]> git.proxmox.com Git - mirror_qemu.git/blob - vl.c
7360d4f0212d1d5bef97802139013dca272a08ff
[mirror_qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
31
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
34
35 #ifndef _WIN32
36 #include <libgen.h>
37 #include <pwd.h>
38 #include <sys/times.h>
39 #include <sys/wait.h>
40 #include <termios.h>
41 #include <sys/mman.h>
42 #include <sys/ioctl.h>
43 #include <sys/resource.h>
44 #include <sys/socket.h>
45 #include <netinet/in.h>
46 #include <net/if.h>
47 #if defined(__NetBSD__)
48 #include <net/if_tap.h>
49 #endif
50 #ifdef __linux__
51 #include <linux/if_tun.h>
52 #endif
53 #include <arpa/inet.h>
54 #include <dirent.h>
55 #include <netdb.h>
56 #include <sys/select.h>
57 #ifdef HOST_BSD
58 #include <sys/stat.h>
59 #if defined(__FreeBSD__) || defined(__DragonFly__)
60 #include <libutil.h>
61 #else
62 #include <util.h>
63 #endif
64 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
65 #include <freebsd/stdlib.h>
66 #else
67 #ifdef __linux__
68 #include <pty.h>
69 #include <malloc.h>
70 #include <linux/rtc.h>
71 #include <sys/prctl.h>
72
73 /* For the benefit of older linux systems which don't supply it,
74 we use a local copy of hpet.h. */
75 /* #include <linux/hpet.h> */
76 #include "hpet.h"
77
78 #include <linux/ppdev.h>
79 #include <linux/parport.h>
80 #endif
81 #ifdef __sun__
82 #include <sys/stat.h>
83 #include <sys/ethernet.h>
84 #include <sys/sockio.h>
85 #include <netinet/arp.h>
86 #include <netinet/in.h>
87 #include <netinet/in_systm.h>
88 #include <netinet/ip.h>
89 #include <netinet/ip_icmp.h> // must come after ip.h
90 #include <netinet/udp.h>
91 #include <netinet/tcp.h>
92 #include <net/if.h>
93 #include <syslog.h>
94 #include <stropts.h>
95 #endif
96 #endif
97 #endif
98
99 #if defined(__OpenBSD__)
100 #include <util.h>
101 #endif
102
103 #if defined(CONFIG_VDE)
104 #include <libvdeplug.h>
105 #endif
106
107 #ifdef _WIN32
108 #include <windows.h>
109 #include <malloc.h>
110 #include <sys/timeb.h>
111 #include <mmsystem.h>
112 #define getopt_long_only getopt_long
113 #define memalign(align, size) malloc(size)
114 #endif
115
116 #ifdef CONFIG_SDL
117 #if defined(__APPLE__) || defined(main)
118 #include <SDL.h>
119 int qemu_main(int argc, char **argv, char **envp);
120 int main(int argc, char **argv)
121 {
122 return qemu_main(argc, argv, NULL);
123 }
124 #undef main
125 #define main qemu_main
126 #endif
127 #endif /* CONFIG_SDL */
128
129 #ifdef CONFIG_COCOA
130 #undef main
131 #define main qemu_main
132 #endif /* CONFIG_COCOA */
133
134 #include "hw/hw.h"
135 #include "hw/boards.h"
136 #include "hw/usb.h"
137 #include "hw/pcmcia.h"
138 #include "hw/pc.h"
139 #include "hw/audiodev.h"
140 #include "hw/isa.h"
141 #include "hw/baum.h"
142 #include "hw/bt.h"
143 #include "hw/watchdog.h"
144 #include "hw/smbios.h"
145 #include "hw/xen.h"
146 #include "bt-host.h"
147 #include "net.h"
148 #include "monitor.h"
149 #include "console.h"
150 #include "sysemu.h"
151 #include "gdbstub.h"
152 #include "qemu-timer.h"
153 #include "qemu-char.h"
154 #include "cache-utils.h"
155 #include "block.h"
156 #include "dma.h"
157 #include "audio/audio.h"
158 #include "migration.h"
159 #include "kvm.h"
160 #include "balloon.h"
161 #include "qemu-option.h"
162
163 #include "disas.h"
164
165 #include "exec-all.h"
166
167 #include "qemu_socket.h"
168
169 #include "slirp/libslirp.h"
170
171 //#define DEBUG_NET
172 //#define DEBUG_SLIRP
173
174 #define DEFAULT_RAM_SIZE 128
175
176 /* Max number of USB devices that can be specified on the commandline. */
177 #define MAX_USB_CMDLINE 8
178
179 /* Max number of bluetooth switches on the commandline. */
180 #define MAX_BT_CMDLINE 10
181
182 static const char *data_dir;
183 const char *bios_name = NULL;
184 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
185 to store the VM snapshots */
186 DriveInfo drives_table[MAX_DRIVES+1];
187 int nb_drives;
188 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
189 static DisplayState *display_state;
190 DisplayType display_type = DT_DEFAULT;
191 const char* keyboard_layout = NULL;
192 int64_t ticks_per_sec;
193 ram_addr_t ram_size;
194 int nb_nics;
195 NICInfo nd_table[MAX_NICS];
196 int vm_running;
197 static int autostart;
198 static int rtc_utc = 1;
199 static int rtc_date_offset = -1; /* -1 means no change */
200 int cirrus_vga_enabled = 1;
201 int std_vga_enabled = 0;
202 int vmsvga_enabled = 0;
203 int xenfb_enabled = 0;
204 #ifdef TARGET_SPARC
205 int graphic_width = 1024;
206 int graphic_height = 768;
207 int graphic_depth = 8;
208 #else
209 int graphic_width = 800;
210 int graphic_height = 600;
211 int graphic_depth = 15;
212 #endif
213 static int full_screen = 0;
214 #ifdef CONFIG_SDL
215 static int no_frame = 0;
216 #endif
217 int no_quit = 0;
218 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
219 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
220 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
221 #ifdef TARGET_I386
222 int win2k_install_hack = 0;
223 int rtc_td_hack = 0;
224 #endif
225 int usb_enabled = 0;
226 int singlestep = 0;
227 int smp_cpus = 1;
228 const char *vnc_display;
229 int acpi_enabled = 1;
230 int no_hpet = 0;
231 int virtio_balloon = 1;
232 const char *virtio_balloon_devaddr;
233 int fd_bootchk = 1;
234 int no_reboot = 0;
235 int no_shutdown = 0;
236 int cursor_hide = 1;
237 int graphic_rotate = 0;
238 #ifndef _WIN32
239 int daemonize = 0;
240 #endif
241 WatchdogTimerModel *watchdog = NULL;
242 int watchdog_action = WDT_RESET;
243 const char *option_rom[MAX_OPTION_ROMS];
244 int nb_option_roms;
245 int semihosting_enabled = 0;
246 #ifdef TARGET_ARM
247 int old_param = 0;
248 #endif
249 const char *qemu_name;
250 int alt_grab = 0;
251 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
252 unsigned int nb_prom_envs = 0;
253 const char *prom_envs[MAX_PROM_ENVS];
254 #endif
255 int nb_drives_opt;
256 struct drive_opt drives_opt[MAX_DRIVES];
257
258 int nb_numa_nodes;
259 uint64_t node_mem[MAX_NODES];
260 uint64_t node_cpumask[MAX_NODES];
261
262 static CPUState *cur_cpu;
263 static CPUState *next_cpu;
264 static int timer_alarm_pending = 1;
265 /* Conversion factor from emulated instructions to virtual clock ticks. */
266 static int icount_time_shift;
267 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
268 #define MAX_ICOUNT_SHIFT 10
269 /* Compensate for varying guest execution speed. */
270 static int64_t qemu_icount_bias;
271 static QEMUTimer *icount_rt_timer;
272 static QEMUTimer *icount_vm_timer;
273 static QEMUTimer *nographic_timer;
274
275 uint8_t qemu_uuid[16];
276
277 static QEMUBootSetHandler *boot_set_handler;
278 static void *boot_set_opaque;
279
280 /***********************************************************/
281 /* x86 ISA bus support */
282
283 target_phys_addr_t isa_mem_base = 0;
284 PicState2 *isa_pic;
285
286 /***********************************************************/
287 void hw_error(const char *fmt, ...)
288 {
289 va_list ap;
290 CPUState *env;
291
292 va_start(ap, fmt);
293 fprintf(stderr, "qemu: hardware error: ");
294 vfprintf(stderr, fmt, ap);
295 fprintf(stderr, "\n");
296 for(env = first_cpu; env != NULL; env = env->next_cpu) {
297 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
298 #ifdef TARGET_I386
299 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
300 #else
301 cpu_dump_state(env, stderr, fprintf, 0);
302 #endif
303 }
304 va_end(ap);
305 abort();
306 }
307
308 static void set_proc_name(const char *s)
309 {
310 #ifdef __linux__
311 char name[16];
312 if (!s)
313 return;
314 name[sizeof(name) - 1] = 0;
315 strncpy(name, s, sizeof(name));
316 /* Could rewrite argv[0] too, but that's a bit more complicated.
317 This simple way is enough for `top'. */
318 prctl(PR_SET_NAME, name);
319 #endif
320 }
321
322 /***************/
323 /* ballooning */
324
325 static QEMUBalloonEvent *qemu_balloon_event;
326 void *qemu_balloon_event_opaque;
327
328 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
329 {
330 qemu_balloon_event = func;
331 qemu_balloon_event_opaque = opaque;
332 }
333
334 void qemu_balloon(ram_addr_t target)
335 {
336 if (qemu_balloon_event)
337 qemu_balloon_event(qemu_balloon_event_opaque, target);
338 }
339
340 ram_addr_t qemu_balloon_status(void)
341 {
342 if (qemu_balloon_event)
343 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
344 return 0;
345 }
346
347 /***********************************************************/
348 /* keyboard/mouse */
349
350 static QEMUPutKBDEvent *qemu_put_kbd_event;
351 static void *qemu_put_kbd_event_opaque;
352 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
353 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
354
355 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
356 {
357 qemu_put_kbd_event_opaque = opaque;
358 qemu_put_kbd_event = func;
359 }
360
361 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
362 void *opaque, int absolute,
363 const char *name)
364 {
365 QEMUPutMouseEntry *s, *cursor;
366
367 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
368
369 s->qemu_put_mouse_event = func;
370 s->qemu_put_mouse_event_opaque = opaque;
371 s->qemu_put_mouse_event_absolute = absolute;
372 s->qemu_put_mouse_event_name = qemu_strdup(name);
373 s->next = NULL;
374
375 if (!qemu_put_mouse_event_head) {
376 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
377 return s;
378 }
379
380 cursor = qemu_put_mouse_event_head;
381 while (cursor->next != NULL)
382 cursor = cursor->next;
383
384 cursor->next = s;
385 qemu_put_mouse_event_current = s;
386
387 return s;
388 }
389
390 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
391 {
392 QEMUPutMouseEntry *prev = NULL, *cursor;
393
394 if (!qemu_put_mouse_event_head || entry == NULL)
395 return;
396
397 cursor = qemu_put_mouse_event_head;
398 while (cursor != NULL && cursor != entry) {
399 prev = cursor;
400 cursor = cursor->next;
401 }
402
403 if (cursor == NULL) // does not exist or list empty
404 return;
405 else if (prev == NULL) { // entry is head
406 qemu_put_mouse_event_head = cursor->next;
407 if (qemu_put_mouse_event_current == entry)
408 qemu_put_mouse_event_current = cursor->next;
409 qemu_free(entry->qemu_put_mouse_event_name);
410 qemu_free(entry);
411 return;
412 }
413
414 prev->next = entry->next;
415
416 if (qemu_put_mouse_event_current == entry)
417 qemu_put_mouse_event_current = prev;
418
419 qemu_free(entry->qemu_put_mouse_event_name);
420 qemu_free(entry);
421 }
422
423 void kbd_put_keycode(int keycode)
424 {
425 if (qemu_put_kbd_event) {
426 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
427 }
428 }
429
430 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
431 {
432 QEMUPutMouseEvent *mouse_event;
433 void *mouse_event_opaque;
434 int width;
435
436 if (!qemu_put_mouse_event_current) {
437 return;
438 }
439
440 mouse_event =
441 qemu_put_mouse_event_current->qemu_put_mouse_event;
442 mouse_event_opaque =
443 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
444
445 if (mouse_event) {
446 if (graphic_rotate) {
447 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
448 width = 0x7fff;
449 else
450 width = graphic_width - 1;
451 mouse_event(mouse_event_opaque,
452 width - dy, dx, dz, buttons_state);
453 } else
454 mouse_event(mouse_event_opaque,
455 dx, dy, dz, buttons_state);
456 }
457 }
458
459 int kbd_mouse_is_absolute(void)
460 {
461 if (!qemu_put_mouse_event_current)
462 return 0;
463
464 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
465 }
466
467 void do_info_mice(Monitor *mon)
468 {
469 QEMUPutMouseEntry *cursor;
470 int index = 0;
471
472 if (!qemu_put_mouse_event_head) {
473 monitor_printf(mon, "No mouse devices connected\n");
474 return;
475 }
476
477 monitor_printf(mon, "Mouse devices available:\n");
478 cursor = qemu_put_mouse_event_head;
479 while (cursor != NULL) {
480 monitor_printf(mon, "%c Mouse #%d: %s\n",
481 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
482 index, cursor->qemu_put_mouse_event_name);
483 index++;
484 cursor = cursor->next;
485 }
486 }
487
488 void do_mouse_set(Monitor *mon, int index)
489 {
490 QEMUPutMouseEntry *cursor;
491 int i = 0;
492
493 if (!qemu_put_mouse_event_head) {
494 monitor_printf(mon, "No mouse devices connected\n");
495 return;
496 }
497
498 cursor = qemu_put_mouse_event_head;
499 while (cursor != NULL && index != i) {
500 i++;
501 cursor = cursor->next;
502 }
503
504 if (cursor != NULL)
505 qemu_put_mouse_event_current = cursor;
506 else
507 monitor_printf(mon, "Mouse at given index not found\n");
508 }
509
510 /* compute with 96 bit intermediate result: (a*b)/c */
511 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
512 {
513 union {
514 uint64_t ll;
515 struct {
516 #ifdef WORDS_BIGENDIAN
517 uint32_t high, low;
518 #else
519 uint32_t low, high;
520 #endif
521 } l;
522 } u, res;
523 uint64_t rl, rh;
524
525 u.ll = a;
526 rl = (uint64_t)u.l.low * (uint64_t)b;
527 rh = (uint64_t)u.l.high * (uint64_t)b;
528 rh += (rl >> 32);
529 res.l.high = rh / c;
530 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
531 return res.ll;
532 }
533
534 /***********************************************************/
535 /* real time host monotonic timer */
536
537 #define QEMU_TIMER_BASE 1000000000LL
538
539 #ifdef WIN32
540
541 static int64_t clock_freq;
542
543 static void init_get_clock(void)
544 {
545 LARGE_INTEGER freq;
546 int ret;
547 ret = QueryPerformanceFrequency(&freq);
548 if (ret == 0) {
549 fprintf(stderr, "Could not calibrate ticks\n");
550 exit(1);
551 }
552 clock_freq = freq.QuadPart;
553 }
554
555 static int64_t get_clock(void)
556 {
557 LARGE_INTEGER ti;
558 QueryPerformanceCounter(&ti);
559 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
560 }
561
562 #else
563
564 static int use_rt_clock;
565
566 static void init_get_clock(void)
567 {
568 use_rt_clock = 0;
569 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
570 || defined(__DragonFly__)
571 {
572 struct timespec ts;
573 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
574 use_rt_clock = 1;
575 }
576 }
577 #endif
578 }
579
580 static int64_t get_clock(void)
581 {
582 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
583 || defined(__DragonFly__)
584 if (use_rt_clock) {
585 struct timespec ts;
586 clock_gettime(CLOCK_MONOTONIC, &ts);
587 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
588 } else
589 #endif
590 {
591 /* XXX: using gettimeofday leads to problems if the date
592 changes, so it should be avoided. */
593 struct timeval tv;
594 gettimeofday(&tv, NULL);
595 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
596 }
597 }
598 #endif
599
600 /* Return the virtual CPU time, based on the instruction counter. */
601 static int64_t cpu_get_icount(void)
602 {
603 int64_t icount;
604 CPUState *env = cpu_single_env;;
605 icount = qemu_icount;
606 if (env) {
607 if (!can_do_io(env))
608 fprintf(stderr, "Bad clock read\n");
609 icount -= (env->icount_decr.u16.low + env->icount_extra);
610 }
611 return qemu_icount_bias + (icount << icount_time_shift);
612 }
613
614 /***********************************************************/
615 /* guest cycle counter */
616
617 static int64_t cpu_ticks_prev;
618 static int64_t cpu_ticks_offset;
619 static int64_t cpu_clock_offset;
620 static int cpu_ticks_enabled;
621
622 /* return the host CPU cycle counter and handle stop/restart */
623 int64_t cpu_get_ticks(void)
624 {
625 if (use_icount) {
626 return cpu_get_icount();
627 }
628 if (!cpu_ticks_enabled) {
629 return cpu_ticks_offset;
630 } else {
631 int64_t ticks;
632 ticks = cpu_get_real_ticks();
633 if (cpu_ticks_prev > ticks) {
634 /* Note: non increasing ticks may happen if the host uses
635 software suspend */
636 cpu_ticks_offset += cpu_ticks_prev - ticks;
637 }
638 cpu_ticks_prev = ticks;
639 return ticks + cpu_ticks_offset;
640 }
641 }
642
643 /* return the host CPU monotonic timer and handle stop/restart */
644 static int64_t cpu_get_clock(void)
645 {
646 int64_t ti;
647 if (!cpu_ticks_enabled) {
648 return cpu_clock_offset;
649 } else {
650 ti = get_clock();
651 return ti + cpu_clock_offset;
652 }
653 }
654
655 /* enable cpu_get_ticks() */
656 void cpu_enable_ticks(void)
657 {
658 if (!cpu_ticks_enabled) {
659 cpu_ticks_offset -= cpu_get_real_ticks();
660 cpu_clock_offset -= get_clock();
661 cpu_ticks_enabled = 1;
662 }
663 }
664
665 /* disable cpu_get_ticks() : the clock is stopped. You must not call
666 cpu_get_ticks() after that. */
667 void cpu_disable_ticks(void)
668 {
669 if (cpu_ticks_enabled) {
670 cpu_ticks_offset = cpu_get_ticks();
671 cpu_clock_offset = cpu_get_clock();
672 cpu_ticks_enabled = 0;
673 }
674 }
675
676 /***********************************************************/
677 /* timers */
678
679 #define QEMU_TIMER_REALTIME 0
680 #define QEMU_TIMER_VIRTUAL 1
681
682 struct QEMUClock {
683 int type;
684 /* XXX: add frequency */
685 };
686
687 struct QEMUTimer {
688 QEMUClock *clock;
689 int64_t expire_time;
690 QEMUTimerCB *cb;
691 void *opaque;
692 struct QEMUTimer *next;
693 };
694
695 struct qemu_alarm_timer {
696 char const *name;
697 unsigned int flags;
698
699 int (*start)(struct qemu_alarm_timer *t);
700 void (*stop)(struct qemu_alarm_timer *t);
701 void (*rearm)(struct qemu_alarm_timer *t);
702 void *priv;
703 };
704
705 #define ALARM_FLAG_DYNTICKS 0x1
706 #define ALARM_FLAG_EXPIRED 0x2
707
708 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
709 {
710 return t && (t->flags & ALARM_FLAG_DYNTICKS);
711 }
712
713 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
714 {
715 if (!alarm_has_dynticks(t))
716 return;
717
718 t->rearm(t);
719 }
720
721 /* TODO: MIN_TIMER_REARM_US should be optimized */
722 #define MIN_TIMER_REARM_US 250
723
724 static struct qemu_alarm_timer *alarm_timer;
725
726 #ifdef _WIN32
727
728 struct qemu_alarm_win32 {
729 MMRESULT timerId;
730 unsigned int period;
731 } alarm_win32_data = {0, -1};
732
733 static int win32_start_timer(struct qemu_alarm_timer *t);
734 static void win32_stop_timer(struct qemu_alarm_timer *t);
735 static void win32_rearm_timer(struct qemu_alarm_timer *t);
736
737 #else
738
739 static int unix_start_timer(struct qemu_alarm_timer *t);
740 static void unix_stop_timer(struct qemu_alarm_timer *t);
741
742 #ifdef __linux__
743
744 static int dynticks_start_timer(struct qemu_alarm_timer *t);
745 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
746 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
747
748 static int hpet_start_timer(struct qemu_alarm_timer *t);
749 static void hpet_stop_timer(struct qemu_alarm_timer *t);
750
751 static int rtc_start_timer(struct qemu_alarm_timer *t);
752 static void rtc_stop_timer(struct qemu_alarm_timer *t);
753
754 #endif /* __linux__ */
755
756 #endif /* _WIN32 */
757
758 /* Correlation between real and virtual time is always going to be
759 fairly approximate, so ignore small variation.
760 When the guest is idle real and virtual time will be aligned in
761 the IO wait loop. */
762 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
763
764 static void icount_adjust(void)
765 {
766 int64_t cur_time;
767 int64_t cur_icount;
768 int64_t delta;
769 static int64_t last_delta;
770 /* If the VM is not running, then do nothing. */
771 if (!vm_running)
772 return;
773
774 cur_time = cpu_get_clock();
775 cur_icount = qemu_get_clock(vm_clock);
776 delta = cur_icount - cur_time;
777 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
778 if (delta > 0
779 && last_delta + ICOUNT_WOBBLE < delta * 2
780 && icount_time_shift > 0) {
781 /* The guest is getting too far ahead. Slow time down. */
782 icount_time_shift--;
783 }
784 if (delta < 0
785 && last_delta - ICOUNT_WOBBLE > delta * 2
786 && icount_time_shift < MAX_ICOUNT_SHIFT) {
787 /* The guest is getting too far behind. Speed time up. */
788 icount_time_shift++;
789 }
790 last_delta = delta;
791 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
792 }
793
794 static void icount_adjust_rt(void * opaque)
795 {
796 qemu_mod_timer(icount_rt_timer,
797 qemu_get_clock(rt_clock) + 1000);
798 icount_adjust();
799 }
800
801 static void icount_adjust_vm(void * opaque)
802 {
803 qemu_mod_timer(icount_vm_timer,
804 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
805 icount_adjust();
806 }
807
808 static void init_icount_adjust(void)
809 {
810 /* Have both realtime and virtual time triggers for speed adjustment.
811 The realtime trigger catches emulated time passing too slowly,
812 the virtual time trigger catches emulated time passing too fast.
813 Realtime triggers occur even when idle, so use them less frequently
814 than VM triggers. */
815 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
816 qemu_mod_timer(icount_rt_timer,
817 qemu_get_clock(rt_clock) + 1000);
818 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
819 qemu_mod_timer(icount_vm_timer,
820 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
821 }
822
823 static struct qemu_alarm_timer alarm_timers[] = {
824 #ifndef _WIN32
825 #ifdef __linux__
826 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
827 dynticks_stop_timer, dynticks_rearm_timer, NULL},
828 /* HPET - if available - is preferred */
829 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
830 /* ...otherwise try RTC */
831 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
832 #endif
833 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
834 #else
835 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
836 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
837 {"win32", 0, win32_start_timer,
838 win32_stop_timer, NULL, &alarm_win32_data},
839 #endif
840 {NULL, }
841 };
842
843 static void show_available_alarms(void)
844 {
845 int i;
846
847 printf("Available alarm timers, in order of precedence:\n");
848 for (i = 0; alarm_timers[i].name; i++)
849 printf("%s\n", alarm_timers[i].name);
850 }
851
852 static void configure_alarms(char const *opt)
853 {
854 int i;
855 int cur = 0;
856 int count = ARRAY_SIZE(alarm_timers) - 1;
857 char *arg;
858 char *name;
859 struct qemu_alarm_timer tmp;
860
861 if (!strcmp(opt, "?")) {
862 show_available_alarms();
863 exit(0);
864 }
865
866 arg = strdup(opt);
867
868 /* Reorder the array */
869 name = strtok(arg, ",");
870 while (name) {
871 for (i = 0; i < count && alarm_timers[i].name; i++) {
872 if (!strcmp(alarm_timers[i].name, name))
873 break;
874 }
875
876 if (i == count) {
877 fprintf(stderr, "Unknown clock %s\n", name);
878 goto next;
879 }
880
881 if (i < cur)
882 /* Ignore */
883 goto next;
884
885 /* Swap */
886 tmp = alarm_timers[i];
887 alarm_timers[i] = alarm_timers[cur];
888 alarm_timers[cur] = tmp;
889
890 cur++;
891 next:
892 name = strtok(NULL, ",");
893 }
894
895 free(arg);
896
897 if (cur) {
898 /* Disable remaining timers */
899 for (i = cur; i < count; i++)
900 alarm_timers[i].name = NULL;
901 } else {
902 show_available_alarms();
903 exit(1);
904 }
905 }
906
907 QEMUClock *rt_clock;
908 QEMUClock *vm_clock;
909
910 static QEMUTimer *active_timers[2];
911
912 static QEMUClock *qemu_new_clock(int type)
913 {
914 QEMUClock *clock;
915 clock = qemu_mallocz(sizeof(QEMUClock));
916 clock->type = type;
917 return clock;
918 }
919
920 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
921 {
922 QEMUTimer *ts;
923
924 ts = qemu_mallocz(sizeof(QEMUTimer));
925 ts->clock = clock;
926 ts->cb = cb;
927 ts->opaque = opaque;
928 return ts;
929 }
930
931 void qemu_free_timer(QEMUTimer *ts)
932 {
933 qemu_free(ts);
934 }
935
936 /* stop a timer, but do not dealloc it */
937 void qemu_del_timer(QEMUTimer *ts)
938 {
939 QEMUTimer **pt, *t;
940
941 /* NOTE: this code must be signal safe because
942 qemu_timer_expired() can be called from a signal. */
943 pt = &active_timers[ts->clock->type];
944 for(;;) {
945 t = *pt;
946 if (!t)
947 break;
948 if (t == ts) {
949 *pt = t->next;
950 break;
951 }
952 pt = &t->next;
953 }
954 }
955
956 /* modify the current timer so that it will be fired when current_time
957 >= expire_time. The corresponding callback will be called. */
958 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
959 {
960 QEMUTimer **pt, *t;
961
962 qemu_del_timer(ts);
963
964 /* add the timer in the sorted list */
965 /* NOTE: this code must be signal safe because
966 qemu_timer_expired() can be called from a signal. */
967 pt = &active_timers[ts->clock->type];
968 for(;;) {
969 t = *pt;
970 if (!t)
971 break;
972 if (t->expire_time > expire_time)
973 break;
974 pt = &t->next;
975 }
976 ts->expire_time = expire_time;
977 ts->next = *pt;
978 *pt = ts;
979
980 /* Rearm if necessary */
981 if (pt == &active_timers[ts->clock->type]) {
982 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
983 qemu_rearm_alarm_timer(alarm_timer);
984 }
985 /* Interrupt execution to force deadline recalculation. */
986 if (use_icount)
987 qemu_notify_event();
988 }
989 }
990
991 int qemu_timer_pending(QEMUTimer *ts)
992 {
993 QEMUTimer *t;
994 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
995 if (t == ts)
996 return 1;
997 }
998 return 0;
999 }
1000
1001 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1002 {
1003 if (!timer_head)
1004 return 0;
1005 return (timer_head->expire_time <= current_time);
1006 }
1007
1008 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1009 {
1010 QEMUTimer *ts;
1011
1012 for(;;) {
1013 ts = *ptimer_head;
1014 if (!ts || ts->expire_time > current_time)
1015 break;
1016 /* remove timer from the list before calling the callback */
1017 *ptimer_head = ts->next;
1018 ts->next = NULL;
1019
1020 /* run the callback (the timer list can be modified) */
1021 ts->cb(ts->opaque);
1022 }
1023 }
1024
1025 int64_t qemu_get_clock(QEMUClock *clock)
1026 {
1027 switch(clock->type) {
1028 case QEMU_TIMER_REALTIME:
1029 return get_clock() / 1000000;
1030 default:
1031 case QEMU_TIMER_VIRTUAL:
1032 if (use_icount) {
1033 return cpu_get_icount();
1034 } else {
1035 return cpu_get_clock();
1036 }
1037 }
1038 }
1039
1040 static void init_timers(void)
1041 {
1042 init_get_clock();
1043 ticks_per_sec = QEMU_TIMER_BASE;
1044 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1045 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1046 }
1047
1048 /* save a timer */
1049 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1050 {
1051 uint64_t expire_time;
1052
1053 if (qemu_timer_pending(ts)) {
1054 expire_time = ts->expire_time;
1055 } else {
1056 expire_time = -1;
1057 }
1058 qemu_put_be64(f, expire_time);
1059 }
1060
1061 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1062 {
1063 uint64_t expire_time;
1064
1065 expire_time = qemu_get_be64(f);
1066 if (expire_time != -1) {
1067 qemu_mod_timer(ts, expire_time);
1068 } else {
1069 qemu_del_timer(ts);
1070 }
1071 }
1072
1073 static void timer_save(QEMUFile *f, void *opaque)
1074 {
1075 if (cpu_ticks_enabled) {
1076 hw_error("cannot save state if virtual timers are running");
1077 }
1078 qemu_put_be64(f, cpu_ticks_offset);
1079 qemu_put_be64(f, ticks_per_sec);
1080 qemu_put_be64(f, cpu_clock_offset);
1081 }
1082
1083 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1084 {
1085 if (version_id != 1 && version_id != 2)
1086 return -EINVAL;
1087 if (cpu_ticks_enabled) {
1088 return -EINVAL;
1089 }
1090 cpu_ticks_offset=qemu_get_be64(f);
1091 ticks_per_sec=qemu_get_be64(f);
1092 if (version_id == 2) {
1093 cpu_clock_offset=qemu_get_be64(f);
1094 }
1095 return 0;
1096 }
1097
1098 static void qemu_event_increment(void);
1099
1100 #ifdef _WIN32
1101 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1102 DWORD_PTR dwUser, DWORD_PTR dw1,
1103 DWORD_PTR dw2)
1104 #else
1105 static void host_alarm_handler(int host_signum)
1106 #endif
1107 {
1108 #if 0
1109 #define DISP_FREQ 1000
1110 {
1111 static int64_t delta_min = INT64_MAX;
1112 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1113 static int count;
1114 ti = qemu_get_clock(vm_clock);
1115 if (last_clock != 0) {
1116 delta = ti - last_clock;
1117 if (delta < delta_min)
1118 delta_min = delta;
1119 if (delta > delta_max)
1120 delta_max = delta;
1121 delta_cum += delta;
1122 if (++count == DISP_FREQ) {
1123 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1124 muldiv64(delta_min, 1000000, ticks_per_sec),
1125 muldiv64(delta_max, 1000000, ticks_per_sec),
1126 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1127 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1128 count = 0;
1129 delta_min = INT64_MAX;
1130 delta_max = 0;
1131 delta_cum = 0;
1132 }
1133 }
1134 last_clock = ti;
1135 }
1136 #endif
1137 if (alarm_has_dynticks(alarm_timer) ||
1138 (!use_icount &&
1139 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1140 qemu_get_clock(vm_clock))) ||
1141 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1142 qemu_get_clock(rt_clock))) {
1143 qemu_event_increment();
1144 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1145
1146 #ifndef CONFIG_IOTHREAD
1147 if (next_cpu) {
1148 /* stop the currently executing cpu because a timer occured */
1149 cpu_exit(next_cpu);
1150 #ifdef CONFIG_KQEMU
1151 if (next_cpu->kqemu_enabled) {
1152 kqemu_cpu_interrupt(next_cpu);
1153 }
1154 #endif
1155 }
1156 #endif
1157 timer_alarm_pending = 1;
1158 qemu_notify_event();
1159 }
1160 }
1161
1162 static int64_t qemu_next_deadline(void)
1163 {
1164 int64_t delta;
1165
1166 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1167 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1168 qemu_get_clock(vm_clock);
1169 } else {
1170 /* To avoid problems with overflow limit this to 2^32. */
1171 delta = INT32_MAX;
1172 }
1173
1174 if (delta < 0)
1175 delta = 0;
1176
1177 return delta;
1178 }
1179
1180 #if defined(__linux__) || defined(_WIN32)
1181 static uint64_t qemu_next_deadline_dyntick(void)
1182 {
1183 int64_t delta;
1184 int64_t rtdelta;
1185
1186 if (use_icount)
1187 delta = INT32_MAX;
1188 else
1189 delta = (qemu_next_deadline() + 999) / 1000;
1190
1191 if (active_timers[QEMU_TIMER_REALTIME]) {
1192 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1193 qemu_get_clock(rt_clock))*1000;
1194 if (rtdelta < delta)
1195 delta = rtdelta;
1196 }
1197
1198 if (delta < MIN_TIMER_REARM_US)
1199 delta = MIN_TIMER_REARM_US;
1200
1201 return delta;
1202 }
1203 #endif
1204
1205 #ifndef _WIN32
1206
1207 /* Sets a specific flag */
1208 static int fcntl_setfl(int fd, int flag)
1209 {
1210 int flags;
1211
1212 flags = fcntl(fd, F_GETFL);
1213 if (flags == -1)
1214 return -errno;
1215
1216 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1217 return -errno;
1218
1219 return 0;
1220 }
1221
1222 #if defined(__linux__)
1223
1224 #define RTC_FREQ 1024
1225
1226 static void enable_sigio_timer(int fd)
1227 {
1228 struct sigaction act;
1229
1230 /* timer signal */
1231 sigfillset(&act.sa_mask);
1232 act.sa_flags = 0;
1233 act.sa_handler = host_alarm_handler;
1234
1235 sigaction(SIGIO, &act, NULL);
1236 fcntl_setfl(fd, O_ASYNC);
1237 fcntl(fd, F_SETOWN, getpid());
1238 }
1239
1240 static int hpet_start_timer(struct qemu_alarm_timer *t)
1241 {
1242 struct hpet_info info;
1243 int r, fd;
1244
1245 fd = open("/dev/hpet", O_RDONLY);
1246 if (fd < 0)
1247 return -1;
1248
1249 /* Set frequency */
1250 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1251 if (r < 0) {
1252 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1253 "error, but for better emulation accuracy type:\n"
1254 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1255 goto fail;
1256 }
1257
1258 /* Check capabilities */
1259 r = ioctl(fd, HPET_INFO, &info);
1260 if (r < 0)
1261 goto fail;
1262
1263 /* Enable periodic mode */
1264 r = ioctl(fd, HPET_EPI, 0);
1265 if (info.hi_flags && (r < 0))
1266 goto fail;
1267
1268 /* Enable interrupt */
1269 r = ioctl(fd, HPET_IE_ON, 0);
1270 if (r < 0)
1271 goto fail;
1272
1273 enable_sigio_timer(fd);
1274 t->priv = (void *)(long)fd;
1275
1276 return 0;
1277 fail:
1278 close(fd);
1279 return -1;
1280 }
1281
1282 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1283 {
1284 int fd = (long)t->priv;
1285
1286 close(fd);
1287 }
1288
1289 static int rtc_start_timer(struct qemu_alarm_timer *t)
1290 {
1291 int rtc_fd;
1292 unsigned long current_rtc_freq = 0;
1293
1294 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1295 if (rtc_fd < 0)
1296 return -1;
1297 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1298 if (current_rtc_freq != RTC_FREQ &&
1299 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1300 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1301 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1302 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1303 goto fail;
1304 }
1305 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1306 fail:
1307 close(rtc_fd);
1308 return -1;
1309 }
1310
1311 enable_sigio_timer(rtc_fd);
1312
1313 t->priv = (void *)(long)rtc_fd;
1314
1315 return 0;
1316 }
1317
1318 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1319 {
1320 int rtc_fd = (long)t->priv;
1321
1322 close(rtc_fd);
1323 }
1324
1325 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1326 {
1327 struct sigevent ev;
1328 timer_t host_timer;
1329 struct sigaction act;
1330
1331 sigfillset(&act.sa_mask);
1332 act.sa_flags = 0;
1333 act.sa_handler = host_alarm_handler;
1334
1335 sigaction(SIGALRM, &act, NULL);
1336
1337 /*
1338 * Initialize ev struct to 0 to avoid valgrind complaining
1339 * about uninitialized data in timer_create call
1340 */
1341 memset(&ev, 0, sizeof(ev));
1342 ev.sigev_value.sival_int = 0;
1343 ev.sigev_notify = SIGEV_SIGNAL;
1344 ev.sigev_signo = SIGALRM;
1345
1346 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1347 perror("timer_create");
1348
1349 /* disable dynticks */
1350 fprintf(stderr, "Dynamic Ticks disabled\n");
1351
1352 return -1;
1353 }
1354
1355 t->priv = (void *)(long)host_timer;
1356
1357 return 0;
1358 }
1359
1360 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1361 {
1362 timer_t host_timer = (timer_t)(long)t->priv;
1363
1364 timer_delete(host_timer);
1365 }
1366
1367 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1368 {
1369 timer_t host_timer = (timer_t)(long)t->priv;
1370 struct itimerspec timeout;
1371 int64_t nearest_delta_us = INT64_MAX;
1372 int64_t current_us;
1373
1374 if (!active_timers[QEMU_TIMER_REALTIME] &&
1375 !active_timers[QEMU_TIMER_VIRTUAL])
1376 return;
1377
1378 nearest_delta_us = qemu_next_deadline_dyntick();
1379
1380 /* check whether a timer is already running */
1381 if (timer_gettime(host_timer, &timeout)) {
1382 perror("gettime");
1383 fprintf(stderr, "Internal timer error: aborting\n");
1384 exit(1);
1385 }
1386 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1387 if (current_us && current_us <= nearest_delta_us)
1388 return;
1389
1390 timeout.it_interval.tv_sec = 0;
1391 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1392 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1393 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1394 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1395 perror("settime");
1396 fprintf(stderr, "Internal timer error: aborting\n");
1397 exit(1);
1398 }
1399 }
1400
1401 #endif /* defined(__linux__) */
1402
1403 static int unix_start_timer(struct qemu_alarm_timer *t)
1404 {
1405 struct sigaction act;
1406 struct itimerval itv;
1407 int err;
1408
1409 /* timer signal */
1410 sigfillset(&act.sa_mask);
1411 act.sa_flags = 0;
1412 act.sa_handler = host_alarm_handler;
1413
1414 sigaction(SIGALRM, &act, NULL);
1415
1416 itv.it_interval.tv_sec = 0;
1417 /* for i386 kernel 2.6 to get 1 ms */
1418 itv.it_interval.tv_usec = 999;
1419 itv.it_value.tv_sec = 0;
1420 itv.it_value.tv_usec = 10 * 1000;
1421
1422 err = setitimer(ITIMER_REAL, &itv, NULL);
1423 if (err)
1424 return -1;
1425
1426 return 0;
1427 }
1428
1429 static void unix_stop_timer(struct qemu_alarm_timer *t)
1430 {
1431 struct itimerval itv;
1432
1433 memset(&itv, 0, sizeof(itv));
1434 setitimer(ITIMER_REAL, &itv, NULL);
1435 }
1436
1437 #endif /* !defined(_WIN32) */
1438
1439
1440 #ifdef _WIN32
1441
1442 static int win32_start_timer(struct qemu_alarm_timer *t)
1443 {
1444 TIMECAPS tc;
1445 struct qemu_alarm_win32 *data = t->priv;
1446 UINT flags;
1447
1448 memset(&tc, 0, sizeof(tc));
1449 timeGetDevCaps(&tc, sizeof(tc));
1450
1451 if (data->period < tc.wPeriodMin)
1452 data->period = tc.wPeriodMin;
1453
1454 timeBeginPeriod(data->period);
1455
1456 flags = TIME_CALLBACK_FUNCTION;
1457 if (alarm_has_dynticks(t))
1458 flags |= TIME_ONESHOT;
1459 else
1460 flags |= TIME_PERIODIC;
1461
1462 data->timerId = timeSetEvent(1, // interval (ms)
1463 data->period, // resolution
1464 host_alarm_handler, // function
1465 (DWORD)t, // parameter
1466 flags);
1467
1468 if (!data->timerId) {
1469 perror("Failed to initialize win32 alarm timer");
1470 timeEndPeriod(data->period);
1471 return -1;
1472 }
1473
1474 return 0;
1475 }
1476
1477 static void win32_stop_timer(struct qemu_alarm_timer *t)
1478 {
1479 struct qemu_alarm_win32 *data = t->priv;
1480
1481 timeKillEvent(data->timerId);
1482 timeEndPeriod(data->period);
1483 }
1484
1485 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1486 {
1487 struct qemu_alarm_win32 *data = t->priv;
1488 uint64_t nearest_delta_us;
1489
1490 if (!active_timers[QEMU_TIMER_REALTIME] &&
1491 !active_timers[QEMU_TIMER_VIRTUAL])
1492 return;
1493
1494 nearest_delta_us = qemu_next_deadline_dyntick();
1495 nearest_delta_us /= 1000;
1496
1497 timeKillEvent(data->timerId);
1498
1499 data->timerId = timeSetEvent(1,
1500 data->period,
1501 host_alarm_handler,
1502 (DWORD)t,
1503 TIME_ONESHOT | TIME_PERIODIC);
1504
1505 if (!data->timerId) {
1506 perror("Failed to re-arm win32 alarm timer");
1507
1508 timeEndPeriod(data->period);
1509 exit(1);
1510 }
1511 }
1512
1513 #endif /* _WIN32 */
1514
1515 static int init_timer_alarm(void)
1516 {
1517 struct qemu_alarm_timer *t = NULL;
1518 int i, err = -1;
1519
1520 for (i = 0; alarm_timers[i].name; i++) {
1521 t = &alarm_timers[i];
1522
1523 err = t->start(t);
1524 if (!err)
1525 break;
1526 }
1527
1528 if (err) {
1529 err = -ENOENT;
1530 goto fail;
1531 }
1532
1533 alarm_timer = t;
1534
1535 return 0;
1536
1537 fail:
1538 return err;
1539 }
1540
1541 static void quit_timers(void)
1542 {
1543 alarm_timer->stop(alarm_timer);
1544 alarm_timer = NULL;
1545 }
1546
1547 /***********************************************************/
1548 /* host time/date access */
1549 void qemu_get_timedate(struct tm *tm, int offset)
1550 {
1551 time_t ti;
1552 struct tm *ret;
1553
1554 time(&ti);
1555 ti += offset;
1556 if (rtc_date_offset == -1) {
1557 if (rtc_utc)
1558 ret = gmtime(&ti);
1559 else
1560 ret = localtime(&ti);
1561 } else {
1562 ti -= rtc_date_offset;
1563 ret = gmtime(&ti);
1564 }
1565
1566 memcpy(tm, ret, sizeof(struct tm));
1567 }
1568
1569 int qemu_timedate_diff(struct tm *tm)
1570 {
1571 time_t seconds;
1572
1573 if (rtc_date_offset == -1)
1574 if (rtc_utc)
1575 seconds = mktimegm(tm);
1576 else
1577 seconds = mktime(tm);
1578 else
1579 seconds = mktimegm(tm) + rtc_date_offset;
1580
1581 return seconds - time(NULL);
1582 }
1583
1584 #ifdef _WIN32
1585 static void socket_cleanup(void)
1586 {
1587 WSACleanup();
1588 }
1589
1590 static int socket_init(void)
1591 {
1592 WSADATA Data;
1593 int ret, err;
1594
1595 ret = WSAStartup(MAKEWORD(2,2), &Data);
1596 if (ret != 0) {
1597 err = WSAGetLastError();
1598 fprintf(stderr, "WSAStartup: %d\n", err);
1599 return -1;
1600 }
1601 atexit(socket_cleanup);
1602 return 0;
1603 }
1604 #endif
1605
1606 int get_next_param_value(char *buf, int buf_size,
1607 const char *tag, const char **pstr)
1608 {
1609 const char *p;
1610 char option[128];
1611
1612 p = *pstr;
1613 for(;;) {
1614 p = get_opt_name(option, sizeof(option), p, '=');
1615 if (*p != '=')
1616 break;
1617 p++;
1618 if (!strcmp(tag, option)) {
1619 *pstr = get_opt_value(buf, buf_size, p);
1620 if (**pstr == ',') {
1621 (*pstr)++;
1622 }
1623 return strlen(buf);
1624 } else {
1625 p = get_opt_value(NULL, 0, p);
1626 }
1627 if (*p != ',')
1628 break;
1629 p++;
1630 }
1631 return 0;
1632 }
1633
1634 int get_param_value(char *buf, int buf_size,
1635 const char *tag, const char *str)
1636 {
1637 return get_next_param_value(buf, buf_size, tag, &str);
1638 }
1639
1640 int check_params(char *buf, int buf_size,
1641 const char * const *params, const char *str)
1642 {
1643 const char *p;
1644 int i;
1645
1646 p = str;
1647 while (*p != '\0') {
1648 p = get_opt_name(buf, buf_size, p, '=');
1649 if (*p != '=') {
1650 return -1;
1651 }
1652 p++;
1653 for (i = 0; params[i] != NULL; i++) {
1654 if (!strcmp(params[i], buf)) {
1655 break;
1656 }
1657 }
1658 if (params[i] == NULL) {
1659 return -1;
1660 }
1661 p = get_opt_value(NULL, 0, p);
1662 if (*p != ',') {
1663 break;
1664 }
1665 p++;
1666 }
1667 return 0;
1668 }
1669
1670 /***********************************************************/
1671 /* Bluetooth support */
1672 static int nb_hcis;
1673 static int cur_hci;
1674 static struct HCIInfo *hci_table[MAX_NICS];
1675
1676 static struct bt_vlan_s {
1677 struct bt_scatternet_s net;
1678 int id;
1679 struct bt_vlan_s *next;
1680 } *first_bt_vlan;
1681
1682 /* find or alloc a new bluetooth "VLAN" */
1683 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1684 {
1685 struct bt_vlan_s **pvlan, *vlan;
1686 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1687 if (vlan->id == id)
1688 return &vlan->net;
1689 }
1690 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1691 vlan->id = id;
1692 pvlan = &first_bt_vlan;
1693 while (*pvlan != NULL)
1694 pvlan = &(*pvlan)->next;
1695 *pvlan = vlan;
1696 return &vlan->net;
1697 }
1698
1699 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1700 {
1701 }
1702
1703 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1704 {
1705 return -ENOTSUP;
1706 }
1707
1708 static struct HCIInfo null_hci = {
1709 .cmd_send = null_hci_send,
1710 .sco_send = null_hci_send,
1711 .acl_send = null_hci_send,
1712 .bdaddr_set = null_hci_addr_set,
1713 };
1714
1715 struct HCIInfo *qemu_next_hci(void)
1716 {
1717 if (cur_hci == nb_hcis)
1718 return &null_hci;
1719
1720 return hci_table[cur_hci++];
1721 }
1722
1723 static struct HCIInfo *hci_init(const char *str)
1724 {
1725 char *endp;
1726 struct bt_scatternet_s *vlan = 0;
1727
1728 if (!strcmp(str, "null"))
1729 /* null */
1730 return &null_hci;
1731 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1732 /* host[:hciN] */
1733 return bt_host_hci(str[4] ? str + 5 : "hci0");
1734 else if (!strncmp(str, "hci", 3)) {
1735 /* hci[,vlan=n] */
1736 if (str[3]) {
1737 if (!strncmp(str + 3, ",vlan=", 6)) {
1738 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1739 if (*endp)
1740 vlan = 0;
1741 }
1742 } else
1743 vlan = qemu_find_bt_vlan(0);
1744 if (vlan)
1745 return bt_new_hci(vlan);
1746 }
1747
1748 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1749
1750 return 0;
1751 }
1752
1753 static int bt_hci_parse(const char *str)
1754 {
1755 struct HCIInfo *hci;
1756 bdaddr_t bdaddr;
1757
1758 if (nb_hcis >= MAX_NICS) {
1759 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1760 return -1;
1761 }
1762
1763 hci = hci_init(str);
1764 if (!hci)
1765 return -1;
1766
1767 bdaddr.b[0] = 0x52;
1768 bdaddr.b[1] = 0x54;
1769 bdaddr.b[2] = 0x00;
1770 bdaddr.b[3] = 0x12;
1771 bdaddr.b[4] = 0x34;
1772 bdaddr.b[5] = 0x56 + nb_hcis;
1773 hci->bdaddr_set(hci, bdaddr.b);
1774
1775 hci_table[nb_hcis++] = hci;
1776
1777 return 0;
1778 }
1779
1780 static void bt_vhci_add(int vlan_id)
1781 {
1782 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1783
1784 if (!vlan->slave)
1785 fprintf(stderr, "qemu: warning: adding a VHCI to "
1786 "an empty scatternet %i\n", vlan_id);
1787
1788 bt_vhci_init(bt_new_hci(vlan));
1789 }
1790
1791 static struct bt_device_s *bt_device_add(const char *opt)
1792 {
1793 struct bt_scatternet_s *vlan;
1794 int vlan_id = 0;
1795 char *endp = strstr(opt, ",vlan=");
1796 int len = (endp ? endp - opt : strlen(opt)) + 1;
1797 char devname[10];
1798
1799 pstrcpy(devname, MIN(sizeof(devname), len), opt);
1800
1801 if (endp) {
1802 vlan_id = strtol(endp + 6, &endp, 0);
1803 if (*endp) {
1804 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
1805 return 0;
1806 }
1807 }
1808
1809 vlan = qemu_find_bt_vlan(vlan_id);
1810
1811 if (!vlan->slave)
1812 fprintf(stderr, "qemu: warning: adding a slave device to "
1813 "an empty scatternet %i\n", vlan_id);
1814
1815 if (!strcmp(devname, "keyboard"))
1816 return bt_keyboard_init(vlan);
1817
1818 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
1819 return 0;
1820 }
1821
1822 static int bt_parse(const char *opt)
1823 {
1824 const char *endp, *p;
1825 int vlan;
1826
1827 if (strstart(opt, "hci", &endp)) {
1828 if (!*endp || *endp == ',') {
1829 if (*endp)
1830 if (!strstart(endp, ",vlan=", 0))
1831 opt = endp + 1;
1832
1833 return bt_hci_parse(opt);
1834 }
1835 } else if (strstart(opt, "vhci", &endp)) {
1836 if (!*endp || *endp == ',') {
1837 if (*endp) {
1838 if (strstart(endp, ",vlan=", &p)) {
1839 vlan = strtol(p, (char **) &endp, 0);
1840 if (*endp) {
1841 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
1842 return 1;
1843 }
1844 } else {
1845 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
1846 return 1;
1847 }
1848 } else
1849 vlan = 0;
1850
1851 bt_vhci_add(vlan);
1852 return 0;
1853 }
1854 } else if (strstart(opt, "device:", &endp))
1855 return !bt_device_add(endp);
1856
1857 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
1858 return 1;
1859 }
1860
1861 /***********************************************************/
1862 /* QEMU Block devices */
1863
1864 #define HD_ALIAS "index=%d,media=disk"
1865 #define CDROM_ALIAS "index=2,media=cdrom"
1866 #define FD_ALIAS "index=%d,if=floppy"
1867 #define PFLASH_ALIAS "if=pflash"
1868 #define MTD_ALIAS "if=mtd"
1869 #define SD_ALIAS "index=0,if=sd"
1870
1871 static int drive_opt_get_free_idx(void)
1872 {
1873 int index;
1874
1875 for (index = 0; index < MAX_DRIVES; index++)
1876 if (!drives_opt[index].used) {
1877 drives_opt[index].used = 1;
1878 return index;
1879 }
1880
1881 return -1;
1882 }
1883
1884 static int drive_get_free_idx(void)
1885 {
1886 int index;
1887
1888 for (index = 0; index < MAX_DRIVES; index++)
1889 if (!drives_table[index].used) {
1890 drives_table[index].used = 1;
1891 return index;
1892 }
1893
1894 return -1;
1895 }
1896
1897 int drive_add(const char *file, const char *fmt, ...)
1898 {
1899 va_list ap;
1900 int index = drive_opt_get_free_idx();
1901
1902 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
1903 fprintf(stderr, "qemu: too many drives\n");
1904 return -1;
1905 }
1906
1907 drives_opt[index].file = file;
1908 va_start(ap, fmt);
1909 vsnprintf(drives_opt[index].opt,
1910 sizeof(drives_opt[0].opt), fmt, ap);
1911 va_end(ap);
1912
1913 nb_drives_opt++;
1914 return index;
1915 }
1916
1917 void drive_remove(int index)
1918 {
1919 drives_opt[index].used = 0;
1920 nb_drives_opt--;
1921 }
1922
1923 int drive_get_index(BlockInterfaceType type, int bus, int unit)
1924 {
1925 int index;
1926
1927 /* seek interface, bus and unit */
1928
1929 for (index = 0; index < MAX_DRIVES; index++)
1930 if (drives_table[index].type == type &&
1931 drives_table[index].bus == bus &&
1932 drives_table[index].unit == unit &&
1933 drives_table[index].used)
1934 return index;
1935
1936 return -1;
1937 }
1938
1939 int drive_get_max_bus(BlockInterfaceType type)
1940 {
1941 int max_bus;
1942 int index;
1943
1944 max_bus = -1;
1945 for (index = 0; index < nb_drives; index++) {
1946 if(drives_table[index].type == type &&
1947 drives_table[index].bus > max_bus)
1948 max_bus = drives_table[index].bus;
1949 }
1950 return max_bus;
1951 }
1952
1953 const char *drive_get_serial(BlockDriverState *bdrv)
1954 {
1955 int index;
1956
1957 for (index = 0; index < nb_drives; index++)
1958 if (drives_table[index].bdrv == bdrv)
1959 return drives_table[index].serial;
1960
1961 return "\0";
1962 }
1963
1964 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
1965 {
1966 int index;
1967
1968 for (index = 0; index < nb_drives; index++)
1969 if (drives_table[index].bdrv == bdrv)
1970 return drives_table[index].onerror;
1971
1972 return BLOCK_ERR_STOP_ENOSPC;
1973 }
1974
1975 static void bdrv_format_print(void *opaque, const char *name)
1976 {
1977 fprintf(stderr, " %s", name);
1978 }
1979
1980 void drive_uninit(BlockDriverState *bdrv)
1981 {
1982 int i;
1983
1984 for (i = 0; i < MAX_DRIVES; i++)
1985 if (drives_table[i].bdrv == bdrv) {
1986 drives_table[i].bdrv = NULL;
1987 drives_table[i].used = 0;
1988 drive_remove(drives_table[i].drive_opt_idx);
1989 nb_drives--;
1990 break;
1991 }
1992 }
1993
1994 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
1995 {
1996 char buf[128];
1997 char file[1024];
1998 char devname[128];
1999 char serial[21];
2000 const char *mediastr = "";
2001 BlockInterfaceType type;
2002 enum { MEDIA_DISK, MEDIA_CDROM } media;
2003 int bus_id, unit_id;
2004 int cyls, heads, secs, translation;
2005 BlockDriverState *bdrv;
2006 BlockDriver *drv = NULL;
2007 QEMUMachine *machine = opaque;
2008 int max_devs;
2009 int index;
2010 int cache;
2011 int bdrv_flags, onerror;
2012 const char *devaddr;
2013 int drives_table_idx;
2014 char *str = arg->opt;
2015 static const char * const params[] = { "bus", "unit", "if", "index",
2016 "cyls", "heads", "secs", "trans",
2017 "media", "snapshot", "file",
2018 "cache", "format", "serial",
2019 "werror", "addr",
2020 NULL };
2021
2022 if (check_params(buf, sizeof(buf), params, str) < 0) {
2023 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2024 buf, str);
2025 return -1;
2026 }
2027
2028 file[0] = 0;
2029 cyls = heads = secs = 0;
2030 bus_id = 0;
2031 unit_id = -1;
2032 translation = BIOS_ATA_TRANSLATION_AUTO;
2033 index = -1;
2034 cache = 1;
2035
2036 if (machine->use_scsi) {
2037 type = IF_SCSI;
2038 max_devs = MAX_SCSI_DEVS;
2039 pstrcpy(devname, sizeof(devname), "scsi");
2040 } else {
2041 type = IF_IDE;
2042 max_devs = MAX_IDE_DEVS;
2043 pstrcpy(devname, sizeof(devname), "ide");
2044 }
2045 media = MEDIA_DISK;
2046
2047 /* extract parameters */
2048
2049 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2050 bus_id = strtol(buf, NULL, 0);
2051 if (bus_id < 0) {
2052 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2053 return -1;
2054 }
2055 }
2056
2057 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2058 unit_id = strtol(buf, NULL, 0);
2059 if (unit_id < 0) {
2060 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2061 return -1;
2062 }
2063 }
2064
2065 if (get_param_value(buf, sizeof(buf), "if", str)) {
2066 pstrcpy(devname, sizeof(devname), buf);
2067 if (!strcmp(buf, "ide")) {
2068 type = IF_IDE;
2069 max_devs = MAX_IDE_DEVS;
2070 } else if (!strcmp(buf, "scsi")) {
2071 type = IF_SCSI;
2072 max_devs = MAX_SCSI_DEVS;
2073 } else if (!strcmp(buf, "floppy")) {
2074 type = IF_FLOPPY;
2075 max_devs = 0;
2076 } else if (!strcmp(buf, "pflash")) {
2077 type = IF_PFLASH;
2078 max_devs = 0;
2079 } else if (!strcmp(buf, "mtd")) {
2080 type = IF_MTD;
2081 max_devs = 0;
2082 } else if (!strcmp(buf, "sd")) {
2083 type = IF_SD;
2084 max_devs = 0;
2085 } else if (!strcmp(buf, "virtio")) {
2086 type = IF_VIRTIO;
2087 max_devs = 0;
2088 } else if (!strcmp(buf, "xen")) {
2089 type = IF_XEN;
2090 max_devs = 0;
2091 } else {
2092 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2093 return -1;
2094 }
2095 }
2096
2097 if (get_param_value(buf, sizeof(buf), "index", str)) {
2098 index = strtol(buf, NULL, 0);
2099 if (index < 0) {
2100 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2101 return -1;
2102 }
2103 }
2104
2105 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2106 cyls = strtol(buf, NULL, 0);
2107 }
2108
2109 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2110 heads = strtol(buf, NULL, 0);
2111 }
2112
2113 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2114 secs = strtol(buf, NULL, 0);
2115 }
2116
2117 if (cyls || heads || secs) {
2118 if (cyls < 1 || cyls > 16383) {
2119 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2120 return -1;
2121 }
2122 if (heads < 1 || heads > 16) {
2123 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2124 return -1;
2125 }
2126 if (secs < 1 || secs > 63) {
2127 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2128 return -1;
2129 }
2130 }
2131
2132 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2133 if (!cyls) {
2134 fprintf(stderr,
2135 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2136 str);
2137 return -1;
2138 }
2139 if (!strcmp(buf, "none"))
2140 translation = BIOS_ATA_TRANSLATION_NONE;
2141 else if (!strcmp(buf, "lba"))
2142 translation = BIOS_ATA_TRANSLATION_LBA;
2143 else if (!strcmp(buf, "auto"))
2144 translation = BIOS_ATA_TRANSLATION_AUTO;
2145 else {
2146 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2147 return -1;
2148 }
2149 }
2150
2151 if (get_param_value(buf, sizeof(buf), "media", str)) {
2152 if (!strcmp(buf, "disk")) {
2153 media = MEDIA_DISK;
2154 } else if (!strcmp(buf, "cdrom")) {
2155 if (cyls || secs || heads) {
2156 fprintf(stderr,
2157 "qemu: '%s' invalid physical CHS format\n", str);
2158 return -1;
2159 }
2160 media = MEDIA_CDROM;
2161 } else {
2162 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2163 return -1;
2164 }
2165 }
2166
2167 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2168 if (!strcmp(buf, "on"))
2169 snapshot = 1;
2170 else if (!strcmp(buf, "off"))
2171 snapshot = 0;
2172 else {
2173 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2174 return -1;
2175 }
2176 }
2177
2178 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2179 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2180 cache = 0;
2181 else if (!strcmp(buf, "writethrough"))
2182 cache = 1;
2183 else if (!strcmp(buf, "writeback"))
2184 cache = 2;
2185 else {
2186 fprintf(stderr, "qemu: invalid cache option\n");
2187 return -1;
2188 }
2189 }
2190
2191 if (get_param_value(buf, sizeof(buf), "format", str)) {
2192 if (strcmp(buf, "?") == 0) {
2193 fprintf(stderr, "qemu: Supported formats:");
2194 bdrv_iterate_format(bdrv_format_print, NULL);
2195 fprintf(stderr, "\n");
2196 return -1;
2197 }
2198 drv = bdrv_find_format(buf);
2199 if (!drv) {
2200 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2201 return -1;
2202 }
2203 }
2204
2205 if (arg->file == NULL)
2206 get_param_value(file, sizeof(file), "file", str);
2207 else
2208 pstrcpy(file, sizeof(file), arg->file);
2209
2210 if (!get_param_value(serial, sizeof(serial), "serial", str))
2211 memset(serial, 0, sizeof(serial));
2212
2213 onerror = BLOCK_ERR_STOP_ENOSPC;
2214 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2215 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2216 fprintf(stderr, "werror is no supported by this format\n");
2217 return -1;
2218 }
2219 if (!strcmp(buf, "ignore"))
2220 onerror = BLOCK_ERR_IGNORE;
2221 else if (!strcmp(buf, "enospc"))
2222 onerror = BLOCK_ERR_STOP_ENOSPC;
2223 else if (!strcmp(buf, "stop"))
2224 onerror = BLOCK_ERR_STOP_ANY;
2225 else if (!strcmp(buf, "report"))
2226 onerror = BLOCK_ERR_REPORT;
2227 else {
2228 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2229 return -1;
2230 }
2231 }
2232
2233 devaddr = NULL;
2234 if (get_param_value(buf, sizeof(buf), "addr", str)) {
2235 if (type != IF_VIRTIO) {
2236 fprintf(stderr, "addr is not supported by in '%s'\n", str);
2237 return -1;
2238 }
2239 devaddr = strdup(buf);
2240 }
2241
2242 /* compute bus and unit according index */
2243
2244 if (index != -1) {
2245 if (bus_id != 0 || unit_id != -1) {
2246 fprintf(stderr,
2247 "qemu: '%s' index cannot be used with bus and unit\n", str);
2248 return -1;
2249 }
2250 if (max_devs == 0)
2251 {
2252 unit_id = index;
2253 bus_id = 0;
2254 } else {
2255 unit_id = index % max_devs;
2256 bus_id = index / max_devs;
2257 }
2258 }
2259
2260 /* if user doesn't specify a unit_id,
2261 * try to find the first free
2262 */
2263
2264 if (unit_id == -1) {
2265 unit_id = 0;
2266 while (drive_get_index(type, bus_id, unit_id) != -1) {
2267 unit_id++;
2268 if (max_devs && unit_id >= max_devs) {
2269 unit_id -= max_devs;
2270 bus_id++;
2271 }
2272 }
2273 }
2274
2275 /* check unit id */
2276
2277 if (max_devs && unit_id >= max_devs) {
2278 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2279 str, unit_id, max_devs - 1);
2280 return -1;
2281 }
2282
2283 /*
2284 * ignore multiple definitions
2285 */
2286
2287 if (drive_get_index(type, bus_id, unit_id) != -1)
2288 return -2;
2289
2290 /* init */
2291
2292 if (type == IF_IDE || type == IF_SCSI)
2293 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2294 if (max_devs)
2295 snprintf(buf, sizeof(buf), "%s%i%s%i",
2296 devname, bus_id, mediastr, unit_id);
2297 else
2298 snprintf(buf, sizeof(buf), "%s%s%i",
2299 devname, mediastr, unit_id);
2300 bdrv = bdrv_new(buf);
2301 drives_table_idx = drive_get_free_idx();
2302 drives_table[drives_table_idx].bdrv = bdrv;
2303 drives_table[drives_table_idx].devaddr = devaddr;
2304 drives_table[drives_table_idx].type = type;
2305 drives_table[drives_table_idx].bus = bus_id;
2306 drives_table[drives_table_idx].unit = unit_id;
2307 drives_table[drives_table_idx].onerror = onerror;
2308 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2309 strncpy(drives_table[drives_table_idx].serial, serial, sizeof(serial));
2310 nb_drives++;
2311
2312 switch(type) {
2313 case IF_IDE:
2314 case IF_SCSI:
2315 case IF_XEN:
2316 switch(media) {
2317 case MEDIA_DISK:
2318 if (cyls != 0) {
2319 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2320 bdrv_set_translation_hint(bdrv, translation);
2321 }
2322 break;
2323 case MEDIA_CDROM:
2324 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2325 break;
2326 }
2327 break;
2328 case IF_SD:
2329 /* FIXME: This isn't really a floppy, but it's a reasonable
2330 approximation. */
2331 case IF_FLOPPY:
2332 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2333 break;
2334 case IF_PFLASH:
2335 case IF_MTD:
2336 case IF_VIRTIO:
2337 break;
2338 case IF_COUNT:
2339 abort();
2340 }
2341 if (!file[0])
2342 return -2;
2343 bdrv_flags = 0;
2344 if (snapshot) {
2345 bdrv_flags |= BDRV_O_SNAPSHOT;
2346 cache = 2; /* always use write-back with snapshot */
2347 }
2348 if (cache == 0) /* no caching */
2349 bdrv_flags |= BDRV_O_NOCACHE;
2350 else if (cache == 2) /* write-back */
2351 bdrv_flags |= BDRV_O_CACHE_WB;
2352 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2353 fprintf(stderr, "qemu: could not open disk image %s\n",
2354 file);
2355 return -1;
2356 }
2357 if (bdrv_key_required(bdrv))
2358 autostart = 0;
2359 return drives_table_idx;
2360 }
2361
2362 void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque)
2363 {
2364 boot_set_handler = func;
2365 boot_set_opaque = opaque;
2366 }
2367
2368 int qemu_boot_set(const char *boot_devices)
2369 {
2370 if (!boot_set_handler) {
2371 return -EINVAL;
2372 }
2373 return boot_set_handler(boot_set_opaque, boot_devices);
2374 }
2375
2376 static int parse_bootdevices(char *devices)
2377 {
2378 /* We just do some generic consistency checks */
2379 const char *p;
2380 int bitmap = 0;
2381
2382 for (p = devices; *p != '\0'; p++) {
2383 /* Allowed boot devices are:
2384 * a-b: floppy disk drives
2385 * c-f: IDE disk drives
2386 * g-m: machine implementation dependant drives
2387 * n-p: network devices
2388 * It's up to each machine implementation to check if the given boot
2389 * devices match the actual hardware implementation and firmware
2390 * features.
2391 */
2392 if (*p < 'a' || *p > 'p') {
2393 fprintf(stderr, "Invalid boot device '%c'\n", *p);
2394 exit(1);
2395 }
2396 if (bitmap & (1 << (*p - 'a'))) {
2397 fprintf(stderr, "Boot device '%c' was given twice\n", *p);
2398 exit(1);
2399 }
2400 bitmap |= 1 << (*p - 'a');
2401 }
2402 return bitmap;
2403 }
2404
2405 static void restore_boot_devices(void *opaque)
2406 {
2407 char *standard_boot_devices = opaque;
2408
2409 qemu_boot_set(standard_boot_devices);
2410
2411 qemu_unregister_reset(restore_boot_devices, standard_boot_devices);
2412 qemu_free(standard_boot_devices);
2413 }
2414
2415 static void numa_add(const char *optarg)
2416 {
2417 char option[128];
2418 char *endptr;
2419 unsigned long long value, endvalue;
2420 int nodenr;
2421
2422 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2423 if (!strcmp(option, "node")) {
2424 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2425 nodenr = nb_numa_nodes;
2426 } else {
2427 nodenr = strtoull(option, NULL, 10);
2428 }
2429
2430 if (get_param_value(option, 128, "mem", optarg) == 0) {
2431 node_mem[nodenr] = 0;
2432 } else {
2433 value = strtoull(option, &endptr, 0);
2434 switch (*endptr) {
2435 case 0: case 'M': case 'm':
2436 value <<= 20;
2437 break;
2438 case 'G': case 'g':
2439 value <<= 30;
2440 break;
2441 }
2442 node_mem[nodenr] = value;
2443 }
2444 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2445 node_cpumask[nodenr] = 0;
2446 } else {
2447 value = strtoull(option, &endptr, 10);
2448 if (value >= 64) {
2449 value = 63;
2450 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2451 } else {
2452 if (*endptr == '-') {
2453 endvalue = strtoull(endptr+1, &endptr, 10);
2454 if (endvalue >= 63) {
2455 endvalue = 62;
2456 fprintf(stderr,
2457 "only 63 CPUs in NUMA mode supported.\n");
2458 }
2459 value = (1 << (endvalue + 1)) - (1 << value);
2460 } else {
2461 value = 1 << value;
2462 }
2463 }
2464 node_cpumask[nodenr] = value;
2465 }
2466 nb_numa_nodes++;
2467 }
2468 return;
2469 }
2470
2471 /***********************************************************/
2472 /* USB devices */
2473
2474 static USBPort *used_usb_ports;
2475 static USBPort *free_usb_ports;
2476
2477 /* ??? Maybe change this to register a hub to keep track of the topology. */
2478 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2479 usb_attachfn attach)
2480 {
2481 port->opaque = opaque;
2482 port->index = index;
2483 port->attach = attach;
2484 port->next = free_usb_ports;
2485 free_usb_ports = port;
2486 }
2487
2488 int usb_device_add_dev(USBDevice *dev)
2489 {
2490 USBPort *port;
2491
2492 /* Find a USB port to add the device to. */
2493 port = free_usb_ports;
2494 if (!port->next) {
2495 USBDevice *hub;
2496
2497 /* Create a new hub and chain it on. */
2498 free_usb_ports = NULL;
2499 port->next = used_usb_ports;
2500 used_usb_ports = port;
2501
2502 hub = usb_hub_init(VM_USB_HUB_SIZE);
2503 usb_attach(port, hub);
2504 port = free_usb_ports;
2505 }
2506
2507 free_usb_ports = port->next;
2508 port->next = used_usb_ports;
2509 used_usb_ports = port;
2510 usb_attach(port, dev);
2511 return 0;
2512 }
2513
2514 static void usb_msd_password_cb(void *opaque, int err)
2515 {
2516 USBDevice *dev = opaque;
2517
2518 if (!err)
2519 usb_device_add_dev(dev);
2520 else
2521 dev->handle_destroy(dev);
2522 }
2523
2524 static int usb_device_add(const char *devname, int is_hotplug)
2525 {
2526 const char *p;
2527 USBDevice *dev;
2528
2529 if (!free_usb_ports)
2530 return -1;
2531
2532 if (strstart(devname, "host:", &p)) {
2533 dev = usb_host_device_open(p);
2534 } else if (!strcmp(devname, "mouse")) {
2535 dev = usb_mouse_init();
2536 } else if (!strcmp(devname, "tablet")) {
2537 dev = usb_tablet_init();
2538 } else if (!strcmp(devname, "keyboard")) {
2539 dev = usb_keyboard_init();
2540 } else if (strstart(devname, "disk:", &p)) {
2541 BlockDriverState *bs;
2542
2543 dev = usb_msd_init(p);
2544 if (!dev)
2545 return -1;
2546 bs = usb_msd_get_bdrv(dev);
2547 if (bdrv_key_required(bs)) {
2548 autostart = 0;
2549 if (is_hotplug) {
2550 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2551 dev);
2552 return 0;
2553 }
2554 }
2555 } else if (!strcmp(devname, "wacom-tablet")) {
2556 dev = usb_wacom_init();
2557 } else if (strstart(devname, "serial:", &p)) {
2558 dev = usb_serial_init(p);
2559 #ifdef CONFIG_BRLAPI
2560 } else if (!strcmp(devname, "braille")) {
2561 dev = usb_baum_init();
2562 #endif
2563 } else if (strstart(devname, "net:", &p)) {
2564 int nic = nb_nics;
2565
2566 if (net_client_init(NULL, "nic", p) < 0)
2567 return -1;
2568 nd_table[nic].model = "usb";
2569 dev = usb_net_init(&nd_table[nic]);
2570 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2571 dev = usb_bt_init(devname[2] ? hci_init(p) :
2572 bt_new_hci(qemu_find_bt_vlan(0)));
2573 } else {
2574 return -1;
2575 }
2576 if (!dev)
2577 return -1;
2578
2579 return usb_device_add_dev(dev);
2580 }
2581
2582 int usb_device_del_addr(int bus_num, int addr)
2583 {
2584 USBPort *port;
2585 USBPort **lastp;
2586 USBDevice *dev;
2587
2588 if (!used_usb_ports)
2589 return -1;
2590
2591 if (bus_num != 0)
2592 return -1;
2593
2594 lastp = &used_usb_ports;
2595 port = used_usb_ports;
2596 while (port && port->dev->addr != addr) {
2597 lastp = &port->next;
2598 port = port->next;
2599 }
2600
2601 if (!port)
2602 return -1;
2603
2604 dev = port->dev;
2605 *lastp = port->next;
2606 usb_attach(port, NULL);
2607 dev->handle_destroy(dev);
2608 port->next = free_usb_ports;
2609 free_usb_ports = port;
2610 return 0;
2611 }
2612
2613 static int usb_device_del(const char *devname)
2614 {
2615 int bus_num, addr;
2616 const char *p;
2617
2618 if (strstart(devname, "host:", &p))
2619 return usb_host_device_close(p);
2620
2621 if (!used_usb_ports)
2622 return -1;
2623
2624 p = strchr(devname, '.');
2625 if (!p)
2626 return -1;
2627 bus_num = strtoul(devname, NULL, 0);
2628 addr = strtoul(p + 1, NULL, 0);
2629
2630 return usb_device_del_addr(bus_num, addr);
2631 }
2632
2633 void do_usb_add(Monitor *mon, const char *devname)
2634 {
2635 usb_device_add(devname, 1);
2636 }
2637
2638 void do_usb_del(Monitor *mon, const char *devname)
2639 {
2640 usb_device_del(devname);
2641 }
2642
2643 void usb_info(Monitor *mon)
2644 {
2645 USBDevice *dev;
2646 USBPort *port;
2647 const char *speed_str;
2648
2649 if (!usb_enabled) {
2650 monitor_printf(mon, "USB support not enabled\n");
2651 return;
2652 }
2653
2654 for (port = used_usb_ports; port; port = port->next) {
2655 dev = port->dev;
2656 if (!dev)
2657 continue;
2658 switch(dev->speed) {
2659 case USB_SPEED_LOW:
2660 speed_str = "1.5";
2661 break;
2662 case USB_SPEED_FULL:
2663 speed_str = "12";
2664 break;
2665 case USB_SPEED_HIGH:
2666 speed_str = "480";
2667 break;
2668 default:
2669 speed_str = "?";
2670 break;
2671 }
2672 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2673 0, dev->addr, speed_str, dev->devname);
2674 }
2675 }
2676
2677 /***********************************************************/
2678 /* PCMCIA/Cardbus */
2679
2680 static struct pcmcia_socket_entry_s {
2681 PCMCIASocket *socket;
2682 struct pcmcia_socket_entry_s *next;
2683 } *pcmcia_sockets = 0;
2684
2685 void pcmcia_socket_register(PCMCIASocket *socket)
2686 {
2687 struct pcmcia_socket_entry_s *entry;
2688
2689 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2690 entry->socket = socket;
2691 entry->next = pcmcia_sockets;
2692 pcmcia_sockets = entry;
2693 }
2694
2695 void pcmcia_socket_unregister(PCMCIASocket *socket)
2696 {
2697 struct pcmcia_socket_entry_s *entry, **ptr;
2698
2699 ptr = &pcmcia_sockets;
2700 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2701 if (entry->socket == socket) {
2702 *ptr = entry->next;
2703 qemu_free(entry);
2704 }
2705 }
2706
2707 void pcmcia_info(Monitor *mon)
2708 {
2709 struct pcmcia_socket_entry_s *iter;
2710
2711 if (!pcmcia_sockets)
2712 monitor_printf(mon, "No PCMCIA sockets\n");
2713
2714 for (iter = pcmcia_sockets; iter; iter = iter->next)
2715 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2716 iter->socket->attached ? iter->socket->card_string :
2717 "Empty");
2718 }
2719
2720 /***********************************************************/
2721 /* register display */
2722
2723 struct DisplayAllocator default_allocator = {
2724 defaultallocator_create_displaysurface,
2725 defaultallocator_resize_displaysurface,
2726 defaultallocator_free_displaysurface
2727 };
2728
2729 void register_displaystate(DisplayState *ds)
2730 {
2731 DisplayState **s;
2732 s = &display_state;
2733 while (*s != NULL)
2734 s = &(*s)->next;
2735 ds->next = NULL;
2736 *s = ds;
2737 }
2738
2739 DisplayState *get_displaystate(void)
2740 {
2741 return display_state;
2742 }
2743
2744 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2745 {
2746 if(ds->allocator == &default_allocator) ds->allocator = da;
2747 return ds->allocator;
2748 }
2749
2750 /* dumb display */
2751
2752 static void dumb_display_init(void)
2753 {
2754 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2755 ds->allocator = &default_allocator;
2756 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2757 register_displaystate(ds);
2758 }
2759
2760 /***********************************************************/
2761 /* I/O handling */
2762
2763 typedef struct IOHandlerRecord {
2764 int fd;
2765 IOCanRWHandler *fd_read_poll;
2766 IOHandler *fd_read;
2767 IOHandler *fd_write;
2768 int deleted;
2769 void *opaque;
2770 /* temporary data */
2771 struct pollfd *ufd;
2772 struct IOHandlerRecord *next;
2773 } IOHandlerRecord;
2774
2775 static IOHandlerRecord *first_io_handler;
2776
2777 /* XXX: fd_read_poll should be suppressed, but an API change is
2778 necessary in the character devices to suppress fd_can_read(). */
2779 int qemu_set_fd_handler2(int fd,
2780 IOCanRWHandler *fd_read_poll,
2781 IOHandler *fd_read,
2782 IOHandler *fd_write,
2783 void *opaque)
2784 {
2785 IOHandlerRecord **pioh, *ioh;
2786
2787 if (!fd_read && !fd_write) {
2788 pioh = &first_io_handler;
2789 for(;;) {
2790 ioh = *pioh;
2791 if (ioh == NULL)
2792 break;
2793 if (ioh->fd == fd) {
2794 ioh->deleted = 1;
2795 break;
2796 }
2797 pioh = &ioh->next;
2798 }
2799 } else {
2800 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2801 if (ioh->fd == fd)
2802 goto found;
2803 }
2804 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2805 ioh->next = first_io_handler;
2806 first_io_handler = ioh;
2807 found:
2808 ioh->fd = fd;
2809 ioh->fd_read_poll = fd_read_poll;
2810 ioh->fd_read = fd_read;
2811 ioh->fd_write = fd_write;
2812 ioh->opaque = opaque;
2813 ioh->deleted = 0;
2814 }
2815 return 0;
2816 }
2817
2818 int qemu_set_fd_handler(int fd,
2819 IOHandler *fd_read,
2820 IOHandler *fd_write,
2821 void *opaque)
2822 {
2823 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2824 }
2825
2826 #ifdef _WIN32
2827 /***********************************************************/
2828 /* Polling handling */
2829
2830 typedef struct PollingEntry {
2831 PollingFunc *func;
2832 void *opaque;
2833 struct PollingEntry *next;
2834 } PollingEntry;
2835
2836 static PollingEntry *first_polling_entry;
2837
2838 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2839 {
2840 PollingEntry **ppe, *pe;
2841 pe = qemu_mallocz(sizeof(PollingEntry));
2842 pe->func = func;
2843 pe->opaque = opaque;
2844 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2845 *ppe = pe;
2846 return 0;
2847 }
2848
2849 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2850 {
2851 PollingEntry **ppe, *pe;
2852 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2853 pe = *ppe;
2854 if (pe->func == func && pe->opaque == opaque) {
2855 *ppe = pe->next;
2856 qemu_free(pe);
2857 break;
2858 }
2859 }
2860 }
2861
2862 /***********************************************************/
2863 /* Wait objects support */
2864 typedef struct WaitObjects {
2865 int num;
2866 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2867 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2868 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2869 } WaitObjects;
2870
2871 static WaitObjects wait_objects = {0};
2872
2873 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2874 {
2875 WaitObjects *w = &wait_objects;
2876
2877 if (w->num >= MAXIMUM_WAIT_OBJECTS)
2878 return -1;
2879 w->events[w->num] = handle;
2880 w->func[w->num] = func;
2881 w->opaque[w->num] = opaque;
2882 w->num++;
2883 return 0;
2884 }
2885
2886 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2887 {
2888 int i, found;
2889 WaitObjects *w = &wait_objects;
2890
2891 found = 0;
2892 for (i = 0; i < w->num; i++) {
2893 if (w->events[i] == handle)
2894 found = 1;
2895 if (found) {
2896 w->events[i] = w->events[i + 1];
2897 w->func[i] = w->func[i + 1];
2898 w->opaque[i] = w->opaque[i + 1];
2899 }
2900 }
2901 if (found)
2902 w->num--;
2903 }
2904 #endif
2905
2906 /***********************************************************/
2907 /* ram save/restore */
2908
2909 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
2910 {
2911 int v;
2912
2913 v = qemu_get_byte(f);
2914 switch(v) {
2915 case 0:
2916 if (qemu_get_buffer(f, buf, len) != len)
2917 return -EIO;
2918 break;
2919 case 1:
2920 v = qemu_get_byte(f);
2921 memset(buf, v, len);
2922 break;
2923 default:
2924 return -EINVAL;
2925 }
2926
2927 if (qemu_file_has_error(f))
2928 return -EIO;
2929
2930 return 0;
2931 }
2932
2933 static int ram_load_v1(QEMUFile *f, void *opaque)
2934 {
2935 int ret;
2936 ram_addr_t i;
2937
2938 if (qemu_get_be32(f) != last_ram_offset)
2939 return -EINVAL;
2940 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
2941 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
2942 if (ret)
2943 return ret;
2944 }
2945 return 0;
2946 }
2947
2948 #define BDRV_HASH_BLOCK_SIZE 1024
2949 #define IOBUF_SIZE 4096
2950 #define RAM_CBLOCK_MAGIC 0xfabe
2951
2952 typedef struct RamDecompressState {
2953 z_stream zstream;
2954 QEMUFile *f;
2955 uint8_t buf[IOBUF_SIZE];
2956 } RamDecompressState;
2957
2958 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
2959 {
2960 int ret;
2961 memset(s, 0, sizeof(*s));
2962 s->f = f;
2963 ret = inflateInit(&s->zstream);
2964 if (ret != Z_OK)
2965 return -1;
2966 return 0;
2967 }
2968
2969 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
2970 {
2971 int ret, clen;
2972
2973 s->zstream.avail_out = len;
2974 s->zstream.next_out = buf;
2975 while (s->zstream.avail_out > 0) {
2976 if (s->zstream.avail_in == 0) {
2977 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
2978 return -1;
2979 clen = qemu_get_be16(s->f);
2980 if (clen > IOBUF_SIZE)
2981 return -1;
2982 qemu_get_buffer(s->f, s->buf, clen);
2983 s->zstream.avail_in = clen;
2984 s->zstream.next_in = s->buf;
2985 }
2986 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
2987 if (ret != Z_OK && ret != Z_STREAM_END) {
2988 return -1;
2989 }
2990 }
2991 return 0;
2992 }
2993
2994 static void ram_decompress_close(RamDecompressState *s)
2995 {
2996 inflateEnd(&s->zstream);
2997 }
2998
2999 #define RAM_SAVE_FLAG_FULL 0x01
3000 #define RAM_SAVE_FLAG_COMPRESS 0x02
3001 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3002 #define RAM_SAVE_FLAG_PAGE 0x08
3003 #define RAM_SAVE_FLAG_EOS 0x10
3004
3005 static int is_dup_page(uint8_t *page, uint8_t ch)
3006 {
3007 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3008 uint32_t *array = (uint32_t *)page;
3009 int i;
3010
3011 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3012 if (array[i] != val)
3013 return 0;
3014 }
3015
3016 return 1;
3017 }
3018
3019 static int ram_save_block(QEMUFile *f)
3020 {
3021 static ram_addr_t current_addr = 0;
3022 ram_addr_t saved_addr = current_addr;
3023 ram_addr_t addr = 0;
3024 int found = 0;
3025
3026 while (addr < last_ram_offset) {
3027 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3028 uint8_t *p;
3029
3030 cpu_physical_memory_reset_dirty(current_addr,
3031 current_addr + TARGET_PAGE_SIZE,
3032 MIGRATION_DIRTY_FLAG);
3033
3034 p = qemu_get_ram_ptr(current_addr);
3035
3036 if (is_dup_page(p, *p)) {
3037 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3038 qemu_put_byte(f, *p);
3039 } else {
3040 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3041 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3042 }
3043
3044 found = 1;
3045 break;
3046 }
3047 addr += TARGET_PAGE_SIZE;
3048 current_addr = (saved_addr + addr) % last_ram_offset;
3049 }
3050
3051 return found;
3052 }
3053
3054 static uint64_t bytes_transferred = 0;
3055
3056 static ram_addr_t ram_save_remaining(void)
3057 {
3058 ram_addr_t addr;
3059 ram_addr_t count = 0;
3060
3061 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3062 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3063 count++;
3064 }
3065
3066 return count;
3067 }
3068
3069 uint64_t ram_bytes_remaining(void)
3070 {
3071 return ram_save_remaining() * TARGET_PAGE_SIZE;
3072 }
3073
3074 uint64_t ram_bytes_transferred(void)
3075 {
3076 return bytes_transferred;
3077 }
3078
3079 uint64_t ram_bytes_total(void)
3080 {
3081 return last_ram_offset;
3082 }
3083
3084 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3085 {
3086 ram_addr_t addr;
3087 uint64_t bytes_transferred_last;
3088 double bwidth = 0;
3089 uint64_t expected_time = 0;
3090
3091 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
3092 qemu_file_set_error(f);
3093 return 0;
3094 }
3095
3096 if (stage == 1) {
3097 /* Make sure all dirty bits are set */
3098 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3099 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3100 cpu_physical_memory_set_dirty(addr);
3101 }
3102
3103 /* Enable dirty memory tracking */
3104 cpu_physical_memory_set_dirty_tracking(1);
3105
3106 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3107 }
3108
3109 bytes_transferred_last = bytes_transferred;
3110 bwidth = get_clock();
3111
3112 while (!qemu_file_rate_limit(f)) {
3113 int ret;
3114
3115 ret = ram_save_block(f);
3116 bytes_transferred += ret * TARGET_PAGE_SIZE;
3117 if (ret == 0) /* no more blocks */
3118 break;
3119 }
3120
3121 bwidth = get_clock() - bwidth;
3122 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
3123
3124 /* if we haven't transferred anything this round, force expected_time to a
3125 * a very high value, but without crashing */
3126 if (bwidth == 0)
3127 bwidth = 0.000001;
3128
3129 /* try transferring iterative blocks of memory */
3130
3131 if (stage == 3) {
3132
3133 /* flush all remaining blocks regardless of rate limiting */
3134 while (ram_save_block(f) != 0) {
3135 bytes_transferred += TARGET_PAGE_SIZE;
3136 }
3137 cpu_physical_memory_set_dirty_tracking(0);
3138 }
3139
3140 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3141
3142 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
3143
3144 return (stage == 2) && (expected_time <= migrate_max_downtime());
3145 }
3146
3147 static int ram_load_dead(QEMUFile *f, void *opaque)
3148 {
3149 RamDecompressState s1, *s = &s1;
3150 uint8_t buf[10];
3151 ram_addr_t i;
3152
3153 if (ram_decompress_open(s, f) < 0)
3154 return -EINVAL;
3155 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3156 if (ram_decompress_buf(s, buf, 1) < 0) {
3157 fprintf(stderr, "Error while reading ram block header\n");
3158 goto error;
3159 }
3160 if (buf[0] == 0) {
3161 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3162 BDRV_HASH_BLOCK_SIZE) < 0) {
3163 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3164 goto error;
3165 }
3166 } else {
3167 error:
3168 printf("Error block header\n");
3169 return -EINVAL;
3170 }
3171 }
3172 ram_decompress_close(s);
3173
3174 return 0;
3175 }
3176
3177 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3178 {
3179 ram_addr_t addr;
3180 int flags;
3181
3182 if (version_id == 1)
3183 return ram_load_v1(f, opaque);
3184
3185 if (version_id == 2) {
3186 if (qemu_get_be32(f) != last_ram_offset)
3187 return -EINVAL;
3188 return ram_load_dead(f, opaque);
3189 }
3190
3191 if (version_id != 3)
3192 return -EINVAL;
3193
3194 do {
3195 addr = qemu_get_be64(f);
3196
3197 flags = addr & ~TARGET_PAGE_MASK;
3198 addr &= TARGET_PAGE_MASK;
3199
3200 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3201 if (addr != last_ram_offset)
3202 return -EINVAL;
3203 }
3204
3205 if (flags & RAM_SAVE_FLAG_FULL) {
3206 if (ram_load_dead(f, opaque) < 0)
3207 return -EINVAL;
3208 }
3209
3210 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3211 uint8_t ch = qemu_get_byte(f);
3212 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3213 #ifndef _WIN32
3214 if (ch == 0 &&
3215 (!kvm_enabled() || kvm_has_sync_mmu())) {
3216 madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED);
3217 }
3218 #endif
3219 } else if (flags & RAM_SAVE_FLAG_PAGE)
3220 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3221 } while (!(flags & RAM_SAVE_FLAG_EOS));
3222
3223 return 0;
3224 }
3225
3226 void qemu_service_io(void)
3227 {
3228 qemu_notify_event();
3229 }
3230
3231 /***********************************************************/
3232 /* bottom halves (can be seen as timers which expire ASAP) */
3233
3234 struct QEMUBH {
3235 QEMUBHFunc *cb;
3236 void *opaque;
3237 int scheduled;
3238 int idle;
3239 int deleted;
3240 QEMUBH *next;
3241 };
3242
3243 static QEMUBH *first_bh = NULL;
3244
3245 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3246 {
3247 QEMUBH *bh;
3248 bh = qemu_mallocz(sizeof(QEMUBH));
3249 bh->cb = cb;
3250 bh->opaque = opaque;
3251 bh->next = first_bh;
3252 first_bh = bh;
3253 return bh;
3254 }
3255
3256 int qemu_bh_poll(void)
3257 {
3258 QEMUBH *bh, **bhp;
3259 int ret;
3260
3261 ret = 0;
3262 for (bh = first_bh; bh; bh = bh->next) {
3263 if (!bh->deleted && bh->scheduled) {
3264 bh->scheduled = 0;
3265 if (!bh->idle)
3266 ret = 1;
3267 bh->idle = 0;
3268 bh->cb(bh->opaque);
3269 }
3270 }
3271
3272 /* remove deleted bhs */
3273 bhp = &first_bh;
3274 while (*bhp) {
3275 bh = *bhp;
3276 if (bh->deleted) {
3277 *bhp = bh->next;
3278 qemu_free(bh);
3279 } else
3280 bhp = &bh->next;
3281 }
3282
3283 return ret;
3284 }
3285
3286 void qemu_bh_schedule_idle(QEMUBH *bh)
3287 {
3288 if (bh->scheduled)
3289 return;
3290 bh->scheduled = 1;
3291 bh->idle = 1;
3292 }
3293
3294 void qemu_bh_schedule(QEMUBH *bh)
3295 {
3296 if (bh->scheduled)
3297 return;
3298 bh->scheduled = 1;
3299 bh->idle = 0;
3300 /* stop the currently executing CPU to execute the BH ASAP */
3301 qemu_notify_event();
3302 }
3303
3304 void qemu_bh_cancel(QEMUBH *bh)
3305 {
3306 bh->scheduled = 0;
3307 }
3308
3309 void qemu_bh_delete(QEMUBH *bh)
3310 {
3311 bh->scheduled = 0;
3312 bh->deleted = 1;
3313 }
3314
3315 static void qemu_bh_update_timeout(int *timeout)
3316 {
3317 QEMUBH *bh;
3318
3319 for (bh = first_bh; bh; bh = bh->next) {
3320 if (!bh->deleted && bh->scheduled) {
3321 if (bh->idle) {
3322 /* idle bottom halves will be polled at least
3323 * every 10ms */
3324 *timeout = MIN(10, *timeout);
3325 } else {
3326 /* non-idle bottom halves will be executed
3327 * immediately */
3328 *timeout = 0;
3329 break;
3330 }
3331 }
3332 }
3333 }
3334
3335 /***********************************************************/
3336 /* machine registration */
3337
3338 static QEMUMachine *first_machine = NULL;
3339 QEMUMachine *current_machine = NULL;
3340
3341 int qemu_register_machine(QEMUMachine *m)
3342 {
3343 QEMUMachine **pm;
3344 pm = &first_machine;
3345 while (*pm != NULL)
3346 pm = &(*pm)->next;
3347 m->next = NULL;
3348 *pm = m;
3349 return 0;
3350 }
3351
3352 static QEMUMachine *find_machine(const char *name)
3353 {
3354 QEMUMachine *m;
3355
3356 for(m = first_machine; m != NULL; m = m->next) {
3357 if (!strcmp(m->name, name))
3358 return m;
3359 }
3360 return NULL;
3361 }
3362
3363 static QEMUMachine *find_default_machine(void)
3364 {
3365 QEMUMachine *m;
3366
3367 for(m = first_machine; m != NULL; m = m->next) {
3368 if (m->is_default) {
3369 return m;
3370 }
3371 }
3372 return NULL;
3373 }
3374
3375 /***********************************************************/
3376 /* main execution loop */
3377
3378 static void gui_update(void *opaque)
3379 {
3380 uint64_t interval = GUI_REFRESH_INTERVAL;
3381 DisplayState *ds = opaque;
3382 DisplayChangeListener *dcl = ds->listeners;
3383
3384 dpy_refresh(ds);
3385
3386 while (dcl != NULL) {
3387 if (dcl->gui_timer_interval &&
3388 dcl->gui_timer_interval < interval)
3389 interval = dcl->gui_timer_interval;
3390 dcl = dcl->next;
3391 }
3392 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3393 }
3394
3395 static void nographic_update(void *opaque)
3396 {
3397 uint64_t interval = GUI_REFRESH_INTERVAL;
3398
3399 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3400 }
3401
3402 struct vm_change_state_entry {
3403 VMChangeStateHandler *cb;
3404 void *opaque;
3405 LIST_ENTRY (vm_change_state_entry) entries;
3406 };
3407
3408 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3409
3410 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3411 void *opaque)
3412 {
3413 VMChangeStateEntry *e;
3414
3415 e = qemu_mallocz(sizeof (*e));
3416
3417 e->cb = cb;
3418 e->opaque = opaque;
3419 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3420 return e;
3421 }
3422
3423 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3424 {
3425 LIST_REMOVE (e, entries);
3426 qemu_free (e);
3427 }
3428
3429 static void vm_state_notify(int running, int reason)
3430 {
3431 VMChangeStateEntry *e;
3432
3433 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3434 e->cb(e->opaque, running, reason);
3435 }
3436 }
3437
3438 static void resume_all_vcpus(void);
3439 static void pause_all_vcpus(void);
3440
3441 void vm_start(void)
3442 {
3443 if (!vm_running) {
3444 cpu_enable_ticks();
3445 vm_running = 1;
3446 vm_state_notify(1, 0);
3447 qemu_rearm_alarm_timer(alarm_timer);
3448 resume_all_vcpus();
3449 }
3450 }
3451
3452 /* reset/shutdown handler */
3453
3454 typedef struct QEMUResetEntry {
3455 TAILQ_ENTRY(QEMUResetEntry) entry;
3456 QEMUResetHandler *func;
3457 void *opaque;
3458 } QEMUResetEntry;
3459
3460 static TAILQ_HEAD(reset_handlers, QEMUResetEntry) reset_handlers =
3461 TAILQ_HEAD_INITIALIZER(reset_handlers);
3462 static int reset_requested;
3463 static int shutdown_requested;
3464 static int powerdown_requested;
3465 static int debug_requested;
3466 static int vmstop_requested;
3467
3468 int qemu_shutdown_requested(void)
3469 {
3470 int r = shutdown_requested;
3471 shutdown_requested = 0;
3472 return r;
3473 }
3474
3475 int qemu_reset_requested(void)
3476 {
3477 int r = reset_requested;
3478 reset_requested = 0;
3479 return r;
3480 }
3481
3482 int qemu_powerdown_requested(void)
3483 {
3484 int r = powerdown_requested;
3485 powerdown_requested = 0;
3486 return r;
3487 }
3488
3489 static int qemu_debug_requested(void)
3490 {
3491 int r = debug_requested;
3492 debug_requested = 0;
3493 return r;
3494 }
3495
3496 static int qemu_vmstop_requested(void)
3497 {
3498 int r = vmstop_requested;
3499 vmstop_requested = 0;
3500 return r;
3501 }
3502
3503 static void do_vm_stop(int reason)
3504 {
3505 if (vm_running) {
3506 cpu_disable_ticks();
3507 vm_running = 0;
3508 pause_all_vcpus();
3509 vm_state_notify(0, reason);
3510 }
3511 }
3512
3513 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3514 {
3515 QEMUResetEntry *re = qemu_mallocz(sizeof(QEMUResetEntry));
3516
3517 re->func = func;
3518 re->opaque = opaque;
3519 TAILQ_INSERT_TAIL(&reset_handlers, re, entry);
3520 }
3521
3522 void qemu_unregister_reset(QEMUResetHandler *func, void *opaque)
3523 {
3524 QEMUResetEntry *re;
3525
3526 TAILQ_FOREACH(re, &reset_handlers, entry) {
3527 if (re->func == func && re->opaque == opaque) {
3528 TAILQ_REMOVE(&reset_handlers, re, entry);
3529 qemu_free(re);
3530 return;
3531 }
3532 }
3533 }
3534
3535 void qemu_system_reset(void)
3536 {
3537 QEMUResetEntry *re, *nre;
3538
3539 /* reset all devices */
3540 TAILQ_FOREACH_SAFE(re, &reset_handlers, entry, nre) {
3541 re->func(re->opaque);
3542 }
3543 }
3544
3545 void qemu_system_reset_request(void)
3546 {
3547 if (no_reboot) {
3548 shutdown_requested = 1;
3549 } else {
3550 reset_requested = 1;
3551 }
3552 qemu_notify_event();
3553 }
3554
3555 void qemu_system_shutdown_request(void)
3556 {
3557 shutdown_requested = 1;
3558 qemu_notify_event();
3559 }
3560
3561 void qemu_system_powerdown_request(void)
3562 {
3563 powerdown_requested = 1;
3564 qemu_notify_event();
3565 }
3566
3567 #ifdef CONFIG_IOTHREAD
3568 static void qemu_system_vmstop_request(int reason)
3569 {
3570 vmstop_requested = reason;
3571 qemu_notify_event();
3572 }
3573 #endif
3574
3575 #ifndef _WIN32
3576 static int io_thread_fd = -1;
3577
3578 static void qemu_event_increment(void)
3579 {
3580 static const char byte = 0;
3581
3582 if (io_thread_fd == -1)
3583 return;
3584
3585 write(io_thread_fd, &byte, sizeof(byte));
3586 }
3587
3588 static void qemu_event_read(void *opaque)
3589 {
3590 int fd = (unsigned long)opaque;
3591 ssize_t len;
3592
3593 /* Drain the notify pipe */
3594 do {
3595 char buffer[512];
3596 len = read(fd, buffer, sizeof(buffer));
3597 } while ((len == -1 && errno == EINTR) || len > 0);
3598 }
3599
3600 static int qemu_event_init(void)
3601 {
3602 int err;
3603 int fds[2];
3604
3605 err = pipe(fds);
3606 if (err == -1)
3607 return -errno;
3608
3609 err = fcntl_setfl(fds[0], O_NONBLOCK);
3610 if (err < 0)
3611 goto fail;
3612
3613 err = fcntl_setfl(fds[1], O_NONBLOCK);
3614 if (err < 0)
3615 goto fail;
3616
3617 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3618 (void *)(unsigned long)fds[0]);
3619
3620 io_thread_fd = fds[1];
3621 return 0;
3622
3623 fail:
3624 close(fds[0]);
3625 close(fds[1]);
3626 return err;
3627 }
3628 #else
3629 HANDLE qemu_event_handle;
3630
3631 static void dummy_event_handler(void *opaque)
3632 {
3633 }
3634
3635 static int qemu_event_init(void)
3636 {
3637 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3638 if (!qemu_event_handle) {
3639 perror("Failed CreateEvent");
3640 return -1;
3641 }
3642 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3643 return 0;
3644 }
3645
3646 static void qemu_event_increment(void)
3647 {
3648 SetEvent(qemu_event_handle);
3649 }
3650 #endif
3651
3652 static int cpu_can_run(CPUState *env)
3653 {
3654 if (env->stop)
3655 return 0;
3656 if (env->stopped)
3657 return 0;
3658 return 1;
3659 }
3660
3661 #ifndef CONFIG_IOTHREAD
3662 static int qemu_init_main_loop(void)
3663 {
3664 return qemu_event_init();
3665 }
3666
3667 void qemu_init_vcpu(void *_env)
3668 {
3669 CPUState *env = _env;
3670
3671 if (kvm_enabled())
3672 kvm_init_vcpu(env);
3673 return;
3674 }
3675
3676 int qemu_cpu_self(void *env)
3677 {
3678 return 1;
3679 }
3680
3681 static void resume_all_vcpus(void)
3682 {
3683 }
3684
3685 static void pause_all_vcpus(void)
3686 {
3687 }
3688
3689 void qemu_cpu_kick(void *env)
3690 {
3691 return;
3692 }
3693
3694 void qemu_notify_event(void)
3695 {
3696 CPUState *env = cpu_single_env;
3697
3698 if (env) {
3699 cpu_exit(env);
3700 #ifdef USE_KQEMU
3701 if (env->kqemu_enabled)
3702 kqemu_cpu_interrupt(env);
3703 #endif
3704 }
3705 }
3706
3707 #define qemu_mutex_lock_iothread() do { } while (0)
3708 #define qemu_mutex_unlock_iothread() do { } while (0)
3709
3710 void vm_stop(int reason)
3711 {
3712 do_vm_stop(reason);
3713 }
3714
3715 #else /* CONFIG_IOTHREAD */
3716
3717 #include "qemu-thread.h"
3718
3719 QemuMutex qemu_global_mutex;
3720 static QemuMutex qemu_fair_mutex;
3721
3722 static QemuThread io_thread;
3723
3724 static QemuThread *tcg_cpu_thread;
3725 static QemuCond *tcg_halt_cond;
3726
3727 static int qemu_system_ready;
3728 /* cpu creation */
3729 static QemuCond qemu_cpu_cond;
3730 /* system init */
3731 static QemuCond qemu_system_cond;
3732 static QemuCond qemu_pause_cond;
3733
3734 static void block_io_signals(void);
3735 static void unblock_io_signals(void);
3736 static int tcg_has_work(void);
3737
3738 static int qemu_init_main_loop(void)
3739 {
3740 int ret;
3741
3742 ret = qemu_event_init();
3743 if (ret)
3744 return ret;
3745
3746 qemu_cond_init(&qemu_pause_cond);
3747 qemu_mutex_init(&qemu_fair_mutex);
3748 qemu_mutex_init(&qemu_global_mutex);
3749 qemu_mutex_lock(&qemu_global_mutex);
3750
3751 unblock_io_signals();
3752 qemu_thread_self(&io_thread);
3753
3754 return 0;
3755 }
3756
3757 static void qemu_wait_io_event(CPUState *env)
3758 {
3759 while (!tcg_has_work())
3760 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3761
3762 qemu_mutex_unlock(&qemu_global_mutex);
3763
3764 /*
3765 * Users of qemu_global_mutex can be starved, having no chance
3766 * to acquire it since this path will get to it first.
3767 * So use another lock to provide fairness.
3768 */
3769 qemu_mutex_lock(&qemu_fair_mutex);
3770 qemu_mutex_unlock(&qemu_fair_mutex);
3771
3772 qemu_mutex_lock(&qemu_global_mutex);
3773 if (env->stop) {
3774 env->stop = 0;
3775 env->stopped = 1;
3776 qemu_cond_signal(&qemu_pause_cond);
3777 }
3778 }
3779
3780 static int qemu_cpu_exec(CPUState *env);
3781
3782 static void *kvm_cpu_thread_fn(void *arg)
3783 {
3784 CPUState *env = arg;
3785
3786 block_io_signals();
3787 qemu_thread_self(env->thread);
3788
3789 /* signal CPU creation */
3790 qemu_mutex_lock(&qemu_global_mutex);
3791 env->created = 1;
3792 qemu_cond_signal(&qemu_cpu_cond);
3793
3794 /* and wait for machine initialization */
3795 while (!qemu_system_ready)
3796 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3797
3798 while (1) {
3799 if (cpu_can_run(env))
3800 qemu_cpu_exec(env);
3801 qemu_wait_io_event(env);
3802 }
3803
3804 return NULL;
3805 }
3806
3807 static void tcg_cpu_exec(void);
3808
3809 static void *tcg_cpu_thread_fn(void *arg)
3810 {
3811 CPUState *env = arg;
3812
3813 block_io_signals();
3814 qemu_thread_self(env->thread);
3815
3816 /* signal CPU creation */
3817 qemu_mutex_lock(&qemu_global_mutex);
3818 for (env = first_cpu; env != NULL; env = env->next_cpu)
3819 env->created = 1;
3820 qemu_cond_signal(&qemu_cpu_cond);
3821
3822 /* and wait for machine initialization */
3823 while (!qemu_system_ready)
3824 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3825
3826 while (1) {
3827 tcg_cpu_exec();
3828 qemu_wait_io_event(cur_cpu);
3829 }
3830
3831 return NULL;
3832 }
3833
3834 void qemu_cpu_kick(void *_env)
3835 {
3836 CPUState *env = _env;
3837 qemu_cond_broadcast(env->halt_cond);
3838 if (kvm_enabled())
3839 qemu_thread_signal(env->thread, SIGUSR1);
3840 }
3841
3842 int qemu_cpu_self(void *env)
3843 {
3844 return (cpu_single_env != NULL);
3845 }
3846
3847 static void cpu_signal(int sig)
3848 {
3849 if (cpu_single_env)
3850 cpu_exit(cpu_single_env);
3851 }
3852
3853 static void block_io_signals(void)
3854 {
3855 sigset_t set;
3856 struct sigaction sigact;
3857
3858 sigemptyset(&set);
3859 sigaddset(&set, SIGUSR2);
3860 sigaddset(&set, SIGIO);
3861 sigaddset(&set, SIGALRM);
3862 pthread_sigmask(SIG_BLOCK, &set, NULL);
3863
3864 sigemptyset(&set);
3865 sigaddset(&set, SIGUSR1);
3866 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3867
3868 memset(&sigact, 0, sizeof(sigact));
3869 sigact.sa_handler = cpu_signal;
3870 sigaction(SIGUSR1, &sigact, NULL);
3871 }
3872
3873 static void unblock_io_signals(void)
3874 {
3875 sigset_t set;
3876
3877 sigemptyset(&set);
3878 sigaddset(&set, SIGUSR2);
3879 sigaddset(&set, SIGIO);
3880 sigaddset(&set, SIGALRM);
3881 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3882
3883 sigemptyset(&set);
3884 sigaddset(&set, SIGUSR1);
3885 pthread_sigmask(SIG_BLOCK, &set, NULL);
3886 }
3887
3888 static void qemu_signal_lock(unsigned int msecs)
3889 {
3890 qemu_mutex_lock(&qemu_fair_mutex);
3891
3892 while (qemu_mutex_trylock(&qemu_global_mutex)) {
3893 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
3894 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
3895 break;
3896 }
3897 qemu_mutex_unlock(&qemu_fair_mutex);
3898 }
3899
3900 static void qemu_mutex_lock_iothread(void)
3901 {
3902 if (kvm_enabled()) {
3903 qemu_mutex_lock(&qemu_fair_mutex);
3904 qemu_mutex_lock(&qemu_global_mutex);
3905 qemu_mutex_unlock(&qemu_fair_mutex);
3906 } else
3907 qemu_signal_lock(100);
3908 }
3909
3910 static void qemu_mutex_unlock_iothread(void)
3911 {
3912 qemu_mutex_unlock(&qemu_global_mutex);
3913 }
3914
3915 static int all_vcpus_paused(void)
3916 {
3917 CPUState *penv = first_cpu;
3918
3919 while (penv) {
3920 if (!penv->stopped)
3921 return 0;
3922 penv = (CPUState *)penv->next_cpu;
3923 }
3924
3925 return 1;
3926 }
3927
3928 static void pause_all_vcpus(void)
3929 {
3930 CPUState *penv = first_cpu;
3931
3932 while (penv) {
3933 penv->stop = 1;
3934 qemu_thread_signal(penv->thread, SIGUSR1);
3935 qemu_cpu_kick(penv);
3936 penv = (CPUState *)penv->next_cpu;
3937 }
3938
3939 while (!all_vcpus_paused()) {
3940 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
3941 penv = first_cpu;
3942 while (penv) {
3943 qemu_thread_signal(penv->thread, SIGUSR1);
3944 penv = (CPUState *)penv->next_cpu;
3945 }
3946 }
3947 }
3948
3949 static void resume_all_vcpus(void)
3950 {
3951 CPUState *penv = first_cpu;
3952
3953 while (penv) {
3954 penv->stop = 0;
3955 penv->stopped = 0;
3956 qemu_thread_signal(penv->thread, SIGUSR1);
3957 qemu_cpu_kick(penv);
3958 penv = (CPUState *)penv->next_cpu;
3959 }
3960 }
3961
3962 static void tcg_init_vcpu(void *_env)
3963 {
3964 CPUState *env = _env;
3965 /* share a single thread for all cpus with TCG */
3966 if (!tcg_cpu_thread) {
3967 env->thread = qemu_mallocz(sizeof(QemuThread));
3968 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3969 qemu_cond_init(env->halt_cond);
3970 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
3971 while (env->created == 0)
3972 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3973 tcg_cpu_thread = env->thread;
3974 tcg_halt_cond = env->halt_cond;
3975 } else {
3976 env->thread = tcg_cpu_thread;
3977 env->halt_cond = tcg_halt_cond;
3978 }
3979 }
3980
3981 static void kvm_start_vcpu(CPUState *env)
3982 {
3983 kvm_init_vcpu(env);
3984 env->thread = qemu_mallocz(sizeof(QemuThread));
3985 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3986 qemu_cond_init(env->halt_cond);
3987 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
3988 while (env->created == 0)
3989 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3990 }
3991
3992 void qemu_init_vcpu(void *_env)
3993 {
3994 CPUState *env = _env;
3995
3996 if (kvm_enabled())
3997 kvm_start_vcpu(env);
3998 else
3999 tcg_init_vcpu(env);
4000 }
4001
4002 void qemu_notify_event(void)
4003 {
4004 qemu_event_increment();
4005 }
4006
4007 void vm_stop(int reason)
4008 {
4009 QemuThread me;
4010 qemu_thread_self(&me);
4011
4012 if (!qemu_thread_equal(&me, &io_thread)) {
4013 qemu_system_vmstop_request(reason);
4014 /*
4015 * FIXME: should not return to device code in case
4016 * vm_stop() has been requested.
4017 */
4018 if (cpu_single_env) {
4019 cpu_exit(cpu_single_env);
4020 cpu_single_env->stop = 1;
4021 }
4022 return;
4023 }
4024 do_vm_stop(reason);
4025 }
4026
4027 #endif
4028
4029
4030 #ifdef _WIN32
4031 static void host_main_loop_wait(int *timeout)
4032 {
4033 int ret, ret2, i;
4034 PollingEntry *pe;
4035
4036
4037 /* XXX: need to suppress polling by better using win32 events */
4038 ret = 0;
4039 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
4040 ret |= pe->func(pe->opaque);
4041 }
4042 if (ret == 0) {
4043 int err;
4044 WaitObjects *w = &wait_objects;
4045
4046 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
4047 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
4048 if (w->func[ret - WAIT_OBJECT_0])
4049 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
4050
4051 /* Check for additional signaled events */
4052 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
4053
4054 /* Check if event is signaled */
4055 ret2 = WaitForSingleObject(w->events[i], 0);
4056 if(ret2 == WAIT_OBJECT_0) {
4057 if (w->func[i])
4058 w->func[i](w->opaque[i]);
4059 } else if (ret2 == WAIT_TIMEOUT) {
4060 } else {
4061 err = GetLastError();
4062 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
4063 }
4064 }
4065 } else if (ret == WAIT_TIMEOUT) {
4066 } else {
4067 err = GetLastError();
4068 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
4069 }
4070 }
4071
4072 *timeout = 0;
4073 }
4074 #else
4075 static void host_main_loop_wait(int *timeout)
4076 {
4077 }
4078 #endif
4079
4080 void main_loop_wait(int timeout)
4081 {
4082 IOHandlerRecord *ioh;
4083 fd_set rfds, wfds, xfds;
4084 int ret, nfds;
4085 struct timeval tv;
4086
4087 qemu_bh_update_timeout(&timeout);
4088
4089 host_main_loop_wait(&timeout);
4090
4091 /* poll any events */
4092 /* XXX: separate device handlers from system ones */
4093 nfds = -1;
4094 FD_ZERO(&rfds);
4095 FD_ZERO(&wfds);
4096 FD_ZERO(&xfds);
4097 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4098 if (ioh->deleted)
4099 continue;
4100 if (ioh->fd_read &&
4101 (!ioh->fd_read_poll ||
4102 ioh->fd_read_poll(ioh->opaque) != 0)) {
4103 FD_SET(ioh->fd, &rfds);
4104 if (ioh->fd > nfds)
4105 nfds = ioh->fd;
4106 }
4107 if (ioh->fd_write) {
4108 FD_SET(ioh->fd, &wfds);
4109 if (ioh->fd > nfds)
4110 nfds = ioh->fd;
4111 }
4112 }
4113
4114 tv.tv_sec = timeout / 1000;
4115 tv.tv_usec = (timeout % 1000) * 1000;
4116
4117 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4118
4119 qemu_mutex_unlock_iothread();
4120 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4121 qemu_mutex_lock_iothread();
4122 if (ret > 0) {
4123 IOHandlerRecord **pioh;
4124
4125 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4126 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4127 ioh->fd_read(ioh->opaque);
4128 }
4129 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4130 ioh->fd_write(ioh->opaque);
4131 }
4132 }
4133
4134 /* remove deleted IO handlers */
4135 pioh = &first_io_handler;
4136 while (*pioh) {
4137 ioh = *pioh;
4138 if (ioh->deleted) {
4139 *pioh = ioh->next;
4140 qemu_free(ioh);
4141 } else
4142 pioh = &ioh->next;
4143 }
4144 }
4145
4146 slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
4147
4148 /* rearm timer, if not periodic */
4149 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4150 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4151 qemu_rearm_alarm_timer(alarm_timer);
4152 }
4153
4154 /* vm time timers */
4155 if (vm_running) {
4156 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4157 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4158 qemu_get_clock(vm_clock));
4159 }
4160
4161 /* real time timers */
4162 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4163 qemu_get_clock(rt_clock));
4164
4165 /* Check bottom-halves last in case any of the earlier events triggered
4166 them. */
4167 qemu_bh_poll();
4168
4169 }
4170
4171 static int qemu_cpu_exec(CPUState *env)
4172 {
4173 int ret;
4174 #ifdef CONFIG_PROFILER
4175 int64_t ti;
4176 #endif
4177
4178 #ifdef CONFIG_PROFILER
4179 ti = profile_getclock();
4180 #endif
4181 if (use_icount) {
4182 int64_t count;
4183 int decr;
4184 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4185 env->icount_decr.u16.low = 0;
4186 env->icount_extra = 0;
4187 count = qemu_next_deadline();
4188 count = (count + (1 << icount_time_shift) - 1)
4189 >> icount_time_shift;
4190 qemu_icount += count;
4191 decr = (count > 0xffff) ? 0xffff : count;
4192 count -= decr;
4193 env->icount_decr.u16.low = decr;
4194 env->icount_extra = count;
4195 }
4196 ret = cpu_exec(env);
4197 #ifdef CONFIG_PROFILER
4198 qemu_time += profile_getclock() - ti;
4199 #endif
4200 if (use_icount) {
4201 /* Fold pending instructions back into the
4202 instruction counter, and clear the interrupt flag. */
4203 qemu_icount -= (env->icount_decr.u16.low
4204 + env->icount_extra);
4205 env->icount_decr.u32 = 0;
4206 env->icount_extra = 0;
4207 }
4208 return ret;
4209 }
4210
4211 static void tcg_cpu_exec(void)
4212 {
4213 int ret = 0;
4214
4215 if (next_cpu == NULL)
4216 next_cpu = first_cpu;
4217 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4218 CPUState *env = cur_cpu = next_cpu;
4219
4220 if (!vm_running)
4221 break;
4222 if (timer_alarm_pending) {
4223 timer_alarm_pending = 0;
4224 break;
4225 }
4226 if (cpu_can_run(env))
4227 ret = qemu_cpu_exec(env);
4228 if (ret == EXCP_DEBUG) {
4229 gdb_set_stop_cpu(env);
4230 debug_requested = 1;
4231 break;
4232 }
4233 }
4234 }
4235
4236 static int cpu_has_work(CPUState *env)
4237 {
4238 if (env->stop)
4239 return 1;
4240 if (env->stopped)
4241 return 0;
4242 if (!env->halted)
4243 return 1;
4244 if (qemu_cpu_has_work(env))
4245 return 1;
4246 return 0;
4247 }
4248
4249 static int tcg_has_work(void)
4250 {
4251 CPUState *env;
4252
4253 for (env = first_cpu; env != NULL; env = env->next_cpu)
4254 if (cpu_has_work(env))
4255 return 1;
4256 return 0;
4257 }
4258
4259 static int qemu_calculate_timeout(void)
4260 {
4261 #ifndef CONFIG_IOTHREAD
4262 int timeout;
4263
4264 if (!vm_running)
4265 timeout = 5000;
4266 else if (tcg_has_work())
4267 timeout = 0;
4268 else if (!use_icount)
4269 timeout = 5000;
4270 else {
4271 /* XXX: use timeout computed from timers */
4272 int64_t add;
4273 int64_t delta;
4274 /* Advance virtual time to the next event. */
4275 if (use_icount == 1) {
4276 /* When not using an adaptive execution frequency
4277 we tend to get badly out of sync with real time,
4278 so just delay for a reasonable amount of time. */
4279 delta = 0;
4280 } else {
4281 delta = cpu_get_icount() - cpu_get_clock();
4282 }
4283 if (delta > 0) {
4284 /* If virtual time is ahead of real time then just
4285 wait for IO. */
4286 timeout = (delta / 1000000) + 1;
4287 } else {
4288 /* Wait for either IO to occur or the next
4289 timer event. */
4290 add = qemu_next_deadline();
4291 /* We advance the timer before checking for IO.
4292 Limit the amount we advance so that early IO
4293 activity won't get the guest too far ahead. */
4294 if (add > 10000000)
4295 add = 10000000;
4296 delta += add;
4297 add = (add + (1 << icount_time_shift) - 1)
4298 >> icount_time_shift;
4299 qemu_icount += add;
4300 timeout = delta / 1000000;
4301 if (timeout < 0)
4302 timeout = 0;
4303 }
4304 }
4305
4306 return timeout;
4307 #else /* CONFIG_IOTHREAD */
4308 return 1000;
4309 #endif
4310 }
4311
4312 static int vm_can_run(void)
4313 {
4314 if (powerdown_requested)
4315 return 0;
4316 if (reset_requested)
4317 return 0;
4318 if (shutdown_requested)
4319 return 0;
4320 if (debug_requested)
4321 return 0;
4322 return 1;
4323 }
4324
4325 static void main_loop(void)
4326 {
4327 int r;
4328
4329 #ifdef CONFIG_IOTHREAD
4330 qemu_system_ready = 1;
4331 qemu_cond_broadcast(&qemu_system_cond);
4332 #endif
4333
4334 for (;;) {
4335 do {
4336 #ifdef CONFIG_PROFILER
4337 int64_t ti;
4338 #endif
4339 #ifndef CONFIG_IOTHREAD
4340 tcg_cpu_exec();
4341 #endif
4342 #ifdef CONFIG_PROFILER
4343 ti = profile_getclock();
4344 #endif
4345 main_loop_wait(qemu_calculate_timeout());
4346 #ifdef CONFIG_PROFILER
4347 dev_time += profile_getclock() - ti;
4348 #endif
4349 } while (vm_can_run());
4350
4351 if (qemu_debug_requested())
4352 vm_stop(EXCP_DEBUG);
4353 if (qemu_shutdown_requested()) {
4354 if (no_shutdown) {
4355 vm_stop(0);
4356 no_shutdown = 0;
4357 } else
4358 break;
4359 }
4360 if (qemu_reset_requested()) {
4361 pause_all_vcpus();
4362 qemu_system_reset();
4363 resume_all_vcpus();
4364 }
4365 if (qemu_powerdown_requested())
4366 qemu_system_powerdown();
4367 if ((r = qemu_vmstop_requested()))
4368 vm_stop(r);
4369 }
4370 pause_all_vcpus();
4371 }
4372
4373 static void version(void)
4374 {
4375 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4376 }
4377
4378 static void help(int exitcode)
4379 {
4380 version();
4381 printf("usage: %s [options] [disk_image]\n"
4382 "\n"
4383 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4384 "\n"
4385 #define DEF(option, opt_arg, opt_enum, opt_help) \
4386 opt_help
4387 #define DEFHEADING(text) stringify(text) "\n"
4388 #include "qemu-options.h"
4389 #undef DEF
4390 #undef DEFHEADING
4391 #undef GEN_DOCS
4392 "\n"
4393 "During emulation, the following keys are useful:\n"
4394 "ctrl-alt-f toggle full screen\n"
4395 "ctrl-alt-n switch to virtual console 'n'\n"
4396 "ctrl-alt toggle mouse and keyboard grab\n"
4397 "\n"
4398 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4399 ,
4400 "qemu",
4401 DEFAULT_RAM_SIZE,
4402 #ifndef _WIN32
4403 DEFAULT_NETWORK_SCRIPT,
4404 DEFAULT_NETWORK_DOWN_SCRIPT,
4405 #endif
4406 DEFAULT_GDBSTUB_PORT,
4407 "/tmp/qemu.log");
4408 exit(exitcode);
4409 }
4410
4411 #define HAS_ARG 0x0001
4412
4413 enum {
4414 #define DEF(option, opt_arg, opt_enum, opt_help) \
4415 opt_enum,
4416 #define DEFHEADING(text)
4417 #include "qemu-options.h"
4418 #undef DEF
4419 #undef DEFHEADING
4420 #undef GEN_DOCS
4421 };
4422
4423 typedef struct QEMUOption {
4424 const char *name;
4425 int flags;
4426 int index;
4427 } QEMUOption;
4428
4429 static const QEMUOption qemu_options[] = {
4430 { "h", 0, QEMU_OPTION_h },
4431 #define DEF(option, opt_arg, opt_enum, opt_help) \
4432 { option, opt_arg, opt_enum },
4433 #define DEFHEADING(text)
4434 #include "qemu-options.h"
4435 #undef DEF
4436 #undef DEFHEADING
4437 #undef GEN_DOCS
4438 { NULL },
4439 };
4440
4441 #ifdef HAS_AUDIO
4442 struct soundhw soundhw[] = {
4443 #ifdef HAS_AUDIO_CHOICE
4444 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4445 {
4446 "pcspk",
4447 "PC speaker",
4448 0,
4449 1,
4450 { .init_isa = pcspk_audio_init }
4451 },
4452 #endif
4453
4454 #ifdef CONFIG_SB16
4455 {
4456 "sb16",
4457 "Creative Sound Blaster 16",
4458 0,
4459 1,
4460 { .init_isa = SB16_init }
4461 },
4462 #endif
4463
4464 #ifdef CONFIG_CS4231A
4465 {
4466 "cs4231a",
4467 "CS4231A",
4468 0,
4469 1,
4470 { .init_isa = cs4231a_init }
4471 },
4472 #endif
4473
4474 #ifdef CONFIG_ADLIB
4475 {
4476 "adlib",
4477 #ifdef HAS_YMF262
4478 "Yamaha YMF262 (OPL3)",
4479 #else
4480 "Yamaha YM3812 (OPL2)",
4481 #endif
4482 0,
4483 1,
4484 { .init_isa = Adlib_init }
4485 },
4486 #endif
4487
4488 #ifdef CONFIG_GUS
4489 {
4490 "gus",
4491 "Gravis Ultrasound GF1",
4492 0,
4493 1,
4494 { .init_isa = GUS_init }
4495 },
4496 #endif
4497
4498 #ifdef CONFIG_AC97
4499 {
4500 "ac97",
4501 "Intel 82801AA AC97 Audio",
4502 0,
4503 0,
4504 { .init_pci = ac97_init }
4505 },
4506 #endif
4507
4508 #ifdef CONFIG_ES1370
4509 {
4510 "es1370",
4511 "ENSONIQ AudioPCI ES1370",
4512 0,
4513 0,
4514 { .init_pci = es1370_init }
4515 },
4516 #endif
4517
4518 #endif /* HAS_AUDIO_CHOICE */
4519
4520 { NULL, NULL, 0, 0, { NULL } }
4521 };
4522
4523 static void select_soundhw (const char *optarg)
4524 {
4525 struct soundhw *c;
4526
4527 if (*optarg == '?') {
4528 show_valid_cards:
4529
4530 printf ("Valid sound card names (comma separated):\n");
4531 for (c = soundhw; c->name; ++c) {
4532 printf ("%-11s %s\n", c->name, c->descr);
4533 }
4534 printf ("\n-soundhw all will enable all of the above\n");
4535 exit (*optarg != '?');
4536 }
4537 else {
4538 size_t l;
4539 const char *p;
4540 char *e;
4541 int bad_card = 0;
4542
4543 if (!strcmp (optarg, "all")) {
4544 for (c = soundhw; c->name; ++c) {
4545 c->enabled = 1;
4546 }
4547 return;
4548 }
4549
4550 p = optarg;
4551 while (*p) {
4552 e = strchr (p, ',');
4553 l = !e ? strlen (p) : (size_t) (e - p);
4554
4555 for (c = soundhw; c->name; ++c) {
4556 if (!strncmp (c->name, p, l)) {
4557 c->enabled = 1;
4558 break;
4559 }
4560 }
4561
4562 if (!c->name) {
4563 if (l > 80) {
4564 fprintf (stderr,
4565 "Unknown sound card name (too big to show)\n");
4566 }
4567 else {
4568 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4569 (int) l, p);
4570 }
4571 bad_card = 1;
4572 }
4573 p += l + (e != NULL);
4574 }
4575
4576 if (bad_card)
4577 goto show_valid_cards;
4578 }
4579 }
4580 #endif
4581
4582 static void select_vgahw (const char *p)
4583 {
4584 const char *opts;
4585
4586 cirrus_vga_enabled = 0;
4587 std_vga_enabled = 0;
4588 vmsvga_enabled = 0;
4589 xenfb_enabled = 0;
4590 if (strstart(p, "std", &opts)) {
4591 std_vga_enabled = 1;
4592 } else if (strstart(p, "cirrus", &opts)) {
4593 cirrus_vga_enabled = 1;
4594 } else if (strstart(p, "vmware", &opts)) {
4595 vmsvga_enabled = 1;
4596 } else if (strstart(p, "xenfb", &opts)) {
4597 xenfb_enabled = 1;
4598 } else if (!strstart(p, "none", &opts)) {
4599 invalid_vga:
4600 fprintf(stderr, "Unknown vga type: %s\n", p);
4601 exit(1);
4602 }
4603 while (*opts) {
4604 const char *nextopt;
4605
4606 if (strstart(opts, ",retrace=", &nextopt)) {
4607 opts = nextopt;
4608 if (strstart(opts, "dumb", &nextopt))
4609 vga_retrace_method = VGA_RETRACE_DUMB;
4610 else if (strstart(opts, "precise", &nextopt))
4611 vga_retrace_method = VGA_RETRACE_PRECISE;
4612 else goto invalid_vga;
4613 } else goto invalid_vga;
4614 opts = nextopt;
4615 }
4616 }
4617
4618 #ifdef TARGET_I386
4619 static int balloon_parse(const char *arg)
4620 {
4621 char buf[128];
4622 const char *p;
4623
4624 if (!strcmp(arg, "none")) {
4625 virtio_balloon = 0;
4626 } else if (!strncmp(arg, "virtio", 6)) {
4627 virtio_balloon = 1;
4628 if (arg[6] == ',') {
4629 p = arg + 7;
4630 if (get_param_value(buf, sizeof(buf), "addr", p)) {
4631 virtio_balloon_devaddr = strdup(buf);
4632 }
4633 }
4634 } else {
4635 return -1;
4636 }
4637 return 0;
4638 }
4639 #endif
4640
4641 #ifdef _WIN32
4642 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4643 {
4644 exit(STATUS_CONTROL_C_EXIT);
4645 return TRUE;
4646 }
4647 #endif
4648
4649 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4650 {
4651 int ret;
4652
4653 if(strlen(str) != 36)
4654 return -1;
4655
4656 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4657 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4658 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4659
4660 if(ret != 16)
4661 return -1;
4662
4663 #ifdef TARGET_I386
4664 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4665 #endif
4666
4667 return 0;
4668 }
4669
4670 #define MAX_NET_CLIENTS 32
4671
4672 #ifndef _WIN32
4673
4674 static void termsig_handler(int signal)
4675 {
4676 qemu_system_shutdown_request();
4677 }
4678
4679 static void sigchld_handler(int signal)
4680 {
4681 waitpid(-1, NULL, WNOHANG);
4682 }
4683
4684 static void sighandler_setup(void)
4685 {
4686 struct sigaction act;
4687
4688 memset(&act, 0, sizeof(act));
4689 act.sa_handler = termsig_handler;
4690 sigaction(SIGINT, &act, NULL);
4691 sigaction(SIGHUP, &act, NULL);
4692 sigaction(SIGTERM, &act, NULL);
4693
4694 act.sa_handler = sigchld_handler;
4695 act.sa_flags = SA_NOCLDSTOP;
4696 sigaction(SIGCHLD, &act, NULL);
4697 }
4698
4699 #endif
4700
4701 #ifdef _WIN32
4702 /* Look for support files in the same directory as the executable. */
4703 static char *find_datadir(const char *argv0)
4704 {
4705 char *p;
4706 char buf[MAX_PATH];
4707 DWORD len;
4708
4709 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4710 if (len == 0) {
4711 return NULL;
4712 }
4713
4714 buf[len] = 0;
4715 p = buf + len - 1;
4716 while (p != buf && *p != '\\')
4717 p--;
4718 *p = 0;
4719 if (access(buf, R_OK) == 0) {
4720 return qemu_strdup(buf);
4721 }
4722 return NULL;
4723 }
4724 #else /* !_WIN32 */
4725
4726 /* Find a likely location for support files using the location of the binary.
4727 For installed binaries this will be "$bindir/../share/qemu". When
4728 running from the build tree this will be "$bindir/../pc-bios". */
4729 #define SHARE_SUFFIX "/share/qemu"
4730 #define BUILD_SUFFIX "/pc-bios"
4731 static char *find_datadir(const char *argv0)
4732 {
4733 char *dir;
4734 char *p = NULL;
4735 char *res;
4736 #ifdef PATH_MAX
4737 char buf[PATH_MAX];
4738 #endif
4739 size_t max_len;
4740
4741 #if defined(__linux__)
4742 {
4743 int len;
4744 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4745 if (len > 0) {
4746 buf[len] = 0;
4747 p = buf;
4748 }
4749 }
4750 #elif defined(__FreeBSD__)
4751 {
4752 int len;
4753 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4754 if (len > 0) {
4755 buf[len] = 0;
4756 p = buf;
4757 }
4758 }
4759 #endif
4760 /* If we don't have any way of figuring out the actual executable
4761 location then try argv[0]. */
4762 if (!p) {
4763 #ifdef PATH_MAX
4764 p = buf;
4765 #endif
4766 p = realpath(argv0, p);
4767 if (!p) {
4768 return NULL;
4769 }
4770 }
4771 dir = dirname(p);
4772 dir = dirname(dir);
4773
4774 max_len = strlen(dir) +
4775 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4776 res = qemu_mallocz(max_len);
4777 snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4778 if (access(res, R_OK)) {
4779 snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4780 if (access(res, R_OK)) {
4781 qemu_free(res);
4782 res = NULL;
4783 }
4784 }
4785 #ifndef PATH_MAX
4786 free(p);
4787 #endif
4788 return res;
4789 }
4790 #undef SHARE_SUFFIX
4791 #undef BUILD_SUFFIX
4792 #endif
4793
4794 char *qemu_find_file(int type, const char *name)
4795 {
4796 int len;
4797 const char *subdir;
4798 char *buf;
4799
4800 /* If name contains path separators then try it as a straight path. */
4801 if ((strchr(name, '/') || strchr(name, '\\'))
4802 && access(name, R_OK) == 0) {
4803 return strdup(name);
4804 }
4805 switch (type) {
4806 case QEMU_FILE_TYPE_BIOS:
4807 subdir = "";
4808 break;
4809 case QEMU_FILE_TYPE_KEYMAP:
4810 subdir = "keymaps/";
4811 break;
4812 default:
4813 abort();
4814 }
4815 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4816 buf = qemu_mallocz(len);
4817 snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4818 if (access(buf, R_OK)) {
4819 qemu_free(buf);
4820 return NULL;
4821 }
4822 return buf;
4823 }
4824
4825 int main(int argc, char **argv, char **envp)
4826 {
4827 const char *gdbstub_dev = NULL;
4828 uint32_t boot_devices_bitmap = 0;
4829 int i;
4830 int snapshot, linux_boot, net_boot;
4831 const char *initrd_filename;
4832 const char *kernel_filename, *kernel_cmdline;
4833 char boot_devices[33] = "cad"; /* default to HD->floppy->CD-ROM */
4834 DisplayState *ds;
4835 DisplayChangeListener *dcl;
4836 int cyls, heads, secs, translation;
4837 const char *net_clients[MAX_NET_CLIENTS];
4838 int nb_net_clients;
4839 const char *bt_opts[MAX_BT_CMDLINE];
4840 int nb_bt_opts;
4841 int hda_index;
4842 int optind;
4843 const char *r, *optarg;
4844 CharDriverState *monitor_hd = NULL;
4845 const char *monitor_device;
4846 const char *serial_devices[MAX_SERIAL_PORTS];
4847 int serial_device_index;
4848 const char *parallel_devices[MAX_PARALLEL_PORTS];
4849 int parallel_device_index;
4850 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4851 int virtio_console_index;
4852 const char *loadvm = NULL;
4853 QEMUMachine *machine;
4854 const char *cpu_model;
4855 const char *usb_devices[MAX_USB_CMDLINE];
4856 int usb_devices_index;
4857 #ifndef _WIN32
4858 int fds[2];
4859 #endif
4860 int tb_size;
4861 const char *pid_file = NULL;
4862 const char *incoming = NULL;
4863 #ifndef _WIN32
4864 int fd = 0;
4865 struct passwd *pwd = NULL;
4866 const char *chroot_dir = NULL;
4867 const char *run_as = NULL;
4868 #endif
4869 CPUState *env;
4870 int show_vnc_port = 0;
4871
4872 qemu_cache_utils_init(envp);
4873
4874 LIST_INIT (&vm_change_state_head);
4875 #ifndef _WIN32
4876 {
4877 struct sigaction act;
4878 sigfillset(&act.sa_mask);
4879 act.sa_flags = 0;
4880 act.sa_handler = SIG_IGN;
4881 sigaction(SIGPIPE, &act, NULL);
4882 }
4883 #else
4884 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4885 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4886 QEMU to run on a single CPU */
4887 {
4888 HANDLE h;
4889 DWORD mask, smask;
4890 int i;
4891 h = GetCurrentProcess();
4892 if (GetProcessAffinityMask(h, &mask, &smask)) {
4893 for(i = 0; i < 32; i++) {
4894 if (mask & (1 << i))
4895 break;
4896 }
4897 if (i != 32) {
4898 mask = 1 << i;
4899 SetProcessAffinityMask(h, mask);
4900 }
4901 }
4902 }
4903 #endif
4904
4905 module_call_init(MODULE_INIT_MACHINE);
4906 machine = find_default_machine();
4907 cpu_model = NULL;
4908 initrd_filename = NULL;
4909 ram_size = 0;
4910 snapshot = 0;
4911 kernel_filename = NULL;
4912 kernel_cmdline = "";
4913 cyls = heads = secs = 0;
4914 translation = BIOS_ATA_TRANSLATION_AUTO;
4915 monitor_device = "vc:80Cx24C";
4916
4917 serial_devices[0] = "vc:80Cx24C";
4918 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4919 serial_devices[i] = NULL;
4920 serial_device_index = 0;
4921
4922 parallel_devices[0] = "vc:80Cx24C";
4923 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4924 parallel_devices[i] = NULL;
4925 parallel_device_index = 0;
4926
4927 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4928 virtio_consoles[i] = NULL;
4929 virtio_console_index = 0;
4930
4931 for (i = 0; i < MAX_NODES; i++) {
4932 node_mem[i] = 0;
4933 node_cpumask[i] = 0;
4934 }
4935
4936 usb_devices_index = 0;
4937
4938 nb_net_clients = 0;
4939 nb_bt_opts = 0;
4940 nb_drives = 0;
4941 nb_drives_opt = 0;
4942 nb_numa_nodes = 0;
4943 hda_index = -1;
4944
4945 nb_nics = 0;
4946
4947 tb_size = 0;
4948 autostart= 1;
4949
4950 register_watchdogs();
4951
4952 optind = 1;
4953 for(;;) {
4954 if (optind >= argc)
4955 break;
4956 r = argv[optind];
4957 if (r[0] != '-') {
4958 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4959 } else {
4960 const QEMUOption *popt;
4961
4962 optind++;
4963 /* Treat --foo the same as -foo. */
4964 if (r[1] == '-')
4965 r++;
4966 popt = qemu_options;
4967 for(;;) {
4968 if (!popt->name) {
4969 fprintf(stderr, "%s: invalid option -- '%s'\n",
4970 argv[0], r);
4971 exit(1);
4972 }
4973 if (!strcmp(popt->name, r + 1))
4974 break;
4975 popt++;
4976 }
4977 if (popt->flags & HAS_ARG) {
4978 if (optind >= argc) {
4979 fprintf(stderr, "%s: option '%s' requires an argument\n",
4980 argv[0], r);
4981 exit(1);
4982 }
4983 optarg = argv[optind++];
4984 } else {
4985 optarg = NULL;
4986 }
4987
4988 switch(popt->index) {
4989 case QEMU_OPTION_M:
4990 machine = find_machine(optarg);
4991 if (!machine) {
4992 QEMUMachine *m;
4993 printf("Supported machines are:\n");
4994 for(m = first_machine; m != NULL; m = m->next) {
4995 printf("%-10s %s%s\n",
4996 m->name, m->desc,
4997 m->is_default ? " (default)" : "");
4998 }
4999 exit(*optarg != '?');
5000 }
5001 break;
5002 case QEMU_OPTION_cpu:
5003 /* hw initialization will check this */
5004 if (*optarg == '?') {
5005 /* XXX: implement xxx_cpu_list for targets that still miss it */
5006 #if defined(cpu_list)
5007 cpu_list(stdout, &fprintf);
5008 #endif
5009 exit(0);
5010 } else {
5011 cpu_model = optarg;
5012 }
5013 break;
5014 case QEMU_OPTION_initrd:
5015 initrd_filename = optarg;
5016 break;
5017 case QEMU_OPTION_hda:
5018 if (cyls == 0)
5019 hda_index = drive_add(optarg, HD_ALIAS, 0);
5020 else
5021 hda_index = drive_add(optarg, HD_ALIAS
5022 ",cyls=%d,heads=%d,secs=%d%s",
5023 0, cyls, heads, secs,
5024 translation == BIOS_ATA_TRANSLATION_LBA ?
5025 ",trans=lba" :
5026 translation == BIOS_ATA_TRANSLATION_NONE ?
5027 ",trans=none" : "");
5028 break;
5029 case QEMU_OPTION_hdb:
5030 case QEMU_OPTION_hdc:
5031 case QEMU_OPTION_hdd:
5032 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
5033 break;
5034 case QEMU_OPTION_drive:
5035 drive_add(NULL, "%s", optarg);
5036 break;
5037 case QEMU_OPTION_mtdblock:
5038 drive_add(optarg, MTD_ALIAS);
5039 break;
5040 case QEMU_OPTION_sd:
5041 drive_add(optarg, SD_ALIAS);
5042 break;
5043 case QEMU_OPTION_pflash:
5044 drive_add(optarg, PFLASH_ALIAS);
5045 break;
5046 case QEMU_OPTION_snapshot:
5047 snapshot = 1;
5048 break;
5049 case QEMU_OPTION_hdachs:
5050 {
5051 const char *p;
5052 p = optarg;
5053 cyls = strtol(p, (char **)&p, 0);
5054 if (cyls < 1 || cyls > 16383)
5055 goto chs_fail;
5056 if (*p != ',')
5057 goto chs_fail;
5058 p++;
5059 heads = strtol(p, (char **)&p, 0);
5060 if (heads < 1 || heads > 16)
5061 goto chs_fail;
5062 if (*p != ',')
5063 goto chs_fail;
5064 p++;
5065 secs = strtol(p, (char **)&p, 0);
5066 if (secs < 1 || secs > 63)
5067 goto chs_fail;
5068 if (*p == ',') {
5069 p++;
5070 if (!strcmp(p, "none"))
5071 translation = BIOS_ATA_TRANSLATION_NONE;
5072 else if (!strcmp(p, "lba"))
5073 translation = BIOS_ATA_TRANSLATION_LBA;
5074 else if (!strcmp(p, "auto"))
5075 translation = BIOS_ATA_TRANSLATION_AUTO;
5076 else
5077 goto chs_fail;
5078 } else if (*p != '\0') {
5079 chs_fail:
5080 fprintf(stderr, "qemu: invalid physical CHS format\n");
5081 exit(1);
5082 }
5083 if (hda_index != -1)
5084 snprintf(drives_opt[hda_index].opt,
5085 sizeof(drives_opt[hda_index].opt),
5086 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
5087 0, cyls, heads, secs,
5088 translation == BIOS_ATA_TRANSLATION_LBA ?
5089 ",trans=lba" :
5090 translation == BIOS_ATA_TRANSLATION_NONE ?
5091 ",trans=none" : "");
5092 }
5093 break;
5094 case QEMU_OPTION_numa:
5095 if (nb_numa_nodes >= MAX_NODES) {
5096 fprintf(stderr, "qemu: too many NUMA nodes\n");
5097 exit(1);
5098 }
5099 numa_add(optarg);
5100 break;
5101 case QEMU_OPTION_nographic:
5102 display_type = DT_NOGRAPHIC;
5103 break;
5104 #ifdef CONFIG_CURSES
5105 case QEMU_OPTION_curses:
5106 display_type = DT_CURSES;
5107 break;
5108 #endif
5109 case QEMU_OPTION_portrait:
5110 graphic_rotate = 1;
5111 break;
5112 case QEMU_OPTION_kernel:
5113 kernel_filename = optarg;
5114 break;
5115 case QEMU_OPTION_append:
5116 kernel_cmdline = optarg;
5117 break;
5118 case QEMU_OPTION_cdrom:
5119 drive_add(optarg, CDROM_ALIAS);
5120 break;
5121 case QEMU_OPTION_boot:
5122 {
5123 static const char * const params[] = {
5124 "order", "once", NULL
5125 };
5126 char buf[sizeof(boot_devices)];
5127 char *standard_boot_devices;
5128 int legacy = 0;
5129
5130 if (!strchr(optarg, '=')) {
5131 legacy = 1;
5132 pstrcpy(buf, sizeof(buf), optarg);
5133 } else if (check_params(buf, sizeof(buf), params, optarg) < 0) {
5134 fprintf(stderr,
5135 "qemu: unknown boot parameter '%s' in '%s'\n",
5136 buf, optarg);
5137 exit(1);
5138 }
5139
5140 if (legacy ||
5141 get_param_value(buf, sizeof(buf), "order", optarg)) {
5142 boot_devices_bitmap = parse_bootdevices(buf);
5143 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5144 }
5145 if (!legacy) {
5146 if (get_param_value(buf, sizeof(buf),
5147 "once", optarg)) {
5148 boot_devices_bitmap |= parse_bootdevices(buf);
5149 standard_boot_devices = qemu_strdup(boot_devices);
5150 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5151 qemu_register_reset(restore_boot_devices,
5152 standard_boot_devices);
5153 }
5154 }
5155 }
5156 break;
5157 case QEMU_OPTION_fda:
5158 case QEMU_OPTION_fdb:
5159 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5160 break;
5161 #ifdef TARGET_I386
5162 case QEMU_OPTION_no_fd_bootchk:
5163 fd_bootchk = 0;
5164 break;
5165 #endif
5166 case QEMU_OPTION_net:
5167 if (nb_net_clients >= MAX_NET_CLIENTS) {
5168 fprintf(stderr, "qemu: too many network clients\n");
5169 exit(1);
5170 }
5171 net_clients[nb_net_clients] = optarg;
5172 nb_net_clients++;
5173 break;
5174 #ifdef CONFIG_SLIRP
5175 case QEMU_OPTION_tftp:
5176 legacy_tftp_prefix = optarg;
5177 break;
5178 case QEMU_OPTION_bootp:
5179 legacy_bootp_filename = optarg;
5180 break;
5181 #ifndef _WIN32
5182 case QEMU_OPTION_smb:
5183 net_slirp_smb(optarg);
5184 break;
5185 #endif
5186 case QEMU_OPTION_redir:
5187 net_slirp_redir(optarg);
5188 break;
5189 #endif
5190 case QEMU_OPTION_bt:
5191 if (nb_bt_opts >= MAX_BT_CMDLINE) {
5192 fprintf(stderr, "qemu: too many bluetooth options\n");
5193 exit(1);
5194 }
5195 bt_opts[nb_bt_opts++] = optarg;
5196 break;
5197 #ifdef HAS_AUDIO
5198 case QEMU_OPTION_audio_help:
5199 AUD_help ();
5200 exit (0);
5201 break;
5202 case QEMU_OPTION_soundhw:
5203 select_soundhw (optarg);
5204 break;
5205 #endif
5206 case QEMU_OPTION_h:
5207 help(0);
5208 break;
5209 case QEMU_OPTION_version:
5210 version();
5211 exit(0);
5212 break;
5213 case QEMU_OPTION_m: {
5214 uint64_t value;
5215 char *ptr;
5216
5217 value = strtoul(optarg, &ptr, 10);
5218 switch (*ptr) {
5219 case 0: case 'M': case 'm':
5220 value <<= 20;
5221 break;
5222 case 'G': case 'g':
5223 value <<= 30;
5224 break;
5225 default:
5226 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5227 exit(1);
5228 }
5229
5230 /* On 32-bit hosts, QEMU is limited by virtual address space */
5231 if (value > (2047 << 20)
5232 #ifndef CONFIG_KQEMU
5233 && HOST_LONG_BITS == 32
5234 #endif
5235 ) {
5236 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5237 exit(1);
5238 }
5239 if (value != (uint64_t)(ram_addr_t)value) {
5240 fprintf(stderr, "qemu: ram size too large\n");
5241 exit(1);
5242 }
5243 ram_size = value;
5244 break;
5245 }
5246 case QEMU_OPTION_d:
5247 {
5248 int mask;
5249 const CPULogItem *item;
5250
5251 mask = cpu_str_to_log_mask(optarg);
5252 if (!mask) {
5253 printf("Log items (comma separated):\n");
5254 for(item = cpu_log_items; item->mask != 0; item++) {
5255 printf("%-10s %s\n", item->name, item->help);
5256 }
5257 exit(1);
5258 }
5259 cpu_set_log(mask);
5260 }
5261 break;
5262 case QEMU_OPTION_s:
5263 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5264 break;
5265 case QEMU_OPTION_gdb:
5266 gdbstub_dev = optarg;
5267 break;
5268 case QEMU_OPTION_L:
5269 data_dir = optarg;
5270 break;
5271 case QEMU_OPTION_bios:
5272 bios_name = optarg;
5273 break;
5274 case QEMU_OPTION_singlestep:
5275 singlestep = 1;
5276 break;
5277 case QEMU_OPTION_S:
5278 autostart = 0;
5279 break;
5280 #ifndef _WIN32
5281 case QEMU_OPTION_k:
5282 keyboard_layout = optarg;
5283 break;
5284 #endif
5285 case QEMU_OPTION_localtime:
5286 rtc_utc = 0;
5287 break;
5288 case QEMU_OPTION_vga:
5289 select_vgahw (optarg);
5290 break;
5291 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5292 case QEMU_OPTION_g:
5293 {
5294 const char *p;
5295 int w, h, depth;
5296 p = optarg;
5297 w = strtol(p, (char **)&p, 10);
5298 if (w <= 0) {
5299 graphic_error:
5300 fprintf(stderr, "qemu: invalid resolution or depth\n");
5301 exit(1);
5302 }
5303 if (*p != 'x')
5304 goto graphic_error;
5305 p++;
5306 h = strtol(p, (char **)&p, 10);
5307 if (h <= 0)
5308 goto graphic_error;
5309 if (*p == 'x') {
5310 p++;
5311 depth = strtol(p, (char **)&p, 10);
5312 if (depth != 8 && depth != 15 && depth != 16 &&
5313 depth != 24 && depth != 32)
5314 goto graphic_error;
5315 } else if (*p == '\0') {
5316 depth = graphic_depth;
5317 } else {
5318 goto graphic_error;
5319 }
5320
5321 graphic_width = w;
5322 graphic_height = h;
5323 graphic_depth = depth;
5324 }
5325 break;
5326 #endif
5327 case QEMU_OPTION_echr:
5328 {
5329 char *r;
5330 term_escape_char = strtol(optarg, &r, 0);
5331 if (r == optarg)
5332 printf("Bad argument to echr\n");
5333 break;
5334 }
5335 case QEMU_OPTION_monitor:
5336 monitor_device = optarg;
5337 break;
5338 case QEMU_OPTION_serial:
5339 if (serial_device_index >= MAX_SERIAL_PORTS) {
5340 fprintf(stderr, "qemu: too many serial ports\n");
5341 exit(1);
5342 }
5343 serial_devices[serial_device_index] = optarg;
5344 serial_device_index++;
5345 break;
5346 case QEMU_OPTION_watchdog:
5347 i = select_watchdog(optarg);
5348 if (i > 0)
5349 exit (i == 1 ? 1 : 0);
5350 break;
5351 case QEMU_OPTION_watchdog_action:
5352 if (select_watchdog_action(optarg) == -1) {
5353 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5354 exit(1);
5355 }
5356 break;
5357 case QEMU_OPTION_virtiocon:
5358 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5359 fprintf(stderr, "qemu: too many virtio consoles\n");
5360 exit(1);
5361 }
5362 virtio_consoles[virtio_console_index] = optarg;
5363 virtio_console_index++;
5364 break;
5365 case QEMU_OPTION_parallel:
5366 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5367 fprintf(stderr, "qemu: too many parallel ports\n");
5368 exit(1);
5369 }
5370 parallel_devices[parallel_device_index] = optarg;
5371 parallel_device_index++;
5372 break;
5373 case QEMU_OPTION_loadvm:
5374 loadvm = optarg;
5375 break;
5376 case QEMU_OPTION_full_screen:
5377 full_screen = 1;
5378 break;
5379 #ifdef CONFIG_SDL
5380 case QEMU_OPTION_no_frame:
5381 no_frame = 1;
5382 break;
5383 case QEMU_OPTION_alt_grab:
5384 alt_grab = 1;
5385 break;
5386 case QEMU_OPTION_no_quit:
5387 no_quit = 1;
5388 break;
5389 case QEMU_OPTION_sdl:
5390 display_type = DT_SDL;
5391 break;
5392 #endif
5393 case QEMU_OPTION_pidfile:
5394 pid_file = optarg;
5395 break;
5396 #ifdef TARGET_I386
5397 case QEMU_OPTION_win2k_hack:
5398 win2k_install_hack = 1;
5399 break;
5400 case QEMU_OPTION_rtc_td_hack:
5401 rtc_td_hack = 1;
5402 break;
5403 case QEMU_OPTION_acpitable:
5404 if(acpi_table_add(optarg) < 0) {
5405 fprintf(stderr, "Wrong acpi table provided\n");
5406 exit(1);
5407 }
5408 break;
5409 case QEMU_OPTION_smbios:
5410 if(smbios_entry_add(optarg) < 0) {
5411 fprintf(stderr, "Wrong smbios provided\n");
5412 exit(1);
5413 }
5414 break;
5415 #endif
5416 #ifdef CONFIG_KQEMU
5417 case QEMU_OPTION_enable_kqemu:
5418 kqemu_allowed = 1;
5419 break;
5420 case QEMU_OPTION_kernel_kqemu:
5421 kqemu_allowed = 2;
5422 break;
5423 #endif
5424 #ifdef CONFIG_KVM
5425 case QEMU_OPTION_enable_kvm:
5426 kvm_allowed = 1;
5427 #ifdef CONFIG_KQEMU
5428 kqemu_allowed = 0;
5429 #endif
5430 break;
5431 #endif
5432 case QEMU_OPTION_usb:
5433 usb_enabled = 1;
5434 break;
5435 case QEMU_OPTION_usbdevice:
5436 usb_enabled = 1;
5437 if (usb_devices_index >= MAX_USB_CMDLINE) {
5438 fprintf(stderr, "Too many USB devices\n");
5439 exit(1);
5440 }
5441 usb_devices[usb_devices_index] = optarg;
5442 usb_devices_index++;
5443 break;
5444 case QEMU_OPTION_smp:
5445 smp_cpus = atoi(optarg);
5446 if (smp_cpus < 1) {
5447 fprintf(stderr, "Invalid number of CPUs\n");
5448 exit(1);
5449 }
5450 break;
5451 case QEMU_OPTION_vnc:
5452 display_type = DT_VNC;
5453 vnc_display = optarg;
5454 break;
5455 #ifdef TARGET_I386
5456 case QEMU_OPTION_no_acpi:
5457 acpi_enabled = 0;
5458 break;
5459 case QEMU_OPTION_no_hpet:
5460 no_hpet = 1;
5461 break;
5462 case QEMU_OPTION_balloon:
5463 if (balloon_parse(optarg) < 0) {
5464 fprintf(stderr, "Unknown -balloon argument %s\n", optarg);
5465 exit(1);
5466 }
5467 break;
5468 #endif
5469 case QEMU_OPTION_no_reboot:
5470 no_reboot = 1;
5471 break;
5472 case QEMU_OPTION_no_shutdown:
5473 no_shutdown = 1;
5474 break;
5475 case QEMU_OPTION_show_cursor:
5476 cursor_hide = 0;
5477 break;
5478 case QEMU_OPTION_uuid:
5479 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5480 fprintf(stderr, "Fail to parse UUID string."
5481 " Wrong format.\n");
5482 exit(1);
5483 }
5484 break;
5485 #ifndef _WIN32
5486 case QEMU_OPTION_daemonize:
5487 daemonize = 1;
5488 break;
5489 #endif
5490 case QEMU_OPTION_option_rom:
5491 if (nb_option_roms >= MAX_OPTION_ROMS) {
5492 fprintf(stderr, "Too many option ROMs\n");
5493 exit(1);
5494 }
5495 option_rom[nb_option_roms] = optarg;
5496 nb_option_roms++;
5497 break;
5498 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5499 case QEMU_OPTION_semihosting:
5500 semihosting_enabled = 1;
5501 break;
5502 #endif
5503 case QEMU_OPTION_name:
5504 qemu_name = qemu_strdup(optarg);
5505 {
5506 char *p = strchr(qemu_name, ',');
5507 if (p != NULL) {
5508 *p++ = 0;
5509 if (strncmp(p, "process=", 8)) {
5510 fprintf(stderr, "Unknown subargument %s to -name", p);
5511 exit(1);
5512 }
5513 p += 8;
5514 set_proc_name(p);
5515 }
5516 }
5517 break;
5518 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5519 case QEMU_OPTION_prom_env:
5520 if (nb_prom_envs >= MAX_PROM_ENVS) {
5521 fprintf(stderr, "Too many prom variables\n");
5522 exit(1);
5523 }
5524 prom_envs[nb_prom_envs] = optarg;
5525 nb_prom_envs++;
5526 break;
5527 #endif
5528 #ifdef TARGET_ARM
5529 case QEMU_OPTION_old_param:
5530 old_param = 1;
5531 break;
5532 #endif
5533 case QEMU_OPTION_clock:
5534 configure_alarms(optarg);
5535 break;
5536 case QEMU_OPTION_startdate:
5537 {
5538 struct tm tm;
5539 time_t rtc_start_date;
5540 if (!strcmp(optarg, "now")) {
5541 rtc_date_offset = -1;
5542 } else {
5543 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5544 &tm.tm_year,
5545 &tm.tm_mon,
5546 &tm.tm_mday,
5547 &tm.tm_hour,
5548 &tm.tm_min,
5549 &tm.tm_sec) == 6) {
5550 /* OK */
5551 } else if (sscanf(optarg, "%d-%d-%d",
5552 &tm.tm_year,
5553 &tm.tm_mon,
5554 &tm.tm_mday) == 3) {
5555 tm.tm_hour = 0;
5556 tm.tm_min = 0;
5557 tm.tm_sec = 0;
5558 } else {
5559 goto date_fail;
5560 }
5561 tm.tm_year -= 1900;
5562 tm.tm_mon--;
5563 rtc_start_date = mktimegm(&tm);
5564 if (rtc_start_date == -1) {
5565 date_fail:
5566 fprintf(stderr, "Invalid date format. Valid format are:\n"
5567 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5568 exit(1);
5569 }
5570 rtc_date_offset = time(NULL) - rtc_start_date;
5571 }
5572 }
5573 break;
5574 case QEMU_OPTION_tb_size:
5575 tb_size = strtol(optarg, NULL, 0);
5576 if (tb_size < 0)
5577 tb_size = 0;
5578 break;
5579 case QEMU_OPTION_icount:
5580 use_icount = 1;
5581 if (strcmp(optarg, "auto") == 0) {
5582 icount_time_shift = -1;
5583 } else {
5584 icount_time_shift = strtol(optarg, NULL, 0);
5585 }
5586 break;
5587 case QEMU_OPTION_incoming:
5588 incoming = optarg;
5589 break;
5590 #ifndef _WIN32
5591 case QEMU_OPTION_chroot:
5592 chroot_dir = optarg;
5593 break;
5594 case QEMU_OPTION_runas:
5595 run_as = optarg;
5596 break;
5597 #endif
5598 #ifdef CONFIG_XEN
5599 case QEMU_OPTION_xen_domid:
5600 xen_domid = atoi(optarg);
5601 break;
5602 case QEMU_OPTION_xen_create:
5603 xen_mode = XEN_CREATE;
5604 break;
5605 case QEMU_OPTION_xen_attach:
5606 xen_mode = XEN_ATTACH;
5607 break;
5608 #endif
5609 }
5610 }
5611 }
5612
5613 /* If no data_dir is specified then try to find it relative to the
5614 executable path. */
5615 if (!data_dir) {
5616 data_dir = find_datadir(argv[0]);
5617 }
5618 /* If all else fails use the install patch specified when building. */
5619 if (!data_dir) {
5620 data_dir = CONFIG_QEMU_SHAREDIR;
5621 }
5622
5623 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5624 if (kvm_allowed && kqemu_allowed) {
5625 fprintf(stderr,
5626 "You can not enable both KVM and kqemu at the same time\n");
5627 exit(1);
5628 }
5629 #endif
5630
5631 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5632 if (smp_cpus > machine->max_cpus) {
5633 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5634 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5635 machine->max_cpus);
5636 exit(1);
5637 }
5638
5639 if (display_type == DT_NOGRAPHIC) {
5640 if (serial_device_index == 0)
5641 serial_devices[0] = "stdio";
5642 if (parallel_device_index == 0)
5643 parallel_devices[0] = "null";
5644 if (strncmp(monitor_device, "vc", 2) == 0)
5645 monitor_device = "stdio";
5646 }
5647
5648 #ifndef _WIN32
5649 if (daemonize) {
5650 pid_t pid;
5651
5652 if (pipe(fds) == -1)
5653 exit(1);
5654
5655 pid = fork();
5656 if (pid > 0) {
5657 uint8_t status;
5658 ssize_t len;
5659
5660 close(fds[1]);
5661
5662 again:
5663 len = read(fds[0], &status, 1);
5664 if (len == -1 && (errno == EINTR))
5665 goto again;
5666
5667 if (len != 1)
5668 exit(1);
5669 else if (status == 1) {
5670 fprintf(stderr, "Could not acquire pidfile\n");
5671 exit(1);
5672 } else
5673 exit(0);
5674 } else if (pid < 0)
5675 exit(1);
5676
5677 setsid();
5678
5679 pid = fork();
5680 if (pid > 0)
5681 exit(0);
5682 else if (pid < 0)
5683 exit(1);
5684
5685 umask(027);
5686
5687 signal(SIGTSTP, SIG_IGN);
5688 signal(SIGTTOU, SIG_IGN);
5689 signal(SIGTTIN, SIG_IGN);
5690 }
5691
5692 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5693 if (daemonize) {
5694 uint8_t status = 1;
5695 write(fds[1], &status, 1);
5696 } else
5697 fprintf(stderr, "Could not acquire pid file\n");
5698 exit(1);
5699 }
5700 #endif
5701
5702 #ifdef CONFIG_KQEMU
5703 if (smp_cpus > 1)
5704 kqemu_allowed = 0;
5705 #endif
5706 if (qemu_init_main_loop()) {
5707 fprintf(stderr, "qemu_init_main_loop failed\n");
5708 exit(1);
5709 }
5710 linux_boot = (kernel_filename != NULL);
5711
5712 if (!linux_boot && *kernel_cmdline != '\0') {
5713 fprintf(stderr, "-append only allowed with -kernel option\n");
5714 exit(1);
5715 }
5716
5717 if (!linux_boot && initrd_filename != NULL) {
5718 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5719 exit(1);
5720 }
5721
5722 setvbuf(stdout, NULL, _IOLBF, 0);
5723
5724 init_timers();
5725 if (init_timer_alarm() < 0) {
5726 fprintf(stderr, "could not initialize alarm timer\n");
5727 exit(1);
5728 }
5729 if (use_icount && icount_time_shift < 0) {
5730 use_icount = 2;
5731 /* 125MIPS seems a reasonable initial guess at the guest speed.
5732 It will be corrected fairly quickly anyway. */
5733 icount_time_shift = 3;
5734 init_icount_adjust();
5735 }
5736
5737 #ifdef _WIN32
5738 socket_init();
5739 #endif
5740
5741 /* init network clients */
5742 if (nb_net_clients == 0) {
5743 /* if no clients, we use a default config */
5744 net_clients[nb_net_clients++] = "nic";
5745 #ifdef CONFIG_SLIRP
5746 net_clients[nb_net_clients++] = "user";
5747 #endif
5748 }
5749
5750 for(i = 0;i < nb_net_clients; i++) {
5751 if (net_client_parse(net_clients[i]) < 0)
5752 exit(1);
5753 }
5754
5755 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5756 net_set_boot_mask(net_boot);
5757
5758 net_client_check();
5759
5760 /* init the bluetooth world */
5761 for (i = 0; i < nb_bt_opts; i++)
5762 if (bt_parse(bt_opts[i]))
5763 exit(1);
5764
5765 /* init the memory */
5766 if (ram_size == 0)
5767 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5768
5769 #ifdef CONFIG_KQEMU
5770 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5771 guest ram allocation. It needs to go away. */
5772 if (kqemu_allowed) {
5773 kqemu_phys_ram_size = ram_size + 8 * 1024 * 1024 + 4 * 1024 * 1024;
5774 kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
5775 if (!kqemu_phys_ram_base) {
5776 fprintf(stderr, "Could not allocate physical memory\n");
5777 exit(1);
5778 }
5779 }
5780 #endif
5781
5782 /* init the dynamic translator */
5783 cpu_exec_init_all(tb_size * 1024 * 1024);
5784
5785 bdrv_init();
5786
5787 /* we always create the cdrom drive, even if no disk is there */
5788
5789 if (nb_drives_opt < MAX_DRIVES)
5790 drive_add(NULL, CDROM_ALIAS);
5791
5792 /* we always create at least one floppy */
5793
5794 if (nb_drives_opt < MAX_DRIVES)
5795 drive_add(NULL, FD_ALIAS, 0);
5796
5797 /* we always create one sd slot, even if no card is in it */
5798
5799 if (nb_drives_opt < MAX_DRIVES)
5800 drive_add(NULL, SD_ALIAS);
5801
5802 /* open the virtual block devices */
5803
5804 for(i = 0; i < nb_drives_opt; i++)
5805 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5806 exit(1);
5807
5808 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5809 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5810
5811 #ifndef _WIN32
5812 /* must be after terminal init, SDL library changes signal handlers */
5813 sighandler_setup();
5814 #endif
5815
5816 /* Maintain compatibility with multiple stdio monitors */
5817 if (!strcmp(monitor_device,"stdio")) {
5818 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5819 const char *devname = serial_devices[i];
5820 if (devname && !strcmp(devname,"mon:stdio")) {
5821 monitor_device = NULL;
5822 break;
5823 } else if (devname && !strcmp(devname,"stdio")) {
5824 monitor_device = NULL;
5825 serial_devices[i] = "mon:stdio";
5826 break;
5827 }
5828 }
5829 }
5830
5831 if (nb_numa_nodes > 0) {
5832 int i;
5833
5834 if (nb_numa_nodes > smp_cpus) {
5835 nb_numa_nodes = smp_cpus;
5836 }
5837
5838 /* If no memory size if given for any node, assume the default case
5839 * and distribute the available memory equally across all nodes
5840 */
5841 for (i = 0; i < nb_numa_nodes; i++) {
5842 if (node_mem[i] != 0)
5843 break;
5844 }
5845 if (i == nb_numa_nodes) {
5846 uint64_t usedmem = 0;
5847
5848 /* On Linux, the each node's border has to be 8MB aligned,
5849 * the final node gets the rest.
5850 */
5851 for (i = 0; i < nb_numa_nodes - 1; i++) {
5852 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5853 usedmem += node_mem[i];
5854 }
5855 node_mem[i] = ram_size - usedmem;
5856 }
5857
5858 for (i = 0; i < nb_numa_nodes; i++) {
5859 if (node_cpumask[i] != 0)
5860 break;
5861 }
5862 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5863 * must cope with this anyway, because there are BIOSes out there in
5864 * real machines which also use this scheme.
5865 */
5866 if (i == nb_numa_nodes) {
5867 for (i = 0; i < smp_cpus; i++) {
5868 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5869 }
5870 }
5871 }
5872
5873 if (kvm_enabled()) {
5874 int ret;
5875
5876 ret = kvm_init(smp_cpus);
5877 if (ret < 0) {
5878 fprintf(stderr, "failed to initialize KVM\n");
5879 exit(1);
5880 }
5881 }
5882
5883 if (monitor_device) {
5884 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5885 if (!monitor_hd) {
5886 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5887 exit(1);
5888 }
5889 }
5890
5891 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5892 const char *devname = serial_devices[i];
5893 if (devname && strcmp(devname, "none")) {
5894 char label[32];
5895 snprintf(label, sizeof(label), "serial%d", i);
5896 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5897 if (!serial_hds[i]) {
5898 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5899 devname);
5900 exit(1);
5901 }
5902 }
5903 }
5904
5905 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5906 const char *devname = parallel_devices[i];
5907 if (devname && strcmp(devname, "none")) {
5908 char label[32];
5909 snprintf(label, sizeof(label), "parallel%d", i);
5910 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5911 if (!parallel_hds[i]) {
5912 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5913 devname);
5914 exit(1);
5915 }
5916 }
5917 }
5918
5919 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5920 const char *devname = virtio_consoles[i];
5921 if (devname && strcmp(devname, "none")) {
5922 char label[32];
5923 snprintf(label, sizeof(label), "virtcon%d", i);
5924 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5925 if (!virtcon_hds[i]) {
5926 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5927 devname);
5928 exit(1);
5929 }
5930 }
5931 }
5932
5933 module_call_init(MODULE_INIT_DEVICE);
5934
5935 machine->init(ram_size, boot_devices,
5936 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5937
5938
5939 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5940 for (i = 0; i < nb_numa_nodes; i++) {
5941 if (node_cpumask[i] & (1 << env->cpu_index)) {
5942 env->numa_node = i;
5943 }
5944 }
5945 }
5946
5947 current_machine = machine;
5948
5949 /* init USB devices */
5950 if (usb_enabled) {
5951 for(i = 0; i < usb_devices_index; i++) {
5952 if (usb_device_add(usb_devices[i], 0) < 0) {
5953 fprintf(stderr, "Warning: could not add USB device %s\n",
5954 usb_devices[i]);
5955 }
5956 }
5957 }
5958
5959 if (!display_state)
5960 dumb_display_init();
5961 /* just use the first displaystate for the moment */
5962 ds = display_state;
5963
5964 if (display_type == DT_DEFAULT) {
5965 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5966 display_type = DT_SDL;
5967 #else
5968 display_type = DT_VNC;
5969 vnc_display = "localhost:0,to=99";
5970 show_vnc_port = 1;
5971 #endif
5972 }
5973
5974
5975 switch (display_type) {
5976 case DT_NOGRAPHIC:
5977 break;
5978 #if defined(CONFIG_CURSES)
5979 case DT_CURSES:
5980 curses_display_init(ds, full_screen);
5981 break;
5982 #endif
5983 #if defined(CONFIG_SDL)
5984 case DT_SDL:
5985 sdl_display_init(ds, full_screen, no_frame);
5986 break;
5987 #elif defined(CONFIG_COCOA)
5988 case DT_SDL:
5989 cocoa_display_init(ds, full_screen);
5990 break;
5991 #endif
5992 case DT_VNC:
5993 vnc_display_init(ds);
5994 if (vnc_display_open(ds, vnc_display) < 0)
5995 exit(1);
5996
5997 if (show_vnc_port) {
5998 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
5999 }
6000 break;
6001 default:
6002 break;
6003 }
6004 dpy_resize(ds);
6005
6006 dcl = ds->listeners;
6007 while (dcl != NULL) {
6008 if (dcl->dpy_refresh != NULL) {
6009 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
6010 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
6011 }
6012 dcl = dcl->next;
6013 }
6014
6015 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
6016 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
6017 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
6018 }
6019
6020 text_consoles_set_display(display_state);
6021 qemu_chr_initial_reset();
6022
6023 if (monitor_device && monitor_hd)
6024 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
6025
6026 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6027 const char *devname = serial_devices[i];
6028 if (devname && strcmp(devname, "none")) {
6029 if (strstart(devname, "vc", 0))
6030 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
6031 }
6032 }
6033
6034 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6035 const char *devname = parallel_devices[i];
6036 if (devname && strcmp(devname, "none")) {
6037 if (strstart(devname, "vc", 0))
6038 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
6039 }
6040 }
6041
6042 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6043 const char *devname = virtio_consoles[i];
6044 if (virtcon_hds[i] && devname) {
6045 if (strstart(devname, "vc", 0))
6046 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
6047 }
6048 }
6049
6050 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6051 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6052 gdbstub_dev);
6053 exit(1);
6054 }
6055
6056 if (loadvm)
6057 do_loadvm(cur_mon, loadvm);
6058
6059 if (incoming) {
6060 autostart = 0; /* fixme how to deal with -daemonize */
6061 qemu_start_incoming_migration(incoming);
6062 }
6063
6064 if (autostart)
6065 vm_start();
6066
6067 #ifndef _WIN32
6068 if (daemonize) {
6069 uint8_t status = 0;
6070 ssize_t len;
6071
6072 again1:
6073 len = write(fds[1], &status, 1);
6074 if (len == -1 && (errno == EINTR))
6075 goto again1;
6076
6077 if (len != 1)
6078 exit(1);
6079
6080 chdir("/");
6081 TFR(fd = open("/dev/null", O_RDWR));
6082 if (fd == -1)
6083 exit(1);
6084 }
6085
6086 if (run_as) {
6087 pwd = getpwnam(run_as);
6088 if (!pwd) {
6089 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6090 exit(1);
6091 }
6092 }
6093
6094 if (chroot_dir) {
6095 if (chroot(chroot_dir) < 0) {
6096 fprintf(stderr, "chroot failed\n");
6097 exit(1);
6098 }
6099 chdir("/");
6100 }
6101
6102 if (run_as) {
6103 if (setgid(pwd->pw_gid) < 0) {
6104 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6105 exit(1);
6106 }
6107 if (setuid(pwd->pw_uid) < 0) {
6108 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6109 exit(1);
6110 }
6111 if (setuid(0) != -1) {
6112 fprintf(stderr, "Dropping privileges failed\n");
6113 exit(1);
6114 }
6115 }
6116
6117 if (daemonize) {
6118 dup2(fd, 0);
6119 dup2(fd, 1);
6120 dup2(fd, 2);
6121
6122 close(fd);
6123 }
6124 #endif
6125
6126 main_loop();
6127 quit_timers();
6128 net_cleanup();
6129
6130 return 0;
6131 }