]> git.proxmox.com Git - qemu.git/blob - vl.c
a242a11c44ee5a693f135b6773ffcaf03da8e8db
[qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
31
32 /* Needed early for CONFIG_BSD etc. */
33 #include "config-host.h"
34
35 #ifndef _WIN32
36 #include <libgen.h>
37 #include <pwd.h>
38 #include <sys/times.h>
39 #include <sys/wait.h>
40 #include <termios.h>
41 #include <sys/mman.h>
42 #include <sys/ioctl.h>
43 #include <sys/resource.h>
44 #include <sys/socket.h>
45 #include <netinet/in.h>
46 #include <net/if.h>
47 #include <arpa/inet.h>
48 #include <dirent.h>
49 #include <netdb.h>
50 #include <sys/select.h>
51 #ifdef CONFIG_BSD
52 #include <sys/stat.h>
53 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
54 #include <libutil.h>
55 #else
56 #include <util.h>
57 #endif
58 #else
59 #ifdef __linux__
60 #include <pty.h>
61 #include <malloc.h>
62 #include <linux/rtc.h>
63 #include <sys/prctl.h>
64
65 /* For the benefit of older linux systems which don't supply it,
66 we use a local copy of hpet.h. */
67 /* #include <linux/hpet.h> */
68 #include "hpet.h"
69
70 #include <linux/ppdev.h>
71 #include <linux/parport.h>
72 #endif
73 #ifdef __sun__
74 #include <sys/stat.h>
75 #include <sys/ethernet.h>
76 #include <sys/sockio.h>
77 #include <netinet/arp.h>
78 #include <netinet/in.h>
79 #include <netinet/in_systm.h>
80 #include <netinet/ip.h>
81 #include <netinet/ip_icmp.h> // must come after ip.h
82 #include <netinet/udp.h>
83 #include <netinet/tcp.h>
84 #include <net/if.h>
85 #include <syslog.h>
86 #include <stropts.h>
87 /* See MySQL bug #7156 (http://bugs.mysql.com/bug.php?id=7156) for
88 discussion about Solaris header problems */
89 extern int madvise(caddr_t, size_t, int);
90 #endif
91 #endif
92 #endif
93
94 #if defined(__OpenBSD__)
95 #include <util.h>
96 #endif
97
98 #if defined(CONFIG_VDE)
99 #include <libvdeplug.h>
100 #endif
101
102 #ifdef _WIN32
103 #include <windows.h>
104 #include <mmsystem.h>
105 #endif
106
107 #ifdef CONFIG_SDL
108 #if defined(__APPLE__) || defined(main)
109 #include <SDL.h>
110 int qemu_main(int argc, char **argv, char **envp);
111 int main(int argc, char **argv)
112 {
113 return qemu_main(argc, argv, NULL);
114 }
115 #undef main
116 #define main qemu_main
117 #endif
118 #endif /* CONFIG_SDL */
119
120 #ifdef CONFIG_COCOA
121 #undef main
122 #define main qemu_main
123 #endif /* CONFIG_COCOA */
124
125 #include "hw/hw.h"
126 #include "hw/boards.h"
127 #include "hw/usb.h"
128 #include "hw/pcmcia.h"
129 #include "hw/pc.h"
130 #include "hw/audiodev.h"
131 #include "hw/isa.h"
132 #include "hw/baum.h"
133 #include "hw/bt.h"
134 #include "hw/watchdog.h"
135 #include "hw/smbios.h"
136 #include "hw/xen.h"
137 #include "hw/qdev.h"
138 #include "hw/loader.h"
139 #include "bt-host.h"
140 #include "net.h"
141 #include "net/slirp.h"
142 #include "monitor.h"
143 #include "console.h"
144 #include "sysemu.h"
145 #include "gdbstub.h"
146 #include "qemu-timer.h"
147 #include "qemu-char.h"
148 #include "cache-utils.h"
149 #include "block.h"
150 #include "block_int.h"
151 #include "block-migration.h"
152 #include "dma.h"
153 #include "audio/audio.h"
154 #include "migration.h"
155 #include "kvm.h"
156 #include "balloon.h"
157 #include "qemu-option.h"
158 #include "qemu-config.h"
159
160 #include "disas.h"
161
162 #include "exec-all.h"
163
164 #include "qemu_socket.h"
165
166 #include "slirp/libslirp.h"
167
168 #include "qemu-queue.h"
169
170 //#define DEBUG_NET
171 //#define DEBUG_SLIRP
172
173 #define DEFAULT_RAM_SIZE 128
174
175 /* Maximum number of monitor devices */
176 #define MAX_MONITOR_DEVICES 10
177
178 static const char *data_dir;
179 const char *bios_name = NULL;
180 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
181 to store the VM snapshots */
182 struct drivelist drives = QTAILQ_HEAD_INITIALIZER(drives);
183 struct driveoptlist driveopts = QTAILQ_HEAD_INITIALIZER(driveopts);
184 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
185 static DisplayState *display_state;
186 DisplayType display_type = DT_DEFAULT;
187 const char* keyboard_layout = NULL;
188 ram_addr_t ram_size;
189 int nb_nics;
190 NICInfo nd_table[MAX_NICS];
191 int vm_running;
192 int autostart;
193 static int rtc_utc = 1;
194 static int rtc_date_offset = -1; /* -1 means no change */
195 QEMUClock *rtc_clock;
196 int vga_interface_type = VGA_CIRRUS;
197 #ifdef TARGET_SPARC
198 int graphic_width = 1024;
199 int graphic_height = 768;
200 int graphic_depth = 8;
201 #else
202 int graphic_width = 800;
203 int graphic_height = 600;
204 int graphic_depth = 15;
205 #endif
206 static int full_screen = 0;
207 #ifdef CONFIG_SDL
208 static int no_frame = 0;
209 #endif
210 int no_quit = 0;
211 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
212 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
213 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
214 #ifdef TARGET_I386
215 int win2k_install_hack = 0;
216 int rtc_td_hack = 0;
217 #endif
218 int usb_enabled = 0;
219 int singlestep = 0;
220 int smp_cpus = 1;
221 int max_cpus = 0;
222 int smp_cores = 1;
223 int smp_threads = 1;
224 const char *vnc_display;
225 int acpi_enabled = 1;
226 int no_hpet = 0;
227 int fd_bootchk = 1;
228 int no_reboot = 0;
229 int no_shutdown = 0;
230 int cursor_hide = 1;
231 int graphic_rotate = 0;
232 uint8_t irq0override = 1;
233 #ifndef _WIN32
234 int daemonize = 0;
235 #endif
236 const char *watchdog;
237 const char *option_rom[MAX_OPTION_ROMS];
238 int nb_option_roms;
239 int semihosting_enabled = 0;
240 #ifdef TARGET_ARM
241 int old_param = 0;
242 #endif
243 const char *qemu_name;
244 int alt_grab = 0;
245 int ctrl_grab = 0;
246 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
247 unsigned int nb_prom_envs = 0;
248 const char *prom_envs[MAX_PROM_ENVS];
249 #endif
250 int boot_menu;
251
252 int nb_numa_nodes;
253 uint64_t node_mem[MAX_NODES];
254 uint64_t node_cpumask[MAX_NODES];
255
256 static CPUState *cur_cpu;
257 static CPUState *next_cpu;
258 static int timer_alarm_pending = 1;
259 /* Conversion factor from emulated instructions to virtual clock ticks. */
260 static int icount_time_shift;
261 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
262 #define MAX_ICOUNT_SHIFT 10
263 /* Compensate for varying guest execution speed. */
264 static int64_t qemu_icount_bias;
265 static QEMUTimer *icount_rt_timer;
266 static QEMUTimer *icount_vm_timer;
267 static QEMUTimer *nographic_timer;
268
269 uint8_t qemu_uuid[16];
270
271 static QEMUBootSetHandler *boot_set_handler;
272 static void *boot_set_opaque;
273
274 /***********************************************************/
275 /* x86 ISA bus support */
276
277 target_phys_addr_t isa_mem_base = 0;
278 PicState2 *isa_pic;
279
280 /***********************************************************/
281 void hw_error(const char *fmt, ...)
282 {
283 va_list ap;
284 CPUState *env;
285
286 va_start(ap, fmt);
287 fprintf(stderr, "qemu: hardware error: ");
288 vfprintf(stderr, fmt, ap);
289 fprintf(stderr, "\n");
290 for(env = first_cpu; env != NULL; env = env->next_cpu) {
291 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
292 #ifdef TARGET_I386
293 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
294 #else
295 cpu_dump_state(env, stderr, fprintf, 0);
296 #endif
297 }
298 va_end(ap);
299 abort();
300 }
301
302 static void set_proc_name(const char *s)
303 {
304 #if defined(__linux__) && defined(PR_SET_NAME)
305 char name[16];
306 if (!s)
307 return;
308 name[sizeof(name) - 1] = 0;
309 strncpy(name, s, sizeof(name));
310 /* Could rewrite argv[0] too, but that's a bit more complicated.
311 This simple way is enough for `top'. */
312 prctl(PR_SET_NAME, name);
313 #endif
314 }
315
316 /***************/
317 /* ballooning */
318
319 static QEMUBalloonEvent *qemu_balloon_event;
320 void *qemu_balloon_event_opaque;
321
322 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
323 {
324 qemu_balloon_event = func;
325 qemu_balloon_event_opaque = opaque;
326 }
327
328 void qemu_balloon(ram_addr_t target)
329 {
330 if (qemu_balloon_event)
331 qemu_balloon_event(qemu_balloon_event_opaque, target);
332 }
333
334 ram_addr_t qemu_balloon_status(void)
335 {
336 if (qemu_balloon_event)
337 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
338 return 0;
339 }
340
341 /***********************************************************/
342 /* keyboard/mouse */
343
344 static QEMUPutKBDEvent *qemu_put_kbd_event;
345 static void *qemu_put_kbd_event_opaque;
346 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
347 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
348
349 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
350 {
351 qemu_put_kbd_event_opaque = opaque;
352 qemu_put_kbd_event = func;
353 }
354
355 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
356 void *opaque, int absolute,
357 const char *name)
358 {
359 QEMUPutMouseEntry *s, *cursor;
360
361 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
362
363 s->qemu_put_mouse_event = func;
364 s->qemu_put_mouse_event_opaque = opaque;
365 s->qemu_put_mouse_event_absolute = absolute;
366 s->qemu_put_mouse_event_name = qemu_strdup(name);
367 s->next = NULL;
368
369 if (!qemu_put_mouse_event_head) {
370 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
371 return s;
372 }
373
374 cursor = qemu_put_mouse_event_head;
375 while (cursor->next != NULL)
376 cursor = cursor->next;
377
378 cursor->next = s;
379 qemu_put_mouse_event_current = s;
380
381 return s;
382 }
383
384 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
385 {
386 QEMUPutMouseEntry *prev = NULL, *cursor;
387
388 if (!qemu_put_mouse_event_head || entry == NULL)
389 return;
390
391 cursor = qemu_put_mouse_event_head;
392 while (cursor != NULL && cursor != entry) {
393 prev = cursor;
394 cursor = cursor->next;
395 }
396
397 if (cursor == NULL) // does not exist or list empty
398 return;
399 else if (prev == NULL) { // entry is head
400 qemu_put_mouse_event_head = cursor->next;
401 if (qemu_put_mouse_event_current == entry)
402 qemu_put_mouse_event_current = cursor->next;
403 qemu_free(entry->qemu_put_mouse_event_name);
404 qemu_free(entry);
405 return;
406 }
407
408 prev->next = entry->next;
409
410 if (qemu_put_mouse_event_current == entry)
411 qemu_put_mouse_event_current = prev;
412
413 qemu_free(entry->qemu_put_mouse_event_name);
414 qemu_free(entry);
415 }
416
417 void kbd_put_keycode(int keycode)
418 {
419 if (qemu_put_kbd_event) {
420 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
421 }
422 }
423
424 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
425 {
426 QEMUPutMouseEvent *mouse_event;
427 void *mouse_event_opaque;
428 int width;
429
430 if (!qemu_put_mouse_event_current) {
431 return;
432 }
433
434 mouse_event =
435 qemu_put_mouse_event_current->qemu_put_mouse_event;
436 mouse_event_opaque =
437 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
438
439 if (mouse_event) {
440 if (graphic_rotate) {
441 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
442 width = 0x7fff;
443 else
444 width = graphic_width - 1;
445 mouse_event(mouse_event_opaque,
446 width - dy, dx, dz, buttons_state);
447 } else
448 mouse_event(mouse_event_opaque,
449 dx, dy, dz, buttons_state);
450 }
451 }
452
453 int kbd_mouse_is_absolute(void)
454 {
455 if (!qemu_put_mouse_event_current)
456 return 0;
457
458 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
459 }
460
461 void do_info_mice(Monitor *mon)
462 {
463 QEMUPutMouseEntry *cursor;
464 int index = 0;
465
466 if (!qemu_put_mouse_event_head) {
467 monitor_printf(mon, "No mouse devices connected\n");
468 return;
469 }
470
471 monitor_printf(mon, "Mouse devices available:\n");
472 cursor = qemu_put_mouse_event_head;
473 while (cursor != NULL) {
474 monitor_printf(mon, "%c Mouse #%d: %s\n",
475 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
476 index, cursor->qemu_put_mouse_event_name);
477 index++;
478 cursor = cursor->next;
479 }
480 }
481
482 void do_mouse_set(Monitor *mon, const QDict *qdict)
483 {
484 QEMUPutMouseEntry *cursor;
485 int i = 0;
486 int index = qdict_get_int(qdict, "index");
487
488 if (!qemu_put_mouse_event_head) {
489 monitor_printf(mon, "No mouse devices connected\n");
490 return;
491 }
492
493 cursor = qemu_put_mouse_event_head;
494 while (cursor != NULL && index != i) {
495 i++;
496 cursor = cursor->next;
497 }
498
499 if (cursor != NULL)
500 qemu_put_mouse_event_current = cursor;
501 else
502 monitor_printf(mon, "Mouse at given index not found\n");
503 }
504
505 /* compute with 96 bit intermediate result: (a*b)/c */
506 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
507 {
508 union {
509 uint64_t ll;
510 struct {
511 #ifdef HOST_WORDS_BIGENDIAN
512 uint32_t high, low;
513 #else
514 uint32_t low, high;
515 #endif
516 } l;
517 } u, res;
518 uint64_t rl, rh;
519
520 u.ll = a;
521 rl = (uint64_t)u.l.low * (uint64_t)b;
522 rh = (uint64_t)u.l.high * (uint64_t)b;
523 rh += (rl >> 32);
524 res.l.high = rh / c;
525 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
526 return res.ll;
527 }
528
529 /***********************************************************/
530 /* real time host monotonic timer */
531
532 static int64_t get_clock_realtime(void)
533 {
534 struct timeval tv;
535
536 gettimeofday(&tv, NULL);
537 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
538 }
539
540 #ifdef WIN32
541
542 static int64_t clock_freq;
543
544 static void init_get_clock(void)
545 {
546 LARGE_INTEGER freq;
547 int ret;
548 ret = QueryPerformanceFrequency(&freq);
549 if (ret == 0) {
550 fprintf(stderr, "Could not calibrate ticks\n");
551 exit(1);
552 }
553 clock_freq = freq.QuadPart;
554 }
555
556 static int64_t get_clock(void)
557 {
558 LARGE_INTEGER ti;
559 QueryPerformanceCounter(&ti);
560 return muldiv64(ti.QuadPart, get_ticks_per_sec(), clock_freq);
561 }
562
563 #else
564
565 static int use_rt_clock;
566
567 static void init_get_clock(void)
568 {
569 use_rt_clock = 0;
570 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
571 || defined(__DragonFly__) || defined(__FreeBSD_kernel__)
572 {
573 struct timespec ts;
574 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
575 use_rt_clock = 1;
576 }
577 }
578 #endif
579 }
580
581 static int64_t get_clock(void)
582 {
583 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
584 || defined(__DragonFly__) || defined(__FreeBSD_kernel__)
585 if (use_rt_clock) {
586 struct timespec ts;
587 clock_gettime(CLOCK_MONOTONIC, &ts);
588 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
589 } else
590 #endif
591 {
592 /* XXX: using gettimeofday leads to problems if the date
593 changes, so it should be avoided. */
594 return get_clock_realtime();
595 }
596 }
597 #endif
598
599 /* Return the virtual CPU time, based on the instruction counter. */
600 static int64_t cpu_get_icount(void)
601 {
602 int64_t icount;
603 CPUState *env = cpu_single_env;;
604 icount = qemu_icount;
605 if (env) {
606 if (!can_do_io(env))
607 fprintf(stderr, "Bad clock read\n");
608 icount -= (env->icount_decr.u16.low + env->icount_extra);
609 }
610 return qemu_icount_bias + (icount << icount_time_shift);
611 }
612
613 /***********************************************************/
614 /* guest cycle counter */
615
616 typedef struct TimersState {
617 int64_t cpu_ticks_prev;
618 int64_t cpu_ticks_offset;
619 int64_t cpu_clock_offset;
620 int32_t cpu_ticks_enabled;
621 int64_t dummy;
622 } TimersState;
623
624 TimersState timers_state;
625
626 /* return the host CPU cycle counter and handle stop/restart */
627 int64_t cpu_get_ticks(void)
628 {
629 if (use_icount) {
630 return cpu_get_icount();
631 }
632 if (!timers_state.cpu_ticks_enabled) {
633 return timers_state.cpu_ticks_offset;
634 } else {
635 int64_t ticks;
636 ticks = cpu_get_real_ticks();
637 if (timers_state.cpu_ticks_prev > ticks) {
638 /* Note: non increasing ticks may happen if the host uses
639 software suspend */
640 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
641 }
642 timers_state.cpu_ticks_prev = ticks;
643 return ticks + timers_state.cpu_ticks_offset;
644 }
645 }
646
647 /* return the host CPU monotonic timer and handle stop/restart */
648 static int64_t cpu_get_clock(void)
649 {
650 int64_t ti;
651 if (!timers_state.cpu_ticks_enabled) {
652 return timers_state.cpu_clock_offset;
653 } else {
654 ti = get_clock();
655 return ti + timers_state.cpu_clock_offset;
656 }
657 }
658
659 /* enable cpu_get_ticks() */
660 void cpu_enable_ticks(void)
661 {
662 if (!timers_state.cpu_ticks_enabled) {
663 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
664 timers_state.cpu_clock_offset -= get_clock();
665 timers_state.cpu_ticks_enabled = 1;
666 }
667 }
668
669 /* disable cpu_get_ticks() : the clock is stopped. You must not call
670 cpu_get_ticks() after that. */
671 void cpu_disable_ticks(void)
672 {
673 if (timers_state.cpu_ticks_enabled) {
674 timers_state.cpu_ticks_offset = cpu_get_ticks();
675 timers_state.cpu_clock_offset = cpu_get_clock();
676 timers_state.cpu_ticks_enabled = 0;
677 }
678 }
679
680 /***********************************************************/
681 /* timers */
682
683 #define QEMU_CLOCK_REALTIME 0
684 #define QEMU_CLOCK_VIRTUAL 1
685 #define QEMU_CLOCK_HOST 2
686
687 struct QEMUClock {
688 int type;
689 /* XXX: add frequency */
690 };
691
692 struct QEMUTimer {
693 QEMUClock *clock;
694 int64_t expire_time;
695 QEMUTimerCB *cb;
696 void *opaque;
697 struct QEMUTimer *next;
698 };
699
700 struct qemu_alarm_timer {
701 char const *name;
702 unsigned int flags;
703
704 int (*start)(struct qemu_alarm_timer *t);
705 void (*stop)(struct qemu_alarm_timer *t);
706 void (*rearm)(struct qemu_alarm_timer *t);
707 void *priv;
708 };
709
710 #define ALARM_FLAG_DYNTICKS 0x1
711 #define ALARM_FLAG_EXPIRED 0x2
712
713 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
714 {
715 return t && (t->flags & ALARM_FLAG_DYNTICKS);
716 }
717
718 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
719 {
720 if (!alarm_has_dynticks(t))
721 return;
722
723 t->rearm(t);
724 }
725
726 /* TODO: MIN_TIMER_REARM_US should be optimized */
727 #define MIN_TIMER_REARM_US 250
728
729 static struct qemu_alarm_timer *alarm_timer;
730
731 #ifdef _WIN32
732
733 struct qemu_alarm_win32 {
734 MMRESULT timerId;
735 unsigned int period;
736 } alarm_win32_data = {0, -1};
737
738 static int win32_start_timer(struct qemu_alarm_timer *t);
739 static void win32_stop_timer(struct qemu_alarm_timer *t);
740 static void win32_rearm_timer(struct qemu_alarm_timer *t);
741
742 #else
743
744 static int unix_start_timer(struct qemu_alarm_timer *t);
745 static void unix_stop_timer(struct qemu_alarm_timer *t);
746
747 #ifdef __linux__
748
749 static int dynticks_start_timer(struct qemu_alarm_timer *t);
750 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
751 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
752
753 static int hpet_start_timer(struct qemu_alarm_timer *t);
754 static void hpet_stop_timer(struct qemu_alarm_timer *t);
755
756 static int rtc_start_timer(struct qemu_alarm_timer *t);
757 static void rtc_stop_timer(struct qemu_alarm_timer *t);
758
759 #endif /* __linux__ */
760
761 #endif /* _WIN32 */
762
763 /* Correlation between real and virtual time is always going to be
764 fairly approximate, so ignore small variation.
765 When the guest is idle real and virtual time will be aligned in
766 the IO wait loop. */
767 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
768
769 static void icount_adjust(void)
770 {
771 int64_t cur_time;
772 int64_t cur_icount;
773 int64_t delta;
774 static int64_t last_delta;
775 /* If the VM is not running, then do nothing. */
776 if (!vm_running)
777 return;
778
779 cur_time = cpu_get_clock();
780 cur_icount = qemu_get_clock(vm_clock);
781 delta = cur_icount - cur_time;
782 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
783 if (delta > 0
784 && last_delta + ICOUNT_WOBBLE < delta * 2
785 && icount_time_shift > 0) {
786 /* The guest is getting too far ahead. Slow time down. */
787 icount_time_shift--;
788 }
789 if (delta < 0
790 && last_delta - ICOUNT_WOBBLE > delta * 2
791 && icount_time_shift < MAX_ICOUNT_SHIFT) {
792 /* The guest is getting too far behind. Speed time up. */
793 icount_time_shift++;
794 }
795 last_delta = delta;
796 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
797 }
798
799 static void icount_adjust_rt(void * opaque)
800 {
801 qemu_mod_timer(icount_rt_timer,
802 qemu_get_clock(rt_clock) + 1000);
803 icount_adjust();
804 }
805
806 static void icount_adjust_vm(void * opaque)
807 {
808 qemu_mod_timer(icount_vm_timer,
809 qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
810 icount_adjust();
811 }
812
813 static void init_icount_adjust(void)
814 {
815 /* Have both realtime and virtual time triggers for speed adjustment.
816 The realtime trigger catches emulated time passing too slowly,
817 the virtual time trigger catches emulated time passing too fast.
818 Realtime triggers occur even when idle, so use them less frequently
819 than VM triggers. */
820 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
821 qemu_mod_timer(icount_rt_timer,
822 qemu_get_clock(rt_clock) + 1000);
823 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
824 qemu_mod_timer(icount_vm_timer,
825 qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
826 }
827
828 static struct qemu_alarm_timer alarm_timers[] = {
829 #ifndef _WIN32
830 #ifdef __linux__
831 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
832 dynticks_stop_timer, dynticks_rearm_timer, NULL},
833 /* HPET - if available - is preferred */
834 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
835 /* ...otherwise try RTC */
836 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
837 #endif
838 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
839 #else
840 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
841 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
842 {"win32", 0, win32_start_timer,
843 win32_stop_timer, NULL, &alarm_win32_data},
844 #endif
845 {NULL, }
846 };
847
848 static void show_available_alarms(void)
849 {
850 int i;
851
852 printf("Available alarm timers, in order of precedence:\n");
853 for (i = 0; alarm_timers[i].name; i++)
854 printf("%s\n", alarm_timers[i].name);
855 }
856
857 static void configure_alarms(char const *opt)
858 {
859 int i;
860 int cur = 0;
861 int count = ARRAY_SIZE(alarm_timers) - 1;
862 char *arg;
863 char *name;
864 struct qemu_alarm_timer tmp;
865
866 if (!strcmp(opt, "?")) {
867 show_available_alarms();
868 exit(0);
869 }
870
871 arg = qemu_strdup(opt);
872
873 /* Reorder the array */
874 name = strtok(arg, ",");
875 while (name) {
876 for (i = 0; i < count && alarm_timers[i].name; i++) {
877 if (!strcmp(alarm_timers[i].name, name))
878 break;
879 }
880
881 if (i == count) {
882 fprintf(stderr, "Unknown clock %s\n", name);
883 goto next;
884 }
885
886 if (i < cur)
887 /* Ignore */
888 goto next;
889
890 /* Swap */
891 tmp = alarm_timers[i];
892 alarm_timers[i] = alarm_timers[cur];
893 alarm_timers[cur] = tmp;
894
895 cur++;
896 next:
897 name = strtok(NULL, ",");
898 }
899
900 qemu_free(arg);
901
902 if (cur) {
903 /* Disable remaining timers */
904 for (i = cur; i < count; i++)
905 alarm_timers[i].name = NULL;
906 } else {
907 show_available_alarms();
908 exit(1);
909 }
910 }
911
912 #define QEMU_NUM_CLOCKS 3
913
914 QEMUClock *rt_clock;
915 QEMUClock *vm_clock;
916 QEMUClock *host_clock;
917
918 static QEMUTimer *active_timers[QEMU_NUM_CLOCKS];
919
920 static QEMUClock *qemu_new_clock(int type)
921 {
922 QEMUClock *clock;
923 clock = qemu_mallocz(sizeof(QEMUClock));
924 clock->type = type;
925 return clock;
926 }
927
928 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
929 {
930 QEMUTimer *ts;
931
932 ts = qemu_mallocz(sizeof(QEMUTimer));
933 ts->clock = clock;
934 ts->cb = cb;
935 ts->opaque = opaque;
936 return ts;
937 }
938
939 void qemu_free_timer(QEMUTimer *ts)
940 {
941 qemu_free(ts);
942 }
943
944 /* stop a timer, but do not dealloc it */
945 void qemu_del_timer(QEMUTimer *ts)
946 {
947 QEMUTimer **pt, *t;
948
949 /* NOTE: this code must be signal safe because
950 qemu_timer_expired() can be called from a signal. */
951 pt = &active_timers[ts->clock->type];
952 for(;;) {
953 t = *pt;
954 if (!t)
955 break;
956 if (t == ts) {
957 *pt = t->next;
958 break;
959 }
960 pt = &t->next;
961 }
962 }
963
964 /* modify the current timer so that it will be fired when current_time
965 >= expire_time. The corresponding callback will be called. */
966 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
967 {
968 QEMUTimer **pt, *t;
969
970 qemu_del_timer(ts);
971
972 /* add the timer in the sorted list */
973 /* NOTE: this code must be signal safe because
974 qemu_timer_expired() can be called from a signal. */
975 pt = &active_timers[ts->clock->type];
976 for(;;) {
977 t = *pt;
978 if (!t)
979 break;
980 if (t->expire_time > expire_time)
981 break;
982 pt = &t->next;
983 }
984 ts->expire_time = expire_time;
985 ts->next = *pt;
986 *pt = ts;
987
988 /* Rearm if necessary */
989 if (pt == &active_timers[ts->clock->type]) {
990 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
991 qemu_rearm_alarm_timer(alarm_timer);
992 }
993 /* Interrupt execution to force deadline recalculation. */
994 if (use_icount)
995 qemu_notify_event();
996 }
997 }
998
999 int qemu_timer_pending(QEMUTimer *ts)
1000 {
1001 QEMUTimer *t;
1002 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1003 if (t == ts)
1004 return 1;
1005 }
1006 return 0;
1007 }
1008
1009 int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1010 {
1011 if (!timer_head)
1012 return 0;
1013 return (timer_head->expire_time <= current_time);
1014 }
1015
1016 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1017 {
1018 QEMUTimer *ts;
1019
1020 for(;;) {
1021 ts = *ptimer_head;
1022 if (!ts || ts->expire_time > current_time)
1023 break;
1024 /* remove timer from the list before calling the callback */
1025 *ptimer_head = ts->next;
1026 ts->next = NULL;
1027
1028 /* run the callback (the timer list can be modified) */
1029 ts->cb(ts->opaque);
1030 }
1031 }
1032
1033 int64_t qemu_get_clock(QEMUClock *clock)
1034 {
1035 switch(clock->type) {
1036 case QEMU_CLOCK_REALTIME:
1037 return get_clock() / 1000000;
1038 default:
1039 case QEMU_CLOCK_VIRTUAL:
1040 if (use_icount) {
1041 return cpu_get_icount();
1042 } else {
1043 return cpu_get_clock();
1044 }
1045 case QEMU_CLOCK_HOST:
1046 return get_clock_realtime();
1047 }
1048 }
1049
1050 static void init_clocks(void)
1051 {
1052 init_get_clock();
1053 rt_clock = qemu_new_clock(QEMU_CLOCK_REALTIME);
1054 vm_clock = qemu_new_clock(QEMU_CLOCK_VIRTUAL);
1055 host_clock = qemu_new_clock(QEMU_CLOCK_HOST);
1056
1057 rtc_clock = host_clock;
1058 }
1059
1060 /* save a timer */
1061 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1062 {
1063 uint64_t expire_time;
1064
1065 if (qemu_timer_pending(ts)) {
1066 expire_time = ts->expire_time;
1067 } else {
1068 expire_time = -1;
1069 }
1070 qemu_put_be64(f, expire_time);
1071 }
1072
1073 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1074 {
1075 uint64_t expire_time;
1076
1077 expire_time = qemu_get_be64(f);
1078 if (expire_time != -1) {
1079 qemu_mod_timer(ts, expire_time);
1080 } else {
1081 qemu_del_timer(ts);
1082 }
1083 }
1084
1085 static const VMStateDescription vmstate_timers = {
1086 .name = "timer",
1087 .version_id = 2,
1088 .minimum_version_id = 1,
1089 .minimum_version_id_old = 1,
1090 .fields = (VMStateField []) {
1091 VMSTATE_INT64(cpu_ticks_offset, TimersState),
1092 VMSTATE_INT64(dummy, TimersState),
1093 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
1094 VMSTATE_END_OF_LIST()
1095 }
1096 };
1097
1098 static void qemu_event_increment(void);
1099
1100 #ifdef _WIN32
1101 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1102 DWORD_PTR dwUser, DWORD_PTR dw1,
1103 DWORD_PTR dw2)
1104 #else
1105 static void host_alarm_handler(int host_signum)
1106 #endif
1107 {
1108 #if 0
1109 #define DISP_FREQ 1000
1110 {
1111 static int64_t delta_min = INT64_MAX;
1112 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1113 static int count;
1114 ti = qemu_get_clock(vm_clock);
1115 if (last_clock != 0) {
1116 delta = ti - last_clock;
1117 if (delta < delta_min)
1118 delta_min = delta;
1119 if (delta > delta_max)
1120 delta_max = delta;
1121 delta_cum += delta;
1122 if (++count == DISP_FREQ) {
1123 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1124 muldiv64(delta_min, 1000000, get_ticks_per_sec()),
1125 muldiv64(delta_max, 1000000, get_ticks_per_sec()),
1126 muldiv64(delta_cum, 1000000 / DISP_FREQ, get_ticks_per_sec()),
1127 (double)get_ticks_per_sec() / ((double)delta_cum / DISP_FREQ));
1128 count = 0;
1129 delta_min = INT64_MAX;
1130 delta_max = 0;
1131 delta_cum = 0;
1132 }
1133 }
1134 last_clock = ti;
1135 }
1136 #endif
1137 if (alarm_has_dynticks(alarm_timer) ||
1138 (!use_icount &&
1139 qemu_timer_expired(active_timers[QEMU_CLOCK_VIRTUAL],
1140 qemu_get_clock(vm_clock))) ||
1141 qemu_timer_expired(active_timers[QEMU_CLOCK_REALTIME],
1142 qemu_get_clock(rt_clock)) ||
1143 qemu_timer_expired(active_timers[QEMU_CLOCK_HOST],
1144 qemu_get_clock(host_clock))) {
1145 qemu_event_increment();
1146 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1147
1148 #ifndef CONFIG_IOTHREAD
1149 if (next_cpu) {
1150 /* stop the currently executing cpu because a timer occured */
1151 cpu_exit(next_cpu);
1152 }
1153 #endif
1154 timer_alarm_pending = 1;
1155 qemu_notify_event();
1156 }
1157 }
1158
1159 static int64_t qemu_next_deadline(void)
1160 {
1161 /* To avoid problems with overflow limit this to 2^32. */
1162 int64_t delta = INT32_MAX;
1163
1164 if (active_timers[QEMU_CLOCK_VIRTUAL]) {
1165 delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
1166 qemu_get_clock(vm_clock);
1167 }
1168 if (active_timers[QEMU_CLOCK_HOST]) {
1169 int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time -
1170 qemu_get_clock(host_clock);
1171 if (hdelta < delta)
1172 delta = hdelta;
1173 }
1174
1175 if (delta < 0)
1176 delta = 0;
1177
1178 return delta;
1179 }
1180
1181 #if defined(__linux__)
1182 static uint64_t qemu_next_deadline_dyntick(void)
1183 {
1184 int64_t delta;
1185 int64_t rtdelta;
1186
1187 if (use_icount)
1188 delta = INT32_MAX;
1189 else
1190 delta = (qemu_next_deadline() + 999) / 1000;
1191
1192 if (active_timers[QEMU_CLOCK_REALTIME]) {
1193 rtdelta = (active_timers[QEMU_CLOCK_REALTIME]->expire_time -
1194 qemu_get_clock(rt_clock))*1000;
1195 if (rtdelta < delta)
1196 delta = rtdelta;
1197 }
1198
1199 if (delta < MIN_TIMER_REARM_US)
1200 delta = MIN_TIMER_REARM_US;
1201
1202 return delta;
1203 }
1204 #endif
1205
1206 #ifndef _WIN32
1207
1208 /* Sets a specific flag */
1209 static int fcntl_setfl(int fd, int flag)
1210 {
1211 int flags;
1212
1213 flags = fcntl(fd, F_GETFL);
1214 if (flags == -1)
1215 return -errno;
1216
1217 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1218 return -errno;
1219
1220 return 0;
1221 }
1222
1223 #if defined(__linux__)
1224
1225 #define RTC_FREQ 1024
1226
1227 static void enable_sigio_timer(int fd)
1228 {
1229 struct sigaction act;
1230
1231 /* timer signal */
1232 sigfillset(&act.sa_mask);
1233 act.sa_flags = 0;
1234 act.sa_handler = host_alarm_handler;
1235
1236 sigaction(SIGIO, &act, NULL);
1237 fcntl_setfl(fd, O_ASYNC);
1238 fcntl(fd, F_SETOWN, getpid());
1239 }
1240
1241 static int hpet_start_timer(struct qemu_alarm_timer *t)
1242 {
1243 struct hpet_info info;
1244 int r, fd;
1245
1246 fd = qemu_open("/dev/hpet", O_RDONLY);
1247 if (fd < 0)
1248 return -1;
1249
1250 /* Set frequency */
1251 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1252 if (r < 0) {
1253 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1254 "error, but for better emulation accuracy type:\n"
1255 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1256 goto fail;
1257 }
1258
1259 /* Check capabilities */
1260 r = ioctl(fd, HPET_INFO, &info);
1261 if (r < 0)
1262 goto fail;
1263
1264 /* Enable periodic mode */
1265 r = ioctl(fd, HPET_EPI, 0);
1266 if (info.hi_flags && (r < 0))
1267 goto fail;
1268
1269 /* Enable interrupt */
1270 r = ioctl(fd, HPET_IE_ON, 0);
1271 if (r < 0)
1272 goto fail;
1273
1274 enable_sigio_timer(fd);
1275 t->priv = (void *)(long)fd;
1276
1277 return 0;
1278 fail:
1279 close(fd);
1280 return -1;
1281 }
1282
1283 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1284 {
1285 int fd = (long)t->priv;
1286
1287 close(fd);
1288 }
1289
1290 static int rtc_start_timer(struct qemu_alarm_timer *t)
1291 {
1292 int rtc_fd;
1293 unsigned long current_rtc_freq = 0;
1294
1295 TFR(rtc_fd = qemu_open("/dev/rtc", O_RDONLY));
1296 if (rtc_fd < 0)
1297 return -1;
1298 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1299 if (current_rtc_freq != RTC_FREQ &&
1300 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1301 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1302 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1303 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1304 goto fail;
1305 }
1306 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1307 fail:
1308 close(rtc_fd);
1309 return -1;
1310 }
1311
1312 enable_sigio_timer(rtc_fd);
1313
1314 t->priv = (void *)(long)rtc_fd;
1315
1316 return 0;
1317 }
1318
1319 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1320 {
1321 int rtc_fd = (long)t->priv;
1322
1323 close(rtc_fd);
1324 }
1325
1326 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1327 {
1328 struct sigevent ev;
1329 timer_t host_timer;
1330 struct sigaction act;
1331
1332 sigfillset(&act.sa_mask);
1333 act.sa_flags = 0;
1334 act.sa_handler = host_alarm_handler;
1335
1336 sigaction(SIGALRM, &act, NULL);
1337
1338 /*
1339 * Initialize ev struct to 0 to avoid valgrind complaining
1340 * about uninitialized data in timer_create call
1341 */
1342 memset(&ev, 0, sizeof(ev));
1343 ev.sigev_value.sival_int = 0;
1344 ev.sigev_notify = SIGEV_SIGNAL;
1345 ev.sigev_signo = SIGALRM;
1346
1347 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1348 perror("timer_create");
1349
1350 /* disable dynticks */
1351 fprintf(stderr, "Dynamic Ticks disabled\n");
1352
1353 return -1;
1354 }
1355
1356 t->priv = (void *)(long)host_timer;
1357
1358 return 0;
1359 }
1360
1361 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1362 {
1363 timer_t host_timer = (timer_t)(long)t->priv;
1364
1365 timer_delete(host_timer);
1366 }
1367
1368 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1369 {
1370 timer_t host_timer = (timer_t)(long)t->priv;
1371 struct itimerspec timeout;
1372 int64_t nearest_delta_us = INT64_MAX;
1373 int64_t current_us;
1374
1375 if (!active_timers[QEMU_CLOCK_REALTIME] &&
1376 !active_timers[QEMU_CLOCK_VIRTUAL] &&
1377 !active_timers[QEMU_CLOCK_HOST])
1378 return;
1379
1380 nearest_delta_us = qemu_next_deadline_dyntick();
1381
1382 /* check whether a timer is already running */
1383 if (timer_gettime(host_timer, &timeout)) {
1384 perror("gettime");
1385 fprintf(stderr, "Internal timer error: aborting\n");
1386 exit(1);
1387 }
1388 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1389 if (current_us && current_us <= nearest_delta_us)
1390 return;
1391
1392 timeout.it_interval.tv_sec = 0;
1393 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1394 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1395 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1396 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1397 perror("settime");
1398 fprintf(stderr, "Internal timer error: aborting\n");
1399 exit(1);
1400 }
1401 }
1402
1403 #endif /* defined(__linux__) */
1404
1405 static int unix_start_timer(struct qemu_alarm_timer *t)
1406 {
1407 struct sigaction act;
1408 struct itimerval itv;
1409 int err;
1410
1411 /* timer signal */
1412 sigfillset(&act.sa_mask);
1413 act.sa_flags = 0;
1414 act.sa_handler = host_alarm_handler;
1415
1416 sigaction(SIGALRM, &act, NULL);
1417
1418 itv.it_interval.tv_sec = 0;
1419 /* for i386 kernel 2.6 to get 1 ms */
1420 itv.it_interval.tv_usec = 999;
1421 itv.it_value.tv_sec = 0;
1422 itv.it_value.tv_usec = 10 * 1000;
1423
1424 err = setitimer(ITIMER_REAL, &itv, NULL);
1425 if (err)
1426 return -1;
1427
1428 return 0;
1429 }
1430
1431 static void unix_stop_timer(struct qemu_alarm_timer *t)
1432 {
1433 struct itimerval itv;
1434
1435 memset(&itv, 0, sizeof(itv));
1436 setitimer(ITIMER_REAL, &itv, NULL);
1437 }
1438
1439 #endif /* !defined(_WIN32) */
1440
1441
1442 #ifdef _WIN32
1443
1444 static int win32_start_timer(struct qemu_alarm_timer *t)
1445 {
1446 TIMECAPS tc;
1447 struct qemu_alarm_win32 *data = t->priv;
1448 UINT flags;
1449
1450 memset(&tc, 0, sizeof(tc));
1451 timeGetDevCaps(&tc, sizeof(tc));
1452
1453 if (data->period < tc.wPeriodMin)
1454 data->period = tc.wPeriodMin;
1455
1456 timeBeginPeriod(data->period);
1457
1458 flags = TIME_CALLBACK_FUNCTION;
1459 if (alarm_has_dynticks(t))
1460 flags |= TIME_ONESHOT;
1461 else
1462 flags |= TIME_PERIODIC;
1463
1464 data->timerId = timeSetEvent(1, // interval (ms)
1465 data->period, // resolution
1466 host_alarm_handler, // function
1467 (DWORD)t, // parameter
1468 flags);
1469
1470 if (!data->timerId) {
1471 fprintf(stderr, "Failed to initialize win32 alarm timer: %ld\n",
1472 GetLastError());
1473 timeEndPeriod(data->period);
1474 return -1;
1475 }
1476
1477 return 0;
1478 }
1479
1480 static void win32_stop_timer(struct qemu_alarm_timer *t)
1481 {
1482 struct qemu_alarm_win32 *data = t->priv;
1483
1484 timeKillEvent(data->timerId);
1485 timeEndPeriod(data->period);
1486 }
1487
1488 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1489 {
1490 struct qemu_alarm_win32 *data = t->priv;
1491
1492 if (!active_timers[QEMU_CLOCK_REALTIME] &&
1493 !active_timers[QEMU_CLOCK_VIRTUAL] &&
1494 !active_timers[QEMU_CLOCK_HOST])
1495 return;
1496
1497 timeKillEvent(data->timerId);
1498
1499 data->timerId = timeSetEvent(1,
1500 data->period,
1501 host_alarm_handler,
1502 (DWORD)t,
1503 TIME_ONESHOT | TIME_PERIODIC);
1504
1505 if (!data->timerId) {
1506 fprintf(stderr, "Failed to re-arm win32 alarm timer %ld\n",
1507 GetLastError());
1508
1509 timeEndPeriod(data->period);
1510 exit(1);
1511 }
1512 }
1513
1514 #endif /* _WIN32 */
1515
1516 static int init_timer_alarm(void)
1517 {
1518 struct qemu_alarm_timer *t = NULL;
1519 int i, err = -1;
1520
1521 for (i = 0; alarm_timers[i].name; i++) {
1522 t = &alarm_timers[i];
1523
1524 err = t->start(t);
1525 if (!err)
1526 break;
1527 }
1528
1529 if (err) {
1530 err = -ENOENT;
1531 goto fail;
1532 }
1533
1534 alarm_timer = t;
1535
1536 return 0;
1537
1538 fail:
1539 return err;
1540 }
1541
1542 static void quit_timers(void)
1543 {
1544 alarm_timer->stop(alarm_timer);
1545 alarm_timer = NULL;
1546 }
1547
1548 /***********************************************************/
1549 /* host time/date access */
1550 void qemu_get_timedate(struct tm *tm, int offset)
1551 {
1552 time_t ti;
1553 struct tm *ret;
1554
1555 time(&ti);
1556 ti += offset;
1557 if (rtc_date_offset == -1) {
1558 if (rtc_utc)
1559 ret = gmtime(&ti);
1560 else
1561 ret = localtime(&ti);
1562 } else {
1563 ti -= rtc_date_offset;
1564 ret = gmtime(&ti);
1565 }
1566
1567 memcpy(tm, ret, sizeof(struct tm));
1568 }
1569
1570 int qemu_timedate_diff(struct tm *tm)
1571 {
1572 time_t seconds;
1573
1574 if (rtc_date_offset == -1)
1575 if (rtc_utc)
1576 seconds = mktimegm(tm);
1577 else
1578 seconds = mktime(tm);
1579 else
1580 seconds = mktimegm(tm) + rtc_date_offset;
1581
1582 return seconds - time(NULL);
1583 }
1584
1585 static void configure_rtc_date_offset(const char *startdate, int legacy)
1586 {
1587 time_t rtc_start_date;
1588 struct tm tm;
1589
1590 if (!strcmp(startdate, "now") && legacy) {
1591 rtc_date_offset = -1;
1592 } else {
1593 if (sscanf(startdate, "%d-%d-%dT%d:%d:%d",
1594 &tm.tm_year,
1595 &tm.tm_mon,
1596 &tm.tm_mday,
1597 &tm.tm_hour,
1598 &tm.tm_min,
1599 &tm.tm_sec) == 6) {
1600 /* OK */
1601 } else if (sscanf(startdate, "%d-%d-%d",
1602 &tm.tm_year,
1603 &tm.tm_mon,
1604 &tm.tm_mday) == 3) {
1605 tm.tm_hour = 0;
1606 tm.tm_min = 0;
1607 tm.tm_sec = 0;
1608 } else {
1609 goto date_fail;
1610 }
1611 tm.tm_year -= 1900;
1612 tm.tm_mon--;
1613 rtc_start_date = mktimegm(&tm);
1614 if (rtc_start_date == -1) {
1615 date_fail:
1616 fprintf(stderr, "Invalid date format. Valid formats are:\n"
1617 "'2006-06-17T16:01:21' or '2006-06-17'\n");
1618 exit(1);
1619 }
1620 rtc_date_offset = time(NULL) - rtc_start_date;
1621 }
1622 }
1623
1624 static void configure_rtc(QemuOpts *opts)
1625 {
1626 const char *value;
1627
1628 value = qemu_opt_get(opts, "base");
1629 if (value) {
1630 if (!strcmp(value, "utc")) {
1631 rtc_utc = 1;
1632 } else if (!strcmp(value, "localtime")) {
1633 rtc_utc = 0;
1634 } else {
1635 configure_rtc_date_offset(value, 0);
1636 }
1637 }
1638 value = qemu_opt_get(opts, "clock");
1639 if (value) {
1640 if (!strcmp(value, "host")) {
1641 rtc_clock = host_clock;
1642 } else if (!strcmp(value, "vm")) {
1643 rtc_clock = vm_clock;
1644 } else {
1645 fprintf(stderr, "qemu: invalid option value '%s'\n", value);
1646 exit(1);
1647 }
1648 }
1649 #ifdef CONFIG_TARGET_I386
1650 value = qemu_opt_get(opts, "driftfix");
1651 if (value) {
1652 if (!strcmp(buf, "slew")) {
1653 rtc_td_hack = 1;
1654 } else if (!strcmp(buf, "none")) {
1655 rtc_td_hack = 0;
1656 } else {
1657 fprintf(stderr, "qemu: invalid option value '%s'\n", value);
1658 exit(1);
1659 }
1660 }
1661 #endif
1662 }
1663
1664 #ifdef _WIN32
1665 static void socket_cleanup(void)
1666 {
1667 WSACleanup();
1668 }
1669
1670 static int socket_init(void)
1671 {
1672 WSADATA Data;
1673 int ret, err;
1674
1675 ret = WSAStartup(MAKEWORD(2,2), &Data);
1676 if (ret != 0) {
1677 err = WSAGetLastError();
1678 fprintf(stderr, "WSAStartup: %d\n", err);
1679 return -1;
1680 }
1681 atexit(socket_cleanup);
1682 return 0;
1683 }
1684 #endif
1685
1686 /***********************************************************/
1687 /* Bluetooth support */
1688 static int nb_hcis;
1689 static int cur_hci;
1690 static struct HCIInfo *hci_table[MAX_NICS];
1691
1692 static struct bt_vlan_s {
1693 struct bt_scatternet_s net;
1694 int id;
1695 struct bt_vlan_s *next;
1696 } *first_bt_vlan;
1697
1698 /* find or alloc a new bluetooth "VLAN" */
1699 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1700 {
1701 struct bt_vlan_s **pvlan, *vlan;
1702 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1703 if (vlan->id == id)
1704 return &vlan->net;
1705 }
1706 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1707 vlan->id = id;
1708 pvlan = &first_bt_vlan;
1709 while (*pvlan != NULL)
1710 pvlan = &(*pvlan)->next;
1711 *pvlan = vlan;
1712 return &vlan->net;
1713 }
1714
1715 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1716 {
1717 }
1718
1719 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1720 {
1721 return -ENOTSUP;
1722 }
1723
1724 static struct HCIInfo null_hci = {
1725 .cmd_send = null_hci_send,
1726 .sco_send = null_hci_send,
1727 .acl_send = null_hci_send,
1728 .bdaddr_set = null_hci_addr_set,
1729 };
1730
1731 struct HCIInfo *qemu_next_hci(void)
1732 {
1733 if (cur_hci == nb_hcis)
1734 return &null_hci;
1735
1736 return hci_table[cur_hci++];
1737 }
1738
1739 static struct HCIInfo *hci_init(const char *str)
1740 {
1741 char *endp;
1742 struct bt_scatternet_s *vlan = 0;
1743
1744 if (!strcmp(str, "null"))
1745 /* null */
1746 return &null_hci;
1747 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1748 /* host[:hciN] */
1749 return bt_host_hci(str[4] ? str + 5 : "hci0");
1750 else if (!strncmp(str, "hci", 3)) {
1751 /* hci[,vlan=n] */
1752 if (str[3]) {
1753 if (!strncmp(str + 3, ",vlan=", 6)) {
1754 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1755 if (*endp)
1756 vlan = 0;
1757 }
1758 } else
1759 vlan = qemu_find_bt_vlan(0);
1760 if (vlan)
1761 return bt_new_hci(vlan);
1762 }
1763
1764 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1765
1766 return 0;
1767 }
1768
1769 static int bt_hci_parse(const char *str)
1770 {
1771 struct HCIInfo *hci;
1772 bdaddr_t bdaddr;
1773
1774 if (nb_hcis >= MAX_NICS) {
1775 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1776 return -1;
1777 }
1778
1779 hci = hci_init(str);
1780 if (!hci)
1781 return -1;
1782
1783 bdaddr.b[0] = 0x52;
1784 bdaddr.b[1] = 0x54;
1785 bdaddr.b[2] = 0x00;
1786 bdaddr.b[3] = 0x12;
1787 bdaddr.b[4] = 0x34;
1788 bdaddr.b[5] = 0x56 + nb_hcis;
1789 hci->bdaddr_set(hci, bdaddr.b);
1790
1791 hci_table[nb_hcis++] = hci;
1792
1793 return 0;
1794 }
1795
1796 static void bt_vhci_add(int vlan_id)
1797 {
1798 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1799
1800 if (!vlan->slave)
1801 fprintf(stderr, "qemu: warning: adding a VHCI to "
1802 "an empty scatternet %i\n", vlan_id);
1803
1804 bt_vhci_init(bt_new_hci(vlan));
1805 }
1806
1807 static struct bt_device_s *bt_device_add(const char *opt)
1808 {
1809 struct bt_scatternet_s *vlan;
1810 int vlan_id = 0;
1811 char *endp = strstr(opt, ",vlan=");
1812 int len = (endp ? endp - opt : strlen(opt)) + 1;
1813 char devname[10];
1814
1815 pstrcpy(devname, MIN(sizeof(devname), len), opt);
1816
1817 if (endp) {
1818 vlan_id = strtol(endp + 6, &endp, 0);
1819 if (*endp) {
1820 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
1821 return 0;
1822 }
1823 }
1824
1825 vlan = qemu_find_bt_vlan(vlan_id);
1826
1827 if (!vlan->slave)
1828 fprintf(stderr, "qemu: warning: adding a slave device to "
1829 "an empty scatternet %i\n", vlan_id);
1830
1831 if (!strcmp(devname, "keyboard"))
1832 return bt_keyboard_init(vlan);
1833
1834 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
1835 return 0;
1836 }
1837
1838 static int bt_parse(const char *opt)
1839 {
1840 const char *endp, *p;
1841 int vlan;
1842
1843 if (strstart(opt, "hci", &endp)) {
1844 if (!*endp || *endp == ',') {
1845 if (*endp)
1846 if (!strstart(endp, ",vlan=", 0))
1847 opt = endp + 1;
1848
1849 return bt_hci_parse(opt);
1850 }
1851 } else if (strstart(opt, "vhci", &endp)) {
1852 if (!*endp || *endp == ',') {
1853 if (*endp) {
1854 if (strstart(endp, ",vlan=", &p)) {
1855 vlan = strtol(p, (char **) &endp, 0);
1856 if (*endp) {
1857 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
1858 return 1;
1859 }
1860 } else {
1861 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
1862 return 1;
1863 }
1864 } else
1865 vlan = 0;
1866
1867 bt_vhci_add(vlan);
1868 return 0;
1869 }
1870 } else if (strstart(opt, "device:", &endp))
1871 return !bt_device_add(endp);
1872
1873 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
1874 return 1;
1875 }
1876
1877 /***********************************************************/
1878 /* QEMU Block devices */
1879
1880 #define HD_ALIAS "index=%d,media=disk"
1881 #define CDROM_ALIAS "index=2,media=cdrom"
1882 #define FD_ALIAS "index=%d,if=floppy"
1883 #define PFLASH_ALIAS "if=pflash"
1884 #define MTD_ALIAS "if=mtd"
1885 #define SD_ALIAS "index=0,if=sd"
1886
1887 QemuOpts *drive_add(const char *file, const char *fmt, ...)
1888 {
1889 va_list ap;
1890 char optstr[1024];
1891 QemuOpts *opts;
1892
1893 va_start(ap, fmt);
1894 vsnprintf(optstr, sizeof(optstr), fmt, ap);
1895 va_end(ap);
1896
1897 opts = qemu_opts_parse(&qemu_drive_opts, optstr, NULL);
1898 if (!opts) {
1899 fprintf(stderr, "%s: huh? duplicate? (%s)\n",
1900 __FUNCTION__, optstr);
1901 return NULL;
1902 }
1903 if (file)
1904 qemu_opt_set(opts, "file", file);
1905 return opts;
1906 }
1907
1908 DriveInfo *drive_get(BlockInterfaceType type, int bus, int unit)
1909 {
1910 DriveInfo *dinfo;
1911
1912 /* seek interface, bus and unit */
1913
1914 QTAILQ_FOREACH(dinfo, &drives, next) {
1915 if (dinfo->type == type &&
1916 dinfo->bus == bus &&
1917 dinfo->unit == unit)
1918 return dinfo;
1919 }
1920
1921 return NULL;
1922 }
1923
1924 DriveInfo *drive_get_by_id(const char *id)
1925 {
1926 DriveInfo *dinfo;
1927
1928 QTAILQ_FOREACH(dinfo, &drives, next) {
1929 if (strcmp(id, dinfo->id))
1930 continue;
1931 return dinfo;
1932 }
1933 return NULL;
1934 }
1935
1936 int drive_get_max_bus(BlockInterfaceType type)
1937 {
1938 int max_bus;
1939 DriveInfo *dinfo;
1940
1941 max_bus = -1;
1942 QTAILQ_FOREACH(dinfo, &drives, next) {
1943 if(dinfo->type == type &&
1944 dinfo->bus > max_bus)
1945 max_bus = dinfo->bus;
1946 }
1947 return max_bus;
1948 }
1949
1950 const char *drive_get_serial(BlockDriverState *bdrv)
1951 {
1952 DriveInfo *dinfo;
1953
1954 QTAILQ_FOREACH(dinfo, &drives, next) {
1955 if (dinfo->bdrv == bdrv)
1956 return dinfo->serial;
1957 }
1958
1959 return "\0";
1960 }
1961
1962 BlockInterfaceErrorAction drive_get_on_error(
1963 BlockDriverState *bdrv, int is_read)
1964 {
1965 DriveInfo *dinfo;
1966
1967 if (is_read) {
1968 return BLOCK_ERR_REPORT;
1969 }
1970
1971 QTAILQ_FOREACH(dinfo, &drives, next) {
1972 if (dinfo->bdrv == bdrv)
1973 return is_read ? dinfo->on_read_error : dinfo->on_write_error;
1974 }
1975
1976 return is_read ? BLOCK_ERR_REPORT : BLOCK_ERR_STOP_ENOSPC;
1977 }
1978
1979 static void bdrv_format_print(void *opaque, const char *name)
1980 {
1981 fprintf(stderr, " %s", name);
1982 }
1983
1984 void drive_uninit(DriveInfo *dinfo)
1985 {
1986 qemu_opts_del(dinfo->opts);
1987 bdrv_delete(dinfo->bdrv);
1988 QTAILQ_REMOVE(&drives, dinfo, next);
1989 qemu_free(dinfo);
1990 }
1991
1992 static int parse_block_error_action(const char *buf, int is_read)
1993 {
1994 if (!strcmp(buf, "ignore")) {
1995 return BLOCK_ERR_IGNORE;
1996 } else if (!is_read && !strcmp(buf, "enospc")) {
1997 return BLOCK_ERR_STOP_ENOSPC;
1998 } else if (!strcmp(buf, "stop")) {
1999 return BLOCK_ERR_STOP_ANY;
2000 } else if (!strcmp(buf, "report")) {
2001 return BLOCK_ERR_REPORT;
2002 } else {
2003 fprintf(stderr, "qemu: '%s' invalid %s error action\n",
2004 buf, is_read ? "read" : "write");
2005 return -1;
2006 }
2007 }
2008
2009 DriveInfo *drive_init(QemuOpts *opts, void *opaque,
2010 int *fatal_error)
2011 {
2012 const char *buf;
2013 const char *file = NULL;
2014 char devname[128];
2015 const char *serial;
2016 const char *mediastr = "";
2017 BlockInterfaceType type;
2018 enum { MEDIA_DISK, MEDIA_CDROM } media;
2019 int bus_id, unit_id;
2020 int cyls, heads, secs, translation;
2021 BlockDriver *drv = NULL;
2022 QEMUMachine *machine = opaque;
2023 int max_devs;
2024 int index;
2025 int cache;
2026 int aio = 0;
2027 int ro = 0;
2028 int bdrv_flags;
2029 int on_read_error, on_write_error;
2030 const char *devaddr;
2031 DriveInfo *dinfo;
2032 int snapshot = 0;
2033
2034 *fatal_error = 1;
2035
2036 translation = BIOS_ATA_TRANSLATION_AUTO;
2037 cache = 1;
2038
2039 if (machine && machine->use_scsi) {
2040 type = IF_SCSI;
2041 max_devs = MAX_SCSI_DEVS;
2042 pstrcpy(devname, sizeof(devname), "scsi");
2043 } else {
2044 type = IF_IDE;
2045 max_devs = MAX_IDE_DEVS;
2046 pstrcpy(devname, sizeof(devname), "ide");
2047 }
2048 media = MEDIA_DISK;
2049
2050 /* extract parameters */
2051 bus_id = qemu_opt_get_number(opts, "bus", 0);
2052 unit_id = qemu_opt_get_number(opts, "unit", -1);
2053 index = qemu_opt_get_number(opts, "index", -1);
2054
2055 cyls = qemu_opt_get_number(opts, "cyls", 0);
2056 heads = qemu_opt_get_number(opts, "heads", 0);
2057 secs = qemu_opt_get_number(opts, "secs", 0);
2058
2059 snapshot = qemu_opt_get_bool(opts, "snapshot", 0);
2060 ro = qemu_opt_get_bool(opts, "readonly", 0);
2061
2062 file = qemu_opt_get(opts, "file");
2063 serial = qemu_opt_get(opts, "serial");
2064
2065 if ((buf = qemu_opt_get(opts, "if")) != NULL) {
2066 pstrcpy(devname, sizeof(devname), buf);
2067 if (!strcmp(buf, "ide")) {
2068 type = IF_IDE;
2069 max_devs = MAX_IDE_DEVS;
2070 } else if (!strcmp(buf, "scsi")) {
2071 type = IF_SCSI;
2072 max_devs = MAX_SCSI_DEVS;
2073 } else if (!strcmp(buf, "floppy")) {
2074 type = IF_FLOPPY;
2075 max_devs = 0;
2076 } else if (!strcmp(buf, "pflash")) {
2077 type = IF_PFLASH;
2078 max_devs = 0;
2079 } else if (!strcmp(buf, "mtd")) {
2080 type = IF_MTD;
2081 max_devs = 0;
2082 } else if (!strcmp(buf, "sd")) {
2083 type = IF_SD;
2084 max_devs = 0;
2085 } else if (!strcmp(buf, "virtio")) {
2086 type = IF_VIRTIO;
2087 max_devs = 0;
2088 } else if (!strcmp(buf, "xen")) {
2089 type = IF_XEN;
2090 max_devs = 0;
2091 } else if (!strcmp(buf, "none")) {
2092 type = IF_NONE;
2093 max_devs = 0;
2094 } else {
2095 fprintf(stderr, "qemu: unsupported bus type '%s'\n", buf);
2096 return NULL;
2097 }
2098 }
2099
2100 if (cyls || heads || secs) {
2101 if (cyls < 1 || (type == IF_IDE && cyls > 16383)) {
2102 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", buf);
2103 return NULL;
2104 }
2105 if (heads < 1 || (type == IF_IDE && heads > 16)) {
2106 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", buf);
2107 return NULL;
2108 }
2109 if (secs < 1 || (type == IF_IDE && secs > 63)) {
2110 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", buf);
2111 return NULL;
2112 }
2113 }
2114
2115 if ((buf = qemu_opt_get(opts, "trans")) != NULL) {
2116 if (!cyls) {
2117 fprintf(stderr,
2118 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2119 buf);
2120 return NULL;
2121 }
2122 if (!strcmp(buf, "none"))
2123 translation = BIOS_ATA_TRANSLATION_NONE;
2124 else if (!strcmp(buf, "lba"))
2125 translation = BIOS_ATA_TRANSLATION_LBA;
2126 else if (!strcmp(buf, "auto"))
2127 translation = BIOS_ATA_TRANSLATION_AUTO;
2128 else {
2129 fprintf(stderr, "qemu: '%s' invalid translation type\n", buf);
2130 return NULL;
2131 }
2132 }
2133
2134 if ((buf = qemu_opt_get(opts, "media")) != NULL) {
2135 if (!strcmp(buf, "disk")) {
2136 media = MEDIA_DISK;
2137 } else if (!strcmp(buf, "cdrom")) {
2138 if (cyls || secs || heads) {
2139 fprintf(stderr,
2140 "qemu: '%s' invalid physical CHS format\n", buf);
2141 return NULL;
2142 }
2143 media = MEDIA_CDROM;
2144 } else {
2145 fprintf(stderr, "qemu: '%s' invalid media\n", buf);
2146 return NULL;
2147 }
2148 }
2149
2150 if ((buf = qemu_opt_get(opts, "cache")) != NULL) {
2151 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2152 cache = 0;
2153 else if (!strcmp(buf, "writethrough"))
2154 cache = 1;
2155 else if (!strcmp(buf, "writeback"))
2156 cache = 2;
2157 else {
2158 fprintf(stderr, "qemu: invalid cache option\n");
2159 return NULL;
2160 }
2161 }
2162
2163 #ifdef CONFIG_LINUX_AIO
2164 if ((buf = qemu_opt_get(opts, "aio")) != NULL) {
2165 if (!strcmp(buf, "threads"))
2166 aio = 0;
2167 else if (!strcmp(buf, "native"))
2168 aio = 1;
2169 else {
2170 fprintf(stderr, "qemu: invalid aio option\n");
2171 return NULL;
2172 }
2173 }
2174 #endif
2175
2176 if ((buf = qemu_opt_get(opts, "format")) != NULL) {
2177 if (strcmp(buf, "?") == 0) {
2178 fprintf(stderr, "qemu: Supported formats:");
2179 bdrv_iterate_format(bdrv_format_print, NULL);
2180 fprintf(stderr, "\n");
2181 return NULL;
2182 }
2183 drv = bdrv_find_whitelisted_format(buf);
2184 if (!drv) {
2185 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2186 return NULL;
2187 }
2188 }
2189
2190 on_write_error = BLOCK_ERR_STOP_ENOSPC;
2191 if ((buf = qemu_opt_get(opts, "werror")) != NULL) {
2192 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2193 fprintf(stderr, "werror is no supported by this format\n");
2194 return NULL;
2195 }
2196
2197 on_write_error = parse_block_error_action(buf, 0);
2198 if (on_write_error < 0) {
2199 return NULL;
2200 }
2201 }
2202
2203 on_read_error = BLOCK_ERR_REPORT;
2204 if ((buf = qemu_opt_get(opts, "rerror")) != NULL) {
2205 if (type != IF_IDE && type != IF_VIRTIO) {
2206 fprintf(stderr, "rerror is no supported by this format\n");
2207 return NULL;
2208 }
2209
2210 on_read_error = parse_block_error_action(buf, 1);
2211 if (on_read_error < 0) {
2212 return NULL;
2213 }
2214 }
2215
2216 if ((devaddr = qemu_opt_get(opts, "addr")) != NULL) {
2217 if (type != IF_VIRTIO) {
2218 fprintf(stderr, "addr is not supported\n");
2219 return NULL;
2220 }
2221 }
2222
2223 /* compute bus and unit according index */
2224
2225 if (index != -1) {
2226 if (bus_id != 0 || unit_id != -1) {
2227 fprintf(stderr,
2228 "qemu: index cannot be used with bus and unit\n");
2229 return NULL;
2230 }
2231 if (max_devs == 0)
2232 {
2233 unit_id = index;
2234 bus_id = 0;
2235 } else {
2236 unit_id = index % max_devs;
2237 bus_id = index / max_devs;
2238 }
2239 }
2240
2241 /* if user doesn't specify a unit_id,
2242 * try to find the first free
2243 */
2244
2245 if (unit_id == -1) {
2246 unit_id = 0;
2247 while (drive_get(type, bus_id, unit_id) != NULL) {
2248 unit_id++;
2249 if (max_devs && unit_id >= max_devs) {
2250 unit_id -= max_devs;
2251 bus_id++;
2252 }
2253 }
2254 }
2255
2256 /* check unit id */
2257
2258 if (max_devs && unit_id >= max_devs) {
2259 fprintf(stderr, "qemu: unit %d too big (max is %d)\n",
2260 unit_id, max_devs - 1);
2261 return NULL;
2262 }
2263
2264 /*
2265 * ignore multiple definitions
2266 */
2267
2268 if (drive_get(type, bus_id, unit_id) != NULL) {
2269 *fatal_error = 0;
2270 return NULL;
2271 }
2272
2273 /* init */
2274
2275 dinfo = qemu_mallocz(sizeof(*dinfo));
2276 if ((buf = qemu_opts_id(opts)) != NULL) {
2277 dinfo->id = qemu_strdup(buf);
2278 } else {
2279 /* no id supplied -> create one */
2280 dinfo->id = qemu_mallocz(32);
2281 if (type == IF_IDE || type == IF_SCSI)
2282 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2283 if (max_devs)
2284 snprintf(dinfo->id, 32, "%s%i%s%i",
2285 devname, bus_id, mediastr, unit_id);
2286 else
2287 snprintf(dinfo->id, 32, "%s%s%i",
2288 devname, mediastr, unit_id);
2289 }
2290 dinfo->bdrv = bdrv_new(dinfo->id);
2291 dinfo->devaddr = devaddr;
2292 dinfo->type = type;
2293 dinfo->bus = bus_id;
2294 dinfo->unit = unit_id;
2295 dinfo->on_read_error = on_read_error;
2296 dinfo->on_write_error = on_write_error;
2297 dinfo->opts = opts;
2298 if (serial)
2299 strncpy(dinfo->serial, serial, sizeof(serial));
2300 QTAILQ_INSERT_TAIL(&drives, dinfo, next);
2301
2302 switch(type) {
2303 case IF_IDE:
2304 case IF_SCSI:
2305 case IF_XEN:
2306 case IF_NONE:
2307 switch(media) {
2308 case MEDIA_DISK:
2309 if (cyls != 0) {
2310 bdrv_set_geometry_hint(dinfo->bdrv, cyls, heads, secs);
2311 bdrv_set_translation_hint(dinfo->bdrv, translation);
2312 }
2313 break;
2314 case MEDIA_CDROM:
2315 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_CDROM);
2316 break;
2317 }
2318 break;
2319 case IF_SD:
2320 /* FIXME: This isn't really a floppy, but it's a reasonable
2321 approximation. */
2322 case IF_FLOPPY:
2323 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_FLOPPY);
2324 break;
2325 case IF_PFLASH:
2326 case IF_MTD:
2327 break;
2328 case IF_VIRTIO:
2329 /* add virtio block device */
2330 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
2331 qemu_opt_set(opts, "driver", "virtio-blk-pci");
2332 qemu_opt_set(opts, "drive", dinfo->id);
2333 if (devaddr)
2334 qemu_opt_set(opts, "addr", devaddr);
2335 break;
2336 case IF_COUNT:
2337 abort();
2338 }
2339 if (!file) {
2340 *fatal_error = 0;
2341 return NULL;
2342 }
2343 bdrv_flags = 0;
2344 if (snapshot) {
2345 bdrv_flags |= BDRV_O_SNAPSHOT;
2346 cache = 2; /* always use write-back with snapshot */
2347 }
2348 if (cache == 0) /* no caching */
2349 bdrv_flags |= BDRV_O_NOCACHE;
2350 else if (cache == 2) /* write-back */
2351 bdrv_flags |= BDRV_O_CACHE_WB;
2352
2353 if (aio == 1) {
2354 bdrv_flags |= BDRV_O_NATIVE_AIO;
2355 } else {
2356 bdrv_flags &= ~BDRV_O_NATIVE_AIO;
2357 }
2358
2359 if (ro == 1) {
2360 if (type == IF_IDE) {
2361 fprintf(stderr, "qemu: readonly flag not supported for drive with ide interface\n");
2362 return NULL;
2363 }
2364 (void)bdrv_set_read_only(dinfo->bdrv, 1);
2365 }
2366
2367 if (bdrv_open2(dinfo->bdrv, file, bdrv_flags, drv) < 0) {
2368 fprintf(stderr, "qemu: could not open disk image %s: %s\n",
2369 file, strerror(errno));
2370 return NULL;
2371 }
2372
2373 if (bdrv_key_required(dinfo->bdrv))
2374 autostart = 0;
2375 *fatal_error = 0;
2376 return dinfo;
2377 }
2378
2379 static int drive_init_func(QemuOpts *opts, void *opaque)
2380 {
2381 QEMUMachine *machine = opaque;
2382 int fatal_error = 0;
2383
2384 if (drive_init(opts, machine, &fatal_error) == NULL) {
2385 if (fatal_error)
2386 return 1;
2387 }
2388 return 0;
2389 }
2390
2391 static int drive_enable_snapshot(QemuOpts *opts, void *opaque)
2392 {
2393 if (NULL == qemu_opt_get(opts, "snapshot")) {
2394 qemu_opt_set(opts, "snapshot", "on");
2395 }
2396 return 0;
2397 }
2398
2399 void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque)
2400 {
2401 boot_set_handler = func;
2402 boot_set_opaque = opaque;
2403 }
2404
2405 int qemu_boot_set(const char *boot_devices)
2406 {
2407 if (!boot_set_handler) {
2408 return -EINVAL;
2409 }
2410 return boot_set_handler(boot_set_opaque, boot_devices);
2411 }
2412
2413 static int parse_bootdevices(char *devices)
2414 {
2415 /* We just do some generic consistency checks */
2416 const char *p;
2417 int bitmap = 0;
2418
2419 for (p = devices; *p != '\0'; p++) {
2420 /* Allowed boot devices are:
2421 * a-b: floppy disk drives
2422 * c-f: IDE disk drives
2423 * g-m: machine implementation dependant drives
2424 * n-p: network devices
2425 * It's up to each machine implementation to check if the given boot
2426 * devices match the actual hardware implementation and firmware
2427 * features.
2428 */
2429 if (*p < 'a' || *p > 'p') {
2430 fprintf(stderr, "Invalid boot device '%c'\n", *p);
2431 exit(1);
2432 }
2433 if (bitmap & (1 << (*p - 'a'))) {
2434 fprintf(stderr, "Boot device '%c' was given twice\n", *p);
2435 exit(1);
2436 }
2437 bitmap |= 1 << (*p - 'a');
2438 }
2439 return bitmap;
2440 }
2441
2442 static void restore_boot_devices(void *opaque)
2443 {
2444 char *standard_boot_devices = opaque;
2445
2446 qemu_boot_set(standard_boot_devices);
2447
2448 qemu_unregister_reset(restore_boot_devices, standard_boot_devices);
2449 qemu_free(standard_boot_devices);
2450 }
2451
2452 static void numa_add(const char *optarg)
2453 {
2454 char option[128];
2455 char *endptr;
2456 unsigned long long value, endvalue;
2457 int nodenr;
2458
2459 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2460 if (!strcmp(option, "node")) {
2461 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2462 nodenr = nb_numa_nodes;
2463 } else {
2464 nodenr = strtoull(option, NULL, 10);
2465 }
2466
2467 if (get_param_value(option, 128, "mem", optarg) == 0) {
2468 node_mem[nodenr] = 0;
2469 } else {
2470 value = strtoull(option, &endptr, 0);
2471 switch (*endptr) {
2472 case 0: case 'M': case 'm':
2473 value <<= 20;
2474 break;
2475 case 'G': case 'g':
2476 value <<= 30;
2477 break;
2478 }
2479 node_mem[nodenr] = value;
2480 }
2481 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2482 node_cpumask[nodenr] = 0;
2483 } else {
2484 value = strtoull(option, &endptr, 10);
2485 if (value >= 64) {
2486 value = 63;
2487 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2488 } else {
2489 if (*endptr == '-') {
2490 endvalue = strtoull(endptr+1, &endptr, 10);
2491 if (endvalue >= 63) {
2492 endvalue = 62;
2493 fprintf(stderr,
2494 "only 63 CPUs in NUMA mode supported.\n");
2495 }
2496 value = (1 << (endvalue + 1)) - (1 << value);
2497 } else {
2498 value = 1 << value;
2499 }
2500 }
2501 node_cpumask[nodenr] = value;
2502 }
2503 nb_numa_nodes++;
2504 }
2505 return;
2506 }
2507
2508 static void smp_parse(const char *optarg)
2509 {
2510 int smp, sockets = 0, threads = 0, cores = 0;
2511 char *endptr;
2512 char option[128];
2513
2514 smp = strtoul(optarg, &endptr, 10);
2515 if (endptr != optarg) {
2516 if (*endptr == ',') {
2517 endptr++;
2518 }
2519 }
2520 if (get_param_value(option, 128, "sockets", endptr) != 0)
2521 sockets = strtoull(option, NULL, 10);
2522 if (get_param_value(option, 128, "cores", endptr) != 0)
2523 cores = strtoull(option, NULL, 10);
2524 if (get_param_value(option, 128, "threads", endptr) != 0)
2525 threads = strtoull(option, NULL, 10);
2526 if (get_param_value(option, 128, "maxcpus", endptr) != 0)
2527 max_cpus = strtoull(option, NULL, 10);
2528
2529 /* compute missing values, prefer sockets over cores over threads */
2530 if (smp == 0 || sockets == 0) {
2531 sockets = sockets > 0 ? sockets : 1;
2532 cores = cores > 0 ? cores : 1;
2533 threads = threads > 0 ? threads : 1;
2534 if (smp == 0) {
2535 smp = cores * threads * sockets;
2536 } else {
2537 sockets = smp / (cores * threads);
2538 }
2539 } else {
2540 if (cores == 0) {
2541 threads = threads > 0 ? threads : 1;
2542 cores = smp / (sockets * threads);
2543 } else {
2544 if (sockets == 0) {
2545 sockets = smp / (cores * threads);
2546 } else {
2547 threads = smp / (cores * sockets);
2548 }
2549 }
2550 }
2551 smp_cpus = smp;
2552 smp_cores = cores > 0 ? cores : 1;
2553 smp_threads = threads > 0 ? threads : 1;
2554 if (max_cpus == 0)
2555 max_cpus = smp_cpus;
2556 }
2557
2558 /***********************************************************/
2559 /* USB devices */
2560
2561 static int usb_device_add(const char *devname, int is_hotplug)
2562 {
2563 const char *p;
2564 USBDevice *dev = NULL;
2565
2566 if (!usb_enabled)
2567 return -1;
2568
2569 /* drivers with .usbdevice_name entry in USBDeviceInfo */
2570 dev = usbdevice_create(devname);
2571 if (dev)
2572 goto done;
2573
2574 /* the other ones */
2575 if (strstart(devname, "host:", &p)) {
2576 dev = usb_host_device_open(p);
2577 } else if (strstart(devname, "net:", &p)) {
2578 QemuOpts *opts;
2579 int idx;
2580
2581 opts = qemu_opts_parse(&qemu_net_opts, p, NULL);
2582 if (!opts) {
2583 return -1;
2584 }
2585
2586 qemu_opt_set(opts, "type", "nic");
2587 qemu_opt_set(opts, "model", "usb");
2588
2589 idx = net_client_init(NULL, opts, 0);
2590 if (idx == -1) {
2591 return -1;
2592 }
2593
2594 dev = usb_net_init(&nd_table[idx]);
2595 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2596 dev = usb_bt_init(devname[2] ? hci_init(p) :
2597 bt_new_hci(qemu_find_bt_vlan(0)));
2598 } else {
2599 return -1;
2600 }
2601 if (!dev)
2602 return -1;
2603
2604 done:
2605 return 0;
2606 }
2607
2608 static int usb_device_del(const char *devname)
2609 {
2610 int bus_num, addr;
2611 const char *p;
2612
2613 if (strstart(devname, "host:", &p))
2614 return usb_host_device_close(p);
2615
2616 if (!usb_enabled)
2617 return -1;
2618
2619 p = strchr(devname, '.');
2620 if (!p)
2621 return -1;
2622 bus_num = strtoul(devname, NULL, 0);
2623 addr = strtoul(p + 1, NULL, 0);
2624
2625 return usb_device_delete_addr(bus_num, addr);
2626 }
2627
2628 static int usb_parse(const char *cmdline)
2629 {
2630 return usb_device_add(cmdline, 0);
2631 }
2632
2633 void do_usb_add(Monitor *mon, const QDict *qdict)
2634 {
2635 usb_device_add(qdict_get_str(qdict, "devname"), 1);
2636 }
2637
2638 void do_usb_del(Monitor *mon, const QDict *qdict)
2639 {
2640 usb_device_del(qdict_get_str(qdict, "devname"));
2641 }
2642
2643 /***********************************************************/
2644 /* PCMCIA/Cardbus */
2645
2646 static struct pcmcia_socket_entry_s {
2647 PCMCIASocket *socket;
2648 struct pcmcia_socket_entry_s *next;
2649 } *pcmcia_sockets = 0;
2650
2651 void pcmcia_socket_register(PCMCIASocket *socket)
2652 {
2653 struct pcmcia_socket_entry_s *entry;
2654
2655 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2656 entry->socket = socket;
2657 entry->next = pcmcia_sockets;
2658 pcmcia_sockets = entry;
2659 }
2660
2661 void pcmcia_socket_unregister(PCMCIASocket *socket)
2662 {
2663 struct pcmcia_socket_entry_s *entry, **ptr;
2664
2665 ptr = &pcmcia_sockets;
2666 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2667 if (entry->socket == socket) {
2668 *ptr = entry->next;
2669 qemu_free(entry);
2670 }
2671 }
2672
2673 void pcmcia_info(Monitor *mon)
2674 {
2675 struct pcmcia_socket_entry_s *iter;
2676
2677 if (!pcmcia_sockets)
2678 monitor_printf(mon, "No PCMCIA sockets\n");
2679
2680 for (iter = pcmcia_sockets; iter; iter = iter->next)
2681 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2682 iter->socket->attached ? iter->socket->card_string :
2683 "Empty");
2684 }
2685
2686 /***********************************************************/
2687 /* register display */
2688
2689 struct DisplayAllocator default_allocator = {
2690 defaultallocator_create_displaysurface,
2691 defaultallocator_resize_displaysurface,
2692 defaultallocator_free_displaysurface
2693 };
2694
2695 void register_displaystate(DisplayState *ds)
2696 {
2697 DisplayState **s;
2698 s = &display_state;
2699 while (*s != NULL)
2700 s = &(*s)->next;
2701 ds->next = NULL;
2702 *s = ds;
2703 }
2704
2705 DisplayState *get_displaystate(void)
2706 {
2707 return display_state;
2708 }
2709
2710 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2711 {
2712 if(ds->allocator == &default_allocator) ds->allocator = da;
2713 return ds->allocator;
2714 }
2715
2716 /* dumb display */
2717
2718 static void dumb_display_init(void)
2719 {
2720 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2721 ds->allocator = &default_allocator;
2722 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2723 register_displaystate(ds);
2724 }
2725
2726 /***********************************************************/
2727 /* I/O handling */
2728
2729 typedef struct IOHandlerRecord {
2730 int fd;
2731 IOCanRWHandler *fd_read_poll;
2732 IOHandler *fd_read;
2733 IOHandler *fd_write;
2734 int deleted;
2735 void *opaque;
2736 /* temporary data */
2737 struct pollfd *ufd;
2738 struct IOHandlerRecord *next;
2739 } IOHandlerRecord;
2740
2741 static IOHandlerRecord *first_io_handler;
2742
2743 /* XXX: fd_read_poll should be suppressed, but an API change is
2744 necessary in the character devices to suppress fd_can_read(). */
2745 int qemu_set_fd_handler2(int fd,
2746 IOCanRWHandler *fd_read_poll,
2747 IOHandler *fd_read,
2748 IOHandler *fd_write,
2749 void *opaque)
2750 {
2751 IOHandlerRecord **pioh, *ioh;
2752
2753 if (!fd_read && !fd_write) {
2754 pioh = &first_io_handler;
2755 for(;;) {
2756 ioh = *pioh;
2757 if (ioh == NULL)
2758 break;
2759 if (ioh->fd == fd) {
2760 ioh->deleted = 1;
2761 break;
2762 }
2763 pioh = &ioh->next;
2764 }
2765 } else {
2766 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2767 if (ioh->fd == fd)
2768 goto found;
2769 }
2770 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2771 ioh->next = first_io_handler;
2772 first_io_handler = ioh;
2773 found:
2774 ioh->fd = fd;
2775 ioh->fd_read_poll = fd_read_poll;
2776 ioh->fd_read = fd_read;
2777 ioh->fd_write = fd_write;
2778 ioh->opaque = opaque;
2779 ioh->deleted = 0;
2780 }
2781 return 0;
2782 }
2783
2784 int qemu_set_fd_handler(int fd,
2785 IOHandler *fd_read,
2786 IOHandler *fd_write,
2787 void *opaque)
2788 {
2789 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2790 }
2791
2792 #ifdef _WIN32
2793 /***********************************************************/
2794 /* Polling handling */
2795
2796 typedef struct PollingEntry {
2797 PollingFunc *func;
2798 void *opaque;
2799 struct PollingEntry *next;
2800 } PollingEntry;
2801
2802 static PollingEntry *first_polling_entry;
2803
2804 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2805 {
2806 PollingEntry **ppe, *pe;
2807 pe = qemu_mallocz(sizeof(PollingEntry));
2808 pe->func = func;
2809 pe->opaque = opaque;
2810 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2811 *ppe = pe;
2812 return 0;
2813 }
2814
2815 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2816 {
2817 PollingEntry **ppe, *pe;
2818 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2819 pe = *ppe;
2820 if (pe->func == func && pe->opaque == opaque) {
2821 *ppe = pe->next;
2822 qemu_free(pe);
2823 break;
2824 }
2825 }
2826 }
2827
2828 /***********************************************************/
2829 /* Wait objects support */
2830 typedef struct WaitObjects {
2831 int num;
2832 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2833 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2834 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2835 } WaitObjects;
2836
2837 static WaitObjects wait_objects = {0};
2838
2839 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2840 {
2841 WaitObjects *w = &wait_objects;
2842
2843 if (w->num >= MAXIMUM_WAIT_OBJECTS)
2844 return -1;
2845 w->events[w->num] = handle;
2846 w->func[w->num] = func;
2847 w->opaque[w->num] = opaque;
2848 w->num++;
2849 return 0;
2850 }
2851
2852 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2853 {
2854 int i, found;
2855 WaitObjects *w = &wait_objects;
2856
2857 found = 0;
2858 for (i = 0; i < w->num; i++) {
2859 if (w->events[i] == handle)
2860 found = 1;
2861 if (found) {
2862 w->events[i] = w->events[i + 1];
2863 w->func[i] = w->func[i + 1];
2864 w->opaque[i] = w->opaque[i + 1];
2865 }
2866 }
2867 if (found)
2868 w->num--;
2869 }
2870 #endif
2871
2872 /***********************************************************/
2873 /* ram save/restore */
2874
2875 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
2876 #define RAM_SAVE_FLAG_COMPRESS 0x02
2877 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
2878 #define RAM_SAVE_FLAG_PAGE 0x08
2879 #define RAM_SAVE_FLAG_EOS 0x10
2880
2881 static int is_dup_page(uint8_t *page, uint8_t ch)
2882 {
2883 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
2884 uint32_t *array = (uint32_t *)page;
2885 int i;
2886
2887 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
2888 if (array[i] != val)
2889 return 0;
2890 }
2891
2892 return 1;
2893 }
2894
2895 static int ram_save_block(QEMUFile *f)
2896 {
2897 static ram_addr_t current_addr = 0;
2898 ram_addr_t saved_addr = current_addr;
2899 ram_addr_t addr = 0;
2900 int found = 0;
2901
2902 while (addr < last_ram_offset) {
2903 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
2904 uint8_t *p;
2905
2906 cpu_physical_memory_reset_dirty(current_addr,
2907 current_addr + TARGET_PAGE_SIZE,
2908 MIGRATION_DIRTY_FLAG);
2909
2910 p = qemu_get_ram_ptr(current_addr);
2911
2912 if (is_dup_page(p, *p)) {
2913 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
2914 qemu_put_byte(f, *p);
2915 } else {
2916 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
2917 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
2918 }
2919
2920 found = 1;
2921 break;
2922 }
2923 addr += TARGET_PAGE_SIZE;
2924 current_addr = (saved_addr + addr) % last_ram_offset;
2925 }
2926
2927 return found;
2928 }
2929
2930 static uint64_t bytes_transferred;
2931
2932 static ram_addr_t ram_save_remaining(void)
2933 {
2934 ram_addr_t addr;
2935 ram_addr_t count = 0;
2936
2937 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2938 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2939 count++;
2940 }
2941
2942 return count;
2943 }
2944
2945 uint64_t ram_bytes_remaining(void)
2946 {
2947 return ram_save_remaining() * TARGET_PAGE_SIZE;
2948 }
2949
2950 uint64_t ram_bytes_transferred(void)
2951 {
2952 return bytes_transferred;
2953 }
2954
2955 uint64_t ram_bytes_total(void)
2956 {
2957 return last_ram_offset;
2958 }
2959
2960 static int ram_save_live(Monitor *mon, QEMUFile *f, int stage, void *opaque)
2961 {
2962 ram_addr_t addr;
2963 uint64_t bytes_transferred_last;
2964 double bwidth = 0;
2965 uint64_t expected_time = 0;
2966
2967 if (stage < 0) {
2968 cpu_physical_memory_set_dirty_tracking(0);
2969 return 0;
2970 }
2971
2972 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
2973 qemu_file_set_error(f);
2974 return 0;
2975 }
2976
2977 if (stage == 1) {
2978 bytes_transferred = 0;
2979
2980 /* Make sure all dirty bits are set */
2981 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2982 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2983 cpu_physical_memory_set_dirty(addr);
2984 }
2985
2986 /* Enable dirty memory tracking */
2987 cpu_physical_memory_set_dirty_tracking(1);
2988
2989 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
2990 }
2991
2992 bytes_transferred_last = bytes_transferred;
2993 bwidth = get_clock();
2994
2995 while (!qemu_file_rate_limit(f)) {
2996 int ret;
2997
2998 ret = ram_save_block(f);
2999 bytes_transferred += ret * TARGET_PAGE_SIZE;
3000 if (ret == 0) /* no more blocks */
3001 break;
3002 }
3003
3004 bwidth = get_clock() - bwidth;
3005 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
3006
3007 /* if we haven't transferred anything this round, force expected_time to a
3008 * a very high value, but without crashing */
3009 if (bwidth == 0)
3010 bwidth = 0.000001;
3011
3012 /* try transferring iterative blocks of memory */
3013 if (stage == 3) {
3014 /* flush all remaining blocks regardless of rate limiting */
3015 while (ram_save_block(f) != 0) {
3016 bytes_transferred += TARGET_PAGE_SIZE;
3017 }
3018 cpu_physical_memory_set_dirty_tracking(0);
3019 }
3020
3021 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3022
3023 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
3024
3025 return (stage == 2) && (expected_time <= migrate_max_downtime());
3026 }
3027
3028 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3029 {
3030 ram_addr_t addr;
3031 int flags;
3032
3033 if (version_id != 3)
3034 return -EINVAL;
3035
3036 do {
3037 addr = qemu_get_be64(f);
3038
3039 flags = addr & ~TARGET_PAGE_MASK;
3040 addr &= TARGET_PAGE_MASK;
3041
3042 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3043 if (addr != last_ram_offset)
3044 return -EINVAL;
3045 }
3046
3047 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3048 uint8_t ch = qemu_get_byte(f);
3049 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3050 #ifndef _WIN32
3051 if (ch == 0 &&
3052 (!kvm_enabled() || kvm_has_sync_mmu())) {
3053 madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED);
3054 }
3055 #endif
3056 } else if (flags & RAM_SAVE_FLAG_PAGE) {
3057 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3058 }
3059 if (qemu_file_has_error(f)) {
3060 return -EIO;
3061 }
3062 } while (!(flags & RAM_SAVE_FLAG_EOS));
3063
3064 return 0;
3065 }
3066
3067 void qemu_service_io(void)
3068 {
3069 qemu_notify_event();
3070 }
3071
3072 /***********************************************************/
3073 /* machine registration */
3074
3075 static QEMUMachine *first_machine = NULL;
3076 QEMUMachine *current_machine = NULL;
3077
3078 int qemu_register_machine(QEMUMachine *m)
3079 {
3080 QEMUMachine **pm;
3081 pm = &first_machine;
3082 while (*pm != NULL)
3083 pm = &(*pm)->next;
3084 m->next = NULL;
3085 *pm = m;
3086 return 0;
3087 }
3088
3089 static QEMUMachine *find_machine(const char *name)
3090 {
3091 QEMUMachine *m;
3092
3093 for(m = first_machine; m != NULL; m = m->next) {
3094 if (!strcmp(m->name, name))
3095 return m;
3096 if (m->alias && !strcmp(m->alias, name))
3097 return m;
3098 }
3099 return NULL;
3100 }
3101
3102 static QEMUMachine *find_default_machine(void)
3103 {
3104 QEMUMachine *m;
3105
3106 for(m = first_machine; m != NULL; m = m->next) {
3107 if (m->is_default) {
3108 return m;
3109 }
3110 }
3111 return NULL;
3112 }
3113
3114 /***********************************************************/
3115 /* main execution loop */
3116
3117 static void gui_update(void *opaque)
3118 {
3119 uint64_t interval = GUI_REFRESH_INTERVAL;
3120 DisplayState *ds = opaque;
3121 DisplayChangeListener *dcl = ds->listeners;
3122
3123 dpy_refresh(ds);
3124
3125 while (dcl != NULL) {
3126 if (dcl->gui_timer_interval &&
3127 dcl->gui_timer_interval < interval)
3128 interval = dcl->gui_timer_interval;
3129 dcl = dcl->next;
3130 }
3131 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3132 }
3133
3134 static void nographic_update(void *opaque)
3135 {
3136 uint64_t interval = GUI_REFRESH_INTERVAL;
3137
3138 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3139 }
3140
3141 struct vm_change_state_entry {
3142 VMChangeStateHandler *cb;
3143 void *opaque;
3144 QLIST_ENTRY (vm_change_state_entry) entries;
3145 };
3146
3147 static QLIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3148
3149 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3150 void *opaque)
3151 {
3152 VMChangeStateEntry *e;
3153
3154 e = qemu_mallocz(sizeof (*e));
3155
3156 e->cb = cb;
3157 e->opaque = opaque;
3158 QLIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3159 return e;
3160 }
3161
3162 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3163 {
3164 QLIST_REMOVE (e, entries);
3165 qemu_free (e);
3166 }
3167
3168 static void vm_state_notify(int running, int reason)
3169 {
3170 VMChangeStateEntry *e;
3171
3172 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3173 e->cb(e->opaque, running, reason);
3174 }
3175 }
3176
3177 static void resume_all_vcpus(void);
3178 static void pause_all_vcpus(void);
3179
3180 void vm_start(void)
3181 {
3182 if (!vm_running) {
3183 cpu_enable_ticks();
3184 vm_running = 1;
3185 vm_state_notify(1, 0);
3186 qemu_rearm_alarm_timer(alarm_timer);
3187 resume_all_vcpus();
3188 }
3189 }
3190
3191 /* reset/shutdown handler */
3192
3193 typedef struct QEMUResetEntry {
3194 QTAILQ_ENTRY(QEMUResetEntry) entry;
3195 QEMUResetHandler *func;
3196 void *opaque;
3197 } QEMUResetEntry;
3198
3199 static QTAILQ_HEAD(reset_handlers, QEMUResetEntry) reset_handlers =
3200 QTAILQ_HEAD_INITIALIZER(reset_handlers);
3201 static int reset_requested;
3202 static int shutdown_requested;
3203 static int powerdown_requested;
3204 static int debug_requested;
3205 static int vmstop_requested;
3206
3207 int qemu_shutdown_requested(void)
3208 {
3209 int r = shutdown_requested;
3210 shutdown_requested = 0;
3211 return r;
3212 }
3213
3214 int qemu_reset_requested(void)
3215 {
3216 int r = reset_requested;
3217 reset_requested = 0;
3218 return r;
3219 }
3220
3221 int qemu_powerdown_requested(void)
3222 {
3223 int r = powerdown_requested;
3224 powerdown_requested = 0;
3225 return r;
3226 }
3227
3228 static int qemu_debug_requested(void)
3229 {
3230 int r = debug_requested;
3231 debug_requested = 0;
3232 return r;
3233 }
3234
3235 static int qemu_vmstop_requested(void)
3236 {
3237 int r = vmstop_requested;
3238 vmstop_requested = 0;
3239 return r;
3240 }
3241
3242 static void do_vm_stop(int reason)
3243 {
3244 if (vm_running) {
3245 cpu_disable_ticks();
3246 vm_running = 0;
3247 pause_all_vcpus();
3248 vm_state_notify(0, reason);
3249 }
3250 }
3251
3252 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3253 {
3254 QEMUResetEntry *re = qemu_mallocz(sizeof(QEMUResetEntry));
3255
3256 re->func = func;
3257 re->opaque = opaque;
3258 QTAILQ_INSERT_TAIL(&reset_handlers, re, entry);
3259 }
3260
3261 void qemu_unregister_reset(QEMUResetHandler *func, void *opaque)
3262 {
3263 QEMUResetEntry *re;
3264
3265 QTAILQ_FOREACH(re, &reset_handlers, entry) {
3266 if (re->func == func && re->opaque == opaque) {
3267 QTAILQ_REMOVE(&reset_handlers, re, entry);
3268 qemu_free(re);
3269 return;
3270 }
3271 }
3272 }
3273
3274 void qemu_system_reset(void)
3275 {
3276 QEMUResetEntry *re, *nre;
3277
3278 /* reset all devices */
3279 QTAILQ_FOREACH_SAFE(re, &reset_handlers, entry, nre) {
3280 re->func(re->opaque);
3281 }
3282 }
3283
3284 void qemu_system_reset_request(void)
3285 {
3286 if (no_reboot) {
3287 shutdown_requested = 1;
3288 } else {
3289 reset_requested = 1;
3290 }
3291 qemu_notify_event();
3292 }
3293
3294 void qemu_system_shutdown_request(void)
3295 {
3296 shutdown_requested = 1;
3297 qemu_notify_event();
3298 }
3299
3300 void qemu_system_powerdown_request(void)
3301 {
3302 powerdown_requested = 1;
3303 qemu_notify_event();
3304 }
3305
3306 #ifdef CONFIG_IOTHREAD
3307 static void qemu_system_vmstop_request(int reason)
3308 {
3309 vmstop_requested = reason;
3310 qemu_notify_event();
3311 }
3312 #endif
3313
3314 #ifndef _WIN32
3315 static int io_thread_fd = -1;
3316
3317 static void qemu_event_increment(void)
3318 {
3319 static const char byte = 0;
3320
3321 if (io_thread_fd == -1)
3322 return;
3323
3324 write(io_thread_fd, &byte, sizeof(byte));
3325 }
3326
3327 static void qemu_event_read(void *opaque)
3328 {
3329 int fd = (unsigned long)opaque;
3330 ssize_t len;
3331
3332 /* Drain the notify pipe */
3333 do {
3334 char buffer[512];
3335 len = read(fd, buffer, sizeof(buffer));
3336 } while ((len == -1 && errno == EINTR) || len > 0);
3337 }
3338
3339 static int qemu_event_init(void)
3340 {
3341 int err;
3342 int fds[2];
3343
3344 err = qemu_pipe(fds);
3345 if (err == -1)
3346 return -errno;
3347
3348 err = fcntl_setfl(fds[0], O_NONBLOCK);
3349 if (err < 0)
3350 goto fail;
3351
3352 err = fcntl_setfl(fds[1], O_NONBLOCK);
3353 if (err < 0)
3354 goto fail;
3355
3356 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3357 (void *)(unsigned long)fds[0]);
3358
3359 io_thread_fd = fds[1];
3360 return 0;
3361
3362 fail:
3363 close(fds[0]);
3364 close(fds[1]);
3365 return err;
3366 }
3367 #else
3368 HANDLE qemu_event_handle;
3369
3370 static void dummy_event_handler(void *opaque)
3371 {
3372 }
3373
3374 static int qemu_event_init(void)
3375 {
3376 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3377 if (!qemu_event_handle) {
3378 fprintf(stderr, "Failed CreateEvent: %ld\n", GetLastError());
3379 return -1;
3380 }
3381 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3382 return 0;
3383 }
3384
3385 static void qemu_event_increment(void)
3386 {
3387 if (!SetEvent(qemu_event_handle)) {
3388 fprintf(stderr, "qemu_event_increment: SetEvent failed: %ld\n",
3389 GetLastError());
3390 exit (1);
3391 }
3392 }
3393 #endif
3394
3395 static int cpu_can_run(CPUState *env)
3396 {
3397 if (env->stop)
3398 return 0;
3399 if (env->stopped)
3400 return 0;
3401 return 1;
3402 }
3403
3404 #ifndef CONFIG_IOTHREAD
3405 static int qemu_init_main_loop(void)
3406 {
3407 return qemu_event_init();
3408 }
3409
3410 void qemu_init_vcpu(void *_env)
3411 {
3412 CPUState *env = _env;
3413
3414 if (kvm_enabled())
3415 kvm_init_vcpu(env);
3416 env->nr_cores = smp_cores;
3417 env->nr_threads = smp_threads;
3418 return;
3419 }
3420
3421 int qemu_cpu_self(void *env)
3422 {
3423 return 1;
3424 }
3425
3426 static void resume_all_vcpus(void)
3427 {
3428 }
3429
3430 static void pause_all_vcpus(void)
3431 {
3432 }
3433
3434 void qemu_cpu_kick(void *env)
3435 {
3436 return;
3437 }
3438
3439 void qemu_notify_event(void)
3440 {
3441 CPUState *env = cpu_single_env;
3442
3443 if (env) {
3444 cpu_exit(env);
3445 }
3446 }
3447
3448 void qemu_mutex_lock_iothread(void) {}
3449 void qemu_mutex_unlock_iothread(void) {}
3450
3451 void vm_stop(int reason)
3452 {
3453 do_vm_stop(reason);
3454 }
3455
3456 #else /* CONFIG_IOTHREAD */
3457
3458 #include "qemu-thread.h"
3459
3460 QemuMutex qemu_global_mutex;
3461 static QemuMutex qemu_fair_mutex;
3462
3463 static QemuThread io_thread;
3464
3465 static QemuThread *tcg_cpu_thread;
3466 static QemuCond *tcg_halt_cond;
3467
3468 static int qemu_system_ready;
3469 /* cpu creation */
3470 static QemuCond qemu_cpu_cond;
3471 /* system init */
3472 static QemuCond qemu_system_cond;
3473 static QemuCond qemu_pause_cond;
3474
3475 static void block_io_signals(void);
3476 static void unblock_io_signals(void);
3477 static int tcg_has_work(void);
3478
3479 static int qemu_init_main_loop(void)
3480 {
3481 int ret;
3482
3483 ret = qemu_event_init();
3484 if (ret)
3485 return ret;
3486
3487 qemu_cond_init(&qemu_pause_cond);
3488 qemu_mutex_init(&qemu_fair_mutex);
3489 qemu_mutex_init(&qemu_global_mutex);
3490 qemu_mutex_lock(&qemu_global_mutex);
3491
3492 unblock_io_signals();
3493 qemu_thread_self(&io_thread);
3494
3495 return 0;
3496 }
3497
3498 static void qemu_wait_io_event(CPUState *env)
3499 {
3500 while (!tcg_has_work())
3501 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3502
3503 qemu_mutex_unlock(&qemu_global_mutex);
3504
3505 /*
3506 * Users of qemu_global_mutex can be starved, having no chance
3507 * to acquire it since this path will get to it first.
3508 * So use another lock to provide fairness.
3509 */
3510 qemu_mutex_lock(&qemu_fair_mutex);
3511 qemu_mutex_unlock(&qemu_fair_mutex);
3512
3513 qemu_mutex_lock(&qemu_global_mutex);
3514 if (env->stop) {
3515 env->stop = 0;
3516 env->stopped = 1;
3517 qemu_cond_signal(&qemu_pause_cond);
3518 }
3519 }
3520
3521 static int qemu_cpu_exec(CPUState *env);
3522
3523 static void *kvm_cpu_thread_fn(void *arg)
3524 {
3525 CPUState *env = arg;
3526
3527 block_io_signals();
3528 qemu_thread_self(env->thread);
3529 if (kvm_enabled())
3530 kvm_init_vcpu(env);
3531
3532 /* signal CPU creation */
3533 qemu_mutex_lock(&qemu_global_mutex);
3534 env->created = 1;
3535 qemu_cond_signal(&qemu_cpu_cond);
3536
3537 /* and wait for machine initialization */
3538 while (!qemu_system_ready)
3539 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3540
3541 while (1) {
3542 if (cpu_can_run(env))
3543 qemu_cpu_exec(env);
3544 qemu_wait_io_event(env);
3545 }
3546
3547 return NULL;
3548 }
3549
3550 static void tcg_cpu_exec(void);
3551
3552 static void *tcg_cpu_thread_fn(void *arg)
3553 {
3554 CPUState *env = arg;
3555
3556 block_io_signals();
3557 qemu_thread_self(env->thread);
3558
3559 /* signal CPU creation */
3560 qemu_mutex_lock(&qemu_global_mutex);
3561 for (env = first_cpu; env != NULL; env = env->next_cpu)
3562 env->created = 1;
3563 qemu_cond_signal(&qemu_cpu_cond);
3564
3565 /* and wait for machine initialization */
3566 while (!qemu_system_ready)
3567 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3568
3569 while (1) {
3570 tcg_cpu_exec();
3571 qemu_wait_io_event(cur_cpu);
3572 }
3573
3574 return NULL;
3575 }
3576
3577 void qemu_cpu_kick(void *_env)
3578 {
3579 CPUState *env = _env;
3580 qemu_cond_broadcast(env->halt_cond);
3581 if (kvm_enabled())
3582 qemu_thread_signal(env->thread, SIGUSR1);
3583 }
3584
3585 int qemu_cpu_self(void *_env)
3586 {
3587 CPUState *env = _env;
3588 QemuThread this;
3589
3590 qemu_thread_self(&this);
3591
3592 return qemu_thread_equal(&this, env->thread);
3593 }
3594
3595 static void cpu_signal(int sig)
3596 {
3597 if (cpu_single_env)
3598 cpu_exit(cpu_single_env);
3599 }
3600
3601 static void block_io_signals(void)
3602 {
3603 sigset_t set;
3604 struct sigaction sigact;
3605
3606 sigemptyset(&set);
3607 sigaddset(&set, SIGUSR2);
3608 sigaddset(&set, SIGIO);
3609 sigaddset(&set, SIGALRM);
3610 pthread_sigmask(SIG_BLOCK, &set, NULL);
3611
3612 sigemptyset(&set);
3613 sigaddset(&set, SIGUSR1);
3614 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3615
3616 memset(&sigact, 0, sizeof(sigact));
3617 sigact.sa_handler = cpu_signal;
3618 sigaction(SIGUSR1, &sigact, NULL);
3619 }
3620
3621 static void unblock_io_signals(void)
3622 {
3623 sigset_t set;
3624
3625 sigemptyset(&set);
3626 sigaddset(&set, SIGUSR2);
3627 sigaddset(&set, SIGIO);
3628 sigaddset(&set, SIGALRM);
3629 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3630
3631 sigemptyset(&set);
3632 sigaddset(&set, SIGUSR1);
3633 pthread_sigmask(SIG_BLOCK, &set, NULL);
3634 }
3635
3636 static void qemu_signal_lock(unsigned int msecs)
3637 {
3638 qemu_mutex_lock(&qemu_fair_mutex);
3639
3640 while (qemu_mutex_trylock(&qemu_global_mutex)) {
3641 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
3642 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
3643 break;
3644 }
3645 qemu_mutex_unlock(&qemu_fair_mutex);
3646 }
3647
3648 void qemu_mutex_lock_iothread(void)
3649 {
3650 if (kvm_enabled()) {
3651 qemu_mutex_lock(&qemu_fair_mutex);
3652 qemu_mutex_lock(&qemu_global_mutex);
3653 qemu_mutex_unlock(&qemu_fair_mutex);
3654 } else
3655 qemu_signal_lock(100);
3656 }
3657
3658 void qemu_mutex_unlock_iothread(void)
3659 {
3660 qemu_mutex_unlock(&qemu_global_mutex);
3661 }
3662
3663 static int all_vcpus_paused(void)
3664 {
3665 CPUState *penv = first_cpu;
3666
3667 while (penv) {
3668 if (!penv->stopped)
3669 return 0;
3670 penv = (CPUState *)penv->next_cpu;
3671 }
3672
3673 return 1;
3674 }
3675
3676 static void pause_all_vcpus(void)
3677 {
3678 CPUState *penv = first_cpu;
3679
3680 while (penv) {
3681 penv->stop = 1;
3682 qemu_thread_signal(penv->thread, SIGUSR1);
3683 qemu_cpu_kick(penv);
3684 penv = (CPUState *)penv->next_cpu;
3685 }
3686
3687 while (!all_vcpus_paused()) {
3688 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
3689 penv = first_cpu;
3690 while (penv) {
3691 qemu_thread_signal(penv->thread, SIGUSR1);
3692 penv = (CPUState *)penv->next_cpu;
3693 }
3694 }
3695 }
3696
3697 static void resume_all_vcpus(void)
3698 {
3699 CPUState *penv = first_cpu;
3700
3701 while (penv) {
3702 penv->stop = 0;
3703 penv->stopped = 0;
3704 qemu_thread_signal(penv->thread, SIGUSR1);
3705 qemu_cpu_kick(penv);
3706 penv = (CPUState *)penv->next_cpu;
3707 }
3708 }
3709
3710 static void tcg_init_vcpu(void *_env)
3711 {
3712 CPUState *env = _env;
3713 /* share a single thread for all cpus with TCG */
3714 if (!tcg_cpu_thread) {
3715 env->thread = qemu_mallocz(sizeof(QemuThread));
3716 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3717 qemu_cond_init(env->halt_cond);
3718 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
3719 while (env->created == 0)
3720 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3721 tcg_cpu_thread = env->thread;
3722 tcg_halt_cond = env->halt_cond;
3723 } else {
3724 env->thread = tcg_cpu_thread;
3725 env->halt_cond = tcg_halt_cond;
3726 }
3727 }
3728
3729 static void kvm_start_vcpu(CPUState *env)
3730 {
3731 env->thread = qemu_mallocz(sizeof(QemuThread));
3732 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3733 qemu_cond_init(env->halt_cond);
3734 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
3735 while (env->created == 0)
3736 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3737 }
3738
3739 void qemu_init_vcpu(void *_env)
3740 {
3741 CPUState *env = _env;
3742
3743 if (kvm_enabled())
3744 kvm_start_vcpu(env);
3745 else
3746 tcg_init_vcpu(env);
3747 env->nr_cores = smp_cores;
3748 env->nr_threads = smp_threads;
3749 }
3750
3751 void qemu_notify_event(void)
3752 {
3753 qemu_event_increment();
3754 }
3755
3756 void vm_stop(int reason)
3757 {
3758 QemuThread me;
3759 qemu_thread_self(&me);
3760
3761 if (!qemu_thread_equal(&me, &io_thread)) {
3762 qemu_system_vmstop_request(reason);
3763 /*
3764 * FIXME: should not return to device code in case
3765 * vm_stop() has been requested.
3766 */
3767 if (cpu_single_env) {
3768 cpu_exit(cpu_single_env);
3769 cpu_single_env->stop = 1;
3770 }
3771 return;
3772 }
3773 do_vm_stop(reason);
3774 }
3775
3776 #endif
3777
3778
3779 #ifdef _WIN32
3780 static void host_main_loop_wait(int *timeout)
3781 {
3782 int ret, ret2, i;
3783 PollingEntry *pe;
3784
3785
3786 /* XXX: need to suppress polling by better using win32 events */
3787 ret = 0;
3788 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3789 ret |= pe->func(pe->opaque);
3790 }
3791 if (ret == 0) {
3792 int err;
3793 WaitObjects *w = &wait_objects;
3794
3795 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3796 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3797 if (w->func[ret - WAIT_OBJECT_0])
3798 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3799
3800 /* Check for additional signaled events */
3801 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3802
3803 /* Check if event is signaled */
3804 ret2 = WaitForSingleObject(w->events[i], 0);
3805 if(ret2 == WAIT_OBJECT_0) {
3806 if (w->func[i])
3807 w->func[i](w->opaque[i]);
3808 } else if (ret2 == WAIT_TIMEOUT) {
3809 } else {
3810 err = GetLastError();
3811 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3812 }
3813 }
3814 } else if (ret == WAIT_TIMEOUT) {
3815 } else {
3816 err = GetLastError();
3817 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3818 }
3819 }
3820
3821 *timeout = 0;
3822 }
3823 #else
3824 static void host_main_loop_wait(int *timeout)
3825 {
3826 }
3827 #endif
3828
3829 void main_loop_wait(int timeout)
3830 {
3831 IOHandlerRecord *ioh;
3832 fd_set rfds, wfds, xfds;
3833 int ret, nfds;
3834 struct timeval tv;
3835
3836 qemu_bh_update_timeout(&timeout);
3837
3838 host_main_loop_wait(&timeout);
3839
3840 /* poll any events */
3841 /* XXX: separate device handlers from system ones */
3842 nfds = -1;
3843 FD_ZERO(&rfds);
3844 FD_ZERO(&wfds);
3845 FD_ZERO(&xfds);
3846 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3847 if (ioh->deleted)
3848 continue;
3849 if (ioh->fd_read &&
3850 (!ioh->fd_read_poll ||
3851 ioh->fd_read_poll(ioh->opaque) != 0)) {
3852 FD_SET(ioh->fd, &rfds);
3853 if (ioh->fd > nfds)
3854 nfds = ioh->fd;
3855 }
3856 if (ioh->fd_write) {
3857 FD_SET(ioh->fd, &wfds);
3858 if (ioh->fd > nfds)
3859 nfds = ioh->fd;
3860 }
3861 }
3862
3863 tv.tv_sec = timeout / 1000;
3864 tv.tv_usec = (timeout % 1000) * 1000;
3865
3866 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3867
3868 qemu_mutex_unlock_iothread();
3869 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3870 qemu_mutex_lock_iothread();
3871 if (ret > 0) {
3872 IOHandlerRecord **pioh;
3873
3874 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3875 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3876 ioh->fd_read(ioh->opaque);
3877 }
3878 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3879 ioh->fd_write(ioh->opaque);
3880 }
3881 }
3882
3883 /* remove deleted IO handlers */
3884 pioh = &first_io_handler;
3885 while (*pioh) {
3886 ioh = *pioh;
3887 if (ioh->deleted) {
3888 *pioh = ioh->next;
3889 qemu_free(ioh);
3890 } else
3891 pioh = &ioh->next;
3892 }
3893 }
3894
3895 slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
3896
3897 /* rearm timer, if not periodic */
3898 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
3899 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
3900 qemu_rearm_alarm_timer(alarm_timer);
3901 }
3902
3903 /* vm time timers */
3904 if (vm_running) {
3905 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3906 qemu_run_timers(&active_timers[QEMU_CLOCK_VIRTUAL],
3907 qemu_get_clock(vm_clock));
3908 }
3909
3910 /* real time timers */
3911 qemu_run_timers(&active_timers[QEMU_CLOCK_REALTIME],
3912 qemu_get_clock(rt_clock));
3913
3914 qemu_run_timers(&active_timers[QEMU_CLOCK_HOST],
3915 qemu_get_clock(host_clock));
3916
3917 /* Check bottom-halves last in case any of the earlier events triggered
3918 them. */
3919 qemu_bh_poll();
3920
3921 }
3922
3923 static int qemu_cpu_exec(CPUState *env)
3924 {
3925 int ret;
3926 #ifdef CONFIG_PROFILER
3927 int64_t ti;
3928 #endif
3929
3930 #ifdef CONFIG_PROFILER
3931 ti = profile_getclock();
3932 #endif
3933 if (use_icount) {
3934 int64_t count;
3935 int decr;
3936 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
3937 env->icount_decr.u16.low = 0;
3938 env->icount_extra = 0;
3939 count = qemu_next_deadline();
3940 count = (count + (1 << icount_time_shift) - 1)
3941 >> icount_time_shift;
3942 qemu_icount += count;
3943 decr = (count > 0xffff) ? 0xffff : count;
3944 count -= decr;
3945 env->icount_decr.u16.low = decr;
3946 env->icount_extra = count;
3947 }
3948 ret = cpu_exec(env);
3949 #ifdef CONFIG_PROFILER
3950 qemu_time += profile_getclock() - ti;
3951 #endif
3952 if (use_icount) {
3953 /* Fold pending instructions back into the
3954 instruction counter, and clear the interrupt flag. */
3955 qemu_icount -= (env->icount_decr.u16.low
3956 + env->icount_extra);
3957 env->icount_decr.u32 = 0;
3958 env->icount_extra = 0;
3959 }
3960 return ret;
3961 }
3962
3963 static void tcg_cpu_exec(void)
3964 {
3965 int ret = 0;
3966
3967 if (next_cpu == NULL)
3968 next_cpu = first_cpu;
3969 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
3970 CPUState *env = cur_cpu = next_cpu;
3971
3972 if (!vm_running)
3973 break;
3974 if (timer_alarm_pending) {
3975 timer_alarm_pending = 0;
3976 break;
3977 }
3978 if (cpu_can_run(env))
3979 ret = qemu_cpu_exec(env);
3980 if (ret == EXCP_DEBUG) {
3981 gdb_set_stop_cpu(env);
3982 debug_requested = 1;
3983 break;
3984 }
3985 }
3986 }
3987
3988 static int cpu_has_work(CPUState *env)
3989 {
3990 if (env->stop)
3991 return 1;
3992 if (env->stopped)
3993 return 0;
3994 if (!env->halted)
3995 return 1;
3996 if (qemu_cpu_has_work(env))
3997 return 1;
3998 return 0;
3999 }
4000
4001 static int tcg_has_work(void)
4002 {
4003 CPUState *env;
4004
4005 for (env = first_cpu; env != NULL; env = env->next_cpu)
4006 if (cpu_has_work(env))
4007 return 1;
4008 return 0;
4009 }
4010
4011 static int qemu_calculate_timeout(void)
4012 {
4013 #ifndef CONFIG_IOTHREAD
4014 int timeout;
4015
4016 if (!vm_running)
4017 timeout = 5000;
4018 else if (tcg_has_work())
4019 timeout = 0;
4020 else if (!use_icount)
4021 timeout = 5000;
4022 else {
4023 /* XXX: use timeout computed from timers */
4024 int64_t add;
4025 int64_t delta;
4026 /* Advance virtual time to the next event. */
4027 if (use_icount == 1) {
4028 /* When not using an adaptive execution frequency
4029 we tend to get badly out of sync with real time,
4030 so just delay for a reasonable amount of time. */
4031 delta = 0;
4032 } else {
4033 delta = cpu_get_icount() - cpu_get_clock();
4034 }
4035 if (delta > 0) {
4036 /* If virtual time is ahead of real time then just
4037 wait for IO. */
4038 timeout = (delta / 1000000) + 1;
4039 } else {
4040 /* Wait for either IO to occur or the next
4041 timer event. */
4042 add = qemu_next_deadline();
4043 /* We advance the timer before checking for IO.
4044 Limit the amount we advance so that early IO
4045 activity won't get the guest too far ahead. */
4046 if (add > 10000000)
4047 add = 10000000;
4048 delta += add;
4049 add = (add + (1 << icount_time_shift) - 1)
4050 >> icount_time_shift;
4051 qemu_icount += add;
4052 timeout = delta / 1000000;
4053 if (timeout < 0)
4054 timeout = 0;
4055 }
4056 }
4057
4058 return timeout;
4059 #else /* CONFIG_IOTHREAD */
4060 return 1000;
4061 #endif
4062 }
4063
4064 static int vm_can_run(void)
4065 {
4066 if (powerdown_requested)
4067 return 0;
4068 if (reset_requested)
4069 return 0;
4070 if (shutdown_requested)
4071 return 0;
4072 if (debug_requested)
4073 return 0;
4074 return 1;
4075 }
4076
4077 qemu_irq qemu_system_powerdown;
4078
4079 static void main_loop(void)
4080 {
4081 int r;
4082
4083 #ifdef CONFIG_IOTHREAD
4084 qemu_system_ready = 1;
4085 qemu_cond_broadcast(&qemu_system_cond);
4086 #endif
4087
4088 for (;;) {
4089 do {
4090 #ifdef CONFIG_PROFILER
4091 int64_t ti;
4092 #endif
4093 #ifndef CONFIG_IOTHREAD
4094 tcg_cpu_exec();
4095 #endif
4096 #ifdef CONFIG_PROFILER
4097 ti = profile_getclock();
4098 #endif
4099 main_loop_wait(qemu_calculate_timeout());
4100 #ifdef CONFIG_PROFILER
4101 dev_time += profile_getclock() - ti;
4102 #endif
4103 } while (vm_can_run());
4104
4105 if (qemu_debug_requested()) {
4106 monitor_protocol_event(QEVENT_DEBUG, NULL);
4107 vm_stop(EXCP_DEBUG);
4108 }
4109 if (qemu_shutdown_requested()) {
4110 monitor_protocol_event(QEVENT_SHUTDOWN, NULL);
4111 if (no_shutdown) {
4112 vm_stop(0);
4113 no_shutdown = 0;
4114 } else
4115 break;
4116 }
4117 if (qemu_reset_requested()) {
4118 monitor_protocol_event(QEVENT_RESET, NULL);
4119 pause_all_vcpus();
4120 qemu_system_reset();
4121 resume_all_vcpus();
4122 }
4123 if (qemu_powerdown_requested()) {
4124 monitor_protocol_event(QEVENT_POWERDOWN, NULL);
4125 qemu_irq_raise(qemu_system_powerdown);
4126 }
4127 if ((r = qemu_vmstop_requested())) {
4128 monitor_protocol_event(QEVENT_STOP, NULL);
4129 vm_stop(r);
4130 }
4131 }
4132 pause_all_vcpus();
4133 }
4134
4135 static void version(void)
4136 {
4137 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4138 }
4139
4140 static void help(int exitcode)
4141 {
4142 version();
4143 printf("usage: %s [options] [disk_image]\n"
4144 "\n"
4145 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4146 "\n"
4147 #define DEF(option, opt_arg, opt_enum, opt_help) \
4148 opt_help
4149 #define DEFHEADING(text) stringify(text) "\n"
4150 #include "qemu-options.h"
4151 #undef DEF
4152 #undef DEFHEADING
4153 #undef GEN_DOCS
4154 "\n"
4155 "During emulation, the following keys are useful:\n"
4156 "ctrl-alt-f toggle full screen\n"
4157 "ctrl-alt-n switch to virtual console 'n'\n"
4158 "ctrl-alt toggle mouse and keyboard grab\n"
4159 "\n"
4160 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4161 ,
4162 "qemu",
4163 DEFAULT_RAM_SIZE,
4164 #ifndef _WIN32
4165 DEFAULT_NETWORK_SCRIPT,
4166 DEFAULT_NETWORK_DOWN_SCRIPT,
4167 #endif
4168 DEFAULT_GDBSTUB_PORT,
4169 "/tmp/qemu.log");
4170 exit(exitcode);
4171 }
4172
4173 #define HAS_ARG 0x0001
4174
4175 enum {
4176 #define DEF(option, opt_arg, opt_enum, opt_help) \
4177 opt_enum,
4178 #define DEFHEADING(text)
4179 #include "qemu-options.h"
4180 #undef DEF
4181 #undef DEFHEADING
4182 #undef GEN_DOCS
4183 };
4184
4185 typedef struct QEMUOption {
4186 const char *name;
4187 int flags;
4188 int index;
4189 } QEMUOption;
4190
4191 static const QEMUOption qemu_options[] = {
4192 { "h", 0, QEMU_OPTION_h },
4193 #define DEF(option, opt_arg, opt_enum, opt_help) \
4194 { option, opt_arg, opt_enum },
4195 #define DEFHEADING(text)
4196 #include "qemu-options.h"
4197 #undef DEF
4198 #undef DEFHEADING
4199 #undef GEN_DOCS
4200 { NULL },
4201 };
4202
4203 #ifdef HAS_AUDIO
4204 struct soundhw soundhw[] = {
4205 #ifdef HAS_AUDIO_CHOICE
4206 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4207 {
4208 "pcspk",
4209 "PC speaker",
4210 0,
4211 1,
4212 { .init_isa = pcspk_audio_init }
4213 },
4214 #endif
4215
4216 #ifdef CONFIG_SB16
4217 {
4218 "sb16",
4219 "Creative Sound Blaster 16",
4220 0,
4221 1,
4222 { .init_isa = SB16_init }
4223 },
4224 #endif
4225
4226 #ifdef CONFIG_CS4231A
4227 {
4228 "cs4231a",
4229 "CS4231A",
4230 0,
4231 1,
4232 { .init_isa = cs4231a_init }
4233 },
4234 #endif
4235
4236 #ifdef CONFIG_ADLIB
4237 {
4238 "adlib",
4239 #ifdef HAS_YMF262
4240 "Yamaha YMF262 (OPL3)",
4241 #else
4242 "Yamaha YM3812 (OPL2)",
4243 #endif
4244 0,
4245 1,
4246 { .init_isa = Adlib_init }
4247 },
4248 #endif
4249
4250 #ifdef CONFIG_GUS
4251 {
4252 "gus",
4253 "Gravis Ultrasound GF1",
4254 0,
4255 1,
4256 { .init_isa = GUS_init }
4257 },
4258 #endif
4259
4260 #ifdef CONFIG_AC97
4261 {
4262 "ac97",
4263 "Intel 82801AA AC97 Audio",
4264 0,
4265 0,
4266 { .init_pci = ac97_init }
4267 },
4268 #endif
4269
4270 #ifdef CONFIG_ES1370
4271 {
4272 "es1370",
4273 "ENSONIQ AudioPCI ES1370",
4274 0,
4275 0,
4276 { .init_pci = es1370_init }
4277 },
4278 #endif
4279
4280 #endif /* HAS_AUDIO_CHOICE */
4281
4282 { NULL, NULL, 0, 0, { NULL } }
4283 };
4284
4285 static void select_soundhw (const char *optarg)
4286 {
4287 struct soundhw *c;
4288
4289 if (*optarg == '?') {
4290 show_valid_cards:
4291
4292 printf ("Valid sound card names (comma separated):\n");
4293 for (c = soundhw; c->name; ++c) {
4294 printf ("%-11s %s\n", c->name, c->descr);
4295 }
4296 printf ("\n-soundhw all will enable all of the above\n");
4297 exit (*optarg != '?');
4298 }
4299 else {
4300 size_t l;
4301 const char *p;
4302 char *e;
4303 int bad_card = 0;
4304
4305 if (!strcmp (optarg, "all")) {
4306 for (c = soundhw; c->name; ++c) {
4307 c->enabled = 1;
4308 }
4309 return;
4310 }
4311
4312 p = optarg;
4313 while (*p) {
4314 e = strchr (p, ',');
4315 l = !e ? strlen (p) : (size_t) (e - p);
4316
4317 for (c = soundhw; c->name; ++c) {
4318 if (!strncmp (c->name, p, l) && !c->name[l]) {
4319 c->enabled = 1;
4320 break;
4321 }
4322 }
4323
4324 if (!c->name) {
4325 if (l > 80) {
4326 fprintf (stderr,
4327 "Unknown sound card name (too big to show)\n");
4328 }
4329 else {
4330 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4331 (int) l, p);
4332 }
4333 bad_card = 1;
4334 }
4335 p += l + (e != NULL);
4336 }
4337
4338 if (bad_card)
4339 goto show_valid_cards;
4340 }
4341 }
4342 #endif
4343
4344 static void select_vgahw (const char *p)
4345 {
4346 const char *opts;
4347
4348 vga_interface_type = VGA_NONE;
4349 if (strstart(p, "std", &opts)) {
4350 vga_interface_type = VGA_STD;
4351 } else if (strstart(p, "cirrus", &opts)) {
4352 vga_interface_type = VGA_CIRRUS;
4353 } else if (strstart(p, "vmware", &opts)) {
4354 vga_interface_type = VGA_VMWARE;
4355 } else if (strstart(p, "xenfb", &opts)) {
4356 vga_interface_type = VGA_XENFB;
4357 } else if (!strstart(p, "none", &opts)) {
4358 invalid_vga:
4359 fprintf(stderr, "Unknown vga type: %s\n", p);
4360 exit(1);
4361 }
4362 while (*opts) {
4363 const char *nextopt;
4364
4365 if (strstart(opts, ",retrace=", &nextopt)) {
4366 opts = nextopt;
4367 if (strstart(opts, "dumb", &nextopt))
4368 vga_retrace_method = VGA_RETRACE_DUMB;
4369 else if (strstart(opts, "precise", &nextopt))
4370 vga_retrace_method = VGA_RETRACE_PRECISE;
4371 else goto invalid_vga;
4372 } else goto invalid_vga;
4373 opts = nextopt;
4374 }
4375 }
4376
4377 #ifdef TARGET_I386
4378 static int balloon_parse(const char *arg)
4379 {
4380 QemuOpts *opts;
4381
4382 if (strcmp(arg, "none") == 0) {
4383 return 0;
4384 }
4385
4386 if (!strncmp(arg, "virtio", 6)) {
4387 if (arg[6] == ',') {
4388 /* have params -> parse them */
4389 opts = qemu_opts_parse(&qemu_device_opts, arg+7, NULL);
4390 if (!opts)
4391 return -1;
4392 } else {
4393 /* create empty opts */
4394 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
4395 }
4396 qemu_opt_set(opts, "driver", "virtio-balloon-pci");
4397 return 0;
4398 }
4399
4400 return -1;
4401 }
4402 #endif
4403
4404 #ifdef _WIN32
4405 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4406 {
4407 exit(STATUS_CONTROL_C_EXIT);
4408 return TRUE;
4409 }
4410 #endif
4411
4412 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4413 {
4414 int ret;
4415
4416 if(strlen(str) != 36)
4417 return -1;
4418
4419 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4420 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4421 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4422
4423 if(ret != 16)
4424 return -1;
4425
4426 #ifdef TARGET_I386
4427 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4428 #endif
4429
4430 return 0;
4431 }
4432
4433 #ifndef _WIN32
4434
4435 static void termsig_handler(int signal)
4436 {
4437 qemu_system_shutdown_request();
4438 }
4439
4440 static void sigchld_handler(int signal)
4441 {
4442 waitpid(-1, NULL, WNOHANG);
4443 }
4444
4445 static void sighandler_setup(void)
4446 {
4447 struct sigaction act;
4448
4449 memset(&act, 0, sizeof(act));
4450 act.sa_handler = termsig_handler;
4451 sigaction(SIGINT, &act, NULL);
4452 sigaction(SIGHUP, &act, NULL);
4453 sigaction(SIGTERM, &act, NULL);
4454
4455 act.sa_handler = sigchld_handler;
4456 act.sa_flags = SA_NOCLDSTOP;
4457 sigaction(SIGCHLD, &act, NULL);
4458 }
4459
4460 #endif
4461
4462 #ifdef _WIN32
4463 /* Look for support files in the same directory as the executable. */
4464 static char *find_datadir(const char *argv0)
4465 {
4466 char *p;
4467 char buf[MAX_PATH];
4468 DWORD len;
4469
4470 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4471 if (len == 0) {
4472 return NULL;
4473 }
4474
4475 buf[len] = 0;
4476 p = buf + len - 1;
4477 while (p != buf && *p != '\\')
4478 p--;
4479 *p = 0;
4480 if (access(buf, R_OK) == 0) {
4481 return qemu_strdup(buf);
4482 }
4483 return NULL;
4484 }
4485 #else /* !_WIN32 */
4486
4487 /* Find a likely location for support files using the location of the binary.
4488 For installed binaries this will be "$bindir/../share/qemu". When
4489 running from the build tree this will be "$bindir/../pc-bios". */
4490 #define SHARE_SUFFIX "/share/qemu"
4491 #define BUILD_SUFFIX "/pc-bios"
4492 static char *find_datadir(const char *argv0)
4493 {
4494 char *dir;
4495 char *p = NULL;
4496 char *res;
4497 char buf[PATH_MAX];
4498 size_t max_len;
4499
4500 #if defined(__linux__)
4501 {
4502 int len;
4503 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4504 if (len > 0) {
4505 buf[len] = 0;
4506 p = buf;
4507 }
4508 }
4509 #elif defined(__FreeBSD__)
4510 {
4511 int len;
4512 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4513 if (len > 0) {
4514 buf[len] = 0;
4515 p = buf;
4516 }
4517 }
4518 #endif
4519 /* If we don't have any way of figuring out the actual executable
4520 location then try argv[0]. */
4521 if (!p) {
4522 p = realpath(argv0, buf);
4523 if (!p) {
4524 return NULL;
4525 }
4526 }
4527 dir = dirname(p);
4528 dir = dirname(dir);
4529
4530 max_len = strlen(dir) +
4531 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4532 res = qemu_mallocz(max_len);
4533 snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4534 if (access(res, R_OK)) {
4535 snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4536 if (access(res, R_OK)) {
4537 qemu_free(res);
4538 res = NULL;
4539 }
4540 }
4541
4542 return res;
4543 }
4544 #undef SHARE_SUFFIX
4545 #undef BUILD_SUFFIX
4546 #endif
4547
4548 char *qemu_find_file(int type, const char *name)
4549 {
4550 int len;
4551 const char *subdir;
4552 char *buf;
4553
4554 /* If name contains path separators then try it as a straight path. */
4555 if ((strchr(name, '/') || strchr(name, '\\'))
4556 && access(name, R_OK) == 0) {
4557 return qemu_strdup(name);
4558 }
4559 switch (type) {
4560 case QEMU_FILE_TYPE_BIOS:
4561 subdir = "";
4562 break;
4563 case QEMU_FILE_TYPE_KEYMAP:
4564 subdir = "keymaps/";
4565 break;
4566 default:
4567 abort();
4568 }
4569 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4570 buf = qemu_mallocz(len);
4571 snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4572 if (access(buf, R_OK)) {
4573 qemu_free(buf);
4574 return NULL;
4575 }
4576 return buf;
4577 }
4578
4579 static int device_init_func(QemuOpts *opts, void *opaque)
4580 {
4581 DeviceState *dev;
4582
4583 dev = qdev_device_add(opts);
4584 if (!dev)
4585 return -1;
4586 return 0;
4587 }
4588
4589 struct device_config {
4590 enum {
4591 DEV_USB, /* -usbdevice */
4592 DEV_BT, /* -bt */
4593 } type;
4594 const char *cmdline;
4595 QTAILQ_ENTRY(device_config) next;
4596 };
4597 QTAILQ_HEAD(, device_config) device_configs = QTAILQ_HEAD_INITIALIZER(device_configs);
4598
4599 static void add_device_config(int type, const char *cmdline)
4600 {
4601 struct device_config *conf;
4602
4603 conf = qemu_mallocz(sizeof(*conf));
4604 conf->type = type;
4605 conf->cmdline = cmdline;
4606 QTAILQ_INSERT_TAIL(&device_configs, conf, next);
4607 }
4608
4609 static int foreach_device_config(int type, int (*func)(const char *cmdline))
4610 {
4611 struct device_config *conf;
4612 int rc;
4613
4614 QTAILQ_FOREACH(conf, &device_configs, next) {
4615 if (conf->type != type)
4616 continue;
4617 rc = func(conf->cmdline);
4618 if (0 != rc)
4619 return rc;
4620 }
4621 return 0;
4622 }
4623
4624 int main(int argc, char **argv, char **envp)
4625 {
4626 const char *gdbstub_dev = NULL;
4627 uint32_t boot_devices_bitmap = 0;
4628 int i;
4629 int snapshot, linux_boot, net_boot;
4630 const char *initrd_filename;
4631 const char *kernel_filename, *kernel_cmdline;
4632 char boot_devices[33] = "cad"; /* default to HD->floppy->CD-ROM */
4633 DisplayState *ds;
4634 DisplayChangeListener *dcl;
4635 int cyls, heads, secs, translation;
4636 QemuOpts *hda_opts = NULL, *opts;
4637 int optind;
4638 const char *r, *optarg;
4639 CharDriverState *monitor_hds[MAX_MONITOR_DEVICES];
4640 const char *monitor_devices[MAX_MONITOR_DEVICES];
4641 int monitor_flags[MAX_MONITOR_DEVICES];
4642 int monitor_device_index;
4643 const char *serial_devices[MAX_SERIAL_PORTS];
4644 int serial_device_index;
4645 const char *parallel_devices[MAX_PARALLEL_PORTS];
4646 int parallel_device_index;
4647 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4648 int virtio_console_index;
4649 const char *loadvm = NULL;
4650 QEMUMachine *machine;
4651 const char *cpu_model;
4652 #ifndef _WIN32
4653 int fds[2];
4654 #endif
4655 int tb_size;
4656 const char *pid_file = NULL;
4657 const char *incoming = NULL;
4658 #ifndef _WIN32
4659 int fd = 0;
4660 struct passwd *pwd = NULL;
4661 const char *chroot_dir = NULL;
4662 const char *run_as = NULL;
4663 #endif
4664 CPUState *env;
4665 int show_vnc_port = 0;
4666
4667 init_clocks();
4668
4669 qemu_errors_to_file(stderr);
4670 qemu_cache_utils_init(envp);
4671
4672 QLIST_INIT (&vm_change_state_head);
4673 #ifndef _WIN32
4674 {
4675 struct sigaction act;
4676 sigfillset(&act.sa_mask);
4677 act.sa_flags = 0;
4678 act.sa_handler = SIG_IGN;
4679 sigaction(SIGPIPE, &act, NULL);
4680 }
4681 #else
4682 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4683 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4684 QEMU to run on a single CPU */
4685 {
4686 HANDLE h;
4687 DWORD mask, smask;
4688 int i;
4689 h = GetCurrentProcess();
4690 if (GetProcessAffinityMask(h, &mask, &smask)) {
4691 for(i = 0; i < 32; i++) {
4692 if (mask & (1 << i))
4693 break;
4694 }
4695 if (i != 32) {
4696 mask = 1 << i;
4697 SetProcessAffinityMask(h, mask);
4698 }
4699 }
4700 }
4701 #endif
4702
4703 module_call_init(MODULE_INIT_MACHINE);
4704 machine = find_default_machine();
4705 cpu_model = NULL;
4706 initrd_filename = NULL;
4707 ram_size = 0;
4708 snapshot = 0;
4709 kernel_filename = NULL;
4710 kernel_cmdline = "";
4711 cyls = heads = secs = 0;
4712 translation = BIOS_ATA_TRANSLATION_AUTO;
4713
4714 #ifdef TARGET_S390X
4715 for(i = 0; i < MAX_SERIAL_PORTS; i++)
4716 serial_devices[i] = NULL;
4717 serial_device_index = 0;
4718
4719 for(i = 0; i < MAX_PARALLEL_PORTS; i++)
4720 parallel_devices[i] = NULL;
4721 parallel_device_index = 0;
4722
4723 virtio_consoles[0] = "mon:stdio";
4724 for(i = 1; i < MAX_VIRTIO_CONSOLES; i++)
4725 virtio_consoles[i] = NULL;
4726 virtio_console_index = 0;
4727 #else
4728 serial_devices[0] = "vc:80Cx24C";
4729 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4730 serial_devices[i] = NULL;
4731 serial_device_index = 0;
4732
4733 parallel_devices[0] = "vc:80Cx24C";
4734 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4735 parallel_devices[i] = NULL;
4736 parallel_device_index = 0;
4737
4738 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4739 virtio_consoles[i] = NULL;
4740 virtio_console_index = 0;
4741 #endif
4742
4743 monitor_devices[0] = "vc:80Cx24C";
4744 monitor_flags[0] = MONITOR_IS_DEFAULT | MONITOR_USE_READLINE;
4745 for (i = 1; i < MAX_MONITOR_DEVICES; i++) {
4746 monitor_devices[i] = NULL;
4747 monitor_flags[i] = MONITOR_USE_READLINE;
4748 }
4749 monitor_device_index = 0;
4750
4751 for (i = 0; i < MAX_NODES; i++) {
4752 node_mem[i] = 0;
4753 node_cpumask[i] = 0;
4754 }
4755
4756 nb_numa_nodes = 0;
4757 nb_nics = 0;
4758
4759 tb_size = 0;
4760 autostart= 1;
4761
4762 optind = 1;
4763 for(;;) {
4764 if (optind >= argc)
4765 break;
4766 r = argv[optind];
4767 if (r[0] != '-') {
4768 hda_opts = drive_add(argv[optind++], HD_ALIAS, 0);
4769 } else {
4770 const QEMUOption *popt;
4771
4772 optind++;
4773 /* Treat --foo the same as -foo. */
4774 if (r[1] == '-')
4775 r++;
4776 popt = qemu_options;
4777 for(;;) {
4778 if (!popt->name) {
4779 fprintf(stderr, "%s: invalid option -- '%s'\n",
4780 argv[0], r);
4781 exit(1);
4782 }
4783 if (!strcmp(popt->name, r + 1))
4784 break;
4785 popt++;
4786 }
4787 if (popt->flags & HAS_ARG) {
4788 if (optind >= argc) {
4789 fprintf(stderr, "%s: option '%s' requires an argument\n",
4790 argv[0], r);
4791 exit(1);
4792 }
4793 optarg = argv[optind++];
4794 } else {
4795 optarg = NULL;
4796 }
4797
4798 switch(popt->index) {
4799 case QEMU_OPTION_M:
4800 machine = find_machine(optarg);
4801 if (!machine) {
4802 QEMUMachine *m;
4803 printf("Supported machines are:\n");
4804 for(m = first_machine; m != NULL; m = m->next) {
4805 if (m->alias)
4806 printf("%-10s %s (alias of %s)\n",
4807 m->alias, m->desc, m->name);
4808 printf("%-10s %s%s\n",
4809 m->name, m->desc,
4810 m->is_default ? " (default)" : "");
4811 }
4812 exit(*optarg != '?');
4813 }
4814 break;
4815 case QEMU_OPTION_cpu:
4816 /* hw initialization will check this */
4817 if (*optarg == '?') {
4818 /* XXX: implement xxx_cpu_list for targets that still miss it */
4819 #if defined(cpu_list)
4820 cpu_list(stdout, &fprintf);
4821 #endif
4822 exit(0);
4823 } else {
4824 cpu_model = optarg;
4825 }
4826 break;
4827 case QEMU_OPTION_initrd:
4828 initrd_filename = optarg;
4829 break;
4830 case QEMU_OPTION_hda:
4831 if (cyls == 0)
4832 hda_opts = drive_add(optarg, HD_ALIAS, 0);
4833 else
4834 hda_opts = drive_add(optarg, HD_ALIAS
4835 ",cyls=%d,heads=%d,secs=%d%s",
4836 0, cyls, heads, secs,
4837 translation == BIOS_ATA_TRANSLATION_LBA ?
4838 ",trans=lba" :
4839 translation == BIOS_ATA_TRANSLATION_NONE ?
4840 ",trans=none" : "");
4841 break;
4842 case QEMU_OPTION_hdb:
4843 case QEMU_OPTION_hdc:
4844 case QEMU_OPTION_hdd:
4845 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4846 break;
4847 case QEMU_OPTION_drive:
4848 drive_add(NULL, "%s", optarg);
4849 break;
4850 case QEMU_OPTION_set:
4851 if (qemu_set_option(optarg) != 0)
4852 exit(1);
4853 break;
4854 case QEMU_OPTION_mtdblock:
4855 drive_add(optarg, MTD_ALIAS);
4856 break;
4857 case QEMU_OPTION_sd:
4858 drive_add(optarg, SD_ALIAS);
4859 break;
4860 case QEMU_OPTION_pflash:
4861 drive_add(optarg, PFLASH_ALIAS);
4862 break;
4863 case QEMU_OPTION_snapshot:
4864 snapshot = 1;
4865 break;
4866 case QEMU_OPTION_hdachs:
4867 {
4868 const char *p;
4869 p = optarg;
4870 cyls = strtol(p, (char **)&p, 0);
4871 if (cyls < 1 || cyls > 16383)
4872 goto chs_fail;
4873 if (*p != ',')
4874 goto chs_fail;
4875 p++;
4876 heads = strtol(p, (char **)&p, 0);
4877 if (heads < 1 || heads > 16)
4878 goto chs_fail;
4879 if (*p != ',')
4880 goto chs_fail;
4881 p++;
4882 secs = strtol(p, (char **)&p, 0);
4883 if (secs < 1 || secs > 63)
4884 goto chs_fail;
4885 if (*p == ',') {
4886 p++;
4887 if (!strcmp(p, "none"))
4888 translation = BIOS_ATA_TRANSLATION_NONE;
4889 else if (!strcmp(p, "lba"))
4890 translation = BIOS_ATA_TRANSLATION_LBA;
4891 else if (!strcmp(p, "auto"))
4892 translation = BIOS_ATA_TRANSLATION_AUTO;
4893 else
4894 goto chs_fail;
4895 } else if (*p != '\0') {
4896 chs_fail:
4897 fprintf(stderr, "qemu: invalid physical CHS format\n");
4898 exit(1);
4899 }
4900 if (hda_opts != NULL) {
4901 char num[16];
4902 snprintf(num, sizeof(num), "%d", cyls);
4903 qemu_opt_set(hda_opts, "cyls", num);
4904 snprintf(num, sizeof(num), "%d", heads);
4905 qemu_opt_set(hda_opts, "heads", num);
4906 snprintf(num, sizeof(num), "%d", secs);
4907 qemu_opt_set(hda_opts, "secs", num);
4908 if (translation == BIOS_ATA_TRANSLATION_LBA)
4909 qemu_opt_set(hda_opts, "trans", "lba");
4910 if (translation == BIOS_ATA_TRANSLATION_NONE)
4911 qemu_opt_set(hda_opts, "trans", "none");
4912 }
4913 }
4914 break;
4915 case QEMU_OPTION_numa:
4916 if (nb_numa_nodes >= MAX_NODES) {
4917 fprintf(stderr, "qemu: too many NUMA nodes\n");
4918 exit(1);
4919 }
4920 numa_add(optarg);
4921 break;
4922 case QEMU_OPTION_nographic:
4923 display_type = DT_NOGRAPHIC;
4924 break;
4925 #ifdef CONFIG_CURSES
4926 case QEMU_OPTION_curses:
4927 display_type = DT_CURSES;
4928 break;
4929 #endif
4930 case QEMU_OPTION_portrait:
4931 graphic_rotate = 1;
4932 break;
4933 case QEMU_OPTION_kernel:
4934 kernel_filename = optarg;
4935 break;
4936 case QEMU_OPTION_append:
4937 kernel_cmdline = optarg;
4938 break;
4939 case QEMU_OPTION_cdrom:
4940 drive_add(optarg, CDROM_ALIAS);
4941 break;
4942 case QEMU_OPTION_boot:
4943 {
4944 static const char * const params[] = {
4945 "order", "once", "menu", NULL
4946 };
4947 char buf[sizeof(boot_devices)];
4948 char *standard_boot_devices;
4949 int legacy = 0;
4950
4951 if (!strchr(optarg, '=')) {
4952 legacy = 1;
4953 pstrcpy(buf, sizeof(buf), optarg);
4954 } else if (check_params(buf, sizeof(buf), params, optarg) < 0) {
4955 fprintf(stderr,
4956 "qemu: unknown boot parameter '%s' in '%s'\n",
4957 buf, optarg);
4958 exit(1);
4959 }
4960
4961 if (legacy ||
4962 get_param_value(buf, sizeof(buf), "order", optarg)) {
4963 boot_devices_bitmap = parse_bootdevices(buf);
4964 pstrcpy(boot_devices, sizeof(boot_devices), buf);
4965 }
4966 if (!legacy) {
4967 if (get_param_value(buf, sizeof(buf),
4968 "once", optarg)) {
4969 boot_devices_bitmap |= parse_bootdevices(buf);
4970 standard_boot_devices = qemu_strdup(boot_devices);
4971 pstrcpy(boot_devices, sizeof(boot_devices), buf);
4972 qemu_register_reset(restore_boot_devices,
4973 standard_boot_devices);
4974 }
4975 if (get_param_value(buf, sizeof(buf),
4976 "menu", optarg)) {
4977 if (!strcmp(buf, "on")) {
4978 boot_menu = 1;
4979 } else if (!strcmp(buf, "off")) {
4980 boot_menu = 0;
4981 } else {
4982 fprintf(stderr,
4983 "qemu: invalid option value '%s'\n",
4984 buf);
4985 exit(1);
4986 }
4987 }
4988 }
4989 }
4990 break;
4991 case QEMU_OPTION_fda:
4992 case QEMU_OPTION_fdb:
4993 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
4994 break;
4995 #ifdef TARGET_I386
4996 case QEMU_OPTION_no_fd_bootchk:
4997 fd_bootchk = 0;
4998 break;
4999 #endif
5000 case QEMU_OPTION_netdev:
5001 if (net_client_parse(&qemu_netdev_opts, optarg) == -1) {
5002 exit(1);
5003 }
5004 break;
5005 case QEMU_OPTION_net:
5006 if (net_client_parse(&qemu_net_opts, optarg) == -1) {
5007 exit(1);
5008 }
5009 break;
5010 #ifdef CONFIG_SLIRP
5011 case QEMU_OPTION_tftp:
5012 legacy_tftp_prefix = optarg;
5013 break;
5014 case QEMU_OPTION_bootp:
5015 legacy_bootp_filename = optarg;
5016 break;
5017 #ifndef _WIN32
5018 case QEMU_OPTION_smb:
5019 if (net_slirp_smb(optarg) < 0)
5020 exit(1);
5021 break;
5022 #endif
5023 case QEMU_OPTION_redir:
5024 if (net_slirp_redir(optarg) < 0)
5025 exit(1);
5026 break;
5027 #endif
5028 case QEMU_OPTION_bt:
5029 add_device_config(DEV_BT, optarg);
5030 break;
5031 #ifdef HAS_AUDIO
5032 case QEMU_OPTION_audio_help:
5033 AUD_help ();
5034 exit (0);
5035 break;
5036 case QEMU_OPTION_soundhw:
5037 select_soundhw (optarg);
5038 break;
5039 #endif
5040 case QEMU_OPTION_h:
5041 help(0);
5042 break;
5043 case QEMU_OPTION_version:
5044 version();
5045 exit(0);
5046 break;
5047 case QEMU_OPTION_m: {
5048 uint64_t value;
5049 char *ptr;
5050
5051 value = strtoul(optarg, &ptr, 10);
5052 switch (*ptr) {
5053 case 0: case 'M': case 'm':
5054 value <<= 20;
5055 break;
5056 case 'G': case 'g':
5057 value <<= 30;
5058 break;
5059 default:
5060 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5061 exit(1);
5062 }
5063
5064 /* On 32-bit hosts, QEMU is limited by virtual address space */
5065 if (value > (2047 << 20) && HOST_LONG_BITS == 32) {
5066 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5067 exit(1);
5068 }
5069 if (value != (uint64_t)(ram_addr_t)value) {
5070 fprintf(stderr, "qemu: ram size too large\n");
5071 exit(1);
5072 }
5073 ram_size = value;
5074 break;
5075 }
5076 case QEMU_OPTION_d:
5077 {
5078 int mask;
5079 const CPULogItem *item;
5080
5081 mask = cpu_str_to_log_mask(optarg);
5082 if (!mask) {
5083 printf("Log items (comma separated):\n");
5084 for(item = cpu_log_items; item->mask != 0; item++) {
5085 printf("%-10s %s\n", item->name, item->help);
5086 }
5087 exit(1);
5088 }
5089 cpu_set_log(mask);
5090 }
5091 break;
5092 case QEMU_OPTION_s:
5093 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5094 break;
5095 case QEMU_OPTION_gdb:
5096 gdbstub_dev = optarg;
5097 break;
5098 case QEMU_OPTION_L:
5099 data_dir = optarg;
5100 break;
5101 case QEMU_OPTION_bios:
5102 bios_name = optarg;
5103 break;
5104 case QEMU_OPTION_singlestep:
5105 singlestep = 1;
5106 break;
5107 case QEMU_OPTION_S:
5108 autostart = 0;
5109 break;
5110 case QEMU_OPTION_k:
5111 keyboard_layout = optarg;
5112 break;
5113 case QEMU_OPTION_localtime:
5114 rtc_utc = 0;
5115 break;
5116 case QEMU_OPTION_vga:
5117 select_vgahw (optarg);
5118 break;
5119 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5120 case QEMU_OPTION_g:
5121 {
5122 const char *p;
5123 int w, h, depth;
5124 p = optarg;
5125 w = strtol(p, (char **)&p, 10);
5126 if (w <= 0) {
5127 graphic_error:
5128 fprintf(stderr, "qemu: invalid resolution or depth\n");
5129 exit(1);
5130 }
5131 if (*p != 'x')
5132 goto graphic_error;
5133 p++;
5134 h = strtol(p, (char **)&p, 10);
5135 if (h <= 0)
5136 goto graphic_error;
5137 if (*p == 'x') {
5138 p++;
5139 depth = strtol(p, (char **)&p, 10);
5140 if (depth != 8 && depth != 15 && depth != 16 &&
5141 depth != 24 && depth != 32)
5142 goto graphic_error;
5143 } else if (*p == '\0') {
5144 depth = graphic_depth;
5145 } else {
5146 goto graphic_error;
5147 }
5148
5149 graphic_width = w;
5150 graphic_height = h;
5151 graphic_depth = depth;
5152 }
5153 break;
5154 #endif
5155 case QEMU_OPTION_echr:
5156 {
5157 char *r;
5158 term_escape_char = strtol(optarg, &r, 0);
5159 if (r == optarg)
5160 printf("Bad argument to echr\n");
5161 break;
5162 }
5163 case QEMU_OPTION_monitor:
5164 if (monitor_device_index >= MAX_MONITOR_DEVICES) {
5165 fprintf(stderr, "qemu: too many monitor devices\n");
5166 exit(1);
5167 }
5168 monitor_devices[monitor_device_index] =
5169 monitor_cmdline_parse(optarg,
5170 &monitor_flags[monitor_device_index]);
5171 monitor_device_index++;
5172 break;
5173 case QEMU_OPTION_chardev:
5174 opts = qemu_opts_parse(&qemu_chardev_opts, optarg, "backend");
5175 if (!opts) {
5176 fprintf(stderr, "parse error: %s\n", optarg);
5177 exit(1);
5178 }
5179 if (qemu_chr_open_opts(opts, NULL) == NULL) {
5180 exit(1);
5181 }
5182 break;
5183 case QEMU_OPTION_serial:
5184 if (serial_device_index >= MAX_SERIAL_PORTS) {
5185 fprintf(stderr, "qemu: too many serial ports\n");
5186 exit(1);
5187 }
5188 serial_devices[serial_device_index] = optarg;
5189 serial_device_index++;
5190 break;
5191 case QEMU_OPTION_watchdog:
5192 if (watchdog) {
5193 fprintf(stderr,
5194 "qemu: only one watchdog option may be given\n");
5195 return 1;
5196 }
5197 watchdog = optarg;
5198 break;
5199 case QEMU_OPTION_watchdog_action:
5200 if (select_watchdog_action(optarg) == -1) {
5201 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5202 exit(1);
5203 }
5204 break;
5205 case QEMU_OPTION_virtiocon:
5206 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5207 fprintf(stderr, "qemu: too many virtio consoles\n");
5208 exit(1);
5209 }
5210 virtio_consoles[virtio_console_index] = optarg;
5211 virtio_console_index++;
5212 break;
5213 case QEMU_OPTION_parallel:
5214 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5215 fprintf(stderr, "qemu: too many parallel ports\n");
5216 exit(1);
5217 }
5218 parallel_devices[parallel_device_index] = optarg;
5219 parallel_device_index++;
5220 break;
5221 case QEMU_OPTION_loadvm:
5222 loadvm = optarg;
5223 break;
5224 case QEMU_OPTION_full_screen:
5225 full_screen = 1;
5226 break;
5227 #ifdef CONFIG_SDL
5228 case QEMU_OPTION_no_frame:
5229 no_frame = 1;
5230 break;
5231 case QEMU_OPTION_alt_grab:
5232 alt_grab = 1;
5233 break;
5234 case QEMU_OPTION_ctrl_grab:
5235 ctrl_grab = 1;
5236 break;
5237 case QEMU_OPTION_no_quit:
5238 no_quit = 1;
5239 break;
5240 case QEMU_OPTION_sdl:
5241 display_type = DT_SDL;
5242 break;
5243 #endif
5244 case QEMU_OPTION_pidfile:
5245 pid_file = optarg;
5246 break;
5247 #ifdef TARGET_I386
5248 case QEMU_OPTION_win2k_hack:
5249 win2k_install_hack = 1;
5250 break;
5251 case QEMU_OPTION_rtc_td_hack:
5252 rtc_td_hack = 1;
5253 break;
5254 case QEMU_OPTION_acpitable:
5255 if(acpi_table_add(optarg) < 0) {
5256 fprintf(stderr, "Wrong acpi table provided\n");
5257 exit(1);
5258 }
5259 break;
5260 case QEMU_OPTION_smbios:
5261 if(smbios_entry_add(optarg) < 0) {
5262 fprintf(stderr, "Wrong smbios provided\n");
5263 exit(1);
5264 }
5265 break;
5266 #endif
5267 #ifdef CONFIG_KVM
5268 case QEMU_OPTION_enable_kvm:
5269 kvm_allowed = 1;
5270 break;
5271 #endif
5272 case QEMU_OPTION_usb:
5273 usb_enabled = 1;
5274 break;
5275 case QEMU_OPTION_usbdevice:
5276 usb_enabled = 1;
5277 add_device_config(DEV_USB, optarg);
5278 break;
5279 case QEMU_OPTION_device:
5280 if (!qemu_opts_parse(&qemu_device_opts, optarg, "driver")) {
5281 exit(1);
5282 }
5283 break;
5284 case QEMU_OPTION_smp:
5285 smp_parse(optarg);
5286 if (smp_cpus < 1) {
5287 fprintf(stderr, "Invalid number of CPUs\n");
5288 exit(1);
5289 }
5290 if (max_cpus < smp_cpus) {
5291 fprintf(stderr, "maxcpus must be equal to or greater than "
5292 "smp\n");
5293 exit(1);
5294 }
5295 if (max_cpus > 255) {
5296 fprintf(stderr, "Unsupported number of maxcpus\n");
5297 exit(1);
5298 }
5299 break;
5300 case QEMU_OPTION_vnc:
5301 display_type = DT_VNC;
5302 vnc_display = optarg;
5303 break;
5304 #ifdef TARGET_I386
5305 case QEMU_OPTION_no_acpi:
5306 acpi_enabled = 0;
5307 break;
5308 case QEMU_OPTION_no_hpet:
5309 no_hpet = 1;
5310 break;
5311 case QEMU_OPTION_balloon:
5312 if (balloon_parse(optarg) < 0) {
5313 fprintf(stderr, "Unknown -balloon argument %s\n", optarg);
5314 exit(1);
5315 }
5316 break;
5317 #endif
5318 case QEMU_OPTION_no_reboot:
5319 no_reboot = 1;
5320 break;
5321 case QEMU_OPTION_no_shutdown:
5322 no_shutdown = 1;
5323 break;
5324 case QEMU_OPTION_show_cursor:
5325 cursor_hide = 0;
5326 break;
5327 case QEMU_OPTION_uuid:
5328 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5329 fprintf(stderr, "Fail to parse UUID string."
5330 " Wrong format.\n");
5331 exit(1);
5332 }
5333 break;
5334 #ifndef _WIN32
5335 case QEMU_OPTION_daemonize:
5336 daemonize = 1;
5337 break;
5338 #endif
5339 case QEMU_OPTION_option_rom:
5340 if (nb_option_roms >= MAX_OPTION_ROMS) {
5341 fprintf(stderr, "Too many option ROMs\n");
5342 exit(1);
5343 }
5344 option_rom[nb_option_roms] = optarg;
5345 nb_option_roms++;
5346 break;
5347 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5348 case QEMU_OPTION_semihosting:
5349 semihosting_enabled = 1;
5350 break;
5351 #endif
5352 case QEMU_OPTION_name:
5353 qemu_name = qemu_strdup(optarg);
5354 {
5355 char *p = strchr(qemu_name, ',');
5356 if (p != NULL) {
5357 *p++ = 0;
5358 if (strncmp(p, "process=", 8)) {
5359 fprintf(stderr, "Unknown subargument %s to -name", p);
5360 exit(1);
5361 }
5362 p += 8;
5363 set_proc_name(p);
5364 }
5365 }
5366 break;
5367 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5368 case QEMU_OPTION_prom_env:
5369 if (nb_prom_envs >= MAX_PROM_ENVS) {
5370 fprintf(stderr, "Too many prom variables\n");
5371 exit(1);
5372 }
5373 prom_envs[nb_prom_envs] = optarg;
5374 nb_prom_envs++;
5375 break;
5376 #endif
5377 #ifdef TARGET_ARM
5378 case QEMU_OPTION_old_param:
5379 old_param = 1;
5380 break;
5381 #endif
5382 case QEMU_OPTION_clock:
5383 configure_alarms(optarg);
5384 break;
5385 case QEMU_OPTION_startdate:
5386 configure_rtc_date_offset(optarg, 1);
5387 break;
5388 case QEMU_OPTION_rtc:
5389 opts = qemu_opts_parse(&qemu_rtc_opts, optarg, NULL);
5390 if (!opts) {
5391 fprintf(stderr, "parse error: %s\n", optarg);
5392 exit(1);
5393 }
5394 configure_rtc(opts);
5395 break;
5396 case QEMU_OPTION_tb_size:
5397 tb_size = strtol(optarg, NULL, 0);
5398 if (tb_size < 0)
5399 tb_size = 0;
5400 break;
5401 case QEMU_OPTION_icount:
5402 use_icount = 1;
5403 if (strcmp(optarg, "auto") == 0) {
5404 icount_time_shift = -1;
5405 } else {
5406 icount_time_shift = strtol(optarg, NULL, 0);
5407 }
5408 break;
5409 case QEMU_OPTION_incoming:
5410 incoming = optarg;
5411 break;
5412 #ifndef _WIN32
5413 case QEMU_OPTION_chroot:
5414 chroot_dir = optarg;
5415 break;
5416 case QEMU_OPTION_runas:
5417 run_as = optarg;
5418 break;
5419 #endif
5420 #ifdef CONFIG_XEN
5421 case QEMU_OPTION_xen_domid:
5422 xen_domid = atoi(optarg);
5423 break;
5424 case QEMU_OPTION_xen_create:
5425 xen_mode = XEN_CREATE;
5426 break;
5427 case QEMU_OPTION_xen_attach:
5428 xen_mode = XEN_ATTACH;
5429 break;
5430 #endif
5431 case QEMU_OPTION_readconfig:
5432 {
5433 FILE *fp;
5434 fp = fopen(optarg, "r");
5435 if (fp == NULL) {
5436 fprintf(stderr, "open %s: %s\n", optarg, strerror(errno));
5437 exit(1);
5438 }
5439 if (qemu_config_parse(fp) != 0) {
5440 exit(1);
5441 }
5442 fclose(fp);
5443 break;
5444 }
5445 case QEMU_OPTION_writeconfig:
5446 {
5447 FILE *fp;
5448 if (strcmp(optarg, "-") == 0) {
5449 fp = stdout;
5450 } else {
5451 fp = fopen(optarg, "w");
5452 if (fp == NULL) {
5453 fprintf(stderr, "open %s: %s\n", optarg, strerror(errno));
5454 exit(1);
5455 }
5456 }
5457 qemu_config_write(fp);
5458 fclose(fp);
5459 break;
5460 }
5461 }
5462 }
5463 }
5464
5465 /* If no data_dir is specified then try to find it relative to the
5466 executable path. */
5467 if (!data_dir) {
5468 data_dir = find_datadir(argv[0]);
5469 }
5470 /* If all else fails use the install patch specified when building. */
5471 if (!data_dir) {
5472 data_dir = CONFIG_QEMU_SHAREDIR;
5473 }
5474
5475 /*
5476 * Default to max_cpus = smp_cpus, in case the user doesn't
5477 * specify a max_cpus value.
5478 */
5479 if (!max_cpus)
5480 max_cpus = smp_cpus;
5481
5482 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5483 if (smp_cpus > machine->max_cpus) {
5484 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5485 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5486 machine->max_cpus);
5487 exit(1);
5488 }
5489
5490 if (display_type == DT_NOGRAPHIC) {
5491 if (serial_device_index == 0)
5492 serial_devices[0] = "stdio";
5493 if (parallel_device_index == 0)
5494 parallel_devices[0] = "null";
5495 if (strncmp(monitor_devices[0], "vc", 2) == 0) {
5496 monitor_devices[0] = "stdio";
5497 }
5498 }
5499
5500 #ifndef _WIN32
5501 if (daemonize) {
5502 pid_t pid;
5503
5504 if (pipe(fds) == -1)
5505 exit(1);
5506
5507 pid = fork();
5508 if (pid > 0) {
5509 uint8_t status;
5510 ssize_t len;
5511
5512 close(fds[1]);
5513
5514 again:
5515 len = read(fds[0], &status, 1);
5516 if (len == -1 && (errno == EINTR))
5517 goto again;
5518
5519 if (len != 1)
5520 exit(1);
5521 else if (status == 1) {
5522 fprintf(stderr, "Could not acquire pidfile: %s\n", strerror(errno));
5523 exit(1);
5524 } else
5525 exit(0);
5526 } else if (pid < 0)
5527 exit(1);
5528
5529 close(fds[0]);
5530 qemu_set_cloexec(fds[1]);
5531
5532 setsid();
5533
5534 pid = fork();
5535 if (pid > 0)
5536 exit(0);
5537 else if (pid < 0)
5538 exit(1);
5539
5540 umask(027);
5541
5542 signal(SIGTSTP, SIG_IGN);
5543 signal(SIGTTOU, SIG_IGN);
5544 signal(SIGTTIN, SIG_IGN);
5545 }
5546
5547 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5548 if (daemonize) {
5549 uint8_t status = 1;
5550 write(fds[1], &status, 1);
5551 } else
5552 fprintf(stderr, "Could not acquire pid file: %s\n", strerror(errno));
5553 exit(1);
5554 }
5555 #endif
5556
5557 if (kvm_enabled()) {
5558 int ret;
5559
5560 ret = kvm_init(smp_cpus);
5561 if (ret < 0) {
5562 fprintf(stderr, "failed to initialize KVM\n");
5563 exit(1);
5564 }
5565 }
5566
5567 if (qemu_init_main_loop()) {
5568 fprintf(stderr, "qemu_init_main_loop failed\n");
5569 exit(1);
5570 }
5571 linux_boot = (kernel_filename != NULL);
5572
5573 if (!linux_boot && *kernel_cmdline != '\0') {
5574 fprintf(stderr, "-append only allowed with -kernel option\n");
5575 exit(1);
5576 }
5577
5578 if (!linux_boot && initrd_filename != NULL) {
5579 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5580 exit(1);
5581 }
5582
5583 #ifndef _WIN32
5584 /* Win32 doesn't support line-buffering and requires size >= 2 */
5585 setvbuf(stdout, NULL, _IOLBF, 0);
5586 #endif
5587
5588 if (init_timer_alarm() < 0) {
5589 fprintf(stderr, "could not initialize alarm timer\n");
5590 exit(1);
5591 }
5592 if (use_icount && icount_time_shift < 0) {
5593 use_icount = 2;
5594 /* 125MIPS seems a reasonable initial guess at the guest speed.
5595 It will be corrected fairly quickly anyway. */
5596 icount_time_shift = 3;
5597 init_icount_adjust();
5598 }
5599
5600 #ifdef _WIN32
5601 socket_init();
5602 #endif
5603
5604 if (net_init_clients() < 0) {
5605 exit(1);
5606 }
5607
5608 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5609 net_set_boot_mask(net_boot);
5610
5611 /* init the bluetooth world */
5612 if (foreach_device_config(DEV_BT, bt_parse))
5613 exit(1);
5614
5615 /* init the memory */
5616 if (ram_size == 0)
5617 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5618
5619 /* init the dynamic translator */
5620 cpu_exec_init_all(tb_size * 1024 * 1024);
5621
5622 bdrv_init_with_whitelist();
5623
5624 blk_mig_init();
5625
5626 /* we always create the cdrom drive, even if no disk is there */
5627 drive_add(NULL, CDROM_ALIAS);
5628
5629 /* we always create at least one floppy */
5630 drive_add(NULL, FD_ALIAS, 0);
5631
5632 /* we always create one sd slot, even if no card is in it */
5633 drive_add(NULL, SD_ALIAS);
5634
5635 /* open the virtual block devices */
5636 if (snapshot)
5637 qemu_opts_foreach(&qemu_drive_opts, drive_enable_snapshot, NULL, 0);
5638 if (qemu_opts_foreach(&qemu_drive_opts, drive_init_func, machine, 1) != 0)
5639 exit(1);
5640
5641 vmstate_register(0, &vmstate_timers ,&timers_state);
5642 register_savevm_live("ram", 0, 3, NULL, ram_save_live, NULL,
5643 ram_load, NULL);
5644
5645 /* Maintain compatibility with multiple stdio monitors */
5646 if (!strcmp(monitor_devices[0],"stdio")) {
5647 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5648 const char *devname = serial_devices[i];
5649 if (devname && !strcmp(devname,"mon:stdio")) {
5650 monitor_devices[0] = NULL;
5651 break;
5652 } else if (devname && !strcmp(devname,"stdio")) {
5653 monitor_devices[0] = NULL;
5654 serial_devices[i] = "mon:stdio";
5655 break;
5656 }
5657 }
5658 for (i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5659 const char *devname = virtio_consoles[i];
5660 if (devname && !strcmp(devname,"mon:stdio")) {
5661 monitor_devices[0] = NULL;
5662 break;
5663 } else if (devname && !strcmp(devname,"stdio")) {
5664 monitor_devices[0] = NULL;
5665 virtio_consoles[i] = "mon:stdio";
5666 break;
5667 }
5668 }
5669 }
5670
5671 if (nb_numa_nodes > 0) {
5672 int i;
5673
5674 if (nb_numa_nodes > smp_cpus) {
5675 nb_numa_nodes = smp_cpus;
5676 }
5677
5678 /* If no memory size if given for any node, assume the default case
5679 * and distribute the available memory equally across all nodes
5680 */
5681 for (i = 0; i < nb_numa_nodes; i++) {
5682 if (node_mem[i] != 0)
5683 break;
5684 }
5685 if (i == nb_numa_nodes) {
5686 uint64_t usedmem = 0;
5687
5688 /* On Linux, the each node's border has to be 8MB aligned,
5689 * the final node gets the rest.
5690 */
5691 for (i = 0; i < nb_numa_nodes - 1; i++) {
5692 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5693 usedmem += node_mem[i];
5694 }
5695 node_mem[i] = ram_size - usedmem;
5696 }
5697
5698 for (i = 0; i < nb_numa_nodes; i++) {
5699 if (node_cpumask[i] != 0)
5700 break;
5701 }
5702 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5703 * must cope with this anyway, because there are BIOSes out there in
5704 * real machines which also use this scheme.
5705 */
5706 if (i == nb_numa_nodes) {
5707 for (i = 0; i < smp_cpus; i++) {
5708 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5709 }
5710 }
5711 }
5712
5713 for (i = 0; i < MAX_MONITOR_DEVICES; i++) {
5714 const char *devname = monitor_devices[i];
5715 if (devname && strcmp(devname, "none")) {
5716 char label[32];
5717 if (i == 0) {
5718 snprintf(label, sizeof(label), "monitor");
5719 } else {
5720 snprintf(label, sizeof(label), "monitor%d", i);
5721 }
5722 monitor_hds[i] = qemu_chr_open(label, devname, NULL);
5723 if (!monitor_hds[i]) {
5724 fprintf(stderr, "qemu: could not open monitor device '%s'\n",
5725 devname);
5726 exit(1);
5727 }
5728 }
5729 }
5730
5731 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5732 const char *devname = serial_devices[i];
5733 if (devname && strcmp(devname, "none")) {
5734 char label[32];
5735 snprintf(label, sizeof(label), "serial%d", i);
5736 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5737 if (!serial_hds[i]) {
5738 fprintf(stderr, "qemu: could not open serial device '%s': %s\n",
5739 devname, strerror(errno));
5740 exit(1);
5741 }
5742 }
5743 }
5744
5745 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5746 const char *devname = parallel_devices[i];
5747 if (devname && strcmp(devname, "none")) {
5748 char label[32];
5749 snprintf(label, sizeof(label), "parallel%d", i);
5750 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5751 if (!parallel_hds[i]) {
5752 fprintf(stderr, "qemu: could not open parallel device '%s': %s\n",
5753 devname, strerror(errno));
5754 exit(1);
5755 }
5756 }
5757 }
5758
5759 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5760 const char *devname = virtio_consoles[i];
5761 if (devname && strcmp(devname, "none")) {
5762 char label[32];
5763 snprintf(label, sizeof(label), "virtcon%d", i);
5764 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5765 if (!virtcon_hds[i]) {
5766 fprintf(stderr, "qemu: could not open virtio console '%s': %s\n",
5767 devname, strerror(errno));
5768 exit(1);
5769 }
5770 }
5771 }
5772
5773 module_call_init(MODULE_INIT_DEVICE);
5774
5775 if (watchdog) {
5776 i = select_watchdog(watchdog);
5777 if (i > 0)
5778 exit (i == 1 ? 1 : 0);
5779 }
5780
5781 if (machine->compat_props) {
5782 qdev_prop_register_global_list(machine->compat_props);
5783 }
5784 machine->init(ram_size, boot_devices,
5785 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5786
5787
5788 #ifndef _WIN32
5789 /* must be after terminal init, SDL library changes signal handlers */
5790 sighandler_setup();
5791 #endif
5792
5793 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5794 for (i = 0; i < nb_numa_nodes; i++) {
5795 if (node_cpumask[i] & (1 << env->cpu_index)) {
5796 env->numa_node = i;
5797 }
5798 }
5799 }
5800
5801 current_machine = machine;
5802
5803 /* init USB devices */
5804 if (usb_enabled) {
5805 if (foreach_device_config(DEV_USB, usb_parse) < 0)
5806 exit(1);
5807 }
5808
5809 /* init generic devices */
5810 if (qemu_opts_foreach(&qemu_device_opts, device_init_func, NULL, 1) != 0)
5811 exit(1);
5812
5813 if (!display_state)
5814 dumb_display_init();
5815 /* just use the first displaystate for the moment */
5816 ds = display_state;
5817
5818 if (display_type == DT_DEFAULT) {
5819 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5820 display_type = DT_SDL;
5821 #else
5822 display_type = DT_VNC;
5823 vnc_display = "localhost:0,to=99";
5824 show_vnc_port = 1;
5825 #endif
5826 }
5827
5828
5829 switch (display_type) {
5830 case DT_NOGRAPHIC:
5831 break;
5832 #if defined(CONFIG_CURSES)
5833 case DT_CURSES:
5834 curses_display_init(ds, full_screen);
5835 break;
5836 #endif
5837 #if defined(CONFIG_SDL)
5838 case DT_SDL:
5839 sdl_display_init(ds, full_screen, no_frame);
5840 break;
5841 #elif defined(CONFIG_COCOA)
5842 case DT_SDL:
5843 cocoa_display_init(ds, full_screen);
5844 break;
5845 #endif
5846 case DT_VNC:
5847 vnc_display_init(ds);
5848 if (vnc_display_open(ds, vnc_display) < 0)
5849 exit(1);
5850
5851 if (show_vnc_port) {
5852 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
5853 }
5854 break;
5855 default:
5856 break;
5857 }
5858 dpy_resize(ds);
5859
5860 dcl = ds->listeners;
5861 while (dcl != NULL) {
5862 if (dcl->dpy_refresh != NULL) {
5863 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5864 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5865 }
5866 dcl = dcl->next;
5867 }
5868
5869 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
5870 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5871 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5872 }
5873
5874 text_consoles_set_display(display_state);
5875
5876 for (i = 0; i < MAX_MONITOR_DEVICES; i++) {
5877 if (monitor_devices[i] && monitor_hds[i]) {
5878 monitor_init(monitor_hds[i], monitor_flags[i]);
5879 }
5880 }
5881
5882 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5883 const char *devname = serial_devices[i];
5884 if (devname && strcmp(devname, "none")) {
5885 if (strstart(devname, "vc", 0))
5886 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5887 }
5888 }
5889
5890 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5891 const char *devname = parallel_devices[i];
5892 if (devname && strcmp(devname, "none")) {
5893 if (strstart(devname, "vc", 0))
5894 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5895 }
5896 }
5897
5898 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5899 const char *devname = virtio_consoles[i];
5900 if (virtcon_hds[i] && devname) {
5901 if (strstart(devname, "vc", 0))
5902 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
5903 }
5904 }
5905
5906 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
5907 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
5908 gdbstub_dev);
5909 exit(1);
5910 }
5911
5912 qdev_machine_creation_done();
5913
5914 rom_load_all();
5915
5916 qemu_system_reset();
5917 if (loadvm) {
5918 if (load_vmstate(cur_mon, loadvm) < 0) {
5919 autostart = 0;
5920 }
5921 }
5922
5923 if (incoming) {
5924 qemu_start_incoming_migration(incoming);
5925 } else if (autostart) {
5926 vm_start();
5927 }
5928
5929 #ifndef _WIN32
5930 if (daemonize) {
5931 uint8_t status = 0;
5932 ssize_t len;
5933
5934 again1:
5935 len = write(fds[1], &status, 1);
5936 if (len == -1 && (errno == EINTR))
5937 goto again1;
5938
5939 if (len != 1)
5940 exit(1);
5941
5942 chdir("/");
5943 TFR(fd = qemu_open("/dev/null", O_RDWR));
5944 if (fd == -1)
5945 exit(1);
5946 }
5947
5948 if (run_as) {
5949 pwd = getpwnam(run_as);
5950 if (!pwd) {
5951 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
5952 exit(1);
5953 }
5954 }
5955
5956 if (chroot_dir) {
5957 if (chroot(chroot_dir) < 0) {
5958 fprintf(stderr, "chroot failed\n");
5959 exit(1);
5960 }
5961 chdir("/");
5962 }
5963
5964 if (run_as) {
5965 if (setgid(pwd->pw_gid) < 0) {
5966 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
5967 exit(1);
5968 }
5969 if (setuid(pwd->pw_uid) < 0) {
5970 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
5971 exit(1);
5972 }
5973 if (setuid(0) != -1) {
5974 fprintf(stderr, "Dropping privileges failed\n");
5975 exit(1);
5976 }
5977 }
5978
5979 if (daemonize) {
5980 dup2(fd, 0);
5981 dup2(fd, 1);
5982 dup2(fd, 2);
5983
5984 close(fd);
5985 }
5986 #endif
5987
5988 main_loop();
5989 quit_timers();
5990 net_cleanup();
5991
5992 return 0;
5993 }