]> git.proxmox.com Git - qemu.git/blob - vl.c
7277165c7199f42ccc42bfdbffd9188083111bac
[qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2007 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "vl.h"
25
26 #include <unistd.h>
27 #include <fcntl.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <errno.h>
31 #include <sys/time.h>
32 #include <zlib.h>
33
34 #ifndef _WIN32
35 #include <sys/times.h>
36 #include <sys/wait.h>
37 #include <termios.h>
38 #include <sys/poll.h>
39 #include <sys/mman.h>
40 #include <sys/ioctl.h>
41 #include <sys/socket.h>
42 #include <netinet/in.h>
43 #include <dirent.h>
44 #include <netdb.h>
45 #ifdef _BSD
46 #include <sys/stat.h>
47 #ifndef __APPLE__
48 #include <libutil.h>
49 #endif
50 #else
51 #ifndef __sun__
52 #include <linux/if.h>
53 #include <linux/if_tun.h>
54 #include <pty.h>
55 #include <malloc.h>
56 #include <linux/rtc.h>
57 #include <linux/ppdev.h>
58 #include <linux/parport.h>
59 #else
60 #include <sys/stat.h>
61 #include <sys/ethernet.h>
62 #include <sys/sockio.h>
63 #include <arpa/inet.h>
64 #include <netinet/arp.h>
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 #include <netinet/ip_icmp.h> // must come after ip.h
69 #include <netinet/udp.h>
70 #include <netinet/tcp.h>
71 #include <net/if.h>
72 #include <syslog.h>
73 #include <stropts.h>
74 #endif
75 #endif
76 #endif
77
78 #if defined(CONFIG_SLIRP)
79 #include "libslirp.h"
80 #endif
81
82 #ifdef _WIN32
83 #include <malloc.h>
84 #include <sys/timeb.h>
85 #include <windows.h>
86 #define getopt_long_only getopt_long
87 #define memalign(align, size) malloc(size)
88 #endif
89
90 #include "qemu_socket.h"
91
92 #ifdef CONFIG_SDL
93 #ifdef __APPLE__
94 #include <SDL/SDL.h>
95 #endif
96 #endif /* CONFIG_SDL */
97
98 #ifdef CONFIG_COCOA
99 #undef main
100 #define main qemu_main
101 #endif /* CONFIG_COCOA */
102
103 #include "disas.h"
104
105 #include "exec-all.h"
106
107 #define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
108 #ifdef __sun__
109 #define SMBD_COMMAND "/usr/sfw/sbin/smbd"
110 #else
111 #define SMBD_COMMAND "/usr/sbin/smbd"
112 #endif
113
114 //#define DEBUG_UNUSED_IOPORT
115 //#define DEBUG_IOPORT
116
117 #define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
118
119 #ifdef TARGET_PPC
120 #define DEFAULT_RAM_SIZE 144
121 #else
122 #define DEFAULT_RAM_SIZE 128
123 #endif
124 /* in ms */
125 #define GUI_REFRESH_INTERVAL 30
126
127 /* Max number of USB devices that can be specified on the commandline. */
128 #define MAX_USB_CMDLINE 8
129
130 /* XXX: use a two level table to limit memory usage */
131 #define MAX_IOPORTS 65536
132
133 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
134 char phys_ram_file[1024];
135 void *ioport_opaque[MAX_IOPORTS];
136 IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
137 IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
138 /* Note: bs_table[MAX_DISKS] is a dummy block driver if none available
139 to store the VM snapshots */
140 BlockDriverState *bs_table[MAX_DISKS + 1], *fd_table[MAX_FD];
141 BlockDriverState *pflash_table[MAX_PFLASH];
142 BlockDriverState *sd_bdrv;
143 BlockDriverState *mtd_bdrv;
144 /* point to the block driver where the snapshots are managed */
145 BlockDriverState *bs_snapshots;
146 int vga_ram_size;
147 static DisplayState display_state;
148 int nographic;
149 const char* keyboard_layout = NULL;
150 int64_t ticks_per_sec;
151 int boot_device = 'c';
152 int ram_size;
153 int pit_min_timer_count = 0;
154 int nb_nics;
155 NICInfo nd_table[MAX_NICS];
156 QEMUTimer *gui_timer;
157 int vm_running;
158 int rtc_utc = 1;
159 int cirrus_vga_enabled = 1;
160 int vmsvga_enabled = 0;
161 #ifdef TARGET_SPARC
162 int graphic_width = 1024;
163 int graphic_height = 768;
164 int graphic_depth = 8;
165 #else
166 int graphic_width = 800;
167 int graphic_height = 600;
168 int graphic_depth = 15;
169 #endif
170 int full_screen = 0;
171 int no_frame = 0;
172 int no_quit = 0;
173 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
174 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
175 #ifdef TARGET_I386
176 int win2k_install_hack = 0;
177 #endif
178 int usb_enabled = 0;
179 static VLANState *first_vlan;
180 int smp_cpus = 1;
181 const char *vnc_display;
182 #if defined(TARGET_SPARC)
183 #define MAX_CPUS 16
184 #elif defined(TARGET_I386)
185 #define MAX_CPUS 255
186 #else
187 #define MAX_CPUS 1
188 #endif
189 int acpi_enabled = 1;
190 int fd_bootchk = 1;
191 int no_reboot = 0;
192 int cursor_hide = 1;
193 int graphic_rotate = 0;
194 int daemonize = 0;
195 const char *option_rom[MAX_OPTION_ROMS];
196 int nb_option_roms;
197 int semihosting_enabled = 0;
198 int autostart = 1;
199 const char *qemu_name;
200 #ifdef TARGET_SPARC
201 unsigned int nb_prom_envs = 0;
202 const char *prom_envs[MAX_PROM_ENVS];
203 #endif
204
205 /***********************************************************/
206 /* x86 ISA bus support */
207
208 target_phys_addr_t isa_mem_base = 0;
209 PicState2 *isa_pic;
210
211 uint32_t default_ioport_readb(void *opaque, uint32_t address)
212 {
213 #ifdef DEBUG_UNUSED_IOPORT
214 fprintf(stderr, "unused inb: port=0x%04x\n", address);
215 #endif
216 return 0xff;
217 }
218
219 void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
220 {
221 #ifdef DEBUG_UNUSED_IOPORT
222 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
223 #endif
224 }
225
226 /* default is to make two byte accesses */
227 uint32_t default_ioport_readw(void *opaque, uint32_t address)
228 {
229 uint32_t data;
230 data = ioport_read_table[0][address](ioport_opaque[address], address);
231 address = (address + 1) & (MAX_IOPORTS - 1);
232 data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
233 return data;
234 }
235
236 void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
237 {
238 ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
239 address = (address + 1) & (MAX_IOPORTS - 1);
240 ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
241 }
242
243 uint32_t default_ioport_readl(void *opaque, uint32_t address)
244 {
245 #ifdef DEBUG_UNUSED_IOPORT
246 fprintf(stderr, "unused inl: port=0x%04x\n", address);
247 #endif
248 return 0xffffffff;
249 }
250
251 void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
252 {
253 #ifdef DEBUG_UNUSED_IOPORT
254 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
255 #endif
256 }
257
258 void init_ioports(void)
259 {
260 int i;
261
262 for(i = 0; i < MAX_IOPORTS; i++) {
263 ioport_read_table[0][i] = default_ioport_readb;
264 ioport_write_table[0][i] = default_ioport_writeb;
265 ioport_read_table[1][i] = default_ioport_readw;
266 ioport_write_table[1][i] = default_ioport_writew;
267 ioport_read_table[2][i] = default_ioport_readl;
268 ioport_write_table[2][i] = default_ioport_writel;
269 }
270 }
271
272 /* size is the word size in byte */
273 int register_ioport_read(int start, int length, int size,
274 IOPortReadFunc *func, void *opaque)
275 {
276 int i, bsize;
277
278 if (size == 1) {
279 bsize = 0;
280 } else if (size == 2) {
281 bsize = 1;
282 } else if (size == 4) {
283 bsize = 2;
284 } else {
285 hw_error("register_ioport_read: invalid size");
286 return -1;
287 }
288 for(i = start; i < start + length; i += size) {
289 ioport_read_table[bsize][i] = func;
290 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
291 hw_error("register_ioport_read: invalid opaque");
292 ioport_opaque[i] = opaque;
293 }
294 return 0;
295 }
296
297 /* size is the word size in byte */
298 int register_ioport_write(int start, int length, int size,
299 IOPortWriteFunc *func, void *opaque)
300 {
301 int i, bsize;
302
303 if (size == 1) {
304 bsize = 0;
305 } else if (size == 2) {
306 bsize = 1;
307 } else if (size == 4) {
308 bsize = 2;
309 } else {
310 hw_error("register_ioport_write: invalid size");
311 return -1;
312 }
313 for(i = start; i < start + length; i += size) {
314 ioport_write_table[bsize][i] = func;
315 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
316 hw_error("register_ioport_write: invalid opaque");
317 ioport_opaque[i] = opaque;
318 }
319 return 0;
320 }
321
322 void isa_unassign_ioport(int start, int length)
323 {
324 int i;
325
326 for(i = start; i < start + length; i++) {
327 ioport_read_table[0][i] = default_ioport_readb;
328 ioport_read_table[1][i] = default_ioport_readw;
329 ioport_read_table[2][i] = default_ioport_readl;
330
331 ioport_write_table[0][i] = default_ioport_writeb;
332 ioport_write_table[1][i] = default_ioport_writew;
333 ioport_write_table[2][i] = default_ioport_writel;
334 }
335 }
336
337 /***********************************************************/
338
339 void cpu_outb(CPUState *env, int addr, int val)
340 {
341 #ifdef DEBUG_IOPORT
342 if (loglevel & CPU_LOG_IOPORT)
343 fprintf(logfile, "outb: %04x %02x\n", addr, val);
344 #endif
345 ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
346 #ifdef USE_KQEMU
347 if (env)
348 env->last_io_time = cpu_get_time_fast();
349 #endif
350 }
351
352 void cpu_outw(CPUState *env, int addr, int val)
353 {
354 #ifdef DEBUG_IOPORT
355 if (loglevel & CPU_LOG_IOPORT)
356 fprintf(logfile, "outw: %04x %04x\n", addr, val);
357 #endif
358 ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
359 #ifdef USE_KQEMU
360 if (env)
361 env->last_io_time = cpu_get_time_fast();
362 #endif
363 }
364
365 void cpu_outl(CPUState *env, int addr, int val)
366 {
367 #ifdef DEBUG_IOPORT
368 if (loglevel & CPU_LOG_IOPORT)
369 fprintf(logfile, "outl: %04x %08x\n", addr, val);
370 #endif
371 ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
372 #ifdef USE_KQEMU
373 if (env)
374 env->last_io_time = cpu_get_time_fast();
375 #endif
376 }
377
378 int cpu_inb(CPUState *env, int addr)
379 {
380 int val;
381 val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
382 #ifdef DEBUG_IOPORT
383 if (loglevel & CPU_LOG_IOPORT)
384 fprintf(logfile, "inb : %04x %02x\n", addr, val);
385 #endif
386 #ifdef USE_KQEMU
387 if (env)
388 env->last_io_time = cpu_get_time_fast();
389 #endif
390 return val;
391 }
392
393 int cpu_inw(CPUState *env, int addr)
394 {
395 int val;
396 val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
397 #ifdef DEBUG_IOPORT
398 if (loglevel & CPU_LOG_IOPORT)
399 fprintf(logfile, "inw : %04x %04x\n", addr, val);
400 #endif
401 #ifdef USE_KQEMU
402 if (env)
403 env->last_io_time = cpu_get_time_fast();
404 #endif
405 return val;
406 }
407
408 int cpu_inl(CPUState *env, int addr)
409 {
410 int val;
411 val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
412 #ifdef DEBUG_IOPORT
413 if (loglevel & CPU_LOG_IOPORT)
414 fprintf(logfile, "inl : %04x %08x\n", addr, val);
415 #endif
416 #ifdef USE_KQEMU
417 if (env)
418 env->last_io_time = cpu_get_time_fast();
419 #endif
420 return val;
421 }
422
423 /***********************************************************/
424 void hw_error(const char *fmt, ...)
425 {
426 va_list ap;
427 CPUState *env;
428
429 va_start(ap, fmt);
430 fprintf(stderr, "qemu: hardware error: ");
431 vfprintf(stderr, fmt, ap);
432 fprintf(stderr, "\n");
433 for(env = first_cpu; env != NULL; env = env->next_cpu) {
434 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
435 #ifdef TARGET_I386
436 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
437 #else
438 cpu_dump_state(env, stderr, fprintf, 0);
439 #endif
440 }
441 va_end(ap);
442 abort();
443 }
444
445 /***********************************************************/
446 /* keyboard/mouse */
447
448 static QEMUPutKBDEvent *qemu_put_kbd_event;
449 static void *qemu_put_kbd_event_opaque;
450 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
451 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
452
453 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
454 {
455 qemu_put_kbd_event_opaque = opaque;
456 qemu_put_kbd_event = func;
457 }
458
459 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
460 void *opaque, int absolute,
461 const char *name)
462 {
463 QEMUPutMouseEntry *s, *cursor;
464
465 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
466 if (!s)
467 return NULL;
468
469 s->qemu_put_mouse_event = func;
470 s->qemu_put_mouse_event_opaque = opaque;
471 s->qemu_put_mouse_event_absolute = absolute;
472 s->qemu_put_mouse_event_name = qemu_strdup(name);
473 s->next = NULL;
474
475 if (!qemu_put_mouse_event_head) {
476 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
477 return s;
478 }
479
480 cursor = qemu_put_mouse_event_head;
481 while (cursor->next != NULL)
482 cursor = cursor->next;
483
484 cursor->next = s;
485 qemu_put_mouse_event_current = s;
486
487 return s;
488 }
489
490 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
491 {
492 QEMUPutMouseEntry *prev = NULL, *cursor;
493
494 if (!qemu_put_mouse_event_head || entry == NULL)
495 return;
496
497 cursor = qemu_put_mouse_event_head;
498 while (cursor != NULL && cursor != entry) {
499 prev = cursor;
500 cursor = cursor->next;
501 }
502
503 if (cursor == NULL) // does not exist or list empty
504 return;
505 else if (prev == NULL) { // entry is head
506 qemu_put_mouse_event_head = cursor->next;
507 if (qemu_put_mouse_event_current == entry)
508 qemu_put_mouse_event_current = cursor->next;
509 qemu_free(entry->qemu_put_mouse_event_name);
510 qemu_free(entry);
511 return;
512 }
513
514 prev->next = entry->next;
515
516 if (qemu_put_mouse_event_current == entry)
517 qemu_put_mouse_event_current = prev;
518
519 qemu_free(entry->qemu_put_mouse_event_name);
520 qemu_free(entry);
521 }
522
523 void kbd_put_keycode(int keycode)
524 {
525 if (qemu_put_kbd_event) {
526 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
527 }
528 }
529
530 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
531 {
532 QEMUPutMouseEvent *mouse_event;
533 void *mouse_event_opaque;
534 int width;
535
536 if (!qemu_put_mouse_event_current) {
537 return;
538 }
539
540 mouse_event =
541 qemu_put_mouse_event_current->qemu_put_mouse_event;
542 mouse_event_opaque =
543 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
544
545 if (mouse_event) {
546 if (graphic_rotate) {
547 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
548 width = 0x7fff;
549 else
550 width = graphic_width;
551 mouse_event(mouse_event_opaque,
552 width - dy, dx, dz, buttons_state);
553 } else
554 mouse_event(mouse_event_opaque,
555 dx, dy, dz, buttons_state);
556 }
557 }
558
559 int kbd_mouse_is_absolute(void)
560 {
561 if (!qemu_put_mouse_event_current)
562 return 0;
563
564 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
565 }
566
567 void do_info_mice(void)
568 {
569 QEMUPutMouseEntry *cursor;
570 int index = 0;
571
572 if (!qemu_put_mouse_event_head) {
573 term_printf("No mouse devices connected\n");
574 return;
575 }
576
577 term_printf("Mouse devices available:\n");
578 cursor = qemu_put_mouse_event_head;
579 while (cursor != NULL) {
580 term_printf("%c Mouse #%d: %s\n",
581 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
582 index, cursor->qemu_put_mouse_event_name);
583 index++;
584 cursor = cursor->next;
585 }
586 }
587
588 void do_mouse_set(int index)
589 {
590 QEMUPutMouseEntry *cursor;
591 int i = 0;
592
593 if (!qemu_put_mouse_event_head) {
594 term_printf("No mouse devices connected\n");
595 return;
596 }
597
598 cursor = qemu_put_mouse_event_head;
599 while (cursor != NULL && index != i) {
600 i++;
601 cursor = cursor->next;
602 }
603
604 if (cursor != NULL)
605 qemu_put_mouse_event_current = cursor;
606 else
607 term_printf("Mouse at given index not found\n");
608 }
609
610 /* compute with 96 bit intermediate result: (a*b)/c */
611 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
612 {
613 union {
614 uint64_t ll;
615 struct {
616 #ifdef WORDS_BIGENDIAN
617 uint32_t high, low;
618 #else
619 uint32_t low, high;
620 #endif
621 } l;
622 } u, res;
623 uint64_t rl, rh;
624
625 u.ll = a;
626 rl = (uint64_t)u.l.low * (uint64_t)b;
627 rh = (uint64_t)u.l.high * (uint64_t)b;
628 rh += (rl >> 32);
629 res.l.high = rh / c;
630 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
631 return res.ll;
632 }
633
634 /***********************************************************/
635 /* real time host monotonic timer */
636
637 #define QEMU_TIMER_BASE 1000000000LL
638
639 #ifdef WIN32
640
641 static int64_t clock_freq;
642
643 static void init_get_clock(void)
644 {
645 LARGE_INTEGER freq;
646 int ret;
647 ret = QueryPerformanceFrequency(&freq);
648 if (ret == 0) {
649 fprintf(stderr, "Could not calibrate ticks\n");
650 exit(1);
651 }
652 clock_freq = freq.QuadPart;
653 }
654
655 static int64_t get_clock(void)
656 {
657 LARGE_INTEGER ti;
658 QueryPerformanceCounter(&ti);
659 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
660 }
661
662 #else
663
664 static int use_rt_clock;
665
666 static void init_get_clock(void)
667 {
668 use_rt_clock = 0;
669 #if defined(__linux__)
670 {
671 struct timespec ts;
672 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
673 use_rt_clock = 1;
674 }
675 }
676 #endif
677 }
678
679 static int64_t get_clock(void)
680 {
681 #if defined(__linux__)
682 if (use_rt_clock) {
683 struct timespec ts;
684 clock_gettime(CLOCK_MONOTONIC, &ts);
685 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
686 } else
687 #endif
688 {
689 /* XXX: using gettimeofday leads to problems if the date
690 changes, so it should be avoided. */
691 struct timeval tv;
692 gettimeofday(&tv, NULL);
693 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
694 }
695 }
696
697 #endif
698
699 /***********************************************************/
700 /* guest cycle counter */
701
702 static int64_t cpu_ticks_prev;
703 static int64_t cpu_ticks_offset;
704 static int64_t cpu_clock_offset;
705 static int cpu_ticks_enabled;
706
707 /* return the host CPU cycle counter and handle stop/restart */
708 int64_t cpu_get_ticks(void)
709 {
710 if (!cpu_ticks_enabled) {
711 return cpu_ticks_offset;
712 } else {
713 int64_t ticks;
714 ticks = cpu_get_real_ticks();
715 if (cpu_ticks_prev > ticks) {
716 /* Note: non increasing ticks may happen if the host uses
717 software suspend */
718 cpu_ticks_offset += cpu_ticks_prev - ticks;
719 }
720 cpu_ticks_prev = ticks;
721 return ticks + cpu_ticks_offset;
722 }
723 }
724
725 /* return the host CPU monotonic timer and handle stop/restart */
726 static int64_t cpu_get_clock(void)
727 {
728 int64_t ti;
729 if (!cpu_ticks_enabled) {
730 return cpu_clock_offset;
731 } else {
732 ti = get_clock();
733 return ti + cpu_clock_offset;
734 }
735 }
736
737 /* enable cpu_get_ticks() */
738 void cpu_enable_ticks(void)
739 {
740 if (!cpu_ticks_enabled) {
741 cpu_ticks_offset -= cpu_get_real_ticks();
742 cpu_clock_offset -= get_clock();
743 cpu_ticks_enabled = 1;
744 }
745 }
746
747 /* disable cpu_get_ticks() : the clock is stopped. You must not call
748 cpu_get_ticks() after that. */
749 void cpu_disable_ticks(void)
750 {
751 if (cpu_ticks_enabled) {
752 cpu_ticks_offset = cpu_get_ticks();
753 cpu_clock_offset = cpu_get_clock();
754 cpu_ticks_enabled = 0;
755 }
756 }
757
758 /***********************************************************/
759 /* timers */
760
761 #define QEMU_TIMER_REALTIME 0
762 #define QEMU_TIMER_VIRTUAL 1
763
764 struct QEMUClock {
765 int type;
766 /* XXX: add frequency */
767 };
768
769 struct QEMUTimer {
770 QEMUClock *clock;
771 int64_t expire_time;
772 QEMUTimerCB *cb;
773 void *opaque;
774 struct QEMUTimer *next;
775 };
776
777 QEMUClock *rt_clock;
778 QEMUClock *vm_clock;
779
780 static QEMUTimer *active_timers[2];
781 #ifdef _WIN32
782 static MMRESULT timerID;
783 static HANDLE host_alarm = NULL;
784 static unsigned int period = 1;
785 #else
786 /* frequency of the times() clock tick */
787 static int timer_freq;
788 #endif
789
790 QEMUClock *qemu_new_clock(int type)
791 {
792 QEMUClock *clock;
793 clock = qemu_mallocz(sizeof(QEMUClock));
794 if (!clock)
795 return NULL;
796 clock->type = type;
797 return clock;
798 }
799
800 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
801 {
802 QEMUTimer *ts;
803
804 ts = qemu_mallocz(sizeof(QEMUTimer));
805 ts->clock = clock;
806 ts->cb = cb;
807 ts->opaque = opaque;
808 return ts;
809 }
810
811 void qemu_free_timer(QEMUTimer *ts)
812 {
813 qemu_free(ts);
814 }
815
816 /* stop a timer, but do not dealloc it */
817 void qemu_del_timer(QEMUTimer *ts)
818 {
819 QEMUTimer **pt, *t;
820
821 /* NOTE: this code must be signal safe because
822 qemu_timer_expired() can be called from a signal. */
823 pt = &active_timers[ts->clock->type];
824 for(;;) {
825 t = *pt;
826 if (!t)
827 break;
828 if (t == ts) {
829 *pt = t->next;
830 break;
831 }
832 pt = &t->next;
833 }
834 }
835
836 /* modify the current timer so that it will be fired when current_time
837 >= expire_time. The corresponding callback will be called. */
838 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
839 {
840 QEMUTimer **pt, *t;
841
842 qemu_del_timer(ts);
843
844 /* add the timer in the sorted list */
845 /* NOTE: this code must be signal safe because
846 qemu_timer_expired() can be called from a signal. */
847 pt = &active_timers[ts->clock->type];
848 for(;;) {
849 t = *pt;
850 if (!t)
851 break;
852 if (t->expire_time > expire_time)
853 break;
854 pt = &t->next;
855 }
856 ts->expire_time = expire_time;
857 ts->next = *pt;
858 *pt = ts;
859 }
860
861 int qemu_timer_pending(QEMUTimer *ts)
862 {
863 QEMUTimer *t;
864 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
865 if (t == ts)
866 return 1;
867 }
868 return 0;
869 }
870
871 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
872 {
873 if (!timer_head)
874 return 0;
875 return (timer_head->expire_time <= current_time);
876 }
877
878 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
879 {
880 QEMUTimer *ts;
881
882 for(;;) {
883 ts = *ptimer_head;
884 if (!ts || ts->expire_time > current_time)
885 break;
886 /* remove timer from the list before calling the callback */
887 *ptimer_head = ts->next;
888 ts->next = NULL;
889
890 /* run the callback (the timer list can be modified) */
891 ts->cb(ts->opaque);
892 }
893 }
894
895 int64_t qemu_get_clock(QEMUClock *clock)
896 {
897 switch(clock->type) {
898 case QEMU_TIMER_REALTIME:
899 return get_clock() / 1000000;
900 default:
901 case QEMU_TIMER_VIRTUAL:
902 return cpu_get_clock();
903 }
904 }
905
906 static void init_timers(void)
907 {
908 init_get_clock();
909 ticks_per_sec = QEMU_TIMER_BASE;
910 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
911 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
912 }
913
914 /* save a timer */
915 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
916 {
917 uint64_t expire_time;
918
919 if (qemu_timer_pending(ts)) {
920 expire_time = ts->expire_time;
921 } else {
922 expire_time = -1;
923 }
924 qemu_put_be64(f, expire_time);
925 }
926
927 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
928 {
929 uint64_t expire_time;
930
931 expire_time = qemu_get_be64(f);
932 if (expire_time != -1) {
933 qemu_mod_timer(ts, expire_time);
934 } else {
935 qemu_del_timer(ts);
936 }
937 }
938
939 static void timer_save(QEMUFile *f, void *opaque)
940 {
941 if (cpu_ticks_enabled) {
942 hw_error("cannot save state if virtual timers are running");
943 }
944 qemu_put_be64s(f, &cpu_ticks_offset);
945 qemu_put_be64s(f, &ticks_per_sec);
946 qemu_put_be64s(f, &cpu_clock_offset);
947 }
948
949 static int timer_load(QEMUFile *f, void *opaque, int version_id)
950 {
951 if (version_id != 1 && version_id != 2)
952 return -EINVAL;
953 if (cpu_ticks_enabled) {
954 return -EINVAL;
955 }
956 qemu_get_be64s(f, &cpu_ticks_offset);
957 qemu_get_be64s(f, &ticks_per_sec);
958 if (version_id == 2) {
959 qemu_get_be64s(f, &cpu_clock_offset);
960 }
961 return 0;
962 }
963
964 #ifdef _WIN32
965 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
966 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
967 #else
968 static void host_alarm_handler(int host_signum)
969 #endif
970 {
971 #if 0
972 #define DISP_FREQ 1000
973 {
974 static int64_t delta_min = INT64_MAX;
975 static int64_t delta_max, delta_cum, last_clock, delta, ti;
976 static int count;
977 ti = qemu_get_clock(vm_clock);
978 if (last_clock != 0) {
979 delta = ti - last_clock;
980 if (delta < delta_min)
981 delta_min = delta;
982 if (delta > delta_max)
983 delta_max = delta;
984 delta_cum += delta;
985 if (++count == DISP_FREQ) {
986 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
987 muldiv64(delta_min, 1000000, ticks_per_sec),
988 muldiv64(delta_max, 1000000, ticks_per_sec),
989 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
990 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
991 count = 0;
992 delta_min = INT64_MAX;
993 delta_max = 0;
994 delta_cum = 0;
995 }
996 }
997 last_clock = ti;
998 }
999 #endif
1000 if (qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1001 qemu_get_clock(vm_clock)) ||
1002 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1003 qemu_get_clock(rt_clock))) {
1004 #ifdef _WIN32
1005 SetEvent(host_alarm);
1006 #endif
1007 CPUState *env = cpu_single_env;
1008 if (env) {
1009 /* stop the currently executing cpu because a timer occured */
1010 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1011 #ifdef USE_KQEMU
1012 if (env->kqemu_enabled) {
1013 kqemu_cpu_interrupt(env);
1014 }
1015 #endif
1016 }
1017 }
1018 }
1019
1020 #ifndef _WIN32
1021
1022 #if defined(__linux__)
1023
1024 #define RTC_FREQ 1024
1025
1026 static int rtc_fd;
1027
1028 static int start_rtc_timer(void)
1029 {
1030 rtc_fd = open("/dev/rtc", O_RDONLY);
1031 if (rtc_fd < 0)
1032 return -1;
1033 if (ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1034 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1035 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1036 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1037 goto fail;
1038 }
1039 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1040 fail:
1041 close(rtc_fd);
1042 return -1;
1043 }
1044 pit_min_timer_count = PIT_FREQ / RTC_FREQ;
1045 return 0;
1046 }
1047
1048 #else
1049
1050 static int start_rtc_timer(void)
1051 {
1052 return -1;
1053 }
1054
1055 #endif /* !defined(__linux__) */
1056
1057 #endif /* !defined(_WIN32) */
1058
1059 static void init_timer_alarm(void)
1060 {
1061 #ifdef _WIN32
1062 {
1063 int count=0;
1064 TIMECAPS tc;
1065
1066 ZeroMemory(&tc, sizeof(TIMECAPS));
1067 timeGetDevCaps(&tc, sizeof(TIMECAPS));
1068 if (period < tc.wPeriodMin)
1069 period = tc.wPeriodMin;
1070 timeBeginPeriod(period);
1071 timerID = timeSetEvent(1, // interval (ms)
1072 period, // resolution
1073 host_alarm_handler, // function
1074 (DWORD)&count, // user parameter
1075 TIME_PERIODIC | TIME_CALLBACK_FUNCTION);
1076 if( !timerID ) {
1077 perror("failed timer alarm");
1078 exit(1);
1079 }
1080 host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1081 if (!host_alarm) {
1082 perror("failed CreateEvent");
1083 exit(1);
1084 }
1085 qemu_add_wait_object(host_alarm, NULL, NULL);
1086 }
1087 pit_min_timer_count = ((uint64_t)10000 * PIT_FREQ) / 1000000;
1088 #else
1089 {
1090 struct sigaction act;
1091 struct itimerval itv;
1092
1093 /* get times() syscall frequency */
1094 timer_freq = sysconf(_SC_CLK_TCK);
1095
1096 /* timer signal */
1097 sigfillset(&act.sa_mask);
1098 act.sa_flags = 0;
1099 #if defined (TARGET_I386) && defined(USE_CODE_COPY)
1100 act.sa_flags |= SA_ONSTACK;
1101 #endif
1102 act.sa_handler = host_alarm_handler;
1103 sigaction(SIGALRM, &act, NULL);
1104
1105 itv.it_interval.tv_sec = 0;
1106 itv.it_interval.tv_usec = 999; /* for i386 kernel 2.6 to get 1 ms */
1107 itv.it_value.tv_sec = 0;
1108 itv.it_value.tv_usec = 10 * 1000;
1109 setitimer(ITIMER_REAL, &itv, NULL);
1110 /* we probe the tick duration of the kernel to inform the user if
1111 the emulated kernel requested a too high timer frequency */
1112 getitimer(ITIMER_REAL, &itv);
1113
1114 #if defined(__linux__)
1115 /* XXX: force /dev/rtc usage because even 2.6 kernels may not
1116 have timers with 1 ms resolution. The correct solution will
1117 be to use the POSIX real time timers available in recent
1118 2.6 kernels */
1119 if (itv.it_interval.tv_usec > 1000 || 1) {
1120 /* try to use /dev/rtc to have a faster timer */
1121 if (start_rtc_timer() < 0)
1122 goto use_itimer;
1123 /* disable itimer */
1124 itv.it_interval.tv_sec = 0;
1125 itv.it_interval.tv_usec = 0;
1126 itv.it_value.tv_sec = 0;
1127 itv.it_value.tv_usec = 0;
1128 setitimer(ITIMER_REAL, &itv, NULL);
1129
1130 /* use the RTC */
1131 sigaction(SIGIO, &act, NULL);
1132 fcntl(rtc_fd, F_SETFL, O_ASYNC);
1133 fcntl(rtc_fd, F_SETOWN, getpid());
1134 } else
1135 #endif /* defined(__linux__) */
1136 {
1137 use_itimer:
1138 pit_min_timer_count = ((uint64_t)itv.it_interval.tv_usec *
1139 PIT_FREQ) / 1000000;
1140 }
1141 }
1142 #endif
1143 }
1144
1145 void quit_timers(void)
1146 {
1147 #ifdef _WIN32
1148 timeKillEvent(timerID);
1149 timeEndPeriod(period);
1150 if (host_alarm) {
1151 CloseHandle(host_alarm);
1152 host_alarm = NULL;
1153 }
1154 #endif
1155 }
1156
1157 /***********************************************************/
1158 /* character device */
1159
1160 static void qemu_chr_event(CharDriverState *s, int event)
1161 {
1162 if (!s->chr_event)
1163 return;
1164 s->chr_event(s->handler_opaque, event);
1165 }
1166
1167 static void qemu_chr_reset_bh(void *opaque)
1168 {
1169 CharDriverState *s = opaque;
1170 qemu_chr_event(s, CHR_EVENT_RESET);
1171 qemu_bh_delete(s->bh);
1172 s->bh = NULL;
1173 }
1174
1175 void qemu_chr_reset(CharDriverState *s)
1176 {
1177 if (s->bh == NULL) {
1178 s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1179 qemu_bh_schedule(s->bh);
1180 }
1181 }
1182
1183 int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1184 {
1185 return s->chr_write(s, buf, len);
1186 }
1187
1188 int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1189 {
1190 if (!s->chr_ioctl)
1191 return -ENOTSUP;
1192 return s->chr_ioctl(s, cmd, arg);
1193 }
1194
1195 int qemu_chr_can_read(CharDriverState *s)
1196 {
1197 if (!s->chr_can_read)
1198 return 0;
1199 return s->chr_can_read(s->handler_opaque);
1200 }
1201
1202 void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1203 {
1204 s->chr_read(s->handler_opaque, buf, len);
1205 }
1206
1207
1208 void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1209 {
1210 char buf[4096];
1211 va_list ap;
1212 va_start(ap, fmt);
1213 vsnprintf(buf, sizeof(buf), fmt, ap);
1214 qemu_chr_write(s, buf, strlen(buf));
1215 va_end(ap);
1216 }
1217
1218 void qemu_chr_send_event(CharDriverState *s, int event)
1219 {
1220 if (s->chr_send_event)
1221 s->chr_send_event(s, event);
1222 }
1223
1224 void qemu_chr_add_handlers(CharDriverState *s,
1225 IOCanRWHandler *fd_can_read,
1226 IOReadHandler *fd_read,
1227 IOEventHandler *fd_event,
1228 void *opaque)
1229 {
1230 s->chr_can_read = fd_can_read;
1231 s->chr_read = fd_read;
1232 s->chr_event = fd_event;
1233 s->handler_opaque = opaque;
1234 if (s->chr_update_read_handler)
1235 s->chr_update_read_handler(s);
1236 }
1237
1238 static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1239 {
1240 return len;
1241 }
1242
1243 static CharDriverState *qemu_chr_open_null(void)
1244 {
1245 CharDriverState *chr;
1246
1247 chr = qemu_mallocz(sizeof(CharDriverState));
1248 if (!chr)
1249 return NULL;
1250 chr->chr_write = null_chr_write;
1251 return chr;
1252 }
1253
1254 /* MUX driver for serial I/O splitting */
1255 static int term_timestamps;
1256 static int64_t term_timestamps_start;
1257 #define MAX_MUX 4
1258 typedef struct {
1259 IOCanRWHandler *chr_can_read[MAX_MUX];
1260 IOReadHandler *chr_read[MAX_MUX];
1261 IOEventHandler *chr_event[MAX_MUX];
1262 void *ext_opaque[MAX_MUX];
1263 CharDriverState *drv;
1264 int mux_cnt;
1265 int term_got_escape;
1266 int max_size;
1267 } MuxDriver;
1268
1269
1270 static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1271 {
1272 MuxDriver *d = chr->opaque;
1273 int ret;
1274 if (!term_timestamps) {
1275 ret = d->drv->chr_write(d->drv, buf, len);
1276 } else {
1277 int i;
1278
1279 ret = 0;
1280 for(i = 0; i < len; i++) {
1281 ret += d->drv->chr_write(d->drv, buf+i, 1);
1282 if (buf[i] == '\n') {
1283 char buf1[64];
1284 int64_t ti;
1285 int secs;
1286
1287 ti = get_clock();
1288 if (term_timestamps_start == -1)
1289 term_timestamps_start = ti;
1290 ti -= term_timestamps_start;
1291 secs = ti / 1000000000;
1292 snprintf(buf1, sizeof(buf1),
1293 "[%02d:%02d:%02d.%03d] ",
1294 secs / 3600,
1295 (secs / 60) % 60,
1296 secs % 60,
1297 (int)((ti / 1000000) % 1000));
1298 d->drv->chr_write(d->drv, buf1, strlen(buf1));
1299 }
1300 }
1301 }
1302 return ret;
1303 }
1304
1305 static char *mux_help[] = {
1306 "% h print this help\n\r",
1307 "% x exit emulator\n\r",
1308 "% s save disk data back to file (if -snapshot)\n\r",
1309 "% t toggle console timestamps\n\r"
1310 "% b send break (magic sysrq)\n\r",
1311 "% c switch between console and monitor\n\r",
1312 "% % sends %\n\r",
1313 NULL
1314 };
1315
1316 static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1317 static void mux_print_help(CharDriverState *chr)
1318 {
1319 int i, j;
1320 char ebuf[15] = "Escape-Char";
1321 char cbuf[50] = "\n\r";
1322
1323 if (term_escape_char > 0 && term_escape_char < 26) {
1324 sprintf(cbuf,"\n\r");
1325 sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a');
1326 } else {
1327 sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r", term_escape_char);
1328 }
1329 chr->chr_write(chr, cbuf, strlen(cbuf));
1330 for (i = 0; mux_help[i] != NULL; i++) {
1331 for (j=0; mux_help[i][j] != '\0'; j++) {
1332 if (mux_help[i][j] == '%')
1333 chr->chr_write(chr, ebuf, strlen(ebuf));
1334 else
1335 chr->chr_write(chr, &mux_help[i][j], 1);
1336 }
1337 }
1338 }
1339
1340 static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1341 {
1342 if (d->term_got_escape) {
1343 d->term_got_escape = 0;
1344 if (ch == term_escape_char)
1345 goto send_char;
1346 switch(ch) {
1347 case '?':
1348 case 'h':
1349 mux_print_help(chr);
1350 break;
1351 case 'x':
1352 {
1353 char *term = "QEMU: Terminated\n\r";
1354 chr->chr_write(chr,term,strlen(term));
1355 exit(0);
1356 break;
1357 }
1358 case 's':
1359 {
1360 int i;
1361 for (i = 0; i < MAX_DISKS; i++) {
1362 if (bs_table[i])
1363 bdrv_commit(bs_table[i]);
1364 }
1365 }
1366 break;
1367 case 'b':
1368 qemu_chr_event(chr, CHR_EVENT_BREAK);
1369 break;
1370 case 'c':
1371 /* Switch to the next registered device */
1372 chr->focus++;
1373 if (chr->focus >= d->mux_cnt)
1374 chr->focus = 0;
1375 break;
1376 case 't':
1377 term_timestamps = !term_timestamps;
1378 term_timestamps_start = -1;
1379 break;
1380 }
1381 } else if (ch == term_escape_char) {
1382 d->term_got_escape = 1;
1383 } else {
1384 send_char:
1385 return 1;
1386 }
1387 return 0;
1388 }
1389
1390 static int mux_chr_can_read(void *opaque)
1391 {
1392 CharDriverState *chr = opaque;
1393 MuxDriver *d = chr->opaque;
1394 if (d->chr_can_read[chr->focus])
1395 return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
1396 return 0;
1397 }
1398
1399 static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
1400 {
1401 CharDriverState *chr = opaque;
1402 MuxDriver *d = chr->opaque;
1403 int i;
1404 for(i = 0; i < size; i++)
1405 if (mux_proc_byte(chr, d, buf[i]))
1406 d->chr_read[chr->focus](d->ext_opaque[chr->focus], &buf[i], 1);
1407 }
1408
1409 static void mux_chr_event(void *opaque, int event)
1410 {
1411 CharDriverState *chr = opaque;
1412 MuxDriver *d = chr->opaque;
1413 int i;
1414
1415 /* Send the event to all registered listeners */
1416 for (i = 0; i < d->mux_cnt; i++)
1417 if (d->chr_event[i])
1418 d->chr_event[i](d->ext_opaque[i], event);
1419 }
1420
1421 static void mux_chr_update_read_handler(CharDriverState *chr)
1422 {
1423 MuxDriver *d = chr->opaque;
1424
1425 if (d->mux_cnt >= MAX_MUX) {
1426 fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
1427 return;
1428 }
1429 d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
1430 d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
1431 d->chr_read[d->mux_cnt] = chr->chr_read;
1432 d->chr_event[d->mux_cnt] = chr->chr_event;
1433 /* Fix up the real driver with mux routines */
1434 if (d->mux_cnt == 0) {
1435 qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
1436 mux_chr_event, chr);
1437 }
1438 chr->focus = d->mux_cnt;
1439 d->mux_cnt++;
1440 }
1441
1442 CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
1443 {
1444 CharDriverState *chr;
1445 MuxDriver *d;
1446
1447 chr = qemu_mallocz(sizeof(CharDriverState));
1448 if (!chr)
1449 return NULL;
1450 d = qemu_mallocz(sizeof(MuxDriver));
1451 if (!d) {
1452 free(chr);
1453 return NULL;
1454 }
1455
1456 chr->opaque = d;
1457 d->drv = drv;
1458 chr->focus = -1;
1459 chr->chr_write = mux_chr_write;
1460 chr->chr_update_read_handler = mux_chr_update_read_handler;
1461 return chr;
1462 }
1463
1464
1465 #ifdef _WIN32
1466
1467 static void socket_cleanup(void)
1468 {
1469 WSACleanup();
1470 }
1471
1472 static int socket_init(void)
1473 {
1474 WSADATA Data;
1475 int ret, err;
1476
1477 ret = WSAStartup(MAKEWORD(2,2), &Data);
1478 if (ret != 0) {
1479 err = WSAGetLastError();
1480 fprintf(stderr, "WSAStartup: %d\n", err);
1481 return -1;
1482 }
1483 atexit(socket_cleanup);
1484 return 0;
1485 }
1486
1487 static int send_all(int fd, const uint8_t *buf, int len1)
1488 {
1489 int ret, len;
1490
1491 len = len1;
1492 while (len > 0) {
1493 ret = send(fd, buf, len, 0);
1494 if (ret < 0) {
1495 int errno;
1496 errno = WSAGetLastError();
1497 if (errno != WSAEWOULDBLOCK) {
1498 return -1;
1499 }
1500 } else if (ret == 0) {
1501 break;
1502 } else {
1503 buf += ret;
1504 len -= ret;
1505 }
1506 }
1507 return len1 - len;
1508 }
1509
1510 void socket_set_nonblock(int fd)
1511 {
1512 unsigned long opt = 1;
1513 ioctlsocket(fd, FIONBIO, &opt);
1514 }
1515
1516 #else
1517
1518 static int unix_write(int fd, const uint8_t *buf, int len1)
1519 {
1520 int ret, len;
1521
1522 len = len1;
1523 while (len > 0) {
1524 ret = write(fd, buf, len);
1525 if (ret < 0) {
1526 if (errno != EINTR && errno != EAGAIN)
1527 return -1;
1528 } else if (ret == 0) {
1529 break;
1530 } else {
1531 buf += ret;
1532 len -= ret;
1533 }
1534 }
1535 return len1 - len;
1536 }
1537
1538 static inline int send_all(int fd, const uint8_t *buf, int len1)
1539 {
1540 return unix_write(fd, buf, len1);
1541 }
1542
1543 void socket_set_nonblock(int fd)
1544 {
1545 fcntl(fd, F_SETFL, O_NONBLOCK);
1546 }
1547 #endif /* !_WIN32 */
1548
1549 #ifndef _WIN32
1550
1551 typedef struct {
1552 int fd_in, fd_out;
1553 int max_size;
1554 } FDCharDriver;
1555
1556 #define STDIO_MAX_CLIENTS 1
1557 static int stdio_nb_clients = 0;
1558
1559 static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1560 {
1561 FDCharDriver *s = chr->opaque;
1562 return unix_write(s->fd_out, buf, len);
1563 }
1564
1565 static int fd_chr_read_poll(void *opaque)
1566 {
1567 CharDriverState *chr = opaque;
1568 FDCharDriver *s = chr->opaque;
1569
1570 s->max_size = qemu_chr_can_read(chr);
1571 return s->max_size;
1572 }
1573
1574 static void fd_chr_read(void *opaque)
1575 {
1576 CharDriverState *chr = opaque;
1577 FDCharDriver *s = chr->opaque;
1578 int size, len;
1579 uint8_t buf[1024];
1580
1581 len = sizeof(buf);
1582 if (len > s->max_size)
1583 len = s->max_size;
1584 if (len == 0)
1585 return;
1586 size = read(s->fd_in, buf, len);
1587 if (size == 0) {
1588 /* FD has been closed. Remove it from the active list. */
1589 qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
1590 return;
1591 }
1592 if (size > 0) {
1593 qemu_chr_read(chr, buf, size);
1594 }
1595 }
1596
1597 static void fd_chr_update_read_handler(CharDriverState *chr)
1598 {
1599 FDCharDriver *s = chr->opaque;
1600
1601 if (s->fd_in >= 0) {
1602 if (nographic && s->fd_in == 0) {
1603 } else {
1604 qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
1605 fd_chr_read, NULL, chr);
1606 }
1607 }
1608 }
1609
1610 /* open a character device to a unix fd */
1611 static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
1612 {
1613 CharDriverState *chr;
1614 FDCharDriver *s;
1615
1616 chr = qemu_mallocz(sizeof(CharDriverState));
1617 if (!chr)
1618 return NULL;
1619 s = qemu_mallocz(sizeof(FDCharDriver));
1620 if (!s) {
1621 free(chr);
1622 return NULL;
1623 }
1624 s->fd_in = fd_in;
1625 s->fd_out = fd_out;
1626 chr->opaque = s;
1627 chr->chr_write = fd_chr_write;
1628 chr->chr_update_read_handler = fd_chr_update_read_handler;
1629
1630 qemu_chr_reset(chr);
1631
1632 return chr;
1633 }
1634
1635 static CharDriverState *qemu_chr_open_file_out(const char *file_out)
1636 {
1637 int fd_out;
1638
1639 fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666);
1640 if (fd_out < 0)
1641 return NULL;
1642 return qemu_chr_open_fd(-1, fd_out);
1643 }
1644
1645 static CharDriverState *qemu_chr_open_pipe(const char *filename)
1646 {
1647 int fd_in, fd_out;
1648 char filename_in[256], filename_out[256];
1649
1650 snprintf(filename_in, 256, "%s.in", filename);
1651 snprintf(filename_out, 256, "%s.out", filename);
1652 fd_in = open(filename_in, O_RDWR | O_BINARY);
1653 fd_out = open(filename_out, O_RDWR | O_BINARY);
1654 if (fd_in < 0 || fd_out < 0) {
1655 if (fd_in >= 0)
1656 close(fd_in);
1657 if (fd_out >= 0)
1658 close(fd_out);
1659 fd_in = fd_out = open(filename, O_RDWR | O_BINARY);
1660 if (fd_in < 0)
1661 return NULL;
1662 }
1663 return qemu_chr_open_fd(fd_in, fd_out);
1664 }
1665
1666
1667 /* for STDIO, we handle the case where several clients use it
1668 (nographic mode) */
1669
1670 #define TERM_FIFO_MAX_SIZE 1
1671
1672 static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
1673 static int term_fifo_size;
1674
1675 static int stdio_read_poll(void *opaque)
1676 {
1677 CharDriverState *chr = opaque;
1678
1679 /* try to flush the queue if needed */
1680 if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
1681 qemu_chr_read(chr, term_fifo, 1);
1682 term_fifo_size = 0;
1683 }
1684 /* see if we can absorb more chars */
1685 if (term_fifo_size == 0)
1686 return 1;
1687 else
1688 return 0;
1689 }
1690
1691 static void stdio_read(void *opaque)
1692 {
1693 int size;
1694 uint8_t buf[1];
1695 CharDriverState *chr = opaque;
1696
1697 size = read(0, buf, 1);
1698 if (size == 0) {
1699 /* stdin has been closed. Remove it from the active list. */
1700 qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
1701 return;
1702 }
1703 if (size > 0) {
1704 if (qemu_chr_can_read(chr) > 0) {
1705 qemu_chr_read(chr, buf, 1);
1706 } else if (term_fifo_size == 0) {
1707 term_fifo[term_fifo_size++] = buf[0];
1708 }
1709 }
1710 }
1711
1712 /* init terminal so that we can grab keys */
1713 static struct termios oldtty;
1714 static int old_fd0_flags;
1715
1716 static void term_exit(void)
1717 {
1718 tcsetattr (0, TCSANOW, &oldtty);
1719 fcntl(0, F_SETFL, old_fd0_flags);
1720 }
1721
1722 static void term_init(void)
1723 {
1724 struct termios tty;
1725
1726 tcgetattr (0, &tty);
1727 oldtty = tty;
1728 old_fd0_flags = fcntl(0, F_GETFL);
1729
1730 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1731 |INLCR|IGNCR|ICRNL|IXON);
1732 tty.c_oflag |= OPOST;
1733 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
1734 /* if graphical mode, we allow Ctrl-C handling */
1735 if (nographic)
1736 tty.c_lflag &= ~ISIG;
1737 tty.c_cflag &= ~(CSIZE|PARENB);
1738 tty.c_cflag |= CS8;
1739 tty.c_cc[VMIN] = 1;
1740 tty.c_cc[VTIME] = 0;
1741
1742 tcsetattr (0, TCSANOW, &tty);
1743
1744 atexit(term_exit);
1745
1746 fcntl(0, F_SETFL, O_NONBLOCK);
1747 }
1748
1749 static CharDriverState *qemu_chr_open_stdio(void)
1750 {
1751 CharDriverState *chr;
1752
1753 if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
1754 return NULL;
1755 chr = qemu_chr_open_fd(0, 1);
1756 qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
1757 stdio_nb_clients++;
1758 term_init();
1759
1760 return chr;
1761 }
1762
1763 #if defined(__linux__)
1764 static CharDriverState *qemu_chr_open_pty(void)
1765 {
1766 struct termios tty;
1767 char slave_name[1024];
1768 int master_fd, slave_fd;
1769
1770 /* Not satisfying */
1771 if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
1772 return NULL;
1773 }
1774
1775 /* Disabling local echo and line-buffered output */
1776 tcgetattr (master_fd, &tty);
1777 tty.c_lflag &= ~(ECHO|ICANON|ISIG);
1778 tty.c_cc[VMIN] = 1;
1779 tty.c_cc[VTIME] = 0;
1780 tcsetattr (master_fd, TCSAFLUSH, &tty);
1781
1782 fprintf(stderr, "char device redirected to %s\n", slave_name);
1783 return qemu_chr_open_fd(master_fd, master_fd);
1784 }
1785
1786 static void tty_serial_init(int fd, int speed,
1787 int parity, int data_bits, int stop_bits)
1788 {
1789 struct termios tty;
1790 speed_t spd;
1791
1792 #if 0
1793 printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
1794 speed, parity, data_bits, stop_bits);
1795 #endif
1796 tcgetattr (fd, &tty);
1797
1798 switch(speed) {
1799 case 50:
1800 spd = B50;
1801 break;
1802 case 75:
1803 spd = B75;
1804 break;
1805 case 300:
1806 spd = B300;
1807 break;
1808 case 600:
1809 spd = B600;
1810 break;
1811 case 1200:
1812 spd = B1200;
1813 break;
1814 case 2400:
1815 spd = B2400;
1816 break;
1817 case 4800:
1818 spd = B4800;
1819 break;
1820 case 9600:
1821 spd = B9600;
1822 break;
1823 case 19200:
1824 spd = B19200;
1825 break;
1826 case 38400:
1827 spd = B38400;
1828 break;
1829 case 57600:
1830 spd = B57600;
1831 break;
1832 default:
1833 case 115200:
1834 spd = B115200;
1835 break;
1836 }
1837
1838 cfsetispeed(&tty, spd);
1839 cfsetospeed(&tty, spd);
1840
1841 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1842 |INLCR|IGNCR|ICRNL|IXON);
1843 tty.c_oflag |= OPOST;
1844 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
1845 tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
1846 switch(data_bits) {
1847 default:
1848 case 8:
1849 tty.c_cflag |= CS8;
1850 break;
1851 case 7:
1852 tty.c_cflag |= CS7;
1853 break;
1854 case 6:
1855 tty.c_cflag |= CS6;
1856 break;
1857 case 5:
1858 tty.c_cflag |= CS5;
1859 break;
1860 }
1861 switch(parity) {
1862 default:
1863 case 'N':
1864 break;
1865 case 'E':
1866 tty.c_cflag |= PARENB;
1867 break;
1868 case 'O':
1869 tty.c_cflag |= PARENB | PARODD;
1870 break;
1871 }
1872 if (stop_bits == 2)
1873 tty.c_cflag |= CSTOPB;
1874
1875 tcsetattr (fd, TCSANOW, &tty);
1876 }
1877
1878 static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
1879 {
1880 FDCharDriver *s = chr->opaque;
1881
1882 switch(cmd) {
1883 case CHR_IOCTL_SERIAL_SET_PARAMS:
1884 {
1885 QEMUSerialSetParams *ssp = arg;
1886 tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
1887 ssp->data_bits, ssp->stop_bits);
1888 }
1889 break;
1890 case CHR_IOCTL_SERIAL_SET_BREAK:
1891 {
1892 int enable = *(int *)arg;
1893 if (enable)
1894 tcsendbreak(s->fd_in, 1);
1895 }
1896 break;
1897 default:
1898 return -ENOTSUP;
1899 }
1900 return 0;
1901 }
1902
1903 static CharDriverState *qemu_chr_open_tty(const char *filename)
1904 {
1905 CharDriverState *chr;
1906 int fd;
1907
1908 fd = open(filename, O_RDWR | O_NONBLOCK);
1909 if (fd < 0)
1910 return NULL;
1911 fcntl(fd, F_SETFL, O_NONBLOCK);
1912 tty_serial_init(fd, 115200, 'N', 8, 1);
1913 chr = qemu_chr_open_fd(fd, fd);
1914 if (!chr)
1915 return NULL;
1916 chr->chr_ioctl = tty_serial_ioctl;
1917 qemu_chr_reset(chr);
1918 return chr;
1919 }
1920
1921 typedef struct {
1922 int fd;
1923 int mode;
1924 } ParallelCharDriver;
1925
1926 static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
1927 {
1928 if (s->mode != mode) {
1929 int m = mode;
1930 if (ioctl(s->fd, PPSETMODE, &m) < 0)
1931 return 0;
1932 s->mode = mode;
1933 }
1934 return 1;
1935 }
1936
1937 static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
1938 {
1939 ParallelCharDriver *drv = chr->opaque;
1940 int fd = drv->fd;
1941 uint8_t b;
1942
1943 switch(cmd) {
1944 case CHR_IOCTL_PP_READ_DATA:
1945 if (ioctl(fd, PPRDATA, &b) < 0)
1946 return -ENOTSUP;
1947 *(uint8_t *)arg = b;
1948 break;
1949 case CHR_IOCTL_PP_WRITE_DATA:
1950 b = *(uint8_t *)arg;
1951 if (ioctl(fd, PPWDATA, &b) < 0)
1952 return -ENOTSUP;
1953 break;
1954 case CHR_IOCTL_PP_READ_CONTROL:
1955 if (ioctl(fd, PPRCONTROL, &b) < 0)
1956 return -ENOTSUP;
1957 /* Linux gives only the lowest bits, and no way to know data
1958 direction! For better compatibility set the fixed upper
1959 bits. */
1960 *(uint8_t *)arg = b | 0xc0;
1961 break;
1962 case CHR_IOCTL_PP_WRITE_CONTROL:
1963 b = *(uint8_t *)arg;
1964 if (ioctl(fd, PPWCONTROL, &b) < 0)
1965 return -ENOTSUP;
1966 break;
1967 case CHR_IOCTL_PP_READ_STATUS:
1968 if (ioctl(fd, PPRSTATUS, &b) < 0)
1969 return -ENOTSUP;
1970 *(uint8_t *)arg = b;
1971 break;
1972 case CHR_IOCTL_PP_EPP_READ_ADDR:
1973 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
1974 struct ParallelIOArg *parg = arg;
1975 int n = read(fd, parg->buffer, parg->count);
1976 if (n != parg->count) {
1977 return -EIO;
1978 }
1979 }
1980 break;
1981 case CHR_IOCTL_PP_EPP_READ:
1982 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
1983 struct ParallelIOArg *parg = arg;
1984 int n = read(fd, parg->buffer, parg->count);
1985 if (n != parg->count) {
1986 return -EIO;
1987 }
1988 }
1989 break;
1990 case CHR_IOCTL_PP_EPP_WRITE_ADDR:
1991 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
1992 struct ParallelIOArg *parg = arg;
1993 int n = write(fd, parg->buffer, parg->count);
1994 if (n != parg->count) {
1995 return -EIO;
1996 }
1997 }
1998 break;
1999 case CHR_IOCTL_PP_EPP_WRITE:
2000 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2001 struct ParallelIOArg *parg = arg;
2002 int n = write(fd, parg->buffer, parg->count);
2003 if (n != parg->count) {
2004 return -EIO;
2005 }
2006 }
2007 break;
2008 default:
2009 return -ENOTSUP;
2010 }
2011 return 0;
2012 }
2013
2014 static void pp_close(CharDriverState *chr)
2015 {
2016 ParallelCharDriver *drv = chr->opaque;
2017 int fd = drv->fd;
2018
2019 pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2020 ioctl(fd, PPRELEASE);
2021 close(fd);
2022 qemu_free(drv);
2023 }
2024
2025 static CharDriverState *qemu_chr_open_pp(const char *filename)
2026 {
2027 CharDriverState *chr;
2028 ParallelCharDriver *drv;
2029 int fd;
2030
2031 fd = open(filename, O_RDWR);
2032 if (fd < 0)
2033 return NULL;
2034
2035 if (ioctl(fd, PPCLAIM) < 0) {
2036 close(fd);
2037 return NULL;
2038 }
2039
2040 drv = qemu_mallocz(sizeof(ParallelCharDriver));
2041 if (!drv) {
2042 close(fd);
2043 return NULL;
2044 }
2045 drv->fd = fd;
2046 drv->mode = IEEE1284_MODE_COMPAT;
2047
2048 chr = qemu_mallocz(sizeof(CharDriverState));
2049 if (!chr) {
2050 qemu_free(drv);
2051 close(fd);
2052 return NULL;
2053 }
2054 chr->chr_write = null_chr_write;
2055 chr->chr_ioctl = pp_ioctl;
2056 chr->chr_close = pp_close;
2057 chr->opaque = drv;
2058
2059 qemu_chr_reset(chr);
2060
2061 return chr;
2062 }
2063
2064 #else
2065 static CharDriverState *qemu_chr_open_pty(void)
2066 {
2067 return NULL;
2068 }
2069 #endif
2070
2071 #endif /* !defined(_WIN32) */
2072
2073 #ifdef _WIN32
2074 typedef struct {
2075 int max_size;
2076 HANDLE hcom, hrecv, hsend;
2077 OVERLAPPED orecv, osend;
2078 BOOL fpipe;
2079 DWORD len;
2080 } WinCharState;
2081
2082 #define NSENDBUF 2048
2083 #define NRECVBUF 2048
2084 #define MAXCONNECT 1
2085 #define NTIMEOUT 5000
2086
2087 static int win_chr_poll(void *opaque);
2088 static int win_chr_pipe_poll(void *opaque);
2089
2090 static void win_chr_close(CharDriverState *chr)
2091 {
2092 WinCharState *s = chr->opaque;
2093
2094 if (s->hsend) {
2095 CloseHandle(s->hsend);
2096 s->hsend = NULL;
2097 }
2098 if (s->hrecv) {
2099 CloseHandle(s->hrecv);
2100 s->hrecv = NULL;
2101 }
2102 if (s->hcom) {
2103 CloseHandle(s->hcom);
2104 s->hcom = NULL;
2105 }
2106 if (s->fpipe)
2107 qemu_del_polling_cb(win_chr_pipe_poll, chr);
2108 else
2109 qemu_del_polling_cb(win_chr_poll, chr);
2110 }
2111
2112 static int win_chr_init(CharDriverState *chr, const char *filename)
2113 {
2114 WinCharState *s = chr->opaque;
2115 COMMCONFIG comcfg;
2116 COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2117 COMSTAT comstat;
2118 DWORD size;
2119 DWORD err;
2120
2121 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2122 if (!s->hsend) {
2123 fprintf(stderr, "Failed CreateEvent\n");
2124 goto fail;
2125 }
2126 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2127 if (!s->hrecv) {
2128 fprintf(stderr, "Failed CreateEvent\n");
2129 goto fail;
2130 }
2131
2132 s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2133 OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2134 if (s->hcom == INVALID_HANDLE_VALUE) {
2135 fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2136 s->hcom = NULL;
2137 goto fail;
2138 }
2139
2140 if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
2141 fprintf(stderr, "Failed SetupComm\n");
2142 goto fail;
2143 }
2144
2145 ZeroMemory(&comcfg, sizeof(COMMCONFIG));
2146 size = sizeof(COMMCONFIG);
2147 GetDefaultCommConfig(filename, &comcfg, &size);
2148 comcfg.dcb.DCBlength = sizeof(DCB);
2149 CommConfigDialog(filename, NULL, &comcfg);
2150
2151 if (!SetCommState(s->hcom, &comcfg.dcb)) {
2152 fprintf(stderr, "Failed SetCommState\n");
2153 goto fail;
2154 }
2155
2156 if (!SetCommMask(s->hcom, EV_ERR)) {
2157 fprintf(stderr, "Failed SetCommMask\n");
2158 goto fail;
2159 }
2160
2161 cto.ReadIntervalTimeout = MAXDWORD;
2162 if (!SetCommTimeouts(s->hcom, &cto)) {
2163 fprintf(stderr, "Failed SetCommTimeouts\n");
2164 goto fail;
2165 }
2166
2167 if (!ClearCommError(s->hcom, &err, &comstat)) {
2168 fprintf(stderr, "Failed ClearCommError\n");
2169 goto fail;
2170 }
2171 qemu_add_polling_cb(win_chr_poll, chr);
2172 return 0;
2173
2174 fail:
2175 win_chr_close(chr);
2176 return -1;
2177 }
2178
2179 static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
2180 {
2181 WinCharState *s = chr->opaque;
2182 DWORD len, ret, size, err;
2183
2184 len = len1;
2185 ZeroMemory(&s->osend, sizeof(s->osend));
2186 s->osend.hEvent = s->hsend;
2187 while (len > 0) {
2188 if (s->hsend)
2189 ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
2190 else
2191 ret = WriteFile(s->hcom, buf, len, &size, NULL);
2192 if (!ret) {
2193 err = GetLastError();
2194 if (err == ERROR_IO_PENDING) {
2195 ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
2196 if (ret) {
2197 buf += size;
2198 len -= size;
2199 } else {
2200 break;
2201 }
2202 } else {
2203 break;
2204 }
2205 } else {
2206 buf += size;
2207 len -= size;
2208 }
2209 }
2210 return len1 - len;
2211 }
2212
2213 static int win_chr_read_poll(CharDriverState *chr)
2214 {
2215 WinCharState *s = chr->opaque;
2216
2217 s->max_size = qemu_chr_can_read(chr);
2218 return s->max_size;
2219 }
2220
2221 static void win_chr_readfile(CharDriverState *chr)
2222 {
2223 WinCharState *s = chr->opaque;
2224 int ret, err;
2225 uint8_t buf[1024];
2226 DWORD size;
2227
2228 ZeroMemory(&s->orecv, sizeof(s->orecv));
2229 s->orecv.hEvent = s->hrecv;
2230 ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
2231 if (!ret) {
2232 err = GetLastError();
2233 if (err == ERROR_IO_PENDING) {
2234 ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
2235 }
2236 }
2237
2238 if (size > 0) {
2239 qemu_chr_read(chr, buf, size);
2240 }
2241 }
2242
2243 static void win_chr_read(CharDriverState *chr)
2244 {
2245 WinCharState *s = chr->opaque;
2246
2247 if (s->len > s->max_size)
2248 s->len = s->max_size;
2249 if (s->len == 0)
2250 return;
2251
2252 win_chr_readfile(chr);
2253 }
2254
2255 static int win_chr_poll(void *opaque)
2256 {
2257 CharDriverState *chr = opaque;
2258 WinCharState *s = chr->opaque;
2259 COMSTAT status;
2260 DWORD comerr;
2261
2262 ClearCommError(s->hcom, &comerr, &status);
2263 if (status.cbInQue > 0) {
2264 s->len = status.cbInQue;
2265 win_chr_read_poll(chr);
2266 win_chr_read(chr);
2267 return 1;
2268 }
2269 return 0;
2270 }
2271
2272 static CharDriverState *qemu_chr_open_win(const char *filename)
2273 {
2274 CharDriverState *chr;
2275 WinCharState *s;
2276
2277 chr = qemu_mallocz(sizeof(CharDriverState));
2278 if (!chr)
2279 return NULL;
2280 s = qemu_mallocz(sizeof(WinCharState));
2281 if (!s) {
2282 free(chr);
2283 return NULL;
2284 }
2285 chr->opaque = s;
2286 chr->chr_write = win_chr_write;
2287 chr->chr_close = win_chr_close;
2288
2289 if (win_chr_init(chr, filename) < 0) {
2290 free(s);
2291 free(chr);
2292 return NULL;
2293 }
2294 qemu_chr_reset(chr);
2295 return chr;
2296 }
2297
2298 static int win_chr_pipe_poll(void *opaque)
2299 {
2300 CharDriverState *chr = opaque;
2301 WinCharState *s = chr->opaque;
2302 DWORD size;
2303
2304 PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
2305 if (size > 0) {
2306 s->len = size;
2307 win_chr_read_poll(chr);
2308 win_chr_read(chr);
2309 return 1;
2310 }
2311 return 0;
2312 }
2313
2314 static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
2315 {
2316 WinCharState *s = chr->opaque;
2317 OVERLAPPED ov;
2318 int ret;
2319 DWORD size;
2320 char openname[256];
2321
2322 s->fpipe = TRUE;
2323
2324 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2325 if (!s->hsend) {
2326 fprintf(stderr, "Failed CreateEvent\n");
2327 goto fail;
2328 }
2329 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2330 if (!s->hrecv) {
2331 fprintf(stderr, "Failed CreateEvent\n");
2332 goto fail;
2333 }
2334
2335 snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2336 s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2337 PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2338 PIPE_WAIT,
2339 MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2340 if (s->hcom == INVALID_HANDLE_VALUE) {
2341 fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2342 s->hcom = NULL;
2343 goto fail;
2344 }
2345
2346 ZeroMemory(&ov, sizeof(ov));
2347 ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2348 ret = ConnectNamedPipe(s->hcom, &ov);
2349 if (ret) {
2350 fprintf(stderr, "Failed ConnectNamedPipe\n");
2351 goto fail;
2352 }
2353
2354 ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2355 if (!ret) {
2356 fprintf(stderr, "Failed GetOverlappedResult\n");
2357 if (ov.hEvent) {
2358 CloseHandle(ov.hEvent);
2359 ov.hEvent = NULL;
2360 }
2361 goto fail;
2362 }
2363
2364 if (ov.hEvent) {
2365 CloseHandle(ov.hEvent);
2366 ov.hEvent = NULL;
2367 }
2368 qemu_add_polling_cb(win_chr_pipe_poll, chr);
2369 return 0;
2370
2371 fail:
2372 win_chr_close(chr);
2373 return -1;
2374 }
2375
2376
2377 static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2378 {
2379 CharDriverState *chr;
2380 WinCharState *s;
2381
2382 chr = qemu_mallocz(sizeof(CharDriverState));
2383 if (!chr)
2384 return NULL;
2385 s = qemu_mallocz(sizeof(WinCharState));
2386 if (!s) {
2387 free(chr);
2388 return NULL;
2389 }
2390 chr->opaque = s;
2391 chr->chr_write = win_chr_write;
2392 chr->chr_close = win_chr_close;
2393
2394 if (win_chr_pipe_init(chr, filename) < 0) {
2395 free(s);
2396 free(chr);
2397 return NULL;
2398 }
2399 qemu_chr_reset(chr);
2400 return chr;
2401 }
2402
2403 static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2404 {
2405 CharDriverState *chr;
2406 WinCharState *s;
2407
2408 chr = qemu_mallocz(sizeof(CharDriverState));
2409 if (!chr)
2410 return NULL;
2411 s = qemu_mallocz(sizeof(WinCharState));
2412 if (!s) {
2413 free(chr);
2414 return NULL;
2415 }
2416 s->hcom = fd_out;
2417 chr->opaque = s;
2418 chr->chr_write = win_chr_write;
2419 qemu_chr_reset(chr);
2420 return chr;
2421 }
2422
2423 static CharDriverState *qemu_chr_open_win_con(const char *filename)
2424 {
2425 return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
2426 }
2427
2428 static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2429 {
2430 HANDLE fd_out;
2431
2432 fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2433 OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2434 if (fd_out == INVALID_HANDLE_VALUE)
2435 return NULL;
2436
2437 return qemu_chr_open_win_file(fd_out);
2438 }
2439 #endif
2440
2441 /***********************************************************/
2442 /* UDP Net console */
2443
2444 typedef struct {
2445 int fd;
2446 struct sockaddr_in daddr;
2447 char buf[1024];
2448 int bufcnt;
2449 int bufptr;
2450 int max_size;
2451 } NetCharDriver;
2452
2453 static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2454 {
2455 NetCharDriver *s = chr->opaque;
2456
2457 return sendto(s->fd, buf, len, 0,
2458 (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
2459 }
2460
2461 static int udp_chr_read_poll(void *opaque)
2462 {
2463 CharDriverState *chr = opaque;
2464 NetCharDriver *s = chr->opaque;
2465
2466 s->max_size = qemu_chr_can_read(chr);
2467
2468 /* If there were any stray characters in the queue process them
2469 * first
2470 */
2471 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2472 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2473 s->bufptr++;
2474 s->max_size = qemu_chr_can_read(chr);
2475 }
2476 return s->max_size;
2477 }
2478
2479 static void udp_chr_read(void *opaque)
2480 {
2481 CharDriverState *chr = opaque;
2482 NetCharDriver *s = chr->opaque;
2483
2484 if (s->max_size == 0)
2485 return;
2486 s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
2487 s->bufptr = s->bufcnt;
2488 if (s->bufcnt <= 0)
2489 return;
2490
2491 s->bufptr = 0;
2492 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2493 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2494 s->bufptr++;
2495 s->max_size = qemu_chr_can_read(chr);
2496 }
2497 }
2498
2499 static void udp_chr_update_read_handler(CharDriverState *chr)
2500 {
2501 NetCharDriver *s = chr->opaque;
2502
2503 if (s->fd >= 0) {
2504 qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
2505 udp_chr_read, NULL, chr);
2506 }
2507 }
2508
2509 int parse_host_port(struct sockaddr_in *saddr, const char *str);
2510 #ifndef _WIN32
2511 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
2512 #endif
2513 int parse_host_src_port(struct sockaddr_in *haddr,
2514 struct sockaddr_in *saddr,
2515 const char *str);
2516
2517 static CharDriverState *qemu_chr_open_udp(const char *def)
2518 {
2519 CharDriverState *chr = NULL;
2520 NetCharDriver *s = NULL;
2521 int fd = -1;
2522 struct sockaddr_in saddr;
2523
2524 chr = qemu_mallocz(sizeof(CharDriverState));
2525 if (!chr)
2526 goto return_err;
2527 s = qemu_mallocz(sizeof(NetCharDriver));
2528 if (!s)
2529 goto return_err;
2530
2531 fd = socket(PF_INET, SOCK_DGRAM, 0);
2532 if (fd < 0) {
2533 perror("socket(PF_INET, SOCK_DGRAM)");
2534 goto return_err;
2535 }
2536
2537 if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
2538 printf("Could not parse: %s\n", def);
2539 goto return_err;
2540 }
2541
2542 if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
2543 {
2544 perror("bind");
2545 goto return_err;
2546 }
2547
2548 s->fd = fd;
2549 s->bufcnt = 0;
2550 s->bufptr = 0;
2551 chr->opaque = s;
2552 chr->chr_write = udp_chr_write;
2553 chr->chr_update_read_handler = udp_chr_update_read_handler;
2554 return chr;
2555
2556 return_err:
2557 if (chr)
2558 free(chr);
2559 if (s)
2560 free(s);
2561 if (fd >= 0)
2562 closesocket(fd);
2563 return NULL;
2564 }
2565
2566 /***********************************************************/
2567 /* TCP Net console */
2568
2569 typedef struct {
2570 int fd, listen_fd;
2571 int connected;
2572 int max_size;
2573 int do_telnetopt;
2574 int do_nodelay;
2575 int is_unix;
2576 } TCPCharDriver;
2577
2578 static void tcp_chr_accept(void *opaque);
2579
2580 static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2581 {
2582 TCPCharDriver *s = chr->opaque;
2583 if (s->connected) {
2584 return send_all(s->fd, buf, len);
2585 } else {
2586 /* XXX: indicate an error ? */
2587 return len;
2588 }
2589 }
2590
2591 static int tcp_chr_read_poll(void *opaque)
2592 {
2593 CharDriverState *chr = opaque;
2594 TCPCharDriver *s = chr->opaque;
2595 if (!s->connected)
2596 return 0;
2597 s->max_size = qemu_chr_can_read(chr);
2598 return s->max_size;
2599 }
2600
2601 #define IAC 255
2602 #define IAC_BREAK 243
2603 static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
2604 TCPCharDriver *s,
2605 char *buf, int *size)
2606 {
2607 /* Handle any telnet client's basic IAC options to satisfy char by
2608 * char mode with no echo. All IAC options will be removed from
2609 * the buf and the do_telnetopt variable will be used to track the
2610 * state of the width of the IAC information.
2611 *
2612 * IAC commands come in sets of 3 bytes with the exception of the
2613 * "IAC BREAK" command and the double IAC.
2614 */
2615
2616 int i;
2617 int j = 0;
2618
2619 for (i = 0; i < *size; i++) {
2620 if (s->do_telnetopt > 1) {
2621 if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
2622 /* Double IAC means send an IAC */
2623 if (j != i)
2624 buf[j] = buf[i];
2625 j++;
2626 s->do_telnetopt = 1;
2627 } else {
2628 if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
2629 /* Handle IAC break commands by sending a serial break */
2630 qemu_chr_event(chr, CHR_EVENT_BREAK);
2631 s->do_telnetopt++;
2632 }
2633 s->do_telnetopt++;
2634 }
2635 if (s->do_telnetopt >= 4) {
2636 s->do_telnetopt = 1;
2637 }
2638 } else {
2639 if ((unsigned char)buf[i] == IAC) {
2640 s->do_telnetopt = 2;
2641 } else {
2642 if (j != i)
2643 buf[j] = buf[i];
2644 j++;
2645 }
2646 }
2647 }
2648 *size = j;
2649 }
2650
2651 static void tcp_chr_read(void *opaque)
2652 {
2653 CharDriverState *chr = opaque;
2654 TCPCharDriver *s = chr->opaque;
2655 uint8_t buf[1024];
2656 int len, size;
2657
2658 if (!s->connected || s->max_size <= 0)
2659 return;
2660 len = sizeof(buf);
2661 if (len > s->max_size)
2662 len = s->max_size;
2663 size = recv(s->fd, buf, len, 0);
2664 if (size == 0) {
2665 /* connection closed */
2666 s->connected = 0;
2667 if (s->listen_fd >= 0) {
2668 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
2669 }
2670 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
2671 closesocket(s->fd);
2672 s->fd = -1;
2673 } else if (size > 0) {
2674 if (s->do_telnetopt)
2675 tcp_chr_process_IAC_bytes(chr, s, buf, &size);
2676 if (size > 0)
2677 qemu_chr_read(chr, buf, size);
2678 }
2679 }
2680
2681 static void tcp_chr_connect(void *opaque)
2682 {
2683 CharDriverState *chr = opaque;
2684 TCPCharDriver *s = chr->opaque;
2685
2686 s->connected = 1;
2687 qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
2688 tcp_chr_read, NULL, chr);
2689 qemu_chr_reset(chr);
2690 }
2691
2692 #define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
2693 static void tcp_chr_telnet_init(int fd)
2694 {
2695 char buf[3];
2696 /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
2697 IACSET(buf, 0xff, 0xfb, 0x01); /* IAC WILL ECHO */
2698 send(fd, (char *)buf, 3, 0);
2699 IACSET(buf, 0xff, 0xfb, 0x03); /* IAC WILL Suppress go ahead */
2700 send(fd, (char *)buf, 3, 0);
2701 IACSET(buf, 0xff, 0xfb, 0x00); /* IAC WILL Binary */
2702 send(fd, (char *)buf, 3, 0);
2703 IACSET(buf, 0xff, 0xfd, 0x00); /* IAC DO Binary */
2704 send(fd, (char *)buf, 3, 0);
2705 }
2706
2707 static void socket_set_nodelay(int fd)
2708 {
2709 int val = 1;
2710 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2711 }
2712
2713 static void tcp_chr_accept(void *opaque)
2714 {
2715 CharDriverState *chr = opaque;
2716 TCPCharDriver *s = chr->opaque;
2717 struct sockaddr_in saddr;
2718 #ifndef _WIN32
2719 struct sockaddr_un uaddr;
2720 #endif
2721 struct sockaddr *addr;
2722 socklen_t len;
2723 int fd;
2724
2725 for(;;) {
2726 #ifndef _WIN32
2727 if (s->is_unix) {
2728 len = sizeof(uaddr);
2729 addr = (struct sockaddr *)&uaddr;
2730 } else
2731 #endif
2732 {
2733 len = sizeof(saddr);
2734 addr = (struct sockaddr *)&saddr;
2735 }
2736 fd = accept(s->listen_fd, addr, &len);
2737 if (fd < 0 && errno != EINTR) {
2738 return;
2739 } else if (fd >= 0) {
2740 if (s->do_telnetopt)
2741 tcp_chr_telnet_init(fd);
2742 break;
2743 }
2744 }
2745 socket_set_nonblock(fd);
2746 if (s->do_nodelay)
2747 socket_set_nodelay(fd);
2748 s->fd = fd;
2749 qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
2750 tcp_chr_connect(chr);
2751 }
2752
2753 static void tcp_chr_close(CharDriverState *chr)
2754 {
2755 TCPCharDriver *s = chr->opaque;
2756 if (s->fd >= 0)
2757 closesocket(s->fd);
2758 if (s->listen_fd >= 0)
2759 closesocket(s->listen_fd);
2760 qemu_free(s);
2761 }
2762
2763 static CharDriverState *qemu_chr_open_tcp(const char *host_str,
2764 int is_telnet,
2765 int is_unix)
2766 {
2767 CharDriverState *chr = NULL;
2768 TCPCharDriver *s = NULL;
2769 int fd = -1, ret, err, val;
2770 int is_listen = 0;
2771 int is_waitconnect = 1;
2772 int do_nodelay = 0;
2773 const char *ptr;
2774 struct sockaddr_in saddr;
2775 #ifndef _WIN32
2776 struct sockaddr_un uaddr;
2777 #endif
2778 struct sockaddr *addr;
2779 socklen_t addrlen;
2780
2781 #ifndef _WIN32
2782 if (is_unix) {
2783 addr = (struct sockaddr *)&uaddr;
2784 addrlen = sizeof(uaddr);
2785 if (parse_unix_path(&uaddr, host_str) < 0)
2786 goto fail;
2787 } else
2788 #endif
2789 {
2790 addr = (struct sockaddr *)&saddr;
2791 addrlen = sizeof(saddr);
2792 if (parse_host_port(&saddr, host_str) < 0)
2793 goto fail;
2794 }
2795
2796 ptr = host_str;
2797 while((ptr = strchr(ptr,','))) {
2798 ptr++;
2799 if (!strncmp(ptr,"server",6)) {
2800 is_listen = 1;
2801 } else if (!strncmp(ptr,"nowait",6)) {
2802 is_waitconnect = 0;
2803 } else if (!strncmp(ptr,"nodelay",6)) {
2804 do_nodelay = 1;
2805 } else {
2806 printf("Unknown option: %s\n", ptr);
2807 goto fail;
2808 }
2809 }
2810 if (!is_listen)
2811 is_waitconnect = 0;
2812
2813 chr = qemu_mallocz(sizeof(CharDriverState));
2814 if (!chr)
2815 goto fail;
2816 s = qemu_mallocz(sizeof(TCPCharDriver));
2817 if (!s)
2818 goto fail;
2819
2820 #ifndef _WIN32
2821 if (is_unix)
2822 fd = socket(PF_UNIX, SOCK_STREAM, 0);
2823 else
2824 #endif
2825 fd = socket(PF_INET, SOCK_STREAM, 0);
2826
2827 if (fd < 0)
2828 goto fail;
2829
2830 if (!is_waitconnect)
2831 socket_set_nonblock(fd);
2832
2833 s->connected = 0;
2834 s->fd = -1;
2835 s->listen_fd = -1;
2836 s->is_unix = is_unix;
2837 s->do_nodelay = do_nodelay && !is_unix;
2838
2839 chr->opaque = s;
2840 chr->chr_write = tcp_chr_write;
2841 chr->chr_close = tcp_chr_close;
2842
2843 if (is_listen) {
2844 /* allow fast reuse */
2845 #ifndef _WIN32
2846 if (is_unix) {
2847 char path[109];
2848 strncpy(path, uaddr.sun_path, 108);
2849 path[108] = 0;
2850 unlink(path);
2851 } else
2852 #endif
2853 {
2854 val = 1;
2855 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
2856 }
2857
2858 ret = bind(fd, addr, addrlen);
2859 if (ret < 0)
2860 goto fail;
2861
2862 ret = listen(fd, 0);
2863 if (ret < 0)
2864 goto fail;
2865
2866 s->listen_fd = fd;
2867 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
2868 if (is_telnet)
2869 s->do_telnetopt = 1;
2870 } else {
2871 for(;;) {
2872 ret = connect(fd, addr, addrlen);
2873 if (ret < 0) {
2874 err = socket_error();
2875 if (err == EINTR || err == EWOULDBLOCK) {
2876 } else if (err == EINPROGRESS) {
2877 break;
2878 #ifdef _WIN32
2879 } else if (err == WSAEALREADY) {
2880 break;
2881 #endif
2882 } else {
2883 goto fail;
2884 }
2885 } else {
2886 s->connected = 1;
2887 break;
2888 }
2889 }
2890 s->fd = fd;
2891 socket_set_nodelay(fd);
2892 if (s->connected)
2893 tcp_chr_connect(chr);
2894 else
2895 qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
2896 }
2897
2898 if (is_listen && is_waitconnect) {
2899 printf("QEMU waiting for connection on: %s\n", host_str);
2900 tcp_chr_accept(chr);
2901 socket_set_nonblock(s->listen_fd);
2902 }
2903
2904 return chr;
2905 fail:
2906 if (fd >= 0)
2907 closesocket(fd);
2908 qemu_free(s);
2909 qemu_free(chr);
2910 return NULL;
2911 }
2912
2913 CharDriverState *qemu_chr_open(const char *filename)
2914 {
2915 const char *p;
2916
2917 if (!strcmp(filename, "vc")) {
2918 return text_console_init(&display_state);
2919 } else if (!strcmp(filename, "null")) {
2920 return qemu_chr_open_null();
2921 } else
2922 if (strstart(filename, "tcp:", &p)) {
2923 return qemu_chr_open_tcp(p, 0, 0);
2924 } else
2925 if (strstart(filename, "telnet:", &p)) {
2926 return qemu_chr_open_tcp(p, 1, 0);
2927 } else
2928 if (strstart(filename, "udp:", &p)) {
2929 return qemu_chr_open_udp(p);
2930 } else
2931 if (strstart(filename, "mon:", &p)) {
2932 CharDriverState *drv = qemu_chr_open(p);
2933 if (drv) {
2934 drv = qemu_chr_open_mux(drv);
2935 monitor_init(drv, !nographic);
2936 return drv;
2937 }
2938 printf("Unable to open driver: %s\n", p);
2939 return 0;
2940 } else
2941 #ifndef _WIN32
2942 if (strstart(filename, "unix:", &p)) {
2943 return qemu_chr_open_tcp(p, 0, 1);
2944 } else if (strstart(filename, "file:", &p)) {
2945 return qemu_chr_open_file_out(p);
2946 } else if (strstart(filename, "pipe:", &p)) {
2947 return qemu_chr_open_pipe(p);
2948 } else if (!strcmp(filename, "pty")) {
2949 return qemu_chr_open_pty();
2950 } else if (!strcmp(filename, "stdio")) {
2951 return qemu_chr_open_stdio();
2952 } else
2953 #endif
2954 #if defined(__linux__)
2955 if (strstart(filename, "/dev/parport", NULL)) {
2956 return qemu_chr_open_pp(filename);
2957 } else
2958 if (strstart(filename, "/dev/", NULL)) {
2959 return qemu_chr_open_tty(filename);
2960 } else
2961 #endif
2962 #ifdef _WIN32
2963 if (strstart(filename, "COM", NULL)) {
2964 return qemu_chr_open_win(filename);
2965 } else
2966 if (strstart(filename, "pipe:", &p)) {
2967 return qemu_chr_open_win_pipe(p);
2968 } else
2969 if (strstart(filename, "con:", NULL)) {
2970 return qemu_chr_open_win_con(filename);
2971 } else
2972 if (strstart(filename, "file:", &p)) {
2973 return qemu_chr_open_win_file_out(p);
2974 }
2975 #endif
2976 {
2977 return NULL;
2978 }
2979 }
2980
2981 void qemu_chr_close(CharDriverState *chr)
2982 {
2983 if (chr->chr_close)
2984 chr->chr_close(chr);
2985 }
2986
2987 /***********************************************************/
2988 /* network device redirectors */
2989
2990 void hex_dump(FILE *f, const uint8_t *buf, int size)
2991 {
2992 int len, i, j, c;
2993
2994 for(i=0;i<size;i+=16) {
2995 len = size - i;
2996 if (len > 16)
2997 len = 16;
2998 fprintf(f, "%08x ", i);
2999 for(j=0;j<16;j++) {
3000 if (j < len)
3001 fprintf(f, " %02x", buf[i+j]);
3002 else
3003 fprintf(f, " ");
3004 }
3005 fprintf(f, " ");
3006 for(j=0;j<len;j++) {
3007 c = buf[i+j];
3008 if (c < ' ' || c > '~')
3009 c = '.';
3010 fprintf(f, "%c", c);
3011 }
3012 fprintf(f, "\n");
3013 }
3014 }
3015
3016 static int parse_macaddr(uint8_t *macaddr, const char *p)
3017 {
3018 int i;
3019 for(i = 0; i < 6; i++) {
3020 macaddr[i] = strtol(p, (char **)&p, 16);
3021 if (i == 5) {
3022 if (*p != '\0')
3023 return -1;
3024 } else {
3025 if (*p != ':')
3026 return -1;
3027 p++;
3028 }
3029 }
3030 return 0;
3031 }
3032
3033 static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3034 {
3035 const char *p, *p1;
3036 int len;
3037 p = *pp;
3038 p1 = strchr(p, sep);
3039 if (!p1)
3040 return -1;
3041 len = p1 - p;
3042 p1++;
3043 if (buf_size > 0) {
3044 if (len > buf_size - 1)
3045 len = buf_size - 1;
3046 memcpy(buf, p, len);
3047 buf[len] = '\0';
3048 }
3049 *pp = p1;
3050 return 0;
3051 }
3052
3053 int parse_host_src_port(struct sockaddr_in *haddr,
3054 struct sockaddr_in *saddr,
3055 const char *input_str)
3056 {
3057 char *str = strdup(input_str);
3058 char *host_str = str;
3059 char *src_str;
3060 char *ptr;
3061
3062 /*
3063 * Chop off any extra arguments at the end of the string which
3064 * would start with a comma, then fill in the src port information
3065 * if it was provided else use the "any address" and "any port".
3066 */
3067 if ((ptr = strchr(str,',')))
3068 *ptr = '\0';
3069
3070 if ((src_str = strchr(input_str,'@'))) {
3071 *src_str = '\0';
3072 src_str++;
3073 }
3074
3075 if (parse_host_port(haddr, host_str) < 0)
3076 goto fail;
3077
3078 if (!src_str || *src_str == '\0')
3079 src_str = ":0";
3080
3081 if (parse_host_port(saddr, src_str) < 0)
3082 goto fail;
3083
3084 free(str);
3085 return(0);
3086
3087 fail:
3088 free(str);
3089 return -1;
3090 }
3091
3092 int parse_host_port(struct sockaddr_in *saddr, const char *str)
3093 {
3094 char buf[512];
3095 struct hostent *he;
3096 const char *p, *r;
3097 int port;
3098
3099 p = str;
3100 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3101 return -1;
3102 saddr->sin_family = AF_INET;
3103 if (buf[0] == '\0') {
3104 saddr->sin_addr.s_addr = 0;
3105 } else {
3106 if (isdigit(buf[0])) {
3107 if (!inet_aton(buf, &saddr->sin_addr))
3108 return -1;
3109 } else {
3110 if ((he = gethostbyname(buf)) == NULL)
3111 return - 1;
3112 saddr->sin_addr = *(struct in_addr *)he->h_addr;
3113 }
3114 }
3115 port = strtol(p, (char **)&r, 0);
3116 if (r == p)
3117 return -1;
3118 saddr->sin_port = htons(port);
3119 return 0;
3120 }
3121
3122 #ifndef _WIN32
3123 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
3124 {
3125 const char *p;
3126 int len;
3127
3128 len = MIN(108, strlen(str));
3129 p = strchr(str, ',');
3130 if (p)
3131 len = MIN(len, p - str);
3132
3133 memset(uaddr, 0, sizeof(*uaddr));
3134
3135 uaddr->sun_family = AF_UNIX;
3136 memcpy(uaddr->sun_path, str, len);
3137
3138 return 0;
3139 }
3140 #endif
3141
3142 /* find or alloc a new VLAN */
3143 VLANState *qemu_find_vlan(int id)
3144 {
3145 VLANState **pvlan, *vlan;
3146 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3147 if (vlan->id == id)
3148 return vlan;
3149 }
3150 vlan = qemu_mallocz(sizeof(VLANState));
3151 if (!vlan)
3152 return NULL;
3153 vlan->id = id;
3154 vlan->next = NULL;
3155 pvlan = &first_vlan;
3156 while (*pvlan != NULL)
3157 pvlan = &(*pvlan)->next;
3158 *pvlan = vlan;
3159 return vlan;
3160 }
3161
3162 VLANClientState *qemu_new_vlan_client(VLANState *vlan,
3163 IOReadHandler *fd_read,
3164 IOCanRWHandler *fd_can_read,
3165 void *opaque)
3166 {
3167 VLANClientState *vc, **pvc;
3168 vc = qemu_mallocz(sizeof(VLANClientState));
3169 if (!vc)
3170 return NULL;
3171 vc->fd_read = fd_read;
3172 vc->fd_can_read = fd_can_read;
3173 vc->opaque = opaque;
3174 vc->vlan = vlan;
3175
3176 vc->next = NULL;
3177 pvc = &vlan->first_client;
3178 while (*pvc != NULL)
3179 pvc = &(*pvc)->next;
3180 *pvc = vc;
3181 return vc;
3182 }
3183
3184 int qemu_can_send_packet(VLANClientState *vc1)
3185 {
3186 VLANState *vlan = vc1->vlan;
3187 VLANClientState *vc;
3188
3189 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3190 if (vc != vc1) {
3191 if (vc->fd_can_read && !vc->fd_can_read(vc->opaque))
3192 return 0;
3193 }
3194 }
3195 return 1;
3196 }
3197
3198 void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
3199 {
3200 VLANState *vlan = vc1->vlan;
3201 VLANClientState *vc;
3202
3203 #if 0
3204 printf("vlan %d send:\n", vlan->id);
3205 hex_dump(stdout, buf, size);
3206 #endif
3207 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3208 if (vc != vc1) {
3209 vc->fd_read(vc->opaque, buf, size);
3210 }
3211 }
3212 }
3213
3214 #if defined(CONFIG_SLIRP)
3215
3216 /* slirp network adapter */
3217
3218 static int slirp_inited;
3219 static VLANClientState *slirp_vc;
3220
3221 int slirp_can_output(void)
3222 {
3223 return !slirp_vc || qemu_can_send_packet(slirp_vc);
3224 }
3225
3226 void slirp_output(const uint8_t *pkt, int pkt_len)
3227 {
3228 #if 0
3229 printf("slirp output:\n");
3230 hex_dump(stdout, pkt, pkt_len);
3231 #endif
3232 if (!slirp_vc)
3233 return;
3234 qemu_send_packet(slirp_vc, pkt, pkt_len);
3235 }
3236
3237 static void slirp_receive(void *opaque, const uint8_t *buf, int size)
3238 {
3239 #if 0
3240 printf("slirp input:\n");
3241 hex_dump(stdout, buf, size);
3242 #endif
3243 slirp_input(buf, size);
3244 }
3245
3246 static int net_slirp_init(VLANState *vlan)
3247 {
3248 if (!slirp_inited) {
3249 slirp_inited = 1;
3250 slirp_init();
3251 }
3252 slirp_vc = qemu_new_vlan_client(vlan,
3253 slirp_receive, NULL, NULL);
3254 snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
3255 return 0;
3256 }
3257
3258 static void net_slirp_redir(const char *redir_str)
3259 {
3260 int is_udp;
3261 char buf[256], *r;
3262 const char *p;
3263 struct in_addr guest_addr;
3264 int host_port, guest_port;
3265
3266 if (!slirp_inited) {
3267 slirp_inited = 1;
3268 slirp_init();
3269 }
3270
3271 p = redir_str;
3272 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3273 goto fail;
3274 if (!strcmp(buf, "tcp")) {
3275 is_udp = 0;
3276 } else if (!strcmp(buf, "udp")) {
3277 is_udp = 1;
3278 } else {
3279 goto fail;
3280 }
3281
3282 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3283 goto fail;
3284 host_port = strtol(buf, &r, 0);
3285 if (r == buf)
3286 goto fail;
3287
3288 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3289 goto fail;
3290 if (buf[0] == '\0') {
3291 pstrcpy(buf, sizeof(buf), "10.0.2.15");
3292 }
3293 if (!inet_aton(buf, &guest_addr))
3294 goto fail;
3295
3296 guest_port = strtol(p, &r, 0);
3297 if (r == p)
3298 goto fail;
3299
3300 if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
3301 fprintf(stderr, "qemu: could not set up redirection\n");
3302 exit(1);
3303 }
3304 return;
3305 fail:
3306 fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
3307 exit(1);
3308 }
3309
3310 #ifndef _WIN32
3311
3312 char smb_dir[1024];
3313
3314 static void smb_exit(void)
3315 {
3316 DIR *d;
3317 struct dirent *de;
3318 char filename[1024];
3319
3320 /* erase all the files in the directory */
3321 d = opendir(smb_dir);
3322 for(;;) {
3323 de = readdir(d);
3324 if (!de)
3325 break;
3326 if (strcmp(de->d_name, ".") != 0 &&
3327 strcmp(de->d_name, "..") != 0) {
3328 snprintf(filename, sizeof(filename), "%s/%s",
3329 smb_dir, de->d_name);
3330 unlink(filename);
3331 }
3332 }
3333 closedir(d);
3334 rmdir(smb_dir);
3335 }
3336
3337 /* automatic user mode samba server configuration */
3338 void net_slirp_smb(const char *exported_dir)
3339 {
3340 char smb_conf[1024];
3341 char smb_cmdline[1024];
3342 FILE *f;
3343
3344 if (!slirp_inited) {
3345 slirp_inited = 1;
3346 slirp_init();
3347 }
3348
3349 /* XXX: better tmp dir construction */
3350 snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
3351 if (mkdir(smb_dir, 0700) < 0) {
3352 fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
3353 exit(1);
3354 }
3355 snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
3356
3357 f = fopen(smb_conf, "w");
3358 if (!f) {
3359 fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
3360 exit(1);
3361 }
3362 fprintf(f,
3363 "[global]\n"
3364 "private dir=%s\n"
3365 "smb ports=0\n"
3366 "socket address=127.0.0.1\n"
3367 "pid directory=%s\n"
3368 "lock directory=%s\n"
3369 "log file=%s/log.smbd\n"
3370 "smb passwd file=%s/smbpasswd\n"
3371 "security = share\n"
3372 "[qemu]\n"
3373 "path=%s\n"
3374 "read only=no\n"
3375 "guest ok=yes\n",
3376 smb_dir,
3377 smb_dir,
3378 smb_dir,
3379 smb_dir,
3380 smb_dir,
3381 exported_dir
3382 );
3383 fclose(f);
3384 atexit(smb_exit);
3385
3386 snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
3387 SMBD_COMMAND, smb_conf);
3388
3389 slirp_add_exec(0, smb_cmdline, 4, 139);
3390 }
3391
3392 #endif /* !defined(_WIN32) */
3393
3394 #endif /* CONFIG_SLIRP */
3395
3396 #if !defined(_WIN32)
3397
3398 typedef struct TAPState {
3399 VLANClientState *vc;
3400 int fd;
3401 } TAPState;
3402
3403 static void tap_receive(void *opaque, const uint8_t *buf, int size)
3404 {
3405 TAPState *s = opaque;
3406 int ret;
3407 for(;;) {
3408 ret = write(s->fd, buf, size);
3409 if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
3410 } else {
3411 break;
3412 }
3413 }
3414 }
3415
3416 static void tap_send(void *opaque)
3417 {
3418 TAPState *s = opaque;
3419 uint8_t buf[4096];
3420 int size;
3421
3422 #ifdef __sun__
3423 struct strbuf sbuf;
3424 int f = 0;
3425 sbuf.maxlen = sizeof(buf);
3426 sbuf.buf = buf;
3427 size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
3428 #else
3429 size = read(s->fd, buf, sizeof(buf));
3430 #endif
3431 if (size > 0) {
3432 qemu_send_packet(s->vc, buf, size);
3433 }
3434 }
3435
3436 /* fd support */
3437
3438 static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
3439 {
3440 TAPState *s;
3441
3442 s = qemu_mallocz(sizeof(TAPState));
3443 if (!s)
3444 return NULL;
3445 s->fd = fd;
3446 s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
3447 qemu_set_fd_handler(s->fd, tap_send, NULL, s);
3448 snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
3449 return s;
3450 }
3451
3452 #ifdef _BSD
3453 static int tap_open(char *ifname, int ifname_size)
3454 {
3455 int fd;
3456 char *dev;
3457 struct stat s;
3458
3459 fd = open("/dev/tap", O_RDWR);
3460 if (fd < 0) {
3461 fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
3462 return -1;
3463 }
3464
3465 fstat(fd, &s);
3466 dev = devname(s.st_rdev, S_IFCHR);
3467 pstrcpy(ifname, ifname_size, dev);
3468
3469 fcntl(fd, F_SETFL, O_NONBLOCK);
3470 return fd;
3471 }
3472 #elif defined(__sun__)
3473 #define TUNNEWPPA (('T'<<16) | 0x0001)
3474 /*
3475 * Allocate TAP device, returns opened fd.
3476 * Stores dev name in the first arg(must be large enough).
3477 */
3478 int tap_alloc(char *dev)
3479 {
3480 int tap_fd, if_fd, ppa = -1;
3481 static int ip_fd = 0;
3482 char *ptr;
3483
3484 static int arp_fd = 0;
3485 int ip_muxid, arp_muxid;
3486 struct strioctl strioc_if, strioc_ppa;
3487 int link_type = I_PLINK;;
3488 struct lifreq ifr;
3489 char actual_name[32] = "";
3490
3491 memset(&ifr, 0x0, sizeof(ifr));
3492
3493 if( *dev ){
3494 ptr = dev;
3495 while( *ptr && !isdigit((int)*ptr) ) ptr++;
3496 ppa = atoi(ptr);
3497 }
3498
3499 /* Check if IP device was opened */
3500 if( ip_fd )
3501 close(ip_fd);
3502
3503 if( (ip_fd = open("/dev/udp", O_RDWR, 0)) < 0){
3504 syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
3505 return -1;
3506 }
3507
3508 if( (tap_fd = open("/dev/tap", O_RDWR, 0)) < 0){
3509 syslog(LOG_ERR, "Can't open /dev/tap");
3510 return -1;
3511 }
3512
3513 /* Assign a new PPA and get its unit number. */
3514 strioc_ppa.ic_cmd = TUNNEWPPA;
3515 strioc_ppa.ic_timout = 0;
3516 strioc_ppa.ic_len = sizeof(ppa);
3517 strioc_ppa.ic_dp = (char *)&ppa;
3518 if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
3519 syslog (LOG_ERR, "Can't assign new interface");
3520
3521 if( (if_fd = open("/dev/tap", O_RDWR, 0)) < 0){
3522 syslog(LOG_ERR, "Can't open /dev/tap (2)");
3523 return -1;
3524 }
3525 if(ioctl(if_fd, I_PUSH, "ip") < 0){
3526 syslog(LOG_ERR, "Can't push IP module");
3527 return -1;
3528 }
3529
3530 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
3531 syslog(LOG_ERR, "Can't get flags\n");
3532
3533 snprintf (actual_name, 32, "tap%d", ppa);
3534 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3535
3536 ifr.lifr_ppa = ppa;
3537 /* Assign ppa according to the unit number returned by tun device */
3538
3539 if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
3540 syslog (LOG_ERR, "Can't set PPA %d", ppa);
3541 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
3542 syslog (LOG_ERR, "Can't get flags\n");
3543 /* Push arp module to if_fd */
3544 if (ioctl (if_fd, I_PUSH, "arp") < 0)
3545 syslog (LOG_ERR, "Can't push ARP module (2)");
3546
3547 /* Push arp module to ip_fd */
3548 if (ioctl (ip_fd, I_POP, NULL) < 0)
3549 syslog (LOG_ERR, "I_POP failed\n");
3550 if (ioctl (ip_fd, I_PUSH, "arp") < 0)
3551 syslog (LOG_ERR, "Can't push ARP module (3)\n");
3552 /* Open arp_fd */
3553 if ((arp_fd = open ("/dev/tap", O_RDWR, 0)) < 0)
3554 syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
3555
3556 /* Set ifname to arp */
3557 strioc_if.ic_cmd = SIOCSLIFNAME;
3558 strioc_if.ic_timout = 0;
3559 strioc_if.ic_len = sizeof(ifr);
3560 strioc_if.ic_dp = (char *)&ifr;
3561 if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
3562 syslog (LOG_ERR, "Can't set ifname to arp\n");
3563 }
3564
3565 if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
3566 syslog(LOG_ERR, "Can't link TAP device to IP");
3567 return -1;
3568 }
3569
3570 if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
3571 syslog (LOG_ERR, "Can't link TAP device to ARP");
3572
3573 close (if_fd);
3574
3575 memset(&ifr, 0x0, sizeof(ifr));
3576 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3577 ifr.lifr_ip_muxid = ip_muxid;
3578 ifr.lifr_arp_muxid = arp_muxid;
3579
3580 if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
3581 {
3582 ioctl (ip_fd, I_PUNLINK , arp_muxid);
3583 ioctl (ip_fd, I_PUNLINK, ip_muxid);
3584 syslog (LOG_ERR, "Can't set multiplexor id");
3585 }
3586
3587 sprintf(dev, "tap%d", ppa);
3588 return tap_fd;
3589 }
3590
3591 static int tap_open(char *ifname, int ifname_size)
3592 {
3593 char dev[10]="";
3594 int fd;
3595 if( (fd = tap_alloc(dev)) < 0 ){
3596 fprintf(stderr, "Cannot allocate TAP device\n");
3597 return -1;
3598 }
3599 pstrcpy(ifname, ifname_size, dev);
3600 fcntl(fd, F_SETFL, O_NONBLOCK);
3601 return fd;
3602 }
3603 #else
3604 static int tap_open(char *ifname, int ifname_size)
3605 {
3606 struct ifreq ifr;
3607 int fd, ret;
3608
3609 fd = open("/dev/net/tun", O_RDWR);
3610 if (fd < 0) {
3611 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
3612 return -1;
3613 }
3614 memset(&ifr, 0, sizeof(ifr));
3615 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
3616 if (ifname[0] != '\0')
3617 pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
3618 else
3619 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
3620 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
3621 if (ret != 0) {
3622 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
3623 close(fd);
3624 return -1;
3625 }
3626 pstrcpy(ifname, ifname_size, ifr.ifr_name);
3627 fcntl(fd, F_SETFL, O_NONBLOCK);
3628 return fd;
3629 }
3630 #endif
3631
3632 static int net_tap_init(VLANState *vlan, const char *ifname1,
3633 const char *setup_script)
3634 {
3635 TAPState *s;
3636 int pid, status, fd;
3637 char *args[3];
3638 char **parg;
3639 char ifname[128];
3640
3641 if (ifname1 != NULL)
3642 pstrcpy(ifname, sizeof(ifname), ifname1);
3643 else
3644 ifname[0] = '\0';
3645 fd = tap_open(ifname, sizeof(ifname));
3646 if (fd < 0)
3647 return -1;
3648
3649 if (!setup_script || !strcmp(setup_script, "no"))
3650 setup_script = "";
3651 if (setup_script[0] != '\0') {
3652 /* try to launch network init script */
3653 pid = fork();
3654 if (pid >= 0) {
3655 if (pid == 0) {
3656 int open_max = sysconf (_SC_OPEN_MAX), i;
3657 for (i = 0; i < open_max; i++)
3658 if (i != STDIN_FILENO &&
3659 i != STDOUT_FILENO &&
3660 i != STDERR_FILENO &&
3661 i != fd)
3662 close(i);
3663
3664 parg = args;
3665 *parg++ = (char *)setup_script;
3666 *parg++ = ifname;
3667 *parg++ = NULL;
3668 execv(setup_script, args);
3669 _exit(1);
3670 }
3671 while (waitpid(pid, &status, 0) != pid);
3672 if (!WIFEXITED(status) ||
3673 WEXITSTATUS(status) != 0) {
3674 fprintf(stderr, "%s: could not launch network script\n",
3675 setup_script);
3676 return -1;
3677 }
3678 }
3679 }
3680 s = net_tap_fd_init(vlan, fd);
3681 if (!s)
3682 return -1;
3683 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3684 "tap: ifname=%s setup_script=%s", ifname, setup_script);
3685 return 0;
3686 }
3687
3688 #endif /* !_WIN32 */
3689
3690 /* network connection */
3691 typedef struct NetSocketState {
3692 VLANClientState *vc;
3693 int fd;
3694 int state; /* 0 = getting length, 1 = getting data */
3695 int index;
3696 int packet_len;
3697 uint8_t buf[4096];
3698 struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
3699 } NetSocketState;
3700
3701 typedef struct NetSocketListenState {
3702 VLANState *vlan;
3703 int fd;
3704 } NetSocketListenState;
3705
3706 /* XXX: we consider we can send the whole packet without blocking */
3707 static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
3708 {
3709 NetSocketState *s = opaque;
3710 uint32_t len;
3711 len = htonl(size);
3712
3713 send_all(s->fd, (const uint8_t *)&len, sizeof(len));
3714 send_all(s->fd, buf, size);
3715 }
3716
3717 static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
3718 {
3719 NetSocketState *s = opaque;
3720 sendto(s->fd, buf, size, 0,
3721 (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
3722 }
3723
3724 static void net_socket_send(void *opaque)
3725 {
3726 NetSocketState *s = opaque;
3727 int l, size, err;
3728 uint8_t buf1[4096];
3729 const uint8_t *buf;
3730
3731 size = recv(s->fd, buf1, sizeof(buf1), 0);
3732 if (size < 0) {
3733 err = socket_error();
3734 if (err != EWOULDBLOCK)
3735 goto eoc;
3736 } else if (size == 0) {
3737 /* end of connection */
3738 eoc:
3739 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3740 closesocket(s->fd);
3741 return;
3742 }
3743 buf = buf1;
3744 while (size > 0) {
3745 /* reassemble a packet from the network */
3746 switch(s->state) {
3747 case 0:
3748 l = 4 - s->index;
3749 if (l > size)
3750 l = size;
3751 memcpy(s->buf + s->index, buf, l);
3752 buf += l;
3753 size -= l;
3754 s->index += l;
3755 if (s->index == 4) {
3756 /* got length */
3757 s->packet_len = ntohl(*(uint32_t *)s->buf);
3758 s->index = 0;
3759 s->state = 1;
3760 }
3761 break;
3762 case 1:
3763 l = s->packet_len - s->index;
3764 if (l > size)
3765 l = size;
3766 memcpy(s->buf + s->index, buf, l);
3767 s->index += l;
3768 buf += l;
3769 size -= l;
3770 if (s->index >= s->packet_len) {
3771 qemu_send_packet(s->vc, s->buf, s->packet_len);
3772 s->index = 0;
3773 s->state = 0;
3774 }
3775 break;
3776 }
3777 }
3778 }
3779
3780 static void net_socket_send_dgram(void *opaque)
3781 {
3782 NetSocketState *s = opaque;
3783 int size;
3784
3785 size = recv(s->fd, s->buf, sizeof(s->buf), 0);
3786 if (size < 0)
3787 return;
3788 if (size == 0) {
3789 /* end of connection */
3790 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3791 return;
3792 }
3793 qemu_send_packet(s->vc, s->buf, size);
3794 }
3795
3796 static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
3797 {
3798 struct ip_mreq imr;
3799 int fd;
3800 int val, ret;
3801 if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
3802 fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
3803 inet_ntoa(mcastaddr->sin_addr),
3804 (int)ntohl(mcastaddr->sin_addr.s_addr));
3805 return -1;
3806
3807 }
3808 fd = socket(PF_INET, SOCK_DGRAM, 0);
3809 if (fd < 0) {
3810 perror("socket(PF_INET, SOCK_DGRAM)");
3811 return -1;
3812 }
3813
3814 val = 1;
3815 ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
3816 (const char *)&val, sizeof(val));
3817 if (ret < 0) {
3818 perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
3819 goto fail;
3820 }
3821
3822 ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
3823 if (ret < 0) {
3824 perror("bind");
3825 goto fail;
3826 }
3827
3828 /* Add host to multicast group */
3829 imr.imr_multiaddr = mcastaddr->sin_addr;
3830 imr.imr_interface.s_addr = htonl(INADDR_ANY);
3831
3832 ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
3833 (const char *)&imr, sizeof(struct ip_mreq));
3834 if (ret < 0) {
3835 perror("setsockopt(IP_ADD_MEMBERSHIP)");
3836 goto fail;
3837 }
3838
3839 /* Force mcast msgs to loopback (eg. several QEMUs in same host */
3840 val = 1;
3841 ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
3842 (const char *)&val, sizeof(val));
3843 if (ret < 0) {
3844 perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
3845 goto fail;
3846 }
3847
3848 socket_set_nonblock(fd);
3849 return fd;
3850 fail:
3851 if (fd >= 0)
3852 closesocket(fd);
3853 return -1;
3854 }
3855
3856 static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
3857 int is_connected)
3858 {
3859 struct sockaddr_in saddr;
3860 int newfd;
3861 socklen_t saddr_len;
3862 NetSocketState *s;
3863
3864 /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
3865 * Because this may be "shared" socket from a "master" process, datagrams would be recv()
3866 * by ONLY ONE process: we must "clone" this dgram socket --jjo
3867 */
3868
3869 if (is_connected) {
3870 if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
3871 /* must be bound */
3872 if (saddr.sin_addr.s_addr==0) {
3873 fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
3874 fd);
3875 return NULL;
3876 }
3877 /* clone dgram socket */
3878 newfd = net_socket_mcast_create(&saddr);
3879 if (newfd < 0) {
3880 /* error already reported by net_socket_mcast_create() */
3881 close(fd);
3882 return NULL;
3883 }
3884 /* clone newfd to fd, close newfd */
3885 dup2(newfd, fd);
3886 close(newfd);
3887
3888 } else {
3889 fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
3890 fd, strerror(errno));
3891 return NULL;
3892 }
3893 }
3894
3895 s = qemu_mallocz(sizeof(NetSocketState));
3896 if (!s)
3897 return NULL;
3898 s->fd = fd;
3899
3900 s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
3901 qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
3902
3903 /* mcast: save bound address as dst */
3904 if (is_connected) s->dgram_dst=saddr;
3905
3906 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3907 "socket: fd=%d (%s mcast=%s:%d)",
3908 fd, is_connected? "cloned" : "",
3909 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
3910 return s;
3911 }
3912
3913 static void net_socket_connect(void *opaque)
3914 {
3915 NetSocketState *s = opaque;
3916 qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
3917 }
3918
3919 static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
3920 int is_connected)
3921 {
3922 NetSocketState *s;
3923 s = qemu_mallocz(sizeof(NetSocketState));
3924 if (!s)
3925 return NULL;
3926 s->fd = fd;
3927 s->vc = qemu_new_vlan_client(vlan,
3928 net_socket_receive, NULL, s);
3929 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3930 "socket: fd=%d", fd);
3931 if (is_connected) {
3932 net_socket_connect(s);
3933 } else {
3934 qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
3935 }
3936 return s;
3937 }
3938
3939 static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
3940 int is_connected)
3941 {
3942 int so_type=-1, optlen=sizeof(so_type);
3943
3944 if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type, &optlen)< 0) {
3945 fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
3946 return NULL;
3947 }
3948 switch(so_type) {
3949 case SOCK_DGRAM:
3950 return net_socket_fd_init_dgram(vlan, fd, is_connected);
3951 case SOCK_STREAM:
3952 return net_socket_fd_init_stream(vlan, fd, is_connected);
3953 default:
3954 /* who knows ... this could be a eg. a pty, do warn and continue as stream */
3955 fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
3956 return net_socket_fd_init_stream(vlan, fd, is_connected);
3957 }
3958 return NULL;
3959 }
3960
3961 static void net_socket_accept(void *opaque)
3962 {
3963 NetSocketListenState *s = opaque;
3964 NetSocketState *s1;
3965 struct sockaddr_in saddr;
3966 socklen_t len;
3967 int fd;
3968
3969 for(;;) {
3970 len = sizeof(saddr);
3971 fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
3972 if (fd < 0 && errno != EINTR) {
3973 return;
3974 } else if (fd >= 0) {
3975 break;
3976 }
3977 }
3978 s1 = net_socket_fd_init(s->vlan, fd, 1);
3979 if (!s1) {
3980 closesocket(fd);
3981 } else {
3982 snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
3983 "socket: connection from %s:%d",
3984 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
3985 }
3986 }
3987
3988 static int net_socket_listen_init(VLANState *vlan, const char *host_str)
3989 {
3990 NetSocketListenState *s;
3991 int fd, val, ret;
3992 struct sockaddr_in saddr;
3993
3994 if (parse_host_port(&saddr, host_str) < 0)
3995 return -1;
3996
3997 s = qemu_mallocz(sizeof(NetSocketListenState));
3998 if (!s)
3999 return -1;
4000
4001 fd = socket(PF_INET, SOCK_STREAM, 0);
4002 if (fd < 0) {
4003 perror("socket");
4004 return -1;
4005 }
4006 socket_set_nonblock(fd);
4007
4008 /* allow fast reuse */
4009 val = 1;
4010 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
4011
4012 ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4013 if (ret < 0) {
4014 perror("bind");
4015 return -1;
4016 }
4017 ret = listen(fd, 0);
4018 if (ret < 0) {
4019 perror("listen");
4020 return -1;
4021 }
4022 s->vlan = vlan;
4023 s->fd = fd;
4024 qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
4025 return 0;
4026 }
4027
4028 static int net_socket_connect_init(VLANState *vlan, const char *host_str)
4029 {
4030 NetSocketState *s;
4031 int fd, connected, ret, err;
4032 struct sockaddr_in saddr;
4033
4034 if (parse_host_port(&saddr, host_str) < 0)
4035 return -1;
4036
4037 fd = socket(PF_INET, SOCK_STREAM, 0);
4038 if (fd < 0) {
4039 perror("socket");
4040 return -1;
4041 }
4042 socket_set_nonblock(fd);
4043
4044 connected = 0;
4045 for(;;) {
4046 ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4047 if (ret < 0) {
4048 err = socket_error();
4049 if (err == EINTR || err == EWOULDBLOCK) {
4050 } else if (err == EINPROGRESS) {
4051 break;
4052 #ifdef _WIN32
4053 } else if (err == WSAEALREADY) {
4054 break;
4055 #endif
4056 } else {
4057 perror("connect");
4058 closesocket(fd);
4059 return -1;
4060 }
4061 } else {
4062 connected = 1;
4063 break;
4064 }
4065 }
4066 s = net_socket_fd_init(vlan, fd, connected);
4067 if (!s)
4068 return -1;
4069 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4070 "socket: connect to %s:%d",
4071 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4072 return 0;
4073 }
4074
4075 static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
4076 {
4077 NetSocketState *s;
4078 int fd;
4079 struct sockaddr_in saddr;
4080
4081 if (parse_host_port(&saddr, host_str) < 0)
4082 return -1;
4083
4084
4085 fd = net_socket_mcast_create(&saddr);
4086 if (fd < 0)
4087 return -1;
4088
4089 s = net_socket_fd_init(vlan, fd, 0);
4090 if (!s)
4091 return -1;
4092
4093 s->dgram_dst = saddr;
4094
4095 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4096 "socket: mcast=%s:%d",
4097 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4098 return 0;
4099
4100 }
4101
4102 static int get_param_value(char *buf, int buf_size,
4103 const char *tag, const char *str)
4104 {
4105 const char *p;
4106 char *q;
4107 char option[128];
4108
4109 p = str;
4110 for(;;) {
4111 q = option;
4112 while (*p != '\0' && *p != '=') {
4113 if ((q - option) < sizeof(option) - 1)
4114 *q++ = *p;
4115 p++;
4116 }
4117 *q = '\0';
4118 if (*p != '=')
4119 break;
4120 p++;
4121 if (!strcmp(tag, option)) {
4122 q = buf;
4123 while (*p != '\0' && *p != ',') {
4124 if ((q - buf) < buf_size - 1)
4125 *q++ = *p;
4126 p++;
4127 }
4128 *q = '\0';
4129 return q - buf;
4130 } else {
4131 while (*p != '\0' && *p != ',') {
4132 p++;
4133 }
4134 }
4135 if (*p != ',')
4136 break;
4137 p++;
4138 }
4139 return 0;
4140 }
4141
4142 static int net_client_init(const char *str)
4143 {
4144 const char *p;
4145 char *q;
4146 char device[64];
4147 char buf[1024];
4148 int vlan_id, ret;
4149 VLANState *vlan;
4150
4151 p = str;
4152 q = device;
4153 while (*p != '\0' && *p != ',') {
4154 if ((q - device) < sizeof(device) - 1)
4155 *q++ = *p;
4156 p++;
4157 }
4158 *q = '\0';
4159 if (*p == ',')
4160 p++;
4161 vlan_id = 0;
4162 if (get_param_value(buf, sizeof(buf), "vlan", p)) {
4163 vlan_id = strtol(buf, NULL, 0);
4164 }
4165 vlan = qemu_find_vlan(vlan_id);
4166 if (!vlan) {
4167 fprintf(stderr, "Could not create vlan %d\n", vlan_id);
4168 return -1;
4169 }
4170 if (!strcmp(device, "nic")) {
4171 NICInfo *nd;
4172 uint8_t *macaddr;
4173
4174 if (nb_nics >= MAX_NICS) {
4175 fprintf(stderr, "Too Many NICs\n");
4176 return -1;
4177 }
4178 nd = &nd_table[nb_nics];
4179 macaddr = nd->macaddr;
4180 macaddr[0] = 0x52;
4181 macaddr[1] = 0x54;
4182 macaddr[2] = 0x00;
4183 macaddr[3] = 0x12;
4184 macaddr[4] = 0x34;
4185 macaddr[5] = 0x56 + nb_nics;
4186
4187 if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
4188 if (parse_macaddr(macaddr, buf) < 0) {
4189 fprintf(stderr, "invalid syntax for ethernet address\n");
4190 return -1;
4191 }
4192 }
4193 if (get_param_value(buf, sizeof(buf), "model", p)) {
4194 nd->model = strdup(buf);
4195 }
4196 nd->vlan = vlan;
4197 nb_nics++;
4198 ret = 0;
4199 } else
4200 if (!strcmp(device, "none")) {
4201 /* does nothing. It is needed to signal that no network cards
4202 are wanted */
4203 ret = 0;
4204 } else
4205 #ifdef CONFIG_SLIRP
4206 if (!strcmp(device, "user")) {
4207 if (get_param_value(buf, sizeof(buf), "hostname", p)) {
4208 pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
4209 }
4210 ret = net_slirp_init(vlan);
4211 } else
4212 #endif
4213 #ifdef _WIN32
4214 if (!strcmp(device, "tap")) {
4215 char ifname[64];
4216 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4217 fprintf(stderr, "tap: no interface name\n");
4218 return -1;
4219 }
4220 ret = tap_win32_init(vlan, ifname);
4221 } else
4222 #else
4223 if (!strcmp(device, "tap")) {
4224 char ifname[64];
4225 char setup_script[1024];
4226 int fd;
4227 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4228 fd = strtol(buf, NULL, 0);
4229 ret = -1;
4230 if (net_tap_fd_init(vlan, fd))
4231 ret = 0;
4232 } else {
4233 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4234 ifname[0] = '\0';
4235 }
4236 if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
4237 pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
4238 }
4239 ret = net_tap_init(vlan, ifname, setup_script);
4240 }
4241 } else
4242 #endif
4243 if (!strcmp(device, "socket")) {
4244 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4245 int fd;
4246 fd = strtol(buf, NULL, 0);
4247 ret = -1;
4248 if (net_socket_fd_init(vlan, fd, 1))
4249 ret = 0;
4250 } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
4251 ret = net_socket_listen_init(vlan, buf);
4252 } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
4253 ret = net_socket_connect_init(vlan, buf);
4254 } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
4255 ret = net_socket_mcast_init(vlan, buf);
4256 } else {
4257 fprintf(stderr, "Unknown socket options: %s\n", p);
4258 return -1;
4259 }
4260 } else
4261 {
4262 fprintf(stderr, "Unknown network device: %s\n", device);
4263 return -1;
4264 }
4265 if (ret < 0) {
4266 fprintf(stderr, "Could not initialize device '%s'\n", device);
4267 }
4268
4269 return ret;
4270 }
4271
4272 void do_info_network(void)
4273 {
4274 VLANState *vlan;
4275 VLANClientState *vc;
4276
4277 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4278 term_printf("VLAN %d devices:\n", vlan->id);
4279 for(vc = vlan->first_client; vc != NULL; vc = vc->next)
4280 term_printf(" %s\n", vc->info_str);
4281 }
4282 }
4283
4284 /***********************************************************/
4285 /* USB devices */
4286
4287 static USBPort *used_usb_ports;
4288 static USBPort *free_usb_ports;
4289
4290 /* ??? Maybe change this to register a hub to keep track of the topology. */
4291 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
4292 usb_attachfn attach)
4293 {
4294 port->opaque = opaque;
4295 port->index = index;
4296 port->attach = attach;
4297 port->next = free_usb_ports;
4298 free_usb_ports = port;
4299 }
4300
4301 static int usb_device_add(const char *devname)
4302 {
4303 const char *p;
4304 USBDevice *dev;
4305 USBPort *port;
4306
4307 if (!free_usb_ports)
4308 return -1;
4309
4310 if (strstart(devname, "host:", &p)) {
4311 dev = usb_host_device_open(p);
4312 } else if (!strcmp(devname, "mouse")) {
4313 dev = usb_mouse_init();
4314 } else if (!strcmp(devname, "tablet")) {
4315 dev = usb_tablet_init();
4316 } else if (strstart(devname, "disk:", &p)) {
4317 dev = usb_msd_init(p);
4318 } else {
4319 return -1;
4320 }
4321 if (!dev)
4322 return -1;
4323
4324 /* Find a USB port to add the device to. */
4325 port = free_usb_ports;
4326 if (!port->next) {
4327 USBDevice *hub;
4328
4329 /* Create a new hub and chain it on. */
4330 free_usb_ports = NULL;
4331 port->next = used_usb_ports;
4332 used_usb_ports = port;
4333
4334 hub = usb_hub_init(VM_USB_HUB_SIZE);
4335 usb_attach(port, hub);
4336 port = free_usb_ports;
4337 }
4338
4339 free_usb_ports = port->next;
4340 port->next = used_usb_ports;
4341 used_usb_ports = port;
4342 usb_attach(port, dev);
4343 return 0;
4344 }
4345
4346 static int usb_device_del(const char *devname)
4347 {
4348 USBPort *port;
4349 USBPort **lastp;
4350 USBDevice *dev;
4351 int bus_num, addr;
4352 const char *p;
4353
4354 if (!used_usb_ports)
4355 return -1;
4356
4357 p = strchr(devname, '.');
4358 if (!p)
4359 return -1;
4360 bus_num = strtoul(devname, NULL, 0);
4361 addr = strtoul(p + 1, NULL, 0);
4362 if (bus_num != 0)
4363 return -1;
4364
4365 lastp = &used_usb_ports;
4366 port = used_usb_ports;
4367 while (port && port->dev->addr != addr) {
4368 lastp = &port->next;
4369 port = port->next;
4370 }
4371
4372 if (!port)
4373 return -1;
4374
4375 dev = port->dev;
4376 *lastp = port->next;
4377 usb_attach(port, NULL);
4378 dev->handle_destroy(dev);
4379 port->next = free_usb_ports;
4380 free_usb_ports = port;
4381 return 0;
4382 }
4383
4384 void do_usb_add(const char *devname)
4385 {
4386 int ret;
4387 ret = usb_device_add(devname);
4388 if (ret < 0)
4389 term_printf("Could not add USB device '%s'\n", devname);
4390 }
4391
4392 void do_usb_del(const char *devname)
4393 {
4394 int ret;
4395 ret = usb_device_del(devname);
4396 if (ret < 0)
4397 term_printf("Could not remove USB device '%s'\n", devname);
4398 }
4399
4400 void usb_info(void)
4401 {
4402 USBDevice *dev;
4403 USBPort *port;
4404 const char *speed_str;
4405
4406 if (!usb_enabled) {
4407 term_printf("USB support not enabled\n");
4408 return;
4409 }
4410
4411 for (port = used_usb_ports; port; port = port->next) {
4412 dev = port->dev;
4413 if (!dev)
4414 continue;
4415 switch(dev->speed) {
4416 case USB_SPEED_LOW:
4417 speed_str = "1.5";
4418 break;
4419 case USB_SPEED_FULL:
4420 speed_str = "12";
4421 break;
4422 case USB_SPEED_HIGH:
4423 speed_str = "480";
4424 break;
4425 default:
4426 speed_str = "?";
4427 break;
4428 }
4429 term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n",
4430 0, dev->addr, speed_str, dev->devname);
4431 }
4432 }
4433
4434 /***********************************************************/
4435 /* PCMCIA/Cardbus */
4436
4437 static struct pcmcia_socket_entry_s {
4438 struct pcmcia_socket_s *socket;
4439 struct pcmcia_socket_entry_s *next;
4440 } *pcmcia_sockets = 0;
4441
4442 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
4443 {
4444 struct pcmcia_socket_entry_s *entry;
4445
4446 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
4447 entry->socket = socket;
4448 entry->next = pcmcia_sockets;
4449 pcmcia_sockets = entry;
4450 }
4451
4452 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
4453 {
4454 struct pcmcia_socket_entry_s *entry, **ptr;
4455
4456 ptr = &pcmcia_sockets;
4457 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
4458 if (entry->socket == socket) {
4459 *ptr = entry->next;
4460 qemu_free(entry);
4461 }
4462 }
4463
4464 void pcmcia_info(void)
4465 {
4466 struct pcmcia_socket_entry_s *iter;
4467 if (!pcmcia_sockets)
4468 term_printf("No PCMCIA sockets\n");
4469
4470 for (iter = pcmcia_sockets; iter; iter = iter->next)
4471 term_printf("%s: %s\n", iter->socket->slot_string,
4472 iter->socket->attached ? iter->socket->card_string :
4473 "Empty");
4474 }
4475
4476 /***********************************************************/
4477 /* dumb display */
4478
4479 static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
4480 {
4481 }
4482
4483 static void dumb_resize(DisplayState *ds, int w, int h)
4484 {
4485 }
4486
4487 static void dumb_refresh(DisplayState *ds)
4488 {
4489 vga_hw_update();
4490 }
4491
4492 void dumb_display_init(DisplayState *ds)
4493 {
4494 ds->data = NULL;
4495 ds->linesize = 0;
4496 ds->depth = 0;
4497 ds->dpy_update = dumb_update;
4498 ds->dpy_resize = dumb_resize;
4499 ds->dpy_refresh = dumb_refresh;
4500 }
4501
4502 /***********************************************************/
4503 /* I/O handling */
4504
4505 #define MAX_IO_HANDLERS 64
4506
4507 typedef struct IOHandlerRecord {
4508 int fd;
4509 IOCanRWHandler *fd_read_poll;
4510 IOHandler *fd_read;
4511 IOHandler *fd_write;
4512 int deleted;
4513 void *opaque;
4514 /* temporary data */
4515 struct pollfd *ufd;
4516 struct IOHandlerRecord *next;
4517 } IOHandlerRecord;
4518
4519 static IOHandlerRecord *first_io_handler;
4520
4521 /* XXX: fd_read_poll should be suppressed, but an API change is
4522 necessary in the character devices to suppress fd_can_read(). */
4523 int qemu_set_fd_handler2(int fd,
4524 IOCanRWHandler *fd_read_poll,
4525 IOHandler *fd_read,
4526 IOHandler *fd_write,
4527 void *opaque)
4528 {
4529 IOHandlerRecord **pioh, *ioh;
4530
4531 if (!fd_read && !fd_write) {
4532 pioh = &first_io_handler;
4533 for(;;) {
4534 ioh = *pioh;
4535 if (ioh == NULL)
4536 break;
4537 if (ioh->fd == fd) {
4538 ioh->deleted = 1;
4539 break;
4540 }
4541 pioh = &ioh->next;
4542 }
4543 } else {
4544 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4545 if (ioh->fd == fd)
4546 goto found;
4547 }
4548 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
4549 if (!ioh)
4550 return -1;
4551 ioh->next = first_io_handler;
4552 first_io_handler = ioh;
4553 found:
4554 ioh->fd = fd;
4555 ioh->fd_read_poll = fd_read_poll;
4556 ioh->fd_read = fd_read;
4557 ioh->fd_write = fd_write;
4558 ioh->opaque = opaque;
4559 ioh->deleted = 0;
4560 }
4561 return 0;
4562 }
4563
4564 int qemu_set_fd_handler(int fd,
4565 IOHandler *fd_read,
4566 IOHandler *fd_write,
4567 void *opaque)
4568 {
4569 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
4570 }
4571
4572 /***********************************************************/
4573 /* Polling handling */
4574
4575 typedef struct PollingEntry {
4576 PollingFunc *func;
4577 void *opaque;
4578 struct PollingEntry *next;
4579 } PollingEntry;
4580
4581 static PollingEntry *first_polling_entry;
4582
4583 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
4584 {
4585 PollingEntry **ppe, *pe;
4586 pe = qemu_mallocz(sizeof(PollingEntry));
4587 if (!pe)
4588 return -1;
4589 pe->func = func;
4590 pe->opaque = opaque;
4591 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
4592 *ppe = pe;
4593 return 0;
4594 }
4595
4596 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
4597 {
4598 PollingEntry **ppe, *pe;
4599 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
4600 pe = *ppe;
4601 if (pe->func == func && pe->opaque == opaque) {
4602 *ppe = pe->next;
4603 qemu_free(pe);
4604 break;
4605 }
4606 }
4607 }
4608
4609 #ifdef _WIN32
4610 /***********************************************************/
4611 /* Wait objects support */
4612 typedef struct WaitObjects {
4613 int num;
4614 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
4615 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
4616 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
4617 } WaitObjects;
4618
4619 static WaitObjects wait_objects = {0};
4620
4621 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
4622 {
4623 WaitObjects *w = &wait_objects;
4624
4625 if (w->num >= MAXIMUM_WAIT_OBJECTS)
4626 return -1;
4627 w->events[w->num] = handle;
4628 w->func[w->num] = func;
4629 w->opaque[w->num] = opaque;
4630 w->num++;
4631 return 0;
4632 }
4633
4634 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
4635 {
4636 int i, found;
4637 WaitObjects *w = &wait_objects;
4638
4639 found = 0;
4640 for (i = 0; i < w->num; i++) {
4641 if (w->events[i] == handle)
4642 found = 1;
4643 if (found) {
4644 w->events[i] = w->events[i + 1];
4645 w->func[i] = w->func[i + 1];
4646 w->opaque[i] = w->opaque[i + 1];
4647 }
4648 }
4649 if (found)
4650 w->num--;
4651 }
4652 #endif
4653
4654 /***********************************************************/
4655 /* savevm/loadvm support */
4656
4657 #define IO_BUF_SIZE 32768
4658
4659 struct QEMUFile {
4660 FILE *outfile;
4661 BlockDriverState *bs;
4662 int is_file;
4663 int is_writable;
4664 int64_t base_offset;
4665 int64_t buf_offset; /* start of buffer when writing, end of buffer
4666 when reading */
4667 int buf_index;
4668 int buf_size; /* 0 when writing */
4669 uint8_t buf[IO_BUF_SIZE];
4670 };
4671
4672 QEMUFile *qemu_fopen(const char *filename, const char *mode)
4673 {
4674 QEMUFile *f;
4675
4676 f = qemu_mallocz(sizeof(QEMUFile));
4677 if (!f)
4678 return NULL;
4679 if (!strcmp(mode, "wb")) {
4680 f->is_writable = 1;
4681 } else if (!strcmp(mode, "rb")) {
4682 f->is_writable = 0;
4683 } else {
4684 goto fail;
4685 }
4686 f->outfile = fopen(filename, mode);
4687 if (!f->outfile)
4688 goto fail;
4689 f->is_file = 1;
4690 return f;
4691 fail:
4692 if (f->outfile)
4693 fclose(f->outfile);
4694 qemu_free(f);
4695 return NULL;
4696 }
4697
4698 QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
4699 {
4700 QEMUFile *f;
4701
4702 f = qemu_mallocz(sizeof(QEMUFile));
4703 if (!f)
4704 return NULL;
4705 f->is_file = 0;
4706 f->bs = bs;
4707 f->is_writable = is_writable;
4708 f->base_offset = offset;
4709 return f;
4710 }
4711
4712 void qemu_fflush(QEMUFile *f)
4713 {
4714 if (!f->is_writable)
4715 return;
4716 if (f->buf_index > 0) {
4717 if (f->is_file) {
4718 fseek(f->outfile, f->buf_offset, SEEK_SET);
4719 fwrite(f->buf, 1, f->buf_index, f->outfile);
4720 } else {
4721 bdrv_pwrite(f->bs, f->base_offset + f->buf_offset,
4722 f->buf, f->buf_index);
4723 }
4724 f->buf_offset += f->buf_index;
4725 f->buf_index = 0;
4726 }
4727 }
4728
4729 static void qemu_fill_buffer(QEMUFile *f)
4730 {
4731 int len;
4732
4733 if (f->is_writable)
4734 return;
4735 if (f->is_file) {
4736 fseek(f->outfile, f->buf_offset, SEEK_SET);
4737 len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
4738 if (len < 0)
4739 len = 0;
4740 } else {
4741 len = bdrv_pread(f->bs, f->base_offset + f->buf_offset,
4742 f->buf, IO_BUF_SIZE);
4743 if (len < 0)
4744 len = 0;
4745 }
4746 f->buf_index = 0;
4747 f->buf_size = len;
4748 f->buf_offset += len;
4749 }
4750
4751 void qemu_fclose(QEMUFile *f)
4752 {
4753 if (f->is_writable)
4754 qemu_fflush(f);
4755 if (f->is_file) {
4756 fclose(f->outfile);
4757 }
4758 qemu_free(f);
4759 }
4760
4761 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
4762 {
4763 int l;
4764 while (size > 0) {
4765 l = IO_BUF_SIZE - f->buf_index;
4766 if (l > size)
4767 l = size;
4768 memcpy(f->buf + f->buf_index, buf, l);
4769 f->buf_index += l;
4770 buf += l;
4771 size -= l;
4772 if (f->buf_index >= IO_BUF_SIZE)
4773 qemu_fflush(f);
4774 }
4775 }
4776
4777 void qemu_put_byte(QEMUFile *f, int v)
4778 {
4779 f->buf[f->buf_index++] = v;
4780 if (f->buf_index >= IO_BUF_SIZE)
4781 qemu_fflush(f);
4782 }
4783
4784 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
4785 {
4786 int size, l;
4787
4788 size = size1;
4789 while (size > 0) {
4790 l = f->buf_size - f->buf_index;
4791 if (l == 0) {
4792 qemu_fill_buffer(f);
4793 l = f->buf_size - f->buf_index;
4794 if (l == 0)
4795 break;
4796 }
4797 if (l > size)
4798 l = size;
4799 memcpy(buf, f->buf + f->buf_index, l);
4800 f->buf_index += l;
4801 buf += l;
4802 size -= l;
4803 }
4804 return size1 - size;
4805 }
4806
4807 int qemu_get_byte(QEMUFile *f)
4808 {
4809 if (f->buf_index >= f->buf_size) {
4810 qemu_fill_buffer(f);
4811 if (f->buf_index >= f->buf_size)
4812 return 0;
4813 }
4814 return f->buf[f->buf_index++];
4815 }
4816
4817 int64_t qemu_ftell(QEMUFile *f)
4818 {
4819 return f->buf_offset - f->buf_size + f->buf_index;
4820 }
4821
4822 int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
4823 {
4824 if (whence == SEEK_SET) {
4825 /* nothing to do */
4826 } else if (whence == SEEK_CUR) {
4827 pos += qemu_ftell(f);
4828 } else {
4829 /* SEEK_END not supported */
4830 return -1;
4831 }
4832 if (f->is_writable) {
4833 qemu_fflush(f);
4834 f->buf_offset = pos;
4835 } else {
4836 f->buf_offset = pos;
4837 f->buf_index = 0;
4838 f->buf_size = 0;
4839 }
4840 return pos;
4841 }
4842
4843 void qemu_put_be16(QEMUFile *f, unsigned int v)
4844 {
4845 qemu_put_byte(f, v >> 8);
4846 qemu_put_byte(f, v);
4847 }
4848
4849 void qemu_put_be32(QEMUFile *f, unsigned int v)
4850 {
4851 qemu_put_byte(f, v >> 24);
4852 qemu_put_byte(f, v >> 16);
4853 qemu_put_byte(f, v >> 8);
4854 qemu_put_byte(f, v);
4855 }
4856
4857 void qemu_put_be64(QEMUFile *f, uint64_t v)
4858 {
4859 qemu_put_be32(f, v >> 32);
4860 qemu_put_be32(f, v);
4861 }
4862
4863 unsigned int qemu_get_be16(QEMUFile *f)
4864 {
4865 unsigned int v;
4866 v = qemu_get_byte(f) << 8;
4867 v |= qemu_get_byte(f);
4868 return v;
4869 }
4870
4871 unsigned int qemu_get_be32(QEMUFile *f)
4872 {
4873 unsigned int v;
4874 v = qemu_get_byte(f) << 24;
4875 v |= qemu_get_byte(f) << 16;
4876 v |= qemu_get_byte(f) << 8;
4877 v |= qemu_get_byte(f);
4878 return v;
4879 }
4880
4881 uint64_t qemu_get_be64(QEMUFile *f)
4882 {
4883 uint64_t v;
4884 v = (uint64_t)qemu_get_be32(f) << 32;
4885 v |= qemu_get_be32(f);
4886 return v;
4887 }
4888
4889 typedef struct SaveStateEntry {
4890 char idstr[256];
4891 int instance_id;
4892 int version_id;
4893 SaveStateHandler *save_state;
4894 LoadStateHandler *load_state;
4895 void *opaque;
4896 struct SaveStateEntry *next;
4897 } SaveStateEntry;
4898
4899 static SaveStateEntry *first_se;
4900
4901 int register_savevm(const char *idstr,
4902 int instance_id,
4903 int version_id,
4904 SaveStateHandler *save_state,
4905 LoadStateHandler *load_state,
4906 void *opaque)
4907 {
4908 SaveStateEntry *se, **pse;
4909
4910 se = qemu_malloc(sizeof(SaveStateEntry));
4911 if (!se)
4912 return -1;
4913 pstrcpy(se->idstr, sizeof(se->idstr), idstr);
4914 se->instance_id = instance_id;
4915 se->version_id = version_id;
4916 se->save_state = save_state;
4917 se->load_state = load_state;
4918 se->opaque = opaque;
4919 se->next = NULL;
4920
4921 /* add at the end of list */
4922 pse = &first_se;
4923 while (*pse != NULL)
4924 pse = &(*pse)->next;
4925 *pse = se;
4926 return 0;
4927 }
4928
4929 #define QEMU_VM_FILE_MAGIC 0x5145564d
4930 #define QEMU_VM_FILE_VERSION 0x00000002
4931
4932 int qemu_savevm_state(QEMUFile *f)
4933 {
4934 SaveStateEntry *se;
4935 int len, ret;
4936 int64_t cur_pos, len_pos, total_len_pos;
4937
4938 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
4939 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
4940 total_len_pos = qemu_ftell(f);
4941 qemu_put_be64(f, 0); /* total size */
4942
4943 for(se = first_se; se != NULL; se = se->next) {
4944 /* ID string */
4945 len = strlen(se->idstr);
4946 qemu_put_byte(f, len);
4947 qemu_put_buffer(f, se->idstr, len);
4948
4949 qemu_put_be32(f, se->instance_id);
4950 qemu_put_be32(f, se->version_id);
4951
4952 /* record size: filled later */
4953 len_pos = qemu_ftell(f);
4954 qemu_put_be32(f, 0);
4955
4956 se->save_state(f, se->opaque);
4957
4958 /* fill record size */
4959 cur_pos = qemu_ftell(f);
4960 len = cur_pos - len_pos - 4;
4961 qemu_fseek(f, len_pos, SEEK_SET);
4962 qemu_put_be32(f, len);
4963 qemu_fseek(f, cur_pos, SEEK_SET);
4964 }
4965 cur_pos = qemu_ftell(f);
4966 qemu_fseek(f, total_len_pos, SEEK_SET);
4967 qemu_put_be64(f, cur_pos - total_len_pos - 8);
4968 qemu_fseek(f, cur_pos, SEEK_SET);
4969
4970 ret = 0;
4971 return ret;
4972 }
4973
4974 static SaveStateEntry *find_se(const char *idstr, int instance_id)
4975 {
4976 SaveStateEntry *se;
4977
4978 for(se = first_se; se != NULL; se = se->next) {
4979 if (!strcmp(se->idstr, idstr) &&
4980 instance_id == se->instance_id)
4981 return se;
4982 }
4983 return NULL;
4984 }
4985
4986 int qemu_loadvm_state(QEMUFile *f)
4987 {
4988 SaveStateEntry *se;
4989 int len, ret, instance_id, record_len, version_id;
4990 int64_t total_len, end_pos, cur_pos;
4991 unsigned int v;
4992 char idstr[256];
4993
4994 v = qemu_get_be32(f);
4995 if (v != QEMU_VM_FILE_MAGIC)
4996 goto fail;
4997 v = qemu_get_be32(f);
4998 if (v != QEMU_VM_FILE_VERSION) {
4999 fail:
5000 ret = -1;
5001 goto the_end;
5002 }
5003 total_len = qemu_get_be64(f);
5004 end_pos = total_len + qemu_ftell(f);
5005 for(;;) {
5006 if (qemu_ftell(f) >= end_pos)
5007 break;
5008 len = qemu_get_byte(f);
5009 qemu_get_buffer(f, idstr, len);
5010 idstr[len] = '\0';
5011 instance_id = qemu_get_be32(f);
5012 version_id = qemu_get_be32(f);
5013 record_len = qemu_get_be32(f);
5014 #if 0
5015 printf("idstr=%s instance=0x%x version=%d len=%d\n",
5016 idstr, instance_id, version_id, record_len);
5017 #endif
5018 cur_pos = qemu_ftell(f);
5019 se = find_se(idstr, instance_id);
5020 if (!se) {
5021 fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
5022 instance_id, idstr);
5023 } else {
5024 ret = se->load_state(f, se->opaque, version_id);
5025 if (ret < 0) {
5026 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
5027 instance_id, idstr);
5028 }
5029 }
5030 /* always seek to exact end of record */
5031 qemu_fseek(f, cur_pos + record_len, SEEK_SET);
5032 }
5033 ret = 0;
5034 the_end:
5035 return ret;
5036 }
5037
5038 /* device can contain snapshots */
5039 static int bdrv_can_snapshot(BlockDriverState *bs)
5040 {
5041 return (bs &&
5042 !bdrv_is_removable(bs) &&
5043 !bdrv_is_read_only(bs));
5044 }
5045
5046 /* device must be snapshots in order to have a reliable snapshot */
5047 static int bdrv_has_snapshot(BlockDriverState *bs)
5048 {
5049 return (bs &&
5050 !bdrv_is_removable(bs) &&
5051 !bdrv_is_read_only(bs));
5052 }
5053
5054 static BlockDriverState *get_bs_snapshots(void)
5055 {
5056 BlockDriverState *bs;
5057 int i;
5058
5059 if (bs_snapshots)
5060 return bs_snapshots;
5061 for(i = 0; i <= MAX_DISKS; i++) {
5062 bs = bs_table[i];
5063 if (bdrv_can_snapshot(bs))
5064 goto ok;
5065 }
5066 return NULL;
5067 ok:
5068 bs_snapshots = bs;
5069 return bs;
5070 }
5071
5072 static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
5073 const char *name)
5074 {
5075 QEMUSnapshotInfo *sn_tab, *sn;
5076 int nb_sns, i, ret;
5077
5078 ret = -ENOENT;
5079 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5080 if (nb_sns < 0)
5081 return ret;
5082 for(i = 0; i < nb_sns; i++) {
5083 sn = &sn_tab[i];
5084 if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
5085 *sn_info = *sn;
5086 ret = 0;
5087 break;
5088 }
5089 }
5090 qemu_free(sn_tab);
5091 return ret;
5092 }
5093
5094 void do_savevm(const char *name)
5095 {
5096 BlockDriverState *bs, *bs1;
5097 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
5098 int must_delete, ret, i;
5099 BlockDriverInfo bdi1, *bdi = &bdi1;
5100 QEMUFile *f;
5101 int saved_vm_running;
5102 #ifdef _WIN32
5103 struct _timeb tb;
5104 #else
5105 struct timeval tv;
5106 #endif
5107
5108 bs = get_bs_snapshots();
5109 if (!bs) {
5110 term_printf("No block device can accept snapshots\n");
5111 return;
5112 }
5113
5114 /* ??? Should this occur after vm_stop? */
5115 qemu_aio_flush();
5116
5117 saved_vm_running = vm_running;
5118 vm_stop(0);
5119
5120 must_delete = 0;
5121 if (name) {
5122 ret = bdrv_snapshot_find(bs, old_sn, name);
5123 if (ret >= 0) {
5124 must_delete = 1;
5125 }
5126 }
5127 memset(sn, 0, sizeof(*sn));
5128 if (must_delete) {
5129 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
5130 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
5131 } else {
5132 if (name)
5133 pstrcpy(sn->name, sizeof(sn->name), name);
5134 }
5135
5136 /* fill auxiliary fields */
5137 #ifdef _WIN32
5138 _ftime(&tb);
5139 sn->date_sec = tb.time;
5140 sn->date_nsec = tb.millitm * 1000000;
5141 #else
5142 gettimeofday(&tv, NULL);
5143 sn->date_sec = tv.tv_sec;
5144 sn->date_nsec = tv.tv_usec * 1000;
5145 #endif
5146 sn->vm_clock_nsec = qemu_get_clock(vm_clock);
5147
5148 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5149 term_printf("Device %s does not support VM state snapshots\n",
5150 bdrv_get_device_name(bs));
5151 goto the_end;
5152 }
5153
5154 /* save the VM state */
5155 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
5156 if (!f) {
5157 term_printf("Could not open VM state file\n");
5158 goto the_end;
5159 }
5160 ret = qemu_savevm_state(f);
5161 sn->vm_state_size = qemu_ftell(f);
5162 qemu_fclose(f);
5163 if (ret < 0) {
5164 term_printf("Error %d while writing VM\n", ret);
5165 goto the_end;
5166 }
5167
5168 /* create the snapshots */
5169
5170 for(i = 0; i < MAX_DISKS; i++) {
5171 bs1 = bs_table[i];
5172 if (bdrv_has_snapshot(bs1)) {
5173 if (must_delete) {
5174 ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
5175 if (ret < 0) {
5176 term_printf("Error while deleting snapshot on '%s'\n",
5177 bdrv_get_device_name(bs1));
5178 }
5179 }
5180 ret = bdrv_snapshot_create(bs1, sn);
5181 if (ret < 0) {
5182 term_printf("Error while creating snapshot on '%s'\n",
5183 bdrv_get_device_name(bs1));
5184 }
5185 }
5186 }
5187
5188 the_end:
5189 if (saved_vm_running)
5190 vm_start();
5191 }
5192
5193 void do_loadvm(const char *name)
5194 {
5195 BlockDriverState *bs, *bs1;
5196 BlockDriverInfo bdi1, *bdi = &bdi1;
5197 QEMUFile *f;
5198 int i, ret;
5199 int saved_vm_running;
5200
5201 bs = get_bs_snapshots();
5202 if (!bs) {
5203 term_printf("No block device supports snapshots\n");
5204 return;
5205 }
5206
5207 /* Flush all IO requests so they don't interfere with the new state. */
5208 qemu_aio_flush();
5209
5210 saved_vm_running = vm_running;
5211 vm_stop(0);
5212
5213 for(i = 0; i <= MAX_DISKS; i++) {
5214 bs1 = bs_table[i];
5215 if (bdrv_has_snapshot(bs1)) {
5216 ret = bdrv_snapshot_goto(bs1, name);
5217 if (ret < 0) {
5218 if (bs != bs1)
5219 term_printf("Warning: ");
5220 switch(ret) {
5221 case -ENOTSUP:
5222 term_printf("Snapshots not supported on device '%s'\n",
5223 bdrv_get_device_name(bs1));
5224 break;
5225 case -ENOENT:
5226 term_printf("Could not find snapshot '%s' on device '%s'\n",
5227 name, bdrv_get_device_name(bs1));
5228 break;
5229 default:
5230 term_printf("Error %d while activating snapshot on '%s'\n",
5231 ret, bdrv_get_device_name(bs1));
5232 break;
5233 }
5234 /* fatal on snapshot block device */
5235 if (bs == bs1)
5236 goto the_end;
5237 }
5238 }
5239 }
5240
5241 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5242 term_printf("Device %s does not support VM state snapshots\n",
5243 bdrv_get_device_name(bs));
5244 return;
5245 }
5246
5247 /* restore the VM state */
5248 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
5249 if (!f) {
5250 term_printf("Could not open VM state file\n");
5251 goto the_end;
5252 }
5253 ret = qemu_loadvm_state(f);
5254 qemu_fclose(f);
5255 if (ret < 0) {
5256 term_printf("Error %d while loading VM state\n", ret);
5257 }
5258 the_end:
5259 if (saved_vm_running)
5260 vm_start();
5261 }
5262
5263 void do_delvm(const char *name)
5264 {
5265 BlockDriverState *bs, *bs1;
5266 int i, ret;
5267
5268 bs = get_bs_snapshots();
5269 if (!bs) {
5270 term_printf("No block device supports snapshots\n");
5271 return;
5272 }
5273
5274 for(i = 0; i <= MAX_DISKS; i++) {
5275 bs1 = bs_table[i];
5276 if (bdrv_has_snapshot(bs1)) {
5277 ret = bdrv_snapshot_delete(bs1, name);
5278 if (ret < 0) {
5279 if (ret == -ENOTSUP)
5280 term_printf("Snapshots not supported on device '%s'\n",
5281 bdrv_get_device_name(bs1));
5282 else
5283 term_printf("Error %d while deleting snapshot on '%s'\n",
5284 ret, bdrv_get_device_name(bs1));
5285 }
5286 }
5287 }
5288 }
5289
5290 void do_info_snapshots(void)
5291 {
5292 BlockDriverState *bs, *bs1;
5293 QEMUSnapshotInfo *sn_tab, *sn;
5294 int nb_sns, i;
5295 char buf[256];
5296
5297 bs = get_bs_snapshots();
5298 if (!bs) {
5299 term_printf("No available block device supports snapshots\n");
5300 return;
5301 }
5302 term_printf("Snapshot devices:");
5303 for(i = 0; i <= MAX_DISKS; i++) {
5304 bs1 = bs_table[i];
5305 if (bdrv_has_snapshot(bs1)) {
5306 if (bs == bs1)
5307 term_printf(" %s", bdrv_get_device_name(bs1));
5308 }
5309 }
5310 term_printf("\n");
5311
5312 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5313 if (nb_sns < 0) {
5314 term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
5315 return;
5316 }
5317 term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
5318 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
5319 for(i = 0; i < nb_sns; i++) {
5320 sn = &sn_tab[i];
5321 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
5322 }
5323 qemu_free(sn_tab);
5324 }
5325
5326 /***********************************************************/
5327 /* cpu save/restore */
5328
5329 #if defined(TARGET_I386)
5330
5331 static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
5332 {
5333 qemu_put_be32(f, dt->selector);
5334 qemu_put_betl(f, dt->base);
5335 qemu_put_be32(f, dt->limit);
5336 qemu_put_be32(f, dt->flags);
5337 }
5338
5339 static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
5340 {
5341 dt->selector = qemu_get_be32(f);
5342 dt->base = qemu_get_betl(f);
5343 dt->limit = qemu_get_be32(f);
5344 dt->flags = qemu_get_be32(f);
5345 }
5346
5347 void cpu_save(QEMUFile *f, void *opaque)
5348 {
5349 CPUState *env = opaque;
5350 uint16_t fptag, fpus, fpuc, fpregs_format;
5351 uint32_t hflags;
5352 int i;
5353
5354 for(i = 0; i < CPU_NB_REGS; i++)
5355 qemu_put_betls(f, &env->regs[i]);
5356 qemu_put_betls(f, &env->eip);
5357 qemu_put_betls(f, &env->eflags);
5358 hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
5359 qemu_put_be32s(f, &hflags);
5360
5361 /* FPU */
5362 fpuc = env->fpuc;
5363 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
5364 fptag = 0;
5365 for(i = 0; i < 8; i++) {
5366 fptag |= ((!env->fptags[i]) << i);
5367 }
5368
5369 qemu_put_be16s(f, &fpuc);
5370 qemu_put_be16s(f, &fpus);
5371 qemu_put_be16s(f, &fptag);
5372
5373 #ifdef USE_X86LDOUBLE
5374 fpregs_format = 0;
5375 #else
5376 fpregs_format = 1;
5377 #endif
5378 qemu_put_be16s(f, &fpregs_format);
5379
5380 for(i = 0; i < 8; i++) {
5381 #ifdef USE_X86LDOUBLE
5382 {
5383 uint64_t mant;
5384 uint16_t exp;
5385 /* we save the real CPU data (in case of MMX usage only 'mant'
5386 contains the MMX register */
5387 cpu_get_fp80(&mant, &exp, env->fpregs[i].d);
5388 qemu_put_be64(f, mant);
5389 qemu_put_be16(f, exp);
5390 }
5391 #else
5392 /* if we use doubles for float emulation, we save the doubles to
5393 avoid losing information in case of MMX usage. It can give
5394 problems if the image is restored on a CPU where long
5395 doubles are used instead. */
5396 qemu_put_be64(f, env->fpregs[i].mmx.MMX_Q(0));
5397 #endif
5398 }
5399
5400 for(i = 0; i < 6; i++)
5401 cpu_put_seg(f, &env->segs[i]);
5402 cpu_put_seg(f, &env->ldt);
5403 cpu_put_seg(f, &env->tr);
5404 cpu_put_seg(f, &env->gdt);
5405 cpu_put_seg(f, &env->idt);
5406
5407 qemu_put_be32s(f, &env->sysenter_cs);
5408 qemu_put_be32s(f, &env->sysenter_esp);
5409 qemu_put_be32s(f, &env->sysenter_eip);
5410
5411 qemu_put_betls(f, &env->cr[0]);
5412 qemu_put_betls(f, &env->cr[2]);
5413 qemu_put_betls(f, &env->cr[3]);
5414 qemu_put_betls(f, &env->cr[4]);
5415
5416 for(i = 0; i < 8; i++)
5417 qemu_put_betls(f, &env->dr[i]);
5418
5419 /* MMU */
5420 qemu_put_be32s(f, &env->a20_mask);
5421
5422 /* XMM */
5423 qemu_put_be32s(f, &env->mxcsr);
5424 for(i = 0; i < CPU_NB_REGS; i++) {
5425 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5426 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5427 }
5428
5429 #ifdef TARGET_X86_64
5430 qemu_put_be64s(f, &env->efer);
5431 qemu_put_be64s(f, &env->star);
5432 qemu_put_be64s(f, &env->lstar);
5433 qemu_put_be64s(f, &env->cstar);
5434 qemu_put_be64s(f, &env->fmask);
5435 qemu_put_be64s(f, &env->kernelgsbase);
5436 #endif
5437 qemu_put_be32s(f, &env->smbase);
5438 }
5439
5440 #ifdef USE_X86LDOUBLE
5441 /* XXX: add that in a FPU generic layer */
5442 union x86_longdouble {
5443 uint64_t mant;
5444 uint16_t exp;
5445 };
5446
5447 #define MANTD1(fp) (fp & ((1LL << 52) - 1))
5448 #define EXPBIAS1 1023
5449 #define EXPD1(fp) ((fp >> 52) & 0x7FF)
5450 #define SIGND1(fp) ((fp >> 32) & 0x80000000)
5451
5452 static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
5453 {
5454 int e;
5455 /* mantissa */
5456 p->mant = (MANTD1(temp) << 11) | (1LL << 63);
5457 /* exponent + sign */
5458 e = EXPD1(temp) - EXPBIAS1 + 16383;
5459 e |= SIGND1(temp) >> 16;
5460 p->exp = e;
5461 }
5462 #endif
5463
5464 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5465 {
5466 CPUState *env = opaque;
5467 int i, guess_mmx;
5468 uint32_t hflags;
5469 uint16_t fpus, fpuc, fptag, fpregs_format;
5470
5471 if (version_id != 3 && version_id != 4)
5472 return -EINVAL;
5473 for(i = 0; i < CPU_NB_REGS; i++)
5474 qemu_get_betls(f, &env->regs[i]);
5475 qemu_get_betls(f, &env->eip);
5476 qemu_get_betls(f, &env->eflags);
5477 qemu_get_be32s(f, &hflags);
5478
5479 qemu_get_be16s(f, &fpuc);
5480 qemu_get_be16s(f, &fpus);
5481 qemu_get_be16s(f, &fptag);
5482 qemu_get_be16s(f, &fpregs_format);
5483
5484 /* NOTE: we cannot always restore the FPU state if the image come
5485 from a host with a different 'USE_X86LDOUBLE' define. We guess
5486 if we are in an MMX state to restore correctly in that case. */
5487 guess_mmx = ((fptag == 0xff) && (fpus & 0x3800) == 0);
5488 for(i = 0; i < 8; i++) {
5489 uint64_t mant;
5490 uint16_t exp;
5491
5492 switch(fpregs_format) {
5493 case 0:
5494 mant = qemu_get_be64(f);
5495 exp = qemu_get_be16(f);
5496 #ifdef USE_X86LDOUBLE
5497 env->fpregs[i].d = cpu_set_fp80(mant, exp);
5498 #else
5499 /* difficult case */
5500 if (guess_mmx)
5501 env->fpregs[i].mmx.MMX_Q(0) = mant;
5502 else
5503 env->fpregs[i].d = cpu_set_fp80(mant, exp);
5504 #endif
5505 break;
5506 case 1:
5507 mant = qemu_get_be64(f);
5508 #ifdef USE_X86LDOUBLE
5509 {
5510 union x86_longdouble *p;
5511 /* difficult case */
5512 p = (void *)&env->fpregs[i];
5513 if (guess_mmx) {
5514 p->mant = mant;
5515 p->exp = 0xffff;
5516 } else {
5517 fp64_to_fp80(p, mant);
5518 }
5519 }
5520 #else
5521 env->fpregs[i].mmx.MMX_Q(0) = mant;
5522 #endif
5523 break;
5524 default:
5525 return -EINVAL;
5526 }
5527 }
5528
5529 env->fpuc = fpuc;
5530 /* XXX: restore FPU round state */
5531 env->fpstt = (fpus >> 11) & 7;
5532 env->fpus = fpus & ~0x3800;
5533 fptag ^= 0xff;
5534 for(i = 0; i < 8; i++) {
5535 env->fptags[i] = (fptag >> i) & 1;
5536 }
5537
5538 for(i = 0; i < 6; i++)
5539 cpu_get_seg(f, &env->segs[i]);
5540 cpu_get_seg(f, &env->ldt);
5541 cpu_get_seg(f, &env->tr);
5542 cpu_get_seg(f, &env->gdt);
5543 cpu_get_seg(f, &env->idt);
5544
5545 qemu_get_be32s(f, &env->sysenter_cs);
5546 qemu_get_be32s(f, &env->sysenter_esp);
5547 qemu_get_be32s(f, &env->sysenter_eip);
5548
5549 qemu_get_betls(f, &env->cr[0]);
5550 qemu_get_betls(f, &env->cr[2]);
5551 qemu_get_betls(f, &env->cr[3]);
5552 qemu_get_betls(f, &env->cr[4]);
5553
5554 for(i = 0; i < 8; i++)
5555 qemu_get_betls(f, &env->dr[i]);
5556
5557 /* MMU */
5558 qemu_get_be32s(f, &env->a20_mask);
5559
5560 qemu_get_be32s(f, &env->mxcsr);
5561 for(i = 0; i < CPU_NB_REGS; i++) {
5562 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5563 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5564 }
5565
5566 #ifdef TARGET_X86_64
5567 qemu_get_be64s(f, &env->efer);
5568 qemu_get_be64s(f, &env->star);
5569 qemu_get_be64s(f, &env->lstar);
5570 qemu_get_be64s(f, &env->cstar);
5571 qemu_get_be64s(f, &env->fmask);
5572 qemu_get_be64s(f, &env->kernelgsbase);
5573 #endif
5574 if (version_id >= 4)
5575 qemu_get_be32s(f, &env->smbase);
5576
5577 /* XXX: compute hflags from scratch, except for CPL and IIF */
5578 env->hflags = hflags;
5579 tlb_flush(env, 1);
5580 return 0;
5581 }
5582
5583 #elif defined(TARGET_PPC)
5584 void cpu_save(QEMUFile *f, void *opaque)
5585 {
5586 }
5587
5588 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5589 {
5590 return 0;
5591 }
5592
5593 #elif defined(TARGET_MIPS)
5594 void cpu_save(QEMUFile *f, void *opaque)
5595 {
5596 }
5597
5598 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5599 {
5600 return 0;
5601 }
5602
5603 #elif defined(TARGET_SPARC)
5604 void cpu_save(QEMUFile *f, void *opaque)
5605 {
5606 CPUState *env = opaque;
5607 int i;
5608 uint32_t tmp;
5609
5610 for(i = 0; i < 8; i++)
5611 qemu_put_betls(f, &env->gregs[i]);
5612 for(i = 0; i < NWINDOWS * 16; i++)
5613 qemu_put_betls(f, &env->regbase[i]);
5614
5615 /* FPU */
5616 for(i = 0; i < TARGET_FPREGS; i++) {
5617 union {
5618 float32 f;
5619 uint32_t i;
5620 } u;
5621 u.f = env->fpr[i];
5622 qemu_put_be32(f, u.i);
5623 }
5624
5625 qemu_put_betls(f, &env->pc);
5626 qemu_put_betls(f, &env->npc);
5627 qemu_put_betls(f, &env->y);
5628 tmp = GET_PSR(env);
5629 qemu_put_be32(f, tmp);
5630 qemu_put_betls(f, &env->fsr);
5631 qemu_put_betls(f, &env->tbr);
5632 #ifndef TARGET_SPARC64
5633 qemu_put_be32s(f, &env->wim);
5634 /* MMU */
5635 for(i = 0; i < 16; i++)
5636 qemu_put_be32s(f, &env->mmuregs[i]);
5637 #endif
5638 }
5639
5640 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5641 {
5642 CPUState *env = opaque;
5643 int i;
5644 uint32_t tmp;
5645
5646 for(i = 0; i < 8; i++)
5647 qemu_get_betls(f, &env->gregs[i]);
5648 for(i = 0; i < NWINDOWS * 16; i++)
5649 qemu_get_betls(f, &env->regbase[i]);
5650
5651 /* FPU */
5652 for(i = 0; i < TARGET_FPREGS; i++) {
5653 union {
5654 float32 f;
5655 uint32_t i;
5656 } u;
5657 u.i = qemu_get_be32(f);
5658 env->fpr[i] = u.f;
5659 }
5660
5661 qemu_get_betls(f, &env->pc);
5662 qemu_get_betls(f, &env->npc);
5663 qemu_get_betls(f, &env->y);
5664 tmp = qemu_get_be32(f);
5665 env->cwp = 0; /* needed to ensure that the wrapping registers are
5666 correctly updated */
5667 PUT_PSR(env, tmp);
5668 qemu_get_betls(f, &env->fsr);
5669 qemu_get_betls(f, &env->tbr);
5670 #ifndef TARGET_SPARC64
5671 qemu_get_be32s(f, &env->wim);
5672 /* MMU */
5673 for(i = 0; i < 16; i++)
5674 qemu_get_be32s(f, &env->mmuregs[i]);
5675 #endif
5676 tlb_flush(env, 1);
5677 return 0;
5678 }
5679
5680 #elif defined(TARGET_ARM)
5681
5682 void cpu_save(QEMUFile *f, void *opaque)
5683 {
5684 int i;
5685 CPUARMState *env = (CPUARMState *)opaque;
5686
5687 for (i = 0; i < 16; i++) {
5688 qemu_put_be32(f, env->regs[i]);
5689 }
5690 qemu_put_be32(f, cpsr_read(env));
5691 qemu_put_be32(f, env->spsr);
5692 for (i = 0; i < 6; i++) {
5693 qemu_put_be32(f, env->banked_spsr[i]);
5694 qemu_put_be32(f, env->banked_r13[i]);
5695 qemu_put_be32(f, env->banked_r14[i]);
5696 }
5697 for (i = 0; i < 5; i++) {
5698 qemu_put_be32(f, env->usr_regs[i]);
5699 qemu_put_be32(f, env->fiq_regs[i]);
5700 }
5701 qemu_put_be32(f, env->cp15.c0_cpuid);
5702 qemu_put_be32(f, env->cp15.c0_cachetype);
5703 qemu_put_be32(f, env->cp15.c1_sys);
5704 qemu_put_be32(f, env->cp15.c1_coproc);
5705 qemu_put_be32(f, env->cp15.c2_base);
5706 qemu_put_be32(f, env->cp15.c2_data);
5707 qemu_put_be32(f, env->cp15.c2_insn);
5708 qemu_put_be32(f, env->cp15.c3);
5709 qemu_put_be32(f, env->cp15.c5_insn);
5710 qemu_put_be32(f, env->cp15.c5_data);
5711 for (i = 0; i < 8; i++) {
5712 qemu_put_be32(f, env->cp15.c6_region[i]);
5713 }
5714 qemu_put_be32(f, env->cp15.c6_insn);
5715 qemu_put_be32(f, env->cp15.c6_data);
5716 qemu_put_be32(f, env->cp15.c9_insn);
5717 qemu_put_be32(f, env->cp15.c9_data);
5718 qemu_put_be32(f, env->cp15.c13_fcse);
5719 qemu_put_be32(f, env->cp15.c13_context);
5720 qemu_put_be32(f, env->cp15.c15_cpar);
5721
5722 qemu_put_be32(f, env->features);
5723
5724 if (arm_feature(env, ARM_FEATURE_VFP)) {
5725 for (i = 0; i < 16; i++) {
5726 CPU_DoubleU u;
5727 u.d = env->vfp.regs[i];
5728 qemu_put_be32(f, u.l.upper);
5729 qemu_put_be32(f, u.l.lower);
5730 }
5731 for (i = 0; i < 16; i++) {
5732 qemu_put_be32(f, env->vfp.xregs[i]);
5733 }
5734
5735 /* TODO: Should use proper FPSCR access functions. */
5736 qemu_put_be32(f, env->vfp.vec_len);
5737 qemu_put_be32(f, env->vfp.vec_stride);
5738 }
5739
5740 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
5741 for (i = 0; i < 16; i++) {
5742 qemu_put_be64(f, env->iwmmxt.regs[i]);
5743 }
5744 for (i = 0; i < 16; i++) {
5745 qemu_put_be32(f, env->iwmmxt.cregs[i]);
5746 }
5747 }
5748 }
5749
5750 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5751 {
5752 CPUARMState *env = (CPUARMState *)opaque;
5753 int i;
5754
5755 if (version_id != 0)
5756 return -EINVAL;
5757
5758 for (i = 0; i < 16; i++) {
5759 env->regs[i] = qemu_get_be32(f);
5760 }
5761 cpsr_write(env, qemu_get_be32(f), 0xffffffff);
5762 env->spsr = qemu_get_be32(f);
5763 for (i = 0; i < 6; i++) {
5764 env->banked_spsr[i] = qemu_get_be32(f);
5765 env->banked_r13[i] = qemu_get_be32(f);
5766 env->banked_r14[i] = qemu_get_be32(f);
5767 }
5768 for (i = 0; i < 5; i++) {
5769 env->usr_regs[i] = qemu_get_be32(f);
5770 env->fiq_regs[i] = qemu_get_be32(f);
5771 }
5772 env->cp15.c0_cpuid = qemu_get_be32(f);
5773 env->cp15.c0_cachetype = qemu_get_be32(f);
5774 env->cp15.c1_sys = qemu_get_be32(f);
5775 env->cp15.c1_coproc = qemu_get_be32(f);
5776 env->cp15.c2_base = qemu_get_be32(f);
5777 env->cp15.c2_data = qemu_get_be32(f);
5778 env->cp15.c2_insn = qemu_get_be32(f);
5779 env->cp15.c3 = qemu_get_be32(f);
5780 env->cp15.c5_insn = qemu_get_be32(f);
5781 env->cp15.c5_data = qemu_get_be32(f);
5782 for (i = 0; i < 8; i++) {
5783 env->cp15.c6_region[i] = qemu_get_be32(f);
5784 }
5785 env->cp15.c6_insn = qemu_get_be32(f);
5786 env->cp15.c6_data = qemu_get_be32(f);
5787 env->cp15.c9_insn = qemu_get_be32(f);
5788 env->cp15.c9_data = qemu_get_be32(f);
5789 env->cp15.c13_fcse = qemu_get_be32(f);
5790 env->cp15.c13_context = qemu_get_be32(f);
5791 env->cp15.c15_cpar = qemu_get_be32(f);
5792
5793 env->features = qemu_get_be32(f);
5794
5795 if (arm_feature(env, ARM_FEATURE_VFP)) {
5796 for (i = 0; i < 16; i++) {
5797 CPU_DoubleU u;
5798 u.l.upper = qemu_get_be32(f);
5799 u.l.lower = qemu_get_be32(f);
5800 env->vfp.regs[i] = u.d;
5801 }
5802 for (i = 0; i < 16; i++) {
5803 env->vfp.xregs[i] = qemu_get_be32(f);
5804 }
5805
5806 /* TODO: Should use proper FPSCR access functions. */
5807 env->vfp.vec_len = qemu_get_be32(f);
5808 env->vfp.vec_stride = qemu_get_be32(f);
5809 }
5810
5811 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
5812 for (i = 0; i < 16; i++) {
5813 env->iwmmxt.regs[i] = qemu_get_be64(f);
5814 }
5815 for (i = 0; i < 16; i++) {
5816 env->iwmmxt.cregs[i] = qemu_get_be32(f);
5817 }
5818 }
5819
5820 return 0;
5821 }
5822
5823 #else
5824
5825 #warning No CPU save/restore functions
5826
5827 #endif
5828
5829 /***********************************************************/
5830 /* ram save/restore */
5831
5832 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
5833 {
5834 int v;
5835
5836 v = qemu_get_byte(f);
5837 switch(v) {
5838 case 0:
5839 if (qemu_get_buffer(f, buf, len) != len)
5840 return -EIO;
5841 break;
5842 case 1:
5843 v = qemu_get_byte(f);
5844 memset(buf, v, len);
5845 break;
5846 default:
5847 return -EINVAL;
5848 }
5849 return 0;
5850 }
5851
5852 static int ram_load_v1(QEMUFile *f, void *opaque)
5853 {
5854 int i, ret;
5855
5856 if (qemu_get_be32(f) != phys_ram_size)
5857 return -EINVAL;
5858 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
5859 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
5860 if (ret)
5861 return ret;
5862 }
5863 return 0;
5864 }
5865
5866 #define BDRV_HASH_BLOCK_SIZE 1024
5867 #define IOBUF_SIZE 4096
5868 #define RAM_CBLOCK_MAGIC 0xfabe
5869
5870 typedef struct RamCompressState {
5871 z_stream zstream;
5872 QEMUFile *f;
5873 uint8_t buf[IOBUF_SIZE];
5874 } RamCompressState;
5875
5876 static int ram_compress_open(RamCompressState *s, QEMUFile *f)
5877 {
5878 int ret;
5879 memset(s, 0, sizeof(*s));
5880 s->f = f;
5881 ret = deflateInit2(&s->zstream, 1,
5882 Z_DEFLATED, 15,
5883 9, Z_DEFAULT_STRATEGY);
5884 if (ret != Z_OK)
5885 return -1;
5886 s->zstream.avail_out = IOBUF_SIZE;
5887 s->zstream.next_out = s->buf;
5888 return 0;
5889 }
5890
5891 static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
5892 {
5893 qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
5894 qemu_put_be16(s->f, len);
5895 qemu_put_buffer(s->f, buf, len);
5896 }
5897
5898 static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
5899 {
5900 int ret;
5901
5902 s->zstream.avail_in = len;
5903 s->zstream.next_in = (uint8_t *)buf;
5904 while (s->zstream.avail_in > 0) {
5905 ret = deflate(&s->zstream, Z_NO_FLUSH);
5906 if (ret != Z_OK)
5907 return -1;
5908 if (s->zstream.avail_out == 0) {
5909 ram_put_cblock(s, s->buf, IOBUF_SIZE);
5910 s->zstream.avail_out = IOBUF_SIZE;
5911 s->zstream.next_out = s->buf;
5912 }
5913 }
5914 return 0;
5915 }
5916
5917 static void ram_compress_close(RamCompressState *s)
5918 {
5919 int len, ret;
5920
5921 /* compress last bytes */
5922 for(;;) {
5923 ret = deflate(&s->zstream, Z_FINISH);
5924 if (ret == Z_OK || ret == Z_STREAM_END) {
5925 len = IOBUF_SIZE - s->zstream.avail_out;
5926 if (len > 0) {
5927 ram_put_cblock(s, s->buf, len);
5928 }
5929 s->zstream.avail_out = IOBUF_SIZE;
5930 s->zstream.next_out = s->buf;
5931 if (ret == Z_STREAM_END)
5932 break;
5933 } else {
5934 goto fail;
5935 }
5936 }
5937 fail:
5938 deflateEnd(&s->zstream);
5939 }
5940
5941 typedef struct RamDecompressState {
5942 z_stream zstream;
5943 QEMUFile *f;
5944 uint8_t buf[IOBUF_SIZE];
5945 } RamDecompressState;
5946
5947 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
5948 {
5949 int ret;
5950 memset(s, 0, sizeof(*s));
5951 s->f = f;
5952 ret = inflateInit(&s->zstream);
5953 if (ret != Z_OK)
5954 return -1;
5955 return 0;
5956 }
5957
5958 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
5959 {
5960 int ret, clen;
5961
5962 s->zstream.avail_out = len;
5963 s->zstream.next_out = buf;
5964 while (s->zstream.avail_out > 0) {
5965 if (s->zstream.avail_in == 0) {
5966 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
5967 return -1;
5968 clen = qemu_get_be16(s->f);
5969 if (clen > IOBUF_SIZE)
5970 return -1;
5971 qemu_get_buffer(s->f, s->buf, clen);
5972 s->zstream.avail_in = clen;
5973 s->zstream.next_in = s->buf;
5974 }
5975 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
5976 if (ret != Z_OK && ret != Z_STREAM_END) {
5977 return -1;
5978 }
5979 }
5980 return 0;
5981 }
5982
5983 static void ram_decompress_close(RamDecompressState *s)
5984 {
5985 inflateEnd(&s->zstream);
5986 }
5987
5988 static void ram_save(QEMUFile *f, void *opaque)
5989 {
5990 int i;
5991 RamCompressState s1, *s = &s1;
5992 uint8_t buf[10];
5993
5994 qemu_put_be32(f, phys_ram_size);
5995 if (ram_compress_open(s, f) < 0)
5996 return;
5997 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
5998 #if 0
5999 if (tight_savevm_enabled) {
6000 int64_t sector_num;
6001 int j;
6002
6003 /* find if the memory block is available on a virtual
6004 block device */
6005 sector_num = -1;
6006 for(j = 0; j < MAX_DISKS; j++) {
6007 if (bs_table[j]) {
6008 sector_num = bdrv_hash_find(bs_table[j],
6009 phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6010 if (sector_num >= 0)
6011 break;
6012 }
6013 }
6014 if (j == MAX_DISKS)
6015 goto normal_compress;
6016 buf[0] = 1;
6017 buf[1] = j;
6018 cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
6019 ram_compress_buf(s, buf, 10);
6020 } else
6021 #endif
6022 {
6023 // normal_compress:
6024 buf[0] = 0;
6025 ram_compress_buf(s, buf, 1);
6026 ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6027 }
6028 }
6029 ram_compress_close(s);
6030 }
6031
6032 static int ram_load(QEMUFile *f, void *opaque, int version_id)
6033 {
6034 RamDecompressState s1, *s = &s1;
6035 uint8_t buf[10];
6036 int i;
6037
6038 if (version_id == 1)
6039 return ram_load_v1(f, opaque);
6040 if (version_id != 2)
6041 return -EINVAL;
6042 if (qemu_get_be32(f) != phys_ram_size)
6043 return -EINVAL;
6044 if (ram_decompress_open(s, f) < 0)
6045 return -EINVAL;
6046 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6047 if (ram_decompress_buf(s, buf, 1) < 0) {
6048 fprintf(stderr, "Error while reading ram block header\n");
6049 goto error;
6050 }
6051 if (buf[0] == 0) {
6052 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
6053 fprintf(stderr, "Error while reading ram block address=0x%08x", i);
6054 goto error;
6055 }
6056 } else
6057 #if 0
6058 if (buf[0] == 1) {
6059 int bs_index;
6060 int64_t sector_num;
6061
6062 ram_decompress_buf(s, buf + 1, 9);
6063 bs_index = buf[1];
6064 sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
6065 if (bs_index >= MAX_DISKS || bs_table[bs_index] == NULL) {
6066 fprintf(stderr, "Invalid block device index %d\n", bs_index);
6067 goto error;
6068 }
6069 if (bdrv_read(bs_table[bs_index], sector_num, phys_ram_base + i,
6070 BDRV_HASH_BLOCK_SIZE / 512) < 0) {
6071 fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
6072 bs_index, sector_num);
6073 goto error;
6074 }
6075 } else
6076 #endif
6077 {
6078 error:
6079 printf("Error block header\n");
6080 return -EINVAL;
6081 }
6082 }
6083 ram_decompress_close(s);
6084 return 0;
6085 }
6086
6087 /***********************************************************/
6088 /* bottom halves (can be seen as timers which expire ASAP) */
6089
6090 struct QEMUBH {
6091 QEMUBHFunc *cb;
6092 void *opaque;
6093 int scheduled;
6094 QEMUBH *next;
6095 };
6096
6097 static QEMUBH *first_bh = NULL;
6098
6099 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
6100 {
6101 QEMUBH *bh;
6102 bh = qemu_mallocz(sizeof(QEMUBH));
6103 if (!bh)
6104 return NULL;
6105 bh->cb = cb;
6106 bh->opaque = opaque;
6107 return bh;
6108 }
6109
6110 int qemu_bh_poll(void)
6111 {
6112 QEMUBH *bh, **pbh;
6113 int ret;
6114
6115 ret = 0;
6116 for(;;) {
6117 pbh = &first_bh;
6118 bh = *pbh;
6119 if (!bh)
6120 break;
6121 ret = 1;
6122 *pbh = bh->next;
6123 bh->scheduled = 0;
6124 bh->cb(bh->opaque);
6125 }
6126 return ret;
6127 }
6128
6129 void qemu_bh_schedule(QEMUBH *bh)
6130 {
6131 CPUState *env = cpu_single_env;
6132 if (bh->scheduled)
6133 return;
6134 bh->scheduled = 1;
6135 bh->next = first_bh;
6136 first_bh = bh;
6137
6138 /* stop the currently executing CPU to execute the BH ASAP */
6139 if (env) {
6140 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
6141 }
6142 }
6143
6144 void qemu_bh_cancel(QEMUBH *bh)
6145 {
6146 QEMUBH **pbh;
6147 if (bh->scheduled) {
6148 pbh = &first_bh;
6149 while (*pbh != bh)
6150 pbh = &(*pbh)->next;
6151 *pbh = bh->next;
6152 bh->scheduled = 0;
6153 }
6154 }
6155
6156 void qemu_bh_delete(QEMUBH *bh)
6157 {
6158 qemu_bh_cancel(bh);
6159 qemu_free(bh);
6160 }
6161
6162 /***********************************************************/
6163 /* machine registration */
6164
6165 QEMUMachine *first_machine = NULL;
6166
6167 int qemu_register_machine(QEMUMachine *m)
6168 {
6169 QEMUMachine **pm;
6170 pm = &first_machine;
6171 while (*pm != NULL)
6172 pm = &(*pm)->next;
6173 m->next = NULL;
6174 *pm = m;
6175 return 0;
6176 }
6177
6178 QEMUMachine *find_machine(const char *name)
6179 {
6180 QEMUMachine *m;
6181
6182 for(m = first_machine; m != NULL; m = m->next) {
6183 if (!strcmp(m->name, name))
6184 return m;
6185 }
6186 return NULL;
6187 }
6188
6189 /***********************************************************/
6190 /* main execution loop */
6191
6192 void gui_update(void *opaque)
6193 {
6194 display_state.dpy_refresh(&display_state);
6195 qemu_mod_timer(gui_timer, GUI_REFRESH_INTERVAL + qemu_get_clock(rt_clock));
6196 }
6197
6198 struct vm_change_state_entry {
6199 VMChangeStateHandler *cb;
6200 void *opaque;
6201 LIST_ENTRY (vm_change_state_entry) entries;
6202 };
6203
6204 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
6205
6206 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
6207 void *opaque)
6208 {
6209 VMChangeStateEntry *e;
6210
6211 e = qemu_mallocz(sizeof (*e));
6212 if (!e)
6213 return NULL;
6214
6215 e->cb = cb;
6216 e->opaque = opaque;
6217 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
6218 return e;
6219 }
6220
6221 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
6222 {
6223 LIST_REMOVE (e, entries);
6224 qemu_free (e);
6225 }
6226
6227 static void vm_state_notify(int running)
6228 {
6229 VMChangeStateEntry *e;
6230
6231 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
6232 e->cb(e->opaque, running);
6233 }
6234 }
6235
6236 /* XXX: support several handlers */
6237 static VMStopHandler *vm_stop_cb;
6238 static void *vm_stop_opaque;
6239
6240 int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
6241 {
6242 vm_stop_cb = cb;
6243 vm_stop_opaque = opaque;
6244 return 0;
6245 }
6246
6247 void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
6248 {
6249 vm_stop_cb = NULL;
6250 }
6251
6252 void vm_start(void)
6253 {
6254 if (!vm_running) {
6255 cpu_enable_ticks();
6256 vm_running = 1;
6257 vm_state_notify(1);
6258 }
6259 }
6260
6261 void vm_stop(int reason)
6262 {
6263 if (vm_running) {
6264 cpu_disable_ticks();
6265 vm_running = 0;
6266 if (reason != 0) {
6267 if (vm_stop_cb) {
6268 vm_stop_cb(vm_stop_opaque, reason);
6269 }
6270 }
6271 vm_state_notify(0);
6272 }
6273 }
6274
6275 /* reset/shutdown handler */
6276
6277 typedef struct QEMUResetEntry {
6278 QEMUResetHandler *func;
6279 void *opaque;
6280 struct QEMUResetEntry *next;
6281 } QEMUResetEntry;
6282
6283 static QEMUResetEntry *first_reset_entry;
6284 static int reset_requested;
6285 static int shutdown_requested;
6286 static int powerdown_requested;
6287
6288 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
6289 {
6290 QEMUResetEntry **pre, *re;
6291
6292 pre = &first_reset_entry;
6293 while (*pre != NULL)
6294 pre = &(*pre)->next;
6295 re = qemu_mallocz(sizeof(QEMUResetEntry));
6296 re->func = func;
6297 re->opaque = opaque;
6298 re->next = NULL;
6299 *pre = re;
6300 }
6301
6302 static void qemu_system_reset(void)
6303 {
6304 QEMUResetEntry *re;
6305
6306 /* reset all devices */
6307 for(re = first_reset_entry; re != NULL; re = re->next) {
6308 re->func(re->opaque);
6309 }
6310 }
6311
6312 void qemu_system_reset_request(void)
6313 {
6314 if (no_reboot) {
6315 shutdown_requested = 1;
6316 } else {
6317 reset_requested = 1;
6318 }
6319 if (cpu_single_env)
6320 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6321 }
6322
6323 void qemu_system_shutdown_request(void)
6324 {
6325 shutdown_requested = 1;
6326 if (cpu_single_env)
6327 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6328 }
6329
6330 void qemu_system_powerdown_request(void)
6331 {
6332 powerdown_requested = 1;
6333 if (cpu_single_env)
6334 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6335 }
6336
6337 void main_loop_wait(int timeout)
6338 {
6339 IOHandlerRecord *ioh;
6340 fd_set rfds, wfds, xfds;
6341 int ret, nfds;
6342 #ifdef _WIN32
6343 int ret2, i;
6344 #endif
6345 struct timeval tv;
6346 PollingEntry *pe;
6347
6348
6349 /* XXX: need to suppress polling by better using win32 events */
6350 ret = 0;
6351 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
6352 ret |= pe->func(pe->opaque);
6353 }
6354 #ifdef _WIN32
6355 if (ret == 0) {
6356 int err;
6357 WaitObjects *w = &wait_objects;
6358
6359 ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
6360 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
6361 if (w->func[ret - WAIT_OBJECT_0])
6362 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
6363
6364 /* Check for additional signaled events */
6365 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
6366
6367 /* Check if event is signaled */
6368 ret2 = WaitForSingleObject(w->events[i], 0);
6369 if(ret2 == WAIT_OBJECT_0) {
6370 if (w->func[i])
6371 w->func[i](w->opaque[i]);
6372 } else if (ret2 == WAIT_TIMEOUT) {
6373 } else {
6374 err = GetLastError();
6375 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
6376 }
6377 }
6378 } else if (ret == WAIT_TIMEOUT) {
6379 } else {
6380 err = GetLastError();
6381 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
6382 }
6383 }
6384 #endif
6385 /* poll any events */
6386 /* XXX: separate device handlers from system ones */
6387 nfds = -1;
6388 FD_ZERO(&rfds);
6389 FD_ZERO(&wfds);
6390 FD_ZERO(&xfds);
6391 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6392 if (ioh->deleted)
6393 continue;
6394 if (ioh->fd_read &&
6395 (!ioh->fd_read_poll ||
6396 ioh->fd_read_poll(ioh->opaque) != 0)) {
6397 FD_SET(ioh->fd, &rfds);
6398 if (ioh->fd > nfds)
6399 nfds = ioh->fd;
6400 }
6401 if (ioh->fd_write) {
6402 FD_SET(ioh->fd, &wfds);
6403 if (ioh->fd > nfds)
6404 nfds = ioh->fd;
6405 }
6406 }
6407
6408 tv.tv_sec = 0;
6409 #ifdef _WIN32
6410 tv.tv_usec = 0;
6411 #else
6412 tv.tv_usec = timeout * 1000;
6413 #endif
6414 #if defined(CONFIG_SLIRP)
6415 if (slirp_inited) {
6416 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
6417 }
6418 #endif
6419 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
6420 if (ret > 0) {
6421 IOHandlerRecord **pioh;
6422
6423 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6424 if (ioh->deleted)
6425 continue;
6426 if (FD_ISSET(ioh->fd, &rfds)) {
6427 ioh->fd_read(ioh->opaque);
6428 }
6429 if (FD_ISSET(ioh->fd, &wfds)) {
6430 ioh->fd_write(ioh->opaque);
6431 }
6432 }
6433
6434 /* remove deleted IO handlers */
6435 pioh = &first_io_handler;
6436 while (*pioh) {
6437 ioh = *pioh;
6438 if (ioh->deleted) {
6439 *pioh = ioh->next;
6440 qemu_free(ioh);
6441 } else
6442 pioh = &ioh->next;
6443 }
6444 }
6445 #if defined(CONFIG_SLIRP)
6446 if (slirp_inited) {
6447 if (ret < 0) {
6448 FD_ZERO(&rfds);
6449 FD_ZERO(&wfds);
6450 FD_ZERO(&xfds);
6451 }
6452 slirp_select_poll(&rfds, &wfds, &xfds);
6453 }
6454 #endif
6455 qemu_aio_poll();
6456
6457 if (vm_running) {
6458 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
6459 qemu_get_clock(vm_clock));
6460 /* run dma transfers, if any */
6461 DMA_run();
6462 }
6463
6464 /* real time timers */
6465 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
6466 qemu_get_clock(rt_clock));
6467
6468 /* Check bottom-halves last in case any of the earlier events triggered
6469 them. */
6470 qemu_bh_poll();
6471
6472 }
6473
6474 static CPUState *cur_cpu;
6475
6476 int main_loop(void)
6477 {
6478 int ret, timeout;
6479 #ifdef CONFIG_PROFILER
6480 int64_t ti;
6481 #endif
6482 CPUState *env;
6483
6484 cur_cpu = first_cpu;
6485 for(;;) {
6486 if (vm_running) {
6487
6488 env = cur_cpu;
6489 for(;;) {
6490 /* get next cpu */
6491 env = env->next_cpu;
6492 if (!env)
6493 env = first_cpu;
6494 #ifdef CONFIG_PROFILER
6495 ti = profile_getclock();
6496 #endif
6497 ret = cpu_exec(env);
6498 #ifdef CONFIG_PROFILER
6499 qemu_time += profile_getclock() - ti;
6500 #endif
6501 if (ret == EXCP_HLT) {
6502 /* Give the next CPU a chance to run. */
6503 cur_cpu = env;
6504 continue;
6505 }
6506 if (ret != EXCP_HALTED)
6507 break;
6508 /* all CPUs are halted ? */
6509 if (env == cur_cpu)
6510 break;
6511 }
6512 cur_cpu = env;
6513
6514 if (shutdown_requested) {
6515 ret = EXCP_INTERRUPT;
6516 break;
6517 }
6518 if (reset_requested) {
6519 reset_requested = 0;
6520 qemu_system_reset();
6521 ret = EXCP_INTERRUPT;
6522 }
6523 if (powerdown_requested) {
6524 powerdown_requested = 0;
6525 qemu_system_powerdown();
6526 ret = EXCP_INTERRUPT;
6527 }
6528 if (ret == EXCP_DEBUG) {
6529 vm_stop(EXCP_DEBUG);
6530 }
6531 /* If all cpus are halted then wait until the next IRQ */
6532 /* XXX: use timeout computed from timers */
6533 if (ret == EXCP_HALTED)
6534 timeout = 10;
6535 else
6536 timeout = 0;
6537 } else {
6538 timeout = 10;
6539 }
6540 #ifdef CONFIG_PROFILER
6541 ti = profile_getclock();
6542 #endif
6543 main_loop_wait(timeout);
6544 #ifdef CONFIG_PROFILER
6545 dev_time += profile_getclock() - ti;
6546 #endif
6547 }
6548 cpu_disable_ticks();
6549 return ret;
6550 }
6551
6552 void help(void)
6553 {
6554 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2007 Fabrice Bellard\n"
6555 "usage: %s [options] [disk_image]\n"
6556 "\n"
6557 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
6558 "\n"
6559 "Standard options:\n"
6560 "-M machine select emulated machine (-M ? for list)\n"
6561 "-cpu cpu select CPU (-cpu ? for list)\n"
6562 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
6563 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
6564 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
6565 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
6566 "-mtdblock file use 'file' as on-board Flash memory image\n"
6567 "-sd file use 'file' as SecureDigital card image\n"
6568 "-pflash file use 'file' as a parallel flash image\n"
6569 "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
6570 "-snapshot write to temporary files instead of disk image files\n"
6571 #ifdef CONFIG_SDL
6572 "-no-frame open SDL window without a frame and window decorations\n"
6573 "-no-quit disable SDL window close capability\n"
6574 #endif
6575 #ifdef TARGET_I386
6576 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
6577 #endif
6578 "-m megs set virtual RAM size to megs MB [default=%d]\n"
6579 "-smp n set the number of CPUs to 'n' [default=1]\n"
6580 "-nographic disable graphical output and redirect serial I/Os to console\n"
6581 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n"
6582 #ifndef _WIN32
6583 "-k language use keyboard layout (for example \"fr\" for French)\n"
6584 #endif
6585 #ifdef HAS_AUDIO
6586 "-audio-help print list of audio drivers and their options\n"
6587 "-soundhw c1,... enable audio support\n"
6588 " and only specified sound cards (comma separated list)\n"
6589 " use -soundhw ? to get the list of supported cards\n"
6590 " use -soundhw all to enable all of them\n"
6591 #endif
6592 "-localtime set the real time clock to local time [default=utc]\n"
6593 "-full-screen start in full screen\n"
6594 #ifdef TARGET_I386
6595 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
6596 #endif
6597 "-usb enable the USB driver (will be the default soon)\n"
6598 "-usbdevice name add the host or guest USB device 'name'\n"
6599 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
6600 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
6601 #endif
6602 "-name string set the name of the guest\n"
6603 "\n"
6604 "Network options:\n"
6605 "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
6606 " create a new Network Interface Card and connect it to VLAN 'n'\n"
6607 #ifdef CONFIG_SLIRP
6608 "-net user[,vlan=n][,hostname=host]\n"
6609 " connect the user mode network stack to VLAN 'n' and send\n"
6610 " hostname 'host' to DHCP clients\n"
6611 #endif
6612 #ifdef _WIN32
6613 "-net tap[,vlan=n],ifname=name\n"
6614 " connect the host TAP network interface to VLAN 'n'\n"
6615 #else
6616 "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file]\n"
6617 " connect the host TAP network interface to VLAN 'n' and use\n"
6618 " the network script 'file' (default=%s);\n"
6619 " use 'script=no' to disable script execution;\n"
6620 " use 'fd=h' to connect to an already opened TAP interface\n"
6621 #endif
6622 "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
6623 " connect the vlan 'n' to another VLAN using a socket connection\n"
6624 "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
6625 " connect the vlan 'n' to multicast maddr and port\n"
6626 "-net none use it alone to have zero network devices; if no -net option\n"
6627 " is provided, the default is '-net nic -net user'\n"
6628 "\n"
6629 #ifdef CONFIG_SLIRP
6630 "-tftp dir allow tftp access to files in dir [-net user]\n"
6631 "-bootp file advertise file in BOOTP replies\n"
6632 #ifndef _WIN32
6633 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
6634 #endif
6635 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
6636 " redirect TCP or UDP connections from host to guest [-net user]\n"
6637 #endif
6638 "\n"
6639 "Linux boot specific:\n"
6640 "-kernel bzImage use 'bzImage' as kernel image\n"
6641 "-append cmdline use 'cmdline' as kernel command line\n"
6642 "-initrd file use 'file' as initial ram disk\n"
6643 "\n"
6644 "Debug/Expert options:\n"
6645 "-monitor dev redirect the monitor to char device 'dev'\n"
6646 "-serial dev redirect the serial port to char device 'dev'\n"
6647 "-parallel dev redirect the parallel port to char device 'dev'\n"
6648 "-pidfile file Write PID to 'file'\n"
6649 "-S freeze CPU at startup (use 'c' to start execution)\n"
6650 "-s wait gdb connection to port\n"
6651 "-p port set gdb connection port [default=%s]\n"
6652 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
6653 "-hdachs c,h,s[,t] force hard disk 0 physical geometry and the optional BIOS\n"
6654 " translation (t=none or lba) (usually qemu can guess them)\n"
6655 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
6656 #ifdef USE_KQEMU
6657 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
6658 "-no-kqemu disable KQEMU kernel module usage\n"
6659 #endif
6660 #ifdef USE_CODE_COPY
6661 "-no-code-copy disable code copy acceleration\n"
6662 #endif
6663 #ifdef TARGET_I386
6664 "-std-vga simulate a standard VGA card with VESA Bochs Extensions\n"
6665 " (default is CL-GD5446 PCI VGA)\n"
6666 "-no-acpi disable ACPI\n"
6667 #endif
6668 "-no-reboot exit instead of rebooting\n"
6669 "-loadvm file start right away with a saved state (loadvm in monitor)\n"
6670 "-vnc display start a VNC server on display\n"
6671 #ifndef _WIN32
6672 "-daemonize daemonize QEMU after initializing\n"
6673 #endif
6674 "-option-rom rom load a file, rom, into the option ROM space\n"
6675 #ifdef TARGET_SPARC
6676 "-prom-env variable=value set OpenBIOS nvram variables\n"
6677 #endif
6678 "\n"
6679 "During emulation, the following keys are useful:\n"
6680 "ctrl-alt-f toggle full screen\n"
6681 "ctrl-alt-n switch to virtual console 'n'\n"
6682 "ctrl-alt toggle mouse and keyboard grab\n"
6683 "\n"
6684 "When using -nographic, press 'ctrl-a h' to get some help.\n"
6685 ,
6686 "qemu",
6687 DEFAULT_RAM_SIZE,
6688 #ifndef _WIN32
6689 DEFAULT_NETWORK_SCRIPT,
6690 #endif
6691 DEFAULT_GDBSTUB_PORT,
6692 "/tmp/qemu.log");
6693 exit(1);
6694 }
6695
6696 #define HAS_ARG 0x0001
6697
6698 enum {
6699 QEMU_OPTION_h,
6700
6701 QEMU_OPTION_M,
6702 QEMU_OPTION_cpu,
6703 QEMU_OPTION_fda,
6704 QEMU_OPTION_fdb,
6705 QEMU_OPTION_hda,
6706 QEMU_OPTION_hdb,
6707 QEMU_OPTION_hdc,
6708 QEMU_OPTION_hdd,
6709 QEMU_OPTION_cdrom,
6710 QEMU_OPTION_mtdblock,
6711 QEMU_OPTION_sd,
6712 QEMU_OPTION_pflash,
6713 QEMU_OPTION_boot,
6714 QEMU_OPTION_snapshot,
6715 #ifdef TARGET_I386
6716 QEMU_OPTION_no_fd_bootchk,
6717 #endif
6718 QEMU_OPTION_m,
6719 QEMU_OPTION_nographic,
6720 QEMU_OPTION_portrait,
6721 #ifdef HAS_AUDIO
6722 QEMU_OPTION_audio_help,
6723 QEMU_OPTION_soundhw,
6724 #endif
6725
6726 QEMU_OPTION_net,
6727 QEMU_OPTION_tftp,
6728 QEMU_OPTION_bootp,
6729 QEMU_OPTION_smb,
6730 QEMU_OPTION_redir,
6731
6732 QEMU_OPTION_kernel,
6733 QEMU_OPTION_append,
6734 QEMU_OPTION_initrd,
6735
6736 QEMU_OPTION_S,
6737 QEMU_OPTION_s,
6738 QEMU_OPTION_p,
6739 QEMU_OPTION_d,
6740 QEMU_OPTION_hdachs,
6741 QEMU_OPTION_L,
6742 QEMU_OPTION_no_code_copy,
6743 QEMU_OPTION_k,
6744 QEMU_OPTION_localtime,
6745 QEMU_OPTION_cirrusvga,
6746 QEMU_OPTION_vmsvga,
6747 QEMU_OPTION_g,
6748 QEMU_OPTION_std_vga,
6749 QEMU_OPTION_echr,
6750 QEMU_OPTION_monitor,
6751 QEMU_OPTION_serial,
6752 QEMU_OPTION_parallel,
6753 QEMU_OPTION_loadvm,
6754 QEMU_OPTION_full_screen,
6755 QEMU_OPTION_no_frame,
6756 QEMU_OPTION_no_quit,
6757 QEMU_OPTION_pidfile,
6758 QEMU_OPTION_no_kqemu,
6759 QEMU_OPTION_kernel_kqemu,
6760 QEMU_OPTION_win2k_hack,
6761 QEMU_OPTION_usb,
6762 QEMU_OPTION_usbdevice,
6763 QEMU_OPTION_smp,
6764 QEMU_OPTION_vnc,
6765 QEMU_OPTION_no_acpi,
6766 QEMU_OPTION_no_reboot,
6767 QEMU_OPTION_show_cursor,
6768 QEMU_OPTION_daemonize,
6769 QEMU_OPTION_option_rom,
6770 QEMU_OPTION_semihosting,
6771 QEMU_OPTION_name,
6772 QEMU_OPTION_prom_env,
6773 };
6774
6775 typedef struct QEMUOption {
6776 const char *name;
6777 int flags;
6778 int index;
6779 } QEMUOption;
6780
6781 const QEMUOption qemu_options[] = {
6782 { "h", 0, QEMU_OPTION_h },
6783 { "help", 0, QEMU_OPTION_h },
6784
6785 { "M", HAS_ARG, QEMU_OPTION_M },
6786 { "cpu", HAS_ARG, QEMU_OPTION_cpu },
6787 { "fda", HAS_ARG, QEMU_OPTION_fda },
6788 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
6789 { "hda", HAS_ARG, QEMU_OPTION_hda },
6790 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
6791 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
6792 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
6793 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
6794 { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
6795 { "sd", HAS_ARG, QEMU_OPTION_sd },
6796 { "pflash", HAS_ARG, QEMU_OPTION_pflash },
6797 { "boot", HAS_ARG, QEMU_OPTION_boot },
6798 { "snapshot", 0, QEMU_OPTION_snapshot },
6799 #ifdef TARGET_I386
6800 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
6801 #endif
6802 { "m", HAS_ARG, QEMU_OPTION_m },
6803 { "nographic", 0, QEMU_OPTION_nographic },
6804 { "portrait", 0, QEMU_OPTION_portrait },
6805 { "k", HAS_ARG, QEMU_OPTION_k },
6806 #ifdef HAS_AUDIO
6807 { "audio-help", 0, QEMU_OPTION_audio_help },
6808 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
6809 #endif
6810
6811 { "net", HAS_ARG, QEMU_OPTION_net},
6812 #ifdef CONFIG_SLIRP
6813 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
6814 { "bootp", HAS_ARG, QEMU_OPTION_bootp },
6815 #ifndef _WIN32
6816 { "smb", HAS_ARG, QEMU_OPTION_smb },
6817 #endif
6818 { "redir", HAS_ARG, QEMU_OPTION_redir },
6819 #endif
6820
6821 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
6822 { "append", HAS_ARG, QEMU_OPTION_append },
6823 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
6824
6825 { "S", 0, QEMU_OPTION_S },
6826 { "s", 0, QEMU_OPTION_s },
6827 { "p", HAS_ARG, QEMU_OPTION_p },
6828 { "d", HAS_ARG, QEMU_OPTION_d },
6829 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
6830 { "L", HAS_ARG, QEMU_OPTION_L },
6831 { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
6832 #ifdef USE_KQEMU
6833 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
6834 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
6835 #endif
6836 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
6837 { "g", 1, QEMU_OPTION_g },
6838 #endif
6839 { "localtime", 0, QEMU_OPTION_localtime },
6840 { "std-vga", 0, QEMU_OPTION_std_vga },
6841 { "echr", 1, QEMU_OPTION_echr },
6842 { "monitor", 1, QEMU_OPTION_monitor },
6843 { "serial", 1, QEMU_OPTION_serial },
6844 { "parallel", 1, QEMU_OPTION_parallel },
6845 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
6846 { "full-screen", 0, QEMU_OPTION_full_screen },
6847 #ifdef CONFIG_SDL
6848 { "no-frame", 0, QEMU_OPTION_no_frame },
6849 { "no-quit", 0, QEMU_OPTION_no_quit },
6850 #endif
6851 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
6852 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
6853 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
6854 { "smp", HAS_ARG, QEMU_OPTION_smp },
6855 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
6856
6857 /* temporary options */
6858 { "usb", 0, QEMU_OPTION_usb },
6859 { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
6860 { "vmwarevga", 0, QEMU_OPTION_vmsvga },
6861 { "no-acpi", 0, QEMU_OPTION_no_acpi },
6862 { "no-reboot", 0, QEMU_OPTION_no_reboot },
6863 { "show-cursor", 0, QEMU_OPTION_show_cursor },
6864 { "daemonize", 0, QEMU_OPTION_daemonize },
6865 { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
6866 #if defined(TARGET_ARM)
6867 { "semihosting", 0, QEMU_OPTION_semihosting },
6868 #endif
6869 { "name", HAS_ARG, QEMU_OPTION_name },
6870 #if defined(TARGET_SPARC)
6871 { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
6872 #endif
6873 { NULL },
6874 };
6875
6876 #if defined (TARGET_I386) && defined(USE_CODE_COPY)
6877
6878 /* this stack is only used during signal handling */
6879 #define SIGNAL_STACK_SIZE 32768
6880
6881 static uint8_t *signal_stack;
6882
6883 #endif
6884
6885 /* password input */
6886
6887 int qemu_key_check(BlockDriverState *bs, const char *name)
6888 {
6889 char password[256];
6890 int i;
6891
6892 if (!bdrv_is_encrypted(bs))
6893 return 0;
6894
6895 term_printf("%s is encrypted.\n", name);
6896 for(i = 0; i < 3; i++) {
6897 monitor_readline("Password: ", 1, password, sizeof(password));
6898 if (bdrv_set_key(bs, password) == 0)
6899 return 0;
6900 term_printf("invalid password\n");
6901 }
6902 return -EPERM;
6903 }
6904
6905 static BlockDriverState *get_bdrv(int index)
6906 {
6907 BlockDriverState *bs;
6908
6909 if (index < 4) {
6910 bs = bs_table[index];
6911 } else if (index < 6) {
6912 bs = fd_table[index - 4];
6913 } else {
6914 bs = NULL;
6915 }
6916 return bs;
6917 }
6918
6919 static void read_passwords(void)
6920 {
6921 BlockDriverState *bs;
6922 int i;
6923
6924 for(i = 0; i < 6; i++) {
6925 bs = get_bdrv(i);
6926 if (bs)
6927 qemu_key_check(bs, bdrv_get_device_name(bs));
6928 }
6929 }
6930
6931 /* XXX: currently we cannot use simultaneously different CPUs */
6932 void register_machines(void)
6933 {
6934 #if defined(TARGET_I386)
6935 qemu_register_machine(&pc_machine);
6936 qemu_register_machine(&isapc_machine);
6937 #elif defined(TARGET_PPC)
6938 qemu_register_machine(&heathrow_machine);
6939 qemu_register_machine(&core99_machine);
6940 qemu_register_machine(&prep_machine);
6941 qemu_register_machine(&ref405ep_machine);
6942 qemu_register_machine(&taihu_machine);
6943 #elif defined(TARGET_MIPS)
6944 qemu_register_machine(&mips_machine);
6945 qemu_register_machine(&mips_malta_machine);
6946 qemu_register_machine(&mips_pica61_machine);
6947 #elif defined(TARGET_SPARC)
6948 #ifdef TARGET_SPARC64
6949 qemu_register_machine(&sun4u_machine);
6950 #else
6951 qemu_register_machine(&ss5_machine);
6952 qemu_register_machine(&ss10_machine);
6953 #endif
6954 #elif defined(TARGET_ARM)
6955 qemu_register_machine(&integratorcp_machine);
6956 qemu_register_machine(&versatilepb_machine);
6957 qemu_register_machine(&versatileab_machine);
6958 qemu_register_machine(&realview_machine);
6959 qemu_register_machine(&akitapda_machine);
6960 qemu_register_machine(&spitzpda_machine);
6961 qemu_register_machine(&borzoipda_machine);
6962 qemu_register_machine(&terrierpda_machine);
6963 #elif defined(TARGET_SH4)
6964 qemu_register_machine(&shix_machine);
6965 #elif defined(TARGET_ALPHA)
6966 /* XXX: TODO */
6967 #elif defined(TARGET_M68K)
6968 qemu_register_machine(&an5206_machine);
6969 #else
6970 #error unsupported CPU
6971 #endif
6972 }
6973
6974 #ifdef HAS_AUDIO
6975 struct soundhw soundhw[] = {
6976 #ifdef HAS_AUDIO_CHOICE
6977 #ifdef TARGET_I386
6978 {
6979 "pcspk",
6980 "PC speaker",
6981 0,
6982 1,
6983 { .init_isa = pcspk_audio_init }
6984 },
6985 #endif
6986 {
6987 "sb16",
6988 "Creative Sound Blaster 16",
6989 0,
6990 1,
6991 { .init_isa = SB16_init }
6992 },
6993
6994 #ifdef CONFIG_ADLIB
6995 {
6996 "adlib",
6997 #ifdef HAS_YMF262
6998 "Yamaha YMF262 (OPL3)",
6999 #else
7000 "Yamaha YM3812 (OPL2)",
7001 #endif
7002 0,
7003 1,
7004 { .init_isa = Adlib_init }
7005 },
7006 #endif
7007
7008 #ifdef CONFIG_GUS
7009 {
7010 "gus",
7011 "Gravis Ultrasound GF1",
7012 0,
7013 1,
7014 { .init_isa = GUS_init }
7015 },
7016 #endif
7017
7018 {
7019 "es1370",
7020 "ENSONIQ AudioPCI ES1370",
7021 0,
7022 0,
7023 { .init_pci = es1370_init }
7024 },
7025 #endif
7026
7027 { NULL, NULL, 0, 0, { NULL } }
7028 };
7029
7030 static void select_soundhw (const char *optarg)
7031 {
7032 struct soundhw *c;
7033
7034 if (*optarg == '?') {
7035 show_valid_cards:
7036
7037 printf ("Valid sound card names (comma separated):\n");
7038 for (c = soundhw; c->name; ++c) {
7039 printf ("%-11s %s\n", c->name, c->descr);
7040 }
7041 printf ("\n-soundhw all will enable all of the above\n");
7042 exit (*optarg != '?');
7043 }
7044 else {
7045 size_t l;
7046 const char *p;
7047 char *e;
7048 int bad_card = 0;
7049
7050 if (!strcmp (optarg, "all")) {
7051 for (c = soundhw; c->name; ++c) {
7052 c->enabled = 1;
7053 }
7054 return;
7055 }
7056
7057 p = optarg;
7058 while (*p) {
7059 e = strchr (p, ',');
7060 l = !e ? strlen (p) : (size_t) (e - p);
7061
7062 for (c = soundhw; c->name; ++c) {
7063 if (!strncmp (c->name, p, l)) {
7064 c->enabled = 1;
7065 break;
7066 }
7067 }
7068
7069 if (!c->name) {
7070 if (l > 80) {
7071 fprintf (stderr,
7072 "Unknown sound card name (too big to show)\n");
7073 }
7074 else {
7075 fprintf (stderr, "Unknown sound card name `%.*s'\n",
7076 (int) l, p);
7077 }
7078 bad_card = 1;
7079 }
7080 p += l + (e != NULL);
7081 }
7082
7083 if (bad_card)
7084 goto show_valid_cards;
7085 }
7086 }
7087 #endif
7088
7089 #ifdef _WIN32
7090 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
7091 {
7092 exit(STATUS_CONTROL_C_EXIT);
7093 return TRUE;
7094 }
7095 #endif
7096
7097 #define MAX_NET_CLIENTS 32
7098
7099 int main(int argc, char **argv)
7100 {
7101 #ifdef CONFIG_GDBSTUB
7102 int use_gdbstub;
7103 const char *gdbstub_port;
7104 #endif
7105 int i, cdrom_index, pflash_index;
7106 int snapshot, linux_boot;
7107 const char *initrd_filename;
7108 const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD];
7109 const char *pflash_filename[MAX_PFLASH];
7110 const char *sd_filename;
7111 const char *mtd_filename;
7112 const char *kernel_filename, *kernel_cmdline;
7113 DisplayState *ds = &display_state;
7114 int cyls, heads, secs, translation;
7115 char net_clients[MAX_NET_CLIENTS][256];
7116 int nb_net_clients;
7117 int optind;
7118 const char *r, *optarg;
7119 CharDriverState *monitor_hd;
7120 char monitor_device[128];
7121 char serial_devices[MAX_SERIAL_PORTS][128];
7122 int serial_device_index;
7123 char parallel_devices[MAX_PARALLEL_PORTS][128];
7124 int parallel_device_index;
7125 const char *loadvm = NULL;
7126 QEMUMachine *machine;
7127 const char *cpu_model;
7128 char usb_devices[MAX_USB_CMDLINE][128];
7129 int usb_devices_index;
7130 int fds[2];
7131 const char *pid_file = NULL;
7132
7133 LIST_INIT (&vm_change_state_head);
7134 #ifndef _WIN32
7135 {
7136 struct sigaction act;
7137 sigfillset(&act.sa_mask);
7138 act.sa_flags = 0;
7139 act.sa_handler = SIG_IGN;
7140 sigaction(SIGPIPE, &act, NULL);
7141 }
7142 #else
7143 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
7144 /* Note: cpu_interrupt() is currently not SMP safe, so we force
7145 QEMU to run on a single CPU */
7146 {
7147 HANDLE h;
7148 DWORD mask, smask;
7149 int i;
7150 h = GetCurrentProcess();
7151 if (GetProcessAffinityMask(h, &mask, &smask)) {
7152 for(i = 0; i < 32; i++) {
7153 if (mask & (1 << i))
7154 break;
7155 }
7156 if (i != 32) {
7157 mask = 1 << i;
7158 SetProcessAffinityMask(h, mask);
7159 }
7160 }
7161 }
7162 #endif
7163
7164 register_machines();
7165 machine = first_machine;
7166 cpu_model = NULL;
7167 initrd_filename = NULL;
7168 for(i = 0; i < MAX_FD; i++)
7169 fd_filename[i] = NULL;
7170 for(i = 0; i < MAX_DISKS; i++)
7171 hd_filename[i] = NULL;
7172 for(i = 0; i < MAX_PFLASH; i++)
7173 pflash_filename[i] = NULL;
7174 pflash_index = 0;
7175 sd_filename = NULL;
7176 mtd_filename = NULL;
7177 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
7178 vga_ram_size = VGA_RAM_SIZE;
7179 #ifdef CONFIG_GDBSTUB
7180 use_gdbstub = 0;
7181 gdbstub_port = DEFAULT_GDBSTUB_PORT;
7182 #endif
7183 snapshot = 0;
7184 nographic = 0;
7185 kernel_filename = NULL;
7186 kernel_cmdline = "";
7187 #ifdef TARGET_PPC
7188 cdrom_index = 1;
7189 #else
7190 cdrom_index = 2;
7191 #endif
7192 cyls = heads = secs = 0;
7193 translation = BIOS_ATA_TRANSLATION_AUTO;
7194 pstrcpy(monitor_device, sizeof(monitor_device), "vc");
7195
7196 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "vc");
7197 for(i = 1; i < MAX_SERIAL_PORTS; i++)
7198 serial_devices[i][0] = '\0';
7199 serial_device_index = 0;
7200
7201 pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "vc");
7202 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
7203 parallel_devices[i][0] = '\0';
7204 parallel_device_index = 0;
7205
7206 usb_devices_index = 0;
7207
7208 nb_net_clients = 0;
7209
7210 nb_nics = 0;
7211 /* default mac address of the first network interface */
7212
7213 optind = 1;
7214 for(;;) {
7215 if (optind >= argc)
7216 break;
7217 r = argv[optind];
7218 if (r[0] != '-') {
7219 hd_filename[0] = argv[optind++];
7220 } else {
7221 const QEMUOption *popt;
7222
7223 optind++;
7224 /* Treat --foo the same as -foo. */
7225 if (r[1] == '-')
7226 r++;
7227 popt = qemu_options;
7228 for(;;) {
7229 if (!popt->name) {
7230 fprintf(stderr, "%s: invalid option -- '%s'\n",
7231 argv[0], r);
7232 exit(1);
7233 }
7234 if (!strcmp(popt->name, r + 1))
7235 break;
7236 popt++;
7237 }
7238 if (popt->flags & HAS_ARG) {
7239 if (optind >= argc) {
7240 fprintf(stderr, "%s: option '%s' requires an argument\n",
7241 argv[0], r);
7242 exit(1);
7243 }
7244 optarg = argv[optind++];
7245 } else {
7246 optarg = NULL;
7247 }
7248
7249 switch(popt->index) {
7250 case QEMU_OPTION_M:
7251 machine = find_machine(optarg);
7252 if (!machine) {
7253 QEMUMachine *m;
7254 printf("Supported machines are:\n");
7255 for(m = first_machine; m != NULL; m = m->next) {
7256 printf("%-10s %s%s\n",
7257 m->name, m->desc,
7258 m == first_machine ? " (default)" : "");
7259 }
7260 exit(1);
7261 }
7262 break;
7263 case QEMU_OPTION_cpu:
7264 /* hw initialization will check this */
7265 if (optarg[0] == '?') {
7266 #if defined(TARGET_PPC)
7267 ppc_cpu_list(stdout, &fprintf);
7268 #elif defined(TARGET_ARM)
7269 arm_cpu_list();
7270 #elif defined(TARGET_MIPS)
7271 mips_cpu_list(stdout, &fprintf);
7272 #elif defined(TARGET_SPARC)
7273 sparc_cpu_list(stdout, &fprintf);
7274 #endif
7275 exit(1);
7276 } else {
7277 cpu_model = optarg;
7278 }
7279 break;
7280 case QEMU_OPTION_initrd:
7281 initrd_filename = optarg;
7282 break;
7283 case QEMU_OPTION_hda:
7284 case QEMU_OPTION_hdb:
7285 case QEMU_OPTION_hdc:
7286 case QEMU_OPTION_hdd:
7287 {
7288 int hd_index;
7289 hd_index = popt->index - QEMU_OPTION_hda;
7290 hd_filename[hd_index] = optarg;
7291 if (hd_index == cdrom_index)
7292 cdrom_index = -1;
7293 }
7294 break;
7295 case QEMU_OPTION_mtdblock:
7296 mtd_filename = optarg;
7297 break;
7298 case QEMU_OPTION_sd:
7299 sd_filename = optarg;
7300 break;
7301 case QEMU_OPTION_pflash:
7302 if (pflash_index >= MAX_PFLASH) {
7303 fprintf(stderr, "qemu: too many parallel flash images\n");
7304 exit(1);
7305 }
7306 pflash_filename[pflash_index++] = optarg;
7307 break;
7308 case QEMU_OPTION_snapshot:
7309 snapshot = 1;
7310 break;
7311 case QEMU_OPTION_hdachs:
7312 {
7313 const char *p;
7314 p = optarg;
7315 cyls = strtol(p, (char **)&p, 0);
7316 if (cyls < 1 || cyls > 16383)
7317 goto chs_fail;
7318 if (*p != ',')
7319 goto chs_fail;
7320 p++;
7321 heads = strtol(p, (char **)&p, 0);
7322 if (heads < 1 || heads > 16)
7323 goto chs_fail;
7324 if (*p != ',')
7325 goto chs_fail;
7326 p++;
7327 secs = strtol(p, (char **)&p, 0);
7328 if (secs < 1 || secs > 63)
7329 goto chs_fail;
7330 if (*p == ',') {
7331 p++;
7332 if (!strcmp(p, "none"))
7333 translation = BIOS_ATA_TRANSLATION_NONE;
7334 else if (!strcmp(p, "lba"))
7335 translation = BIOS_ATA_TRANSLATION_LBA;
7336 else if (!strcmp(p, "auto"))
7337 translation = BIOS_ATA_TRANSLATION_AUTO;
7338 else
7339 goto chs_fail;
7340 } else if (*p != '\0') {
7341 chs_fail:
7342 fprintf(stderr, "qemu: invalid physical CHS format\n");
7343 exit(1);
7344 }
7345 }
7346 break;
7347 case QEMU_OPTION_nographic:
7348 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "stdio");
7349 pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "null");
7350 pstrcpy(monitor_device, sizeof(monitor_device), "stdio");
7351 nographic = 1;
7352 break;
7353 case QEMU_OPTION_portrait:
7354 graphic_rotate = 1;
7355 break;
7356 case QEMU_OPTION_kernel:
7357 kernel_filename = optarg;
7358 break;
7359 case QEMU_OPTION_append:
7360 kernel_cmdline = optarg;
7361 break;
7362 case QEMU_OPTION_cdrom:
7363 if (cdrom_index >= 0) {
7364 hd_filename[cdrom_index] = optarg;
7365 }
7366 break;
7367 case QEMU_OPTION_boot:
7368 boot_device = optarg[0];
7369 if (boot_device != 'a' &&
7370 #if defined(TARGET_SPARC) || defined(TARGET_I386)
7371 // Network boot
7372 boot_device != 'n' &&
7373 #endif
7374 boot_device != 'c' && boot_device != 'd') {
7375 fprintf(stderr, "qemu: invalid boot device '%c'\n", boot_device);
7376 exit(1);
7377 }
7378 break;
7379 case QEMU_OPTION_fda:
7380 fd_filename[0] = optarg;
7381 break;
7382 case QEMU_OPTION_fdb:
7383 fd_filename[1] = optarg;
7384 break;
7385 #ifdef TARGET_I386
7386 case QEMU_OPTION_no_fd_bootchk:
7387 fd_bootchk = 0;
7388 break;
7389 #endif
7390 case QEMU_OPTION_no_code_copy:
7391 code_copy_enabled = 0;
7392 break;
7393 case QEMU_OPTION_net:
7394 if (nb_net_clients >= MAX_NET_CLIENTS) {
7395 fprintf(stderr, "qemu: too many network clients\n");
7396 exit(1);
7397 }
7398 pstrcpy(net_clients[nb_net_clients],
7399 sizeof(net_clients[0]),
7400 optarg);
7401 nb_net_clients++;
7402 break;
7403 #ifdef CONFIG_SLIRP
7404 case QEMU_OPTION_tftp:
7405 tftp_prefix = optarg;
7406 break;
7407 case QEMU_OPTION_bootp:
7408 bootp_filename = optarg;
7409 break;
7410 #ifndef _WIN32
7411 case QEMU_OPTION_smb:
7412 net_slirp_smb(optarg);
7413 break;
7414 #endif
7415 case QEMU_OPTION_redir:
7416 net_slirp_redir(optarg);
7417 break;
7418 #endif
7419 #ifdef HAS_AUDIO
7420 case QEMU_OPTION_audio_help:
7421 AUD_help ();
7422 exit (0);
7423 break;
7424 case QEMU_OPTION_soundhw:
7425 select_soundhw (optarg);
7426 break;
7427 #endif
7428 case QEMU_OPTION_h:
7429 help();
7430 break;
7431 case QEMU_OPTION_m:
7432 ram_size = atoi(optarg) * 1024 * 1024;
7433 if (ram_size <= 0)
7434 help();
7435 if (ram_size > PHYS_RAM_MAX_SIZE) {
7436 fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
7437 PHYS_RAM_MAX_SIZE / (1024 * 1024));
7438 exit(1);
7439 }
7440 break;
7441 case QEMU_OPTION_d:
7442 {
7443 int mask;
7444 CPULogItem *item;
7445
7446 mask = cpu_str_to_log_mask(optarg);
7447 if (!mask) {
7448 printf("Log items (comma separated):\n");
7449 for(item = cpu_log_items; item->mask != 0; item++) {
7450 printf("%-10s %s\n", item->name, item->help);
7451 }
7452 exit(1);
7453 }
7454 cpu_set_log(mask);
7455 }
7456 break;
7457 #ifdef CONFIG_GDBSTUB
7458 case QEMU_OPTION_s:
7459 use_gdbstub = 1;
7460 break;
7461 case QEMU_OPTION_p:
7462 gdbstub_port = optarg;
7463 break;
7464 #endif
7465 case QEMU_OPTION_L:
7466 bios_dir = optarg;
7467 break;
7468 case QEMU_OPTION_S:
7469 autostart = 0;
7470 break;
7471 case QEMU_OPTION_k:
7472 keyboard_layout = optarg;
7473 break;
7474 case QEMU_OPTION_localtime:
7475 rtc_utc = 0;
7476 break;
7477 case QEMU_OPTION_cirrusvga:
7478 cirrus_vga_enabled = 1;
7479 vmsvga_enabled = 0;
7480 break;
7481 case QEMU_OPTION_vmsvga:
7482 cirrus_vga_enabled = 0;
7483 vmsvga_enabled = 1;
7484 break;
7485 case QEMU_OPTION_std_vga:
7486 cirrus_vga_enabled = 0;
7487 vmsvga_enabled = 0;
7488 break;
7489 case QEMU_OPTION_g:
7490 {
7491 const char *p;
7492 int w, h, depth;
7493 p = optarg;
7494 w = strtol(p, (char **)&p, 10);
7495 if (w <= 0) {
7496 graphic_error:
7497 fprintf(stderr, "qemu: invalid resolution or depth\n");
7498 exit(1);
7499 }
7500 if (*p != 'x')
7501 goto graphic_error;
7502 p++;
7503 h = strtol(p, (char **)&p, 10);
7504 if (h <= 0)
7505 goto graphic_error;
7506 if (*p == 'x') {
7507 p++;
7508 depth = strtol(p, (char **)&p, 10);
7509 if (depth != 8 && depth != 15 && depth != 16 &&
7510 depth != 24 && depth != 32)
7511 goto graphic_error;
7512 } else if (*p == '\0') {
7513 depth = graphic_depth;
7514 } else {
7515 goto graphic_error;
7516 }
7517
7518 graphic_width = w;
7519 graphic_height = h;
7520 graphic_depth = depth;
7521 }
7522 break;
7523 case QEMU_OPTION_echr:
7524 {
7525 char *r;
7526 term_escape_char = strtol(optarg, &r, 0);
7527 if (r == optarg)
7528 printf("Bad argument to echr\n");
7529 break;
7530 }
7531 case QEMU_OPTION_monitor:
7532 pstrcpy(monitor_device, sizeof(monitor_device), optarg);
7533 break;
7534 case QEMU_OPTION_serial:
7535 if (serial_device_index >= MAX_SERIAL_PORTS) {
7536 fprintf(stderr, "qemu: too many serial ports\n");
7537 exit(1);
7538 }
7539 pstrcpy(serial_devices[serial_device_index],
7540 sizeof(serial_devices[0]), optarg);
7541 serial_device_index++;
7542 break;
7543 case QEMU_OPTION_parallel:
7544 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
7545 fprintf(stderr, "qemu: too many parallel ports\n");
7546 exit(1);
7547 }
7548 pstrcpy(parallel_devices[parallel_device_index],
7549 sizeof(parallel_devices[0]), optarg);
7550 parallel_device_index++;
7551 break;
7552 case QEMU_OPTION_loadvm:
7553 loadvm = optarg;
7554 break;
7555 case QEMU_OPTION_full_screen:
7556 full_screen = 1;
7557 break;
7558 #ifdef CONFIG_SDL
7559 case QEMU_OPTION_no_frame:
7560 no_frame = 1;
7561 break;
7562 case QEMU_OPTION_no_quit:
7563 no_quit = 1;
7564 break;
7565 #endif
7566 case QEMU_OPTION_pidfile:
7567 pid_file = optarg;
7568 break;
7569 #ifdef TARGET_I386
7570 case QEMU_OPTION_win2k_hack:
7571 win2k_install_hack = 1;
7572 break;
7573 #endif
7574 #ifdef USE_KQEMU
7575 case QEMU_OPTION_no_kqemu:
7576 kqemu_allowed = 0;
7577 break;
7578 case QEMU_OPTION_kernel_kqemu:
7579 kqemu_allowed = 2;
7580 break;
7581 #endif
7582 case QEMU_OPTION_usb:
7583 usb_enabled = 1;
7584 break;
7585 case QEMU_OPTION_usbdevice:
7586 usb_enabled = 1;
7587 if (usb_devices_index >= MAX_USB_CMDLINE) {
7588 fprintf(stderr, "Too many USB devices\n");
7589 exit(1);
7590 }
7591 pstrcpy(usb_devices[usb_devices_index],
7592 sizeof(usb_devices[usb_devices_index]),
7593 optarg);
7594 usb_devices_index++;
7595 break;
7596 case QEMU_OPTION_smp:
7597 smp_cpus = atoi(optarg);
7598 if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
7599 fprintf(stderr, "Invalid number of CPUs\n");
7600 exit(1);
7601 }
7602 break;
7603 case QEMU_OPTION_vnc:
7604 vnc_display = optarg;
7605 break;
7606 case QEMU_OPTION_no_acpi:
7607 acpi_enabled = 0;
7608 break;
7609 case QEMU_OPTION_no_reboot:
7610 no_reboot = 1;
7611 break;
7612 case QEMU_OPTION_show_cursor:
7613 cursor_hide = 0;
7614 break;
7615 case QEMU_OPTION_daemonize:
7616 daemonize = 1;
7617 break;
7618 case QEMU_OPTION_option_rom:
7619 if (nb_option_roms >= MAX_OPTION_ROMS) {
7620 fprintf(stderr, "Too many option ROMs\n");
7621 exit(1);
7622 }
7623 option_rom[nb_option_roms] = optarg;
7624 nb_option_roms++;
7625 break;
7626 case QEMU_OPTION_semihosting:
7627 semihosting_enabled = 1;
7628 break;
7629 case QEMU_OPTION_name:
7630 qemu_name = optarg;
7631 break;
7632 #ifdef TARGET_SPARC
7633 case QEMU_OPTION_prom_env:
7634 if (nb_prom_envs >= MAX_PROM_ENVS) {
7635 fprintf(stderr, "Too many prom variables\n");
7636 exit(1);
7637 }
7638 prom_envs[nb_prom_envs] = optarg;
7639 nb_prom_envs++;
7640 break;
7641 #endif
7642 }
7643 }
7644 }
7645
7646 #ifndef _WIN32
7647 if (daemonize && !nographic && vnc_display == NULL) {
7648 fprintf(stderr, "Can only daemonize if using -nographic or -vnc\n");
7649 daemonize = 0;
7650 }
7651
7652 if (daemonize) {
7653 pid_t pid;
7654
7655 if (pipe(fds) == -1)
7656 exit(1);
7657
7658 pid = fork();
7659 if (pid > 0) {
7660 uint8_t status;
7661 ssize_t len;
7662
7663 close(fds[1]);
7664
7665 again:
7666 len = read(fds[0], &status, 1);
7667 if (len == -1 && (errno == EINTR))
7668 goto again;
7669
7670 if (len != 1)
7671 exit(1);
7672 else if (status == 1) {
7673 fprintf(stderr, "Could not acquire pidfile\n");
7674 exit(1);
7675 } else
7676 exit(0);
7677 } else if (pid < 0)
7678 exit(1);
7679
7680 setsid();
7681
7682 pid = fork();
7683 if (pid > 0)
7684 exit(0);
7685 else if (pid < 0)
7686 exit(1);
7687
7688 umask(027);
7689 chdir("/");
7690
7691 signal(SIGTSTP, SIG_IGN);
7692 signal(SIGTTOU, SIG_IGN);
7693 signal(SIGTTIN, SIG_IGN);
7694 }
7695 #endif
7696
7697 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
7698 if (daemonize) {
7699 uint8_t status = 1;
7700 write(fds[1], &status, 1);
7701 } else
7702 fprintf(stderr, "Could not acquire pid file\n");
7703 exit(1);
7704 }
7705
7706 #ifdef USE_KQEMU
7707 if (smp_cpus > 1)
7708 kqemu_allowed = 0;
7709 #endif
7710 linux_boot = (kernel_filename != NULL);
7711
7712 if (!linux_boot &&
7713 boot_device != 'n' &&
7714 hd_filename[0] == '\0' &&
7715 (cdrom_index >= 0 && hd_filename[cdrom_index] == '\0') &&
7716 fd_filename[0] == '\0')
7717 help();
7718
7719 /* boot to floppy or the default cd if no hard disk defined yet */
7720 if (hd_filename[0] == '\0' && boot_device == 'c') {
7721 if (fd_filename[0] != '\0')
7722 boot_device = 'a';
7723 else
7724 boot_device = 'd';
7725 }
7726
7727 setvbuf(stdout, NULL, _IOLBF, 0);
7728
7729 init_timers();
7730 init_timer_alarm();
7731 qemu_aio_init();
7732
7733 #ifdef _WIN32
7734 socket_init();
7735 #endif
7736
7737 /* init network clients */
7738 if (nb_net_clients == 0) {
7739 /* if no clients, we use a default config */
7740 pstrcpy(net_clients[0], sizeof(net_clients[0]),
7741 "nic");
7742 pstrcpy(net_clients[1], sizeof(net_clients[0]),
7743 "user");
7744 nb_net_clients = 2;
7745 }
7746
7747 for(i = 0;i < nb_net_clients; i++) {
7748 if (net_client_init(net_clients[i]) < 0)
7749 exit(1);
7750 }
7751
7752 #ifdef TARGET_I386
7753 if (boot_device == 'n') {
7754 for (i = 0; i < nb_nics; i++) {
7755 const char *model = nd_table[i].model;
7756 char buf[1024];
7757 if (model == NULL)
7758 model = "ne2k_pci";
7759 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
7760 if (get_image_size(buf) > 0) {
7761 option_rom[nb_option_roms] = strdup(buf);
7762 nb_option_roms++;
7763 break;
7764 }
7765 }
7766 if (i == nb_nics) {
7767 fprintf(stderr, "No valid PXE rom found for network device\n");
7768 exit(1);
7769 }
7770 boot_device = 'c'; /* to prevent confusion by the BIOS */
7771 }
7772 #endif
7773
7774 /* init the memory */
7775 phys_ram_size = ram_size + vga_ram_size + MAX_BIOS_SIZE;
7776
7777 phys_ram_base = qemu_vmalloc(phys_ram_size);
7778 if (!phys_ram_base) {
7779 fprintf(stderr, "Could not allocate physical memory\n");
7780 exit(1);
7781 }
7782
7783 /* we always create the cdrom drive, even if no disk is there */
7784 bdrv_init();
7785 if (cdrom_index >= 0) {
7786 bs_table[cdrom_index] = bdrv_new("cdrom");
7787 bdrv_set_type_hint(bs_table[cdrom_index], BDRV_TYPE_CDROM);
7788 }
7789
7790 /* open the virtual block devices */
7791 for(i = 0; i < MAX_DISKS; i++) {
7792 if (hd_filename[i]) {
7793 if (!bs_table[i]) {
7794 char buf[64];
7795 snprintf(buf, sizeof(buf), "hd%c", i + 'a');
7796 bs_table[i] = bdrv_new(buf);
7797 }
7798 if (bdrv_open(bs_table[i], hd_filename[i], snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7799 fprintf(stderr, "qemu: could not open hard disk image '%s'\n",
7800 hd_filename[i]);
7801 exit(1);
7802 }
7803 if (i == 0 && cyls != 0) {
7804 bdrv_set_geometry_hint(bs_table[i], cyls, heads, secs);
7805 bdrv_set_translation_hint(bs_table[i], translation);
7806 }
7807 }
7808 }
7809
7810 /* we always create at least one floppy disk */
7811 fd_table[0] = bdrv_new("fda");
7812 bdrv_set_type_hint(fd_table[0], BDRV_TYPE_FLOPPY);
7813
7814 for(i = 0; i < MAX_FD; i++) {
7815 if (fd_filename[i]) {
7816 if (!fd_table[i]) {
7817 char buf[64];
7818 snprintf(buf, sizeof(buf), "fd%c", i + 'a');
7819 fd_table[i] = bdrv_new(buf);
7820 bdrv_set_type_hint(fd_table[i], BDRV_TYPE_FLOPPY);
7821 }
7822 if (fd_filename[i][0] != '\0') {
7823 if (bdrv_open(fd_table[i], fd_filename[i],
7824 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7825 fprintf(stderr, "qemu: could not open floppy disk image '%s'\n",
7826 fd_filename[i]);
7827 exit(1);
7828 }
7829 }
7830 }
7831 }
7832
7833 /* Open the virtual parallel flash block devices */
7834 for(i = 0; i < MAX_PFLASH; i++) {
7835 if (pflash_filename[i]) {
7836 if (!pflash_table[i]) {
7837 char buf[64];
7838 snprintf(buf, sizeof(buf), "fl%c", i + 'a');
7839 pflash_table[i] = bdrv_new(buf);
7840 }
7841 if (bdrv_open(pflash_table[i], pflash_filename[i],
7842 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7843 fprintf(stderr, "qemu: could not open flash image '%s'\n",
7844 pflash_filename[i]);
7845 exit(1);
7846 }
7847 }
7848 }
7849
7850 sd_bdrv = bdrv_new ("sd");
7851 /* FIXME: This isn't really a floppy, but it's a reasonable
7852 approximation. */
7853 bdrv_set_type_hint(sd_bdrv, BDRV_TYPE_FLOPPY);
7854 if (sd_filename) {
7855 if (bdrv_open(sd_bdrv, sd_filename,
7856 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7857 fprintf(stderr, "qemu: could not open SD card image %s\n",
7858 sd_filename);
7859 } else
7860 qemu_key_check(sd_bdrv, sd_filename);
7861 }
7862
7863 if (mtd_filename) {
7864 mtd_bdrv = bdrv_new ("mtd");
7865 if (bdrv_open(mtd_bdrv, mtd_filename,
7866 snapshot ? BDRV_O_SNAPSHOT : 0) < 0 ||
7867 qemu_key_check(mtd_bdrv, mtd_filename)) {
7868 fprintf(stderr, "qemu: could not open Flash image %s\n",
7869 mtd_filename);
7870 bdrv_delete(mtd_bdrv);
7871 mtd_bdrv = 0;
7872 }
7873 }
7874
7875 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
7876 register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
7877
7878 init_ioports();
7879
7880 /* terminal init */
7881 if (nographic) {
7882 dumb_display_init(ds);
7883 } else if (vnc_display != NULL) {
7884 vnc_display_init(ds, vnc_display);
7885 } else {
7886 #if defined(CONFIG_SDL)
7887 sdl_display_init(ds, full_screen, no_frame);
7888 #elif defined(CONFIG_COCOA)
7889 cocoa_display_init(ds, full_screen);
7890 #else
7891 dumb_display_init(ds);
7892 #endif
7893 }
7894
7895 /* Maintain compatibility with multiple stdio monitors */
7896 if (!strcmp(monitor_device,"stdio")) {
7897 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
7898 if (!strcmp(serial_devices[i],"mon:stdio")) {
7899 monitor_device[0] = '\0';
7900 break;
7901 } else if (!strcmp(serial_devices[i],"stdio")) {
7902 monitor_device[0] = '\0';
7903 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "mon:stdio");
7904 break;
7905 }
7906 }
7907 }
7908 if (monitor_device[0] != '\0') {
7909 monitor_hd = qemu_chr_open(monitor_device);
7910 if (!monitor_hd) {
7911 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
7912 exit(1);
7913 }
7914 monitor_init(monitor_hd, !nographic);
7915 }
7916
7917 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
7918 const char *devname = serial_devices[i];
7919 if (devname[0] != '\0' && strcmp(devname, "none")) {
7920 serial_hds[i] = qemu_chr_open(devname);
7921 if (!serial_hds[i]) {
7922 fprintf(stderr, "qemu: could not open serial device '%s'\n",
7923 devname);
7924 exit(1);
7925 }
7926 if (!strcmp(devname, "vc"))
7927 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
7928 }
7929 }
7930
7931 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
7932 const char *devname = parallel_devices[i];
7933 if (devname[0] != '\0' && strcmp(devname, "none")) {
7934 parallel_hds[i] = qemu_chr_open(devname);
7935 if (!parallel_hds[i]) {
7936 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
7937 devname);
7938 exit(1);
7939 }
7940 if (!strcmp(devname, "vc"))
7941 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
7942 }
7943 }
7944
7945 machine->init(ram_size, vga_ram_size, boot_device,
7946 ds, fd_filename, snapshot,
7947 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
7948
7949 /* init USB devices */
7950 if (usb_enabled) {
7951 for(i = 0; i < usb_devices_index; i++) {
7952 if (usb_device_add(usb_devices[i]) < 0) {
7953 fprintf(stderr, "Warning: could not add USB device %s\n",
7954 usb_devices[i]);
7955 }
7956 }
7957 }
7958
7959 gui_timer = qemu_new_timer(rt_clock, gui_update, NULL);
7960 qemu_mod_timer(gui_timer, qemu_get_clock(rt_clock));
7961
7962 #ifdef CONFIG_GDBSTUB
7963 if (use_gdbstub) {
7964 /* XXX: use standard host:port notation and modify options
7965 accordingly. */
7966 if (gdbserver_start(gdbstub_port) < 0) {
7967 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
7968 gdbstub_port);
7969 exit(1);
7970 }
7971 } else
7972 #endif
7973 if (loadvm)
7974 do_loadvm(loadvm);
7975
7976 {
7977 /* XXX: simplify init */
7978 read_passwords();
7979 if (autostart) {
7980 vm_start();
7981 }
7982 }
7983
7984 if (daemonize) {
7985 uint8_t status = 0;
7986 ssize_t len;
7987 int fd;
7988
7989 again1:
7990 len = write(fds[1], &status, 1);
7991 if (len == -1 && (errno == EINTR))
7992 goto again1;
7993
7994 if (len != 1)
7995 exit(1);
7996
7997 fd = open("/dev/null", O_RDWR);
7998 if (fd == -1)
7999 exit(1);
8000
8001 dup2(fd, 0);
8002 dup2(fd, 1);
8003 dup2(fd, 2);
8004
8005 close(fd);
8006 }
8007
8008 main_loop();
8009 quit_timers();
8010 return 0;
8011 }