]> git.proxmox.com Git - mirror_qemu.git/blob - vl.c
Fix BSD breakage from r6736
[mirror_qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
31
32 /* Needed early for _BSD etc. */
33 #include "config-host.h"
34
35 #ifndef _WIN32
36 #include <pwd.h>
37 #include <sys/times.h>
38 #include <sys/wait.h>
39 #include <termios.h>
40 #include <sys/mman.h>
41 #include <sys/ioctl.h>
42 #include <sys/resource.h>
43 #include <sys/socket.h>
44 #include <netinet/in.h>
45 #include <net/if.h>
46 #if defined(__NetBSD__)
47 #include <net/if_tap.h>
48 #endif
49 #ifdef __linux__
50 #include <linux/if_tun.h>
51 #endif
52 #include <arpa/inet.h>
53 #include <dirent.h>
54 #include <netdb.h>
55 #include <sys/select.h>
56 #ifdef _BSD
57 #include <sys/stat.h>
58 #ifdef __FreeBSD__
59 #include <libutil.h>
60 #else
61 #include <util.h>
62 #endif
63 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
64 #include <freebsd/stdlib.h>
65 #else
66 #ifdef __linux__
67 #include <pty.h>
68 #include <malloc.h>
69 #include <linux/rtc.h>
70
71 /* For the benefit of older linux systems which don't supply it,
72 we use a local copy of hpet.h. */
73 /* #include <linux/hpet.h> */
74 #include "hpet.h"
75
76 #include <linux/ppdev.h>
77 #include <linux/parport.h>
78 #endif
79 #ifdef __sun__
80 #include <sys/stat.h>
81 #include <sys/ethernet.h>
82 #include <sys/sockio.h>
83 #include <netinet/arp.h>
84 #include <netinet/in.h>
85 #include <netinet/in_systm.h>
86 #include <netinet/ip.h>
87 #include <netinet/ip_icmp.h> // must come after ip.h
88 #include <netinet/udp.h>
89 #include <netinet/tcp.h>
90 #include <net/if.h>
91 #include <syslog.h>
92 #include <stropts.h>
93 #endif
94 #endif
95 #endif
96
97 #if defined(__OpenBSD__)
98 #include <util.h>
99 #endif
100
101 #if defined(CONFIG_VDE)
102 #include <libvdeplug.h>
103 #endif
104
105 #ifdef _WIN32
106 #include <malloc.h>
107 #include <sys/timeb.h>
108 #include <mmsystem.h>
109 #define getopt_long_only getopt_long
110 #define memalign(align, size) malloc(size)
111 #endif
112
113 #ifdef CONFIG_SDL
114 #ifdef __APPLE__
115 #include <SDL/SDL.h>
116 int qemu_main(int argc, char **argv, char **envp);
117 int main(int argc, char **argv)
118 {
119 qemu_main(argc, argv, NULL);
120 }
121 #undef main
122 #define main qemu_main
123 #endif
124 #endif /* CONFIG_SDL */
125
126 #ifdef CONFIG_COCOA
127 #undef main
128 #define main qemu_main
129 #endif /* CONFIG_COCOA */
130
131 #include "hw/hw.h"
132 #include "hw/boards.h"
133 #include "hw/usb.h"
134 #include "hw/pcmcia.h"
135 #include "hw/pc.h"
136 #include "hw/audiodev.h"
137 #include "hw/isa.h"
138 #include "hw/baum.h"
139 #include "hw/bt.h"
140 #include "net.h"
141 #include "monitor.h"
142 #include "console.h"
143 #include "sysemu.h"
144 #include "gdbstub.h"
145 #include "qemu-timer.h"
146 #include "qemu-char.h"
147 #include "cache-utils.h"
148 #include "block.h"
149 #include "audio/audio.h"
150 #include "migration.h"
151 #include "kvm.h"
152 #include "balloon.h"
153
154 #include "disas.h"
155
156 #include "exec-all.h"
157
158 #include "qemu_socket.h"
159
160 #if defined(CONFIG_SLIRP)
161 #include "libslirp.h"
162 #endif
163
164 //#define DEBUG_UNUSED_IOPORT
165 //#define DEBUG_IOPORT
166 //#define DEBUG_NET
167 //#define DEBUG_SLIRP
168
169
170 #ifdef DEBUG_IOPORT
171 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
172 #else
173 # define LOG_IOPORT(...) do { } while (0)
174 #endif
175
176 #define DEFAULT_RAM_SIZE 128
177
178 /* Max number of USB devices that can be specified on the commandline. */
179 #define MAX_USB_CMDLINE 8
180
181 /* Max number of bluetooth switches on the commandline. */
182 #define MAX_BT_CMDLINE 10
183
184 /* XXX: use a two level table to limit memory usage */
185 #define MAX_IOPORTS 65536
186
187 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
188 const char *bios_name = NULL;
189 static void *ioport_opaque[MAX_IOPORTS];
190 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
191 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
192 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
193 to store the VM snapshots */
194 DriveInfo drives_table[MAX_DRIVES+1];
195 int nb_drives;
196 static int vga_ram_size;
197 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
198 static DisplayState *display_state;
199 int nographic;
200 static int curses;
201 static int sdl;
202 const char* keyboard_layout = NULL;
203 int64_t ticks_per_sec;
204 ram_addr_t ram_size;
205 int nb_nics;
206 NICInfo nd_table[MAX_NICS];
207 int vm_running;
208 static int autostart;
209 static int rtc_utc = 1;
210 static int rtc_date_offset = -1; /* -1 means no change */
211 int cirrus_vga_enabled = 1;
212 int std_vga_enabled = 0;
213 int vmsvga_enabled = 0;
214 #ifdef TARGET_SPARC
215 int graphic_width = 1024;
216 int graphic_height = 768;
217 int graphic_depth = 8;
218 #else
219 int graphic_width = 800;
220 int graphic_height = 600;
221 int graphic_depth = 15;
222 #endif
223 static int full_screen = 0;
224 #ifdef CONFIG_SDL
225 static int no_frame = 0;
226 #endif
227 int no_quit = 0;
228 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
229 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
230 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
231 #ifdef TARGET_I386
232 int win2k_install_hack = 0;
233 int rtc_td_hack = 0;
234 #endif
235 int usb_enabled = 0;
236 int smp_cpus = 1;
237 const char *vnc_display;
238 int acpi_enabled = 1;
239 int no_hpet = 0;
240 int fd_bootchk = 1;
241 int no_reboot = 0;
242 int no_shutdown = 0;
243 int cursor_hide = 1;
244 int graphic_rotate = 0;
245 int daemonize = 0;
246 const char *option_rom[MAX_OPTION_ROMS];
247 int nb_option_roms;
248 int semihosting_enabled = 0;
249 #ifdef TARGET_ARM
250 int old_param = 0;
251 #endif
252 const char *qemu_name;
253 int alt_grab = 0;
254 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
255 unsigned int nb_prom_envs = 0;
256 const char *prom_envs[MAX_PROM_ENVS];
257 #endif
258 int nb_drives_opt;
259 struct drive_opt drives_opt[MAX_DRIVES];
260
261 static CPUState *cur_cpu;
262 static CPUState *next_cpu;
263 static int event_pending = 1;
264 /* Conversion factor from emulated instructions to virtual clock ticks. */
265 static int icount_time_shift;
266 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
267 #define MAX_ICOUNT_SHIFT 10
268 /* Compensate for varying guest execution speed. */
269 static int64_t qemu_icount_bias;
270 static QEMUTimer *icount_rt_timer;
271 static QEMUTimer *icount_vm_timer;
272 static QEMUTimer *nographic_timer;
273
274 uint8_t qemu_uuid[16];
275
276 /***********************************************************/
277 /* x86 ISA bus support */
278
279 target_phys_addr_t isa_mem_base = 0;
280 PicState2 *isa_pic;
281
282 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
283 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
284
285 static uint32_t ioport_read(int index, uint32_t address)
286 {
287 static IOPortReadFunc *default_func[3] = {
288 default_ioport_readb,
289 default_ioport_readw,
290 default_ioport_readl
291 };
292 IOPortReadFunc *func = ioport_read_table[index][address];
293 if (!func)
294 func = default_func[index];
295 return func(ioport_opaque[address], address);
296 }
297
298 static void ioport_write(int index, uint32_t address, uint32_t data)
299 {
300 static IOPortWriteFunc *default_func[3] = {
301 default_ioport_writeb,
302 default_ioport_writew,
303 default_ioport_writel
304 };
305 IOPortWriteFunc *func = ioport_write_table[index][address];
306 if (!func)
307 func = default_func[index];
308 func(ioport_opaque[address], address, data);
309 }
310
311 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
312 {
313 #ifdef DEBUG_UNUSED_IOPORT
314 fprintf(stderr, "unused inb: port=0x%04x\n", address);
315 #endif
316 return 0xff;
317 }
318
319 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
320 {
321 #ifdef DEBUG_UNUSED_IOPORT
322 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
323 #endif
324 }
325
326 /* default is to make two byte accesses */
327 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
328 {
329 uint32_t data;
330 data = ioport_read(0, address);
331 address = (address + 1) & (MAX_IOPORTS - 1);
332 data |= ioport_read(0, address) << 8;
333 return data;
334 }
335
336 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
337 {
338 ioport_write(0, address, data & 0xff);
339 address = (address + 1) & (MAX_IOPORTS - 1);
340 ioport_write(0, address, (data >> 8) & 0xff);
341 }
342
343 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
344 {
345 #ifdef DEBUG_UNUSED_IOPORT
346 fprintf(stderr, "unused inl: port=0x%04x\n", address);
347 #endif
348 return 0xffffffff;
349 }
350
351 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
352 {
353 #ifdef DEBUG_UNUSED_IOPORT
354 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
355 #endif
356 }
357
358 /* size is the word size in byte */
359 int register_ioport_read(int start, int length, int size,
360 IOPortReadFunc *func, void *opaque)
361 {
362 int i, bsize;
363
364 if (size == 1) {
365 bsize = 0;
366 } else if (size == 2) {
367 bsize = 1;
368 } else if (size == 4) {
369 bsize = 2;
370 } else {
371 hw_error("register_ioport_read: invalid size");
372 return -1;
373 }
374 for(i = start; i < start + length; i += size) {
375 ioport_read_table[bsize][i] = func;
376 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
377 hw_error("register_ioport_read: invalid opaque");
378 ioport_opaque[i] = opaque;
379 }
380 return 0;
381 }
382
383 /* size is the word size in byte */
384 int register_ioport_write(int start, int length, int size,
385 IOPortWriteFunc *func, void *opaque)
386 {
387 int i, bsize;
388
389 if (size == 1) {
390 bsize = 0;
391 } else if (size == 2) {
392 bsize = 1;
393 } else if (size == 4) {
394 bsize = 2;
395 } else {
396 hw_error("register_ioport_write: invalid size");
397 return -1;
398 }
399 for(i = start; i < start + length; i += size) {
400 ioport_write_table[bsize][i] = func;
401 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
402 hw_error("register_ioport_write: invalid opaque");
403 ioport_opaque[i] = opaque;
404 }
405 return 0;
406 }
407
408 void isa_unassign_ioport(int start, int length)
409 {
410 int i;
411
412 for(i = start; i < start + length; i++) {
413 ioport_read_table[0][i] = default_ioport_readb;
414 ioport_read_table[1][i] = default_ioport_readw;
415 ioport_read_table[2][i] = default_ioport_readl;
416
417 ioport_write_table[0][i] = default_ioport_writeb;
418 ioport_write_table[1][i] = default_ioport_writew;
419 ioport_write_table[2][i] = default_ioport_writel;
420
421 ioport_opaque[i] = NULL;
422 }
423 }
424
425 /***********************************************************/
426
427 void cpu_outb(CPUState *env, int addr, int val)
428 {
429 LOG_IOPORT("outb: %04x %02x\n", addr, val);
430 ioport_write(0, addr, val);
431 #ifdef USE_KQEMU
432 if (env)
433 env->last_io_time = cpu_get_time_fast();
434 #endif
435 }
436
437 void cpu_outw(CPUState *env, int addr, int val)
438 {
439 LOG_IOPORT("outw: %04x %04x\n", addr, val);
440 ioport_write(1, addr, val);
441 #ifdef USE_KQEMU
442 if (env)
443 env->last_io_time = cpu_get_time_fast();
444 #endif
445 }
446
447 void cpu_outl(CPUState *env, int addr, int val)
448 {
449 LOG_IOPORT("outl: %04x %08x\n", addr, val);
450 ioport_write(2, addr, val);
451 #ifdef USE_KQEMU
452 if (env)
453 env->last_io_time = cpu_get_time_fast();
454 #endif
455 }
456
457 int cpu_inb(CPUState *env, int addr)
458 {
459 int val;
460 val = ioport_read(0, addr);
461 LOG_IOPORT("inb : %04x %02x\n", addr, val);
462 #ifdef USE_KQEMU
463 if (env)
464 env->last_io_time = cpu_get_time_fast();
465 #endif
466 return val;
467 }
468
469 int cpu_inw(CPUState *env, int addr)
470 {
471 int val;
472 val = ioport_read(1, addr);
473 LOG_IOPORT("inw : %04x %04x\n", addr, val);
474 #ifdef USE_KQEMU
475 if (env)
476 env->last_io_time = cpu_get_time_fast();
477 #endif
478 return val;
479 }
480
481 int cpu_inl(CPUState *env, int addr)
482 {
483 int val;
484 val = ioport_read(2, addr);
485 LOG_IOPORT("inl : %04x %08x\n", addr, val);
486 #ifdef USE_KQEMU
487 if (env)
488 env->last_io_time = cpu_get_time_fast();
489 #endif
490 return val;
491 }
492
493 /***********************************************************/
494 void hw_error(const char *fmt, ...)
495 {
496 va_list ap;
497 CPUState *env;
498
499 va_start(ap, fmt);
500 fprintf(stderr, "qemu: hardware error: ");
501 vfprintf(stderr, fmt, ap);
502 fprintf(stderr, "\n");
503 for(env = first_cpu; env != NULL; env = env->next_cpu) {
504 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
505 #ifdef TARGET_I386
506 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
507 #else
508 cpu_dump_state(env, stderr, fprintf, 0);
509 #endif
510 }
511 va_end(ap);
512 abort();
513 }
514
515 /***************/
516 /* ballooning */
517
518 static QEMUBalloonEvent *qemu_balloon_event;
519 void *qemu_balloon_event_opaque;
520
521 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
522 {
523 qemu_balloon_event = func;
524 qemu_balloon_event_opaque = opaque;
525 }
526
527 void qemu_balloon(ram_addr_t target)
528 {
529 if (qemu_balloon_event)
530 qemu_balloon_event(qemu_balloon_event_opaque, target);
531 }
532
533 ram_addr_t qemu_balloon_status(void)
534 {
535 if (qemu_balloon_event)
536 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
537 return 0;
538 }
539
540 /***********************************************************/
541 /* keyboard/mouse */
542
543 static QEMUPutKBDEvent *qemu_put_kbd_event;
544 static void *qemu_put_kbd_event_opaque;
545 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
546 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
547
548 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
549 {
550 qemu_put_kbd_event_opaque = opaque;
551 qemu_put_kbd_event = func;
552 }
553
554 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
555 void *opaque, int absolute,
556 const char *name)
557 {
558 QEMUPutMouseEntry *s, *cursor;
559
560 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
561
562 s->qemu_put_mouse_event = func;
563 s->qemu_put_mouse_event_opaque = opaque;
564 s->qemu_put_mouse_event_absolute = absolute;
565 s->qemu_put_mouse_event_name = qemu_strdup(name);
566 s->next = NULL;
567
568 if (!qemu_put_mouse_event_head) {
569 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
570 return s;
571 }
572
573 cursor = qemu_put_mouse_event_head;
574 while (cursor->next != NULL)
575 cursor = cursor->next;
576
577 cursor->next = s;
578 qemu_put_mouse_event_current = s;
579
580 return s;
581 }
582
583 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
584 {
585 QEMUPutMouseEntry *prev = NULL, *cursor;
586
587 if (!qemu_put_mouse_event_head || entry == NULL)
588 return;
589
590 cursor = qemu_put_mouse_event_head;
591 while (cursor != NULL && cursor != entry) {
592 prev = cursor;
593 cursor = cursor->next;
594 }
595
596 if (cursor == NULL) // does not exist or list empty
597 return;
598 else if (prev == NULL) { // entry is head
599 qemu_put_mouse_event_head = cursor->next;
600 if (qemu_put_mouse_event_current == entry)
601 qemu_put_mouse_event_current = cursor->next;
602 qemu_free(entry->qemu_put_mouse_event_name);
603 qemu_free(entry);
604 return;
605 }
606
607 prev->next = entry->next;
608
609 if (qemu_put_mouse_event_current == entry)
610 qemu_put_mouse_event_current = prev;
611
612 qemu_free(entry->qemu_put_mouse_event_name);
613 qemu_free(entry);
614 }
615
616 void kbd_put_keycode(int keycode)
617 {
618 if (qemu_put_kbd_event) {
619 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
620 }
621 }
622
623 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
624 {
625 QEMUPutMouseEvent *mouse_event;
626 void *mouse_event_opaque;
627 int width;
628
629 if (!qemu_put_mouse_event_current) {
630 return;
631 }
632
633 mouse_event =
634 qemu_put_mouse_event_current->qemu_put_mouse_event;
635 mouse_event_opaque =
636 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
637
638 if (mouse_event) {
639 if (graphic_rotate) {
640 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
641 width = 0x7fff;
642 else
643 width = graphic_width - 1;
644 mouse_event(mouse_event_opaque,
645 width - dy, dx, dz, buttons_state);
646 } else
647 mouse_event(mouse_event_opaque,
648 dx, dy, dz, buttons_state);
649 }
650 }
651
652 int kbd_mouse_is_absolute(void)
653 {
654 if (!qemu_put_mouse_event_current)
655 return 0;
656
657 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
658 }
659
660 void do_info_mice(Monitor *mon)
661 {
662 QEMUPutMouseEntry *cursor;
663 int index = 0;
664
665 if (!qemu_put_mouse_event_head) {
666 monitor_printf(mon, "No mouse devices connected\n");
667 return;
668 }
669
670 monitor_printf(mon, "Mouse devices available:\n");
671 cursor = qemu_put_mouse_event_head;
672 while (cursor != NULL) {
673 monitor_printf(mon, "%c Mouse #%d: %s\n",
674 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
675 index, cursor->qemu_put_mouse_event_name);
676 index++;
677 cursor = cursor->next;
678 }
679 }
680
681 void do_mouse_set(Monitor *mon, int index)
682 {
683 QEMUPutMouseEntry *cursor;
684 int i = 0;
685
686 if (!qemu_put_mouse_event_head) {
687 monitor_printf(mon, "No mouse devices connected\n");
688 return;
689 }
690
691 cursor = qemu_put_mouse_event_head;
692 while (cursor != NULL && index != i) {
693 i++;
694 cursor = cursor->next;
695 }
696
697 if (cursor != NULL)
698 qemu_put_mouse_event_current = cursor;
699 else
700 monitor_printf(mon, "Mouse at given index not found\n");
701 }
702
703 /* compute with 96 bit intermediate result: (a*b)/c */
704 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
705 {
706 union {
707 uint64_t ll;
708 struct {
709 #ifdef WORDS_BIGENDIAN
710 uint32_t high, low;
711 #else
712 uint32_t low, high;
713 #endif
714 } l;
715 } u, res;
716 uint64_t rl, rh;
717
718 u.ll = a;
719 rl = (uint64_t)u.l.low * (uint64_t)b;
720 rh = (uint64_t)u.l.high * (uint64_t)b;
721 rh += (rl >> 32);
722 res.l.high = rh / c;
723 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
724 return res.ll;
725 }
726
727 /***********************************************************/
728 /* real time host monotonic timer */
729
730 #define QEMU_TIMER_BASE 1000000000LL
731
732 #ifdef WIN32
733
734 static int64_t clock_freq;
735
736 static void init_get_clock(void)
737 {
738 LARGE_INTEGER freq;
739 int ret;
740 ret = QueryPerformanceFrequency(&freq);
741 if (ret == 0) {
742 fprintf(stderr, "Could not calibrate ticks\n");
743 exit(1);
744 }
745 clock_freq = freq.QuadPart;
746 }
747
748 static int64_t get_clock(void)
749 {
750 LARGE_INTEGER ti;
751 QueryPerformanceCounter(&ti);
752 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
753 }
754
755 #else
756
757 static int use_rt_clock;
758
759 static void init_get_clock(void)
760 {
761 use_rt_clock = 0;
762 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000)
763 {
764 struct timespec ts;
765 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
766 use_rt_clock = 1;
767 }
768 }
769 #endif
770 }
771
772 static int64_t get_clock(void)
773 {
774 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000)
775 if (use_rt_clock) {
776 struct timespec ts;
777 clock_gettime(CLOCK_MONOTONIC, &ts);
778 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
779 } else
780 #endif
781 {
782 /* XXX: using gettimeofday leads to problems if the date
783 changes, so it should be avoided. */
784 struct timeval tv;
785 gettimeofday(&tv, NULL);
786 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
787 }
788 }
789 #endif
790
791 /* Return the virtual CPU time, based on the instruction counter. */
792 static int64_t cpu_get_icount(void)
793 {
794 int64_t icount;
795 CPUState *env = cpu_single_env;;
796 icount = qemu_icount;
797 if (env) {
798 if (!can_do_io(env))
799 fprintf(stderr, "Bad clock read\n");
800 icount -= (env->icount_decr.u16.low + env->icount_extra);
801 }
802 return qemu_icount_bias + (icount << icount_time_shift);
803 }
804
805 /***********************************************************/
806 /* guest cycle counter */
807
808 static int64_t cpu_ticks_prev;
809 static int64_t cpu_ticks_offset;
810 static int64_t cpu_clock_offset;
811 static int cpu_ticks_enabled;
812
813 /* return the host CPU cycle counter and handle stop/restart */
814 int64_t cpu_get_ticks(void)
815 {
816 if (use_icount) {
817 return cpu_get_icount();
818 }
819 if (!cpu_ticks_enabled) {
820 return cpu_ticks_offset;
821 } else {
822 int64_t ticks;
823 ticks = cpu_get_real_ticks();
824 if (cpu_ticks_prev > ticks) {
825 /* Note: non increasing ticks may happen if the host uses
826 software suspend */
827 cpu_ticks_offset += cpu_ticks_prev - ticks;
828 }
829 cpu_ticks_prev = ticks;
830 return ticks + cpu_ticks_offset;
831 }
832 }
833
834 /* return the host CPU monotonic timer and handle stop/restart */
835 static int64_t cpu_get_clock(void)
836 {
837 int64_t ti;
838 if (!cpu_ticks_enabled) {
839 return cpu_clock_offset;
840 } else {
841 ti = get_clock();
842 return ti + cpu_clock_offset;
843 }
844 }
845
846 /* enable cpu_get_ticks() */
847 void cpu_enable_ticks(void)
848 {
849 if (!cpu_ticks_enabled) {
850 cpu_ticks_offset -= cpu_get_real_ticks();
851 cpu_clock_offset -= get_clock();
852 cpu_ticks_enabled = 1;
853 }
854 }
855
856 /* disable cpu_get_ticks() : the clock is stopped. You must not call
857 cpu_get_ticks() after that. */
858 void cpu_disable_ticks(void)
859 {
860 if (cpu_ticks_enabled) {
861 cpu_ticks_offset = cpu_get_ticks();
862 cpu_clock_offset = cpu_get_clock();
863 cpu_ticks_enabled = 0;
864 }
865 }
866
867 /***********************************************************/
868 /* timers */
869
870 #define QEMU_TIMER_REALTIME 0
871 #define QEMU_TIMER_VIRTUAL 1
872
873 struct QEMUClock {
874 int type;
875 /* XXX: add frequency */
876 };
877
878 struct QEMUTimer {
879 QEMUClock *clock;
880 int64_t expire_time;
881 QEMUTimerCB *cb;
882 void *opaque;
883 struct QEMUTimer *next;
884 };
885
886 struct qemu_alarm_timer {
887 char const *name;
888 unsigned int flags;
889
890 int (*start)(struct qemu_alarm_timer *t);
891 void (*stop)(struct qemu_alarm_timer *t);
892 void (*rearm)(struct qemu_alarm_timer *t);
893 void *priv;
894 };
895
896 #define ALARM_FLAG_DYNTICKS 0x1
897 #define ALARM_FLAG_EXPIRED 0x2
898
899 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
900 {
901 return t->flags & ALARM_FLAG_DYNTICKS;
902 }
903
904 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
905 {
906 if (!alarm_has_dynticks(t))
907 return;
908
909 t->rearm(t);
910 }
911
912 /* TODO: MIN_TIMER_REARM_US should be optimized */
913 #define MIN_TIMER_REARM_US 250
914
915 static struct qemu_alarm_timer *alarm_timer;
916 #ifndef _WIN32
917 static int alarm_timer_rfd, alarm_timer_wfd;
918 #endif
919
920 #ifdef _WIN32
921
922 struct qemu_alarm_win32 {
923 MMRESULT timerId;
924 HANDLE host_alarm;
925 unsigned int period;
926 } alarm_win32_data = {0, NULL, -1};
927
928 static int win32_start_timer(struct qemu_alarm_timer *t);
929 static void win32_stop_timer(struct qemu_alarm_timer *t);
930 static void win32_rearm_timer(struct qemu_alarm_timer *t);
931
932 #else
933
934 static int unix_start_timer(struct qemu_alarm_timer *t);
935 static void unix_stop_timer(struct qemu_alarm_timer *t);
936
937 #ifdef __linux__
938
939 static int dynticks_start_timer(struct qemu_alarm_timer *t);
940 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
941 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
942
943 static int hpet_start_timer(struct qemu_alarm_timer *t);
944 static void hpet_stop_timer(struct qemu_alarm_timer *t);
945
946 static int rtc_start_timer(struct qemu_alarm_timer *t);
947 static void rtc_stop_timer(struct qemu_alarm_timer *t);
948
949 #endif /* __linux__ */
950
951 #endif /* _WIN32 */
952
953 /* Correlation between real and virtual time is always going to be
954 fairly approximate, so ignore small variation.
955 When the guest is idle real and virtual time will be aligned in
956 the IO wait loop. */
957 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
958
959 static void icount_adjust(void)
960 {
961 int64_t cur_time;
962 int64_t cur_icount;
963 int64_t delta;
964 static int64_t last_delta;
965 /* If the VM is not running, then do nothing. */
966 if (!vm_running)
967 return;
968
969 cur_time = cpu_get_clock();
970 cur_icount = qemu_get_clock(vm_clock);
971 delta = cur_icount - cur_time;
972 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
973 if (delta > 0
974 && last_delta + ICOUNT_WOBBLE < delta * 2
975 && icount_time_shift > 0) {
976 /* The guest is getting too far ahead. Slow time down. */
977 icount_time_shift--;
978 }
979 if (delta < 0
980 && last_delta - ICOUNT_WOBBLE > delta * 2
981 && icount_time_shift < MAX_ICOUNT_SHIFT) {
982 /* The guest is getting too far behind. Speed time up. */
983 icount_time_shift++;
984 }
985 last_delta = delta;
986 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
987 }
988
989 static void icount_adjust_rt(void * opaque)
990 {
991 qemu_mod_timer(icount_rt_timer,
992 qemu_get_clock(rt_clock) + 1000);
993 icount_adjust();
994 }
995
996 static void icount_adjust_vm(void * opaque)
997 {
998 qemu_mod_timer(icount_vm_timer,
999 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1000 icount_adjust();
1001 }
1002
1003 static void init_icount_adjust(void)
1004 {
1005 /* Have both realtime and virtual time triggers for speed adjustment.
1006 The realtime trigger catches emulated time passing too slowly,
1007 the virtual time trigger catches emulated time passing too fast.
1008 Realtime triggers occur even when idle, so use them less frequently
1009 than VM triggers. */
1010 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1011 qemu_mod_timer(icount_rt_timer,
1012 qemu_get_clock(rt_clock) + 1000);
1013 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1014 qemu_mod_timer(icount_vm_timer,
1015 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1016 }
1017
1018 static struct qemu_alarm_timer alarm_timers[] = {
1019 #ifndef _WIN32
1020 #ifdef __linux__
1021 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1022 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1023 /* HPET - if available - is preferred */
1024 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1025 /* ...otherwise try RTC */
1026 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1027 #endif
1028 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1029 #else
1030 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1031 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1032 {"win32", 0, win32_start_timer,
1033 win32_stop_timer, NULL, &alarm_win32_data},
1034 #endif
1035 {NULL, }
1036 };
1037
1038 static void show_available_alarms(void)
1039 {
1040 int i;
1041
1042 printf("Available alarm timers, in order of precedence:\n");
1043 for (i = 0; alarm_timers[i].name; i++)
1044 printf("%s\n", alarm_timers[i].name);
1045 }
1046
1047 static void configure_alarms(char const *opt)
1048 {
1049 int i;
1050 int cur = 0;
1051 int count = ARRAY_SIZE(alarm_timers) - 1;
1052 char *arg;
1053 char *name;
1054 struct qemu_alarm_timer tmp;
1055
1056 if (!strcmp(opt, "?")) {
1057 show_available_alarms();
1058 exit(0);
1059 }
1060
1061 arg = strdup(opt);
1062
1063 /* Reorder the array */
1064 name = strtok(arg, ",");
1065 while (name) {
1066 for (i = 0; i < count && alarm_timers[i].name; i++) {
1067 if (!strcmp(alarm_timers[i].name, name))
1068 break;
1069 }
1070
1071 if (i == count) {
1072 fprintf(stderr, "Unknown clock %s\n", name);
1073 goto next;
1074 }
1075
1076 if (i < cur)
1077 /* Ignore */
1078 goto next;
1079
1080 /* Swap */
1081 tmp = alarm_timers[i];
1082 alarm_timers[i] = alarm_timers[cur];
1083 alarm_timers[cur] = tmp;
1084
1085 cur++;
1086 next:
1087 name = strtok(NULL, ",");
1088 }
1089
1090 free(arg);
1091
1092 if (cur) {
1093 /* Disable remaining timers */
1094 for (i = cur; i < count; i++)
1095 alarm_timers[i].name = NULL;
1096 } else {
1097 show_available_alarms();
1098 exit(1);
1099 }
1100 }
1101
1102 QEMUClock *rt_clock;
1103 QEMUClock *vm_clock;
1104
1105 static QEMUTimer *active_timers[2];
1106
1107 static QEMUClock *qemu_new_clock(int type)
1108 {
1109 QEMUClock *clock;
1110 clock = qemu_mallocz(sizeof(QEMUClock));
1111 clock->type = type;
1112 return clock;
1113 }
1114
1115 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1116 {
1117 QEMUTimer *ts;
1118
1119 ts = qemu_mallocz(sizeof(QEMUTimer));
1120 ts->clock = clock;
1121 ts->cb = cb;
1122 ts->opaque = opaque;
1123 return ts;
1124 }
1125
1126 void qemu_free_timer(QEMUTimer *ts)
1127 {
1128 qemu_free(ts);
1129 }
1130
1131 /* stop a timer, but do not dealloc it */
1132 void qemu_del_timer(QEMUTimer *ts)
1133 {
1134 QEMUTimer **pt, *t;
1135
1136 /* NOTE: this code must be signal safe because
1137 qemu_timer_expired() can be called from a signal. */
1138 pt = &active_timers[ts->clock->type];
1139 for(;;) {
1140 t = *pt;
1141 if (!t)
1142 break;
1143 if (t == ts) {
1144 *pt = t->next;
1145 break;
1146 }
1147 pt = &t->next;
1148 }
1149 }
1150
1151 /* modify the current timer so that it will be fired when current_time
1152 >= expire_time. The corresponding callback will be called. */
1153 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1154 {
1155 QEMUTimer **pt, *t;
1156
1157 qemu_del_timer(ts);
1158
1159 /* add the timer in the sorted list */
1160 /* NOTE: this code must be signal safe because
1161 qemu_timer_expired() can be called from a signal. */
1162 pt = &active_timers[ts->clock->type];
1163 for(;;) {
1164 t = *pt;
1165 if (!t)
1166 break;
1167 if (t->expire_time > expire_time)
1168 break;
1169 pt = &t->next;
1170 }
1171 ts->expire_time = expire_time;
1172 ts->next = *pt;
1173 *pt = ts;
1174
1175 /* Rearm if necessary */
1176 if (pt == &active_timers[ts->clock->type]) {
1177 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1178 qemu_rearm_alarm_timer(alarm_timer);
1179 }
1180 /* Interrupt execution to force deadline recalculation. */
1181 if (use_icount && cpu_single_env) {
1182 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
1183 }
1184 }
1185 }
1186
1187 int qemu_timer_pending(QEMUTimer *ts)
1188 {
1189 QEMUTimer *t;
1190 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1191 if (t == ts)
1192 return 1;
1193 }
1194 return 0;
1195 }
1196
1197 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1198 {
1199 if (!timer_head)
1200 return 0;
1201 return (timer_head->expire_time <= current_time);
1202 }
1203
1204 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1205 {
1206 QEMUTimer *ts;
1207
1208 for(;;) {
1209 ts = *ptimer_head;
1210 if (!ts || ts->expire_time > current_time)
1211 break;
1212 /* remove timer from the list before calling the callback */
1213 *ptimer_head = ts->next;
1214 ts->next = NULL;
1215
1216 /* run the callback (the timer list can be modified) */
1217 ts->cb(ts->opaque);
1218 }
1219 }
1220
1221 int64_t qemu_get_clock(QEMUClock *clock)
1222 {
1223 switch(clock->type) {
1224 case QEMU_TIMER_REALTIME:
1225 return get_clock() / 1000000;
1226 default:
1227 case QEMU_TIMER_VIRTUAL:
1228 if (use_icount) {
1229 return cpu_get_icount();
1230 } else {
1231 return cpu_get_clock();
1232 }
1233 }
1234 }
1235
1236 static void init_timers(void)
1237 {
1238 init_get_clock();
1239 ticks_per_sec = QEMU_TIMER_BASE;
1240 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1241 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1242 }
1243
1244 /* save a timer */
1245 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1246 {
1247 uint64_t expire_time;
1248
1249 if (qemu_timer_pending(ts)) {
1250 expire_time = ts->expire_time;
1251 } else {
1252 expire_time = -1;
1253 }
1254 qemu_put_be64(f, expire_time);
1255 }
1256
1257 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1258 {
1259 uint64_t expire_time;
1260
1261 expire_time = qemu_get_be64(f);
1262 if (expire_time != -1) {
1263 qemu_mod_timer(ts, expire_time);
1264 } else {
1265 qemu_del_timer(ts);
1266 }
1267 }
1268
1269 static void timer_save(QEMUFile *f, void *opaque)
1270 {
1271 if (cpu_ticks_enabled) {
1272 hw_error("cannot save state if virtual timers are running");
1273 }
1274 qemu_put_be64(f, cpu_ticks_offset);
1275 qemu_put_be64(f, ticks_per_sec);
1276 qemu_put_be64(f, cpu_clock_offset);
1277 }
1278
1279 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1280 {
1281 if (version_id != 1 && version_id != 2)
1282 return -EINVAL;
1283 if (cpu_ticks_enabled) {
1284 return -EINVAL;
1285 }
1286 cpu_ticks_offset=qemu_get_be64(f);
1287 ticks_per_sec=qemu_get_be64(f);
1288 if (version_id == 2) {
1289 cpu_clock_offset=qemu_get_be64(f);
1290 }
1291 return 0;
1292 }
1293
1294 #ifdef _WIN32
1295 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1296 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1297 #else
1298 static void host_alarm_handler(int host_signum)
1299 #endif
1300 {
1301 #if 0
1302 #define DISP_FREQ 1000
1303 {
1304 static int64_t delta_min = INT64_MAX;
1305 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1306 static int count;
1307 ti = qemu_get_clock(vm_clock);
1308 if (last_clock != 0) {
1309 delta = ti - last_clock;
1310 if (delta < delta_min)
1311 delta_min = delta;
1312 if (delta > delta_max)
1313 delta_max = delta;
1314 delta_cum += delta;
1315 if (++count == DISP_FREQ) {
1316 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1317 muldiv64(delta_min, 1000000, ticks_per_sec),
1318 muldiv64(delta_max, 1000000, ticks_per_sec),
1319 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1320 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1321 count = 0;
1322 delta_min = INT64_MAX;
1323 delta_max = 0;
1324 delta_cum = 0;
1325 }
1326 }
1327 last_clock = ti;
1328 }
1329 #endif
1330 if (alarm_has_dynticks(alarm_timer) ||
1331 (!use_icount &&
1332 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1333 qemu_get_clock(vm_clock))) ||
1334 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1335 qemu_get_clock(rt_clock))) {
1336 CPUState *env = next_cpu;
1337
1338 #ifdef _WIN32
1339 struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1340 SetEvent(data->host_alarm);
1341 #else
1342 static const char byte = 0;
1343 write(alarm_timer_wfd, &byte, sizeof(byte));
1344 #endif
1345 alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1346
1347 if (env) {
1348 /* stop the currently executing cpu because a timer occured */
1349 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1350 #ifdef USE_KQEMU
1351 if (env->kqemu_enabled) {
1352 kqemu_cpu_interrupt(env);
1353 }
1354 #endif
1355 }
1356 event_pending = 1;
1357 }
1358 }
1359
1360 static int64_t qemu_next_deadline(void)
1361 {
1362 int64_t delta;
1363
1364 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1365 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1366 qemu_get_clock(vm_clock);
1367 } else {
1368 /* To avoid problems with overflow limit this to 2^32. */
1369 delta = INT32_MAX;
1370 }
1371
1372 if (delta < 0)
1373 delta = 0;
1374
1375 return delta;
1376 }
1377
1378 #if defined(__linux__) || defined(_WIN32)
1379 static uint64_t qemu_next_deadline_dyntick(void)
1380 {
1381 int64_t delta;
1382 int64_t rtdelta;
1383
1384 if (use_icount)
1385 delta = INT32_MAX;
1386 else
1387 delta = (qemu_next_deadline() + 999) / 1000;
1388
1389 if (active_timers[QEMU_TIMER_REALTIME]) {
1390 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1391 qemu_get_clock(rt_clock))*1000;
1392 if (rtdelta < delta)
1393 delta = rtdelta;
1394 }
1395
1396 if (delta < MIN_TIMER_REARM_US)
1397 delta = MIN_TIMER_REARM_US;
1398
1399 return delta;
1400 }
1401 #endif
1402
1403 #ifndef _WIN32
1404
1405 /* Sets a specific flag */
1406 static int fcntl_setfl(int fd, int flag)
1407 {
1408 int flags;
1409
1410 flags = fcntl(fd, F_GETFL);
1411 if (flags == -1)
1412 return -errno;
1413
1414 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1415 return -errno;
1416
1417 return 0;
1418 }
1419
1420 #if defined(__linux__)
1421
1422 #define RTC_FREQ 1024
1423
1424 static void enable_sigio_timer(int fd)
1425 {
1426 struct sigaction act;
1427
1428 /* timer signal */
1429 sigfillset(&act.sa_mask);
1430 act.sa_flags = 0;
1431 act.sa_handler = host_alarm_handler;
1432
1433 sigaction(SIGIO, &act, NULL);
1434 fcntl_setfl(fd, O_ASYNC);
1435 fcntl(fd, F_SETOWN, getpid());
1436 }
1437
1438 static int hpet_start_timer(struct qemu_alarm_timer *t)
1439 {
1440 struct hpet_info info;
1441 int r, fd;
1442
1443 fd = open("/dev/hpet", O_RDONLY);
1444 if (fd < 0)
1445 return -1;
1446
1447 /* Set frequency */
1448 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1449 if (r < 0) {
1450 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1451 "error, but for better emulation accuracy type:\n"
1452 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1453 goto fail;
1454 }
1455
1456 /* Check capabilities */
1457 r = ioctl(fd, HPET_INFO, &info);
1458 if (r < 0)
1459 goto fail;
1460
1461 /* Enable periodic mode */
1462 r = ioctl(fd, HPET_EPI, 0);
1463 if (info.hi_flags && (r < 0))
1464 goto fail;
1465
1466 /* Enable interrupt */
1467 r = ioctl(fd, HPET_IE_ON, 0);
1468 if (r < 0)
1469 goto fail;
1470
1471 enable_sigio_timer(fd);
1472 t->priv = (void *)(long)fd;
1473
1474 return 0;
1475 fail:
1476 close(fd);
1477 return -1;
1478 }
1479
1480 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1481 {
1482 int fd = (long)t->priv;
1483
1484 close(fd);
1485 }
1486
1487 static int rtc_start_timer(struct qemu_alarm_timer *t)
1488 {
1489 int rtc_fd;
1490 unsigned long current_rtc_freq = 0;
1491
1492 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1493 if (rtc_fd < 0)
1494 return -1;
1495 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1496 if (current_rtc_freq != RTC_FREQ &&
1497 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1498 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1499 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1500 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1501 goto fail;
1502 }
1503 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1504 fail:
1505 close(rtc_fd);
1506 return -1;
1507 }
1508
1509 enable_sigio_timer(rtc_fd);
1510
1511 t->priv = (void *)(long)rtc_fd;
1512
1513 return 0;
1514 }
1515
1516 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1517 {
1518 int rtc_fd = (long)t->priv;
1519
1520 close(rtc_fd);
1521 }
1522
1523 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1524 {
1525 struct sigevent ev;
1526 timer_t host_timer;
1527 struct sigaction act;
1528
1529 sigfillset(&act.sa_mask);
1530 act.sa_flags = 0;
1531 act.sa_handler = host_alarm_handler;
1532
1533 sigaction(SIGALRM, &act, NULL);
1534
1535 ev.sigev_value.sival_int = 0;
1536 ev.sigev_notify = SIGEV_SIGNAL;
1537 ev.sigev_signo = SIGALRM;
1538
1539 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1540 perror("timer_create");
1541
1542 /* disable dynticks */
1543 fprintf(stderr, "Dynamic Ticks disabled\n");
1544
1545 return -1;
1546 }
1547
1548 t->priv = (void *)(long)host_timer;
1549
1550 return 0;
1551 }
1552
1553 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1554 {
1555 timer_t host_timer = (timer_t)(long)t->priv;
1556
1557 timer_delete(host_timer);
1558 }
1559
1560 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1561 {
1562 timer_t host_timer = (timer_t)(long)t->priv;
1563 struct itimerspec timeout;
1564 int64_t nearest_delta_us = INT64_MAX;
1565 int64_t current_us;
1566
1567 if (!active_timers[QEMU_TIMER_REALTIME] &&
1568 !active_timers[QEMU_TIMER_VIRTUAL])
1569 return;
1570
1571 nearest_delta_us = qemu_next_deadline_dyntick();
1572
1573 /* check whether a timer is already running */
1574 if (timer_gettime(host_timer, &timeout)) {
1575 perror("gettime");
1576 fprintf(stderr, "Internal timer error: aborting\n");
1577 exit(1);
1578 }
1579 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1580 if (current_us && current_us <= nearest_delta_us)
1581 return;
1582
1583 timeout.it_interval.tv_sec = 0;
1584 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1585 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1586 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1587 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1588 perror("settime");
1589 fprintf(stderr, "Internal timer error: aborting\n");
1590 exit(1);
1591 }
1592 }
1593
1594 #endif /* defined(__linux__) */
1595
1596 static int unix_start_timer(struct qemu_alarm_timer *t)
1597 {
1598 struct sigaction act;
1599 struct itimerval itv;
1600 int err;
1601
1602 /* timer signal */
1603 sigfillset(&act.sa_mask);
1604 act.sa_flags = 0;
1605 act.sa_handler = host_alarm_handler;
1606
1607 sigaction(SIGALRM, &act, NULL);
1608
1609 itv.it_interval.tv_sec = 0;
1610 /* for i386 kernel 2.6 to get 1 ms */
1611 itv.it_interval.tv_usec = 999;
1612 itv.it_value.tv_sec = 0;
1613 itv.it_value.tv_usec = 10 * 1000;
1614
1615 err = setitimer(ITIMER_REAL, &itv, NULL);
1616 if (err)
1617 return -1;
1618
1619 return 0;
1620 }
1621
1622 static void unix_stop_timer(struct qemu_alarm_timer *t)
1623 {
1624 struct itimerval itv;
1625
1626 memset(&itv, 0, sizeof(itv));
1627 setitimer(ITIMER_REAL, &itv, NULL);
1628 }
1629
1630 #endif /* !defined(_WIN32) */
1631
1632 static void try_to_rearm_timer(void *opaque)
1633 {
1634 struct qemu_alarm_timer *t = opaque;
1635 #ifndef _WIN32
1636 ssize_t len;
1637
1638 /* Drain the notify pipe */
1639 do {
1640 char buffer[512];
1641 len = read(alarm_timer_rfd, buffer, sizeof(buffer));
1642 } while ((len == -1 && errno == EINTR) || len > 0);
1643 #endif
1644
1645 if (t->flags & ALARM_FLAG_EXPIRED) {
1646 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
1647 qemu_rearm_alarm_timer(alarm_timer);
1648 }
1649 }
1650
1651 #ifdef _WIN32
1652
1653 static int win32_start_timer(struct qemu_alarm_timer *t)
1654 {
1655 TIMECAPS tc;
1656 struct qemu_alarm_win32 *data = t->priv;
1657 UINT flags;
1658
1659 data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1660 if (!data->host_alarm) {
1661 perror("Failed CreateEvent");
1662 return -1;
1663 }
1664
1665 memset(&tc, 0, sizeof(tc));
1666 timeGetDevCaps(&tc, sizeof(tc));
1667
1668 if (data->period < tc.wPeriodMin)
1669 data->period = tc.wPeriodMin;
1670
1671 timeBeginPeriod(data->period);
1672
1673 flags = TIME_CALLBACK_FUNCTION;
1674 if (alarm_has_dynticks(t))
1675 flags |= TIME_ONESHOT;
1676 else
1677 flags |= TIME_PERIODIC;
1678
1679 data->timerId = timeSetEvent(1, // interval (ms)
1680 data->period, // resolution
1681 host_alarm_handler, // function
1682 (DWORD)t, // parameter
1683 flags);
1684
1685 if (!data->timerId) {
1686 perror("Failed to initialize win32 alarm timer");
1687
1688 timeEndPeriod(data->period);
1689 CloseHandle(data->host_alarm);
1690 return -1;
1691 }
1692
1693 qemu_add_wait_object(data->host_alarm, try_to_rearm_timer, t);
1694
1695 return 0;
1696 }
1697
1698 static void win32_stop_timer(struct qemu_alarm_timer *t)
1699 {
1700 struct qemu_alarm_win32 *data = t->priv;
1701
1702 timeKillEvent(data->timerId);
1703 timeEndPeriod(data->period);
1704
1705 CloseHandle(data->host_alarm);
1706 }
1707
1708 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1709 {
1710 struct qemu_alarm_win32 *data = t->priv;
1711 uint64_t nearest_delta_us;
1712
1713 if (!active_timers[QEMU_TIMER_REALTIME] &&
1714 !active_timers[QEMU_TIMER_VIRTUAL])
1715 return;
1716
1717 nearest_delta_us = qemu_next_deadline_dyntick();
1718 nearest_delta_us /= 1000;
1719
1720 timeKillEvent(data->timerId);
1721
1722 data->timerId = timeSetEvent(1,
1723 data->period,
1724 host_alarm_handler,
1725 (DWORD)t,
1726 TIME_ONESHOT | TIME_PERIODIC);
1727
1728 if (!data->timerId) {
1729 perror("Failed to re-arm win32 alarm timer");
1730
1731 timeEndPeriod(data->period);
1732 CloseHandle(data->host_alarm);
1733 exit(1);
1734 }
1735 }
1736
1737 #endif /* _WIN32 */
1738
1739 static int init_timer_alarm(void)
1740 {
1741 struct qemu_alarm_timer *t = NULL;
1742 int i, err = -1;
1743
1744 #ifndef _WIN32
1745 int fds[2];
1746
1747 err = pipe(fds);
1748 if (err == -1)
1749 return -errno;
1750
1751 err = fcntl_setfl(fds[0], O_NONBLOCK);
1752 if (err < 0)
1753 goto fail;
1754
1755 err = fcntl_setfl(fds[1], O_NONBLOCK);
1756 if (err < 0)
1757 goto fail;
1758
1759 alarm_timer_rfd = fds[0];
1760 alarm_timer_wfd = fds[1];
1761 #endif
1762
1763 for (i = 0; alarm_timers[i].name; i++) {
1764 t = &alarm_timers[i];
1765
1766 err = t->start(t);
1767 if (!err)
1768 break;
1769 }
1770
1771 if (err) {
1772 err = -ENOENT;
1773 goto fail;
1774 }
1775
1776 #ifndef _WIN32
1777 qemu_set_fd_handler2(alarm_timer_rfd, NULL,
1778 try_to_rearm_timer, NULL, t);
1779 #endif
1780
1781 alarm_timer = t;
1782
1783 return 0;
1784
1785 fail:
1786 #ifndef _WIN32
1787 close(fds[0]);
1788 close(fds[1]);
1789 #endif
1790 return err;
1791 }
1792
1793 static void quit_timers(void)
1794 {
1795 alarm_timer->stop(alarm_timer);
1796 alarm_timer = NULL;
1797 }
1798
1799 /***********************************************************/
1800 /* host time/date access */
1801 void qemu_get_timedate(struct tm *tm, int offset)
1802 {
1803 time_t ti;
1804 struct tm *ret;
1805
1806 time(&ti);
1807 ti += offset;
1808 if (rtc_date_offset == -1) {
1809 if (rtc_utc)
1810 ret = gmtime(&ti);
1811 else
1812 ret = localtime(&ti);
1813 } else {
1814 ti -= rtc_date_offset;
1815 ret = gmtime(&ti);
1816 }
1817
1818 memcpy(tm, ret, sizeof(struct tm));
1819 }
1820
1821 int qemu_timedate_diff(struct tm *tm)
1822 {
1823 time_t seconds;
1824
1825 if (rtc_date_offset == -1)
1826 if (rtc_utc)
1827 seconds = mktimegm(tm);
1828 else
1829 seconds = mktime(tm);
1830 else
1831 seconds = mktimegm(tm) + rtc_date_offset;
1832
1833 return seconds - time(NULL);
1834 }
1835
1836 #ifdef _WIN32
1837 static void socket_cleanup(void)
1838 {
1839 WSACleanup();
1840 }
1841
1842 static int socket_init(void)
1843 {
1844 WSADATA Data;
1845 int ret, err;
1846
1847 ret = WSAStartup(MAKEWORD(2,2), &Data);
1848 if (ret != 0) {
1849 err = WSAGetLastError();
1850 fprintf(stderr, "WSAStartup: %d\n", err);
1851 return -1;
1852 }
1853 atexit(socket_cleanup);
1854 return 0;
1855 }
1856 #endif
1857
1858 const char *get_opt_name(char *buf, int buf_size, const char *p)
1859 {
1860 char *q;
1861
1862 q = buf;
1863 while (*p != '\0' && *p != '=') {
1864 if (q && (q - buf) < buf_size - 1)
1865 *q++ = *p;
1866 p++;
1867 }
1868 if (q)
1869 *q = '\0';
1870
1871 return p;
1872 }
1873
1874 const char *get_opt_value(char *buf, int buf_size, const char *p)
1875 {
1876 char *q;
1877
1878 q = buf;
1879 while (*p != '\0') {
1880 if (*p == ',') {
1881 if (*(p + 1) != ',')
1882 break;
1883 p++;
1884 }
1885 if (q && (q - buf) < buf_size - 1)
1886 *q++ = *p;
1887 p++;
1888 }
1889 if (q)
1890 *q = '\0';
1891
1892 return p;
1893 }
1894
1895 int get_param_value(char *buf, int buf_size,
1896 const char *tag, const char *str)
1897 {
1898 const char *p;
1899 char option[128];
1900
1901 p = str;
1902 for(;;) {
1903 p = get_opt_name(option, sizeof(option), p);
1904 if (*p != '=')
1905 break;
1906 p++;
1907 if (!strcmp(tag, option)) {
1908 (void)get_opt_value(buf, buf_size, p);
1909 return strlen(buf);
1910 } else {
1911 p = get_opt_value(NULL, 0, p);
1912 }
1913 if (*p != ',')
1914 break;
1915 p++;
1916 }
1917 return 0;
1918 }
1919
1920 int check_params(char *buf, int buf_size,
1921 const char * const *params, const char *str)
1922 {
1923 const char *p;
1924 int i;
1925
1926 p = str;
1927 for(;;) {
1928 p = get_opt_name(buf, buf_size, p);
1929 if (*p != '=')
1930 return -1;
1931 p++;
1932 for(i = 0; params[i] != NULL; i++)
1933 if (!strcmp(params[i], buf))
1934 break;
1935 if (params[i] == NULL)
1936 return -1;
1937 p = get_opt_value(NULL, 0, p);
1938 if (*p != ',')
1939 break;
1940 p++;
1941 }
1942 return 0;
1943 }
1944
1945 /***********************************************************/
1946 /* Bluetooth support */
1947 static int nb_hcis;
1948 static int cur_hci;
1949 static struct HCIInfo *hci_table[MAX_NICS];
1950
1951 static struct bt_vlan_s {
1952 struct bt_scatternet_s net;
1953 int id;
1954 struct bt_vlan_s *next;
1955 } *first_bt_vlan;
1956
1957 /* find or alloc a new bluetooth "VLAN" */
1958 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1959 {
1960 struct bt_vlan_s **pvlan, *vlan;
1961 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1962 if (vlan->id == id)
1963 return &vlan->net;
1964 }
1965 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1966 vlan->id = id;
1967 pvlan = &first_bt_vlan;
1968 while (*pvlan != NULL)
1969 pvlan = &(*pvlan)->next;
1970 *pvlan = vlan;
1971 return &vlan->net;
1972 }
1973
1974 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1975 {
1976 }
1977
1978 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1979 {
1980 return -ENOTSUP;
1981 }
1982
1983 static struct HCIInfo null_hci = {
1984 .cmd_send = null_hci_send,
1985 .sco_send = null_hci_send,
1986 .acl_send = null_hci_send,
1987 .bdaddr_set = null_hci_addr_set,
1988 };
1989
1990 struct HCIInfo *qemu_next_hci(void)
1991 {
1992 if (cur_hci == nb_hcis)
1993 return &null_hci;
1994
1995 return hci_table[cur_hci++];
1996 }
1997
1998 static struct HCIInfo *hci_init(const char *str)
1999 {
2000 char *endp;
2001 struct bt_scatternet_s *vlan = 0;
2002
2003 if (!strcmp(str, "null"))
2004 /* null */
2005 return &null_hci;
2006 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
2007 /* host[:hciN] */
2008 return bt_host_hci(str[4] ? str + 5 : "hci0");
2009 else if (!strncmp(str, "hci", 3)) {
2010 /* hci[,vlan=n] */
2011 if (str[3]) {
2012 if (!strncmp(str + 3, ",vlan=", 6)) {
2013 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
2014 if (*endp)
2015 vlan = 0;
2016 }
2017 } else
2018 vlan = qemu_find_bt_vlan(0);
2019 if (vlan)
2020 return bt_new_hci(vlan);
2021 }
2022
2023 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
2024
2025 return 0;
2026 }
2027
2028 static int bt_hci_parse(const char *str)
2029 {
2030 struct HCIInfo *hci;
2031 bdaddr_t bdaddr;
2032
2033 if (nb_hcis >= MAX_NICS) {
2034 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
2035 return -1;
2036 }
2037
2038 hci = hci_init(str);
2039 if (!hci)
2040 return -1;
2041
2042 bdaddr.b[0] = 0x52;
2043 bdaddr.b[1] = 0x54;
2044 bdaddr.b[2] = 0x00;
2045 bdaddr.b[3] = 0x12;
2046 bdaddr.b[4] = 0x34;
2047 bdaddr.b[5] = 0x56 + nb_hcis;
2048 hci->bdaddr_set(hci, bdaddr.b);
2049
2050 hci_table[nb_hcis++] = hci;
2051
2052 return 0;
2053 }
2054
2055 static void bt_vhci_add(int vlan_id)
2056 {
2057 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
2058
2059 if (!vlan->slave)
2060 fprintf(stderr, "qemu: warning: adding a VHCI to "
2061 "an empty scatternet %i\n", vlan_id);
2062
2063 bt_vhci_init(bt_new_hci(vlan));
2064 }
2065
2066 static struct bt_device_s *bt_device_add(const char *opt)
2067 {
2068 struct bt_scatternet_s *vlan;
2069 int vlan_id = 0;
2070 char *endp = strstr(opt, ",vlan=");
2071 int len = (endp ? endp - opt : strlen(opt)) + 1;
2072 char devname[10];
2073
2074 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2075
2076 if (endp) {
2077 vlan_id = strtol(endp + 6, &endp, 0);
2078 if (*endp) {
2079 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2080 return 0;
2081 }
2082 }
2083
2084 vlan = qemu_find_bt_vlan(vlan_id);
2085
2086 if (!vlan->slave)
2087 fprintf(stderr, "qemu: warning: adding a slave device to "
2088 "an empty scatternet %i\n", vlan_id);
2089
2090 if (!strcmp(devname, "keyboard"))
2091 return bt_keyboard_init(vlan);
2092
2093 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2094 return 0;
2095 }
2096
2097 static int bt_parse(const char *opt)
2098 {
2099 const char *endp, *p;
2100 int vlan;
2101
2102 if (strstart(opt, "hci", &endp)) {
2103 if (!*endp || *endp == ',') {
2104 if (*endp)
2105 if (!strstart(endp, ",vlan=", 0))
2106 opt = endp + 1;
2107
2108 return bt_hci_parse(opt);
2109 }
2110 } else if (strstart(opt, "vhci", &endp)) {
2111 if (!*endp || *endp == ',') {
2112 if (*endp) {
2113 if (strstart(endp, ",vlan=", &p)) {
2114 vlan = strtol(p, (char **) &endp, 0);
2115 if (*endp) {
2116 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2117 return 1;
2118 }
2119 } else {
2120 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2121 return 1;
2122 }
2123 } else
2124 vlan = 0;
2125
2126 bt_vhci_add(vlan);
2127 return 0;
2128 }
2129 } else if (strstart(opt, "device:", &endp))
2130 return !bt_device_add(endp);
2131
2132 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2133 return 1;
2134 }
2135
2136 /***********************************************************/
2137 /* QEMU Block devices */
2138
2139 #define HD_ALIAS "index=%d,media=disk"
2140 #ifdef TARGET_PPC
2141 #define CDROM_ALIAS "index=1,media=cdrom"
2142 #else
2143 #define CDROM_ALIAS "index=2,media=cdrom"
2144 #endif
2145 #define FD_ALIAS "index=%d,if=floppy"
2146 #define PFLASH_ALIAS "if=pflash"
2147 #define MTD_ALIAS "if=mtd"
2148 #define SD_ALIAS "index=0,if=sd"
2149
2150 static int drive_opt_get_free_idx(void)
2151 {
2152 int index;
2153
2154 for (index = 0; index < MAX_DRIVES; index++)
2155 if (!drives_opt[index].used) {
2156 drives_opt[index].used = 1;
2157 return index;
2158 }
2159
2160 return -1;
2161 }
2162
2163 static int drive_get_free_idx(void)
2164 {
2165 int index;
2166
2167 for (index = 0; index < MAX_DRIVES; index++)
2168 if (!drives_table[index].used) {
2169 drives_table[index].used = 1;
2170 return index;
2171 }
2172
2173 return -1;
2174 }
2175
2176 int drive_add(const char *file, const char *fmt, ...)
2177 {
2178 va_list ap;
2179 int index = drive_opt_get_free_idx();
2180
2181 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2182 fprintf(stderr, "qemu: too many drives\n");
2183 return -1;
2184 }
2185
2186 drives_opt[index].file = file;
2187 va_start(ap, fmt);
2188 vsnprintf(drives_opt[index].opt,
2189 sizeof(drives_opt[0].opt), fmt, ap);
2190 va_end(ap);
2191
2192 nb_drives_opt++;
2193 return index;
2194 }
2195
2196 void drive_remove(int index)
2197 {
2198 drives_opt[index].used = 0;
2199 nb_drives_opt--;
2200 }
2201
2202 int drive_get_index(BlockInterfaceType type, int bus, int unit)
2203 {
2204 int index;
2205
2206 /* seek interface, bus and unit */
2207
2208 for (index = 0; index < MAX_DRIVES; index++)
2209 if (drives_table[index].type == type &&
2210 drives_table[index].bus == bus &&
2211 drives_table[index].unit == unit &&
2212 drives_table[index].used)
2213 return index;
2214
2215 return -1;
2216 }
2217
2218 int drive_get_max_bus(BlockInterfaceType type)
2219 {
2220 int max_bus;
2221 int index;
2222
2223 max_bus = -1;
2224 for (index = 0; index < nb_drives; index++) {
2225 if(drives_table[index].type == type &&
2226 drives_table[index].bus > max_bus)
2227 max_bus = drives_table[index].bus;
2228 }
2229 return max_bus;
2230 }
2231
2232 const char *drive_get_serial(BlockDriverState *bdrv)
2233 {
2234 int index;
2235
2236 for (index = 0; index < nb_drives; index++)
2237 if (drives_table[index].bdrv == bdrv)
2238 return drives_table[index].serial;
2239
2240 return "\0";
2241 }
2242
2243 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2244 {
2245 int index;
2246
2247 for (index = 0; index < nb_drives; index++)
2248 if (drives_table[index].bdrv == bdrv)
2249 return drives_table[index].onerror;
2250
2251 return BLOCK_ERR_STOP_ENOSPC;
2252 }
2253
2254 static void bdrv_format_print(void *opaque, const char *name)
2255 {
2256 fprintf(stderr, " %s", name);
2257 }
2258
2259 void drive_uninit(BlockDriverState *bdrv)
2260 {
2261 int i;
2262
2263 for (i = 0; i < MAX_DRIVES; i++)
2264 if (drives_table[i].bdrv == bdrv) {
2265 drives_table[i].bdrv = NULL;
2266 drives_table[i].used = 0;
2267 drive_remove(drives_table[i].drive_opt_idx);
2268 nb_drives--;
2269 break;
2270 }
2271 }
2272
2273 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2274 {
2275 char buf[128];
2276 char file[1024];
2277 char devname[128];
2278 char serial[21];
2279 const char *mediastr = "";
2280 BlockInterfaceType type;
2281 enum { MEDIA_DISK, MEDIA_CDROM } media;
2282 int bus_id, unit_id;
2283 int cyls, heads, secs, translation;
2284 BlockDriverState *bdrv;
2285 BlockDriver *drv = NULL;
2286 QEMUMachine *machine = opaque;
2287 int max_devs;
2288 int index;
2289 int cache;
2290 int bdrv_flags, onerror;
2291 int drives_table_idx;
2292 char *str = arg->opt;
2293 static const char * const params[] = { "bus", "unit", "if", "index",
2294 "cyls", "heads", "secs", "trans",
2295 "media", "snapshot", "file",
2296 "cache", "format", "serial", "werror",
2297 NULL };
2298
2299 if (check_params(buf, sizeof(buf), params, str) < 0) {
2300 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2301 buf, str);
2302 return -1;
2303 }
2304
2305 file[0] = 0;
2306 cyls = heads = secs = 0;
2307 bus_id = 0;
2308 unit_id = -1;
2309 translation = BIOS_ATA_TRANSLATION_AUTO;
2310 index = -1;
2311 cache = 3;
2312
2313 if (machine->use_scsi) {
2314 type = IF_SCSI;
2315 max_devs = MAX_SCSI_DEVS;
2316 pstrcpy(devname, sizeof(devname), "scsi");
2317 } else {
2318 type = IF_IDE;
2319 max_devs = MAX_IDE_DEVS;
2320 pstrcpy(devname, sizeof(devname), "ide");
2321 }
2322 media = MEDIA_DISK;
2323
2324 /* extract parameters */
2325
2326 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2327 bus_id = strtol(buf, NULL, 0);
2328 if (bus_id < 0) {
2329 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2330 return -1;
2331 }
2332 }
2333
2334 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2335 unit_id = strtol(buf, NULL, 0);
2336 if (unit_id < 0) {
2337 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2338 return -1;
2339 }
2340 }
2341
2342 if (get_param_value(buf, sizeof(buf), "if", str)) {
2343 pstrcpy(devname, sizeof(devname), buf);
2344 if (!strcmp(buf, "ide")) {
2345 type = IF_IDE;
2346 max_devs = MAX_IDE_DEVS;
2347 } else if (!strcmp(buf, "scsi")) {
2348 type = IF_SCSI;
2349 max_devs = MAX_SCSI_DEVS;
2350 } else if (!strcmp(buf, "floppy")) {
2351 type = IF_FLOPPY;
2352 max_devs = 0;
2353 } else if (!strcmp(buf, "pflash")) {
2354 type = IF_PFLASH;
2355 max_devs = 0;
2356 } else if (!strcmp(buf, "mtd")) {
2357 type = IF_MTD;
2358 max_devs = 0;
2359 } else if (!strcmp(buf, "sd")) {
2360 type = IF_SD;
2361 max_devs = 0;
2362 } else if (!strcmp(buf, "virtio")) {
2363 type = IF_VIRTIO;
2364 max_devs = 0;
2365 } else {
2366 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2367 return -1;
2368 }
2369 }
2370
2371 if (get_param_value(buf, sizeof(buf), "index", str)) {
2372 index = strtol(buf, NULL, 0);
2373 if (index < 0) {
2374 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2375 return -1;
2376 }
2377 }
2378
2379 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2380 cyls = strtol(buf, NULL, 0);
2381 }
2382
2383 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2384 heads = strtol(buf, NULL, 0);
2385 }
2386
2387 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2388 secs = strtol(buf, NULL, 0);
2389 }
2390
2391 if (cyls || heads || secs) {
2392 if (cyls < 1 || cyls > 16383) {
2393 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2394 return -1;
2395 }
2396 if (heads < 1 || heads > 16) {
2397 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2398 return -1;
2399 }
2400 if (secs < 1 || secs > 63) {
2401 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2402 return -1;
2403 }
2404 }
2405
2406 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2407 if (!cyls) {
2408 fprintf(stderr,
2409 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2410 str);
2411 return -1;
2412 }
2413 if (!strcmp(buf, "none"))
2414 translation = BIOS_ATA_TRANSLATION_NONE;
2415 else if (!strcmp(buf, "lba"))
2416 translation = BIOS_ATA_TRANSLATION_LBA;
2417 else if (!strcmp(buf, "auto"))
2418 translation = BIOS_ATA_TRANSLATION_AUTO;
2419 else {
2420 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2421 return -1;
2422 }
2423 }
2424
2425 if (get_param_value(buf, sizeof(buf), "media", str)) {
2426 if (!strcmp(buf, "disk")) {
2427 media = MEDIA_DISK;
2428 } else if (!strcmp(buf, "cdrom")) {
2429 if (cyls || secs || heads) {
2430 fprintf(stderr,
2431 "qemu: '%s' invalid physical CHS format\n", str);
2432 return -1;
2433 }
2434 media = MEDIA_CDROM;
2435 } else {
2436 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2437 return -1;
2438 }
2439 }
2440
2441 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2442 if (!strcmp(buf, "on"))
2443 snapshot = 1;
2444 else if (!strcmp(buf, "off"))
2445 snapshot = 0;
2446 else {
2447 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2448 return -1;
2449 }
2450 }
2451
2452 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2453 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2454 cache = 0;
2455 else if (!strcmp(buf, "writethrough"))
2456 cache = 1;
2457 else if (!strcmp(buf, "writeback"))
2458 cache = 2;
2459 else {
2460 fprintf(stderr, "qemu: invalid cache option\n");
2461 return -1;
2462 }
2463 }
2464
2465 if (get_param_value(buf, sizeof(buf), "format", str)) {
2466 if (strcmp(buf, "?") == 0) {
2467 fprintf(stderr, "qemu: Supported formats:");
2468 bdrv_iterate_format(bdrv_format_print, NULL);
2469 fprintf(stderr, "\n");
2470 return -1;
2471 }
2472 drv = bdrv_find_format(buf);
2473 if (!drv) {
2474 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2475 return -1;
2476 }
2477 }
2478
2479 if (arg->file == NULL)
2480 get_param_value(file, sizeof(file), "file", str);
2481 else
2482 pstrcpy(file, sizeof(file), arg->file);
2483
2484 if (!get_param_value(serial, sizeof(serial), "serial", str))
2485 memset(serial, 0, sizeof(serial));
2486
2487 onerror = BLOCK_ERR_STOP_ENOSPC;
2488 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2489 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2490 fprintf(stderr, "werror is no supported by this format\n");
2491 return -1;
2492 }
2493 if (!strcmp(buf, "ignore"))
2494 onerror = BLOCK_ERR_IGNORE;
2495 else if (!strcmp(buf, "enospc"))
2496 onerror = BLOCK_ERR_STOP_ENOSPC;
2497 else if (!strcmp(buf, "stop"))
2498 onerror = BLOCK_ERR_STOP_ANY;
2499 else if (!strcmp(buf, "report"))
2500 onerror = BLOCK_ERR_REPORT;
2501 else {
2502 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2503 return -1;
2504 }
2505 }
2506
2507 /* compute bus and unit according index */
2508
2509 if (index != -1) {
2510 if (bus_id != 0 || unit_id != -1) {
2511 fprintf(stderr,
2512 "qemu: '%s' index cannot be used with bus and unit\n", str);
2513 return -1;
2514 }
2515 if (max_devs == 0)
2516 {
2517 unit_id = index;
2518 bus_id = 0;
2519 } else {
2520 unit_id = index % max_devs;
2521 bus_id = index / max_devs;
2522 }
2523 }
2524
2525 /* if user doesn't specify a unit_id,
2526 * try to find the first free
2527 */
2528
2529 if (unit_id == -1) {
2530 unit_id = 0;
2531 while (drive_get_index(type, bus_id, unit_id) != -1) {
2532 unit_id++;
2533 if (max_devs && unit_id >= max_devs) {
2534 unit_id -= max_devs;
2535 bus_id++;
2536 }
2537 }
2538 }
2539
2540 /* check unit id */
2541
2542 if (max_devs && unit_id >= max_devs) {
2543 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2544 str, unit_id, max_devs - 1);
2545 return -1;
2546 }
2547
2548 /*
2549 * ignore multiple definitions
2550 */
2551
2552 if (drive_get_index(type, bus_id, unit_id) != -1)
2553 return -2;
2554
2555 /* init */
2556
2557 if (type == IF_IDE || type == IF_SCSI)
2558 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2559 if (max_devs)
2560 snprintf(buf, sizeof(buf), "%s%i%s%i",
2561 devname, bus_id, mediastr, unit_id);
2562 else
2563 snprintf(buf, sizeof(buf), "%s%s%i",
2564 devname, mediastr, unit_id);
2565 bdrv = bdrv_new(buf);
2566 drives_table_idx = drive_get_free_idx();
2567 drives_table[drives_table_idx].bdrv = bdrv;
2568 drives_table[drives_table_idx].type = type;
2569 drives_table[drives_table_idx].bus = bus_id;
2570 drives_table[drives_table_idx].unit = unit_id;
2571 drives_table[drives_table_idx].onerror = onerror;
2572 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2573 strncpy(drives_table[nb_drives].serial, serial, sizeof(serial));
2574 nb_drives++;
2575
2576 switch(type) {
2577 case IF_IDE:
2578 case IF_SCSI:
2579 switch(media) {
2580 case MEDIA_DISK:
2581 if (cyls != 0) {
2582 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2583 bdrv_set_translation_hint(bdrv, translation);
2584 }
2585 break;
2586 case MEDIA_CDROM:
2587 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2588 break;
2589 }
2590 break;
2591 case IF_SD:
2592 /* FIXME: This isn't really a floppy, but it's a reasonable
2593 approximation. */
2594 case IF_FLOPPY:
2595 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2596 break;
2597 case IF_PFLASH:
2598 case IF_MTD:
2599 case IF_VIRTIO:
2600 break;
2601 }
2602 if (!file[0])
2603 return -2;
2604 bdrv_flags = 0;
2605 if (snapshot) {
2606 bdrv_flags |= BDRV_O_SNAPSHOT;
2607 cache = 2; /* always use write-back with snapshot */
2608 }
2609 if (cache == 0) /* no caching */
2610 bdrv_flags |= BDRV_O_NOCACHE;
2611 else if (cache == 2) /* write-back */
2612 bdrv_flags |= BDRV_O_CACHE_WB;
2613 else if (cache == 3) /* not specified */
2614 bdrv_flags |= BDRV_O_CACHE_DEF;
2615 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2616 fprintf(stderr, "qemu: could not open disk image %s\n",
2617 file);
2618 return -1;
2619 }
2620 if (bdrv_key_required(bdrv))
2621 autostart = 0;
2622 return drives_table_idx;
2623 }
2624
2625 /***********************************************************/
2626 /* USB devices */
2627
2628 static USBPort *used_usb_ports;
2629 static USBPort *free_usb_ports;
2630
2631 /* ??? Maybe change this to register a hub to keep track of the topology. */
2632 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2633 usb_attachfn attach)
2634 {
2635 port->opaque = opaque;
2636 port->index = index;
2637 port->attach = attach;
2638 port->next = free_usb_ports;
2639 free_usb_ports = port;
2640 }
2641
2642 int usb_device_add_dev(USBDevice *dev)
2643 {
2644 USBPort *port;
2645
2646 /* Find a USB port to add the device to. */
2647 port = free_usb_ports;
2648 if (!port->next) {
2649 USBDevice *hub;
2650
2651 /* Create a new hub and chain it on. */
2652 free_usb_ports = NULL;
2653 port->next = used_usb_ports;
2654 used_usb_ports = port;
2655
2656 hub = usb_hub_init(VM_USB_HUB_SIZE);
2657 usb_attach(port, hub);
2658 port = free_usb_ports;
2659 }
2660
2661 free_usb_ports = port->next;
2662 port->next = used_usb_ports;
2663 used_usb_ports = port;
2664 usb_attach(port, dev);
2665 return 0;
2666 }
2667
2668 static void usb_msd_password_cb(void *opaque, int err)
2669 {
2670 USBDevice *dev = opaque;
2671
2672 if (!err)
2673 usb_device_add_dev(dev);
2674 else
2675 dev->handle_destroy(dev);
2676 }
2677
2678 static int usb_device_add(const char *devname, int is_hotplug)
2679 {
2680 const char *p;
2681 USBDevice *dev;
2682
2683 if (!free_usb_ports)
2684 return -1;
2685
2686 if (strstart(devname, "host:", &p)) {
2687 dev = usb_host_device_open(p);
2688 } else if (!strcmp(devname, "mouse")) {
2689 dev = usb_mouse_init();
2690 } else if (!strcmp(devname, "tablet")) {
2691 dev = usb_tablet_init();
2692 } else if (!strcmp(devname, "keyboard")) {
2693 dev = usb_keyboard_init();
2694 } else if (strstart(devname, "disk:", &p)) {
2695 BlockDriverState *bs;
2696
2697 dev = usb_msd_init(p);
2698 if (!dev)
2699 return -1;
2700 bs = usb_msd_get_bdrv(dev);
2701 if (bdrv_key_required(bs)) {
2702 autostart = 0;
2703 if (is_hotplug) {
2704 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2705 dev);
2706 return 0;
2707 }
2708 }
2709 } else if (!strcmp(devname, "wacom-tablet")) {
2710 dev = usb_wacom_init();
2711 } else if (strstart(devname, "serial:", &p)) {
2712 dev = usb_serial_init(p);
2713 #ifdef CONFIG_BRLAPI
2714 } else if (!strcmp(devname, "braille")) {
2715 dev = usb_baum_init();
2716 #endif
2717 } else if (strstart(devname, "net:", &p)) {
2718 int nic = nb_nics;
2719
2720 if (net_client_init("nic", p) < 0)
2721 return -1;
2722 nd_table[nic].model = "usb";
2723 dev = usb_net_init(&nd_table[nic]);
2724 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2725 dev = usb_bt_init(devname[2] ? hci_init(p) :
2726 bt_new_hci(qemu_find_bt_vlan(0)));
2727 } else {
2728 return -1;
2729 }
2730 if (!dev)
2731 return -1;
2732
2733 return usb_device_add_dev(dev);
2734 }
2735
2736 int usb_device_del_addr(int bus_num, int addr)
2737 {
2738 USBPort *port;
2739 USBPort **lastp;
2740 USBDevice *dev;
2741
2742 if (!used_usb_ports)
2743 return -1;
2744
2745 if (bus_num != 0)
2746 return -1;
2747
2748 lastp = &used_usb_ports;
2749 port = used_usb_ports;
2750 while (port && port->dev->addr != addr) {
2751 lastp = &port->next;
2752 port = port->next;
2753 }
2754
2755 if (!port)
2756 return -1;
2757
2758 dev = port->dev;
2759 *lastp = port->next;
2760 usb_attach(port, NULL);
2761 dev->handle_destroy(dev);
2762 port->next = free_usb_ports;
2763 free_usb_ports = port;
2764 return 0;
2765 }
2766
2767 static int usb_device_del(const char *devname)
2768 {
2769 int bus_num, addr;
2770 const char *p;
2771
2772 if (strstart(devname, "host:", &p))
2773 return usb_host_device_close(p);
2774
2775 if (!used_usb_ports)
2776 return -1;
2777
2778 p = strchr(devname, '.');
2779 if (!p)
2780 return -1;
2781 bus_num = strtoul(devname, NULL, 0);
2782 addr = strtoul(p + 1, NULL, 0);
2783
2784 return usb_device_del_addr(bus_num, addr);
2785 }
2786
2787 void do_usb_add(Monitor *mon, const char *devname)
2788 {
2789 usb_device_add(devname, 1);
2790 }
2791
2792 void do_usb_del(Monitor *mon, const char *devname)
2793 {
2794 usb_device_del(devname);
2795 }
2796
2797 void usb_info(Monitor *mon)
2798 {
2799 USBDevice *dev;
2800 USBPort *port;
2801 const char *speed_str;
2802
2803 if (!usb_enabled) {
2804 monitor_printf(mon, "USB support not enabled\n");
2805 return;
2806 }
2807
2808 for (port = used_usb_ports; port; port = port->next) {
2809 dev = port->dev;
2810 if (!dev)
2811 continue;
2812 switch(dev->speed) {
2813 case USB_SPEED_LOW:
2814 speed_str = "1.5";
2815 break;
2816 case USB_SPEED_FULL:
2817 speed_str = "12";
2818 break;
2819 case USB_SPEED_HIGH:
2820 speed_str = "480";
2821 break;
2822 default:
2823 speed_str = "?";
2824 break;
2825 }
2826 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2827 0, dev->addr, speed_str, dev->devname);
2828 }
2829 }
2830
2831 /***********************************************************/
2832 /* PCMCIA/Cardbus */
2833
2834 static struct pcmcia_socket_entry_s {
2835 struct pcmcia_socket_s *socket;
2836 struct pcmcia_socket_entry_s *next;
2837 } *pcmcia_sockets = 0;
2838
2839 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
2840 {
2841 struct pcmcia_socket_entry_s *entry;
2842
2843 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2844 entry->socket = socket;
2845 entry->next = pcmcia_sockets;
2846 pcmcia_sockets = entry;
2847 }
2848
2849 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
2850 {
2851 struct pcmcia_socket_entry_s *entry, **ptr;
2852
2853 ptr = &pcmcia_sockets;
2854 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2855 if (entry->socket == socket) {
2856 *ptr = entry->next;
2857 qemu_free(entry);
2858 }
2859 }
2860
2861 void pcmcia_info(Monitor *mon)
2862 {
2863 struct pcmcia_socket_entry_s *iter;
2864
2865 if (!pcmcia_sockets)
2866 monitor_printf(mon, "No PCMCIA sockets\n");
2867
2868 for (iter = pcmcia_sockets; iter; iter = iter->next)
2869 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2870 iter->socket->attached ? iter->socket->card_string :
2871 "Empty");
2872 }
2873
2874 /***********************************************************/
2875 /* register display */
2876
2877 void register_displaystate(DisplayState *ds)
2878 {
2879 DisplayState **s;
2880 s = &display_state;
2881 while (*s != NULL)
2882 s = &(*s)->next;
2883 ds->next = NULL;
2884 *s = ds;
2885 }
2886
2887 DisplayState *get_displaystate(void)
2888 {
2889 return display_state;
2890 }
2891
2892 /* dumb display */
2893
2894 static void dumb_display_init(void)
2895 {
2896 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2897 ds->surface = qemu_create_displaysurface(640, 480, 32, 640 * 4);
2898 register_displaystate(ds);
2899 }
2900
2901 /***********************************************************/
2902 /* I/O handling */
2903
2904 #define MAX_IO_HANDLERS 64
2905
2906 typedef struct IOHandlerRecord {
2907 int fd;
2908 IOCanRWHandler *fd_read_poll;
2909 IOHandler *fd_read;
2910 IOHandler *fd_write;
2911 int deleted;
2912 void *opaque;
2913 /* temporary data */
2914 struct pollfd *ufd;
2915 struct IOHandlerRecord *next;
2916 } IOHandlerRecord;
2917
2918 static IOHandlerRecord *first_io_handler;
2919
2920 /* XXX: fd_read_poll should be suppressed, but an API change is
2921 necessary in the character devices to suppress fd_can_read(). */
2922 int qemu_set_fd_handler2(int fd,
2923 IOCanRWHandler *fd_read_poll,
2924 IOHandler *fd_read,
2925 IOHandler *fd_write,
2926 void *opaque)
2927 {
2928 IOHandlerRecord **pioh, *ioh;
2929
2930 if (!fd_read && !fd_write) {
2931 pioh = &first_io_handler;
2932 for(;;) {
2933 ioh = *pioh;
2934 if (ioh == NULL)
2935 break;
2936 if (ioh->fd == fd) {
2937 ioh->deleted = 1;
2938 break;
2939 }
2940 pioh = &ioh->next;
2941 }
2942 } else {
2943 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2944 if (ioh->fd == fd)
2945 goto found;
2946 }
2947 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2948 ioh->next = first_io_handler;
2949 first_io_handler = ioh;
2950 found:
2951 ioh->fd = fd;
2952 ioh->fd_read_poll = fd_read_poll;
2953 ioh->fd_read = fd_read;
2954 ioh->fd_write = fd_write;
2955 ioh->opaque = opaque;
2956 ioh->deleted = 0;
2957 }
2958 return 0;
2959 }
2960
2961 int qemu_set_fd_handler(int fd,
2962 IOHandler *fd_read,
2963 IOHandler *fd_write,
2964 void *opaque)
2965 {
2966 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2967 }
2968
2969 #ifdef _WIN32
2970 /***********************************************************/
2971 /* Polling handling */
2972
2973 typedef struct PollingEntry {
2974 PollingFunc *func;
2975 void *opaque;
2976 struct PollingEntry *next;
2977 } PollingEntry;
2978
2979 static PollingEntry *first_polling_entry;
2980
2981 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2982 {
2983 PollingEntry **ppe, *pe;
2984 pe = qemu_mallocz(sizeof(PollingEntry));
2985 pe->func = func;
2986 pe->opaque = opaque;
2987 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2988 *ppe = pe;
2989 return 0;
2990 }
2991
2992 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2993 {
2994 PollingEntry **ppe, *pe;
2995 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2996 pe = *ppe;
2997 if (pe->func == func && pe->opaque == opaque) {
2998 *ppe = pe->next;
2999 qemu_free(pe);
3000 break;
3001 }
3002 }
3003 }
3004
3005 /***********************************************************/
3006 /* Wait objects support */
3007 typedef struct WaitObjects {
3008 int num;
3009 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
3010 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
3011 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
3012 } WaitObjects;
3013
3014 static WaitObjects wait_objects = {0};
3015
3016 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3017 {
3018 WaitObjects *w = &wait_objects;
3019
3020 if (w->num >= MAXIMUM_WAIT_OBJECTS)
3021 return -1;
3022 w->events[w->num] = handle;
3023 w->func[w->num] = func;
3024 w->opaque[w->num] = opaque;
3025 w->num++;
3026 return 0;
3027 }
3028
3029 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3030 {
3031 int i, found;
3032 WaitObjects *w = &wait_objects;
3033
3034 found = 0;
3035 for (i = 0; i < w->num; i++) {
3036 if (w->events[i] == handle)
3037 found = 1;
3038 if (found) {
3039 w->events[i] = w->events[i + 1];
3040 w->func[i] = w->func[i + 1];
3041 w->opaque[i] = w->opaque[i + 1];
3042 }
3043 }
3044 if (found)
3045 w->num--;
3046 }
3047 #endif
3048
3049 /***********************************************************/
3050 /* ram save/restore */
3051
3052 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3053 {
3054 int v;
3055
3056 v = qemu_get_byte(f);
3057 switch(v) {
3058 case 0:
3059 if (qemu_get_buffer(f, buf, len) != len)
3060 return -EIO;
3061 break;
3062 case 1:
3063 v = qemu_get_byte(f);
3064 memset(buf, v, len);
3065 break;
3066 default:
3067 return -EINVAL;
3068 }
3069
3070 if (qemu_file_has_error(f))
3071 return -EIO;
3072
3073 return 0;
3074 }
3075
3076 static int ram_load_v1(QEMUFile *f, void *opaque)
3077 {
3078 int ret;
3079 ram_addr_t i;
3080
3081 if (qemu_get_be32(f) != phys_ram_size)
3082 return -EINVAL;
3083 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
3084 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
3085 if (ret)
3086 return ret;
3087 }
3088 return 0;
3089 }
3090
3091 #define BDRV_HASH_BLOCK_SIZE 1024
3092 #define IOBUF_SIZE 4096
3093 #define RAM_CBLOCK_MAGIC 0xfabe
3094
3095 typedef struct RamDecompressState {
3096 z_stream zstream;
3097 QEMUFile *f;
3098 uint8_t buf[IOBUF_SIZE];
3099 } RamDecompressState;
3100
3101 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3102 {
3103 int ret;
3104 memset(s, 0, sizeof(*s));
3105 s->f = f;
3106 ret = inflateInit(&s->zstream);
3107 if (ret != Z_OK)
3108 return -1;
3109 return 0;
3110 }
3111
3112 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3113 {
3114 int ret, clen;
3115
3116 s->zstream.avail_out = len;
3117 s->zstream.next_out = buf;
3118 while (s->zstream.avail_out > 0) {
3119 if (s->zstream.avail_in == 0) {
3120 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3121 return -1;
3122 clen = qemu_get_be16(s->f);
3123 if (clen > IOBUF_SIZE)
3124 return -1;
3125 qemu_get_buffer(s->f, s->buf, clen);
3126 s->zstream.avail_in = clen;
3127 s->zstream.next_in = s->buf;
3128 }
3129 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3130 if (ret != Z_OK && ret != Z_STREAM_END) {
3131 return -1;
3132 }
3133 }
3134 return 0;
3135 }
3136
3137 static void ram_decompress_close(RamDecompressState *s)
3138 {
3139 inflateEnd(&s->zstream);
3140 }
3141
3142 #define RAM_SAVE_FLAG_FULL 0x01
3143 #define RAM_SAVE_FLAG_COMPRESS 0x02
3144 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3145 #define RAM_SAVE_FLAG_PAGE 0x08
3146 #define RAM_SAVE_FLAG_EOS 0x10
3147
3148 static int is_dup_page(uint8_t *page, uint8_t ch)
3149 {
3150 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3151 uint32_t *array = (uint32_t *)page;
3152 int i;
3153
3154 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3155 if (array[i] != val)
3156 return 0;
3157 }
3158
3159 return 1;
3160 }
3161
3162 static int ram_save_block(QEMUFile *f)
3163 {
3164 static ram_addr_t current_addr = 0;
3165 ram_addr_t saved_addr = current_addr;
3166 ram_addr_t addr = 0;
3167 int found = 0;
3168
3169 while (addr < phys_ram_size) {
3170 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3171 uint8_t ch;
3172
3173 cpu_physical_memory_reset_dirty(current_addr,
3174 current_addr + TARGET_PAGE_SIZE,
3175 MIGRATION_DIRTY_FLAG);
3176
3177 ch = *(phys_ram_base + current_addr);
3178
3179 if (is_dup_page(phys_ram_base + current_addr, ch)) {
3180 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3181 qemu_put_byte(f, ch);
3182 } else {
3183 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3184 qemu_put_buffer(f, phys_ram_base + current_addr, TARGET_PAGE_SIZE);
3185 }
3186
3187 found = 1;
3188 break;
3189 }
3190 addr += TARGET_PAGE_SIZE;
3191 current_addr = (saved_addr + addr) % phys_ram_size;
3192 }
3193
3194 return found;
3195 }
3196
3197 static ram_addr_t ram_save_threshold = 10;
3198
3199 static ram_addr_t ram_save_remaining(void)
3200 {
3201 ram_addr_t addr;
3202 ram_addr_t count = 0;
3203
3204 for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
3205 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3206 count++;
3207 }
3208
3209 return count;
3210 }
3211
3212 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3213 {
3214 ram_addr_t addr;
3215
3216 if (stage == 1) {
3217 /* Make sure all dirty bits are set */
3218 for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
3219 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3220 cpu_physical_memory_set_dirty(addr);
3221 }
3222
3223 /* Enable dirty memory tracking */
3224 cpu_physical_memory_set_dirty_tracking(1);
3225
3226 qemu_put_be64(f, phys_ram_size | RAM_SAVE_FLAG_MEM_SIZE);
3227 }
3228
3229 while (!qemu_file_rate_limit(f)) {
3230 int ret;
3231
3232 ret = ram_save_block(f);
3233 if (ret == 0) /* no more blocks */
3234 break;
3235 }
3236
3237 /* try transferring iterative blocks of memory */
3238
3239 if (stage == 3) {
3240 cpu_physical_memory_set_dirty_tracking(0);
3241
3242 /* flush all remaining blocks regardless of rate limiting */
3243 while (ram_save_block(f) != 0);
3244 }
3245
3246 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3247
3248 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3249 }
3250
3251 static int ram_load_dead(QEMUFile *f, void *opaque)
3252 {
3253 RamDecompressState s1, *s = &s1;
3254 uint8_t buf[10];
3255 ram_addr_t i;
3256
3257 if (ram_decompress_open(s, f) < 0)
3258 return -EINVAL;
3259 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
3260 if (ram_decompress_buf(s, buf, 1) < 0) {
3261 fprintf(stderr, "Error while reading ram block header\n");
3262 goto error;
3263 }
3264 if (buf[0] == 0) {
3265 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
3266 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3267 goto error;
3268 }
3269 } else {
3270 error:
3271 printf("Error block header\n");
3272 return -EINVAL;
3273 }
3274 }
3275 ram_decompress_close(s);
3276
3277 return 0;
3278 }
3279
3280 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3281 {
3282 ram_addr_t addr;
3283 int flags;
3284
3285 if (version_id == 1)
3286 return ram_load_v1(f, opaque);
3287
3288 if (version_id == 2) {
3289 if (qemu_get_be32(f) != phys_ram_size)
3290 return -EINVAL;
3291 return ram_load_dead(f, opaque);
3292 }
3293
3294 if (version_id != 3)
3295 return -EINVAL;
3296
3297 do {
3298 addr = qemu_get_be64(f);
3299
3300 flags = addr & ~TARGET_PAGE_MASK;
3301 addr &= TARGET_PAGE_MASK;
3302
3303 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3304 if (addr != phys_ram_size)
3305 return -EINVAL;
3306 }
3307
3308 if (flags & RAM_SAVE_FLAG_FULL) {
3309 if (ram_load_dead(f, opaque) < 0)
3310 return -EINVAL;
3311 }
3312
3313 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3314 uint8_t ch = qemu_get_byte(f);
3315 memset(phys_ram_base + addr, ch, TARGET_PAGE_SIZE);
3316 } else if (flags & RAM_SAVE_FLAG_PAGE)
3317 qemu_get_buffer(f, phys_ram_base + addr, TARGET_PAGE_SIZE);
3318 } while (!(flags & RAM_SAVE_FLAG_EOS));
3319
3320 return 0;
3321 }
3322
3323 void qemu_service_io(void)
3324 {
3325 CPUState *env = cpu_single_env;
3326 if (env) {
3327 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
3328 #ifdef USE_KQEMU
3329 if (env->kqemu_enabled) {
3330 kqemu_cpu_interrupt(env);
3331 }
3332 #endif
3333 }
3334 }
3335
3336 /***********************************************************/
3337 /* bottom halves (can be seen as timers which expire ASAP) */
3338
3339 struct QEMUBH {
3340 QEMUBHFunc *cb;
3341 void *opaque;
3342 int scheduled;
3343 int idle;
3344 int deleted;
3345 QEMUBH *next;
3346 };
3347
3348 static QEMUBH *first_bh = NULL;
3349
3350 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3351 {
3352 QEMUBH *bh;
3353 bh = qemu_mallocz(sizeof(QEMUBH));
3354 bh->cb = cb;
3355 bh->opaque = opaque;
3356 bh->next = first_bh;
3357 first_bh = bh;
3358 return bh;
3359 }
3360
3361 int qemu_bh_poll(void)
3362 {
3363 QEMUBH *bh, **bhp;
3364 int ret;
3365
3366 ret = 0;
3367 for (bh = first_bh; bh; bh = bh->next) {
3368 if (!bh->deleted && bh->scheduled) {
3369 bh->scheduled = 0;
3370 if (!bh->idle)
3371 ret = 1;
3372 bh->idle = 0;
3373 bh->cb(bh->opaque);
3374 }
3375 }
3376
3377 /* remove deleted bhs */
3378 bhp = &first_bh;
3379 while (*bhp) {
3380 bh = *bhp;
3381 if (bh->deleted) {
3382 *bhp = bh->next;
3383 qemu_free(bh);
3384 } else
3385 bhp = &bh->next;
3386 }
3387
3388 return ret;
3389 }
3390
3391 void qemu_bh_schedule_idle(QEMUBH *bh)
3392 {
3393 if (bh->scheduled)
3394 return;
3395 bh->scheduled = 1;
3396 bh->idle = 1;
3397 }
3398
3399 void qemu_bh_schedule(QEMUBH *bh)
3400 {
3401 CPUState *env = cpu_single_env;
3402 if (bh->scheduled)
3403 return;
3404 bh->scheduled = 1;
3405 bh->idle = 0;
3406 /* stop the currently executing CPU to execute the BH ASAP */
3407 if (env) {
3408 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
3409 }
3410 }
3411
3412 void qemu_bh_cancel(QEMUBH *bh)
3413 {
3414 bh->scheduled = 0;
3415 }
3416
3417 void qemu_bh_delete(QEMUBH *bh)
3418 {
3419 bh->scheduled = 0;
3420 bh->deleted = 1;
3421 }
3422
3423 static void qemu_bh_update_timeout(int *timeout)
3424 {
3425 QEMUBH *bh;
3426
3427 for (bh = first_bh; bh; bh = bh->next) {
3428 if (!bh->deleted && bh->scheduled) {
3429 if (bh->idle) {
3430 /* idle bottom halves will be polled at least
3431 * every 10ms */
3432 *timeout = MIN(10, *timeout);
3433 } else {
3434 /* non-idle bottom halves will be executed
3435 * immediately */
3436 *timeout = 0;
3437 break;
3438 }
3439 }
3440 }
3441 }
3442
3443 /***********************************************************/
3444 /* machine registration */
3445
3446 static QEMUMachine *first_machine = NULL;
3447 QEMUMachine *current_machine = NULL;
3448
3449 int qemu_register_machine(QEMUMachine *m)
3450 {
3451 QEMUMachine **pm;
3452 pm = &first_machine;
3453 while (*pm != NULL)
3454 pm = &(*pm)->next;
3455 m->next = NULL;
3456 *pm = m;
3457 return 0;
3458 }
3459
3460 static QEMUMachine *find_machine(const char *name)
3461 {
3462 QEMUMachine *m;
3463
3464 for(m = first_machine; m != NULL; m = m->next) {
3465 if (!strcmp(m->name, name))
3466 return m;
3467 }
3468 return NULL;
3469 }
3470
3471 /***********************************************************/
3472 /* main execution loop */
3473
3474 static void gui_update(void *opaque)
3475 {
3476 uint64_t interval = GUI_REFRESH_INTERVAL;
3477 DisplayState *ds = opaque;
3478 DisplayChangeListener *dcl = ds->listeners;
3479
3480 dpy_refresh(ds);
3481
3482 while (dcl != NULL) {
3483 if (dcl->gui_timer_interval &&
3484 dcl->gui_timer_interval < interval)
3485 interval = dcl->gui_timer_interval;
3486 dcl = dcl->next;
3487 }
3488 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3489 }
3490
3491 static void nographic_update(void *opaque)
3492 {
3493 uint64_t interval = GUI_REFRESH_INTERVAL;
3494
3495 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3496 }
3497
3498 struct vm_change_state_entry {
3499 VMChangeStateHandler *cb;
3500 void *opaque;
3501 LIST_ENTRY (vm_change_state_entry) entries;
3502 };
3503
3504 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3505
3506 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3507 void *opaque)
3508 {
3509 VMChangeStateEntry *e;
3510
3511 e = qemu_mallocz(sizeof (*e));
3512
3513 e->cb = cb;
3514 e->opaque = opaque;
3515 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3516 return e;
3517 }
3518
3519 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3520 {
3521 LIST_REMOVE (e, entries);
3522 qemu_free (e);
3523 }
3524
3525 static void vm_state_notify(int running, int reason)
3526 {
3527 VMChangeStateEntry *e;
3528
3529 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3530 e->cb(e->opaque, running, reason);
3531 }
3532 }
3533
3534 void vm_start(void)
3535 {
3536 if (!vm_running) {
3537 cpu_enable_ticks();
3538 vm_running = 1;
3539 vm_state_notify(1, 0);
3540 qemu_rearm_alarm_timer(alarm_timer);
3541 }
3542 }
3543
3544 void vm_stop(int reason)
3545 {
3546 if (vm_running) {
3547 cpu_disable_ticks();
3548 vm_running = 0;
3549 vm_state_notify(0, reason);
3550 }
3551 }
3552
3553 /* reset/shutdown handler */
3554
3555 typedef struct QEMUResetEntry {
3556 QEMUResetHandler *func;
3557 void *opaque;
3558 struct QEMUResetEntry *next;
3559 } QEMUResetEntry;
3560
3561 static QEMUResetEntry *first_reset_entry;
3562 static int reset_requested;
3563 static int shutdown_requested;
3564 static int powerdown_requested;
3565
3566 int qemu_shutdown_requested(void)
3567 {
3568 int r = shutdown_requested;
3569 shutdown_requested = 0;
3570 return r;
3571 }
3572
3573 int qemu_reset_requested(void)
3574 {
3575 int r = reset_requested;
3576 reset_requested = 0;
3577 return r;
3578 }
3579
3580 int qemu_powerdown_requested(void)
3581 {
3582 int r = powerdown_requested;
3583 powerdown_requested = 0;
3584 return r;
3585 }
3586
3587 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3588 {
3589 QEMUResetEntry **pre, *re;
3590
3591 pre = &first_reset_entry;
3592 while (*pre != NULL)
3593 pre = &(*pre)->next;
3594 re = qemu_mallocz(sizeof(QEMUResetEntry));
3595 re->func = func;
3596 re->opaque = opaque;
3597 re->next = NULL;
3598 *pre = re;
3599 }
3600
3601 void qemu_system_reset(void)
3602 {
3603 QEMUResetEntry *re;
3604
3605 /* reset all devices */
3606 for(re = first_reset_entry; re != NULL; re = re->next) {
3607 re->func(re->opaque);
3608 }
3609 }
3610
3611 void qemu_system_reset_request(void)
3612 {
3613 if (no_reboot) {
3614 shutdown_requested = 1;
3615 } else {
3616 reset_requested = 1;
3617 }
3618 if (cpu_single_env)
3619 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3620 }
3621
3622 void qemu_system_shutdown_request(void)
3623 {
3624 shutdown_requested = 1;
3625 if (cpu_single_env)
3626 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3627 }
3628
3629 void qemu_system_powerdown_request(void)
3630 {
3631 powerdown_requested = 1;
3632 if (cpu_single_env)
3633 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3634 }
3635
3636 #ifdef _WIN32
3637 static void host_main_loop_wait(int *timeout)
3638 {
3639 int ret, ret2, i;
3640 PollingEntry *pe;
3641
3642
3643 /* XXX: need to suppress polling by better using win32 events */
3644 ret = 0;
3645 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3646 ret |= pe->func(pe->opaque);
3647 }
3648 if (ret == 0) {
3649 int err;
3650 WaitObjects *w = &wait_objects;
3651
3652 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3653 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3654 if (w->func[ret - WAIT_OBJECT_0])
3655 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3656
3657 /* Check for additional signaled events */
3658 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3659
3660 /* Check if event is signaled */
3661 ret2 = WaitForSingleObject(w->events[i], 0);
3662 if(ret2 == WAIT_OBJECT_0) {
3663 if (w->func[i])
3664 w->func[i](w->opaque[i]);
3665 } else if (ret2 == WAIT_TIMEOUT) {
3666 } else {
3667 err = GetLastError();
3668 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3669 }
3670 }
3671 } else if (ret == WAIT_TIMEOUT) {
3672 } else {
3673 err = GetLastError();
3674 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3675 }
3676 }
3677
3678 *timeout = 0;
3679 }
3680 #else
3681 static void host_main_loop_wait(int *timeout)
3682 {
3683 }
3684 #endif
3685
3686 void main_loop_wait(int timeout)
3687 {
3688 IOHandlerRecord *ioh;
3689 fd_set rfds, wfds, xfds;
3690 int ret, nfds;
3691 struct timeval tv;
3692
3693 qemu_bh_update_timeout(&timeout);
3694
3695 host_main_loop_wait(&timeout);
3696
3697 /* poll any events */
3698 /* XXX: separate device handlers from system ones */
3699 nfds = -1;
3700 FD_ZERO(&rfds);
3701 FD_ZERO(&wfds);
3702 FD_ZERO(&xfds);
3703 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3704 if (ioh->deleted)
3705 continue;
3706 if (ioh->fd_read &&
3707 (!ioh->fd_read_poll ||
3708 ioh->fd_read_poll(ioh->opaque) != 0)) {
3709 FD_SET(ioh->fd, &rfds);
3710 if (ioh->fd > nfds)
3711 nfds = ioh->fd;
3712 }
3713 if (ioh->fd_write) {
3714 FD_SET(ioh->fd, &wfds);
3715 if (ioh->fd > nfds)
3716 nfds = ioh->fd;
3717 }
3718 }
3719
3720 tv.tv_sec = timeout / 1000;
3721 tv.tv_usec = (timeout % 1000) * 1000;
3722
3723 #if defined(CONFIG_SLIRP)
3724 if (slirp_is_inited()) {
3725 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3726 }
3727 #endif
3728 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3729 if (ret > 0) {
3730 IOHandlerRecord **pioh;
3731
3732 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3733 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3734 ioh->fd_read(ioh->opaque);
3735 }
3736 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3737 ioh->fd_write(ioh->opaque);
3738 }
3739 }
3740
3741 /* remove deleted IO handlers */
3742 pioh = &first_io_handler;
3743 while (*pioh) {
3744 ioh = *pioh;
3745 if (ioh->deleted) {
3746 *pioh = ioh->next;
3747 qemu_free(ioh);
3748 } else
3749 pioh = &ioh->next;
3750 }
3751 }
3752 #if defined(CONFIG_SLIRP)
3753 if (slirp_is_inited()) {
3754 if (ret < 0) {
3755 FD_ZERO(&rfds);
3756 FD_ZERO(&wfds);
3757 FD_ZERO(&xfds);
3758 }
3759 slirp_select_poll(&rfds, &wfds, &xfds);
3760 }
3761 #endif
3762
3763 /* vm time timers */
3764 if (vm_running && likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3765 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
3766 qemu_get_clock(vm_clock));
3767
3768 /* real time timers */
3769 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
3770 qemu_get_clock(rt_clock));
3771
3772 /* Check bottom-halves last in case any of the earlier events triggered
3773 them. */
3774 qemu_bh_poll();
3775
3776 }
3777
3778 static int main_loop(void)
3779 {
3780 int ret, timeout;
3781 #ifdef CONFIG_PROFILER
3782 int64_t ti;
3783 #endif
3784 CPUState *env;
3785
3786 cur_cpu = first_cpu;
3787 next_cpu = cur_cpu->next_cpu ?: first_cpu;
3788 for(;;) {
3789 if (vm_running) {
3790
3791 for(;;) {
3792 /* get next cpu */
3793 env = next_cpu;
3794 #ifdef CONFIG_PROFILER
3795 ti = profile_getclock();
3796 #endif
3797 if (use_icount) {
3798 int64_t count;
3799 int decr;
3800 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
3801 env->icount_decr.u16.low = 0;
3802 env->icount_extra = 0;
3803 count = qemu_next_deadline();
3804 count = (count + (1 << icount_time_shift) - 1)
3805 >> icount_time_shift;
3806 qemu_icount += count;
3807 decr = (count > 0xffff) ? 0xffff : count;
3808 count -= decr;
3809 env->icount_decr.u16.low = decr;
3810 env->icount_extra = count;
3811 }
3812 ret = cpu_exec(env);
3813 #ifdef CONFIG_PROFILER
3814 qemu_time += profile_getclock() - ti;
3815 #endif
3816 if (use_icount) {
3817 /* Fold pending instructions back into the
3818 instruction counter, and clear the interrupt flag. */
3819 qemu_icount -= (env->icount_decr.u16.low
3820 + env->icount_extra);
3821 env->icount_decr.u32 = 0;
3822 env->icount_extra = 0;
3823 }
3824 next_cpu = env->next_cpu ?: first_cpu;
3825 if (event_pending && likely(ret != EXCP_DEBUG)) {
3826 ret = EXCP_INTERRUPT;
3827 event_pending = 0;
3828 break;
3829 }
3830 if (ret == EXCP_HLT) {
3831 /* Give the next CPU a chance to run. */
3832 cur_cpu = env;
3833 continue;
3834 }
3835 if (ret != EXCP_HALTED)
3836 break;
3837 /* all CPUs are halted ? */
3838 if (env == cur_cpu)
3839 break;
3840 }
3841 cur_cpu = env;
3842
3843 if (shutdown_requested) {
3844 ret = EXCP_INTERRUPT;
3845 if (no_shutdown) {
3846 vm_stop(0);
3847 no_shutdown = 0;
3848 }
3849 else
3850 break;
3851 }
3852 if (reset_requested) {
3853 reset_requested = 0;
3854 qemu_system_reset();
3855 ret = EXCP_INTERRUPT;
3856 }
3857 if (powerdown_requested) {
3858 powerdown_requested = 0;
3859 qemu_system_powerdown();
3860 ret = EXCP_INTERRUPT;
3861 }
3862 if (unlikely(ret == EXCP_DEBUG)) {
3863 gdb_set_stop_cpu(cur_cpu);
3864 vm_stop(EXCP_DEBUG);
3865 }
3866 /* If all cpus are halted then wait until the next IRQ */
3867 /* XXX: use timeout computed from timers */
3868 if (ret == EXCP_HALTED) {
3869 if (use_icount) {
3870 int64_t add;
3871 int64_t delta;
3872 /* Advance virtual time to the next event. */
3873 if (use_icount == 1) {
3874 /* When not using an adaptive execution frequency
3875 we tend to get badly out of sync with real time,
3876 so just delay for a reasonable amount of time. */
3877 delta = 0;
3878 } else {
3879 delta = cpu_get_icount() - cpu_get_clock();
3880 }
3881 if (delta > 0) {
3882 /* If virtual time is ahead of real time then just
3883 wait for IO. */
3884 timeout = (delta / 1000000) + 1;
3885 } else {
3886 /* Wait for either IO to occur or the next
3887 timer event. */
3888 add = qemu_next_deadline();
3889 /* We advance the timer before checking for IO.
3890 Limit the amount we advance so that early IO
3891 activity won't get the guest too far ahead. */
3892 if (add > 10000000)
3893 add = 10000000;
3894 delta += add;
3895 add = (add + (1 << icount_time_shift) - 1)
3896 >> icount_time_shift;
3897 qemu_icount += add;
3898 timeout = delta / 1000000;
3899 if (timeout < 0)
3900 timeout = 0;
3901 }
3902 } else {
3903 timeout = 5000;
3904 }
3905 } else {
3906 timeout = 0;
3907 }
3908 } else {
3909 if (shutdown_requested) {
3910 ret = EXCP_INTERRUPT;
3911 break;
3912 }
3913 timeout = 5000;
3914 }
3915 #ifdef CONFIG_PROFILER
3916 ti = profile_getclock();
3917 #endif
3918 main_loop_wait(timeout);
3919 #ifdef CONFIG_PROFILER
3920 dev_time += profile_getclock() - ti;
3921 #endif
3922 }
3923 cpu_disable_ticks();
3924 return ret;
3925 }
3926
3927 static void help(int exitcode)
3928 {
3929 /* Please keep in synch with QEMU_OPTION_ enums, qemu_options[]
3930 and qemu-doc.texi */
3931 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
3932 "usage: %s [options] [disk_image]\n"
3933 "\n"
3934 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
3935 "\n"
3936 "Standard options:\n"
3937 "-h or -help display this help and exit\n"
3938 "-M machine select emulated machine (-M ? for list)\n"
3939 "-cpu cpu select CPU (-cpu ? for list)\n"
3940 "-smp n set the number of CPUs to 'n' [default=1]\n"
3941 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
3942 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
3943 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
3944 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
3945 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
3946 " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
3947 " [,cache=writethrough|writeback|none][,format=f][,serial=s]\n"
3948 " use 'file' as a drive image\n"
3949 "-mtdblock file use 'file' as on-board Flash memory image\n"
3950 "-sd file use 'file' as SecureDigital card image\n"
3951 "-pflash file use 'file' as a parallel flash image\n"
3952 "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
3953 "-snapshot write to temporary files instead of disk image files\n"
3954 "-m megs set virtual RAM size to megs MB [default=%d]\n"
3955 #ifndef _WIN32
3956 "-k language use keyboard layout (for example \"fr\" for French)\n"
3957 #endif
3958 #ifdef HAS_AUDIO
3959 "-audio-help print list of audio drivers and their options\n"
3960 "-soundhw c1,... enable audio support\n"
3961 " and only specified sound cards (comma separated list)\n"
3962 " use -soundhw ? to get the list of supported cards\n"
3963 " use -soundhw all to enable all of them\n"
3964 #endif
3965 "-usb enable the USB driver (will be the default soon)\n"
3966 "-usbdevice name add the host or guest USB device 'name'\n"
3967 "-name string set the name of the guest\n"
3968 "-uuid %%08x-%%04x-%%04x-%%04x-%%012x\n"
3969 " specify machine UUID\n"
3970 "\n"
3971 "Display options:\n"
3972 "-nographic disable graphical output and redirect serial I/Os to console\n"
3973 #ifdef CONFIG_CURSES
3974 "-curses use a curses/ncurses interface instead of SDL\n"
3975 #endif
3976 #ifdef CONFIG_SDL
3977 "-no-frame open SDL window without a frame and window decorations\n"
3978 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
3979 "-no-quit disable SDL window close capability\n"
3980 "-sdl enable SDL\n"
3981 #endif
3982 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n"
3983 "-vga [std|cirrus|vmware|none]\n"
3984 " select video card type\n"
3985 "-full-screen start in full screen\n"
3986 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
3987 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
3988 #endif
3989 "-vnc display start a VNC server on display\n"
3990 "\n"
3991 "Network options:\n"
3992 "-net nic[,vlan=n][,macaddr=addr][,model=type][,name=str]\n"
3993 " create a new Network Interface Card and connect it to VLAN 'n'\n"
3994 #ifdef CONFIG_SLIRP
3995 "-net user[,vlan=n][,name=str][,hostname=host]\n"
3996 " connect the user mode network stack to VLAN 'n' and send\n"
3997 " hostname 'host' to DHCP clients\n"
3998 #endif
3999 #ifdef _WIN32
4000 "-net tap[,vlan=n][,name=str],ifname=name\n"
4001 " connect the host TAP network interface to VLAN 'n'\n"
4002 #else
4003 "-net tap[,vlan=n][,name=str][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
4004 " connect the host TAP network interface to VLAN 'n' and use the\n"
4005 " network scripts 'file' (default=%s)\n"
4006 " and 'dfile' (default=%s);\n"
4007 " use '[down]script=no' to disable script execution;\n"
4008 " use 'fd=h' to connect to an already opened TAP interface\n"
4009 #endif
4010 "-net socket[,vlan=n][,name=str][,fd=h][,listen=[host]:port][,connect=host:port]\n"
4011 " connect the vlan 'n' to another VLAN using a socket connection\n"
4012 "-net socket[,vlan=n][,name=str][,fd=h][,mcast=maddr:port]\n"
4013 " connect the vlan 'n' to multicast maddr and port\n"
4014 #ifdef CONFIG_VDE
4015 "-net vde[,vlan=n][,name=str][,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
4016 " connect the vlan 'n' to port 'n' of a vde switch running\n"
4017 " on host and listening for incoming connections on 'socketpath'.\n"
4018 " Use group 'groupname' and mode 'octalmode' to change default\n"
4019 " ownership and permissions for communication port.\n"
4020 #endif
4021 "-net none use it alone to have zero network devices; if no -net option\n"
4022 " is provided, the default is '-net nic -net user'\n"
4023 #ifdef CONFIG_SLIRP
4024 "-tftp dir allow tftp access to files in dir [-net user]\n"
4025 "-bootp file advertise file in BOOTP replies\n"
4026 #ifndef _WIN32
4027 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
4028 #endif
4029 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
4030 " redirect TCP or UDP connections from host to guest [-net user]\n"
4031 #endif
4032 "\n"
4033 "-bt hci,null dumb bluetooth HCI - doesn't respond to commands\n"
4034 "-bt hci,host[:id]\n"
4035 " use host's HCI with the given name\n"
4036 "-bt hci[,vlan=n]\n"
4037 " emulate a standard HCI in virtual scatternet 'n'\n"
4038 "-bt vhci[,vlan=n]\n"
4039 " add host computer to virtual scatternet 'n' using VHCI\n"
4040 "-bt device:dev[,vlan=n]\n"
4041 " emulate a bluetooth device 'dev' in scatternet 'n'\n"
4042 "\n"
4043 #ifdef TARGET_I386
4044 "\n"
4045 "i386 target only:\n"
4046 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
4047 "-rtc-td-hack use it to fix time drift in Windows ACPI HAL\n"
4048 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
4049 "-no-acpi disable ACPI\n"
4050 "-no-hpet disable HPET\n"
4051 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,data=file1[:file2]...]\n"
4052 " ACPI table description\n"
4053 #endif
4054 "Linux boot specific:\n"
4055 "-kernel bzImage use 'bzImage' as kernel image\n"
4056 "-append cmdline use 'cmdline' as kernel command line\n"
4057 "-initrd file use 'file' as initial ram disk\n"
4058 "\n"
4059 "Debug/Expert options:\n"
4060 "-serial dev redirect the serial port to char device 'dev'\n"
4061 "-parallel dev redirect the parallel port to char device 'dev'\n"
4062 "-monitor dev redirect the monitor to char device 'dev'\n"
4063 "-pidfile file write PID to 'file'\n"
4064 "-S freeze CPU at startup (use 'c' to start execution)\n"
4065 "-s wait gdb connection to port\n"
4066 "-p port set gdb connection port [default=%s]\n"
4067 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
4068 "-hdachs c,h,s[,t]\n"
4069 " force hard disk 0 physical geometry and the optional BIOS\n"
4070 " translation (t=none or lba) (usually qemu can guess them)\n"
4071 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
4072 "-bios file set the filename for the BIOS\n"
4073 #ifdef USE_KQEMU
4074 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
4075 "-no-kqemu disable KQEMU kernel module usage\n"
4076 #endif
4077 #ifdef CONFIG_KVM
4078 "-enable-kvm enable KVM full virtualization support\n"
4079 #endif
4080 "-no-reboot exit instead of rebooting\n"
4081 "-no-shutdown stop before shutdown\n"
4082 "-loadvm [tag|id]\n"
4083 " start right away with a saved state (loadvm in monitor)\n"
4084 #ifndef _WIN32
4085 "-daemonize daemonize QEMU after initializing\n"
4086 #endif
4087 "-option-rom rom load a file, rom, into the option ROM space\n"
4088 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
4089 "-prom-env variable=value\n"
4090 " set OpenBIOS nvram variables\n"
4091 #endif
4092 "-clock force the use of the given methods for timer alarm.\n"
4093 " To see what timers are available use -clock ?\n"
4094 "-localtime set the real time clock to local time [default=utc]\n"
4095 "-startdate select initial date of the clock\n"
4096 "-icount [N|auto]\n"
4097 " enable virtual instruction counter with 2^N clock ticks per instruction\n"
4098 "-echr chr set terminal escape character instead of ctrl-a\n"
4099 "-virtioconsole c\n"
4100 " set virtio console\n"
4101 "-show-cursor show cursor\n"
4102 #if defined(TARGET_ARM) || defined(TARGET_M68K)
4103 "-semihosting semihosting mode\n"
4104 #endif
4105 #if defined(TARGET_ARM)
4106 "-old-param old param mode\n"
4107 #endif
4108 "-tb-size n set TB size\n"
4109 "-incoming p prepare for incoming migration, listen on port p\n"
4110 #ifndef _WIN32
4111 "-chroot dir Chroot to dir just before starting the VM.\n"
4112 "-runas user Change to user id user just before starting the VM.\n"
4113 #endif
4114 "\n"
4115 "During emulation, the following keys are useful:\n"
4116 "ctrl-alt-f toggle full screen\n"
4117 "ctrl-alt-n switch to virtual console 'n'\n"
4118 "ctrl-alt toggle mouse and keyboard grab\n"
4119 "\n"
4120 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4121 ,
4122 "qemu",
4123 DEFAULT_RAM_SIZE,
4124 #ifndef _WIN32
4125 DEFAULT_NETWORK_SCRIPT,
4126 DEFAULT_NETWORK_DOWN_SCRIPT,
4127 #endif
4128 DEFAULT_GDBSTUB_PORT,
4129 "/tmp/qemu.log");
4130 exit(exitcode);
4131 }
4132
4133 #define HAS_ARG 0x0001
4134
4135 enum {
4136 /* Please keep in synch with help, qemu_options[] and
4137 qemu-doc.texi */
4138 /* Standard options: */
4139 QEMU_OPTION_h,
4140 QEMU_OPTION_M,
4141 QEMU_OPTION_cpu,
4142 QEMU_OPTION_smp,
4143 QEMU_OPTION_fda,
4144 QEMU_OPTION_fdb,
4145 QEMU_OPTION_hda,
4146 QEMU_OPTION_hdb,
4147 QEMU_OPTION_hdc,
4148 QEMU_OPTION_hdd,
4149 QEMU_OPTION_cdrom,
4150 QEMU_OPTION_drive,
4151 QEMU_OPTION_mtdblock,
4152 QEMU_OPTION_sd,
4153 QEMU_OPTION_pflash,
4154 QEMU_OPTION_boot,
4155 QEMU_OPTION_snapshot,
4156 QEMU_OPTION_m,
4157 QEMU_OPTION_k,
4158 QEMU_OPTION_audio_help,
4159 QEMU_OPTION_soundhw,
4160 QEMU_OPTION_usb,
4161 QEMU_OPTION_usbdevice,
4162 QEMU_OPTION_name,
4163 QEMU_OPTION_uuid,
4164
4165 /* Display options: */
4166 QEMU_OPTION_nographic,
4167 QEMU_OPTION_curses,
4168 QEMU_OPTION_no_frame,
4169 QEMU_OPTION_alt_grab,
4170 QEMU_OPTION_no_quit,
4171 QEMU_OPTION_sdl,
4172 QEMU_OPTION_portrait,
4173 QEMU_OPTION_vga,
4174 QEMU_OPTION_full_screen,
4175 QEMU_OPTION_g,
4176 QEMU_OPTION_vnc,
4177
4178 /* Network options: */
4179 QEMU_OPTION_net,
4180 QEMU_OPTION_tftp,
4181 QEMU_OPTION_bootp,
4182 QEMU_OPTION_smb,
4183 QEMU_OPTION_redir,
4184 QEMU_OPTION_bt,
4185
4186 /* i386 target only: */
4187 QEMU_OPTION_win2k_hack,
4188 QEMU_OPTION_rtc_td_hack,
4189 QEMU_OPTION_no_fd_bootchk,
4190 QEMU_OPTION_no_acpi,
4191 QEMU_OPTION_no_hpet,
4192 QEMU_OPTION_acpitable,
4193
4194 /* Linux boot specific: */
4195 QEMU_OPTION_kernel,
4196 QEMU_OPTION_append,
4197 QEMU_OPTION_initrd,
4198
4199 /* Debug/Expert options: */
4200 QEMU_OPTION_serial,
4201 QEMU_OPTION_parallel,
4202 QEMU_OPTION_monitor,
4203 QEMU_OPTION_pidfile,
4204 QEMU_OPTION_S,
4205 QEMU_OPTION_s,
4206 QEMU_OPTION_p,
4207 QEMU_OPTION_d,
4208 QEMU_OPTION_hdachs,
4209 QEMU_OPTION_L,
4210 QEMU_OPTION_bios,
4211 QEMU_OPTION_kernel_kqemu,
4212 QEMU_OPTION_no_kqemu,
4213 QEMU_OPTION_enable_kvm,
4214 QEMU_OPTION_no_reboot,
4215 QEMU_OPTION_no_shutdown,
4216 QEMU_OPTION_loadvm,
4217 QEMU_OPTION_daemonize,
4218 QEMU_OPTION_option_rom,
4219 QEMU_OPTION_prom_env,
4220 QEMU_OPTION_clock,
4221 QEMU_OPTION_localtime,
4222 QEMU_OPTION_startdate,
4223 QEMU_OPTION_icount,
4224 QEMU_OPTION_echr,
4225 QEMU_OPTION_virtiocon,
4226 QEMU_OPTION_show_cursor,
4227 QEMU_OPTION_semihosting,
4228 QEMU_OPTION_old_param,
4229 QEMU_OPTION_tb_size,
4230 QEMU_OPTION_incoming,
4231 QEMU_OPTION_chroot,
4232 QEMU_OPTION_runas,
4233 };
4234
4235 typedef struct QEMUOption {
4236 const char *name;
4237 int flags;
4238 int index;
4239 } QEMUOption;
4240
4241 static const QEMUOption qemu_options[] = {
4242 /* Please keep in synch with help, QEMU_OPTION_ enums, and
4243 qemu-doc.texi */
4244 /* Standard options: */
4245 { "h", 0, QEMU_OPTION_h },
4246 { "help", 0, QEMU_OPTION_h },
4247 { "M", HAS_ARG, QEMU_OPTION_M },
4248 { "cpu", HAS_ARG, QEMU_OPTION_cpu },
4249 { "smp", HAS_ARG, QEMU_OPTION_smp },
4250 { "fda", HAS_ARG, QEMU_OPTION_fda },
4251 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
4252 { "hda", HAS_ARG, QEMU_OPTION_hda },
4253 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
4254 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
4255 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
4256 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
4257 { "drive", HAS_ARG, QEMU_OPTION_drive },
4258 { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
4259 { "sd", HAS_ARG, QEMU_OPTION_sd },
4260 { "pflash", HAS_ARG, QEMU_OPTION_pflash },
4261 { "boot", HAS_ARG, QEMU_OPTION_boot },
4262 { "snapshot", 0, QEMU_OPTION_snapshot },
4263 { "m", HAS_ARG, QEMU_OPTION_m },
4264 #ifndef _WIN32
4265 { "k", HAS_ARG, QEMU_OPTION_k },
4266 #endif
4267 #ifdef HAS_AUDIO
4268 { "audio-help", 0, QEMU_OPTION_audio_help },
4269 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
4270 #endif
4271 { "usb", 0, QEMU_OPTION_usb },
4272 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
4273 { "name", HAS_ARG, QEMU_OPTION_name },
4274 { "uuid", HAS_ARG, QEMU_OPTION_uuid },
4275
4276 /* Display options: */
4277 { "nographic", 0, QEMU_OPTION_nographic },
4278 #ifdef CONFIG_CURSES
4279 { "curses", 0, QEMU_OPTION_curses },
4280 #endif
4281 #ifdef CONFIG_SDL
4282 { "no-frame", 0, QEMU_OPTION_no_frame },
4283 { "alt-grab", 0, QEMU_OPTION_alt_grab },
4284 { "no-quit", 0, QEMU_OPTION_no_quit },
4285 { "sdl", 0, QEMU_OPTION_sdl },
4286 #endif
4287 { "portrait", 0, QEMU_OPTION_portrait },
4288 { "vga", HAS_ARG, QEMU_OPTION_vga },
4289 { "full-screen", 0, QEMU_OPTION_full_screen },
4290 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
4291 { "g", 1, QEMU_OPTION_g },
4292 #endif
4293 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
4294
4295 /* Network options: */
4296 { "net", HAS_ARG, QEMU_OPTION_net},
4297 #ifdef CONFIG_SLIRP
4298 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
4299 { "bootp", HAS_ARG, QEMU_OPTION_bootp },
4300 #ifndef _WIN32
4301 { "smb", HAS_ARG, QEMU_OPTION_smb },
4302 #endif
4303 { "redir", HAS_ARG, QEMU_OPTION_redir },
4304 #endif
4305 { "bt", HAS_ARG, QEMU_OPTION_bt },
4306 #ifdef TARGET_I386
4307 /* i386 target only: */
4308 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
4309 { "rtc-td-hack", 0, QEMU_OPTION_rtc_td_hack },
4310 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
4311 { "no-acpi", 0, QEMU_OPTION_no_acpi },
4312 { "no-hpet", 0, QEMU_OPTION_no_hpet },
4313 { "acpitable", HAS_ARG, QEMU_OPTION_acpitable },
4314 #endif
4315
4316 /* Linux boot specific: */
4317 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
4318 { "append", HAS_ARG, QEMU_OPTION_append },
4319 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
4320
4321 /* Debug/Expert options: */
4322 { "serial", HAS_ARG, QEMU_OPTION_serial },
4323 { "parallel", HAS_ARG, QEMU_OPTION_parallel },
4324 { "monitor", HAS_ARG, QEMU_OPTION_monitor },
4325 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
4326 { "S", 0, QEMU_OPTION_S },
4327 { "s", 0, QEMU_OPTION_s },
4328 { "p", HAS_ARG, QEMU_OPTION_p },
4329 { "d", HAS_ARG, QEMU_OPTION_d },
4330 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
4331 { "L", HAS_ARG, QEMU_OPTION_L },
4332 { "bios", HAS_ARG, QEMU_OPTION_bios },
4333 #ifdef USE_KQEMU
4334 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
4335 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
4336 #endif
4337 #ifdef CONFIG_KVM
4338 { "enable-kvm", 0, QEMU_OPTION_enable_kvm },
4339 #endif
4340 { "no-reboot", 0, QEMU_OPTION_no_reboot },
4341 { "no-shutdown", 0, QEMU_OPTION_no_shutdown },
4342 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
4343 { "daemonize", 0, QEMU_OPTION_daemonize },
4344 { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
4345 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
4346 { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
4347 #endif
4348 { "clock", HAS_ARG, QEMU_OPTION_clock },
4349 { "localtime", 0, QEMU_OPTION_localtime },
4350 { "startdate", HAS_ARG, QEMU_OPTION_startdate },
4351 { "icount", HAS_ARG, QEMU_OPTION_icount },
4352 { "echr", HAS_ARG, QEMU_OPTION_echr },
4353 { "virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon },
4354 { "show-cursor", 0, QEMU_OPTION_show_cursor },
4355 #if defined(TARGET_ARM) || defined(TARGET_M68K)
4356 { "semihosting", 0, QEMU_OPTION_semihosting },
4357 #endif
4358 #if defined(TARGET_ARM)
4359 { "old-param", 0, QEMU_OPTION_old_param },
4360 #endif
4361 { "tb-size", HAS_ARG, QEMU_OPTION_tb_size },
4362 { "incoming", HAS_ARG, QEMU_OPTION_incoming },
4363 { "chroot", HAS_ARG, QEMU_OPTION_chroot },
4364 { "runas", HAS_ARG, QEMU_OPTION_runas },
4365 { NULL },
4366 };
4367
4368 #ifdef HAS_AUDIO
4369 struct soundhw soundhw[] = {
4370 #ifdef HAS_AUDIO_CHOICE
4371 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4372 {
4373 "pcspk",
4374 "PC speaker",
4375 0,
4376 1,
4377 { .init_isa = pcspk_audio_init }
4378 },
4379 #endif
4380
4381 #ifdef CONFIG_SB16
4382 {
4383 "sb16",
4384 "Creative Sound Blaster 16",
4385 0,
4386 1,
4387 { .init_isa = SB16_init }
4388 },
4389 #endif
4390
4391 #ifdef CONFIG_CS4231A
4392 {
4393 "cs4231a",
4394 "CS4231A",
4395 0,
4396 1,
4397 { .init_isa = cs4231a_init }
4398 },
4399 #endif
4400
4401 #ifdef CONFIG_ADLIB
4402 {
4403 "adlib",
4404 #ifdef HAS_YMF262
4405 "Yamaha YMF262 (OPL3)",
4406 #else
4407 "Yamaha YM3812 (OPL2)",
4408 #endif
4409 0,
4410 1,
4411 { .init_isa = Adlib_init }
4412 },
4413 #endif
4414
4415 #ifdef CONFIG_GUS
4416 {
4417 "gus",
4418 "Gravis Ultrasound GF1",
4419 0,
4420 1,
4421 { .init_isa = GUS_init }
4422 },
4423 #endif
4424
4425 #ifdef CONFIG_AC97
4426 {
4427 "ac97",
4428 "Intel 82801AA AC97 Audio",
4429 0,
4430 0,
4431 { .init_pci = ac97_init }
4432 },
4433 #endif
4434
4435 #ifdef CONFIG_ES1370
4436 {
4437 "es1370",
4438 "ENSONIQ AudioPCI ES1370",
4439 0,
4440 0,
4441 { .init_pci = es1370_init }
4442 },
4443 #endif
4444
4445 #endif /* HAS_AUDIO_CHOICE */
4446
4447 { NULL, NULL, 0, 0, { NULL } }
4448 };
4449
4450 static void select_soundhw (const char *optarg)
4451 {
4452 struct soundhw *c;
4453
4454 if (*optarg == '?') {
4455 show_valid_cards:
4456
4457 printf ("Valid sound card names (comma separated):\n");
4458 for (c = soundhw; c->name; ++c) {
4459 printf ("%-11s %s\n", c->name, c->descr);
4460 }
4461 printf ("\n-soundhw all will enable all of the above\n");
4462 exit (*optarg != '?');
4463 }
4464 else {
4465 size_t l;
4466 const char *p;
4467 char *e;
4468 int bad_card = 0;
4469
4470 if (!strcmp (optarg, "all")) {
4471 for (c = soundhw; c->name; ++c) {
4472 c->enabled = 1;
4473 }
4474 return;
4475 }
4476
4477 p = optarg;
4478 while (*p) {
4479 e = strchr (p, ',');
4480 l = !e ? strlen (p) : (size_t) (e - p);
4481
4482 for (c = soundhw; c->name; ++c) {
4483 if (!strncmp (c->name, p, l)) {
4484 c->enabled = 1;
4485 break;
4486 }
4487 }
4488
4489 if (!c->name) {
4490 if (l > 80) {
4491 fprintf (stderr,
4492 "Unknown sound card name (too big to show)\n");
4493 }
4494 else {
4495 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4496 (int) l, p);
4497 }
4498 bad_card = 1;
4499 }
4500 p += l + (e != NULL);
4501 }
4502
4503 if (bad_card)
4504 goto show_valid_cards;
4505 }
4506 }
4507 #endif
4508
4509 static void select_vgahw (const char *p)
4510 {
4511 const char *opts;
4512
4513 if (strstart(p, "std", &opts)) {
4514 std_vga_enabled = 1;
4515 cirrus_vga_enabled = 0;
4516 vmsvga_enabled = 0;
4517 } else if (strstart(p, "cirrus", &opts)) {
4518 cirrus_vga_enabled = 1;
4519 std_vga_enabled = 0;
4520 vmsvga_enabled = 0;
4521 } else if (strstart(p, "vmware", &opts)) {
4522 cirrus_vga_enabled = 0;
4523 std_vga_enabled = 0;
4524 vmsvga_enabled = 1;
4525 } else if (strstart(p, "none", &opts)) {
4526 cirrus_vga_enabled = 0;
4527 std_vga_enabled = 0;
4528 vmsvga_enabled = 0;
4529 } else {
4530 invalid_vga:
4531 fprintf(stderr, "Unknown vga type: %s\n", p);
4532 exit(1);
4533 }
4534 while (*opts) {
4535 const char *nextopt;
4536
4537 if (strstart(opts, ",retrace=", &nextopt)) {
4538 opts = nextopt;
4539 if (strstart(opts, "dumb", &nextopt))
4540 vga_retrace_method = VGA_RETRACE_DUMB;
4541 else if (strstart(opts, "precise", &nextopt))
4542 vga_retrace_method = VGA_RETRACE_PRECISE;
4543 else goto invalid_vga;
4544 } else goto invalid_vga;
4545 opts = nextopt;
4546 }
4547 }
4548
4549 #ifdef _WIN32
4550 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4551 {
4552 exit(STATUS_CONTROL_C_EXIT);
4553 return TRUE;
4554 }
4555 #endif
4556
4557 static int qemu_uuid_parse(const char *str, uint8_t *uuid)
4558 {
4559 int ret;
4560
4561 if(strlen(str) != 36)
4562 return -1;
4563
4564 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4565 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4566 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4567
4568 if(ret != 16)
4569 return -1;
4570
4571 return 0;
4572 }
4573
4574 #define MAX_NET_CLIENTS 32
4575
4576 #ifndef _WIN32
4577
4578 static void termsig_handler(int signal)
4579 {
4580 qemu_system_shutdown_request();
4581 }
4582
4583 static void termsig_setup(void)
4584 {
4585 struct sigaction act;
4586
4587 memset(&act, 0, sizeof(act));
4588 act.sa_handler = termsig_handler;
4589 sigaction(SIGINT, &act, NULL);
4590 sigaction(SIGHUP, &act, NULL);
4591 sigaction(SIGTERM, &act, NULL);
4592 }
4593
4594 #endif
4595
4596 int main(int argc, char **argv, char **envp)
4597 {
4598 #ifdef CONFIG_GDBSTUB
4599 int use_gdbstub;
4600 const char *gdbstub_port;
4601 #endif
4602 uint32_t boot_devices_bitmap = 0;
4603 int i;
4604 int snapshot, linux_boot, net_boot;
4605 const char *initrd_filename;
4606 const char *kernel_filename, *kernel_cmdline;
4607 const char *boot_devices = "";
4608 DisplayState *ds;
4609 DisplayChangeListener *dcl;
4610 int cyls, heads, secs, translation;
4611 const char *net_clients[MAX_NET_CLIENTS];
4612 int nb_net_clients;
4613 const char *bt_opts[MAX_BT_CMDLINE];
4614 int nb_bt_opts;
4615 int hda_index;
4616 int optind;
4617 const char *r, *optarg;
4618 CharDriverState *monitor_hd = NULL;
4619 const char *monitor_device;
4620 const char *serial_devices[MAX_SERIAL_PORTS];
4621 int serial_device_index;
4622 const char *parallel_devices[MAX_PARALLEL_PORTS];
4623 int parallel_device_index;
4624 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4625 int virtio_console_index;
4626 const char *loadvm = NULL;
4627 QEMUMachine *machine;
4628 const char *cpu_model;
4629 const char *usb_devices[MAX_USB_CMDLINE];
4630 int usb_devices_index;
4631 int fds[2];
4632 int tb_size;
4633 const char *pid_file = NULL;
4634 const char *incoming = NULL;
4635 int fd = 0;
4636 struct passwd *pwd = NULL;
4637 const char *chroot_dir = NULL;
4638 const char *run_as = NULL;
4639
4640 qemu_cache_utils_init(envp);
4641
4642 LIST_INIT (&vm_change_state_head);
4643 #ifndef _WIN32
4644 {
4645 struct sigaction act;
4646 sigfillset(&act.sa_mask);
4647 act.sa_flags = 0;
4648 act.sa_handler = SIG_IGN;
4649 sigaction(SIGPIPE, &act, NULL);
4650 }
4651 #else
4652 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4653 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4654 QEMU to run on a single CPU */
4655 {
4656 HANDLE h;
4657 DWORD mask, smask;
4658 int i;
4659 h = GetCurrentProcess();
4660 if (GetProcessAffinityMask(h, &mask, &smask)) {
4661 for(i = 0; i < 32; i++) {
4662 if (mask & (1 << i))
4663 break;
4664 }
4665 if (i != 32) {
4666 mask = 1 << i;
4667 SetProcessAffinityMask(h, mask);
4668 }
4669 }
4670 }
4671 #endif
4672
4673 register_machines();
4674 machine = first_machine;
4675 cpu_model = NULL;
4676 initrd_filename = NULL;
4677 ram_size = 0;
4678 vga_ram_size = VGA_RAM_SIZE;
4679 #ifdef CONFIG_GDBSTUB
4680 use_gdbstub = 0;
4681 gdbstub_port = DEFAULT_GDBSTUB_PORT;
4682 #endif
4683 snapshot = 0;
4684 nographic = 0;
4685 curses = 0;
4686 kernel_filename = NULL;
4687 kernel_cmdline = "";
4688 cyls = heads = secs = 0;
4689 translation = BIOS_ATA_TRANSLATION_AUTO;
4690 monitor_device = "vc:80Cx24C";
4691
4692 serial_devices[0] = "vc:80Cx24C";
4693 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4694 serial_devices[i] = NULL;
4695 serial_device_index = 0;
4696
4697 parallel_devices[0] = "vc:80Cx24C";
4698 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4699 parallel_devices[i] = NULL;
4700 parallel_device_index = 0;
4701
4702 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4703 virtio_consoles[i] = NULL;
4704 virtio_console_index = 0;
4705
4706 usb_devices_index = 0;
4707
4708 nb_net_clients = 0;
4709 nb_bt_opts = 0;
4710 nb_drives = 0;
4711 nb_drives_opt = 0;
4712 hda_index = -1;
4713
4714 nb_nics = 0;
4715
4716 tb_size = 0;
4717 autostart= 1;
4718
4719 optind = 1;
4720 for(;;) {
4721 if (optind >= argc)
4722 break;
4723 r = argv[optind];
4724 if (r[0] != '-') {
4725 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4726 } else {
4727 const QEMUOption *popt;
4728
4729 optind++;
4730 /* Treat --foo the same as -foo. */
4731 if (r[1] == '-')
4732 r++;
4733 popt = qemu_options;
4734 for(;;) {
4735 if (!popt->name) {
4736 fprintf(stderr, "%s: invalid option -- '%s'\n",
4737 argv[0], r);
4738 exit(1);
4739 }
4740 if (!strcmp(popt->name, r + 1))
4741 break;
4742 popt++;
4743 }
4744 if (popt->flags & HAS_ARG) {
4745 if (optind >= argc) {
4746 fprintf(stderr, "%s: option '%s' requires an argument\n",
4747 argv[0], r);
4748 exit(1);
4749 }
4750 optarg = argv[optind++];
4751 } else {
4752 optarg = NULL;
4753 }
4754
4755 switch(popt->index) {
4756 case QEMU_OPTION_M:
4757 machine = find_machine(optarg);
4758 if (!machine) {
4759 QEMUMachine *m;
4760 printf("Supported machines are:\n");
4761 for(m = first_machine; m != NULL; m = m->next) {
4762 printf("%-10s %s%s\n",
4763 m->name, m->desc,
4764 m == first_machine ? " (default)" : "");
4765 }
4766 exit(*optarg != '?');
4767 }
4768 break;
4769 case QEMU_OPTION_cpu:
4770 /* hw initialization will check this */
4771 if (*optarg == '?') {
4772 /* XXX: implement xxx_cpu_list for targets that still miss it */
4773 #if defined(cpu_list)
4774 cpu_list(stdout, &fprintf);
4775 #endif
4776 exit(0);
4777 } else {
4778 cpu_model = optarg;
4779 }
4780 break;
4781 case QEMU_OPTION_initrd:
4782 initrd_filename = optarg;
4783 break;
4784 case QEMU_OPTION_hda:
4785 if (cyls == 0)
4786 hda_index = drive_add(optarg, HD_ALIAS, 0);
4787 else
4788 hda_index = drive_add(optarg, HD_ALIAS
4789 ",cyls=%d,heads=%d,secs=%d%s",
4790 0, cyls, heads, secs,
4791 translation == BIOS_ATA_TRANSLATION_LBA ?
4792 ",trans=lba" :
4793 translation == BIOS_ATA_TRANSLATION_NONE ?
4794 ",trans=none" : "");
4795 break;
4796 case QEMU_OPTION_hdb:
4797 case QEMU_OPTION_hdc:
4798 case QEMU_OPTION_hdd:
4799 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4800 break;
4801 case QEMU_OPTION_drive:
4802 drive_add(NULL, "%s", optarg);
4803 break;
4804 case QEMU_OPTION_mtdblock:
4805 drive_add(optarg, MTD_ALIAS);
4806 break;
4807 case QEMU_OPTION_sd:
4808 drive_add(optarg, SD_ALIAS);
4809 break;
4810 case QEMU_OPTION_pflash:
4811 drive_add(optarg, PFLASH_ALIAS);
4812 break;
4813 case QEMU_OPTION_snapshot:
4814 snapshot = 1;
4815 break;
4816 case QEMU_OPTION_hdachs:
4817 {
4818 const char *p;
4819 p = optarg;
4820 cyls = strtol(p, (char **)&p, 0);
4821 if (cyls < 1 || cyls > 16383)
4822 goto chs_fail;
4823 if (*p != ',')
4824 goto chs_fail;
4825 p++;
4826 heads = strtol(p, (char **)&p, 0);
4827 if (heads < 1 || heads > 16)
4828 goto chs_fail;
4829 if (*p != ',')
4830 goto chs_fail;
4831 p++;
4832 secs = strtol(p, (char **)&p, 0);
4833 if (secs < 1 || secs > 63)
4834 goto chs_fail;
4835 if (*p == ',') {
4836 p++;
4837 if (!strcmp(p, "none"))
4838 translation = BIOS_ATA_TRANSLATION_NONE;
4839 else if (!strcmp(p, "lba"))
4840 translation = BIOS_ATA_TRANSLATION_LBA;
4841 else if (!strcmp(p, "auto"))
4842 translation = BIOS_ATA_TRANSLATION_AUTO;
4843 else
4844 goto chs_fail;
4845 } else if (*p != '\0') {
4846 chs_fail:
4847 fprintf(stderr, "qemu: invalid physical CHS format\n");
4848 exit(1);
4849 }
4850 if (hda_index != -1)
4851 snprintf(drives_opt[hda_index].opt,
4852 sizeof(drives_opt[hda_index].opt),
4853 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
4854 0, cyls, heads, secs,
4855 translation == BIOS_ATA_TRANSLATION_LBA ?
4856 ",trans=lba" :
4857 translation == BIOS_ATA_TRANSLATION_NONE ?
4858 ",trans=none" : "");
4859 }
4860 break;
4861 case QEMU_OPTION_nographic:
4862 nographic = 1;
4863 break;
4864 #ifdef CONFIG_CURSES
4865 case QEMU_OPTION_curses:
4866 curses = 1;
4867 break;
4868 #endif
4869 case QEMU_OPTION_portrait:
4870 graphic_rotate = 1;
4871 break;
4872 case QEMU_OPTION_kernel:
4873 kernel_filename = optarg;
4874 break;
4875 case QEMU_OPTION_append:
4876 kernel_cmdline = optarg;
4877 break;
4878 case QEMU_OPTION_cdrom:
4879 drive_add(optarg, CDROM_ALIAS);
4880 break;
4881 case QEMU_OPTION_boot:
4882 boot_devices = optarg;
4883 /* We just do some generic consistency checks */
4884 {
4885 /* Could easily be extended to 64 devices if needed */
4886 const char *p;
4887
4888 boot_devices_bitmap = 0;
4889 for (p = boot_devices; *p != '\0'; p++) {
4890 /* Allowed boot devices are:
4891 * a b : floppy disk drives
4892 * c ... f : IDE disk drives
4893 * g ... m : machine implementation dependant drives
4894 * n ... p : network devices
4895 * It's up to each machine implementation to check
4896 * if the given boot devices match the actual hardware
4897 * implementation and firmware features.
4898 */
4899 if (*p < 'a' || *p > 'q') {
4900 fprintf(stderr, "Invalid boot device '%c'\n", *p);
4901 exit(1);
4902 }
4903 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
4904 fprintf(stderr,
4905 "Boot device '%c' was given twice\n",*p);
4906 exit(1);
4907 }
4908 boot_devices_bitmap |= 1 << (*p - 'a');
4909 }
4910 }
4911 break;
4912 case QEMU_OPTION_fda:
4913 case QEMU_OPTION_fdb:
4914 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
4915 break;
4916 #ifdef TARGET_I386
4917 case QEMU_OPTION_no_fd_bootchk:
4918 fd_bootchk = 0;
4919 break;
4920 #endif
4921 case QEMU_OPTION_net:
4922 if (nb_net_clients >= MAX_NET_CLIENTS) {
4923 fprintf(stderr, "qemu: too many network clients\n");
4924 exit(1);
4925 }
4926 net_clients[nb_net_clients] = optarg;
4927 nb_net_clients++;
4928 break;
4929 #ifdef CONFIG_SLIRP
4930 case QEMU_OPTION_tftp:
4931 tftp_prefix = optarg;
4932 break;
4933 case QEMU_OPTION_bootp:
4934 bootp_filename = optarg;
4935 break;
4936 #ifndef _WIN32
4937 case QEMU_OPTION_smb:
4938 net_slirp_smb(optarg);
4939 break;
4940 #endif
4941 case QEMU_OPTION_redir:
4942 net_slirp_redir(optarg);
4943 break;
4944 #endif
4945 case QEMU_OPTION_bt:
4946 if (nb_bt_opts >= MAX_BT_CMDLINE) {
4947 fprintf(stderr, "qemu: too many bluetooth options\n");
4948 exit(1);
4949 }
4950 bt_opts[nb_bt_opts++] = optarg;
4951 break;
4952 #ifdef HAS_AUDIO
4953 case QEMU_OPTION_audio_help:
4954 AUD_help ();
4955 exit (0);
4956 break;
4957 case QEMU_OPTION_soundhw:
4958 select_soundhw (optarg);
4959 break;
4960 #endif
4961 case QEMU_OPTION_h:
4962 help(0);
4963 break;
4964 case QEMU_OPTION_m: {
4965 uint64_t value;
4966 char *ptr;
4967
4968 value = strtoul(optarg, &ptr, 10);
4969 switch (*ptr) {
4970 case 0: case 'M': case 'm':
4971 value <<= 20;
4972 break;
4973 case 'G': case 'g':
4974 value <<= 30;
4975 break;
4976 default:
4977 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
4978 exit(1);
4979 }
4980
4981 /* On 32-bit hosts, QEMU is limited by virtual address space */
4982 if (value > (2047 << 20)
4983 #ifndef USE_KQEMU
4984 && HOST_LONG_BITS == 32
4985 #endif
4986 ) {
4987 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
4988 exit(1);
4989 }
4990 if (value != (uint64_t)(ram_addr_t)value) {
4991 fprintf(stderr, "qemu: ram size too large\n");
4992 exit(1);
4993 }
4994 ram_size = value;
4995 break;
4996 }
4997 case QEMU_OPTION_d:
4998 {
4999 int mask;
5000 const CPULogItem *item;
5001
5002 mask = cpu_str_to_log_mask(optarg);
5003 if (!mask) {
5004 printf("Log items (comma separated):\n");
5005 for(item = cpu_log_items; item->mask != 0; item++) {
5006 printf("%-10s %s\n", item->name, item->help);
5007 }
5008 exit(1);
5009 }
5010 cpu_set_log(mask);
5011 }
5012 break;
5013 #ifdef CONFIG_GDBSTUB
5014 case QEMU_OPTION_s:
5015 use_gdbstub = 1;
5016 break;
5017 case QEMU_OPTION_p:
5018 gdbstub_port = optarg;
5019 break;
5020 #endif
5021 case QEMU_OPTION_L:
5022 bios_dir = optarg;
5023 break;
5024 case QEMU_OPTION_bios:
5025 bios_name = optarg;
5026 break;
5027 case QEMU_OPTION_S:
5028 autostart = 0;
5029 break;
5030 case QEMU_OPTION_k:
5031 keyboard_layout = optarg;
5032 break;
5033 case QEMU_OPTION_localtime:
5034 rtc_utc = 0;
5035 break;
5036 case QEMU_OPTION_vga:
5037 select_vgahw (optarg);
5038 break;
5039 case QEMU_OPTION_g:
5040 {
5041 const char *p;
5042 int w, h, depth;
5043 p = optarg;
5044 w = strtol(p, (char **)&p, 10);
5045 if (w <= 0) {
5046 graphic_error:
5047 fprintf(stderr, "qemu: invalid resolution or depth\n");
5048 exit(1);
5049 }
5050 if (*p != 'x')
5051 goto graphic_error;
5052 p++;
5053 h = strtol(p, (char **)&p, 10);
5054 if (h <= 0)
5055 goto graphic_error;
5056 if (*p == 'x') {
5057 p++;
5058 depth = strtol(p, (char **)&p, 10);
5059 if (depth != 8 && depth != 15 && depth != 16 &&
5060 depth != 24 && depth != 32)
5061 goto graphic_error;
5062 } else if (*p == '\0') {
5063 depth = graphic_depth;
5064 } else {
5065 goto graphic_error;
5066 }
5067
5068 graphic_width = w;
5069 graphic_height = h;
5070 graphic_depth = depth;
5071 }
5072 break;
5073 case QEMU_OPTION_echr:
5074 {
5075 char *r;
5076 term_escape_char = strtol(optarg, &r, 0);
5077 if (r == optarg)
5078 printf("Bad argument to echr\n");
5079 break;
5080 }
5081 case QEMU_OPTION_monitor:
5082 monitor_device = optarg;
5083 break;
5084 case QEMU_OPTION_serial:
5085 if (serial_device_index >= MAX_SERIAL_PORTS) {
5086 fprintf(stderr, "qemu: too many serial ports\n");
5087 exit(1);
5088 }
5089 serial_devices[serial_device_index] = optarg;
5090 serial_device_index++;
5091 break;
5092 case QEMU_OPTION_virtiocon:
5093 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5094 fprintf(stderr, "qemu: too many virtio consoles\n");
5095 exit(1);
5096 }
5097 virtio_consoles[virtio_console_index] = optarg;
5098 virtio_console_index++;
5099 break;
5100 case QEMU_OPTION_parallel:
5101 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5102 fprintf(stderr, "qemu: too many parallel ports\n");
5103 exit(1);
5104 }
5105 parallel_devices[parallel_device_index] = optarg;
5106 parallel_device_index++;
5107 break;
5108 case QEMU_OPTION_loadvm:
5109 loadvm = optarg;
5110 break;
5111 case QEMU_OPTION_full_screen:
5112 full_screen = 1;
5113 break;
5114 #ifdef CONFIG_SDL
5115 case QEMU_OPTION_no_frame:
5116 no_frame = 1;
5117 break;
5118 case QEMU_OPTION_alt_grab:
5119 alt_grab = 1;
5120 break;
5121 case QEMU_OPTION_no_quit:
5122 no_quit = 1;
5123 break;
5124 case QEMU_OPTION_sdl:
5125 sdl = 1;
5126 break;
5127 #endif
5128 case QEMU_OPTION_pidfile:
5129 pid_file = optarg;
5130 break;
5131 #ifdef TARGET_I386
5132 case QEMU_OPTION_win2k_hack:
5133 win2k_install_hack = 1;
5134 break;
5135 case QEMU_OPTION_rtc_td_hack:
5136 rtc_td_hack = 1;
5137 break;
5138 case QEMU_OPTION_acpitable:
5139 if(acpi_table_add(optarg) < 0) {
5140 fprintf(stderr, "Wrong acpi table provided\n");
5141 exit(1);
5142 }
5143 break;
5144 #endif
5145 #ifdef USE_KQEMU
5146 case QEMU_OPTION_no_kqemu:
5147 kqemu_allowed = 0;
5148 break;
5149 case QEMU_OPTION_kernel_kqemu:
5150 kqemu_allowed = 2;
5151 break;
5152 #endif
5153 #ifdef CONFIG_KVM
5154 case QEMU_OPTION_enable_kvm:
5155 kvm_allowed = 1;
5156 #ifdef USE_KQEMU
5157 kqemu_allowed = 0;
5158 #endif
5159 break;
5160 #endif
5161 case QEMU_OPTION_usb:
5162 usb_enabled = 1;
5163 break;
5164 case QEMU_OPTION_usbdevice:
5165 usb_enabled = 1;
5166 if (usb_devices_index >= MAX_USB_CMDLINE) {
5167 fprintf(stderr, "Too many USB devices\n");
5168 exit(1);
5169 }
5170 usb_devices[usb_devices_index] = optarg;
5171 usb_devices_index++;
5172 break;
5173 case QEMU_OPTION_smp:
5174 smp_cpus = atoi(optarg);
5175 if (smp_cpus < 1) {
5176 fprintf(stderr, "Invalid number of CPUs\n");
5177 exit(1);
5178 }
5179 break;
5180 case QEMU_OPTION_vnc:
5181 vnc_display = optarg;
5182 break;
5183 case QEMU_OPTION_no_acpi:
5184 acpi_enabled = 0;
5185 break;
5186 case QEMU_OPTION_no_hpet:
5187 no_hpet = 1;
5188 break;
5189 case QEMU_OPTION_no_reboot:
5190 no_reboot = 1;
5191 break;
5192 case QEMU_OPTION_no_shutdown:
5193 no_shutdown = 1;
5194 break;
5195 case QEMU_OPTION_show_cursor:
5196 cursor_hide = 0;
5197 break;
5198 case QEMU_OPTION_uuid:
5199 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5200 fprintf(stderr, "Fail to parse UUID string."
5201 " Wrong format.\n");
5202 exit(1);
5203 }
5204 break;
5205 case QEMU_OPTION_daemonize:
5206 daemonize = 1;
5207 break;
5208 case QEMU_OPTION_option_rom:
5209 if (nb_option_roms >= MAX_OPTION_ROMS) {
5210 fprintf(stderr, "Too many option ROMs\n");
5211 exit(1);
5212 }
5213 option_rom[nb_option_roms] = optarg;
5214 nb_option_roms++;
5215 break;
5216 case QEMU_OPTION_semihosting:
5217 semihosting_enabled = 1;
5218 break;
5219 case QEMU_OPTION_name:
5220 qemu_name = optarg;
5221 break;
5222 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5223 case QEMU_OPTION_prom_env:
5224 if (nb_prom_envs >= MAX_PROM_ENVS) {
5225 fprintf(stderr, "Too many prom variables\n");
5226 exit(1);
5227 }
5228 prom_envs[nb_prom_envs] = optarg;
5229 nb_prom_envs++;
5230 break;
5231 #endif
5232 #ifdef TARGET_ARM
5233 case QEMU_OPTION_old_param:
5234 old_param = 1;
5235 break;
5236 #endif
5237 case QEMU_OPTION_clock:
5238 configure_alarms(optarg);
5239 break;
5240 case QEMU_OPTION_startdate:
5241 {
5242 struct tm tm;
5243 time_t rtc_start_date;
5244 if (!strcmp(optarg, "now")) {
5245 rtc_date_offset = -1;
5246 } else {
5247 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5248 &tm.tm_year,
5249 &tm.tm_mon,
5250 &tm.tm_mday,
5251 &tm.tm_hour,
5252 &tm.tm_min,
5253 &tm.tm_sec) == 6) {
5254 /* OK */
5255 } else if (sscanf(optarg, "%d-%d-%d",
5256 &tm.tm_year,
5257 &tm.tm_mon,
5258 &tm.tm_mday) == 3) {
5259 tm.tm_hour = 0;
5260 tm.tm_min = 0;
5261 tm.tm_sec = 0;
5262 } else {
5263 goto date_fail;
5264 }
5265 tm.tm_year -= 1900;
5266 tm.tm_mon--;
5267 rtc_start_date = mktimegm(&tm);
5268 if (rtc_start_date == -1) {
5269 date_fail:
5270 fprintf(stderr, "Invalid date format. Valid format are:\n"
5271 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5272 exit(1);
5273 }
5274 rtc_date_offset = time(NULL) - rtc_start_date;
5275 }
5276 }
5277 break;
5278 case QEMU_OPTION_tb_size:
5279 tb_size = strtol(optarg, NULL, 0);
5280 if (tb_size < 0)
5281 tb_size = 0;
5282 break;
5283 case QEMU_OPTION_icount:
5284 use_icount = 1;
5285 if (strcmp(optarg, "auto") == 0) {
5286 icount_time_shift = -1;
5287 } else {
5288 icount_time_shift = strtol(optarg, NULL, 0);
5289 }
5290 break;
5291 case QEMU_OPTION_incoming:
5292 incoming = optarg;
5293 break;
5294 case QEMU_OPTION_chroot:
5295 chroot_dir = optarg;
5296 break;
5297 case QEMU_OPTION_runas:
5298 run_as = optarg;
5299 break;
5300 }
5301 }
5302 }
5303
5304 #if defined(CONFIG_KVM) && defined(USE_KQEMU)
5305 if (kvm_allowed && kqemu_allowed) {
5306 fprintf(stderr,
5307 "You can not enable both KVM and kqemu at the same time\n");
5308 exit(1);
5309 }
5310 #endif
5311
5312 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5313 if (smp_cpus > machine->max_cpus) {
5314 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5315 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5316 machine->max_cpus);
5317 exit(1);
5318 }
5319
5320 if (nographic) {
5321 if (serial_device_index == 0)
5322 serial_devices[0] = "stdio";
5323 if (parallel_device_index == 0)
5324 parallel_devices[0] = "null";
5325 if (strncmp(monitor_device, "vc", 2) == 0)
5326 monitor_device = "stdio";
5327 }
5328
5329 #ifndef _WIN32
5330 if (daemonize) {
5331 pid_t pid;
5332
5333 if (pipe(fds) == -1)
5334 exit(1);
5335
5336 pid = fork();
5337 if (pid > 0) {
5338 uint8_t status;
5339 ssize_t len;
5340
5341 close(fds[1]);
5342
5343 again:
5344 len = read(fds[0], &status, 1);
5345 if (len == -1 && (errno == EINTR))
5346 goto again;
5347
5348 if (len != 1)
5349 exit(1);
5350 else if (status == 1) {
5351 fprintf(stderr, "Could not acquire pidfile\n");
5352 exit(1);
5353 } else
5354 exit(0);
5355 } else if (pid < 0)
5356 exit(1);
5357
5358 setsid();
5359
5360 pid = fork();
5361 if (pid > 0)
5362 exit(0);
5363 else if (pid < 0)
5364 exit(1);
5365
5366 umask(027);
5367
5368 signal(SIGTSTP, SIG_IGN);
5369 signal(SIGTTOU, SIG_IGN);
5370 signal(SIGTTIN, SIG_IGN);
5371 }
5372 #endif
5373
5374 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5375 if (daemonize) {
5376 uint8_t status = 1;
5377 write(fds[1], &status, 1);
5378 } else
5379 fprintf(stderr, "Could not acquire pid file\n");
5380 exit(1);
5381 }
5382
5383 #ifdef USE_KQEMU
5384 if (smp_cpus > 1)
5385 kqemu_allowed = 0;
5386 #endif
5387 linux_boot = (kernel_filename != NULL);
5388 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5389
5390 if (!linux_boot && net_boot == 0 &&
5391 !machine->nodisk_ok && nb_drives_opt == 0)
5392 help(1);
5393
5394 if (!linux_boot && *kernel_cmdline != '\0') {
5395 fprintf(stderr, "-append only allowed with -kernel option\n");
5396 exit(1);
5397 }
5398
5399 if (!linux_boot && initrd_filename != NULL) {
5400 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5401 exit(1);
5402 }
5403
5404 /* boot to floppy or the default cd if no hard disk defined yet */
5405 if (!boot_devices[0]) {
5406 boot_devices = "cad";
5407 }
5408 setvbuf(stdout, NULL, _IOLBF, 0);
5409
5410 init_timers();
5411 if (init_timer_alarm() < 0) {
5412 fprintf(stderr, "could not initialize alarm timer\n");
5413 exit(1);
5414 }
5415 if (use_icount && icount_time_shift < 0) {
5416 use_icount = 2;
5417 /* 125MIPS seems a reasonable initial guess at the guest speed.
5418 It will be corrected fairly quickly anyway. */
5419 icount_time_shift = 3;
5420 init_icount_adjust();
5421 }
5422
5423 #ifdef _WIN32
5424 socket_init();
5425 #endif
5426
5427 /* init network clients */
5428 if (nb_net_clients == 0) {
5429 /* if no clients, we use a default config */
5430 net_clients[nb_net_clients++] = "nic";
5431 #ifdef CONFIG_SLIRP
5432 net_clients[nb_net_clients++] = "user";
5433 #endif
5434 }
5435
5436 for(i = 0;i < nb_net_clients; i++) {
5437 if (net_client_parse(net_clients[i]) < 0)
5438 exit(1);
5439 }
5440 net_client_check();
5441
5442 #ifdef TARGET_I386
5443 /* XXX: this should be moved in the PC machine instantiation code */
5444 if (net_boot != 0) {
5445 int netroms = 0;
5446 for (i = 0; i < nb_nics && i < 4; i++) {
5447 const char *model = nd_table[i].model;
5448 char buf[1024];
5449 if (net_boot & (1 << i)) {
5450 if (model == NULL)
5451 model = "ne2k_pci";
5452 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5453 if (get_image_size(buf) > 0) {
5454 if (nb_option_roms >= MAX_OPTION_ROMS) {
5455 fprintf(stderr, "Too many option ROMs\n");
5456 exit(1);
5457 }
5458 option_rom[nb_option_roms] = strdup(buf);
5459 nb_option_roms++;
5460 netroms++;
5461 }
5462 }
5463 }
5464 if (netroms == 0) {
5465 fprintf(stderr, "No valid PXE rom found for network device\n");
5466 exit(1);
5467 }
5468 }
5469 #endif
5470
5471 /* init the bluetooth world */
5472 for (i = 0; i < nb_bt_opts; i++)
5473 if (bt_parse(bt_opts[i]))
5474 exit(1);
5475
5476 /* init the memory */
5477 phys_ram_size = machine->ram_require & ~RAMSIZE_FIXED;
5478
5479 if (machine->ram_require & RAMSIZE_FIXED) {
5480 if (ram_size > 0) {
5481 if (ram_size < phys_ram_size) {
5482 fprintf(stderr, "Machine `%s' requires %llu bytes of memory\n",
5483 machine->name, (unsigned long long) phys_ram_size);
5484 exit(-1);
5485 }
5486
5487 phys_ram_size = ram_size;
5488 } else
5489 ram_size = phys_ram_size;
5490 } else {
5491 if (ram_size == 0)
5492 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5493
5494 phys_ram_size += ram_size;
5495 }
5496
5497 phys_ram_base = qemu_vmalloc(phys_ram_size);
5498 if (!phys_ram_base) {
5499 fprintf(stderr, "Could not allocate physical memory\n");
5500 exit(1);
5501 }
5502
5503 /* init the dynamic translator */
5504 cpu_exec_init_all(tb_size * 1024 * 1024);
5505
5506 bdrv_init();
5507
5508 /* we always create the cdrom drive, even if no disk is there */
5509
5510 if (nb_drives_opt < MAX_DRIVES)
5511 drive_add(NULL, CDROM_ALIAS);
5512
5513 /* we always create at least one floppy */
5514
5515 if (nb_drives_opt < MAX_DRIVES)
5516 drive_add(NULL, FD_ALIAS, 0);
5517
5518 /* we always create one sd slot, even if no card is in it */
5519
5520 if (nb_drives_opt < MAX_DRIVES)
5521 drive_add(NULL, SD_ALIAS);
5522
5523 /* open the virtual block devices */
5524
5525 for(i = 0; i < nb_drives_opt; i++)
5526 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5527 exit(1);
5528
5529 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5530 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5531
5532 #ifndef _WIN32
5533 /* must be after terminal init, SDL library changes signal handlers */
5534 termsig_setup();
5535 #endif
5536
5537 /* Maintain compatibility with multiple stdio monitors */
5538 if (!strcmp(monitor_device,"stdio")) {
5539 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5540 const char *devname = serial_devices[i];
5541 if (devname && !strcmp(devname,"mon:stdio")) {
5542 monitor_device = NULL;
5543 break;
5544 } else if (devname && !strcmp(devname,"stdio")) {
5545 monitor_device = NULL;
5546 serial_devices[i] = "mon:stdio";
5547 break;
5548 }
5549 }
5550 }
5551
5552 if (kvm_enabled()) {
5553 int ret;
5554
5555 ret = kvm_init(smp_cpus);
5556 if (ret < 0) {
5557 fprintf(stderr, "failed to initialize KVM\n");
5558 exit(1);
5559 }
5560 }
5561
5562 if (monitor_device) {
5563 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5564 if (!monitor_hd) {
5565 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5566 exit(1);
5567 }
5568 }
5569
5570 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5571 const char *devname = serial_devices[i];
5572 if (devname && strcmp(devname, "none")) {
5573 char label[32];
5574 snprintf(label, sizeof(label), "serial%d", i);
5575 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5576 if (!serial_hds[i]) {
5577 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5578 devname);
5579 exit(1);
5580 }
5581 }
5582 }
5583
5584 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5585 const char *devname = parallel_devices[i];
5586 if (devname && strcmp(devname, "none")) {
5587 char label[32];
5588 snprintf(label, sizeof(label), "parallel%d", i);
5589 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5590 if (!parallel_hds[i]) {
5591 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5592 devname);
5593 exit(1);
5594 }
5595 }
5596 }
5597
5598 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5599 const char *devname = virtio_consoles[i];
5600 if (devname && strcmp(devname, "none")) {
5601 char label[32];
5602 snprintf(label, sizeof(label), "virtcon%d", i);
5603 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5604 if (!virtcon_hds[i]) {
5605 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5606 devname);
5607 exit(1);
5608 }
5609 }
5610 }
5611
5612 machine->init(ram_size, vga_ram_size, boot_devices,
5613 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5614
5615 current_machine = machine;
5616
5617 /* Set KVM's vcpu state to qemu's initial CPUState. */
5618 if (kvm_enabled()) {
5619 int ret;
5620
5621 ret = kvm_sync_vcpus();
5622 if (ret < 0) {
5623 fprintf(stderr, "failed to initialize vcpus\n");
5624 exit(1);
5625 }
5626 }
5627
5628 /* init USB devices */
5629 if (usb_enabled) {
5630 for(i = 0; i < usb_devices_index; i++) {
5631 if (usb_device_add(usb_devices[i], 0) < 0) {
5632 fprintf(stderr, "Warning: could not add USB device %s\n",
5633 usb_devices[i]);
5634 }
5635 }
5636 }
5637
5638 if (!display_state)
5639 dumb_display_init();
5640 /* just use the first displaystate for the moment */
5641 ds = display_state;
5642 /* terminal init */
5643 if (nographic) {
5644 if (curses) {
5645 fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
5646 exit(1);
5647 }
5648 } else {
5649 #if defined(CONFIG_CURSES)
5650 if (curses) {
5651 /* At the moment curses cannot be used with other displays */
5652 curses_display_init(ds, full_screen);
5653 } else
5654 #endif
5655 {
5656 if (vnc_display != NULL) {
5657 vnc_display_init(ds);
5658 if (vnc_display_open(ds, vnc_display) < 0)
5659 exit(1);
5660 }
5661 #if defined(CONFIG_SDL)
5662 if (sdl || !vnc_display)
5663 sdl_display_init(ds, full_screen, no_frame);
5664 #elif defined(CONFIG_COCOA)
5665 if (sdl || !vnc_display)
5666 cocoa_display_init(ds, full_screen);
5667 #endif
5668 }
5669 }
5670 dpy_resize(ds);
5671
5672 dcl = ds->listeners;
5673 while (dcl != NULL) {
5674 if (dcl->dpy_refresh != NULL) {
5675 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5676 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5677 }
5678 dcl = dcl->next;
5679 }
5680
5681 if (nographic || (vnc_display && !sdl)) {
5682 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5683 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5684 }
5685
5686 text_consoles_set_display(display_state);
5687 qemu_chr_initial_reset();
5688
5689 if (monitor_device && monitor_hd)
5690 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
5691
5692 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5693 const char *devname = serial_devices[i];
5694 if (devname && strcmp(devname, "none")) {
5695 char label[32];
5696 snprintf(label, sizeof(label), "serial%d", i);
5697 if (strstart(devname, "vc", 0))
5698 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5699 }
5700 }
5701
5702 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5703 const char *devname = parallel_devices[i];
5704 if (devname && strcmp(devname, "none")) {
5705 char label[32];
5706 snprintf(label, sizeof(label), "parallel%d", i);
5707 if (strstart(devname, "vc", 0))
5708 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5709 }
5710 }
5711
5712 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5713 const char *devname = virtio_consoles[i];
5714 if (virtcon_hds[i] && devname) {
5715 char label[32];
5716 snprintf(label, sizeof(label), "virtcon%d", i);
5717 if (strstart(devname, "vc", 0))
5718 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
5719 }
5720 }
5721
5722 #ifdef CONFIG_GDBSTUB
5723 if (use_gdbstub) {
5724 /* XXX: use standard host:port notation and modify options
5725 accordingly. */
5726 if (gdbserver_start(gdbstub_port) < 0) {
5727 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
5728 gdbstub_port);
5729 exit(1);
5730 }
5731 }
5732 #endif
5733
5734 if (loadvm)
5735 do_loadvm(cur_mon, loadvm);
5736
5737 if (incoming) {
5738 autostart = 0; /* fixme how to deal with -daemonize */
5739 qemu_start_incoming_migration(incoming);
5740 }
5741
5742 if (autostart)
5743 vm_start();
5744
5745 if (daemonize) {
5746 uint8_t status = 0;
5747 ssize_t len;
5748
5749 again1:
5750 len = write(fds[1], &status, 1);
5751 if (len == -1 && (errno == EINTR))
5752 goto again1;
5753
5754 if (len != 1)
5755 exit(1);
5756
5757 chdir("/");
5758 TFR(fd = open("/dev/null", O_RDWR));
5759 if (fd == -1)
5760 exit(1);
5761 }
5762
5763 #ifndef _WIN32
5764 if (run_as) {
5765 pwd = getpwnam(run_as);
5766 if (!pwd) {
5767 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
5768 exit(1);
5769 }
5770 }
5771
5772 if (chroot_dir) {
5773 if (chroot(chroot_dir) < 0) {
5774 fprintf(stderr, "chroot failed\n");
5775 exit(1);
5776 }
5777 chdir("/");
5778 }
5779
5780 if (run_as) {
5781 if (setgid(pwd->pw_gid) < 0) {
5782 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
5783 exit(1);
5784 }
5785 if (setuid(pwd->pw_uid) < 0) {
5786 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
5787 exit(1);
5788 }
5789 if (setuid(0) != -1) {
5790 fprintf(stderr, "Dropping privileges failed\n");
5791 exit(1);
5792 }
5793 }
5794 #endif
5795
5796 if (daemonize) {
5797 dup2(fd, 0);
5798 dup2(fd, 1);
5799 dup2(fd, 2);
5800
5801 close(fd);
5802 }
5803
5804 main_loop();
5805 quit_timers();
5806 net_cleanup();
5807
5808 return 0;
5809 }