964 case 0: case 'M': case 'm':
4965 value <<= 20;
4966 break;
4967 case 'G': case 'g':
4968 value <<= 30;
4969 break;
4970 default:
4971 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
4972 exit(1);
4973 }
4974
4975 /* On 32-bit hosts, QEMU is limited by virtual address space */
4976 if (value > (2047 << 20)
4977 #ifndef USE_KQEMU
4978 && HOST_LONG_BITS == 32
4979 #endif
4980 ) {
4981 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
4982 exit(1);
4983 }
4984 if (value != (uint64_t)(ram_addr_t)value) {
4985 fprintf(stderr, "qemu: ram size too large\n");
4986 exit(1);
4987 }
4988 ram_size = value;
4989 break;
4990 }
4991 case QEMU_OPTION_d:
4992 {
4993 int mask;
4994 const CPULogItem *item;
4995
4996 mask = cpu_str_to_log_mask(optarg);
4997 if (!mask) {
4998 printf("Log items (comma separated):\n");
4999 for(item = cpu_log_items; item->mask != 0; item++) {
5000 printf("%-10s %s\n", item->name, item->help);
5001 }
5002 exit(1);
5003 }
5004 cpu_set_log(mask);
5005 }
5006 break;
5007 #ifdef CONFIG_GDBSTUB
5008 case QEMU_OPTION_s:
5009 use_gdbstub = 1;
5010 break;
5011 case QEMU_OPTION_p:
5012 gdbstub_port = optarg;
5013 break;
5014 #endif
5015 case QEMU_OPTION_L:
5016 bios_dir = optarg;
5017 break;
5018 case QEMU_OPTION_bios:
5019 bios_name = optarg;
5020 break;
5021 case QEMU_OPTION_S:
5022 autostart = 0;
5023 break;
5024 case QEMU_OPTION_k:
5025 keyboard_layout = optarg;
5026 break;
5027 case QEMU_OPTION_localtime:
5028 rtc_utc = 0;
5029 break;
5030 case QEMU_OPTION_vga:
5031 select_vgahw (optarg);
5032 break;
5033 case QEMU_OPTION_g:
5034 {
5035 const char *p;
5036 int w, h, depth;
5037 p = optarg;
5038 w = strtol(p, (char **)&p, 10);
5039 if (w <= 0) {
5040 graphic_error:
5041 fprintf(stderr, "qemu: invalid resolution or depth\n");
5042 exit(1);
5043 }
5044 if (*p != 'x')
5045 goto graphic_error;
5046 p++;
5047 h = strtol(p, (char **)&p, 10);
5048 if (h <= 0)
5049 goto graphic_error;
5050 if (*p == 'x') {
5051 p++;
5052 depth = strtol(p, (char **)&p, 10);
5053 if (depth != 8 && depth != 15 && depth != 16 &&
5054 depth != 24 && depth != 32)
5055 goto graphic_error;
5056 } else if (*p == '\0') {
5057 depth = graphic_depth;
5058 } else {
5059 goto graphic_error;
5060 }
5061
5062 graphic_width = w;
5063 graphic_height = h;
5064 graphic_depth = depth;
5065 }
5066 break;
5067 case QEMU_OPTION_echr:
5068 {
5069 char *r;
5070 term_escape_char = strtol(optarg, &r, 0);
5071 if (r == optarg)
5072 printf("Bad argument to echr\n");
5073 break;
5074 }
5075 case QEMU_OPTION_monitor:
5076 monitor_device = optarg;
5077 break;
5078 case QEMU_OPTION_serial:
5079 if (serial_device_index >= MAX_SERIAL_PORTS) {
5080 fprintf(stderr, "qemu: too many serial ports\n");
5081 exit(1);
5082 }
5083 serial_devices[serial_device_index] = optarg;
5084 serial_device_index++;
5085 break;
5086 case QEMU_OPTION_virtiocon:
5087 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5088 fprintf(stderr, "qemu: too many virtio consoles\n");
5089 exit(1);
5090 }
5091 virtio_consoles[virtio_console_index] = optarg;
5092 virtio_console_index++;
5093 break;
5094 case QEMU_OPTION_parallel:
5095 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5096 fprintf(stderr, "qemu: too many parallel ports\n");
5097 exit(1);
5098 }
5099 parallel_devices[parallel_device_index] = optarg;
5100 parallel_device_index++;
5101 break;
5102 case QEMU_OPTION_loadvm:
5103 loadvm = optarg;
5104 break;
5105 case QEMU_OPTION_full_screen:
5106 full_screen = 1;
5107 break;
5108 #ifdef CONFIG_SDL
5109 case QEMU_OPTION_no_frame:
5110 no_frame = 1;
5111 break;
5112 case QEMU_OPTION_alt_grab:
5113 alt_grab = 1;
5114 break;
5115 case QEMU_OPTION_no_quit:
5116 no_quit = 1;
5117 break;
5118 case QEMU_OPTION_sdl:
5119 sdl = 1;
5120 break;
5121 #endif
5122 case QEMU_OPTION_pidfile:
5123 pid_file = optarg;
5124 break;
5125 #ifdef TARGET_I386
5126 case QEMU_OPTION_win2k_hack:
5127 win2k_install_hack = 1;
5128 break;
5129 case QEMU_OPTION_rtc_td_hack:
5130 rtc_td_hack = 1;
5131 break;
5132 case QEMU_OPTION_acpitable:
5133 if(acpi_table_add(optarg) < 0) {
5134 fprintf(stderr, "Wrong acpi table provided\n");
5135 exit(1);
5136 }
5137 break;
5138 #endif
5139 #ifdef USE_KQEMU
5140 case QEMU_OPTION_no_kqemu:
5141 kqemu_allowed = 0;
5142 break;
5143 case QEMU_OPTION_kernel_kqemu:
5144 kqemu_allowed = 2;
5145 break;
5146 #endif
5147 #ifdef CONFIG_KVM
5148 case QEMU_OPTION_enable_kvm:
5149 kvm_allowed = 1;
5150 #ifdef USE_KQEMU
5151 kqemu_allowed = 0;
5152 #endif
5153 break;
5154 #endif
5155 case QEMU_OPTION_usb:
5156 usb_enabled = 1;
5157 break;
5158 case QEMU_OPTION_usbdevice:
5159 usb_enabled = 1;
5160 if (usb_devices_index >= MAX_USB_CMDLINE) {
5161 fprintf(stderr, "Too many USB devices\n");
5162 exit(1);
5163 }
5164 usb_devices[usb_devices_index] = optarg;
5165 usb_devices_index++;
5166 break;
5167 case QEMU_OPTION_smp:
5168 smp_cpus = atoi(optarg);
5169 if (smp_cpus < 1) {
5170 fprintf(stderr, "Invalid number of CPUs\n");
5171 exit(1);
5172 }
5173 break;
5174 case QEMU_OPTION_vnc:
5175 vnc_display = optarg;
5176 break;
5177 case QEMU_OPTION_no_acpi:
5178 acpi_enabled = 0;
5179 break;
5180 case QEMU_OPTION_no_hpet:
5181 no_hpet = 1;
5182 break;
5183 case QEMU_OPTION_no_reboot:
5184 no_reboot = 1;
5185 break;
5186 case QEMU_OPTION_no_shutdown:
5187 no_shutdown = 1;
5188 break;
5189 case QEMU_OPTION_show_cursor:
5190 cursor_hide = 0;
5191 break;
5192 case QEMU_OPTION_uuid:
5193 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5194 fprintf(stderr, "Fail to parse UUID string."
5195 " Wrong format.\n");
5196 exit(1);
5197 }
5198 break;
5199 case QEMU_OPTION_daemonize:
5200 daemonize = 1;
5201 break;
5202 case QEMU_OPTION_option_rom:
5203 if (nb_option_roms >= MAX_OPTION_ROMS) {
5204 fprintf(stderr, "Too many option ROMs\n");
5205 exit(1);
5206 }
5207 option_rom[nb_option_roms] = optarg;
5208 nb_option_roms++;
5209 break;
5210 case QEMU_OPTION_semihosting:
5211 semihosting_enabled = 1;
5212 break;
5213 case QEMU_OPTION_name:
5214 qemu_name = optarg;
5215 break;
5216 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5217 case QEMU_OPTION_prom_env:
5218 if (nb_prom_envs >= MAX_PROM_ENVS) {
5219 fprintf(stderr, "Too many prom variables\n");
5220 exit(1);
5221 }
5222 prom_envs[nb_prom_envs] = optarg;
5223 nb_prom_envs++;
5224 break;
5225 #endif
5226 #ifdef TARGET_ARM
5227 case QEMU_OPTION_old_param:
5228 old_param = 1;
5229 break;
5230 #endif
5231 case QEMU_OPTION_clock:
5232 configure_alarms(optarg);
5233 break;
5234 case QEMU_OPTION_startdate:
5235 {
5236 struct tm tm;
5237 time_t rtc_start_date;
5238 if (!strcmp(optarg, "now")) {
5239 rtc_date_offset = -1;
5240 } else {
5241 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5242 &tm.tm_year,
5243 &tm.tm_mon,
5244 &tm.tm_mday,
5245 &tm.tm_hour,
5246 &tm.tm_min,
5247 &tm.tm_sec) == 6) {
5248 /* OK */
5249 } else if (sscanf(optarg, "%d-%d-%d",
5250 &tm.tm_year,
5251 &tm.tm_mon,
5252 &tm.tm_mday) == 3) {
5253 tm.tm_hour = 0;
5254 tm.tm_min = 0;
5255 tm.tm_sec = 0;
5256 } else {
5257 goto date_fail;
5258 }
5259 tm.tm_year -= 1900;
5260 tm.tm_mon--;
5261 rtc_start_date = mktimegm(&tm);
5262 if (rtc_start_date == -1) {
5263 date_fail:
5264 fprintf(stderr, "Invalid date format. Valid format are:\n"
5265 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5266 exit(1);
5267 }
5268 rtc_date_offset = time(NULL) - rtc_start_date;
5269 }
5270 }
5271 break;
5272 case QEMU_OPTION_tb_size:
5273 tb_size = strtol(optarg, NULL, 0);
5274 if (tb_size < 0)
5275 tb_size = 0;
5276 break;
5277 case QEMU_OPTION_icount:
5278 use_icount = 1;
5279 if (strcmp(optarg, "auto") == 0) {
5280 icount_time_shift = -1;
5281 } else {
5282 icount_time_shift = strtol(optarg, NULL, 0);
5283 }
5284 break;
5285 case QEMU_OPTION_incoming:
5286 incoming = optarg;
5287 break;
5288 case QEMU_OPTION_chroot:
5289 chroot_dir = optarg;
5290 break;
5291 case QEMU_OPTION_runas:
5292 run_as = optarg;
5293 break;
5294 }
5295 }
5296 }
5297
5298 #if defined(CONFIG_KVM) && defined(USE_KQEMU)
5299 if (kvm_allowed && kqemu_allowed) {
5300 fprintf(stderr,
5301 "You can not enable both KVM and kqemu at the same time\n");
5302 exit(1);
5303 }
5304 #endif
5305
5306 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5307 if (smp_cpus > machine->max_cpus) {
5308 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5309 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5310 machine->max_cpus);
5311 exit(1);
5312 }
5313
5314 if (nographic) {
5315 if (serial_device_index == 0)
5316 serial_devices[0] = "stdio";
5317 if (parallel_device_index == 0)
5318 parallel_devices[0] = "null";
5319 if (strncmp(monitor_device, "vc", 2) == 0)
5320 monitor_device = "stdio";
5321 }
5322
5323 #ifndef _WIN32
5324 if (daemonize) {
5325 pid_t pid;
5326
5327 if (pipe(fds) == -1)
5328 exit(1);
5329
5330 pid = fork();
5331 if (pid > 0) {
5332 uint8_t status;
5333 ssize_t len;
5334
5335 close(fds[1]);
5336
5337 again:
5338 len = read(fds[0], &status, 1);
5339 if (len == -1 && (errno == EINTR))
5340 goto again;
5341
5342 if (len != 1)
5343 exit(1);
5344 else if (status == 1) {
5345 fprintf(stderr, "Could not acquire pidfile\n");
5346 exit(1);
5347 } else
5348 exit(0);
5349 } else if (pid < 0)
5350 exit(1);
5351
5352 setsid();
5353
5354 pid = fork();
5355 if (pid > 0)
5356 exit(0);
5357 else if (pid < 0)
5358 exit(1);
5359
5360 umask(027);
5361
5362 signal(SIGTSTP, SIG_IGN);
5363 signal(SIGTTOU, SIG_IGN);
5364 signal(SIGTTIN, SIG_IGN);
5365 }
5366 #endif
5367
5368 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5369 if (daemonize) {
5370 uint8_t status = 1;
5371 write(fds[1], &status, 1);
5372 } else
5373 fprintf(stderr, "Could not acquire pid file\n");
5374 exit(1);
5375 }
5376
5377 #ifdef USE_KQEMU
5378 if (smp_cpus > 1)
5379 kqemu_allowed = 0;
5380 #endif
5381 linux_boot = (kernel_filename != NULL);
5382 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5383
5384 if (!linux_boot && net_boot == 0 &&
5385 !machine->nodisk_ok && nb_drives_opt == 0)
5386 help(1);
5387
5388 if (!linux_boot && *kernel_cmdline != '\0') {
5389 fprintf(stderr, "-append only allowed with -kernel option\n");
5390 exit(1);
5391 }
5392
5393 if (!linux_boot && initrd_filename != NULL) {
5394 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5395 exit(1);
5396 }
5397
5398 /* boot to floppy or the default cd if no hard disk defined yet */
5399 if (!boot_devices[0]) {
5400 boot_devices = "cad";
5401 }
5402 setvbuf(stdout, NULL, _IOLBF, 0);
5403
5404 init_timers();
5405 if (init_timer_alarm() < 0) {
5406 fprintf(stderr, "could not initialize alarm timer\n");
5407 exit(1);
5408 }
5409 if (use_icount && icount_time_shift < 0) {
5410 use_icount = 2;
5411 /* 125MIPS seems a reasonable initial guess at the guest speed.
5412 It will be corrected fairly quickly anyway. */
5413 icount_time_shift = 3;
5414 init_icount_adjust();
5415 }
5416
5417 #ifdef _WIN32
5418 socket_init();
5419 #endif
5420
5421 /* init network clients */
5422 if (nb_net_clients == 0) {
5423 /* if no clients, we use a default config */
5424 net_clients[nb_net_clients++] = "nic";
5425 #ifdef CONFIG_SLIRP
5426 net_clients[nb_net_clients++] = "user";
5427 #endif
5428 }
5429
5430 for(i = 0;i < nb_net_clients; i++) {
5431 if (net_client_parse(net_clients[i]) < 0)
5432 exit(1);
5433 }
5434 net_client_check();
5435
5436 #ifdef TARGET_I386
5437 /* XXX: this should be moved in the PC machine instantiation code */
5438 if (net_boot != 0) {
5439 int netroms = 0;
5440 for (i = 0; i < nb_nics && i < 4; i++) {
5441 const char *model = nd_table[i].model;
5442 char buf[1024];
5443 if (net_boot & (1 << i)) {
5444 if (model == NULL)
5445 model = "ne2k_pci";
5446 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5447 if (get_image_size(buf) > 0) {
5448 if (nb_option_roms >= MAX_OPTION_ROMS) {
5449 fprintf(stderr, "Too many option ROMs\n");
5450 exit(1);
5451 }
5452 option_rom[nb_option_roms] = strdup(buf);
5453 nb_option_roms++;
5454 netroms++;
5455 }
5456 }
5457 }
5458 if (netroms == 0) {
5459 fprintf(stderr, "No valid PXE rom found for network device\n");
5460 exit(1);
5461 }
5462 }
5463 #endif
5464
5465 /* init the bluetooth world */
5466 for (i = 0; i < nb_bt_opts; i++)
5467 if (bt_parse(bt_opts[i]))
5468 exit(1);
5469
5470 /* init the memory */
5471 phys_ram_size = machine->ram_require & ~RAMSIZE_FIXED;
5472
5473 if (machine->ram_require & RAMSIZE_FIXED) {
5474 if (ram_size > 0) {
5475 if (ram_size < phys_ram_size) {
5476 fprintf(stderr, "Machine `%s' requires %llu bytes of memory\n",
5477 machine->name, (unsigned long long) phys_ram_size);
5478 exit(-1);
5479 }
5480
5481 phys_ram_size = ram_size;
5482 } else
5483 ram_size = phys_ram_size;
5484 } else {
5485 if (ram_size == 0)
5486 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5487
5488 phys_ram_size += ram_size;
5489 }
5490
5491 phys_ram_base = qemu_vmalloc(phys_ram_size);
5492 if (!phys_ram_base) {
5493 fprintf(stderr, "Could not allocate physical memory\n");
5494 exit(1);
5495 }
5496
5497 /* init the dynamic translator */
5498 cpu_exec_init_all(tb_size * 1024 * 1024);
5499
5500 bdrv_init();
5501
5502 /* we always create the cdrom drive, even if no disk is there */
5503
5504 if (nb_drives_opt < MAX_DRIVES)
5505 drive_add(NULL, CDROM_ALIAS);
5506
5507 /* we always create at least one floppy */
5508
5509 if (nb_drives_opt < MAX_DRIVES)
5510 drive_add(NULL, FD_ALIAS, 0);
5511
5512 /* we always create one sd slot, even if no card is in it */
5513
5514 if (nb_drives_opt < MAX_DRIVES)
5515 drive_add(NULL, SD_ALIAS);
5516
5517 /* open the virtual block devices */
5518
5519 for(i = 0; i < nb_drives_opt; i++)
5520 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5521 exit(1);
5522
5523 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5524 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5525
5526 #ifndef _WIN32
5527 /* must be after terminal init, SDL library changes signal handlers */
5528 termsig_setup();
5529 #endif
5530
5531 /* Maintain compatibility with multiple stdio monitors */
5532 if (!strcmp(monitor_device,"stdio")) {
5533 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5534 const char *devname = serial_devices[i];
5535 if (devname && !strcmp(devname,"mon:stdio")) {
5536 monitor_device = NULL;
5537 break;
5538 } else if (devname && !strcmp(devname,"stdio")) {
5539 monitor_device = NULL;
5540 serial_devices[i] = "mon:stdio";
5541 break;
5542 }
5543 }
5544 }
5545
5546 if (kvm_enabled()) {
5547 int ret;
5548
5549 ret = kvm_init(smp_cpus);
5550 if (ret < 0) {
5551 fprintf(stderr, "failed to initialize KVM\n");
5552 exit(1);
5553 }
5554 }
5555
5556 if (monitor_device) {
5557 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5558 if (!monitor_hd) {
5559 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5560 exit(1);
5561 }
5562 }
5563
5564 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5565 const char *devname = serial_devices[i];
5566 if (devname && strcmp(devname, "none")) {
5567 char label[32];
5568 snprintf(label, sizeof(label), "serial%d", i);
5569 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5570 if (!serial_hds[i]) {
5571 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5572 devname);
5573 exit(1);
5574 }
5575 }
5576 }
5577
5578 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5579 const char *devname = parallel_devices[i];
5580 if (devname && strcmp(devname, "none")) {
5581 char label[32];
5582 snprintf(label, sizeof(label), "parallel%d", i);
5583 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5584 if (!parallel_hds[i]) {
5585 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5586 devname);
5587 exit(1);
5588 }
5589 }
5590 }
5591
5592 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5593 const char *devname = virtio_consoles[i];
5594 if (devname && strcmp(devname, "none")) {
5595 char label[32];
5596 snprintf(label, sizeof(label), "virtcon%d", i);
5597 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5598 if (!virtcon_hds[i]) {
5599 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5600 devname);
5601 exit(1);
5602 }
5603 }
5604 }
5605
5606 machine->init(ram_size, vga_ram_size, boot_devices,
5607 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5608
5609 current_machine = machine;
5610
5611 /* Set KVM's vcpu state to qemu's initial CPUState. */
5612 if (kvm_enabled()) {
5613 int ret;
5614
5615 ret = kvm_sync_vcpus();
5616 if (ret < 0) {
5617 fprintf(stderr, "failed to initialize vcpus\n");
5618 exit(1);
5619 }
5620 }
5621
5622 /* init USB devices */
5623 if (usb_enabled) {
5624 for(i = 0; i < usb_devices_index; i++) {
5625 if (usb_device_add(usb_devices[i], 0) < 0) {
5626 fprintf(stderr, "Warning: could not add USB device %s\n",
5627 usb_devices[i]);
5628 }
5629 }
5630 }
5631
5632 if (!display_state)
5633 dumb_display_init();
5634 /* just use the first displaystate for the moment */
5635 ds = display_state;
5636 /* terminal init */
5637 if (nographic) {
5638 if (curses) {
5639 fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
5640 exit(1);
5641 }
5642 } else {
5643 #if defined(CONFIG_CURSES)
5644 if (curses) {
5645 /* At the moment curses cannot be used with other displays */
5646 curses_display_init(ds, full_screen);
5647 } else
5648 #endif
5649 {
5650 if (vnc_display != NULL) {
5651 vnc_display_init(ds);
5652 if (vnc_display_open(ds, vnc_display) < 0)
5653 exit(1);
5654 }
5655 #if defined(CONFIG_SDL)
5656 if (sdl || !vnc_display)
5657 sdl_display_init(ds, full_screen, no_frame);
5658 #elif defined(CONFIG_COCOA)
5659 if (sdl || !vnc_display)
5660 cocoa_display_init(ds, full_screen);
5661 #endif
5662 }
5663 }
5664 dpy_resize(ds);
5665
5666 dcl = ds->listeners;
5667 while (dcl != NULL) {
5668 if (dcl->dpy_refresh != NULL) {
5669 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5670 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5671 }
5672 dcl = dcl->next;
5673 }
5674
5675 if (nographic || (vnc_display && !sdl)) {
5676 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5677 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5678 }
5679
5680 text_consoles_set_display(display_state);
5681 qemu_chr_initial_reset();
5682
5683 if (monitor_device && monitor_hd)
5684 monitor_init(monitor_hd, !nographic);
5685
5686 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5687 const char *devname = serial_devices[i];
5688 if (devname && strcmp(devname, "none")) {
5689 char label[32];
5690 snprintf(label, sizeof(label), "serial%d", i);
5691 if (strstart(devname, "vc", 0))
5692 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5693 }
5694 }
5695
5696 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5697 const char *devname = parallel_devices[i];
5698 if (devname && strcmp(devname, "none")) {
5699 char label[32];
5700 snprintf(label, sizeof(label), "parallel%d", i);
5701 if (strstart(devname, "vc", 0))
5702 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5703 }
5704 }
5705
5706 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5707 const char *devname = virtio_consoles[i];
5708 if (virtcon_hds[i] && devname) {
5709 char label[32];
5710 snprintf(label, sizeof(label), "virtcon%d", i);
5711 if (strstart(devname, "vc", 0))
5712 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
5713 }
5714 }
5715
5716 #ifdef CONFIG_GDBSTUB
5717 if (use_gdbstub) {
5718 /* XXX: use standard host:port notation and modify options
5719 accordingly. */
5720 if (gdbserver_start(gdbstub_port) < 0) {
5721 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
5722 gdbstub_port);
5723 exit(1);
5724 }
5725 }
5726 #endif
5727
5728 if (loadvm)
5729 do_loadvm(loadvm);
5730
5731 if (incoming) {
5732 autostart = 0; /* fixme how to deal with -daemonize */
5733 qemu_start_incoming_migration(incoming);
5734 }
5735
5736 if (autostart)
5737 vm_start();
5738
5739 if (daemonize) {
5740 uint8_t status = 0;
5741 ssize_t len;
5742
5743 again1:
5744 len = write(fds[1], &status, 1);
5745 if (len == -1 && (errno == EINTR))
5746 goto again1;
5747
5748 if (len != 1)
5749 exit(1);
5750
5751 chdir("/");
5752 TFR(fd = open("/dev/null", O_RDWR));
5753 if (fd == -1)
5754 exit(1);
5755 }
5756
5757 #ifndef _WIN32
5758 if (run_as) {
5759 pwd = getpwnam(run_as);
5760 if (!pwd) {
5761 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
5762 exit(1);
5763 }
5764 }
5765
5766 if (chroot_dir) {
5767 if (chroot(chroot_dir) < 0) {
5768 fprintf(stderr, "chroot failed\n");
5769 exit(1);
5770 }
5771 chdir("/");
5772 }
5773
5774 if (run_as) {
5775 if (setgid(pwd->pw_gid) < 0) {
5776 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
5777 exit(1);
5778 }
5779 if (setuid(pwd->pw_uid) < 0) {
5780 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
5781 exit(1);
5782 }
5783 if (setuid(0) != -1) {
5784 fprintf(stderr, "Dropping privileges failed\n");
5785 exit(1);
5786 }
5787 }
5788 #endif
5789
5790 if (daemonize) {
5791 dup2(fd, 0);
5792 dup2(fd, 1);
5793 dup2(fd, 2);
5794
5795 close(fd);
5796 }
5797
5798 main_loop();
5799 quit_timers();
5800 net_cleanup();
5801
5802 return 0;
5803 }