]> git.proxmox.com Git - mirror_qemu.git/blob - vl.c
Close file descriptors when execing network tap setup script, by
[mirror_qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2007 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "vl.h"
25
26 #include <unistd.h>
27 #include <fcntl.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <errno.h>
31 #include <sys/time.h>
32 #include <zlib.h>
33
34 #ifndef _WIN32
35 #include <sys/times.h>
36 #include <sys/wait.h>
37 #include <termios.h>
38 #include <sys/poll.h>
39 #include <sys/mman.h>
40 #include <sys/ioctl.h>
41 #include <sys/socket.h>
42 #include <netinet/in.h>
43 #include <dirent.h>
44 #include <netdb.h>
45 #ifdef _BSD
46 #include <sys/stat.h>
47 #ifndef __APPLE__
48 #include <libutil.h>
49 #endif
50 #else
51 #ifndef __sun__
52 #include <linux/if.h>
53 #include <linux/if_tun.h>
54 #include <pty.h>
55 #include <malloc.h>
56 #include <linux/rtc.h>
57 #include <linux/ppdev.h>
58 #include <linux/parport.h>
59 #else
60 #include <sys/stat.h>
61 #include <sys/ethernet.h>
62 #include <sys/sockio.h>
63 #include <arpa/inet.h>
64 #include <netinet/arp.h>
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 #include <netinet/ip_icmp.h> // must come after ip.h
69 #include <netinet/udp.h>
70 #include <netinet/tcp.h>
71 #include <net/if.h>
72 #include <syslog.h>
73 #include <stropts.h>
74 #endif
75 #endif
76 #endif
77
78 #if defined(CONFIG_SLIRP)
79 #include "libslirp.h"
80 #endif
81
82 #ifdef _WIN32
83 #include <malloc.h>
84 #include <sys/timeb.h>
85 #include <windows.h>
86 #define getopt_long_only getopt_long
87 #define memalign(align, size) malloc(size)
88 #endif
89
90 #include "qemu_socket.h"
91
92 #ifdef CONFIG_SDL
93 #ifdef __APPLE__
94 #include <SDL/SDL.h>
95 #endif
96 #endif /* CONFIG_SDL */
97
98 #ifdef CONFIG_COCOA
99 #undef main
100 #define main qemu_main
101 #endif /* CONFIG_COCOA */
102
103 #include "disas.h"
104
105 #include "exec-all.h"
106
107 #define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
108 #ifdef __sun__
109 #define SMBD_COMMAND "/usr/sfw/sbin/smbd"
110 #else
111 #define SMBD_COMMAND "/usr/sbin/smbd"
112 #endif
113
114 //#define DEBUG_UNUSED_IOPORT
115 //#define DEBUG_IOPORT
116
117 #define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
118
119 #ifdef TARGET_PPC
120 #define DEFAULT_RAM_SIZE 144
121 #else
122 #define DEFAULT_RAM_SIZE 128
123 #endif
124 /* in ms */
125 #define GUI_REFRESH_INTERVAL 30
126
127 /* Max number of USB devices that can be specified on the commandline. */
128 #define MAX_USB_CMDLINE 8
129
130 /* XXX: use a two level table to limit memory usage */
131 #define MAX_IOPORTS 65536
132
133 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
134 char phys_ram_file[1024];
135 void *ioport_opaque[MAX_IOPORTS];
136 IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
137 IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
138 /* Note: bs_table[MAX_DISKS] is a dummy block driver if none available
139 to store the VM snapshots */
140 BlockDriverState *bs_table[MAX_DISKS + 1], *fd_table[MAX_FD];
141 /* point to the block driver where the snapshots are managed */
142 BlockDriverState *bs_snapshots;
143 int vga_ram_size;
144 static DisplayState display_state;
145 int nographic;
146 const char* keyboard_layout = NULL;
147 int64_t ticks_per_sec;
148 int boot_device = 'c';
149 int ram_size;
150 int pit_min_timer_count = 0;
151 int nb_nics;
152 NICInfo nd_table[MAX_NICS];
153 QEMUTimer *gui_timer;
154 int vm_running;
155 int rtc_utc = 1;
156 int cirrus_vga_enabled = 1;
157 #ifdef TARGET_SPARC
158 int graphic_width = 1024;
159 int graphic_height = 768;
160 #else
161 int graphic_width = 800;
162 int graphic_height = 600;
163 #endif
164 int graphic_depth = 15;
165 int full_screen = 0;
166 int no_frame = 0;
167 int no_quit = 0;
168 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
169 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
170 #ifdef TARGET_I386
171 int win2k_install_hack = 0;
172 #endif
173 int usb_enabled = 0;
174 static VLANState *first_vlan;
175 int smp_cpus = 1;
176 const char *vnc_display;
177 #if defined(TARGET_SPARC)
178 #define MAX_CPUS 16
179 #elif defined(TARGET_I386)
180 #define MAX_CPUS 255
181 #else
182 #define MAX_CPUS 1
183 #endif
184 int acpi_enabled = 1;
185 int fd_bootchk = 1;
186 int no_reboot = 0;
187 int daemonize = 0;
188 const char *option_rom[MAX_OPTION_ROMS];
189 int nb_option_roms;
190 int semihosting_enabled = 0;
191 int autostart = 1;
192 const char *qemu_name;
193
194 /***********************************************************/
195 /* x86 ISA bus support */
196
197 target_phys_addr_t isa_mem_base = 0;
198 PicState2 *isa_pic;
199
200 uint32_t default_ioport_readb(void *opaque, uint32_t address)
201 {
202 #ifdef DEBUG_UNUSED_IOPORT
203 fprintf(stderr, "unused inb: port=0x%04x\n", address);
204 #endif
205 return 0xff;
206 }
207
208 void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
209 {
210 #ifdef DEBUG_UNUSED_IOPORT
211 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
212 #endif
213 }
214
215 /* default is to make two byte accesses */
216 uint32_t default_ioport_readw(void *opaque, uint32_t address)
217 {
218 uint32_t data;
219 data = ioport_read_table[0][address](ioport_opaque[address], address);
220 address = (address + 1) & (MAX_IOPORTS - 1);
221 data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
222 return data;
223 }
224
225 void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
226 {
227 ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
228 address = (address + 1) & (MAX_IOPORTS - 1);
229 ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
230 }
231
232 uint32_t default_ioport_readl(void *opaque, uint32_t address)
233 {
234 #ifdef DEBUG_UNUSED_IOPORT
235 fprintf(stderr, "unused inl: port=0x%04x\n", address);
236 #endif
237 return 0xffffffff;
238 }
239
240 void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
241 {
242 #ifdef DEBUG_UNUSED_IOPORT
243 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
244 #endif
245 }
246
247 void init_ioports(void)
248 {
249 int i;
250
251 for(i = 0; i < MAX_IOPORTS; i++) {
252 ioport_read_table[0][i] = default_ioport_readb;
253 ioport_write_table[0][i] = default_ioport_writeb;
254 ioport_read_table[1][i] = default_ioport_readw;
255 ioport_write_table[1][i] = default_ioport_writew;
256 ioport_read_table[2][i] = default_ioport_readl;
257 ioport_write_table[2][i] = default_ioport_writel;
258 }
259 }
260
261 /* size is the word size in byte */
262 int register_ioport_read(int start, int length, int size,
263 IOPortReadFunc *func, void *opaque)
264 {
265 int i, bsize;
266
267 if (size == 1) {
268 bsize = 0;
269 } else if (size == 2) {
270 bsize = 1;
271 } else if (size == 4) {
272 bsize = 2;
273 } else {
274 hw_error("register_ioport_read: invalid size");
275 return -1;
276 }
277 for(i = start; i < start + length; i += size) {
278 ioport_read_table[bsize][i] = func;
279 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
280 hw_error("register_ioport_read: invalid opaque");
281 ioport_opaque[i] = opaque;
282 }
283 return 0;
284 }
285
286 /* size is the word size in byte */
287 int register_ioport_write(int start, int length, int size,
288 IOPortWriteFunc *func, void *opaque)
289 {
290 int i, bsize;
291
292 if (size == 1) {
293 bsize = 0;
294 } else if (size == 2) {
295 bsize = 1;
296 } else if (size == 4) {
297 bsize = 2;
298 } else {
299 hw_error("register_ioport_write: invalid size");
300 return -1;
301 }
302 for(i = start; i < start + length; i += size) {
303 ioport_write_table[bsize][i] = func;
304 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
305 hw_error("register_ioport_write: invalid opaque");
306 ioport_opaque[i] = opaque;
307 }
308 return 0;
309 }
310
311 void isa_unassign_ioport(int start, int length)
312 {
313 int i;
314
315 for(i = start; i < start + length; i++) {
316 ioport_read_table[0][i] = default_ioport_readb;
317 ioport_read_table[1][i] = default_ioport_readw;
318 ioport_read_table[2][i] = default_ioport_readl;
319
320 ioport_write_table[0][i] = default_ioport_writeb;
321 ioport_write_table[1][i] = default_ioport_writew;
322 ioport_write_table[2][i] = default_ioport_writel;
323 }
324 }
325
326 /***********************************************************/
327
328 void cpu_outb(CPUState *env, int addr, int val)
329 {
330 #ifdef DEBUG_IOPORT
331 if (loglevel & CPU_LOG_IOPORT)
332 fprintf(logfile, "outb: %04x %02x\n", addr, val);
333 #endif
334 ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
335 #ifdef USE_KQEMU
336 if (env)
337 env->last_io_time = cpu_get_time_fast();
338 #endif
339 }
340
341 void cpu_outw(CPUState *env, int addr, int val)
342 {
343 #ifdef DEBUG_IOPORT
344 if (loglevel & CPU_LOG_IOPORT)
345 fprintf(logfile, "outw: %04x %04x\n", addr, val);
346 #endif
347 ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
348 #ifdef USE_KQEMU
349 if (env)
350 env->last_io_time = cpu_get_time_fast();
351 #endif
352 }
353
354 void cpu_outl(CPUState *env, int addr, int val)
355 {
356 #ifdef DEBUG_IOPORT
357 if (loglevel & CPU_LOG_IOPORT)
358 fprintf(logfile, "outl: %04x %08x\n", addr, val);
359 #endif
360 ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
361 #ifdef USE_KQEMU
362 if (env)
363 env->last_io_time = cpu_get_time_fast();
364 #endif
365 }
366
367 int cpu_inb(CPUState *env, int addr)
368 {
369 int val;
370 val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
371 #ifdef DEBUG_IOPORT
372 if (loglevel & CPU_LOG_IOPORT)
373 fprintf(logfile, "inb : %04x %02x\n", addr, val);
374 #endif
375 #ifdef USE_KQEMU
376 if (env)
377 env->last_io_time = cpu_get_time_fast();
378 #endif
379 return val;
380 }
381
382 int cpu_inw(CPUState *env, int addr)
383 {
384 int val;
385 val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
386 #ifdef DEBUG_IOPORT
387 if (loglevel & CPU_LOG_IOPORT)
388 fprintf(logfile, "inw : %04x %04x\n", addr, val);
389 #endif
390 #ifdef USE_KQEMU
391 if (env)
392 env->last_io_time = cpu_get_time_fast();
393 #endif
394 return val;
395 }
396
397 int cpu_inl(CPUState *env, int addr)
398 {
399 int val;
400 val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
401 #ifdef DEBUG_IOPORT
402 if (loglevel & CPU_LOG_IOPORT)
403 fprintf(logfile, "inl : %04x %08x\n", addr, val);
404 #endif
405 #ifdef USE_KQEMU
406 if (env)
407 env->last_io_time = cpu_get_time_fast();
408 #endif
409 return val;
410 }
411
412 /***********************************************************/
413 void hw_error(const char *fmt, ...)
414 {
415 va_list ap;
416 CPUState *env;
417
418 va_start(ap, fmt);
419 fprintf(stderr, "qemu: hardware error: ");
420 vfprintf(stderr, fmt, ap);
421 fprintf(stderr, "\n");
422 for(env = first_cpu; env != NULL; env = env->next_cpu) {
423 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
424 #ifdef TARGET_I386
425 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
426 #else
427 cpu_dump_state(env, stderr, fprintf, 0);
428 #endif
429 }
430 va_end(ap);
431 abort();
432 }
433
434 /***********************************************************/
435 /* keyboard/mouse */
436
437 static QEMUPutKBDEvent *qemu_put_kbd_event;
438 static void *qemu_put_kbd_event_opaque;
439 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
440 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
441
442 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
443 {
444 qemu_put_kbd_event_opaque = opaque;
445 qemu_put_kbd_event = func;
446 }
447
448 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
449 void *opaque, int absolute,
450 const char *name)
451 {
452 QEMUPutMouseEntry *s, *cursor;
453
454 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
455 if (!s)
456 return NULL;
457
458 s->qemu_put_mouse_event = func;
459 s->qemu_put_mouse_event_opaque = opaque;
460 s->qemu_put_mouse_event_absolute = absolute;
461 s->qemu_put_mouse_event_name = qemu_strdup(name);
462 s->next = NULL;
463
464 if (!qemu_put_mouse_event_head) {
465 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
466 return s;
467 }
468
469 cursor = qemu_put_mouse_event_head;
470 while (cursor->next != NULL)
471 cursor = cursor->next;
472
473 cursor->next = s;
474 qemu_put_mouse_event_current = s;
475
476 return s;
477 }
478
479 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
480 {
481 QEMUPutMouseEntry *prev = NULL, *cursor;
482
483 if (!qemu_put_mouse_event_head || entry == NULL)
484 return;
485
486 cursor = qemu_put_mouse_event_head;
487 while (cursor != NULL && cursor != entry) {
488 prev = cursor;
489 cursor = cursor->next;
490 }
491
492 if (cursor == NULL) // does not exist or list empty
493 return;
494 else if (prev == NULL) { // entry is head
495 qemu_put_mouse_event_head = cursor->next;
496 if (qemu_put_mouse_event_current == entry)
497 qemu_put_mouse_event_current = cursor->next;
498 qemu_free(entry->qemu_put_mouse_event_name);
499 qemu_free(entry);
500 return;
501 }
502
503 prev->next = entry->next;
504
505 if (qemu_put_mouse_event_current == entry)
506 qemu_put_mouse_event_current = prev;
507
508 qemu_free(entry->qemu_put_mouse_event_name);
509 qemu_free(entry);
510 }
511
512 void kbd_put_keycode(int keycode)
513 {
514 if (qemu_put_kbd_event) {
515 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
516 }
517 }
518
519 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
520 {
521 QEMUPutMouseEvent *mouse_event;
522 void *mouse_event_opaque;
523
524 if (!qemu_put_mouse_event_current) {
525 return;
526 }
527
528 mouse_event =
529 qemu_put_mouse_event_current->qemu_put_mouse_event;
530 mouse_event_opaque =
531 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
532
533 if (mouse_event) {
534 mouse_event(mouse_event_opaque, dx, dy, dz, buttons_state);
535 }
536 }
537
538 int kbd_mouse_is_absolute(void)
539 {
540 if (!qemu_put_mouse_event_current)
541 return 0;
542
543 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
544 }
545
546 void do_info_mice(void)
547 {
548 QEMUPutMouseEntry *cursor;
549 int index = 0;
550
551 if (!qemu_put_mouse_event_head) {
552 term_printf("No mouse devices connected\n");
553 return;
554 }
555
556 term_printf("Mouse devices available:\n");
557 cursor = qemu_put_mouse_event_head;
558 while (cursor != NULL) {
559 term_printf("%c Mouse #%d: %s\n",
560 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
561 index, cursor->qemu_put_mouse_event_name);
562 index++;
563 cursor = cursor->next;
564 }
565 }
566
567 void do_mouse_set(int index)
568 {
569 QEMUPutMouseEntry *cursor;
570 int i = 0;
571
572 if (!qemu_put_mouse_event_head) {
573 term_printf("No mouse devices connected\n");
574 return;
575 }
576
577 cursor = qemu_put_mouse_event_head;
578 while (cursor != NULL && index != i) {
579 i++;
580 cursor = cursor->next;
581 }
582
583 if (cursor != NULL)
584 qemu_put_mouse_event_current = cursor;
585 else
586 term_printf("Mouse at given index not found\n");
587 }
588
589 /* compute with 96 bit intermediate result: (a*b)/c */
590 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
591 {
592 union {
593 uint64_t ll;
594 struct {
595 #ifdef WORDS_BIGENDIAN
596 uint32_t high, low;
597 #else
598 uint32_t low, high;
599 #endif
600 } l;
601 } u, res;
602 uint64_t rl, rh;
603
604 u.ll = a;
605 rl = (uint64_t)u.l.low * (uint64_t)b;
606 rh = (uint64_t)u.l.high * (uint64_t)b;
607 rh += (rl >> 32);
608 res.l.high = rh / c;
609 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
610 return res.ll;
611 }
612
613 /***********************************************************/
614 /* real time host monotonic timer */
615
616 #define QEMU_TIMER_BASE 1000000000LL
617
618 #ifdef WIN32
619
620 static int64_t clock_freq;
621
622 static void init_get_clock(void)
623 {
624 LARGE_INTEGER freq;
625 int ret;
626 ret = QueryPerformanceFrequency(&freq);
627 if (ret == 0) {
628 fprintf(stderr, "Could not calibrate ticks\n");
629 exit(1);
630 }
631 clock_freq = freq.QuadPart;
632 }
633
634 static int64_t get_clock(void)
635 {
636 LARGE_INTEGER ti;
637 QueryPerformanceCounter(&ti);
638 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
639 }
640
641 #else
642
643 static int use_rt_clock;
644
645 static void init_get_clock(void)
646 {
647 use_rt_clock = 0;
648 #if defined(__linux__)
649 {
650 struct timespec ts;
651 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
652 use_rt_clock = 1;
653 }
654 }
655 #endif
656 }
657
658 static int64_t get_clock(void)
659 {
660 #if defined(__linux__)
661 if (use_rt_clock) {
662 struct timespec ts;
663 clock_gettime(CLOCK_MONOTONIC, &ts);
664 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
665 } else
666 #endif
667 {
668 /* XXX: using gettimeofday leads to problems if the date
669 changes, so it should be avoided. */
670 struct timeval tv;
671 gettimeofday(&tv, NULL);
672 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
673 }
674 }
675
676 #endif
677
678 /***********************************************************/
679 /* guest cycle counter */
680
681 static int64_t cpu_ticks_prev;
682 static int64_t cpu_ticks_offset;
683 static int64_t cpu_clock_offset;
684 static int cpu_ticks_enabled;
685
686 /* return the host CPU cycle counter and handle stop/restart */
687 int64_t cpu_get_ticks(void)
688 {
689 if (!cpu_ticks_enabled) {
690 return cpu_ticks_offset;
691 } else {
692 int64_t ticks;
693 ticks = cpu_get_real_ticks();
694 if (cpu_ticks_prev > ticks) {
695 /* Note: non increasing ticks may happen if the host uses
696 software suspend */
697 cpu_ticks_offset += cpu_ticks_prev - ticks;
698 }
699 cpu_ticks_prev = ticks;
700 return ticks + cpu_ticks_offset;
701 }
702 }
703
704 /* return the host CPU monotonic timer and handle stop/restart */
705 static int64_t cpu_get_clock(void)
706 {
707 int64_t ti;
708 if (!cpu_ticks_enabled) {
709 return cpu_clock_offset;
710 } else {
711 ti = get_clock();
712 return ti + cpu_clock_offset;
713 }
714 }
715
716 /* enable cpu_get_ticks() */
717 void cpu_enable_ticks(void)
718 {
719 if (!cpu_ticks_enabled) {
720 cpu_ticks_offset -= cpu_get_real_ticks();
721 cpu_clock_offset -= get_clock();
722 cpu_ticks_enabled = 1;
723 }
724 }
725
726 /* disable cpu_get_ticks() : the clock is stopped. You must not call
727 cpu_get_ticks() after that. */
728 void cpu_disable_ticks(void)
729 {
730 if (cpu_ticks_enabled) {
731 cpu_ticks_offset = cpu_get_ticks();
732 cpu_clock_offset = cpu_get_clock();
733 cpu_ticks_enabled = 0;
734 }
735 }
736
737 /***********************************************************/
738 /* timers */
739
740 #define QEMU_TIMER_REALTIME 0
741 #define QEMU_TIMER_VIRTUAL 1
742
743 struct QEMUClock {
744 int type;
745 /* XXX: add frequency */
746 };
747
748 struct QEMUTimer {
749 QEMUClock *clock;
750 int64_t expire_time;
751 QEMUTimerCB *cb;
752 void *opaque;
753 struct QEMUTimer *next;
754 };
755
756 QEMUClock *rt_clock;
757 QEMUClock *vm_clock;
758
759 static QEMUTimer *active_timers[2];
760 #ifdef _WIN32
761 static MMRESULT timerID;
762 static HANDLE host_alarm = NULL;
763 static unsigned int period = 1;
764 #else
765 /* frequency of the times() clock tick */
766 static int timer_freq;
767 #endif
768
769 QEMUClock *qemu_new_clock(int type)
770 {
771 QEMUClock *clock;
772 clock = qemu_mallocz(sizeof(QEMUClock));
773 if (!clock)
774 return NULL;
775 clock->type = type;
776 return clock;
777 }
778
779 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
780 {
781 QEMUTimer *ts;
782
783 ts = qemu_mallocz(sizeof(QEMUTimer));
784 ts->clock = clock;
785 ts->cb = cb;
786 ts->opaque = opaque;
787 return ts;
788 }
789
790 void qemu_free_timer(QEMUTimer *ts)
791 {
792 qemu_free(ts);
793 }
794
795 /* stop a timer, but do not dealloc it */
796 void qemu_del_timer(QEMUTimer *ts)
797 {
798 QEMUTimer **pt, *t;
799
800 /* NOTE: this code must be signal safe because
801 qemu_timer_expired() can be called from a signal. */
802 pt = &active_timers[ts->clock->type];
803 for(;;) {
804 t = *pt;
805 if (!t)
806 break;
807 if (t == ts) {
808 *pt = t->next;
809 break;
810 }
811 pt = &t->next;
812 }
813 }
814
815 /* modify the current timer so that it will be fired when current_time
816 >= expire_time. The corresponding callback will be called. */
817 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
818 {
819 QEMUTimer **pt, *t;
820
821 qemu_del_timer(ts);
822
823 /* add the timer in the sorted list */
824 /* NOTE: this code must be signal safe because
825 qemu_timer_expired() can be called from a signal. */
826 pt = &active_timers[ts->clock->type];
827 for(;;) {
828 t = *pt;
829 if (!t)
830 break;
831 if (t->expire_time > expire_time)
832 break;
833 pt = &t->next;
834 }
835 ts->expire_time = expire_time;
836 ts->next = *pt;
837 *pt = ts;
838 }
839
840 int qemu_timer_pending(QEMUTimer *ts)
841 {
842 QEMUTimer *t;
843 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
844 if (t == ts)
845 return 1;
846 }
847 return 0;
848 }
849
850 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
851 {
852 if (!timer_head)
853 return 0;
854 return (timer_head->expire_time <= current_time);
855 }
856
857 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
858 {
859 QEMUTimer *ts;
860
861 for(;;) {
862 ts = *ptimer_head;
863 if (!ts || ts->expire_time > current_time)
864 break;
865 /* remove timer from the list before calling the callback */
866 *ptimer_head = ts->next;
867 ts->next = NULL;
868
869 /* run the callback (the timer list can be modified) */
870 ts->cb(ts->opaque);
871 }
872 }
873
874 int64_t qemu_get_clock(QEMUClock *clock)
875 {
876 switch(clock->type) {
877 case QEMU_TIMER_REALTIME:
878 return get_clock() / 1000000;
879 default:
880 case QEMU_TIMER_VIRTUAL:
881 return cpu_get_clock();
882 }
883 }
884
885 static void init_timers(void)
886 {
887 init_get_clock();
888 ticks_per_sec = QEMU_TIMER_BASE;
889 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
890 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
891 }
892
893 /* save a timer */
894 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
895 {
896 uint64_t expire_time;
897
898 if (qemu_timer_pending(ts)) {
899 expire_time = ts->expire_time;
900 } else {
901 expire_time = -1;
902 }
903 qemu_put_be64(f, expire_time);
904 }
905
906 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
907 {
908 uint64_t expire_time;
909
910 expire_time = qemu_get_be64(f);
911 if (expire_time != -1) {
912 qemu_mod_timer(ts, expire_time);
913 } else {
914 qemu_del_timer(ts);
915 }
916 }
917
918 static void timer_save(QEMUFile *f, void *opaque)
919 {
920 if (cpu_ticks_enabled) {
921 hw_error("cannot save state if virtual timers are running");
922 }
923 qemu_put_be64s(f, &cpu_ticks_offset);
924 qemu_put_be64s(f, &ticks_per_sec);
925 qemu_put_be64s(f, &cpu_clock_offset);
926 }
927
928 static int timer_load(QEMUFile *f, void *opaque, int version_id)
929 {
930 if (version_id != 1 && version_id != 2)
931 return -EINVAL;
932 if (cpu_ticks_enabled) {
933 return -EINVAL;
934 }
935 qemu_get_be64s(f, &cpu_ticks_offset);
936 qemu_get_be64s(f, &ticks_per_sec);
937 if (version_id == 2) {
938 qemu_get_be64s(f, &cpu_clock_offset);
939 }
940 return 0;
941 }
942
943 #ifdef _WIN32
944 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
945 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
946 #else
947 static void host_alarm_handler(int host_signum)
948 #endif
949 {
950 #if 0
951 #define DISP_FREQ 1000
952 {
953 static int64_t delta_min = INT64_MAX;
954 static int64_t delta_max, delta_cum, last_clock, delta, ti;
955 static int count;
956 ti = qemu_get_clock(vm_clock);
957 if (last_clock != 0) {
958 delta = ti - last_clock;
959 if (delta < delta_min)
960 delta_min = delta;
961 if (delta > delta_max)
962 delta_max = delta;
963 delta_cum += delta;
964 if (++count == DISP_FREQ) {
965 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
966 muldiv64(delta_min, 1000000, ticks_per_sec),
967 muldiv64(delta_max, 1000000, ticks_per_sec),
968 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
969 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
970 count = 0;
971 delta_min = INT64_MAX;
972 delta_max = 0;
973 delta_cum = 0;
974 }
975 }
976 last_clock = ti;
977 }
978 #endif
979 if (qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
980 qemu_get_clock(vm_clock)) ||
981 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
982 qemu_get_clock(rt_clock))) {
983 #ifdef _WIN32
984 SetEvent(host_alarm);
985 #endif
986 CPUState *env = cpu_single_env;
987 if (env) {
988 /* stop the currently executing cpu because a timer occured */
989 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
990 #ifdef USE_KQEMU
991 if (env->kqemu_enabled) {
992 kqemu_cpu_interrupt(env);
993 }
994 #endif
995 }
996 }
997 }
998
999 #ifndef _WIN32
1000
1001 #if defined(__linux__)
1002
1003 #define RTC_FREQ 1024
1004
1005 static int rtc_fd;
1006
1007 static int start_rtc_timer(void)
1008 {
1009 rtc_fd = open("/dev/rtc", O_RDONLY);
1010 if (rtc_fd < 0)
1011 return -1;
1012 if (ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1013 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1014 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1015 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1016 goto fail;
1017 }
1018 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1019 fail:
1020 close(rtc_fd);
1021 return -1;
1022 }
1023 pit_min_timer_count = PIT_FREQ / RTC_FREQ;
1024 return 0;
1025 }
1026
1027 #else
1028
1029 static int start_rtc_timer(void)
1030 {
1031 return -1;
1032 }
1033
1034 #endif /* !defined(__linux__) */
1035
1036 #endif /* !defined(_WIN32) */
1037
1038 static void init_timer_alarm(void)
1039 {
1040 #ifdef _WIN32
1041 {
1042 int count=0;
1043 TIMECAPS tc;
1044
1045 ZeroMemory(&tc, sizeof(TIMECAPS));
1046 timeGetDevCaps(&tc, sizeof(TIMECAPS));
1047 if (period < tc.wPeriodMin)
1048 period = tc.wPeriodMin;
1049 timeBeginPeriod(period);
1050 timerID = timeSetEvent(1, // interval (ms)
1051 period, // resolution
1052 host_alarm_handler, // function
1053 (DWORD)&count, // user parameter
1054 TIME_PERIODIC | TIME_CALLBACK_FUNCTION);
1055 if( !timerID ) {
1056 perror("failed timer alarm");
1057 exit(1);
1058 }
1059 host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1060 if (!host_alarm) {
1061 perror("failed CreateEvent");
1062 exit(1);
1063 }
1064 qemu_add_wait_object(host_alarm, NULL, NULL);
1065 }
1066 pit_min_timer_count = ((uint64_t)10000 * PIT_FREQ) / 1000000;
1067 #else
1068 {
1069 struct sigaction act;
1070 struct itimerval itv;
1071
1072 /* get times() syscall frequency */
1073 timer_freq = sysconf(_SC_CLK_TCK);
1074
1075 /* timer signal */
1076 sigfillset(&act.sa_mask);
1077 act.sa_flags = 0;
1078 #if defined (TARGET_I386) && defined(USE_CODE_COPY)
1079 act.sa_flags |= SA_ONSTACK;
1080 #endif
1081 act.sa_handler = host_alarm_handler;
1082 sigaction(SIGALRM, &act, NULL);
1083
1084 itv.it_interval.tv_sec = 0;
1085 itv.it_interval.tv_usec = 999; /* for i386 kernel 2.6 to get 1 ms */
1086 itv.it_value.tv_sec = 0;
1087 itv.it_value.tv_usec = 10 * 1000;
1088 setitimer(ITIMER_REAL, &itv, NULL);
1089 /* we probe the tick duration of the kernel to inform the user if
1090 the emulated kernel requested a too high timer frequency */
1091 getitimer(ITIMER_REAL, &itv);
1092
1093 #if defined(__linux__)
1094 /* XXX: force /dev/rtc usage because even 2.6 kernels may not
1095 have timers with 1 ms resolution. The correct solution will
1096 be to use the POSIX real time timers available in recent
1097 2.6 kernels */
1098 if (itv.it_interval.tv_usec > 1000 || 1) {
1099 /* try to use /dev/rtc to have a faster timer */
1100 if (start_rtc_timer() < 0)
1101 goto use_itimer;
1102 /* disable itimer */
1103 itv.it_interval.tv_sec = 0;
1104 itv.it_interval.tv_usec = 0;
1105 itv.it_value.tv_sec = 0;
1106 itv.it_value.tv_usec = 0;
1107 setitimer(ITIMER_REAL, &itv, NULL);
1108
1109 /* use the RTC */
1110 sigaction(SIGIO, &act, NULL);
1111 fcntl(rtc_fd, F_SETFL, O_ASYNC);
1112 fcntl(rtc_fd, F_SETOWN, getpid());
1113 } else
1114 #endif /* defined(__linux__) */
1115 {
1116 use_itimer:
1117 pit_min_timer_count = ((uint64_t)itv.it_interval.tv_usec *
1118 PIT_FREQ) / 1000000;
1119 }
1120 }
1121 #endif
1122 }
1123
1124 void quit_timers(void)
1125 {
1126 #ifdef _WIN32
1127 timeKillEvent(timerID);
1128 timeEndPeriod(period);
1129 if (host_alarm) {
1130 CloseHandle(host_alarm);
1131 host_alarm = NULL;
1132 }
1133 #endif
1134 }
1135
1136 /***********************************************************/
1137 /* character device */
1138
1139 static void qemu_chr_event(CharDriverState *s, int event)
1140 {
1141 if (!s->chr_event)
1142 return;
1143 s->chr_event(s->handler_opaque, event);
1144 }
1145
1146 static void qemu_chr_reset_bh(void *opaque)
1147 {
1148 CharDriverState *s = opaque;
1149 qemu_chr_event(s, CHR_EVENT_RESET);
1150 qemu_bh_delete(s->bh);
1151 s->bh = NULL;
1152 }
1153
1154 void qemu_chr_reset(CharDriverState *s)
1155 {
1156 if (s->bh == NULL) {
1157 s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1158 qemu_bh_schedule(s->bh);
1159 }
1160 }
1161
1162 int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1163 {
1164 return s->chr_write(s, buf, len);
1165 }
1166
1167 int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1168 {
1169 if (!s->chr_ioctl)
1170 return -ENOTSUP;
1171 return s->chr_ioctl(s, cmd, arg);
1172 }
1173
1174 int qemu_chr_can_read(CharDriverState *s)
1175 {
1176 if (!s->chr_can_read)
1177 return 0;
1178 return s->chr_can_read(s->handler_opaque);
1179 }
1180
1181 void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1182 {
1183 s->chr_read(s->handler_opaque, buf, len);
1184 }
1185
1186
1187 void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1188 {
1189 char buf[4096];
1190 va_list ap;
1191 va_start(ap, fmt);
1192 vsnprintf(buf, sizeof(buf), fmt, ap);
1193 qemu_chr_write(s, buf, strlen(buf));
1194 va_end(ap);
1195 }
1196
1197 void qemu_chr_send_event(CharDriverState *s, int event)
1198 {
1199 if (s->chr_send_event)
1200 s->chr_send_event(s, event);
1201 }
1202
1203 void qemu_chr_add_handlers(CharDriverState *s,
1204 IOCanRWHandler *fd_can_read,
1205 IOReadHandler *fd_read,
1206 IOEventHandler *fd_event,
1207 void *opaque)
1208 {
1209 s->chr_can_read = fd_can_read;
1210 s->chr_read = fd_read;
1211 s->chr_event = fd_event;
1212 s->handler_opaque = opaque;
1213 if (s->chr_update_read_handler)
1214 s->chr_update_read_handler(s);
1215 }
1216
1217 static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1218 {
1219 return len;
1220 }
1221
1222 static CharDriverState *qemu_chr_open_null(void)
1223 {
1224 CharDriverState *chr;
1225
1226 chr = qemu_mallocz(sizeof(CharDriverState));
1227 if (!chr)
1228 return NULL;
1229 chr->chr_write = null_chr_write;
1230 return chr;
1231 }
1232
1233 /* MUX driver for serial I/O splitting */
1234 static int term_timestamps;
1235 static int64_t term_timestamps_start;
1236 #define MAX_MUX 4
1237 typedef struct {
1238 IOCanRWHandler *chr_can_read[MAX_MUX];
1239 IOReadHandler *chr_read[MAX_MUX];
1240 IOEventHandler *chr_event[MAX_MUX];
1241 void *ext_opaque[MAX_MUX];
1242 CharDriverState *drv;
1243 int mux_cnt;
1244 int term_got_escape;
1245 int max_size;
1246 } MuxDriver;
1247
1248
1249 static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1250 {
1251 MuxDriver *d = chr->opaque;
1252 int ret;
1253 if (!term_timestamps) {
1254 ret = d->drv->chr_write(d->drv, buf, len);
1255 } else {
1256 int i;
1257
1258 ret = 0;
1259 for(i = 0; i < len; i++) {
1260 ret += d->drv->chr_write(d->drv, buf+i, 1);
1261 if (buf[i] == '\n') {
1262 char buf1[64];
1263 int64_t ti;
1264 int secs;
1265
1266 ti = get_clock();
1267 if (term_timestamps_start == -1)
1268 term_timestamps_start = ti;
1269 ti -= term_timestamps_start;
1270 secs = ti / 1000000000;
1271 snprintf(buf1, sizeof(buf1),
1272 "[%02d:%02d:%02d.%03d] ",
1273 secs / 3600,
1274 (secs / 60) % 60,
1275 secs % 60,
1276 (int)((ti / 1000000) % 1000));
1277 d->drv->chr_write(d->drv, buf1, strlen(buf1));
1278 }
1279 }
1280 }
1281 return ret;
1282 }
1283
1284 static char *mux_help[] = {
1285 "% h print this help\n\r",
1286 "% x exit emulator\n\r",
1287 "% s save disk data back to file (if -snapshot)\n\r",
1288 "% t toggle console timestamps\n\r"
1289 "% b send break (magic sysrq)\n\r",
1290 "% c switch between console and monitor\n\r",
1291 "% % sends %\n\r",
1292 NULL
1293 };
1294
1295 static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1296 static void mux_print_help(CharDriverState *chr)
1297 {
1298 int i, j;
1299 char ebuf[15] = "Escape-Char";
1300 char cbuf[50] = "\n\r";
1301
1302 if (term_escape_char > 0 && term_escape_char < 26) {
1303 sprintf(cbuf,"\n\r");
1304 sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a');
1305 } else {
1306 sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r", term_escape_char);
1307 }
1308 chr->chr_write(chr, cbuf, strlen(cbuf));
1309 for (i = 0; mux_help[i] != NULL; i++) {
1310 for (j=0; mux_help[i][j] != '\0'; j++) {
1311 if (mux_help[i][j] == '%')
1312 chr->chr_write(chr, ebuf, strlen(ebuf));
1313 else
1314 chr->chr_write(chr, &mux_help[i][j], 1);
1315 }
1316 }
1317 }
1318
1319 static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1320 {
1321 if (d->term_got_escape) {
1322 d->term_got_escape = 0;
1323 if (ch == term_escape_char)
1324 goto send_char;
1325 switch(ch) {
1326 case '?':
1327 case 'h':
1328 mux_print_help(chr);
1329 break;
1330 case 'x':
1331 {
1332 char *term = "QEMU: Terminated\n\r";
1333 chr->chr_write(chr,term,strlen(term));
1334 exit(0);
1335 break;
1336 }
1337 case 's':
1338 {
1339 int i;
1340 for (i = 0; i < MAX_DISKS; i++) {
1341 if (bs_table[i])
1342 bdrv_commit(bs_table[i]);
1343 }
1344 }
1345 break;
1346 case 'b':
1347 if (chr->chr_event)
1348 chr->chr_event(chr->opaque, CHR_EVENT_BREAK);
1349 break;
1350 case 'c':
1351 /* Switch to the next registered device */
1352 chr->focus++;
1353 if (chr->focus >= d->mux_cnt)
1354 chr->focus = 0;
1355 break;
1356 case 't':
1357 term_timestamps = !term_timestamps;
1358 term_timestamps_start = -1;
1359 break;
1360 }
1361 } else if (ch == term_escape_char) {
1362 d->term_got_escape = 1;
1363 } else {
1364 send_char:
1365 return 1;
1366 }
1367 return 0;
1368 }
1369
1370 static int mux_chr_can_read(void *opaque)
1371 {
1372 CharDriverState *chr = opaque;
1373 MuxDriver *d = chr->opaque;
1374 if (d->chr_can_read[chr->focus])
1375 return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
1376 return 0;
1377 }
1378
1379 static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
1380 {
1381 CharDriverState *chr = opaque;
1382 MuxDriver *d = chr->opaque;
1383 int i;
1384 for(i = 0; i < size; i++)
1385 if (mux_proc_byte(chr, d, buf[i]))
1386 d->chr_read[chr->focus](d->ext_opaque[chr->focus], &buf[i], 1);
1387 }
1388
1389 static void mux_chr_event(void *opaque, int event)
1390 {
1391 CharDriverState *chr = opaque;
1392 MuxDriver *d = chr->opaque;
1393 int i;
1394
1395 /* Send the event to all registered listeners */
1396 for (i = 0; i < d->mux_cnt; i++)
1397 if (d->chr_event[i])
1398 d->chr_event[i](d->ext_opaque[i], event);
1399 }
1400
1401 static void mux_chr_update_read_handler(CharDriverState *chr)
1402 {
1403 MuxDriver *d = chr->opaque;
1404
1405 if (d->mux_cnt >= MAX_MUX) {
1406 fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
1407 return;
1408 }
1409 d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
1410 d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
1411 d->chr_read[d->mux_cnt] = chr->chr_read;
1412 d->chr_event[d->mux_cnt] = chr->chr_event;
1413 /* Fix up the real driver with mux routines */
1414 if (d->mux_cnt == 0) {
1415 qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
1416 mux_chr_event, chr);
1417 }
1418 chr->focus = d->mux_cnt;
1419 d->mux_cnt++;
1420 }
1421
1422 CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
1423 {
1424 CharDriverState *chr;
1425 MuxDriver *d;
1426
1427 chr = qemu_mallocz(sizeof(CharDriverState));
1428 if (!chr)
1429 return NULL;
1430 d = qemu_mallocz(sizeof(MuxDriver));
1431 if (!d) {
1432 free(chr);
1433 return NULL;
1434 }
1435
1436 chr->opaque = d;
1437 d->drv = drv;
1438 chr->focus = -1;
1439 chr->chr_write = mux_chr_write;
1440 chr->chr_update_read_handler = mux_chr_update_read_handler;
1441 return chr;
1442 }
1443
1444
1445 #ifdef _WIN32
1446
1447 static void socket_cleanup(void)
1448 {
1449 WSACleanup();
1450 }
1451
1452 static int socket_init(void)
1453 {
1454 WSADATA Data;
1455 int ret, err;
1456
1457 ret = WSAStartup(MAKEWORD(2,2), &Data);
1458 if (ret != 0) {
1459 err = WSAGetLastError();
1460 fprintf(stderr, "WSAStartup: %d\n", err);
1461 return -1;
1462 }
1463 atexit(socket_cleanup);
1464 return 0;
1465 }
1466
1467 static int send_all(int fd, const uint8_t *buf, int len1)
1468 {
1469 int ret, len;
1470
1471 len = len1;
1472 while (len > 0) {
1473 ret = send(fd, buf, len, 0);
1474 if (ret < 0) {
1475 int errno;
1476 errno = WSAGetLastError();
1477 if (errno != WSAEWOULDBLOCK) {
1478 return -1;
1479 }
1480 } else if (ret == 0) {
1481 break;
1482 } else {
1483 buf += ret;
1484 len -= ret;
1485 }
1486 }
1487 return len1 - len;
1488 }
1489
1490 void socket_set_nonblock(int fd)
1491 {
1492 unsigned long opt = 1;
1493 ioctlsocket(fd, FIONBIO, &opt);
1494 }
1495
1496 #else
1497
1498 static int unix_write(int fd, const uint8_t *buf, int len1)
1499 {
1500 int ret, len;
1501
1502 len = len1;
1503 while (len > 0) {
1504 ret = write(fd, buf, len);
1505 if (ret < 0) {
1506 if (errno != EINTR && errno != EAGAIN)
1507 return -1;
1508 } else if (ret == 0) {
1509 break;
1510 } else {
1511 buf += ret;
1512 len -= ret;
1513 }
1514 }
1515 return len1 - len;
1516 }
1517
1518 static inline int send_all(int fd, const uint8_t *buf, int len1)
1519 {
1520 return unix_write(fd, buf, len1);
1521 }
1522
1523 void socket_set_nonblock(int fd)
1524 {
1525 fcntl(fd, F_SETFL, O_NONBLOCK);
1526 }
1527 #endif /* !_WIN32 */
1528
1529 #ifndef _WIN32
1530
1531 typedef struct {
1532 int fd_in, fd_out;
1533 int max_size;
1534 } FDCharDriver;
1535
1536 #define STDIO_MAX_CLIENTS 1
1537 static int stdio_nb_clients = 0;
1538
1539 static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1540 {
1541 FDCharDriver *s = chr->opaque;
1542 return unix_write(s->fd_out, buf, len);
1543 }
1544
1545 static int fd_chr_read_poll(void *opaque)
1546 {
1547 CharDriverState *chr = opaque;
1548 FDCharDriver *s = chr->opaque;
1549
1550 s->max_size = qemu_chr_can_read(chr);
1551 return s->max_size;
1552 }
1553
1554 static void fd_chr_read(void *opaque)
1555 {
1556 CharDriverState *chr = opaque;
1557 FDCharDriver *s = chr->opaque;
1558 int size, len;
1559 uint8_t buf[1024];
1560
1561 len = sizeof(buf);
1562 if (len > s->max_size)
1563 len = s->max_size;
1564 if (len == 0)
1565 return;
1566 size = read(s->fd_in, buf, len);
1567 if (size == 0) {
1568 /* FD has been closed. Remove it from the active list. */
1569 qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
1570 return;
1571 }
1572 if (size > 0) {
1573 qemu_chr_read(chr, buf, size);
1574 }
1575 }
1576
1577 static void fd_chr_update_read_handler(CharDriverState *chr)
1578 {
1579 FDCharDriver *s = chr->opaque;
1580
1581 if (s->fd_in >= 0) {
1582 if (nographic && s->fd_in == 0) {
1583 } else {
1584 qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
1585 fd_chr_read, NULL, chr);
1586 }
1587 }
1588 }
1589
1590 /* open a character device to a unix fd */
1591 static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
1592 {
1593 CharDriverState *chr;
1594 FDCharDriver *s;
1595
1596 chr = qemu_mallocz(sizeof(CharDriverState));
1597 if (!chr)
1598 return NULL;
1599 s = qemu_mallocz(sizeof(FDCharDriver));
1600 if (!s) {
1601 free(chr);
1602 return NULL;
1603 }
1604 s->fd_in = fd_in;
1605 s->fd_out = fd_out;
1606 chr->opaque = s;
1607 chr->chr_write = fd_chr_write;
1608 chr->chr_update_read_handler = fd_chr_update_read_handler;
1609
1610 qemu_chr_reset(chr);
1611
1612 return chr;
1613 }
1614
1615 static CharDriverState *qemu_chr_open_file_out(const char *file_out)
1616 {
1617 int fd_out;
1618
1619 fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666);
1620 if (fd_out < 0)
1621 return NULL;
1622 return qemu_chr_open_fd(-1, fd_out);
1623 }
1624
1625 static CharDriverState *qemu_chr_open_pipe(const char *filename)
1626 {
1627 int fd_in, fd_out;
1628 char filename_in[256], filename_out[256];
1629
1630 snprintf(filename_in, 256, "%s.in", filename);
1631 snprintf(filename_out, 256, "%s.out", filename);
1632 fd_in = open(filename_in, O_RDWR | O_BINARY);
1633 fd_out = open(filename_out, O_RDWR | O_BINARY);
1634 if (fd_in < 0 || fd_out < 0) {
1635 if (fd_in >= 0)
1636 close(fd_in);
1637 if (fd_out >= 0)
1638 close(fd_out);
1639 fd_in = fd_out = open(filename, O_RDWR | O_BINARY);
1640 if (fd_in < 0)
1641 return NULL;
1642 }
1643 return qemu_chr_open_fd(fd_in, fd_out);
1644 }
1645
1646
1647 /* for STDIO, we handle the case where several clients use it
1648 (nographic mode) */
1649
1650 #define TERM_FIFO_MAX_SIZE 1
1651
1652 static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
1653 static int term_fifo_size;
1654
1655 static int stdio_read_poll(void *opaque)
1656 {
1657 CharDriverState *chr = opaque;
1658
1659 /* try to flush the queue if needed */
1660 if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
1661 qemu_chr_read(chr, term_fifo, 1);
1662 term_fifo_size = 0;
1663 }
1664 /* see if we can absorb more chars */
1665 if (term_fifo_size == 0)
1666 return 1;
1667 else
1668 return 0;
1669 }
1670
1671 static void stdio_read(void *opaque)
1672 {
1673 int size;
1674 uint8_t buf[1];
1675 CharDriverState *chr = opaque;
1676
1677 size = read(0, buf, 1);
1678 if (size == 0) {
1679 /* stdin has been closed. Remove it from the active list. */
1680 qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
1681 return;
1682 }
1683 if (size > 0) {
1684 if (qemu_chr_can_read(chr) > 0) {
1685 qemu_chr_read(chr, buf, 1);
1686 } else if (term_fifo_size == 0) {
1687 term_fifo[term_fifo_size++] = buf[0];
1688 }
1689 }
1690 }
1691
1692 /* init terminal so that we can grab keys */
1693 static struct termios oldtty;
1694 static int old_fd0_flags;
1695
1696 static void term_exit(void)
1697 {
1698 tcsetattr (0, TCSANOW, &oldtty);
1699 fcntl(0, F_SETFL, old_fd0_flags);
1700 }
1701
1702 static void term_init(void)
1703 {
1704 struct termios tty;
1705
1706 tcgetattr (0, &tty);
1707 oldtty = tty;
1708 old_fd0_flags = fcntl(0, F_GETFL);
1709
1710 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1711 |INLCR|IGNCR|ICRNL|IXON);
1712 tty.c_oflag |= OPOST;
1713 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
1714 /* if graphical mode, we allow Ctrl-C handling */
1715 if (nographic)
1716 tty.c_lflag &= ~ISIG;
1717 tty.c_cflag &= ~(CSIZE|PARENB);
1718 tty.c_cflag |= CS8;
1719 tty.c_cc[VMIN] = 1;
1720 tty.c_cc[VTIME] = 0;
1721
1722 tcsetattr (0, TCSANOW, &tty);
1723
1724 atexit(term_exit);
1725
1726 fcntl(0, F_SETFL, O_NONBLOCK);
1727 }
1728
1729 static CharDriverState *qemu_chr_open_stdio(void)
1730 {
1731 CharDriverState *chr;
1732
1733 if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
1734 return NULL;
1735 chr = qemu_chr_open_fd(0, 1);
1736 qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
1737 stdio_nb_clients++;
1738 term_init();
1739
1740 return chr;
1741 }
1742
1743 #if defined(__linux__)
1744 static CharDriverState *qemu_chr_open_pty(void)
1745 {
1746 struct termios tty;
1747 char slave_name[1024];
1748 int master_fd, slave_fd;
1749
1750 /* Not satisfying */
1751 if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
1752 return NULL;
1753 }
1754
1755 /* Disabling local echo and line-buffered output */
1756 tcgetattr (master_fd, &tty);
1757 tty.c_lflag &= ~(ECHO|ICANON|ISIG);
1758 tty.c_cc[VMIN] = 1;
1759 tty.c_cc[VTIME] = 0;
1760 tcsetattr (master_fd, TCSAFLUSH, &tty);
1761
1762 fprintf(stderr, "char device redirected to %s\n", slave_name);
1763 return qemu_chr_open_fd(master_fd, master_fd);
1764 }
1765
1766 static void tty_serial_init(int fd, int speed,
1767 int parity, int data_bits, int stop_bits)
1768 {
1769 struct termios tty;
1770 speed_t spd;
1771
1772 #if 0
1773 printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
1774 speed, parity, data_bits, stop_bits);
1775 #endif
1776 tcgetattr (fd, &tty);
1777
1778 switch(speed) {
1779 case 50:
1780 spd = B50;
1781 break;
1782 case 75:
1783 spd = B75;
1784 break;
1785 case 300:
1786 spd = B300;
1787 break;
1788 case 600:
1789 spd = B600;
1790 break;
1791 case 1200:
1792 spd = B1200;
1793 break;
1794 case 2400:
1795 spd = B2400;
1796 break;
1797 case 4800:
1798 spd = B4800;
1799 break;
1800 case 9600:
1801 spd = B9600;
1802 break;
1803 case 19200:
1804 spd = B19200;
1805 break;
1806 case 38400:
1807 spd = B38400;
1808 break;
1809 case 57600:
1810 spd = B57600;
1811 break;
1812 default:
1813 case 115200:
1814 spd = B115200;
1815 break;
1816 }
1817
1818 cfsetispeed(&tty, spd);
1819 cfsetospeed(&tty, spd);
1820
1821 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1822 |INLCR|IGNCR|ICRNL|IXON);
1823 tty.c_oflag |= OPOST;
1824 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
1825 tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
1826 switch(data_bits) {
1827 default:
1828 case 8:
1829 tty.c_cflag |= CS8;
1830 break;
1831 case 7:
1832 tty.c_cflag |= CS7;
1833 break;
1834 case 6:
1835 tty.c_cflag |= CS6;
1836 break;
1837 case 5:
1838 tty.c_cflag |= CS5;
1839 break;
1840 }
1841 switch(parity) {
1842 default:
1843 case 'N':
1844 break;
1845 case 'E':
1846 tty.c_cflag |= PARENB;
1847 break;
1848 case 'O':
1849 tty.c_cflag |= PARENB | PARODD;
1850 break;
1851 }
1852 if (stop_bits == 2)
1853 tty.c_cflag |= CSTOPB;
1854
1855 tcsetattr (fd, TCSANOW, &tty);
1856 }
1857
1858 static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
1859 {
1860 FDCharDriver *s = chr->opaque;
1861
1862 switch(cmd) {
1863 case CHR_IOCTL_SERIAL_SET_PARAMS:
1864 {
1865 QEMUSerialSetParams *ssp = arg;
1866 tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
1867 ssp->data_bits, ssp->stop_bits);
1868 }
1869 break;
1870 case CHR_IOCTL_SERIAL_SET_BREAK:
1871 {
1872 int enable = *(int *)arg;
1873 if (enable)
1874 tcsendbreak(s->fd_in, 1);
1875 }
1876 break;
1877 default:
1878 return -ENOTSUP;
1879 }
1880 return 0;
1881 }
1882
1883 static CharDriverState *qemu_chr_open_tty(const char *filename)
1884 {
1885 CharDriverState *chr;
1886 int fd;
1887
1888 fd = open(filename, O_RDWR | O_NONBLOCK);
1889 if (fd < 0)
1890 return NULL;
1891 fcntl(fd, F_SETFL, O_NONBLOCK);
1892 tty_serial_init(fd, 115200, 'N', 8, 1);
1893 chr = qemu_chr_open_fd(fd, fd);
1894 if (!chr)
1895 return NULL;
1896 chr->chr_ioctl = tty_serial_ioctl;
1897 qemu_chr_reset(chr);
1898 return chr;
1899 }
1900
1901 typedef struct {
1902 int fd;
1903 int mode;
1904 } ParallelCharDriver;
1905
1906 static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
1907 {
1908 if (s->mode != mode) {
1909 int m = mode;
1910 if (ioctl(s->fd, PPSETMODE, &m) < 0)
1911 return 0;
1912 s->mode = mode;
1913 }
1914 return 1;
1915 }
1916
1917 static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
1918 {
1919 ParallelCharDriver *drv = chr->opaque;
1920 int fd = drv->fd;
1921 uint8_t b;
1922
1923 switch(cmd) {
1924 case CHR_IOCTL_PP_READ_DATA:
1925 if (ioctl(fd, PPRDATA, &b) < 0)
1926 return -ENOTSUP;
1927 *(uint8_t *)arg = b;
1928 break;
1929 case CHR_IOCTL_PP_WRITE_DATA:
1930 b = *(uint8_t *)arg;
1931 if (ioctl(fd, PPWDATA, &b) < 0)
1932 return -ENOTSUP;
1933 break;
1934 case CHR_IOCTL_PP_READ_CONTROL:
1935 if (ioctl(fd, PPRCONTROL, &b) < 0)
1936 return -ENOTSUP;
1937 /* Linux gives only the lowest bits, and no way to know data
1938 direction! For better compatibility set the fixed upper
1939 bits. */
1940 *(uint8_t *)arg = b | 0xc0;
1941 break;
1942 case CHR_IOCTL_PP_WRITE_CONTROL:
1943 b = *(uint8_t *)arg;
1944 if (ioctl(fd, PPWCONTROL, &b) < 0)
1945 return -ENOTSUP;
1946 break;
1947 case CHR_IOCTL_PP_READ_STATUS:
1948 if (ioctl(fd, PPRSTATUS, &b) < 0)
1949 return -ENOTSUP;
1950 *(uint8_t *)arg = b;
1951 break;
1952 case CHR_IOCTL_PP_EPP_READ_ADDR:
1953 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
1954 struct ParallelIOArg *parg = arg;
1955 int n = read(fd, parg->buffer, parg->count);
1956 if (n != parg->count) {
1957 return -EIO;
1958 }
1959 }
1960 break;
1961 case CHR_IOCTL_PP_EPP_READ:
1962 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
1963 struct ParallelIOArg *parg = arg;
1964 int n = read(fd, parg->buffer, parg->count);
1965 if (n != parg->count) {
1966 return -EIO;
1967 }
1968 }
1969 break;
1970 case CHR_IOCTL_PP_EPP_WRITE_ADDR:
1971 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
1972 struct ParallelIOArg *parg = arg;
1973 int n = write(fd, parg->buffer, parg->count);
1974 if (n != parg->count) {
1975 return -EIO;
1976 }
1977 }
1978 break;
1979 case CHR_IOCTL_PP_EPP_WRITE:
1980 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
1981 struct ParallelIOArg *parg = arg;
1982 int n = write(fd, parg->buffer, parg->count);
1983 if (n != parg->count) {
1984 return -EIO;
1985 }
1986 }
1987 break;
1988 default:
1989 return -ENOTSUP;
1990 }
1991 return 0;
1992 }
1993
1994 static void pp_close(CharDriverState *chr)
1995 {
1996 ParallelCharDriver *drv = chr->opaque;
1997 int fd = drv->fd;
1998
1999 pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2000 ioctl(fd, PPRELEASE);
2001 close(fd);
2002 qemu_free(drv);
2003 }
2004
2005 static CharDriverState *qemu_chr_open_pp(const char *filename)
2006 {
2007 CharDriverState *chr;
2008 ParallelCharDriver *drv;
2009 int fd;
2010
2011 fd = open(filename, O_RDWR);
2012 if (fd < 0)
2013 return NULL;
2014
2015 if (ioctl(fd, PPCLAIM) < 0) {
2016 close(fd);
2017 return NULL;
2018 }
2019
2020 drv = qemu_mallocz(sizeof(ParallelCharDriver));
2021 if (!drv) {
2022 close(fd);
2023 return NULL;
2024 }
2025 drv->fd = fd;
2026 drv->mode = IEEE1284_MODE_COMPAT;
2027
2028 chr = qemu_mallocz(sizeof(CharDriverState));
2029 if (!chr) {
2030 qemu_free(drv);
2031 close(fd);
2032 return NULL;
2033 }
2034 chr->chr_write = null_chr_write;
2035 chr->chr_ioctl = pp_ioctl;
2036 chr->chr_close = pp_close;
2037 chr->opaque = drv;
2038
2039 qemu_chr_reset(chr);
2040
2041 return chr;
2042 }
2043
2044 #else
2045 static CharDriverState *qemu_chr_open_pty(void)
2046 {
2047 return NULL;
2048 }
2049 #endif
2050
2051 #endif /* !defined(_WIN32) */
2052
2053 #ifdef _WIN32
2054 typedef struct {
2055 int max_size;
2056 HANDLE hcom, hrecv, hsend;
2057 OVERLAPPED orecv, osend;
2058 BOOL fpipe;
2059 DWORD len;
2060 } WinCharState;
2061
2062 #define NSENDBUF 2048
2063 #define NRECVBUF 2048
2064 #define MAXCONNECT 1
2065 #define NTIMEOUT 5000
2066
2067 static int win_chr_poll(void *opaque);
2068 static int win_chr_pipe_poll(void *opaque);
2069
2070 static void win_chr_close(CharDriverState *chr)
2071 {
2072 WinCharState *s = chr->opaque;
2073
2074 if (s->hsend) {
2075 CloseHandle(s->hsend);
2076 s->hsend = NULL;
2077 }
2078 if (s->hrecv) {
2079 CloseHandle(s->hrecv);
2080 s->hrecv = NULL;
2081 }
2082 if (s->hcom) {
2083 CloseHandle(s->hcom);
2084 s->hcom = NULL;
2085 }
2086 if (s->fpipe)
2087 qemu_del_polling_cb(win_chr_pipe_poll, chr);
2088 else
2089 qemu_del_polling_cb(win_chr_poll, chr);
2090 }
2091
2092 static int win_chr_init(CharDriverState *chr, const char *filename)
2093 {
2094 WinCharState *s = chr->opaque;
2095 COMMCONFIG comcfg;
2096 COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2097 COMSTAT comstat;
2098 DWORD size;
2099 DWORD err;
2100
2101 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2102 if (!s->hsend) {
2103 fprintf(stderr, "Failed CreateEvent\n");
2104 goto fail;
2105 }
2106 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2107 if (!s->hrecv) {
2108 fprintf(stderr, "Failed CreateEvent\n");
2109 goto fail;
2110 }
2111
2112 s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2113 OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2114 if (s->hcom == INVALID_HANDLE_VALUE) {
2115 fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2116 s->hcom = NULL;
2117 goto fail;
2118 }
2119
2120 if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
2121 fprintf(stderr, "Failed SetupComm\n");
2122 goto fail;
2123 }
2124
2125 ZeroMemory(&comcfg, sizeof(COMMCONFIG));
2126 size = sizeof(COMMCONFIG);
2127 GetDefaultCommConfig(filename, &comcfg, &size);
2128 comcfg.dcb.DCBlength = sizeof(DCB);
2129 CommConfigDialog(filename, NULL, &comcfg);
2130
2131 if (!SetCommState(s->hcom, &comcfg.dcb)) {
2132 fprintf(stderr, "Failed SetCommState\n");
2133 goto fail;
2134 }
2135
2136 if (!SetCommMask(s->hcom, EV_ERR)) {
2137 fprintf(stderr, "Failed SetCommMask\n");
2138 goto fail;
2139 }
2140
2141 cto.ReadIntervalTimeout = MAXDWORD;
2142 if (!SetCommTimeouts(s->hcom, &cto)) {
2143 fprintf(stderr, "Failed SetCommTimeouts\n");
2144 goto fail;
2145 }
2146
2147 if (!ClearCommError(s->hcom, &err, &comstat)) {
2148 fprintf(stderr, "Failed ClearCommError\n");
2149 goto fail;
2150 }
2151 qemu_add_polling_cb(win_chr_poll, chr);
2152 return 0;
2153
2154 fail:
2155 win_chr_close(chr);
2156 return -1;
2157 }
2158
2159 static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
2160 {
2161 WinCharState *s = chr->opaque;
2162 DWORD len, ret, size, err;
2163
2164 len = len1;
2165 ZeroMemory(&s->osend, sizeof(s->osend));
2166 s->osend.hEvent = s->hsend;
2167 while (len > 0) {
2168 if (s->hsend)
2169 ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
2170 else
2171 ret = WriteFile(s->hcom, buf, len, &size, NULL);
2172 if (!ret) {
2173 err = GetLastError();
2174 if (err == ERROR_IO_PENDING) {
2175 ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
2176 if (ret) {
2177 buf += size;
2178 len -= size;
2179 } else {
2180 break;
2181 }
2182 } else {
2183 break;
2184 }
2185 } else {
2186 buf += size;
2187 len -= size;
2188 }
2189 }
2190 return len1 - len;
2191 }
2192
2193 static int win_chr_read_poll(CharDriverState *chr)
2194 {
2195 WinCharState *s = chr->opaque;
2196
2197 s->max_size = qemu_chr_can_read(chr);
2198 return s->max_size;
2199 }
2200
2201 static void win_chr_readfile(CharDriverState *chr)
2202 {
2203 WinCharState *s = chr->opaque;
2204 int ret, err;
2205 uint8_t buf[1024];
2206 DWORD size;
2207
2208 ZeroMemory(&s->orecv, sizeof(s->orecv));
2209 s->orecv.hEvent = s->hrecv;
2210 ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
2211 if (!ret) {
2212 err = GetLastError();
2213 if (err == ERROR_IO_PENDING) {
2214 ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
2215 }
2216 }
2217
2218 if (size > 0) {
2219 qemu_chr_read(chr, buf, size);
2220 }
2221 }
2222
2223 static void win_chr_read(CharDriverState *chr)
2224 {
2225 WinCharState *s = chr->opaque;
2226
2227 if (s->len > s->max_size)
2228 s->len = s->max_size;
2229 if (s->len == 0)
2230 return;
2231
2232 win_chr_readfile(chr);
2233 }
2234
2235 static int win_chr_poll(void *opaque)
2236 {
2237 CharDriverState *chr = opaque;
2238 WinCharState *s = chr->opaque;
2239 COMSTAT status;
2240 DWORD comerr;
2241
2242 ClearCommError(s->hcom, &comerr, &status);
2243 if (status.cbInQue > 0) {
2244 s->len = status.cbInQue;
2245 win_chr_read_poll(chr);
2246 win_chr_read(chr);
2247 return 1;
2248 }
2249 return 0;
2250 }
2251
2252 static CharDriverState *qemu_chr_open_win(const char *filename)
2253 {
2254 CharDriverState *chr;
2255 WinCharState *s;
2256
2257 chr = qemu_mallocz(sizeof(CharDriverState));
2258 if (!chr)
2259 return NULL;
2260 s = qemu_mallocz(sizeof(WinCharState));
2261 if (!s) {
2262 free(chr);
2263 return NULL;
2264 }
2265 chr->opaque = s;
2266 chr->chr_write = win_chr_write;
2267 chr->chr_close = win_chr_close;
2268
2269 if (win_chr_init(chr, filename) < 0) {
2270 free(s);
2271 free(chr);
2272 return NULL;
2273 }
2274 qemu_chr_reset(chr);
2275 return chr;
2276 }
2277
2278 static int win_chr_pipe_poll(void *opaque)
2279 {
2280 CharDriverState *chr = opaque;
2281 WinCharState *s = chr->opaque;
2282 DWORD size;
2283
2284 PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
2285 if (size > 0) {
2286 s->len = size;
2287 win_chr_read_poll(chr);
2288 win_chr_read(chr);
2289 return 1;
2290 }
2291 return 0;
2292 }
2293
2294 static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
2295 {
2296 WinCharState *s = chr->opaque;
2297 OVERLAPPED ov;
2298 int ret;
2299 DWORD size;
2300 char openname[256];
2301
2302 s->fpipe = TRUE;
2303
2304 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2305 if (!s->hsend) {
2306 fprintf(stderr, "Failed CreateEvent\n");
2307 goto fail;
2308 }
2309 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2310 if (!s->hrecv) {
2311 fprintf(stderr, "Failed CreateEvent\n");
2312 goto fail;
2313 }
2314
2315 snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2316 s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2317 PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2318 PIPE_WAIT,
2319 MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2320 if (s->hcom == INVALID_HANDLE_VALUE) {
2321 fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2322 s->hcom = NULL;
2323 goto fail;
2324 }
2325
2326 ZeroMemory(&ov, sizeof(ov));
2327 ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2328 ret = ConnectNamedPipe(s->hcom, &ov);
2329 if (ret) {
2330 fprintf(stderr, "Failed ConnectNamedPipe\n");
2331 goto fail;
2332 }
2333
2334 ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2335 if (!ret) {
2336 fprintf(stderr, "Failed GetOverlappedResult\n");
2337 if (ov.hEvent) {
2338 CloseHandle(ov.hEvent);
2339 ov.hEvent = NULL;
2340 }
2341 goto fail;
2342 }
2343
2344 if (ov.hEvent) {
2345 CloseHandle(ov.hEvent);
2346 ov.hEvent = NULL;
2347 }
2348 qemu_add_polling_cb(win_chr_pipe_poll, chr);
2349 return 0;
2350
2351 fail:
2352 win_chr_close(chr);
2353 return -1;
2354 }
2355
2356
2357 static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2358 {
2359 CharDriverState *chr;
2360 WinCharState *s;
2361
2362 chr = qemu_mallocz(sizeof(CharDriverState));
2363 if (!chr)
2364 return NULL;
2365 s = qemu_mallocz(sizeof(WinCharState));
2366 if (!s) {
2367 free(chr);
2368 return NULL;
2369 }
2370 chr->opaque = s;
2371 chr->chr_write = win_chr_write;
2372 chr->chr_close = win_chr_close;
2373
2374 if (win_chr_pipe_init(chr, filename) < 0) {
2375 free(s);
2376 free(chr);
2377 return NULL;
2378 }
2379 qemu_chr_reset(chr);
2380 return chr;
2381 }
2382
2383 static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2384 {
2385 CharDriverState *chr;
2386 WinCharState *s;
2387
2388 chr = qemu_mallocz(sizeof(CharDriverState));
2389 if (!chr)
2390 return NULL;
2391 s = qemu_mallocz(sizeof(WinCharState));
2392 if (!s) {
2393 free(chr);
2394 return NULL;
2395 }
2396 s->hcom = fd_out;
2397 chr->opaque = s;
2398 chr->chr_write = win_chr_write;
2399 qemu_chr_reset(chr);
2400 return chr;
2401 }
2402
2403 static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2404 {
2405 HANDLE fd_out;
2406
2407 fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2408 OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2409 if (fd_out == INVALID_HANDLE_VALUE)
2410 return NULL;
2411
2412 return qemu_chr_open_win_file(fd_out);
2413 }
2414 #endif
2415
2416 /***********************************************************/
2417 /* UDP Net console */
2418
2419 typedef struct {
2420 int fd;
2421 struct sockaddr_in daddr;
2422 char buf[1024];
2423 int bufcnt;
2424 int bufptr;
2425 int max_size;
2426 } NetCharDriver;
2427
2428 static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2429 {
2430 NetCharDriver *s = chr->opaque;
2431
2432 return sendto(s->fd, buf, len, 0,
2433 (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
2434 }
2435
2436 static int udp_chr_read_poll(void *opaque)
2437 {
2438 CharDriverState *chr = opaque;
2439 NetCharDriver *s = chr->opaque;
2440
2441 s->max_size = qemu_chr_can_read(chr);
2442
2443 /* If there were any stray characters in the queue process them
2444 * first
2445 */
2446 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2447 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2448 s->bufptr++;
2449 s->max_size = qemu_chr_can_read(chr);
2450 }
2451 return s->max_size;
2452 }
2453
2454 static void udp_chr_read(void *opaque)
2455 {
2456 CharDriverState *chr = opaque;
2457 NetCharDriver *s = chr->opaque;
2458
2459 if (s->max_size == 0)
2460 return;
2461 s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
2462 s->bufptr = s->bufcnt;
2463 if (s->bufcnt <= 0)
2464 return;
2465
2466 s->bufptr = 0;
2467 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2468 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2469 s->bufptr++;
2470 s->max_size = qemu_chr_can_read(chr);
2471 }
2472 }
2473
2474 static void udp_chr_update_read_handler(CharDriverState *chr)
2475 {
2476 NetCharDriver *s = chr->opaque;
2477
2478 if (s->fd >= 0) {
2479 qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
2480 udp_chr_read, NULL, chr);
2481 }
2482 }
2483
2484 int parse_host_port(struct sockaddr_in *saddr, const char *str);
2485 #ifndef _WIN32
2486 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
2487 #endif
2488 int parse_host_src_port(struct sockaddr_in *haddr,
2489 struct sockaddr_in *saddr,
2490 const char *str);
2491
2492 static CharDriverState *qemu_chr_open_udp(const char *def)
2493 {
2494 CharDriverState *chr = NULL;
2495 NetCharDriver *s = NULL;
2496 int fd = -1;
2497 struct sockaddr_in saddr;
2498
2499 chr = qemu_mallocz(sizeof(CharDriverState));
2500 if (!chr)
2501 goto return_err;
2502 s = qemu_mallocz(sizeof(NetCharDriver));
2503 if (!s)
2504 goto return_err;
2505
2506 fd = socket(PF_INET, SOCK_DGRAM, 0);
2507 if (fd < 0) {
2508 perror("socket(PF_INET, SOCK_DGRAM)");
2509 goto return_err;
2510 }
2511
2512 if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
2513 printf("Could not parse: %s\n", def);
2514 goto return_err;
2515 }
2516
2517 if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
2518 {
2519 perror("bind");
2520 goto return_err;
2521 }
2522
2523 s->fd = fd;
2524 s->bufcnt = 0;
2525 s->bufptr = 0;
2526 chr->opaque = s;
2527 chr->chr_write = udp_chr_write;
2528 chr->chr_update_read_handler = udp_chr_update_read_handler;
2529 return chr;
2530
2531 return_err:
2532 if (chr)
2533 free(chr);
2534 if (s)
2535 free(s);
2536 if (fd >= 0)
2537 closesocket(fd);
2538 return NULL;
2539 }
2540
2541 /***********************************************************/
2542 /* TCP Net console */
2543
2544 typedef struct {
2545 int fd, listen_fd;
2546 int connected;
2547 int max_size;
2548 int do_telnetopt;
2549 int do_nodelay;
2550 int is_unix;
2551 } TCPCharDriver;
2552
2553 static void tcp_chr_accept(void *opaque);
2554
2555 static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2556 {
2557 TCPCharDriver *s = chr->opaque;
2558 if (s->connected) {
2559 return send_all(s->fd, buf, len);
2560 } else {
2561 /* XXX: indicate an error ? */
2562 return len;
2563 }
2564 }
2565
2566 static int tcp_chr_read_poll(void *opaque)
2567 {
2568 CharDriverState *chr = opaque;
2569 TCPCharDriver *s = chr->opaque;
2570 if (!s->connected)
2571 return 0;
2572 s->max_size = qemu_chr_can_read(chr);
2573 return s->max_size;
2574 }
2575
2576 #define IAC 255
2577 #define IAC_BREAK 243
2578 static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
2579 TCPCharDriver *s,
2580 char *buf, int *size)
2581 {
2582 /* Handle any telnet client's basic IAC options to satisfy char by
2583 * char mode with no echo. All IAC options will be removed from
2584 * the buf and the do_telnetopt variable will be used to track the
2585 * state of the width of the IAC information.
2586 *
2587 * IAC commands come in sets of 3 bytes with the exception of the
2588 * "IAC BREAK" command and the double IAC.
2589 */
2590
2591 int i;
2592 int j = 0;
2593
2594 for (i = 0; i < *size; i++) {
2595 if (s->do_telnetopt > 1) {
2596 if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
2597 /* Double IAC means send an IAC */
2598 if (j != i)
2599 buf[j] = buf[i];
2600 j++;
2601 s->do_telnetopt = 1;
2602 } else {
2603 if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
2604 /* Handle IAC break commands by sending a serial break */
2605 qemu_chr_event(chr, CHR_EVENT_BREAK);
2606 s->do_telnetopt++;
2607 }
2608 s->do_telnetopt++;
2609 }
2610 if (s->do_telnetopt >= 4) {
2611 s->do_telnetopt = 1;
2612 }
2613 } else {
2614 if ((unsigned char)buf[i] == IAC) {
2615 s->do_telnetopt = 2;
2616 } else {
2617 if (j != i)
2618 buf[j] = buf[i];
2619 j++;
2620 }
2621 }
2622 }
2623 *size = j;
2624 }
2625
2626 static void tcp_chr_read(void *opaque)
2627 {
2628 CharDriverState *chr = opaque;
2629 TCPCharDriver *s = chr->opaque;
2630 uint8_t buf[1024];
2631 int len, size;
2632
2633 if (!s->connected || s->max_size <= 0)
2634 return;
2635 len = sizeof(buf);
2636 if (len > s->max_size)
2637 len = s->max_size;
2638 size = recv(s->fd, buf, len, 0);
2639 if (size == 0) {
2640 /* connection closed */
2641 s->connected = 0;
2642 if (s->listen_fd >= 0) {
2643 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
2644 }
2645 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
2646 closesocket(s->fd);
2647 s->fd = -1;
2648 } else if (size > 0) {
2649 if (s->do_telnetopt)
2650 tcp_chr_process_IAC_bytes(chr, s, buf, &size);
2651 if (size > 0)
2652 qemu_chr_read(chr, buf, size);
2653 }
2654 }
2655
2656 static void tcp_chr_connect(void *opaque)
2657 {
2658 CharDriverState *chr = opaque;
2659 TCPCharDriver *s = chr->opaque;
2660
2661 s->connected = 1;
2662 qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
2663 tcp_chr_read, NULL, chr);
2664 qemu_chr_reset(chr);
2665 }
2666
2667 #define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
2668 static void tcp_chr_telnet_init(int fd)
2669 {
2670 char buf[3];
2671 /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
2672 IACSET(buf, 0xff, 0xfb, 0x01); /* IAC WILL ECHO */
2673 send(fd, (char *)buf, 3, 0);
2674 IACSET(buf, 0xff, 0xfb, 0x03); /* IAC WILL Suppress go ahead */
2675 send(fd, (char *)buf, 3, 0);
2676 IACSET(buf, 0xff, 0xfb, 0x00); /* IAC WILL Binary */
2677 send(fd, (char *)buf, 3, 0);
2678 IACSET(buf, 0xff, 0xfd, 0x00); /* IAC DO Binary */
2679 send(fd, (char *)buf, 3, 0);
2680 }
2681
2682 static void socket_set_nodelay(int fd)
2683 {
2684 int val = 1;
2685 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2686 }
2687
2688 static void tcp_chr_accept(void *opaque)
2689 {
2690 CharDriverState *chr = opaque;
2691 TCPCharDriver *s = chr->opaque;
2692 struct sockaddr_in saddr;
2693 #ifndef _WIN32
2694 struct sockaddr_un uaddr;
2695 #endif
2696 struct sockaddr *addr;
2697 socklen_t len;
2698 int fd;
2699
2700 for(;;) {
2701 #ifndef _WIN32
2702 if (s->is_unix) {
2703 len = sizeof(uaddr);
2704 addr = (struct sockaddr *)&uaddr;
2705 } else
2706 #endif
2707 {
2708 len = sizeof(saddr);
2709 addr = (struct sockaddr *)&saddr;
2710 }
2711 fd = accept(s->listen_fd, addr, &len);
2712 if (fd < 0 && errno != EINTR) {
2713 return;
2714 } else if (fd >= 0) {
2715 if (s->do_telnetopt)
2716 tcp_chr_telnet_init(fd);
2717 break;
2718 }
2719 }
2720 socket_set_nonblock(fd);
2721 if (s->do_nodelay)
2722 socket_set_nodelay(fd);
2723 s->fd = fd;
2724 qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
2725 tcp_chr_connect(chr);
2726 }
2727
2728 static void tcp_chr_close(CharDriverState *chr)
2729 {
2730 TCPCharDriver *s = chr->opaque;
2731 if (s->fd >= 0)
2732 closesocket(s->fd);
2733 if (s->listen_fd >= 0)
2734 closesocket(s->listen_fd);
2735 qemu_free(s);
2736 }
2737
2738 static CharDriverState *qemu_chr_open_tcp(const char *host_str,
2739 int is_telnet,
2740 int is_unix)
2741 {
2742 CharDriverState *chr = NULL;
2743 TCPCharDriver *s = NULL;
2744 int fd = -1, ret, err, val;
2745 int is_listen = 0;
2746 int is_waitconnect = 1;
2747 int do_nodelay = 0;
2748 const char *ptr;
2749 struct sockaddr_in saddr;
2750 #ifndef _WIN32
2751 struct sockaddr_un uaddr;
2752 #endif
2753 struct sockaddr *addr;
2754 socklen_t addrlen;
2755
2756 #ifndef _WIN32
2757 if (is_unix) {
2758 addr = (struct sockaddr *)&uaddr;
2759 addrlen = sizeof(uaddr);
2760 if (parse_unix_path(&uaddr, host_str) < 0)
2761 goto fail;
2762 } else
2763 #endif
2764 {
2765 addr = (struct sockaddr *)&saddr;
2766 addrlen = sizeof(saddr);
2767 if (parse_host_port(&saddr, host_str) < 0)
2768 goto fail;
2769 }
2770
2771 ptr = host_str;
2772 while((ptr = strchr(ptr,','))) {
2773 ptr++;
2774 if (!strncmp(ptr,"server",6)) {
2775 is_listen = 1;
2776 } else if (!strncmp(ptr,"nowait",6)) {
2777 is_waitconnect = 0;
2778 } else if (!strncmp(ptr,"nodelay",6)) {
2779 do_nodelay = 1;
2780 } else {
2781 printf("Unknown option: %s\n", ptr);
2782 goto fail;
2783 }
2784 }
2785 if (!is_listen)
2786 is_waitconnect = 0;
2787
2788 chr = qemu_mallocz(sizeof(CharDriverState));
2789 if (!chr)
2790 goto fail;
2791 s = qemu_mallocz(sizeof(TCPCharDriver));
2792 if (!s)
2793 goto fail;
2794
2795 #ifndef _WIN32
2796 if (is_unix)
2797 fd = socket(PF_UNIX, SOCK_STREAM, 0);
2798 else
2799 #endif
2800 fd = socket(PF_INET, SOCK_STREAM, 0);
2801
2802 if (fd < 0)
2803 goto fail;
2804
2805 if (!is_waitconnect)
2806 socket_set_nonblock(fd);
2807
2808 s->connected = 0;
2809 s->fd = -1;
2810 s->listen_fd = -1;
2811 s->is_unix = is_unix;
2812 s->do_nodelay = do_nodelay && !is_unix;
2813
2814 chr->opaque = s;
2815 chr->chr_write = tcp_chr_write;
2816 chr->chr_close = tcp_chr_close;
2817
2818 if (is_listen) {
2819 /* allow fast reuse */
2820 #ifndef _WIN32
2821 if (is_unix) {
2822 char path[109];
2823 strncpy(path, uaddr.sun_path, 108);
2824 path[108] = 0;
2825 unlink(path);
2826 } else
2827 #endif
2828 {
2829 val = 1;
2830 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
2831 }
2832
2833 ret = bind(fd, addr, addrlen);
2834 if (ret < 0)
2835 goto fail;
2836
2837 ret = listen(fd, 0);
2838 if (ret < 0)
2839 goto fail;
2840
2841 s->listen_fd = fd;
2842 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
2843 if (is_telnet)
2844 s->do_telnetopt = 1;
2845 } else {
2846 for(;;) {
2847 ret = connect(fd, addr, addrlen);
2848 if (ret < 0) {
2849 err = socket_error();
2850 if (err == EINTR || err == EWOULDBLOCK) {
2851 } else if (err == EINPROGRESS) {
2852 break;
2853 } else {
2854 goto fail;
2855 }
2856 } else {
2857 s->connected = 1;
2858 break;
2859 }
2860 }
2861 s->fd = fd;
2862 socket_set_nodelay(fd);
2863 if (s->connected)
2864 tcp_chr_connect(chr);
2865 else
2866 qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
2867 }
2868
2869 if (is_listen && is_waitconnect) {
2870 printf("QEMU waiting for connection on: %s\n", host_str);
2871 tcp_chr_accept(chr);
2872 socket_set_nonblock(s->listen_fd);
2873 }
2874
2875 return chr;
2876 fail:
2877 if (fd >= 0)
2878 closesocket(fd);
2879 qemu_free(s);
2880 qemu_free(chr);
2881 return NULL;
2882 }
2883
2884 CharDriverState *qemu_chr_open(const char *filename)
2885 {
2886 const char *p;
2887
2888 if (!strcmp(filename, "vc")) {
2889 return text_console_init(&display_state);
2890 } else if (!strcmp(filename, "null")) {
2891 return qemu_chr_open_null();
2892 } else
2893 if (strstart(filename, "tcp:", &p)) {
2894 return qemu_chr_open_tcp(p, 0, 0);
2895 } else
2896 if (strstart(filename, "telnet:", &p)) {
2897 return qemu_chr_open_tcp(p, 1, 0);
2898 } else
2899 if (strstart(filename, "udp:", &p)) {
2900 return qemu_chr_open_udp(p);
2901 } else
2902 if (strstart(filename, "mon:", &p)) {
2903 CharDriverState *drv = qemu_chr_open(p);
2904 if (drv) {
2905 drv = qemu_chr_open_mux(drv);
2906 monitor_init(drv, !nographic);
2907 return drv;
2908 }
2909 printf("Unable to open driver: %s\n", p);
2910 return 0;
2911 } else
2912 #ifndef _WIN32
2913 if (strstart(filename, "unix:", &p)) {
2914 return qemu_chr_open_tcp(p, 0, 1);
2915 } else if (strstart(filename, "file:", &p)) {
2916 return qemu_chr_open_file_out(p);
2917 } else if (strstart(filename, "pipe:", &p)) {
2918 return qemu_chr_open_pipe(p);
2919 } else if (!strcmp(filename, "pty")) {
2920 return qemu_chr_open_pty();
2921 } else if (!strcmp(filename, "stdio")) {
2922 return qemu_chr_open_stdio();
2923 } else
2924 #endif
2925 #if defined(__linux__)
2926 if (strstart(filename, "/dev/parport", NULL)) {
2927 return qemu_chr_open_pp(filename);
2928 } else
2929 if (strstart(filename, "/dev/", NULL)) {
2930 return qemu_chr_open_tty(filename);
2931 } else
2932 #endif
2933 #ifdef _WIN32
2934 if (strstart(filename, "COM", NULL)) {
2935 return qemu_chr_open_win(filename);
2936 } else
2937 if (strstart(filename, "pipe:", &p)) {
2938 return qemu_chr_open_win_pipe(p);
2939 } else
2940 if (strstart(filename, "file:", &p)) {
2941 return qemu_chr_open_win_file_out(p);
2942 }
2943 #endif
2944 {
2945 return NULL;
2946 }
2947 }
2948
2949 void qemu_chr_close(CharDriverState *chr)
2950 {
2951 if (chr->chr_close)
2952 chr->chr_close(chr);
2953 }
2954
2955 /***********************************************************/
2956 /* network device redirectors */
2957
2958 void hex_dump(FILE *f, const uint8_t *buf, int size)
2959 {
2960 int len, i, j, c;
2961
2962 for(i=0;i<size;i+=16) {
2963 len = size - i;
2964 if (len > 16)
2965 len = 16;
2966 fprintf(f, "%08x ", i);
2967 for(j=0;j<16;j++) {
2968 if (j < len)
2969 fprintf(f, " %02x", buf[i+j]);
2970 else
2971 fprintf(f, " ");
2972 }
2973 fprintf(f, " ");
2974 for(j=0;j<len;j++) {
2975 c = buf[i+j];
2976 if (c < ' ' || c > '~')
2977 c = '.';
2978 fprintf(f, "%c", c);
2979 }
2980 fprintf(f, "\n");
2981 }
2982 }
2983
2984 static int parse_macaddr(uint8_t *macaddr, const char *p)
2985 {
2986 int i;
2987 for(i = 0; i < 6; i++) {
2988 macaddr[i] = strtol(p, (char **)&p, 16);
2989 if (i == 5) {
2990 if (*p != '\0')
2991 return -1;
2992 } else {
2993 if (*p != ':')
2994 return -1;
2995 p++;
2996 }
2997 }
2998 return 0;
2999 }
3000
3001 static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3002 {
3003 const char *p, *p1;
3004 int len;
3005 p = *pp;
3006 p1 = strchr(p, sep);
3007 if (!p1)
3008 return -1;
3009 len = p1 - p;
3010 p1++;
3011 if (buf_size > 0) {
3012 if (len > buf_size - 1)
3013 len = buf_size - 1;
3014 memcpy(buf, p, len);
3015 buf[len] = '\0';
3016 }
3017 *pp = p1;
3018 return 0;
3019 }
3020
3021 int parse_host_src_port(struct sockaddr_in *haddr,
3022 struct sockaddr_in *saddr,
3023 const char *input_str)
3024 {
3025 char *str = strdup(input_str);
3026 char *host_str = str;
3027 char *src_str;
3028 char *ptr;
3029
3030 /*
3031 * Chop off any extra arguments at the end of the string which
3032 * would start with a comma, then fill in the src port information
3033 * if it was provided else use the "any address" and "any port".
3034 */
3035 if ((ptr = strchr(str,',')))
3036 *ptr = '\0';
3037
3038 if ((src_str = strchr(input_str,'@'))) {
3039 *src_str = '\0';
3040 src_str++;
3041 }
3042
3043 if (parse_host_port(haddr, host_str) < 0)
3044 goto fail;
3045
3046 if (!src_str || *src_str == '\0')
3047 src_str = ":0";
3048
3049 if (parse_host_port(saddr, src_str) < 0)
3050 goto fail;
3051
3052 free(str);
3053 return(0);
3054
3055 fail:
3056 free(str);
3057 return -1;
3058 }
3059
3060 int parse_host_port(struct sockaddr_in *saddr, const char *str)
3061 {
3062 char buf[512];
3063 struct hostent *he;
3064 const char *p, *r;
3065 int port;
3066
3067 p = str;
3068 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3069 return -1;
3070 saddr->sin_family = AF_INET;
3071 if (buf[0] == '\0') {
3072 saddr->sin_addr.s_addr = 0;
3073 } else {
3074 if (isdigit(buf[0])) {
3075 if (!inet_aton(buf, &saddr->sin_addr))
3076 return -1;
3077 } else {
3078 if ((he = gethostbyname(buf)) == NULL)
3079 return - 1;
3080 saddr->sin_addr = *(struct in_addr *)he->h_addr;
3081 }
3082 }
3083 port = strtol(p, (char **)&r, 0);
3084 if (r == p)
3085 return -1;
3086 saddr->sin_port = htons(port);
3087 return 0;
3088 }
3089
3090 #ifndef _WIN32
3091 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
3092 {
3093 const char *p;
3094 int len;
3095
3096 len = MIN(108, strlen(str));
3097 p = strchr(str, ',');
3098 if (p)
3099 len = MIN(len, p - str);
3100
3101 memset(uaddr, 0, sizeof(*uaddr));
3102
3103 uaddr->sun_family = AF_UNIX;
3104 memcpy(uaddr->sun_path, str, len);
3105
3106 return 0;
3107 }
3108 #endif
3109
3110 /* find or alloc a new VLAN */
3111 VLANState *qemu_find_vlan(int id)
3112 {
3113 VLANState **pvlan, *vlan;
3114 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3115 if (vlan->id == id)
3116 return vlan;
3117 }
3118 vlan = qemu_mallocz(sizeof(VLANState));
3119 if (!vlan)
3120 return NULL;
3121 vlan->id = id;
3122 vlan->next = NULL;
3123 pvlan = &first_vlan;
3124 while (*pvlan != NULL)
3125 pvlan = &(*pvlan)->next;
3126 *pvlan = vlan;
3127 return vlan;
3128 }
3129
3130 VLANClientState *qemu_new_vlan_client(VLANState *vlan,
3131 IOReadHandler *fd_read,
3132 IOCanRWHandler *fd_can_read,
3133 void *opaque)
3134 {
3135 VLANClientState *vc, **pvc;
3136 vc = qemu_mallocz(sizeof(VLANClientState));
3137 if (!vc)
3138 return NULL;
3139 vc->fd_read = fd_read;
3140 vc->fd_can_read = fd_can_read;
3141 vc->opaque = opaque;
3142 vc->vlan = vlan;
3143
3144 vc->next = NULL;
3145 pvc = &vlan->first_client;
3146 while (*pvc != NULL)
3147 pvc = &(*pvc)->next;
3148 *pvc = vc;
3149 return vc;
3150 }
3151
3152 int qemu_can_send_packet(VLANClientState *vc1)
3153 {
3154 VLANState *vlan = vc1->vlan;
3155 VLANClientState *vc;
3156
3157 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3158 if (vc != vc1) {
3159 if (vc->fd_can_read && !vc->fd_can_read(vc->opaque))
3160 return 0;
3161 }
3162 }
3163 return 1;
3164 }
3165
3166 void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
3167 {
3168 VLANState *vlan = vc1->vlan;
3169 VLANClientState *vc;
3170
3171 #if 0
3172 printf("vlan %d send:\n", vlan->id);
3173 hex_dump(stdout, buf, size);
3174 #endif
3175 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3176 if (vc != vc1) {
3177 vc->fd_read(vc->opaque, buf, size);
3178 }
3179 }
3180 }
3181
3182 #if defined(CONFIG_SLIRP)
3183
3184 /* slirp network adapter */
3185
3186 static int slirp_inited;
3187 static VLANClientState *slirp_vc;
3188
3189 int slirp_can_output(void)
3190 {
3191 return !slirp_vc || qemu_can_send_packet(slirp_vc);
3192 }
3193
3194 void slirp_output(const uint8_t *pkt, int pkt_len)
3195 {
3196 #if 0
3197 printf("slirp output:\n");
3198 hex_dump(stdout, pkt, pkt_len);
3199 #endif
3200 if (!slirp_vc)
3201 return;
3202 qemu_send_packet(slirp_vc, pkt, pkt_len);
3203 }
3204
3205 static void slirp_receive(void *opaque, const uint8_t *buf, int size)
3206 {
3207 #if 0
3208 printf("slirp input:\n");
3209 hex_dump(stdout, buf, size);
3210 #endif
3211 slirp_input(buf, size);
3212 }
3213
3214 static int net_slirp_init(VLANState *vlan)
3215 {
3216 if (!slirp_inited) {
3217 slirp_inited = 1;
3218 slirp_init();
3219 }
3220 slirp_vc = qemu_new_vlan_client(vlan,
3221 slirp_receive, NULL, NULL);
3222 snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
3223 return 0;
3224 }
3225
3226 static void net_slirp_redir(const char *redir_str)
3227 {
3228 int is_udp;
3229 char buf[256], *r;
3230 const char *p;
3231 struct in_addr guest_addr;
3232 int host_port, guest_port;
3233
3234 if (!slirp_inited) {
3235 slirp_inited = 1;
3236 slirp_init();
3237 }
3238
3239 p = redir_str;
3240 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3241 goto fail;
3242 if (!strcmp(buf, "tcp")) {
3243 is_udp = 0;
3244 } else if (!strcmp(buf, "udp")) {
3245 is_udp = 1;
3246 } else {
3247 goto fail;
3248 }
3249
3250 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3251 goto fail;
3252 host_port = strtol(buf, &r, 0);
3253 if (r == buf)
3254 goto fail;
3255
3256 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3257 goto fail;
3258 if (buf[0] == '\0') {
3259 pstrcpy(buf, sizeof(buf), "10.0.2.15");
3260 }
3261 if (!inet_aton(buf, &guest_addr))
3262 goto fail;
3263
3264 guest_port = strtol(p, &r, 0);
3265 if (r == p)
3266 goto fail;
3267
3268 if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
3269 fprintf(stderr, "qemu: could not set up redirection\n");
3270 exit(1);
3271 }
3272 return;
3273 fail:
3274 fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
3275 exit(1);
3276 }
3277
3278 #ifndef _WIN32
3279
3280 char smb_dir[1024];
3281
3282 static void smb_exit(void)
3283 {
3284 DIR *d;
3285 struct dirent *de;
3286 char filename[1024];
3287
3288 /* erase all the files in the directory */
3289 d = opendir(smb_dir);
3290 for(;;) {
3291 de = readdir(d);
3292 if (!de)
3293 break;
3294 if (strcmp(de->d_name, ".") != 0 &&
3295 strcmp(de->d_name, "..") != 0) {
3296 snprintf(filename, sizeof(filename), "%s/%s",
3297 smb_dir, de->d_name);
3298 unlink(filename);
3299 }
3300 }
3301 closedir(d);
3302 rmdir(smb_dir);
3303 }
3304
3305 /* automatic user mode samba server configuration */
3306 void net_slirp_smb(const char *exported_dir)
3307 {
3308 char smb_conf[1024];
3309 char smb_cmdline[1024];
3310 FILE *f;
3311
3312 if (!slirp_inited) {
3313 slirp_inited = 1;
3314 slirp_init();
3315 }
3316
3317 /* XXX: better tmp dir construction */
3318 snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
3319 if (mkdir(smb_dir, 0700) < 0) {
3320 fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
3321 exit(1);
3322 }
3323 snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
3324
3325 f = fopen(smb_conf, "w");
3326 if (!f) {
3327 fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
3328 exit(1);
3329 }
3330 fprintf(f,
3331 "[global]\n"
3332 "private dir=%s\n"
3333 "smb ports=0\n"
3334 "socket address=127.0.0.1\n"
3335 "pid directory=%s\n"
3336 "lock directory=%s\n"
3337 "log file=%s/log.smbd\n"
3338 "smb passwd file=%s/smbpasswd\n"
3339 "security = share\n"
3340 "[qemu]\n"
3341 "path=%s\n"
3342 "read only=no\n"
3343 "guest ok=yes\n",
3344 smb_dir,
3345 smb_dir,
3346 smb_dir,
3347 smb_dir,
3348 smb_dir,
3349 exported_dir
3350 );
3351 fclose(f);
3352 atexit(smb_exit);
3353
3354 snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
3355 SMBD_COMMAND, smb_conf);
3356
3357 slirp_add_exec(0, smb_cmdline, 4, 139);
3358 }
3359
3360 #endif /* !defined(_WIN32) */
3361
3362 #endif /* CONFIG_SLIRP */
3363
3364 #if !defined(_WIN32)
3365
3366 typedef struct TAPState {
3367 VLANClientState *vc;
3368 int fd;
3369 } TAPState;
3370
3371 static void tap_receive(void *opaque, const uint8_t *buf, int size)
3372 {
3373 TAPState *s = opaque;
3374 int ret;
3375 for(;;) {
3376 ret = write(s->fd, buf, size);
3377 if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
3378 } else {
3379 break;
3380 }
3381 }
3382 }
3383
3384 static void tap_send(void *opaque)
3385 {
3386 TAPState *s = opaque;
3387 uint8_t buf[4096];
3388 int size;
3389
3390 #ifdef __sun__
3391 struct strbuf sbuf;
3392 int f = 0;
3393 sbuf.maxlen = sizeof(buf);
3394 sbuf.buf = buf;
3395 size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
3396 #else
3397 size = read(s->fd, buf, sizeof(buf));
3398 #endif
3399 if (size > 0) {
3400 qemu_send_packet(s->vc, buf, size);
3401 }
3402 }
3403
3404 /* fd support */
3405
3406 static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
3407 {
3408 TAPState *s;
3409
3410 s = qemu_mallocz(sizeof(TAPState));
3411 if (!s)
3412 return NULL;
3413 s->fd = fd;
3414 s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
3415 qemu_set_fd_handler(s->fd, tap_send, NULL, s);
3416 snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
3417 return s;
3418 }
3419
3420 #ifdef _BSD
3421 static int tap_open(char *ifname, int ifname_size)
3422 {
3423 int fd;
3424 char *dev;
3425 struct stat s;
3426
3427 fd = open("/dev/tap", O_RDWR);
3428 if (fd < 0) {
3429 fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
3430 return -1;
3431 }
3432
3433 fstat(fd, &s);
3434 dev = devname(s.st_rdev, S_IFCHR);
3435 pstrcpy(ifname, ifname_size, dev);
3436
3437 fcntl(fd, F_SETFL, O_NONBLOCK);
3438 return fd;
3439 }
3440 #elif defined(__sun__)
3441 #define TUNNEWPPA (('T'<<16) | 0x0001)
3442 /*
3443 * Allocate TAP device, returns opened fd.
3444 * Stores dev name in the first arg(must be large enough).
3445 */
3446 int tap_alloc(char *dev)
3447 {
3448 int tap_fd, if_fd, ppa = -1;
3449 static int ip_fd = 0;
3450 char *ptr;
3451
3452 static int arp_fd = 0;
3453 int ip_muxid, arp_muxid;
3454 struct strioctl strioc_if, strioc_ppa;
3455 int link_type = I_PLINK;;
3456 struct lifreq ifr;
3457 char actual_name[32] = "";
3458
3459 memset(&ifr, 0x0, sizeof(ifr));
3460
3461 if( *dev ){
3462 ptr = dev;
3463 while( *ptr && !isdigit((int)*ptr) ) ptr++;
3464 ppa = atoi(ptr);
3465 }
3466
3467 /* Check if IP device was opened */
3468 if( ip_fd )
3469 close(ip_fd);
3470
3471 if( (ip_fd = open("/dev/udp", O_RDWR, 0)) < 0){
3472 syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
3473 return -1;
3474 }
3475
3476 if( (tap_fd = open("/dev/tap", O_RDWR, 0)) < 0){
3477 syslog(LOG_ERR, "Can't open /dev/tap");
3478 return -1;
3479 }
3480
3481 /* Assign a new PPA and get its unit number. */
3482 strioc_ppa.ic_cmd = TUNNEWPPA;
3483 strioc_ppa.ic_timout = 0;
3484 strioc_ppa.ic_len = sizeof(ppa);
3485 strioc_ppa.ic_dp = (char *)&ppa;
3486 if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
3487 syslog (LOG_ERR, "Can't assign new interface");
3488
3489 if( (if_fd = open("/dev/tap", O_RDWR, 0)) < 0){
3490 syslog(LOG_ERR, "Can't open /dev/tap (2)");
3491 return -1;
3492 }
3493 if(ioctl(if_fd, I_PUSH, "ip") < 0){
3494 syslog(LOG_ERR, "Can't push IP module");
3495 return -1;
3496 }
3497
3498 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
3499 syslog(LOG_ERR, "Can't get flags\n");
3500
3501 snprintf (actual_name, 32, "tap%d", ppa);
3502 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3503
3504 ifr.lifr_ppa = ppa;
3505 /* Assign ppa according to the unit number returned by tun device */
3506
3507 if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
3508 syslog (LOG_ERR, "Can't set PPA %d", ppa);
3509 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
3510 syslog (LOG_ERR, "Can't get flags\n");
3511 /* Push arp module to if_fd */
3512 if (ioctl (if_fd, I_PUSH, "arp") < 0)
3513 syslog (LOG_ERR, "Can't push ARP module (2)");
3514
3515 /* Push arp module to ip_fd */
3516 if (ioctl (ip_fd, I_POP, NULL) < 0)
3517 syslog (LOG_ERR, "I_POP failed\n");
3518 if (ioctl (ip_fd, I_PUSH, "arp") < 0)
3519 syslog (LOG_ERR, "Can't push ARP module (3)\n");
3520 /* Open arp_fd */
3521 if ((arp_fd = open ("/dev/tap", O_RDWR, 0)) < 0)
3522 syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
3523
3524 /* Set ifname to arp */
3525 strioc_if.ic_cmd = SIOCSLIFNAME;
3526 strioc_if.ic_timout = 0;
3527 strioc_if.ic_len = sizeof(ifr);
3528 strioc_if.ic_dp = (char *)&ifr;
3529 if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
3530 syslog (LOG_ERR, "Can't set ifname to arp\n");
3531 }
3532
3533 if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
3534 syslog(LOG_ERR, "Can't link TAP device to IP");
3535 return -1;
3536 }
3537
3538 if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
3539 syslog (LOG_ERR, "Can't link TAP device to ARP");
3540
3541 close (if_fd);
3542
3543 memset(&ifr, 0x0, sizeof(ifr));
3544 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3545 ifr.lifr_ip_muxid = ip_muxid;
3546 ifr.lifr_arp_muxid = arp_muxid;
3547
3548 if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
3549 {
3550 ioctl (ip_fd, I_PUNLINK , arp_muxid);
3551 ioctl (ip_fd, I_PUNLINK, ip_muxid);
3552 syslog (LOG_ERR, "Can't set multiplexor id");
3553 }
3554
3555 sprintf(dev, "tap%d", ppa);
3556 return tap_fd;
3557 }
3558
3559 static int tap_open(char *ifname, int ifname_size)
3560 {
3561 char dev[10]="";
3562 int fd;
3563 if( (fd = tap_alloc(dev)) < 0 ){
3564 fprintf(stderr, "Cannot allocate TAP device\n");
3565 return -1;
3566 }
3567 pstrcpy(ifname, ifname_size, dev);
3568 fcntl(fd, F_SETFL, O_NONBLOCK);
3569 return fd;
3570 }
3571 #else
3572 static int tap_open(char *ifname, int ifname_size)
3573 {
3574 struct ifreq ifr;
3575 int fd, ret;
3576
3577 fd = open("/dev/net/tun", O_RDWR);
3578 if (fd < 0) {
3579 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
3580 return -1;
3581 }
3582 memset(&ifr, 0, sizeof(ifr));
3583 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
3584 if (ifname[0] != '\0')
3585 pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
3586 else
3587 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
3588 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
3589 if (ret != 0) {
3590 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
3591 close(fd);
3592 return -1;
3593 }
3594 pstrcpy(ifname, ifname_size, ifr.ifr_name);
3595 fcntl(fd, F_SETFL, O_NONBLOCK);
3596 return fd;
3597 }
3598 #endif
3599
3600 static int net_tap_init(VLANState *vlan, const char *ifname1,
3601 const char *setup_script)
3602 {
3603 TAPState *s;
3604 int pid, status, fd;
3605 char *args[3];
3606 char **parg;
3607 char ifname[128];
3608
3609 if (ifname1 != NULL)
3610 pstrcpy(ifname, sizeof(ifname), ifname1);
3611 else
3612 ifname[0] = '\0';
3613 fd = tap_open(ifname, sizeof(ifname));
3614 if (fd < 0)
3615 return -1;
3616
3617 if (!setup_script || !strcmp(setup_script, "no"))
3618 setup_script = "";
3619 if (setup_script[0] != '\0') {
3620 /* try to launch network init script */
3621 pid = fork();
3622 if (pid >= 0) {
3623 if (pid == 0) {
3624 int open_max = sysconf (_SC_OPEN_MAX), i;
3625 for (i = 0; i < open_max; i++)
3626 if (i != STDIN_FILENO &&
3627 i != STDOUT_FILENO &&
3628 i != STDERR_FILENO &&
3629 i != fd)
3630 close(i);
3631
3632 parg = args;
3633 *parg++ = (char *)setup_script;
3634 *parg++ = ifname;
3635 *parg++ = NULL;
3636 execv(setup_script, args);
3637 _exit(1);
3638 }
3639 while (waitpid(pid, &status, 0) != pid);
3640 if (!WIFEXITED(status) ||
3641 WEXITSTATUS(status) != 0) {
3642 fprintf(stderr, "%s: could not launch network script\n",
3643 setup_script);
3644 return -1;
3645 }
3646 }
3647 }
3648 s = net_tap_fd_init(vlan, fd);
3649 if (!s)
3650 return -1;
3651 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3652 "tap: ifname=%s setup_script=%s", ifname, setup_script);
3653 return 0;
3654 }
3655
3656 #endif /* !_WIN32 */
3657
3658 /* network connection */
3659 typedef struct NetSocketState {
3660 VLANClientState *vc;
3661 int fd;
3662 int state; /* 0 = getting length, 1 = getting data */
3663 int index;
3664 int packet_len;
3665 uint8_t buf[4096];
3666 struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
3667 } NetSocketState;
3668
3669 typedef struct NetSocketListenState {
3670 VLANState *vlan;
3671 int fd;
3672 } NetSocketListenState;
3673
3674 /* XXX: we consider we can send the whole packet without blocking */
3675 static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
3676 {
3677 NetSocketState *s = opaque;
3678 uint32_t len;
3679 len = htonl(size);
3680
3681 send_all(s->fd, (const uint8_t *)&len, sizeof(len));
3682 send_all(s->fd, buf, size);
3683 }
3684
3685 static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
3686 {
3687 NetSocketState *s = opaque;
3688 sendto(s->fd, buf, size, 0,
3689 (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
3690 }
3691
3692 static void net_socket_send(void *opaque)
3693 {
3694 NetSocketState *s = opaque;
3695 int l, size, err;
3696 uint8_t buf1[4096];
3697 const uint8_t *buf;
3698
3699 size = recv(s->fd, buf1, sizeof(buf1), 0);
3700 if (size < 0) {
3701 err = socket_error();
3702 if (err != EWOULDBLOCK)
3703 goto eoc;
3704 } else if (size == 0) {
3705 /* end of connection */
3706 eoc:
3707 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3708 closesocket(s->fd);
3709 return;
3710 }
3711 buf = buf1;
3712 while (size > 0) {
3713 /* reassemble a packet from the network */
3714 switch(s->state) {
3715 case 0:
3716 l = 4 - s->index;
3717 if (l > size)
3718 l = size;
3719 memcpy(s->buf + s->index, buf, l);
3720 buf += l;
3721 size -= l;
3722 s->index += l;
3723 if (s->index == 4) {
3724 /* got length */
3725 s->packet_len = ntohl(*(uint32_t *)s->buf);
3726 s->index = 0;
3727 s->state = 1;
3728 }
3729 break;
3730 case 1:
3731 l = s->packet_len - s->index;
3732 if (l > size)
3733 l = size;
3734 memcpy(s->buf + s->index, buf, l);
3735 s->index += l;
3736 buf += l;
3737 size -= l;
3738 if (s->index >= s->packet_len) {
3739 qemu_send_packet(s->vc, s->buf, s->packet_len);
3740 s->index = 0;
3741 s->state = 0;
3742 }
3743 break;
3744 }
3745 }
3746 }
3747
3748 static void net_socket_send_dgram(void *opaque)
3749 {
3750 NetSocketState *s = opaque;
3751 int size;
3752
3753 size = recv(s->fd, s->buf, sizeof(s->buf), 0);
3754 if (size < 0)
3755 return;
3756 if (size == 0) {
3757 /* end of connection */
3758 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3759 return;
3760 }
3761 qemu_send_packet(s->vc, s->buf, size);
3762 }
3763
3764 static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
3765 {
3766 struct ip_mreq imr;
3767 int fd;
3768 int val, ret;
3769 if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
3770 fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
3771 inet_ntoa(mcastaddr->sin_addr),
3772 (int)ntohl(mcastaddr->sin_addr.s_addr));
3773 return -1;
3774
3775 }
3776 fd = socket(PF_INET, SOCK_DGRAM, 0);
3777 if (fd < 0) {
3778 perror("socket(PF_INET, SOCK_DGRAM)");
3779 return -1;
3780 }
3781
3782 val = 1;
3783 ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
3784 (const char *)&val, sizeof(val));
3785 if (ret < 0) {
3786 perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
3787 goto fail;
3788 }
3789
3790 ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
3791 if (ret < 0) {
3792 perror("bind");
3793 goto fail;
3794 }
3795
3796 /* Add host to multicast group */
3797 imr.imr_multiaddr = mcastaddr->sin_addr;
3798 imr.imr_interface.s_addr = htonl(INADDR_ANY);
3799
3800 ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
3801 (const char *)&imr, sizeof(struct ip_mreq));
3802 if (ret < 0) {
3803 perror("setsockopt(IP_ADD_MEMBERSHIP)");
3804 goto fail;
3805 }
3806
3807 /* Force mcast msgs to loopback (eg. several QEMUs in same host */
3808 val = 1;
3809 ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
3810 (const char *)&val, sizeof(val));
3811 if (ret < 0) {
3812 perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
3813 goto fail;
3814 }
3815
3816 socket_set_nonblock(fd);
3817 return fd;
3818 fail:
3819 if (fd >= 0)
3820 closesocket(fd);
3821 return -1;
3822 }
3823
3824 static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
3825 int is_connected)
3826 {
3827 struct sockaddr_in saddr;
3828 int newfd;
3829 socklen_t saddr_len;
3830 NetSocketState *s;
3831
3832 /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
3833 * Because this may be "shared" socket from a "master" process, datagrams would be recv()
3834 * by ONLY ONE process: we must "clone" this dgram socket --jjo
3835 */
3836
3837 if (is_connected) {
3838 if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
3839 /* must be bound */
3840 if (saddr.sin_addr.s_addr==0) {
3841 fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
3842 fd);
3843 return NULL;
3844 }
3845 /* clone dgram socket */
3846 newfd = net_socket_mcast_create(&saddr);
3847 if (newfd < 0) {
3848 /* error already reported by net_socket_mcast_create() */
3849 close(fd);
3850 return NULL;
3851 }
3852 /* clone newfd to fd, close newfd */
3853 dup2(newfd, fd);
3854 close(newfd);
3855
3856 } else {
3857 fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
3858 fd, strerror(errno));
3859 return NULL;
3860 }
3861 }
3862
3863 s = qemu_mallocz(sizeof(NetSocketState));
3864 if (!s)
3865 return NULL;
3866 s->fd = fd;
3867
3868 s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
3869 qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
3870
3871 /* mcast: save bound address as dst */
3872 if (is_connected) s->dgram_dst=saddr;
3873
3874 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3875 "socket: fd=%d (%s mcast=%s:%d)",
3876 fd, is_connected? "cloned" : "",
3877 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
3878 return s;
3879 }
3880
3881 static void net_socket_connect(void *opaque)
3882 {
3883 NetSocketState *s = opaque;
3884 qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
3885 }
3886
3887 static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
3888 int is_connected)
3889 {
3890 NetSocketState *s;
3891 s = qemu_mallocz(sizeof(NetSocketState));
3892 if (!s)
3893 return NULL;
3894 s->fd = fd;
3895 s->vc = qemu_new_vlan_client(vlan,
3896 net_socket_receive, NULL, s);
3897 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3898 "socket: fd=%d", fd);
3899 if (is_connected) {
3900 net_socket_connect(s);
3901 } else {
3902 qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
3903 }
3904 return s;
3905 }
3906
3907 static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
3908 int is_connected)
3909 {
3910 int so_type=-1, optlen=sizeof(so_type);
3911
3912 if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type, &optlen)< 0) {
3913 fprintf(stderr, "qemu: error: setsockopt(SO_TYPE) for fd=%d failed\n", fd);
3914 return NULL;
3915 }
3916 switch(so_type) {
3917 case SOCK_DGRAM:
3918 return net_socket_fd_init_dgram(vlan, fd, is_connected);
3919 case SOCK_STREAM:
3920 return net_socket_fd_init_stream(vlan, fd, is_connected);
3921 default:
3922 /* who knows ... this could be a eg. a pty, do warn and continue as stream */
3923 fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
3924 return net_socket_fd_init_stream(vlan, fd, is_connected);
3925 }
3926 return NULL;
3927 }
3928
3929 static void net_socket_accept(void *opaque)
3930 {
3931 NetSocketListenState *s = opaque;
3932 NetSocketState *s1;
3933 struct sockaddr_in saddr;
3934 socklen_t len;
3935 int fd;
3936
3937 for(;;) {
3938 len = sizeof(saddr);
3939 fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
3940 if (fd < 0 && errno != EINTR) {
3941 return;
3942 } else if (fd >= 0) {
3943 break;
3944 }
3945 }
3946 s1 = net_socket_fd_init(s->vlan, fd, 1);
3947 if (!s1) {
3948 closesocket(fd);
3949 } else {
3950 snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
3951 "socket: connection from %s:%d",
3952 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
3953 }
3954 }
3955
3956 static int net_socket_listen_init(VLANState *vlan, const char *host_str)
3957 {
3958 NetSocketListenState *s;
3959 int fd, val, ret;
3960 struct sockaddr_in saddr;
3961
3962 if (parse_host_port(&saddr, host_str) < 0)
3963 return -1;
3964
3965 s = qemu_mallocz(sizeof(NetSocketListenState));
3966 if (!s)
3967 return -1;
3968
3969 fd = socket(PF_INET, SOCK_STREAM, 0);
3970 if (fd < 0) {
3971 perror("socket");
3972 return -1;
3973 }
3974 socket_set_nonblock(fd);
3975
3976 /* allow fast reuse */
3977 val = 1;
3978 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3979
3980 ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
3981 if (ret < 0) {
3982 perror("bind");
3983 return -1;
3984 }
3985 ret = listen(fd, 0);
3986 if (ret < 0) {
3987 perror("listen");
3988 return -1;
3989 }
3990 s->vlan = vlan;
3991 s->fd = fd;
3992 qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
3993 return 0;
3994 }
3995
3996 static int net_socket_connect_init(VLANState *vlan, const char *host_str)
3997 {
3998 NetSocketState *s;
3999 int fd, connected, ret, err;
4000 struct sockaddr_in saddr;
4001
4002 if (parse_host_port(&saddr, host_str) < 0)
4003 return -1;
4004
4005 fd = socket(PF_INET, SOCK_STREAM, 0);
4006 if (fd < 0) {
4007 perror("socket");
4008 return -1;
4009 }
4010 socket_set_nonblock(fd);
4011
4012 connected = 0;
4013 for(;;) {
4014 ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4015 if (ret < 0) {
4016 err = socket_error();
4017 if (err == EINTR || err == EWOULDBLOCK) {
4018 } else if (err == EINPROGRESS) {
4019 break;
4020 } else {
4021 perror("connect");
4022 closesocket(fd);
4023 return -1;
4024 }
4025 } else {
4026 connected = 1;
4027 break;
4028 }
4029 }
4030 s = net_socket_fd_init(vlan, fd, connected);
4031 if (!s)
4032 return -1;
4033 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4034 "socket: connect to %s:%d",
4035 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4036 return 0;
4037 }
4038
4039 static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
4040 {
4041 NetSocketState *s;
4042 int fd;
4043 struct sockaddr_in saddr;
4044
4045 if (parse_host_port(&saddr, host_str) < 0)
4046 return -1;
4047
4048
4049 fd = net_socket_mcast_create(&saddr);
4050 if (fd < 0)
4051 return -1;
4052
4053 s = net_socket_fd_init(vlan, fd, 0);
4054 if (!s)
4055 return -1;
4056
4057 s->dgram_dst = saddr;
4058
4059 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4060 "socket: mcast=%s:%d",
4061 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4062 return 0;
4063
4064 }
4065
4066 static int get_param_value(char *buf, int buf_size,
4067 const char *tag, const char *str)
4068 {
4069 const char *p;
4070 char *q;
4071 char option[128];
4072
4073 p = str;
4074 for(;;) {
4075 q = option;
4076 while (*p != '\0' && *p != '=') {
4077 if ((q - option) < sizeof(option) - 1)
4078 *q++ = *p;
4079 p++;
4080 }
4081 *q = '\0';
4082 if (*p != '=')
4083 break;
4084 p++;
4085 if (!strcmp(tag, option)) {
4086 q = buf;
4087 while (*p != '\0' && *p != ',') {
4088 if ((q - buf) < buf_size - 1)
4089 *q++ = *p;
4090 p++;
4091 }
4092 *q = '\0';
4093 return q - buf;
4094 } else {
4095 while (*p != '\0' && *p != ',') {
4096 p++;
4097 }
4098 }
4099 if (*p != ',')
4100 break;
4101 p++;
4102 }
4103 return 0;
4104 }
4105
4106 static int net_client_init(const char *str)
4107 {
4108 const char *p;
4109 char *q;
4110 char device[64];
4111 char buf[1024];
4112 int vlan_id, ret;
4113 VLANState *vlan;
4114
4115 p = str;
4116 q = device;
4117 while (*p != '\0' && *p != ',') {
4118 if ((q - device) < sizeof(device) - 1)
4119 *q++ = *p;
4120 p++;
4121 }
4122 *q = '\0';
4123 if (*p == ',')
4124 p++;
4125 vlan_id = 0;
4126 if (get_param_value(buf, sizeof(buf), "vlan", p)) {
4127 vlan_id = strtol(buf, NULL, 0);
4128 }
4129 vlan = qemu_find_vlan(vlan_id);
4130 if (!vlan) {
4131 fprintf(stderr, "Could not create vlan %d\n", vlan_id);
4132 return -1;
4133 }
4134 if (!strcmp(device, "nic")) {
4135 NICInfo *nd;
4136 uint8_t *macaddr;
4137
4138 if (nb_nics >= MAX_NICS) {
4139 fprintf(stderr, "Too Many NICs\n");
4140 return -1;
4141 }
4142 nd = &nd_table[nb_nics];
4143 macaddr = nd->macaddr;
4144 macaddr[0] = 0x52;
4145 macaddr[1] = 0x54;
4146 macaddr[2] = 0x00;
4147 macaddr[3] = 0x12;
4148 macaddr[4] = 0x34;
4149 macaddr[5] = 0x56 + nb_nics;
4150
4151 if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
4152 if (parse_macaddr(macaddr, buf) < 0) {
4153 fprintf(stderr, "invalid syntax for ethernet address\n");
4154 return -1;
4155 }
4156 }
4157 if (get_param_value(buf, sizeof(buf), "model", p)) {
4158 nd->model = strdup(buf);
4159 }
4160 nd->vlan = vlan;
4161 nb_nics++;
4162 ret = 0;
4163 } else
4164 if (!strcmp(device, "none")) {
4165 /* does nothing. It is needed to signal that no network cards
4166 are wanted */
4167 ret = 0;
4168 } else
4169 #ifdef CONFIG_SLIRP
4170 if (!strcmp(device, "user")) {
4171 if (get_param_value(buf, sizeof(buf), "hostname", p)) {
4172 pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
4173 }
4174 ret = net_slirp_init(vlan);
4175 } else
4176 #endif
4177 #ifdef _WIN32
4178 if (!strcmp(device, "tap")) {
4179 char ifname[64];
4180 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4181 fprintf(stderr, "tap: no interface name\n");
4182 return -1;
4183 }
4184 ret = tap_win32_init(vlan, ifname);
4185 } else
4186 #else
4187 if (!strcmp(device, "tap")) {
4188 char ifname[64];
4189 char setup_script[1024];
4190 int fd;
4191 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4192 fd = strtol(buf, NULL, 0);
4193 ret = -1;
4194 if (net_tap_fd_init(vlan, fd))
4195 ret = 0;
4196 } else {
4197 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4198 ifname[0] = '\0';
4199 }
4200 if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
4201 pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
4202 }
4203 ret = net_tap_init(vlan, ifname, setup_script);
4204 }
4205 } else
4206 #endif
4207 if (!strcmp(device, "socket")) {
4208 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4209 int fd;
4210 fd = strtol(buf, NULL, 0);
4211 ret = -1;
4212 if (net_socket_fd_init(vlan, fd, 1))
4213 ret = 0;
4214 } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
4215 ret = net_socket_listen_init(vlan, buf);
4216 } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
4217 ret = net_socket_connect_init(vlan, buf);
4218 } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
4219 ret = net_socket_mcast_init(vlan, buf);
4220 } else {
4221 fprintf(stderr, "Unknown socket options: %s\n", p);
4222 return -1;
4223 }
4224 } else
4225 {
4226 fprintf(stderr, "Unknown network device: %s\n", device);
4227 return -1;
4228 }
4229 if (ret < 0) {
4230 fprintf(stderr, "Could not initialize device '%s'\n", device);
4231 }
4232
4233 return ret;
4234 }
4235
4236 void do_info_network(void)
4237 {
4238 VLANState *vlan;
4239 VLANClientState *vc;
4240
4241 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4242 term_printf("VLAN %d devices:\n", vlan->id);
4243 for(vc = vlan->first_client; vc != NULL; vc = vc->next)
4244 term_printf(" %s\n", vc->info_str);
4245 }
4246 }
4247
4248 /***********************************************************/
4249 /* USB devices */
4250
4251 static USBPort *used_usb_ports;
4252 static USBPort *free_usb_ports;
4253
4254 /* ??? Maybe change this to register a hub to keep track of the topology. */
4255 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
4256 usb_attachfn attach)
4257 {
4258 port->opaque = opaque;
4259 port->index = index;
4260 port->attach = attach;
4261 port->next = free_usb_ports;
4262 free_usb_ports = port;
4263 }
4264
4265 static int usb_device_add(const char *devname)
4266 {
4267 const char *p;
4268 USBDevice *dev;
4269 USBPort *port;
4270
4271 if (!free_usb_ports)
4272 return -1;
4273
4274 if (strstart(devname, "host:", &p)) {
4275 dev = usb_host_device_open(p);
4276 } else if (!strcmp(devname, "mouse")) {
4277 dev = usb_mouse_init();
4278 } else if (!strcmp(devname, "tablet")) {
4279 dev = usb_tablet_init();
4280 } else if (strstart(devname, "disk:", &p)) {
4281 dev = usb_msd_init(p);
4282 } else {
4283 return -1;
4284 }
4285 if (!dev)
4286 return -1;
4287
4288 /* Find a USB port to add the device to. */
4289 port = free_usb_ports;
4290 if (!port->next) {
4291 USBDevice *hub;
4292
4293 /* Create a new hub and chain it on. */
4294 free_usb_ports = NULL;
4295 port->next = used_usb_ports;
4296 used_usb_ports = port;
4297
4298 hub = usb_hub_init(VM_USB_HUB_SIZE);
4299 usb_attach(port, hub);
4300 port = free_usb_ports;
4301 }
4302
4303 free_usb_ports = port->next;
4304 port->next = used_usb_ports;
4305 used_usb_ports = port;
4306 usb_attach(port, dev);
4307 return 0;
4308 }
4309
4310 static int usb_device_del(const char *devname)
4311 {
4312 USBPort *port;
4313 USBPort **lastp;
4314 USBDevice *dev;
4315 int bus_num, addr;
4316 const char *p;
4317
4318 if (!used_usb_ports)
4319 return -1;
4320
4321 p = strchr(devname, '.');
4322 if (!p)
4323 return -1;
4324 bus_num = strtoul(devname, NULL, 0);
4325 addr = strtoul(p + 1, NULL, 0);
4326 if (bus_num != 0)
4327 return -1;
4328
4329 lastp = &used_usb_ports;
4330 port = used_usb_ports;
4331 while (port && port->dev->addr != addr) {
4332 lastp = &port->next;
4333 port = port->next;
4334 }
4335
4336 if (!port)
4337 return -1;
4338
4339 dev = port->dev;
4340 *lastp = port->next;
4341 usb_attach(port, NULL);
4342 dev->handle_destroy(dev);
4343 port->next = free_usb_ports;
4344 free_usb_ports = port;
4345 return 0;
4346 }
4347
4348 void do_usb_add(const char *devname)
4349 {
4350 int ret;
4351 ret = usb_device_add(devname);
4352 if (ret < 0)
4353 term_printf("Could not add USB device '%s'\n", devname);
4354 }
4355
4356 void do_usb_del(const char *devname)
4357 {
4358 int ret;
4359 ret = usb_device_del(devname);
4360 if (ret < 0)
4361 term_printf("Could not remove USB device '%s'\n", devname);
4362 }
4363
4364 void usb_info(void)
4365 {
4366 USBDevice *dev;
4367 USBPort *port;
4368 const char *speed_str;
4369
4370 if (!usb_enabled) {
4371 term_printf("USB support not enabled\n");
4372 return;
4373 }
4374
4375 for (port = used_usb_ports; port; port = port->next) {
4376 dev = port->dev;
4377 if (!dev)
4378 continue;
4379 switch(dev->speed) {
4380 case USB_SPEED_LOW:
4381 speed_str = "1.5";
4382 break;
4383 case USB_SPEED_FULL:
4384 speed_str = "12";
4385 break;
4386 case USB_SPEED_HIGH:
4387 speed_str = "480";
4388 break;
4389 default:
4390 speed_str = "?";
4391 break;
4392 }
4393 term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n",
4394 0, dev->addr, speed_str, dev->devname);
4395 }
4396 }
4397
4398 static int create_pidfile(const char *filename)
4399 {
4400 int fd;
4401 char buffer[128];
4402 int len;
4403
4404 fd = open(filename, O_RDWR | O_CREAT, 0600);
4405 if (fd == -1)
4406 return -1;
4407
4408 if (lockf(fd, F_TLOCK, 0) == -1)
4409 return -1;
4410
4411 len = snprintf(buffer, sizeof(buffer), "%ld\n", (long)getpid());
4412 if (write(fd, buffer, len) != len)
4413 return -1;
4414
4415 return 0;
4416 }
4417
4418 /***********************************************************/
4419 /* dumb display */
4420
4421 static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
4422 {
4423 }
4424
4425 static void dumb_resize(DisplayState *ds, int w, int h)
4426 {
4427 }
4428
4429 static void dumb_refresh(DisplayState *ds)
4430 {
4431 vga_hw_update();
4432 }
4433
4434 void dumb_display_init(DisplayState *ds)
4435 {
4436 ds->data = NULL;
4437 ds->linesize = 0;
4438 ds->depth = 0;
4439 ds->dpy_update = dumb_update;
4440 ds->dpy_resize = dumb_resize;
4441 ds->dpy_refresh = dumb_refresh;
4442 }
4443
4444 /***********************************************************/
4445 /* I/O handling */
4446
4447 #define MAX_IO_HANDLERS 64
4448
4449 typedef struct IOHandlerRecord {
4450 int fd;
4451 IOCanRWHandler *fd_read_poll;
4452 IOHandler *fd_read;
4453 IOHandler *fd_write;
4454 int deleted;
4455 void *opaque;
4456 /* temporary data */
4457 struct pollfd *ufd;
4458 struct IOHandlerRecord *next;
4459 } IOHandlerRecord;
4460
4461 static IOHandlerRecord *first_io_handler;
4462
4463 /* XXX: fd_read_poll should be suppressed, but an API change is
4464 necessary in the character devices to suppress fd_can_read(). */
4465 int qemu_set_fd_handler2(int fd,
4466 IOCanRWHandler *fd_read_poll,
4467 IOHandler *fd_read,
4468 IOHandler *fd_write,
4469 void *opaque)
4470 {
4471 IOHandlerRecord **pioh, *ioh;
4472
4473 if (!fd_read && !fd_write) {
4474 pioh = &first_io_handler;
4475 for(;;) {
4476 ioh = *pioh;
4477 if (ioh == NULL)
4478 break;
4479 if (ioh->fd == fd) {
4480 ioh->deleted = 1;
4481 break;
4482 }
4483 pioh = &ioh->next;
4484 }
4485 } else {
4486 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4487 if (ioh->fd == fd)
4488 goto found;
4489 }
4490 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
4491 if (!ioh)
4492 return -1;
4493 ioh->next = first_io_handler;
4494 first_io_handler = ioh;
4495 found:
4496 ioh->fd = fd;
4497 ioh->fd_read_poll = fd_read_poll;
4498 ioh->fd_read = fd_read;
4499 ioh->fd_write = fd_write;
4500 ioh->opaque = opaque;
4501 ioh->deleted = 0;
4502 }
4503 return 0;
4504 }
4505
4506 int qemu_set_fd_handler(int fd,
4507 IOHandler *fd_read,
4508 IOHandler *fd_write,
4509 void *opaque)
4510 {
4511 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
4512 }
4513
4514 /***********************************************************/
4515 /* Polling handling */
4516
4517 typedef struct PollingEntry {
4518 PollingFunc *func;
4519 void *opaque;
4520 struct PollingEntry *next;
4521 } PollingEntry;
4522
4523 static PollingEntry *first_polling_entry;
4524
4525 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
4526 {
4527 PollingEntry **ppe, *pe;
4528 pe = qemu_mallocz(sizeof(PollingEntry));
4529 if (!pe)
4530 return -1;
4531 pe->func = func;
4532 pe->opaque = opaque;
4533 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
4534 *ppe = pe;
4535 return 0;
4536 }
4537
4538 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
4539 {
4540 PollingEntry **ppe, *pe;
4541 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
4542 pe = *ppe;
4543 if (pe->func == func && pe->opaque == opaque) {
4544 *ppe = pe->next;
4545 qemu_free(pe);
4546 break;
4547 }
4548 }
4549 }
4550
4551 #ifdef _WIN32
4552 /***********************************************************/
4553 /* Wait objects support */
4554 typedef struct WaitObjects {
4555 int num;
4556 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
4557 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
4558 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
4559 } WaitObjects;
4560
4561 static WaitObjects wait_objects = {0};
4562
4563 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
4564 {
4565 WaitObjects *w = &wait_objects;
4566
4567 if (w->num >= MAXIMUM_WAIT_OBJECTS)
4568 return -1;
4569 w->events[w->num] = handle;
4570 w->func[w->num] = func;
4571 w->opaque[w->num] = opaque;
4572 w->num++;
4573 return 0;
4574 }
4575
4576 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
4577 {
4578 int i, found;
4579 WaitObjects *w = &wait_objects;
4580
4581 found = 0;
4582 for (i = 0; i < w->num; i++) {
4583 if (w->events[i] == handle)
4584 found = 1;
4585 if (found) {
4586 w->events[i] = w->events[i + 1];
4587 w->func[i] = w->func[i + 1];
4588 w->opaque[i] = w->opaque[i + 1];
4589 }
4590 }
4591 if (found)
4592 w->num--;
4593 }
4594 #endif
4595
4596 /***********************************************************/
4597 /* savevm/loadvm support */
4598
4599 #define IO_BUF_SIZE 32768
4600
4601 struct QEMUFile {
4602 FILE *outfile;
4603 BlockDriverState *bs;
4604 int is_file;
4605 int is_writable;
4606 int64_t base_offset;
4607 int64_t buf_offset; /* start of buffer when writing, end of buffer
4608 when reading */
4609 int buf_index;
4610 int buf_size; /* 0 when writing */
4611 uint8_t buf[IO_BUF_SIZE];
4612 };
4613
4614 QEMUFile *qemu_fopen(const char *filename, const char *mode)
4615 {
4616 QEMUFile *f;
4617
4618 f = qemu_mallocz(sizeof(QEMUFile));
4619 if (!f)
4620 return NULL;
4621 if (!strcmp(mode, "wb")) {
4622 f->is_writable = 1;
4623 } else if (!strcmp(mode, "rb")) {
4624 f->is_writable = 0;
4625 } else {
4626 goto fail;
4627 }
4628 f->outfile = fopen(filename, mode);
4629 if (!f->outfile)
4630 goto fail;
4631 f->is_file = 1;
4632 return f;
4633 fail:
4634 if (f->outfile)
4635 fclose(f->outfile);
4636 qemu_free(f);
4637 return NULL;
4638 }
4639
4640 QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
4641 {
4642 QEMUFile *f;
4643
4644 f = qemu_mallocz(sizeof(QEMUFile));
4645 if (!f)
4646 return NULL;
4647 f->is_file = 0;
4648 f->bs = bs;
4649 f->is_writable = is_writable;
4650 f->base_offset = offset;
4651 return f;
4652 }
4653
4654 void qemu_fflush(QEMUFile *f)
4655 {
4656 if (!f->is_writable)
4657 return;
4658 if (f->buf_index > 0) {
4659 if (f->is_file) {
4660 fseek(f->outfile, f->buf_offset, SEEK_SET);
4661 fwrite(f->buf, 1, f->buf_index, f->outfile);
4662 } else {
4663 bdrv_pwrite(f->bs, f->base_offset + f->buf_offset,
4664 f->buf, f->buf_index);
4665 }
4666 f->buf_offset += f->buf_index;
4667 f->buf_index = 0;
4668 }
4669 }
4670
4671 static void qemu_fill_buffer(QEMUFile *f)
4672 {
4673 int len;
4674
4675 if (f->is_writable)
4676 return;
4677 if (f->is_file) {
4678 fseek(f->outfile, f->buf_offset, SEEK_SET);
4679 len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
4680 if (len < 0)
4681 len = 0;
4682 } else {
4683 len = bdrv_pread(f->bs, f->base_offset + f->buf_offset,
4684 f->buf, IO_BUF_SIZE);
4685 if (len < 0)
4686 len = 0;
4687 }
4688 f->buf_index = 0;
4689 f->buf_size = len;
4690 f->buf_offset += len;
4691 }
4692
4693 void qemu_fclose(QEMUFile *f)
4694 {
4695 if (f->is_writable)
4696 qemu_fflush(f);
4697 if (f->is_file) {
4698 fclose(f->outfile);
4699 }
4700 qemu_free(f);
4701 }
4702
4703 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
4704 {
4705 int l;
4706 while (size > 0) {
4707 l = IO_BUF_SIZE - f->buf_index;
4708 if (l > size)
4709 l = size;
4710 memcpy(f->buf + f->buf_index, buf, l);
4711 f->buf_index += l;
4712 buf += l;
4713 size -= l;
4714 if (f->buf_index >= IO_BUF_SIZE)
4715 qemu_fflush(f);
4716 }
4717 }
4718
4719 void qemu_put_byte(QEMUFile *f, int v)
4720 {
4721 f->buf[f->buf_index++] = v;
4722 if (f->buf_index >= IO_BUF_SIZE)
4723 qemu_fflush(f);
4724 }
4725
4726 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
4727 {
4728 int size, l;
4729
4730 size = size1;
4731 while (size > 0) {
4732 l = f->buf_size - f->buf_index;
4733 if (l == 0) {
4734 qemu_fill_buffer(f);
4735 l = f->buf_size - f->buf_index;
4736 if (l == 0)
4737 break;
4738 }
4739 if (l > size)
4740 l = size;
4741 memcpy(buf, f->buf + f->buf_index, l);
4742 f->buf_index += l;
4743 buf += l;
4744 size -= l;
4745 }
4746 return size1 - size;
4747 }
4748
4749 int qemu_get_byte(QEMUFile *f)
4750 {
4751 if (f->buf_index >= f->buf_size) {
4752 qemu_fill_buffer(f);
4753 if (f->buf_index >= f->buf_size)
4754 return 0;
4755 }
4756 return f->buf[f->buf_index++];
4757 }
4758
4759 int64_t qemu_ftell(QEMUFile *f)
4760 {
4761 return f->buf_offset - f->buf_size + f->buf_index;
4762 }
4763
4764 int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
4765 {
4766 if (whence == SEEK_SET) {
4767 /* nothing to do */
4768 } else if (whence == SEEK_CUR) {
4769 pos += qemu_ftell(f);
4770 } else {
4771 /* SEEK_END not supported */
4772 return -1;
4773 }
4774 if (f->is_writable) {
4775 qemu_fflush(f);
4776 f->buf_offset = pos;
4777 } else {
4778 f->buf_offset = pos;
4779 f->buf_index = 0;
4780 f->buf_size = 0;
4781 }
4782 return pos;
4783 }
4784
4785 void qemu_put_be16(QEMUFile *f, unsigned int v)
4786 {
4787 qemu_put_byte(f, v >> 8);
4788 qemu_put_byte(f, v);
4789 }
4790
4791 void qemu_put_be32(QEMUFile *f, unsigned int v)
4792 {
4793 qemu_put_byte(f, v >> 24);
4794 qemu_put_byte(f, v >> 16);
4795 qemu_put_byte(f, v >> 8);
4796 qemu_put_byte(f, v);
4797 }
4798
4799 void qemu_put_be64(QEMUFile *f, uint64_t v)
4800 {
4801 qemu_put_be32(f, v >> 32);
4802 qemu_put_be32(f, v);
4803 }
4804
4805 unsigned int qemu_get_be16(QEMUFile *f)
4806 {
4807 unsigned int v;
4808 v = qemu_get_byte(f) << 8;
4809 v |= qemu_get_byte(f);
4810 return v;
4811 }
4812
4813 unsigned int qemu_get_be32(QEMUFile *f)
4814 {
4815 unsigned int v;
4816 v = qemu_get_byte(f) << 24;
4817 v |= qemu_get_byte(f) << 16;
4818 v |= qemu_get_byte(f) << 8;
4819 v |= qemu_get_byte(f);
4820 return v;
4821 }
4822
4823 uint64_t qemu_get_be64(QEMUFile *f)
4824 {
4825 uint64_t v;
4826 v = (uint64_t)qemu_get_be32(f) << 32;
4827 v |= qemu_get_be32(f);
4828 return v;
4829 }
4830
4831 typedef struct SaveStateEntry {
4832 char idstr[256];
4833 int instance_id;
4834 int version_id;
4835 SaveStateHandler *save_state;
4836 LoadStateHandler *load_state;
4837 void *opaque;
4838 struct SaveStateEntry *next;
4839 } SaveStateEntry;
4840
4841 static SaveStateEntry *first_se;
4842
4843 int register_savevm(const char *idstr,
4844 int instance_id,
4845 int version_id,
4846 SaveStateHandler *save_state,
4847 LoadStateHandler *load_state,
4848 void *opaque)
4849 {
4850 SaveStateEntry *se, **pse;
4851
4852 se = qemu_malloc(sizeof(SaveStateEntry));
4853 if (!se)
4854 return -1;
4855 pstrcpy(se->idstr, sizeof(se->idstr), idstr);
4856 se->instance_id = instance_id;
4857 se->version_id = version_id;
4858 se->save_state = save_state;
4859 se->load_state = load_state;
4860 se->opaque = opaque;
4861 se->next = NULL;
4862
4863 /* add at the end of list */
4864 pse = &first_se;
4865 while (*pse != NULL)
4866 pse = &(*pse)->next;
4867 *pse = se;
4868 return 0;
4869 }
4870
4871 #define QEMU_VM_FILE_MAGIC 0x5145564d
4872 #define QEMU_VM_FILE_VERSION 0x00000002
4873
4874 int qemu_savevm_state(QEMUFile *f)
4875 {
4876 SaveStateEntry *se;
4877 int len, ret;
4878 int64_t cur_pos, len_pos, total_len_pos;
4879
4880 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
4881 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
4882 total_len_pos = qemu_ftell(f);
4883 qemu_put_be64(f, 0); /* total size */
4884
4885 for(se = first_se; se != NULL; se = se->next) {
4886 /* ID string */
4887 len = strlen(se->idstr);
4888 qemu_put_byte(f, len);
4889 qemu_put_buffer(f, se->idstr, len);
4890
4891 qemu_put_be32(f, se->instance_id);
4892 qemu_put_be32(f, se->version_id);
4893
4894 /* record size: filled later */
4895 len_pos = qemu_ftell(f);
4896 qemu_put_be32(f, 0);
4897
4898 se->save_state(f, se->opaque);
4899
4900 /* fill record size */
4901 cur_pos = qemu_ftell(f);
4902 len = cur_pos - len_pos - 4;
4903 qemu_fseek(f, len_pos, SEEK_SET);
4904 qemu_put_be32(f, len);
4905 qemu_fseek(f, cur_pos, SEEK_SET);
4906 }
4907 cur_pos = qemu_ftell(f);
4908 qemu_fseek(f, total_len_pos, SEEK_SET);
4909 qemu_put_be64(f, cur_pos - total_len_pos - 8);
4910 qemu_fseek(f, cur_pos, SEEK_SET);
4911
4912 ret = 0;
4913 return ret;
4914 }
4915
4916 static SaveStateEntry *find_se(const char *idstr, int instance_id)
4917 {
4918 SaveStateEntry *se;
4919
4920 for(se = first_se; se != NULL; se = se->next) {
4921 if (!strcmp(se->idstr, idstr) &&
4922 instance_id == se->instance_id)
4923 return se;
4924 }
4925 return NULL;
4926 }
4927
4928 int qemu_loadvm_state(QEMUFile *f)
4929 {
4930 SaveStateEntry *se;
4931 int len, ret, instance_id, record_len, version_id;
4932 int64_t total_len, end_pos, cur_pos;
4933 unsigned int v;
4934 char idstr[256];
4935
4936 v = qemu_get_be32(f);
4937 if (v != QEMU_VM_FILE_MAGIC)
4938 goto fail;
4939 v = qemu_get_be32(f);
4940 if (v != QEMU_VM_FILE_VERSION) {
4941 fail:
4942 ret = -1;
4943 goto the_end;
4944 }
4945 total_len = qemu_get_be64(f);
4946 end_pos = total_len + qemu_ftell(f);
4947 for(;;) {
4948 if (qemu_ftell(f) >= end_pos)
4949 break;
4950 len = qemu_get_byte(f);
4951 qemu_get_buffer(f, idstr, len);
4952 idstr[len] = '\0';
4953 instance_id = qemu_get_be32(f);
4954 version_id = qemu_get_be32(f);
4955 record_len = qemu_get_be32(f);
4956 #if 0
4957 printf("idstr=%s instance=0x%x version=%d len=%d\n",
4958 idstr, instance_id, version_id, record_len);
4959 #endif
4960 cur_pos = qemu_ftell(f);
4961 se = find_se(idstr, instance_id);
4962 if (!se) {
4963 fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
4964 instance_id, idstr);
4965 } else {
4966 ret = se->load_state(f, se->opaque, version_id);
4967 if (ret < 0) {
4968 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
4969 instance_id, idstr);
4970 }
4971 }
4972 /* always seek to exact end of record */
4973 qemu_fseek(f, cur_pos + record_len, SEEK_SET);
4974 }
4975 ret = 0;
4976 the_end:
4977 return ret;
4978 }
4979
4980 /* device can contain snapshots */
4981 static int bdrv_can_snapshot(BlockDriverState *bs)
4982 {
4983 return (bs &&
4984 !bdrv_is_removable(bs) &&
4985 !bdrv_is_read_only(bs));
4986 }
4987
4988 /* device must be snapshots in order to have a reliable snapshot */
4989 static int bdrv_has_snapshot(BlockDriverState *bs)
4990 {
4991 return (bs &&
4992 !bdrv_is_removable(bs) &&
4993 !bdrv_is_read_only(bs));
4994 }
4995
4996 static BlockDriverState *get_bs_snapshots(void)
4997 {
4998 BlockDriverState *bs;
4999 int i;
5000
5001 if (bs_snapshots)
5002 return bs_snapshots;
5003 for(i = 0; i <= MAX_DISKS; i++) {
5004 bs = bs_table[i];
5005 if (bdrv_can_snapshot(bs))
5006 goto ok;
5007 }
5008 return NULL;
5009 ok:
5010 bs_snapshots = bs;
5011 return bs;
5012 }
5013
5014 static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
5015 const char *name)
5016 {
5017 QEMUSnapshotInfo *sn_tab, *sn;
5018 int nb_sns, i, ret;
5019
5020 ret = -ENOENT;
5021 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5022 if (nb_sns < 0)
5023 return ret;
5024 for(i = 0; i < nb_sns; i++) {
5025 sn = &sn_tab[i];
5026 if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
5027 *sn_info = *sn;
5028 ret = 0;
5029 break;
5030 }
5031 }
5032 qemu_free(sn_tab);
5033 return ret;
5034 }
5035
5036 void do_savevm(const char *name)
5037 {
5038 BlockDriverState *bs, *bs1;
5039 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
5040 int must_delete, ret, i;
5041 BlockDriverInfo bdi1, *bdi = &bdi1;
5042 QEMUFile *f;
5043 int saved_vm_running;
5044 #ifdef _WIN32
5045 struct _timeb tb;
5046 #else
5047 struct timeval tv;
5048 #endif
5049
5050 bs = get_bs_snapshots();
5051 if (!bs) {
5052 term_printf("No block device can accept snapshots\n");
5053 return;
5054 }
5055
5056 /* ??? Should this occur after vm_stop? */
5057 qemu_aio_flush();
5058
5059 saved_vm_running = vm_running;
5060 vm_stop(0);
5061
5062 must_delete = 0;
5063 if (name) {
5064 ret = bdrv_snapshot_find(bs, old_sn, name);
5065 if (ret >= 0) {
5066 must_delete = 1;
5067 }
5068 }
5069 memset(sn, 0, sizeof(*sn));
5070 if (must_delete) {
5071 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
5072 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
5073 } else {
5074 if (name)
5075 pstrcpy(sn->name, sizeof(sn->name), name);
5076 }
5077
5078 /* fill auxiliary fields */
5079 #ifdef _WIN32
5080 _ftime(&tb);
5081 sn->date_sec = tb.time;
5082 sn->date_nsec = tb.millitm * 1000000;
5083 #else
5084 gettimeofday(&tv, NULL);
5085 sn->date_sec = tv.tv_sec;
5086 sn->date_nsec = tv.tv_usec * 1000;
5087 #endif
5088 sn->vm_clock_nsec = qemu_get_clock(vm_clock);
5089
5090 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5091 term_printf("Device %s does not support VM state snapshots\n",
5092 bdrv_get_device_name(bs));
5093 goto the_end;
5094 }
5095
5096 /* save the VM state */
5097 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
5098 if (!f) {
5099 term_printf("Could not open VM state file\n");
5100 goto the_end;
5101 }
5102 ret = qemu_savevm_state(f);
5103 sn->vm_state_size = qemu_ftell(f);
5104 qemu_fclose(f);
5105 if (ret < 0) {
5106 term_printf("Error %d while writing VM\n", ret);
5107 goto the_end;
5108 }
5109
5110 /* create the snapshots */
5111
5112 for(i = 0; i < MAX_DISKS; i++) {
5113 bs1 = bs_table[i];
5114 if (bdrv_has_snapshot(bs1)) {
5115 if (must_delete) {
5116 ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
5117 if (ret < 0) {
5118 term_printf("Error while deleting snapshot on '%s'\n",
5119 bdrv_get_device_name(bs1));
5120 }
5121 }
5122 ret = bdrv_snapshot_create(bs1, sn);
5123 if (ret < 0) {
5124 term_printf("Error while creating snapshot on '%s'\n",
5125 bdrv_get_device_name(bs1));
5126 }
5127 }
5128 }
5129
5130 the_end:
5131 if (saved_vm_running)
5132 vm_start();
5133 }
5134
5135 void do_loadvm(const char *name)
5136 {
5137 BlockDriverState *bs, *bs1;
5138 BlockDriverInfo bdi1, *bdi = &bdi1;
5139 QEMUFile *f;
5140 int i, ret;
5141 int saved_vm_running;
5142
5143 bs = get_bs_snapshots();
5144 if (!bs) {
5145 term_printf("No block device supports snapshots\n");
5146 return;
5147 }
5148
5149 /* Flush all IO requests so they don't interfere with the new state. */
5150 qemu_aio_flush();
5151
5152 saved_vm_running = vm_running;
5153 vm_stop(0);
5154
5155 for(i = 0; i <= MAX_DISKS; i++) {
5156 bs1 = bs_table[i];
5157 if (bdrv_has_snapshot(bs1)) {
5158 ret = bdrv_snapshot_goto(bs1, name);
5159 if (ret < 0) {
5160 if (bs != bs1)
5161 term_printf("Warning: ");
5162 switch(ret) {
5163 case -ENOTSUP:
5164 term_printf("Snapshots not supported on device '%s'\n",
5165 bdrv_get_device_name(bs1));
5166 break;
5167 case -ENOENT:
5168 term_printf("Could not find snapshot '%s' on device '%s'\n",
5169 name, bdrv_get_device_name(bs1));
5170 break;
5171 default:
5172 term_printf("Error %d while activating snapshot on '%s'\n",
5173 ret, bdrv_get_device_name(bs1));
5174 break;
5175 }
5176 /* fatal on snapshot block device */
5177 if (bs == bs1)
5178 goto the_end;
5179 }
5180 }
5181 }
5182
5183 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5184 term_printf("Device %s does not support VM state snapshots\n",
5185 bdrv_get_device_name(bs));
5186 return;
5187 }
5188
5189 /* restore the VM state */
5190 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
5191 if (!f) {
5192 term_printf("Could not open VM state file\n");
5193 goto the_end;
5194 }
5195 ret = qemu_loadvm_state(f);
5196 qemu_fclose(f);
5197 if (ret < 0) {
5198 term_printf("Error %d while loading VM state\n", ret);
5199 }
5200 the_end:
5201 if (saved_vm_running)
5202 vm_start();
5203 }
5204
5205 void do_delvm(const char *name)
5206 {
5207 BlockDriverState *bs, *bs1;
5208 int i, ret;
5209
5210 bs = get_bs_snapshots();
5211 if (!bs) {
5212 term_printf("No block device supports snapshots\n");
5213 return;
5214 }
5215
5216 for(i = 0; i <= MAX_DISKS; i++) {
5217 bs1 = bs_table[i];
5218 if (bdrv_has_snapshot(bs1)) {
5219 ret = bdrv_snapshot_delete(bs1, name);
5220 if (ret < 0) {
5221 if (ret == -ENOTSUP)
5222 term_printf("Snapshots not supported on device '%s'\n",
5223 bdrv_get_device_name(bs1));
5224 else
5225 term_printf("Error %d while deleting snapshot on '%s'\n",
5226 ret, bdrv_get_device_name(bs1));
5227 }
5228 }
5229 }
5230 }
5231
5232 void do_info_snapshots(void)
5233 {
5234 BlockDriverState *bs, *bs1;
5235 QEMUSnapshotInfo *sn_tab, *sn;
5236 int nb_sns, i;
5237 char buf[256];
5238
5239 bs = get_bs_snapshots();
5240 if (!bs) {
5241 term_printf("No available block device supports snapshots\n");
5242 return;
5243 }
5244 term_printf("Snapshot devices:");
5245 for(i = 0; i <= MAX_DISKS; i++) {
5246 bs1 = bs_table[i];
5247 if (bdrv_has_snapshot(bs1)) {
5248 if (bs == bs1)
5249 term_printf(" %s", bdrv_get_device_name(bs1));
5250 }
5251 }
5252 term_printf("\n");
5253
5254 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5255 if (nb_sns < 0) {
5256 term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
5257 return;
5258 }
5259 term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
5260 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
5261 for(i = 0; i < nb_sns; i++) {
5262 sn = &sn_tab[i];
5263 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
5264 }
5265 qemu_free(sn_tab);
5266 }
5267
5268 /***********************************************************/
5269 /* cpu save/restore */
5270
5271 #if defined(TARGET_I386)
5272
5273 static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
5274 {
5275 qemu_put_be32(f, dt->selector);
5276 qemu_put_betl(f, dt->base);
5277 qemu_put_be32(f, dt->limit);
5278 qemu_put_be32(f, dt->flags);
5279 }
5280
5281 static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
5282 {
5283 dt->selector = qemu_get_be32(f);
5284 dt->base = qemu_get_betl(f);
5285 dt->limit = qemu_get_be32(f);
5286 dt->flags = qemu_get_be32(f);
5287 }
5288
5289 void cpu_save(QEMUFile *f, void *opaque)
5290 {
5291 CPUState *env = opaque;
5292 uint16_t fptag, fpus, fpuc, fpregs_format;
5293 uint32_t hflags;
5294 int i;
5295
5296 for(i = 0; i < CPU_NB_REGS; i++)
5297 qemu_put_betls(f, &env->regs[i]);
5298 qemu_put_betls(f, &env->eip);
5299 qemu_put_betls(f, &env->eflags);
5300 hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
5301 qemu_put_be32s(f, &hflags);
5302
5303 /* FPU */
5304 fpuc = env->fpuc;
5305 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
5306 fptag = 0;
5307 for(i = 0; i < 8; i++) {
5308 fptag |= ((!env->fptags[i]) << i);
5309 }
5310
5311 qemu_put_be16s(f, &fpuc);
5312 qemu_put_be16s(f, &fpus);
5313 qemu_put_be16s(f, &fptag);
5314
5315 #ifdef USE_X86LDOUBLE
5316 fpregs_format = 0;
5317 #else
5318 fpregs_format = 1;
5319 #endif
5320 qemu_put_be16s(f, &fpregs_format);
5321
5322 for(i = 0; i < 8; i++) {
5323 #ifdef USE_X86LDOUBLE
5324 {
5325 uint64_t mant;
5326 uint16_t exp;
5327 /* we save the real CPU data (in case of MMX usage only 'mant'
5328 contains the MMX register */
5329 cpu_get_fp80(&mant, &exp, env->fpregs[i].d);
5330 qemu_put_be64(f, mant);
5331 qemu_put_be16(f, exp);
5332 }
5333 #else
5334 /* if we use doubles for float emulation, we save the doubles to
5335 avoid losing information in case of MMX usage. It can give
5336 problems if the image is restored on a CPU where long
5337 doubles are used instead. */
5338 qemu_put_be64(f, env->fpregs[i].mmx.MMX_Q(0));
5339 #endif
5340 }
5341
5342 for(i = 0; i < 6; i++)
5343 cpu_put_seg(f, &env->segs[i]);
5344 cpu_put_seg(f, &env->ldt);
5345 cpu_put_seg(f, &env->tr);
5346 cpu_put_seg(f, &env->gdt);
5347 cpu_put_seg(f, &env->idt);
5348
5349 qemu_put_be32s(f, &env->sysenter_cs);
5350 qemu_put_be32s(f, &env->sysenter_esp);
5351 qemu_put_be32s(f, &env->sysenter_eip);
5352
5353 qemu_put_betls(f, &env->cr[0]);
5354 qemu_put_betls(f, &env->cr[2]);
5355 qemu_put_betls(f, &env->cr[3]);
5356 qemu_put_betls(f, &env->cr[4]);
5357
5358 for(i = 0; i < 8; i++)
5359 qemu_put_betls(f, &env->dr[i]);
5360
5361 /* MMU */
5362 qemu_put_be32s(f, &env->a20_mask);
5363
5364 /* XMM */
5365 qemu_put_be32s(f, &env->mxcsr);
5366 for(i = 0; i < CPU_NB_REGS; i++) {
5367 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5368 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5369 }
5370
5371 #ifdef TARGET_X86_64
5372 qemu_put_be64s(f, &env->efer);
5373 qemu_put_be64s(f, &env->star);
5374 qemu_put_be64s(f, &env->lstar);
5375 qemu_put_be64s(f, &env->cstar);
5376 qemu_put_be64s(f, &env->fmask);
5377 qemu_put_be64s(f, &env->kernelgsbase);
5378 #endif
5379 qemu_put_be32s(f, &env->smbase);
5380 }
5381
5382 #ifdef USE_X86LDOUBLE
5383 /* XXX: add that in a FPU generic layer */
5384 union x86_longdouble {
5385 uint64_t mant;
5386 uint16_t exp;
5387 };
5388
5389 #define MANTD1(fp) (fp & ((1LL << 52) - 1))
5390 #define EXPBIAS1 1023
5391 #define EXPD1(fp) ((fp >> 52) & 0x7FF)
5392 #define SIGND1(fp) ((fp >> 32) & 0x80000000)
5393
5394 static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
5395 {
5396 int e;
5397 /* mantissa */
5398 p->mant = (MANTD1(temp) << 11) | (1LL << 63);
5399 /* exponent + sign */
5400 e = EXPD1(temp) - EXPBIAS1 + 16383;
5401 e |= SIGND1(temp) >> 16;
5402 p->exp = e;
5403 }
5404 #endif
5405
5406 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5407 {
5408 CPUState *env = opaque;
5409 int i, guess_mmx;
5410 uint32_t hflags;
5411 uint16_t fpus, fpuc, fptag, fpregs_format;
5412
5413 if (version_id != 3 && version_id != 4)
5414 return -EINVAL;
5415 for(i = 0; i < CPU_NB_REGS; i++)
5416 qemu_get_betls(f, &env->regs[i]);
5417 qemu_get_betls(f, &env->eip);
5418 qemu_get_betls(f, &env->eflags);
5419 qemu_get_be32s(f, &hflags);
5420
5421 qemu_get_be16s(f, &fpuc);
5422 qemu_get_be16s(f, &fpus);
5423 qemu_get_be16s(f, &fptag);
5424 qemu_get_be16s(f, &fpregs_format);
5425
5426 /* NOTE: we cannot always restore the FPU state if the image come
5427 from a host with a different 'USE_X86LDOUBLE' define. We guess
5428 if we are in an MMX state to restore correctly in that case. */
5429 guess_mmx = ((fptag == 0xff) && (fpus & 0x3800) == 0);
5430 for(i = 0; i < 8; i++) {
5431 uint64_t mant;
5432 uint16_t exp;
5433
5434 switch(fpregs_format) {
5435 case 0:
5436 mant = qemu_get_be64(f);
5437 exp = qemu_get_be16(f);
5438 #ifdef USE_X86LDOUBLE
5439 env->fpregs[i].d = cpu_set_fp80(mant, exp);
5440 #else
5441 /* difficult case */
5442 if (guess_mmx)
5443 env->fpregs[i].mmx.MMX_Q(0) = mant;
5444 else
5445 env->fpregs[i].d = cpu_set_fp80(mant, exp);
5446 #endif
5447 break;
5448 case 1:
5449 mant = qemu_get_be64(f);
5450 #ifdef USE_X86LDOUBLE
5451 {
5452 union x86_longdouble *p;
5453 /* difficult case */
5454 p = (void *)&env->fpregs[i];
5455 if (guess_mmx) {
5456 p->mant = mant;
5457 p->exp = 0xffff;
5458 } else {
5459 fp64_to_fp80(p, mant);
5460 }
5461 }
5462 #else
5463 env->fpregs[i].mmx.MMX_Q(0) = mant;
5464 #endif
5465 break;
5466 default:
5467 return -EINVAL;
5468 }
5469 }
5470
5471 env->fpuc = fpuc;
5472 /* XXX: restore FPU round state */
5473 env->fpstt = (fpus >> 11) & 7;
5474 env->fpus = fpus & ~0x3800;
5475 fptag ^= 0xff;
5476 for(i = 0; i < 8; i++) {
5477 env->fptags[i] = (fptag >> i) & 1;
5478 }
5479
5480 for(i = 0; i < 6; i++)
5481 cpu_get_seg(f, &env->segs[i]);
5482 cpu_get_seg(f, &env->ldt);
5483 cpu_get_seg(f, &env->tr);
5484 cpu_get_seg(f, &env->gdt);
5485 cpu_get_seg(f, &env->idt);
5486
5487 qemu_get_be32s(f, &env->sysenter_cs);
5488 qemu_get_be32s(f, &env->sysenter_esp);
5489 qemu_get_be32s(f, &env->sysenter_eip);
5490
5491 qemu_get_betls(f, &env->cr[0]);
5492 qemu_get_betls(f, &env->cr[2]);
5493 qemu_get_betls(f, &env->cr[3]);
5494 qemu_get_betls(f, &env->cr[4]);
5495
5496 for(i = 0; i < 8; i++)
5497 qemu_get_betls(f, &env->dr[i]);
5498
5499 /* MMU */
5500 qemu_get_be32s(f, &env->a20_mask);
5501
5502 qemu_get_be32s(f, &env->mxcsr);
5503 for(i = 0; i < CPU_NB_REGS; i++) {
5504 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5505 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5506 }
5507
5508 #ifdef TARGET_X86_64
5509 qemu_get_be64s(f, &env->efer);
5510 qemu_get_be64s(f, &env->star);
5511 qemu_get_be64s(f, &env->lstar);
5512 qemu_get_be64s(f, &env->cstar);
5513 qemu_get_be64s(f, &env->fmask);
5514 qemu_get_be64s(f, &env->kernelgsbase);
5515 #endif
5516 if (version_id >= 4)
5517 qemu_get_be32s(f, &env->smbase);
5518
5519 /* XXX: compute hflags from scratch, except for CPL and IIF */
5520 env->hflags = hflags;
5521 tlb_flush(env, 1);
5522 return 0;
5523 }
5524
5525 #elif defined(TARGET_PPC)
5526 void cpu_save(QEMUFile *f, void *opaque)
5527 {
5528 }
5529
5530 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5531 {
5532 return 0;
5533 }
5534
5535 #elif defined(TARGET_MIPS)
5536 void cpu_save(QEMUFile *f, void *opaque)
5537 {
5538 }
5539
5540 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5541 {
5542 return 0;
5543 }
5544
5545 #elif defined(TARGET_SPARC)
5546 void cpu_save(QEMUFile *f, void *opaque)
5547 {
5548 CPUState *env = opaque;
5549 int i;
5550 uint32_t tmp;
5551
5552 for(i = 0; i < 8; i++)
5553 qemu_put_betls(f, &env->gregs[i]);
5554 for(i = 0; i < NWINDOWS * 16; i++)
5555 qemu_put_betls(f, &env->regbase[i]);
5556
5557 /* FPU */
5558 for(i = 0; i < TARGET_FPREGS; i++) {
5559 union {
5560 float32 f;
5561 uint32_t i;
5562 } u;
5563 u.f = env->fpr[i];
5564 qemu_put_be32(f, u.i);
5565 }
5566
5567 qemu_put_betls(f, &env->pc);
5568 qemu_put_betls(f, &env->npc);
5569 qemu_put_betls(f, &env->y);
5570 tmp = GET_PSR(env);
5571 qemu_put_be32(f, tmp);
5572 qemu_put_betls(f, &env->fsr);
5573 qemu_put_betls(f, &env->tbr);
5574 #ifndef TARGET_SPARC64
5575 qemu_put_be32s(f, &env->wim);
5576 /* MMU */
5577 for(i = 0; i < 16; i++)
5578 qemu_put_be32s(f, &env->mmuregs[i]);
5579 #endif
5580 }
5581
5582 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5583 {
5584 CPUState *env = opaque;
5585 int i;
5586 uint32_t tmp;
5587
5588 for(i = 0; i < 8; i++)
5589 qemu_get_betls(f, &env->gregs[i]);
5590 for(i = 0; i < NWINDOWS * 16; i++)
5591 qemu_get_betls(f, &env->regbase[i]);
5592
5593 /* FPU */
5594 for(i = 0; i < TARGET_FPREGS; i++) {
5595 union {
5596 float32 f;
5597 uint32_t i;
5598 } u;
5599 u.i = qemu_get_be32(f);
5600 env->fpr[i] = u.f;
5601 }
5602
5603 qemu_get_betls(f, &env->pc);
5604 qemu_get_betls(f, &env->npc);
5605 qemu_get_betls(f, &env->y);
5606 tmp = qemu_get_be32(f);
5607 env->cwp = 0; /* needed to ensure that the wrapping registers are
5608 correctly updated */
5609 PUT_PSR(env, tmp);
5610 qemu_get_betls(f, &env->fsr);
5611 qemu_get_betls(f, &env->tbr);
5612 #ifndef TARGET_SPARC64
5613 qemu_get_be32s(f, &env->wim);
5614 /* MMU */
5615 for(i = 0; i < 16; i++)
5616 qemu_get_be32s(f, &env->mmuregs[i]);
5617 #endif
5618 tlb_flush(env, 1);
5619 return 0;
5620 }
5621
5622 #elif defined(TARGET_ARM)
5623
5624 /* ??? Need to implement these. */
5625 void cpu_save(QEMUFile *f, void *opaque)
5626 {
5627 }
5628
5629 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5630 {
5631 return 0;
5632 }
5633
5634 #else
5635
5636 #warning No CPU save/restore functions
5637
5638 #endif
5639
5640 /***********************************************************/
5641 /* ram save/restore */
5642
5643 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
5644 {
5645 int v;
5646
5647 v = qemu_get_byte(f);
5648 switch(v) {
5649 case 0:
5650 if (qemu_get_buffer(f, buf, len) != len)
5651 return -EIO;
5652 break;
5653 case 1:
5654 v = qemu_get_byte(f);
5655 memset(buf, v, len);
5656 break;
5657 default:
5658 return -EINVAL;
5659 }
5660 return 0;
5661 }
5662
5663 static int ram_load_v1(QEMUFile *f, void *opaque)
5664 {
5665 int i, ret;
5666
5667 if (qemu_get_be32(f) != phys_ram_size)
5668 return -EINVAL;
5669 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
5670 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
5671 if (ret)
5672 return ret;
5673 }
5674 return 0;
5675 }
5676
5677 #define BDRV_HASH_BLOCK_SIZE 1024
5678 #define IOBUF_SIZE 4096
5679 #define RAM_CBLOCK_MAGIC 0xfabe
5680
5681 typedef struct RamCompressState {
5682 z_stream zstream;
5683 QEMUFile *f;
5684 uint8_t buf[IOBUF_SIZE];
5685 } RamCompressState;
5686
5687 static int ram_compress_open(RamCompressState *s, QEMUFile *f)
5688 {
5689 int ret;
5690 memset(s, 0, sizeof(*s));
5691 s->f = f;
5692 ret = deflateInit2(&s->zstream, 1,
5693 Z_DEFLATED, 15,
5694 9, Z_DEFAULT_STRATEGY);
5695 if (ret != Z_OK)
5696 return -1;
5697 s->zstream.avail_out = IOBUF_SIZE;
5698 s->zstream.next_out = s->buf;
5699 return 0;
5700 }
5701
5702 static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
5703 {
5704 qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
5705 qemu_put_be16(s->f, len);
5706 qemu_put_buffer(s->f, buf, len);
5707 }
5708
5709 static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
5710 {
5711 int ret;
5712
5713 s->zstream.avail_in = len;
5714 s->zstream.next_in = (uint8_t *)buf;
5715 while (s->zstream.avail_in > 0) {
5716 ret = deflate(&s->zstream, Z_NO_FLUSH);
5717 if (ret != Z_OK)
5718 return -1;
5719 if (s->zstream.avail_out == 0) {
5720 ram_put_cblock(s, s->buf, IOBUF_SIZE);
5721 s->zstream.avail_out = IOBUF_SIZE;
5722 s->zstream.next_out = s->buf;
5723 }
5724 }
5725 return 0;
5726 }
5727
5728 static void ram_compress_close(RamCompressState *s)
5729 {
5730 int len, ret;
5731
5732 /* compress last bytes */
5733 for(;;) {
5734 ret = deflate(&s->zstream, Z_FINISH);
5735 if (ret == Z_OK || ret == Z_STREAM_END) {
5736 len = IOBUF_SIZE - s->zstream.avail_out;
5737 if (len > 0) {
5738 ram_put_cblock(s, s->buf, len);
5739 }
5740 s->zstream.avail_out = IOBUF_SIZE;
5741 s->zstream.next_out = s->buf;
5742 if (ret == Z_STREAM_END)
5743 break;
5744 } else {
5745 goto fail;
5746 }
5747 }
5748 fail:
5749 deflateEnd(&s->zstream);
5750 }
5751
5752 typedef struct RamDecompressState {
5753 z_stream zstream;
5754 QEMUFile *f;
5755 uint8_t buf[IOBUF_SIZE];
5756 } RamDecompressState;
5757
5758 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
5759 {
5760 int ret;
5761 memset(s, 0, sizeof(*s));
5762 s->f = f;
5763 ret = inflateInit(&s->zstream);
5764 if (ret != Z_OK)
5765 return -1;
5766 return 0;
5767 }
5768
5769 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
5770 {
5771 int ret, clen;
5772
5773 s->zstream.avail_out = len;
5774 s->zstream.next_out = buf;
5775 while (s->zstream.avail_out > 0) {
5776 if (s->zstream.avail_in == 0) {
5777 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
5778 return -1;
5779 clen = qemu_get_be16(s->f);
5780 if (clen > IOBUF_SIZE)
5781 return -1;
5782 qemu_get_buffer(s->f, s->buf, clen);
5783 s->zstream.avail_in = clen;
5784 s->zstream.next_in = s->buf;
5785 }
5786 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
5787 if (ret != Z_OK && ret != Z_STREAM_END) {
5788 return -1;
5789 }
5790 }
5791 return 0;
5792 }
5793
5794 static void ram_decompress_close(RamDecompressState *s)
5795 {
5796 inflateEnd(&s->zstream);
5797 }
5798
5799 static void ram_save(QEMUFile *f, void *opaque)
5800 {
5801 int i;
5802 RamCompressState s1, *s = &s1;
5803 uint8_t buf[10];
5804
5805 qemu_put_be32(f, phys_ram_size);
5806 if (ram_compress_open(s, f) < 0)
5807 return;
5808 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
5809 #if 0
5810 if (tight_savevm_enabled) {
5811 int64_t sector_num;
5812 int j;
5813
5814 /* find if the memory block is available on a virtual
5815 block device */
5816 sector_num = -1;
5817 for(j = 0; j < MAX_DISKS; j++) {
5818 if (bs_table[j]) {
5819 sector_num = bdrv_hash_find(bs_table[j],
5820 phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
5821 if (sector_num >= 0)
5822 break;
5823 }
5824 }
5825 if (j == MAX_DISKS)
5826 goto normal_compress;
5827 buf[0] = 1;
5828 buf[1] = j;
5829 cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
5830 ram_compress_buf(s, buf, 10);
5831 } else
5832 #endif
5833 {
5834 // normal_compress:
5835 buf[0] = 0;
5836 ram_compress_buf(s, buf, 1);
5837 ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
5838 }
5839 }
5840 ram_compress_close(s);
5841 }
5842
5843 static int ram_load(QEMUFile *f, void *opaque, int version_id)
5844 {
5845 RamDecompressState s1, *s = &s1;
5846 uint8_t buf[10];
5847 int i;
5848
5849 if (version_id == 1)
5850 return ram_load_v1(f, opaque);
5851 if (version_id != 2)
5852 return -EINVAL;
5853 if (qemu_get_be32(f) != phys_ram_size)
5854 return -EINVAL;
5855 if (ram_decompress_open(s, f) < 0)
5856 return -EINVAL;
5857 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
5858 if (ram_decompress_buf(s, buf, 1) < 0) {
5859 fprintf(stderr, "Error while reading ram block header\n");
5860 goto error;
5861 }
5862 if (buf[0] == 0) {
5863 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
5864 fprintf(stderr, "Error while reading ram block address=0x%08x", i);
5865 goto error;
5866 }
5867 } else
5868 #if 0
5869 if (buf[0] == 1) {
5870 int bs_index;
5871 int64_t sector_num;
5872
5873 ram_decompress_buf(s, buf + 1, 9);
5874 bs_index = buf[1];
5875 sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
5876 if (bs_index >= MAX_DISKS || bs_table[bs_index] == NULL) {
5877 fprintf(stderr, "Invalid block device index %d\n", bs_index);
5878 goto error;
5879 }
5880 if (bdrv_read(bs_table[bs_index], sector_num, phys_ram_base + i,
5881 BDRV_HASH_BLOCK_SIZE / 512) < 0) {
5882 fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
5883 bs_index, sector_num);
5884 goto error;
5885 }
5886 } else
5887 #endif
5888 {
5889 error:
5890 printf("Error block header\n");
5891 return -EINVAL;
5892 }
5893 }
5894 ram_decompress_close(s);
5895 return 0;
5896 }
5897
5898 /***********************************************************/
5899 /* bottom halves (can be seen as timers which expire ASAP) */
5900
5901 struct QEMUBH {
5902 QEMUBHFunc *cb;
5903 void *opaque;
5904 int scheduled;
5905 QEMUBH *next;
5906 };
5907
5908 static QEMUBH *first_bh = NULL;
5909
5910 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
5911 {
5912 QEMUBH *bh;
5913 bh = qemu_mallocz(sizeof(QEMUBH));
5914 if (!bh)
5915 return NULL;
5916 bh->cb = cb;
5917 bh->opaque = opaque;
5918 return bh;
5919 }
5920
5921 int qemu_bh_poll(void)
5922 {
5923 QEMUBH *bh, **pbh;
5924 int ret;
5925
5926 ret = 0;
5927 for(;;) {
5928 pbh = &first_bh;
5929 bh = *pbh;
5930 if (!bh)
5931 break;
5932 ret = 1;
5933 *pbh = bh->next;
5934 bh->scheduled = 0;
5935 bh->cb(bh->opaque);
5936 }
5937 return ret;
5938 }
5939
5940 void qemu_bh_schedule(QEMUBH *bh)
5941 {
5942 CPUState *env = cpu_single_env;
5943 if (bh->scheduled)
5944 return;
5945 bh->scheduled = 1;
5946 bh->next = first_bh;
5947 first_bh = bh;
5948
5949 /* stop the currently executing CPU to execute the BH ASAP */
5950 if (env) {
5951 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
5952 }
5953 }
5954
5955 void qemu_bh_cancel(QEMUBH *bh)
5956 {
5957 QEMUBH **pbh;
5958 if (bh->scheduled) {
5959 pbh = &first_bh;
5960 while (*pbh != bh)
5961 pbh = &(*pbh)->next;
5962 *pbh = bh->next;
5963 bh->scheduled = 0;
5964 }
5965 }
5966
5967 void qemu_bh_delete(QEMUBH *bh)
5968 {
5969 qemu_bh_cancel(bh);
5970 qemu_free(bh);
5971 }
5972
5973 /***********************************************************/
5974 /* machine registration */
5975
5976 QEMUMachine *first_machine = NULL;
5977
5978 int qemu_register_machine(QEMUMachine *m)
5979 {
5980 QEMUMachine **pm;
5981 pm = &first_machine;
5982 while (*pm != NULL)
5983 pm = &(*pm)->next;
5984 m->next = NULL;
5985 *pm = m;
5986 return 0;
5987 }
5988
5989 QEMUMachine *find_machine(const char *name)
5990 {
5991 QEMUMachine *m;
5992
5993 for(m = first_machine; m != NULL; m = m->next) {
5994 if (!strcmp(m->name, name))
5995 return m;
5996 }
5997 return NULL;
5998 }
5999
6000 /***********************************************************/
6001 /* main execution loop */
6002
6003 void gui_update(void *opaque)
6004 {
6005 display_state.dpy_refresh(&display_state);
6006 qemu_mod_timer(gui_timer, GUI_REFRESH_INTERVAL + qemu_get_clock(rt_clock));
6007 }
6008
6009 struct vm_change_state_entry {
6010 VMChangeStateHandler *cb;
6011 void *opaque;
6012 LIST_ENTRY (vm_change_state_entry) entries;
6013 };
6014
6015 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
6016
6017 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
6018 void *opaque)
6019 {
6020 VMChangeStateEntry *e;
6021
6022 e = qemu_mallocz(sizeof (*e));
6023 if (!e)
6024 return NULL;
6025
6026 e->cb = cb;
6027 e->opaque = opaque;
6028 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
6029 return e;
6030 }
6031
6032 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
6033 {
6034 LIST_REMOVE (e, entries);
6035 qemu_free (e);
6036 }
6037
6038 static void vm_state_notify(int running)
6039 {
6040 VMChangeStateEntry *e;
6041
6042 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
6043 e->cb(e->opaque, running);
6044 }
6045 }
6046
6047 /* XXX: support several handlers */
6048 static VMStopHandler *vm_stop_cb;
6049 static void *vm_stop_opaque;
6050
6051 int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
6052 {
6053 vm_stop_cb = cb;
6054 vm_stop_opaque = opaque;
6055 return 0;
6056 }
6057
6058 void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
6059 {
6060 vm_stop_cb = NULL;
6061 }
6062
6063 void vm_start(void)
6064 {
6065 if (!vm_running) {
6066 cpu_enable_ticks();
6067 vm_running = 1;
6068 vm_state_notify(1);
6069 }
6070 }
6071
6072 void vm_stop(int reason)
6073 {
6074 if (vm_running) {
6075 cpu_disable_ticks();
6076 vm_running = 0;
6077 if (reason != 0) {
6078 if (vm_stop_cb) {
6079 vm_stop_cb(vm_stop_opaque, reason);
6080 }
6081 }
6082 vm_state_notify(0);
6083 }
6084 }
6085
6086 /* reset/shutdown handler */
6087
6088 typedef struct QEMUResetEntry {
6089 QEMUResetHandler *func;
6090 void *opaque;
6091 struct QEMUResetEntry *next;
6092 } QEMUResetEntry;
6093
6094 static QEMUResetEntry *first_reset_entry;
6095 static int reset_requested;
6096 static int shutdown_requested;
6097 static int powerdown_requested;
6098
6099 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
6100 {
6101 QEMUResetEntry **pre, *re;
6102
6103 pre = &first_reset_entry;
6104 while (*pre != NULL)
6105 pre = &(*pre)->next;
6106 re = qemu_mallocz(sizeof(QEMUResetEntry));
6107 re->func = func;
6108 re->opaque = opaque;
6109 re->next = NULL;
6110 *pre = re;
6111 }
6112
6113 static void qemu_system_reset(void)
6114 {
6115 QEMUResetEntry *re;
6116
6117 /* reset all devices */
6118 for(re = first_reset_entry; re != NULL; re = re->next) {
6119 re->func(re->opaque);
6120 }
6121 }
6122
6123 void qemu_system_reset_request(void)
6124 {
6125 if (no_reboot) {
6126 shutdown_requested = 1;
6127 } else {
6128 reset_requested = 1;
6129 }
6130 if (cpu_single_env)
6131 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6132 }
6133
6134 void qemu_system_shutdown_request(void)
6135 {
6136 shutdown_requested = 1;
6137 if (cpu_single_env)
6138 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6139 }
6140
6141 void qemu_system_powerdown_request(void)
6142 {
6143 powerdown_requested = 1;
6144 if (cpu_single_env)
6145 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6146 }
6147
6148 void main_loop_wait(int timeout)
6149 {
6150 IOHandlerRecord *ioh;
6151 fd_set rfds, wfds, xfds;
6152 int ret, nfds;
6153 struct timeval tv;
6154 PollingEntry *pe;
6155
6156
6157 /* XXX: need to suppress polling by better using win32 events */
6158 ret = 0;
6159 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
6160 ret |= pe->func(pe->opaque);
6161 }
6162 #ifdef _WIN32
6163 if (ret == 0 && timeout > 0) {
6164 int err;
6165 WaitObjects *w = &wait_objects;
6166
6167 ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
6168 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
6169 if (w->func[ret - WAIT_OBJECT_0])
6170 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
6171 } else if (ret == WAIT_TIMEOUT) {
6172 } else {
6173 err = GetLastError();
6174 fprintf(stderr, "Wait error %d %d\n", ret, err);
6175 }
6176 }
6177 #endif
6178 /* poll any events */
6179 /* XXX: separate device handlers from system ones */
6180 nfds = -1;
6181 FD_ZERO(&rfds);
6182 FD_ZERO(&wfds);
6183 FD_ZERO(&xfds);
6184 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6185 if (ioh->deleted)
6186 continue;
6187 if (ioh->fd_read &&
6188 (!ioh->fd_read_poll ||
6189 ioh->fd_read_poll(ioh->opaque) != 0)) {
6190 FD_SET(ioh->fd, &rfds);
6191 if (ioh->fd > nfds)
6192 nfds = ioh->fd;
6193 }
6194 if (ioh->fd_write) {
6195 FD_SET(ioh->fd, &wfds);
6196 if (ioh->fd > nfds)
6197 nfds = ioh->fd;
6198 }
6199 }
6200
6201 tv.tv_sec = 0;
6202 #ifdef _WIN32
6203 tv.tv_usec = 0;
6204 #else
6205 tv.tv_usec = timeout * 1000;
6206 #endif
6207 #if defined(CONFIG_SLIRP)
6208 if (slirp_inited) {
6209 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
6210 }
6211 #endif
6212 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
6213 if (ret > 0) {
6214 IOHandlerRecord **pioh;
6215
6216 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6217 if (ioh->deleted)
6218 continue;
6219 if (FD_ISSET(ioh->fd, &rfds)) {
6220 ioh->fd_read(ioh->opaque);
6221 }
6222 if (FD_ISSET(ioh->fd, &wfds)) {
6223 ioh->fd_write(ioh->opaque);
6224 }
6225 }
6226
6227 /* remove deleted IO handlers */
6228 pioh = &first_io_handler;
6229 while (*pioh) {
6230 ioh = *pioh;
6231 if (ioh->deleted) {
6232 *pioh = ioh->next;
6233 qemu_free(ioh);
6234 } else
6235 pioh = &ioh->next;
6236 }
6237 }
6238 #if defined(CONFIG_SLIRP)
6239 if (slirp_inited) {
6240 if (ret < 0) {
6241 FD_ZERO(&rfds);
6242 FD_ZERO(&wfds);
6243 FD_ZERO(&xfds);
6244 }
6245 slirp_select_poll(&rfds, &wfds, &xfds);
6246 }
6247 #endif
6248 qemu_aio_poll();
6249 qemu_bh_poll();
6250
6251 if (vm_running) {
6252 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
6253 qemu_get_clock(vm_clock));
6254 /* run dma transfers, if any */
6255 DMA_run();
6256 }
6257
6258 /* real time timers */
6259 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
6260 qemu_get_clock(rt_clock));
6261 }
6262
6263 static CPUState *cur_cpu;
6264
6265 int main_loop(void)
6266 {
6267 int ret, timeout;
6268 #ifdef CONFIG_PROFILER
6269 int64_t ti;
6270 #endif
6271 CPUState *env;
6272
6273 cur_cpu = first_cpu;
6274 for(;;) {
6275 if (vm_running) {
6276
6277 env = cur_cpu;
6278 for(;;) {
6279 /* get next cpu */
6280 env = env->next_cpu;
6281 if (!env)
6282 env = first_cpu;
6283 #ifdef CONFIG_PROFILER
6284 ti = profile_getclock();
6285 #endif
6286 ret = cpu_exec(env);
6287 #ifdef CONFIG_PROFILER
6288 qemu_time += profile_getclock() - ti;
6289 #endif
6290 if (ret == EXCP_HLT) {
6291 /* Give the next CPU a chance to run. */
6292 cur_cpu = env;
6293 continue;
6294 }
6295 if (ret != EXCP_HALTED)
6296 break;
6297 /* all CPUs are halted ? */
6298 if (env == cur_cpu)
6299 break;
6300 }
6301 cur_cpu = env;
6302
6303 if (shutdown_requested) {
6304 ret = EXCP_INTERRUPT;
6305 break;
6306 }
6307 if (reset_requested) {
6308 reset_requested = 0;
6309 qemu_system_reset();
6310 ret = EXCP_INTERRUPT;
6311 }
6312 if (powerdown_requested) {
6313 powerdown_requested = 0;
6314 qemu_system_powerdown();
6315 ret = EXCP_INTERRUPT;
6316 }
6317 if (ret == EXCP_DEBUG) {
6318 vm_stop(EXCP_DEBUG);
6319 }
6320 /* If all cpus are halted then wait until the next IRQ */
6321 /* XXX: use timeout computed from timers */
6322 if (ret == EXCP_HALTED)
6323 timeout = 10;
6324 else
6325 timeout = 0;
6326 } else {
6327 timeout = 10;
6328 }
6329 #ifdef CONFIG_PROFILER
6330 ti = profile_getclock();
6331 #endif
6332 main_loop_wait(timeout);
6333 #ifdef CONFIG_PROFILER
6334 dev_time += profile_getclock() - ti;
6335 #endif
6336 }
6337 cpu_disable_ticks();
6338 return ret;
6339 }
6340
6341 void help(void)
6342 {
6343 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2007 Fabrice Bellard\n"
6344 "usage: %s [options] [disk_image]\n"
6345 "\n"
6346 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
6347 "\n"
6348 "Standard options:\n"
6349 "-M machine select emulated machine (-M ? for list)\n"
6350 "-cpu cpu select CPU (-cpu ? for list)\n"
6351 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
6352 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
6353 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
6354 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
6355 "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
6356 "-snapshot write to temporary files instead of disk image files\n"
6357 #ifdef CONFIG_SDL
6358 "-no-frame open SDL window without a frame and window decorations\n"
6359 "-no-quit disable SDL window close capability\n"
6360 #endif
6361 #ifdef TARGET_I386
6362 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
6363 #endif
6364 "-m megs set virtual RAM size to megs MB [default=%d]\n"
6365 "-smp n set the number of CPUs to 'n' [default=1]\n"
6366 "-nographic disable graphical output and redirect serial I/Os to console\n"
6367 #ifndef _WIN32
6368 "-k language use keyboard layout (for example \"fr\" for French)\n"
6369 #endif
6370 #ifdef HAS_AUDIO
6371 "-audio-help print list of audio drivers and their options\n"
6372 "-soundhw c1,... enable audio support\n"
6373 " and only specified sound cards (comma separated list)\n"
6374 " use -soundhw ? to get the list of supported cards\n"
6375 " use -soundhw all to enable all of them\n"
6376 #endif
6377 "-localtime set the real time clock to local time [default=utc]\n"
6378 "-full-screen start in full screen\n"
6379 #ifdef TARGET_I386
6380 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
6381 #endif
6382 "-usb enable the USB driver (will be the default soon)\n"
6383 "-usbdevice name add the host or guest USB device 'name'\n"
6384 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
6385 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
6386 #endif
6387 "-name string set the name of the guest\n"
6388 "\n"
6389 "Network options:\n"
6390 "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
6391 " create a new Network Interface Card and connect it to VLAN 'n'\n"
6392 #ifdef CONFIG_SLIRP
6393 "-net user[,vlan=n][,hostname=host]\n"
6394 " connect the user mode network stack to VLAN 'n' and send\n"
6395 " hostname 'host' to DHCP clients\n"
6396 #endif
6397 #ifdef _WIN32
6398 "-net tap[,vlan=n],ifname=name\n"
6399 " connect the host TAP network interface to VLAN 'n'\n"
6400 #else
6401 "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file]\n"
6402 " connect the host TAP network interface to VLAN 'n' and use\n"
6403 " the network script 'file' (default=%s);\n"
6404 " use 'script=no' to disable script execution;\n"
6405 " use 'fd=h' to connect to an already opened TAP interface\n"
6406 #endif
6407 "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
6408 " connect the vlan 'n' to another VLAN using a socket connection\n"
6409 "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
6410 " connect the vlan 'n' to multicast maddr and port\n"
6411 "-net none use it alone to have zero network devices; if no -net option\n"
6412 " is provided, the default is '-net nic -net user'\n"
6413 "\n"
6414 #ifdef CONFIG_SLIRP
6415 "-tftp dir allow tftp access to files in dir [-net user]\n"
6416 "-bootp file advertise file in BOOTP replies\n"
6417 #ifndef _WIN32
6418 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
6419 #endif
6420 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
6421 " redirect TCP or UDP connections from host to guest [-net user]\n"
6422 #endif
6423 "\n"
6424 "Linux boot specific:\n"
6425 "-kernel bzImage use 'bzImage' as kernel image\n"
6426 "-append cmdline use 'cmdline' as kernel command line\n"
6427 "-initrd file use 'file' as initial ram disk\n"
6428 "\n"
6429 "Debug/Expert options:\n"
6430 "-monitor dev redirect the monitor to char device 'dev'\n"
6431 "-serial dev redirect the serial port to char device 'dev'\n"
6432 "-parallel dev redirect the parallel port to char device 'dev'\n"
6433 "-pidfile file Write PID to 'file'\n"
6434 "-S freeze CPU at startup (use 'c' to start execution)\n"
6435 "-s wait gdb connection to port\n"
6436 "-p port set gdb connection port [default=%s]\n"
6437 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
6438 "-hdachs c,h,s[,t] force hard disk 0 physical geometry and the optional BIOS\n"
6439 " translation (t=none or lba) (usually qemu can guess them)\n"
6440 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
6441 #ifdef USE_KQEMU
6442 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
6443 "-no-kqemu disable KQEMU kernel module usage\n"
6444 #endif
6445 #ifdef USE_CODE_COPY
6446 "-no-code-copy disable code copy acceleration\n"
6447 #endif
6448 #ifdef TARGET_I386
6449 "-std-vga simulate a standard VGA card with VESA Bochs Extensions\n"
6450 " (default is CL-GD5446 PCI VGA)\n"
6451 "-no-acpi disable ACPI\n"
6452 #endif
6453 "-no-reboot exit instead of rebooting\n"
6454 "-loadvm file start right away with a saved state (loadvm in monitor)\n"
6455 "-vnc display start a VNC server on display\n"
6456 #ifndef _WIN32
6457 "-daemonize daemonize QEMU after initializing\n"
6458 #endif
6459 "-option-rom rom load a file, rom, into the option ROM space\n"
6460 "\n"
6461 "During emulation, the following keys are useful:\n"
6462 "ctrl-alt-f toggle full screen\n"
6463 "ctrl-alt-n switch to virtual console 'n'\n"
6464 "ctrl-alt toggle mouse and keyboard grab\n"
6465 "\n"
6466 "When using -nographic, press 'ctrl-a h' to get some help.\n"
6467 ,
6468 "qemu",
6469 DEFAULT_RAM_SIZE,
6470 #ifndef _WIN32
6471 DEFAULT_NETWORK_SCRIPT,
6472 #endif
6473 DEFAULT_GDBSTUB_PORT,
6474 "/tmp/qemu.log");
6475 exit(1);
6476 }
6477
6478 #define HAS_ARG 0x0001
6479
6480 enum {
6481 QEMU_OPTION_h,
6482
6483 QEMU_OPTION_M,
6484 QEMU_OPTION_cpu,
6485 QEMU_OPTION_fda,
6486 QEMU_OPTION_fdb,
6487 QEMU_OPTION_hda,
6488 QEMU_OPTION_hdb,
6489 QEMU_OPTION_hdc,
6490 QEMU_OPTION_hdd,
6491 QEMU_OPTION_cdrom,
6492 QEMU_OPTION_boot,
6493 QEMU_OPTION_snapshot,
6494 #ifdef TARGET_I386
6495 QEMU_OPTION_no_fd_bootchk,
6496 #endif
6497 QEMU_OPTION_m,
6498 QEMU_OPTION_nographic,
6499 #ifdef HAS_AUDIO
6500 QEMU_OPTION_audio_help,
6501 QEMU_OPTION_soundhw,
6502 #endif
6503
6504 QEMU_OPTION_net,
6505 QEMU_OPTION_tftp,
6506 QEMU_OPTION_bootp,
6507 QEMU_OPTION_smb,
6508 QEMU_OPTION_redir,
6509
6510 QEMU_OPTION_kernel,
6511 QEMU_OPTION_append,
6512 QEMU_OPTION_initrd,
6513
6514 QEMU_OPTION_S,
6515 QEMU_OPTION_s,
6516 QEMU_OPTION_p,
6517 QEMU_OPTION_d,
6518 QEMU_OPTION_hdachs,
6519 QEMU_OPTION_L,
6520 QEMU_OPTION_no_code_copy,
6521 QEMU_OPTION_k,
6522 QEMU_OPTION_localtime,
6523 QEMU_OPTION_cirrusvga,
6524 QEMU_OPTION_g,
6525 QEMU_OPTION_std_vga,
6526 QEMU_OPTION_echr,
6527 QEMU_OPTION_monitor,
6528 QEMU_OPTION_serial,
6529 QEMU_OPTION_parallel,
6530 QEMU_OPTION_loadvm,
6531 QEMU_OPTION_full_screen,
6532 QEMU_OPTION_no_frame,
6533 QEMU_OPTION_no_quit,
6534 QEMU_OPTION_pidfile,
6535 QEMU_OPTION_no_kqemu,
6536 QEMU_OPTION_kernel_kqemu,
6537 QEMU_OPTION_win2k_hack,
6538 QEMU_OPTION_usb,
6539 QEMU_OPTION_usbdevice,
6540 QEMU_OPTION_smp,
6541 QEMU_OPTION_vnc,
6542 QEMU_OPTION_no_acpi,
6543 QEMU_OPTION_no_reboot,
6544 QEMU_OPTION_daemonize,
6545 QEMU_OPTION_option_rom,
6546 QEMU_OPTION_semihosting,
6547 QEMU_OPTION_name,
6548 };
6549
6550 typedef struct QEMUOption {
6551 const char *name;
6552 int flags;
6553 int index;
6554 } QEMUOption;
6555
6556 const QEMUOption qemu_options[] = {
6557 { "h", 0, QEMU_OPTION_h },
6558 { "help", 0, QEMU_OPTION_h },
6559
6560 { "M", HAS_ARG, QEMU_OPTION_M },
6561 { "cpu", HAS_ARG, QEMU_OPTION_cpu },
6562 { "fda", HAS_ARG, QEMU_OPTION_fda },
6563 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
6564 { "hda", HAS_ARG, QEMU_OPTION_hda },
6565 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
6566 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
6567 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
6568 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
6569 { "boot", HAS_ARG, QEMU_OPTION_boot },
6570 { "snapshot", 0, QEMU_OPTION_snapshot },
6571 #ifdef TARGET_I386
6572 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
6573 #endif
6574 { "m", HAS_ARG, QEMU_OPTION_m },
6575 { "nographic", 0, QEMU_OPTION_nographic },
6576 { "k", HAS_ARG, QEMU_OPTION_k },
6577 #ifdef HAS_AUDIO
6578 { "audio-help", 0, QEMU_OPTION_audio_help },
6579 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
6580 #endif
6581
6582 { "net", HAS_ARG, QEMU_OPTION_net},
6583 #ifdef CONFIG_SLIRP
6584 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
6585 { "bootp", HAS_ARG, QEMU_OPTION_bootp },
6586 #ifndef _WIN32
6587 { "smb", HAS_ARG, QEMU_OPTION_smb },
6588 #endif
6589 { "redir", HAS_ARG, QEMU_OPTION_redir },
6590 #endif
6591
6592 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
6593 { "append", HAS_ARG, QEMU_OPTION_append },
6594 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
6595
6596 { "S", 0, QEMU_OPTION_S },
6597 { "s", 0, QEMU_OPTION_s },
6598 { "p", HAS_ARG, QEMU_OPTION_p },
6599 { "d", HAS_ARG, QEMU_OPTION_d },
6600 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
6601 { "L", HAS_ARG, QEMU_OPTION_L },
6602 { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
6603 #ifdef USE_KQEMU
6604 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
6605 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
6606 #endif
6607 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
6608 { "g", 1, QEMU_OPTION_g },
6609 #endif
6610 { "localtime", 0, QEMU_OPTION_localtime },
6611 { "std-vga", 0, QEMU_OPTION_std_vga },
6612 { "echr", 1, QEMU_OPTION_echr },
6613 { "monitor", 1, QEMU_OPTION_monitor },
6614 { "serial", 1, QEMU_OPTION_serial },
6615 { "parallel", 1, QEMU_OPTION_parallel },
6616 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
6617 { "full-screen", 0, QEMU_OPTION_full_screen },
6618 #ifdef CONFIG_SDL
6619 { "no-frame", 0, QEMU_OPTION_no_frame },
6620 { "no-quit", 0, QEMU_OPTION_no_quit },
6621 #endif
6622 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
6623 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
6624 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
6625 { "smp", HAS_ARG, QEMU_OPTION_smp },
6626 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
6627
6628 /* temporary options */
6629 { "usb", 0, QEMU_OPTION_usb },
6630 { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
6631 { "no-acpi", 0, QEMU_OPTION_no_acpi },
6632 { "no-reboot", 0, QEMU_OPTION_no_reboot },
6633 { "daemonize", 0, QEMU_OPTION_daemonize },
6634 { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
6635 #if defined(TARGET_ARM)
6636 { "semihosting", 0, QEMU_OPTION_semihosting },
6637 #endif
6638 { "name", HAS_ARG, QEMU_OPTION_name },
6639 { NULL },
6640 };
6641
6642 #if defined (TARGET_I386) && defined(USE_CODE_COPY)
6643
6644 /* this stack is only used during signal handling */
6645 #define SIGNAL_STACK_SIZE 32768
6646
6647 static uint8_t *signal_stack;
6648
6649 #endif
6650
6651 /* password input */
6652
6653 static BlockDriverState *get_bdrv(int index)
6654 {
6655 BlockDriverState *bs;
6656
6657 if (index < 4) {
6658 bs = bs_table[index];
6659 } else if (index < 6) {
6660 bs = fd_table[index - 4];
6661 } else {
6662 bs = NULL;
6663 }
6664 return bs;
6665 }
6666
6667 static void read_passwords(void)
6668 {
6669 BlockDriverState *bs;
6670 int i, j;
6671 char password[256];
6672
6673 for(i = 0; i < 6; i++) {
6674 bs = get_bdrv(i);
6675 if (bs && bdrv_is_encrypted(bs)) {
6676 term_printf("%s is encrypted.\n", bdrv_get_device_name(bs));
6677 for(j = 0; j < 3; j++) {
6678 monitor_readline("Password: ",
6679 1, password, sizeof(password));
6680 if (bdrv_set_key(bs, password) == 0)
6681 break;
6682 term_printf("invalid password\n");
6683 }
6684 }
6685 }
6686 }
6687
6688 /* XXX: currently we cannot use simultaneously different CPUs */
6689 void register_machines(void)
6690 {
6691 #if defined(TARGET_I386)
6692 qemu_register_machine(&pc_machine);
6693 qemu_register_machine(&isapc_machine);
6694 #elif defined(TARGET_PPC)
6695 qemu_register_machine(&heathrow_machine);
6696 qemu_register_machine(&core99_machine);
6697 qemu_register_machine(&prep_machine);
6698 #elif defined(TARGET_MIPS)
6699 qemu_register_machine(&mips_machine);
6700 qemu_register_machine(&mips_malta_machine);
6701 #elif defined(TARGET_SPARC)
6702 #ifdef TARGET_SPARC64
6703 qemu_register_machine(&sun4u_machine);
6704 #else
6705 qemu_register_machine(&sun4m_machine);
6706 #endif
6707 #elif defined(TARGET_ARM)
6708 qemu_register_machine(&integratorcp_machine);
6709 qemu_register_machine(&versatilepb_machine);
6710 qemu_register_machine(&versatileab_machine);
6711 qemu_register_machine(&realview_machine);
6712 #elif defined(TARGET_SH4)
6713 qemu_register_machine(&shix_machine);
6714 #else
6715 #error unsupported CPU
6716 #endif
6717 }
6718
6719 #ifdef HAS_AUDIO
6720 struct soundhw soundhw[] = {
6721 #ifdef TARGET_I386
6722 {
6723 "pcspk",
6724 "PC speaker",
6725 0,
6726 1,
6727 { .init_isa = pcspk_audio_init }
6728 },
6729 #endif
6730 {
6731 "sb16",
6732 "Creative Sound Blaster 16",
6733 0,
6734 1,
6735 { .init_isa = SB16_init }
6736 },
6737
6738 #ifdef CONFIG_ADLIB
6739 {
6740 "adlib",
6741 #ifdef HAS_YMF262
6742 "Yamaha YMF262 (OPL3)",
6743 #else
6744 "Yamaha YM3812 (OPL2)",
6745 #endif
6746 0,
6747 1,
6748 { .init_isa = Adlib_init }
6749 },
6750 #endif
6751
6752 #ifdef CONFIG_GUS
6753 {
6754 "gus",
6755 "Gravis Ultrasound GF1",
6756 0,
6757 1,
6758 { .init_isa = GUS_init }
6759 },
6760 #endif
6761
6762 {
6763 "es1370",
6764 "ENSONIQ AudioPCI ES1370",
6765 0,
6766 0,
6767 { .init_pci = es1370_init }
6768 },
6769
6770 { NULL, NULL, 0, 0, { NULL } }
6771 };
6772
6773 static void select_soundhw (const char *optarg)
6774 {
6775 struct soundhw *c;
6776
6777 if (*optarg == '?') {
6778 show_valid_cards:
6779
6780 printf ("Valid sound card names (comma separated):\n");
6781 for (c = soundhw; c->name; ++c) {
6782 printf ("%-11s %s\n", c->name, c->descr);
6783 }
6784 printf ("\n-soundhw all will enable all of the above\n");
6785 exit (*optarg != '?');
6786 }
6787 else {
6788 size_t l;
6789 const char *p;
6790 char *e;
6791 int bad_card = 0;
6792
6793 if (!strcmp (optarg, "all")) {
6794 for (c = soundhw; c->name; ++c) {
6795 c->enabled = 1;
6796 }
6797 return;
6798 }
6799
6800 p = optarg;
6801 while (*p) {
6802 e = strchr (p, ',');
6803 l = !e ? strlen (p) : (size_t) (e - p);
6804
6805 for (c = soundhw; c->name; ++c) {
6806 if (!strncmp (c->name, p, l)) {
6807 c->enabled = 1;
6808 break;
6809 }
6810 }
6811
6812 if (!c->name) {
6813 if (l > 80) {
6814 fprintf (stderr,
6815 "Unknown sound card name (too big to show)\n");
6816 }
6817 else {
6818 fprintf (stderr, "Unknown sound card name `%.*s'\n",
6819 (int) l, p);
6820 }
6821 bad_card = 1;
6822 }
6823 p += l + (e != NULL);
6824 }
6825
6826 if (bad_card)
6827 goto show_valid_cards;
6828 }
6829 }
6830 #endif
6831
6832 #ifdef _WIN32
6833 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
6834 {
6835 exit(STATUS_CONTROL_C_EXIT);
6836 return TRUE;
6837 }
6838 #endif
6839
6840 #define MAX_NET_CLIENTS 32
6841
6842 int main(int argc, char **argv)
6843 {
6844 #ifdef CONFIG_GDBSTUB
6845 int use_gdbstub;
6846 const char *gdbstub_port;
6847 #endif
6848 int i, cdrom_index;
6849 int snapshot, linux_boot;
6850 const char *initrd_filename;
6851 const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD];
6852 const char *kernel_filename, *kernel_cmdline;
6853 DisplayState *ds = &display_state;
6854 int cyls, heads, secs, translation;
6855 char net_clients[MAX_NET_CLIENTS][256];
6856 int nb_net_clients;
6857 int optind;
6858 const char *r, *optarg;
6859 CharDriverState *monitor_hd;
6860 char monitor_device[128];
6861 char serial_devices[MAX_SERIAL_PORTS][128];
6862 int serial_device_index;
6863 char parallel_devices[MAX_PARALLEL_PORTS][128];
6864 int parallel_device_index;
6865 const char *loadvm = NULL;
6866 QEMUMachine *machine;
6867 const char *cpu_model;
6868 char usb_devices[MAX_USB_CMDLINE][128];
6869 int usb_devices_index;
6870 int fds[2];
6871 const char *pid_file = NULL;
6872
6873 LIST_INIT (&vm_change_state_head);
6874 #ifndef _WIN32
6875 {
6876 struct sigaction act;
6877 sigfillset(&act.sa_mask);
6878 act.sa_flags = 0;
6879 act.sa_handler = SIG_IGN;
6880 sigaction(SIGPIPE, &act, NULL);
6881 }
6882 #else
6883 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
6884 /* Note: cpu_interrupt() is currently not SMP safe, so we force
6885 QEMU to run on a single CPU */
6886 {
6887 HANDLE h;
6888 DWORD mask, smask;
6889 int i;
6890 h = GetCurrentProcess();
6891 if (GetProcessAffinityMask(h, &mask, &smask)) {
6892 for(i = 0; i < 32; i++) {
6893 if (mask & (1 << i))
6894 break;
6895 }
6896 if (i != 32) {
6897 mask = 1 << i;
6898 SetProcessAffinityMask(h, mask);
6899 }
6900 }
6901 }
6902 #endif
6903
6904 register_machines();
6905 machine = first_machine;
6906 cpu_model = NULL;
6907 initrd_filename = NULL;
6908 for(i = 0; i < MAX_FD; i++)
6909 fd_filename[i] = NULL;
6910 for(i = 0; i < MAX_DISKS; i++)
6911 hd_filename[i] = NULL;
6912 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
6913 vga_ram_size = VGA_RAM_SIZE;
6914 #ifdef CONFIG_GDBSTUB
6915 use_gdbstub = 0;
6916 gdbstub_port = DEFAULT_GDBSTUB_PORT;
6917 #endif
6918 snapshot = 0;
6919 nographic = 0;
6920 kernel_filename = NULL;
6921 kernel_cmdline = "";
6922 #ifdef TARGET_PPC
6923 cdrom_index = 1;
6924 #else
6925 cdrom_index = 2;
6926 #endif
6927 cyls = heads = secs = 0;
6928 translation = BIOS_ATA_TRANSLATION_AUTO;
6929 pstrcpy(monitor_device, sizeof(monitor_device), "vc");
6930
6931 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "vc");
6932 for(i = 1; i < MAX_SERIAL_PORTS; i++)
6933 serial_devices[i][0] = '\0';
6934 serial_device_index = 0;
6935
6936 pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "vc");
6937 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
6938 parallel_devices[i][0] = '\0';
6939 parallel_device_index = 0;
6940
6941 usb_devices_index = 0;
6942
6943 nb_net_clients = 0;
6944
6945 nb_nics = 0;
6946 /* default mac address of the first network interface */
6947
6948 optind = 1;
6949 for(;;) {
6950 if (optind >= argc)
6951 break;
6952 r = argv[optind];
6953 if (r[0] != '-') {
6954 hd_filename[0] = argv[optind++];
6955 } else {
6956 const QEMUOption *popt;
6957
6958 optind++;
6959 /* Treat --foo the same as -foo. */
6960 if (r[1] == '-')
6961 r++;
6962 popt = qemu_options;
6963 for(;;) {
6964 if (!popt->name) {
6965 fprintf(stderr, "%s: invalid option -- '%s'\n",
6966 argv[0], r);
6967 exit(1);
6968 }
6969 if (!strcmp(popt->name, r + 1))
6970 break;
6971 popt++;
6972 }
6973 if (popt->flags & HAS_ARG) {
6974 if (optind >= argc) {
6975 fprintf(stderr, "%s: option '%s' requires an argument\n",
6976 argv[0], r);
6977 exit(1);
6978 }
6979 optarg = argv[optind++];
6980 } else {
6981 optarg = NULL;
6982 }
6983
6984 switch(popt->index) {
6985 case QEMU_OPTION_M:
6986 machine = find_machine(optarg);
6987 if (!machine) {
6988 QEMUMachine *m;
6989 printf("Supported machines are:\n");
6990 for(m = first_machine; m != NULL; m = m->next) {
6991 printf("%-10s %s%s\n",
6992 m->name, m->desc,
6993 m == first_machine ? " (default)" : "");
6994 }
6995 exit(1);
6996 }
6997 break;
6998 case QEMU_OPTION_cpu:
6999 /* hw initialization will check this */
7000 if (optarg[0] == '?') {
7001 #if defined(TARGET_PPC)
7002 ppc_cpu_list(stdout, &fprintf);
7003 #elif defined(TARGET_ARM)
7004 arm_cpu_list();
7005 #elif defined(TARGET_MIPS)
7006 mips_cpu_list(stdout, &fprintf);
7007 #endif
7008 exit(1);
7009 } else {
7010 cpu_model = optarg;
7011 }
7012 break;
7013 case QEMU_OPTION_initrd:
7014 initrd_filename = optarg;
7015 break;
7016 case QEMU_OPTION_hda:
7017 case QEMU_OPTION_hdb:
7018 case QEMU_OPTION_hdc:
7019 case QEMU_OPTION_hdd:
7020 {
7021 int hd_index;
7022 hd_index = popt->index - QEMU_OPTION_hda;
7023 hd_filename[hd_index] = optarg;
7024 if (hd_index == cdrom_index)
7025 cdrom_index = -1;
7026 }
7027 break;
7028 case QEMU_OPTION_snapshot:
7029 snapshot = 1;
7030 break;
7031 case QEMU_OPTION_hdachs:
7032 {
7033 const char *p;
7034 p = optarg;
7035 cyls = strtol(p, (char **)&p, 0);
7036 if (cyls < 1 || cyls > 16383)
7037 goto chs_fail;
7038 if (*p != ',')
7039 goto chs_fail;
7040 p++;
7041 heads = strtol(p, (char **)&p, 0);
7042 if (heads < 1 || heads > 16)
7043 goto chs_fail;
7044 if (*p != ',')
7045 goto chs_fail;
7046 p++;
7047 secs = strtol(p, (char **)&p, 0);
7048 if (secs < 1 || secs > 63)
7049 goto chs_fail;
7050 if (*p == ',') {
7051 p++;
7052 if (!strcmp(p, "none"))
7053 translation = BIOS_ATA_TRANSLATION_NONE;
7054 else if (!strcmp(p, "lba"))
7055 translation = BIOS_ATA_TRANSLATION_LBA;
7056 else if (!strcmp(p, "auto"))
7057 translation = BIOS_ATA_TRANSLATION_AUTO;
7058 else
7059 goto chs_fail;
7060 } else if (*p != '\0') {
7061 chs_fail:
7062 fprintf(stderr, "qemu: invalid physical CHS format\n");
7063 exit(1);
7064 }
7065 }
7066 break;
7067 case QEMU_OPTION_nographic:
7068 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "stdio");
7069 pstrcpy(monitor_device, sizeof(monitor_device), "stdio");
7070 nographic = 1;
7071 break;
7072 case QEMU_OPTION_kernel:
7073 kernel_filename = optarg;
7074 break;
7075 case QEMU_OPTION_append:
7076 kernel_cmdline = optarg;
7077 break;
7078 case QEMU_OPTION_cdrom:
7079 if (cdrom_index >= 0) {
7080 hd_filename[cdrom_index] = optarg;
7081 }
7082 break;
7083 case QEMU_OPTION_boot:
7084 boot_device = optarg[0];
7085 if (boot_device != 'a' &&
7086 #if defined(TARGET_SPARC) || defined(TARGET_I386)
7087 // Network boot
7088 boot_device != 'n' &&
7089 #endif
7090 boot_device != 'c' && boot_device != 'd') {
7091 fprintf(stderr, "qemu: invalid boot device '%c'\n", boot_device);
7092 exit(1);
7093 }
7094 break;
7095 case QEMU_OPTION_fda:
7096 fd_filename[0] = optarg;
7097 break;
7098 case QEMU_OPTION_fdb:
7099 fd_filename[1] = optarg;
7100 break;
7101 #ifdef TARGET_I386
7102 case QEMU_OPTION_no_fd_bootchk:
7103 fd_bootchk = 0;
7104 break;
7105 #endif
7106 case QEMU_OPTION_no_code_copy:
7107 code_copy_enabled = 0;
7108 break;
7109 case QEMU_OPTION_net:
7110 if (nb_net_clients >= MAX_NET_CLIENTS) {
7111 fprintf(stderr, "qemu: too many network clients\n");
7112 exit(1);
7113 }
7114 pstrcpy(net_clients[nb_net_clients],
7115 sizeof(net_clients[0]),
7116 optarg);
7117 nb_net_clients++;
7118 break;
7119 #ifdef CONFIG_SLIRP
7120 case QEMU_OPTION_tftp:
7121 tftp_prefix = optarg;
7122 break;
7123 case QEMU_OPTION_bootp:
7124 bootp_filename = optarg;
7125 break;
7126 #ifndef _WIN32
7127 case QEMU_OPTION_smb:
7128 net_slirp_smb(optarg);
7129 break;
7130 #endif
7131 case QEMU_OPTION_redir:
7132 net_slirp_redir(optarg);
7133 break;
7134 #endif
7135 #ifdef HAS_AUDIO
7136 case QEMU_OPTION_audio_help:
7137 AUD_help ();
7138 exit (0);
7139 break;
7140 case QEMU_OPTION_soundhw:
7141 select_soundhw (optarg);
7142 break;
7143 #endif
7144 case QEMU_OPTION_h:
7145 help();
7146 break;
7147 case QEMU_OPTION_m:
7148 ram_size = atoi(optarg) * 1024 * 1024;
7149 if (ram_size <= 0)
7150 help();
7151 if (ram_size > PHYS_RAM_MAX_SIZE) {
7152 fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
7153 PHYS_RAM_MAX_SIZE / (1024 * 1024));
7154 exit(1);
7155 }
7156 break;
7157 case QEMU_OPTION_d:
7158 {
7159 int mask;
7160 CPULogItem *item;
7161
7162 mask = cpu_str_to_log_mask(optarg);
7163 if (!mask) {
7164 printf("Log items (comma separated):\n");
7165 for(item = cpu_log_items; item->mask != 0; item++) {
7166 printf("%-10s %s\n", item->name, item->help);
7167 }
7168 exit(1);
7169 }
7170 cpu_set_log(mask);
7171 }
7172 break;
7173 #ifdef CONFIG_GDBSTUB
7174 case QEMU_OPTION_s:
7175 use_gdbstub = 1;
7176 break;
7177 case QEMU_OPTION_p:
7178 gdbstub_port = optarg;
7179 break;
7180 #endif
7181 case QEMU_OPTION_L:
7182 bios_dir = optarg;
7183 break;
7184 case QEMU_OPTION_S:
7185 autostart = 0;
7186 break;
7187 case QEMU_OPTION_k:
7188 keyboard_layout = optarg;
7189 break;
7190 case QEMU_OPTION_localtime:
7191 rtc_utc = 0;
7192 break;
7193 case QEMU_OPTION_cirrusvga:
7194 cirrus_vga_enabled = 1;
7195 break;
7196 case QEMU_OPTION_std_vga:
7197 cirrus_vga_enabled = 0;
7198 break;
7199 case QEMU_OPTION_g:
7200 {
7201 const char *p;
7202 int w, h, depth;
7203 p = optarg;
7204 w = strtol(p, (char **)&p, 10);
7205 if (w <= 0) {
7206 graphic_error:
7207 fprintf(stderr, "qemu: invalid resolution or depth\n");
7208 exit(1);
7209 }
7210 if (*p != 'x')
7211 goto graphic_error;
7212 p++;
7213 h = strtol(p, (char **)&p, 10);
7214 if (h <= 0)
7215 goto graphic_error;
7216 if (*p == 'x') {
7217 p++;
7218 depth = strtol(p, (char **)&p, 10);
7219 if (depth != 8 && depth != 15 && depth != 16 &&
7220 depth != 24 && depth != 32)
7221 goto graphic_error;
7222 } else if (*p == '\0') {
7223 depth = graphic_depth;
7224 } else {
7225 goto graphic_error;
7226 }
7227
7228 graphic_width = w;
7229 graphic_height = h;
7230 graphic_depth = depth;
7231 }
7232 break;
7233 case QEMU_OPTION_echr:
7234 {
7235 char *r;
7236 term_escape_char = strtol(optarg, &r, 0);
7237 if (r == optarg)
7238 printf("Bad argument to echr\n");
7239 break;
7240 }
7241 case QEMU_OPTION_monitor:
7242 pstrcpy(monitor_device, sizeof(monitor_device), optarg);
7243 break;
7244 case QEMU_OPTION_serial:
7245 if (serial_device_index >= MAX_SERIAL_PORTS) {
7246 fprintf(stderr, "qemu: too many serial ports\n");
7247 exit(1);
7248 }
7249 pstrcpy(serial_devices[serial_device_index],
7250 sizeof(serial_devices[0]), optarg);
7251 serial_device_index++;
7252 break;
7253 case QEMU_OPTION_parallel:
7254 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
7255 fprintf(stderr, "qemu: too many parallel ports\n");
7256 exit(1);
7257 }
7258 pstrcpy(parallel_devices[parallel_device_index],
7259 sizeof(parallel_devices[0]), optarg);
7260 parallel_device_index++;
7261 break;
7262 case QEMU_OPTION_loadvm:
7263 loadvm = optarg;
7264 break;
7265 case QEMU_OPTION_full_screen:
7266 full_screen = 1;
7267 break;
7268 #ifdef CONFIG_SDL
7269 case QEMU_OPTION_no_frame:
7270 no_frame = 1;
7271 break;
7272 case QEMU_OPTION_no_quit:
7273 no_quit = 1;
7274 break;
7275 #endif
7276 case QEMU_OPTION_pidfile:
7277 pid_file = optarg;
7278 break;
7279 #ifdef TARGET_I386
7280 case QEMU_OPTION_win2k_hack:
7281 win2k_install_hack = 1;
7282 break;
7283 #endif
7284 #ifdef USE_KQEMU
7285 case QEMU_OPTION_no_kqemu:
7286 kqemu_allowed = 0;
7287 break;
7288 case QEMU_OPTION_kernel_kqemu:
7289 kqemu_allowed = 2;
7290 break;
7291 #endif
7292 case QEMU_OPTION_usb:
7293 usb_enabled = 1;
7294 break;
7295 case QEMU_OPTION_usbdevice:
7296 usb_enabled = 1;
7297 if (usb_devices_index >= MAX_USB_CMDLINE) {
7298 fprintf(stderr, "Too many USB devices\n");
7299 exit(1);
7300 }
7301 pstrcpy(usb_devices[usb_devices_index],
7302 sizeof(usb_devices[usb_devices_index]),
7303 optarg);
7304 usb_devices_index++;
7305 break;
7306 case QEMU_OPTION_smp:
7307 smp_cpus = atoi(optarg);
7308 if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
7309 fprintf(stderr, "Invalid number of CPUs\n");
7310 exit(1);
7311 }
7312 break;
7313 case QEMU_OPTION_vnc:
7314 vnc_display = optarg;
7315 break;
7316 case QEMU_OPTION_no_acpi:
7317 acpi_enabled = 0;
7318 break;
7319 case QEMU_OPTION_no_reboot:
7320 no_reboot = 1;
7321 break;
7322 case QEMU_OPTION_daemonize:
7323 daemonize = 1;
7324 break;
7325 case QEMU_OPTION_option_rom:
7326 if (nb_option_roms >= MAX_OPTION_ROMS) {
7327 fprintf(stderr, "Too many option ROMs\n");
7328 exit(1);
7329 }
7330 option_rom[nb_option_roms] = optarg;
7331 nb_option_roms++;
7332 break;
7333 case QEMU_OPTION_semihosting:
7334 semihosting_enabled = 1;
7335 break;
7336 case QEMU_OPTION_name:
7337 qemu_name = optarg;
7338 break;
7339 }
7340 }
7341 }
7342
7343 #ifndef _WIN32
7344 if (daemonize && !nographic && vnc_display == NULL) {
7345 fprintf(stderr, "Can only daemonize if using -nographic or -vnc\n");
7346 daemonize = 0;
7347 }
7348
7349 if (daemonize) {
7350 pid_t pid;
7351
7352 if (pipe(fds) == -1)
7353 exit(1);
7354
7355 pid = fork();
7356 if (pid > 0) {
7357 uint8_t status;
7358 ssize_t len;
7359
7360 close(fds[1]);
7361
7362 again:
7363 len = read(fds[0], &status, 1);
7364 if (len == -1 && (errno == EINTR))
7365 goto again;
7366
7367 if (len != 1)
7368 exit(1);
7369 else if (status == 1) {
7370 fprintf(stderr, "Could not acquire pidfile\n");
7371 exit(1);
7372 } else
7373 exit(0);
7374 } else if (pid < 0)
7375 exit(1);
7376
7377 setsid();
7378
7379 pid = fork();
7380 if (pid > 0)
7381 exit(0);
7382 else if (pid < 0)
7383 exit(1);
7384
7385 umask(027);
7386 chdir("/");
7387
7388 signal(SIGTSTP, SIG_IGN);
7389 signal(SIGTTOU, SIG_IGN);
7390 signal(SIGTTIN, SIG_IGN);
7391 }
7392 #endif
7393
7394 if (pid_file && create_pidfile(pid_file) != 0) {
7395 if (daemonize) {
7396 uint8_t status = 1;
7397 write(fds[1], &status, 1);
7398 } else
7399 fprintf(stderr, "Could not acquire pid file\n");
7400 exit(1);
7401 }
7402
7403 #ifdef USE_KQEMU
7404 if (smp_cpus > 1)
7405 kqemu_allowed = 0;
7406 #endif
7407 linux_boot = (kernel_filename != NULL);
7408
7409 if (!linux_boot &&
7410 boot_device != 'n' &&
7411 hd_filename[0] == '\0' &&
7412 (cdrom_index >= 0 && hd_filename[cdrom_index] == '\0') &&
7413 fd_filename[0] == '\0')
7414 help();
7415
7416 /* boot to floppy or the default cd if no hard disk defined yet */
7417 if (hd_filename[0] == '\0' && boot_device == 'c') {
7418 if (fd_filename[0] != '\0')
7419 boot_device = 'a';
7420 else
7421 boot_device = 'd';
7422 }
7423
7424 setvbuf(stdout, NULL, _IOLBF, 0);
7425
7426 init_timers();
7427 init_timer_alarm();
7428 qemu_aio_init();
7429
7430 #ifdef _WIN32
7431 socket_init();
7432 #endif
7433
7434 /* init network clients */
7435 if (nb_net_clients == 0) {
7436 /* if no clients, we use a default config */
7437 pstrcpy(net_clients[0], sizeof(net_clients[0]),
7438 "nic");
7439 pstrcpy(net_clients[1], sizeof(net_clients[0]),
7440 "user");
7441 nb_net_clients = 2;
7442 }
7443
7444 for(i = 0;i < nb_net_clients; i++) {
7445 if (net_client_init(net_clients[i]) < 0)
7446 exit(1);
7447 }
7448
7449 #ifdef TARGET_I386
7450 if (boot_device == 'n') {
7451 for (i = 0; i < nb_nics; i++) {
7452 const char *model = nd_table[i].model;
7453 char buf[1024];
7454 if (model == NULL)
7455 model = "ne2k_pci";
7456 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
7457 if (get_image_size(buf) > 0) {
7458 option_rom[nb_option_roms] = strdup(buf);
7459 nb_option_roms++;
7460 break;
7461 }
7462 }
7463 if (i == nb_nics) {
7464 fprintf(stderr, "No valid PXE rom found for network device\n");
7465 exit(1);
7466 }
7467 boot_device = 'c'; /* to prevent confusion by the BIOS */
7468 }
7469 #endif
7470
7471 /* init the memory */
7472 phys_ram_size = ram_size + vga_ram_size + MAX_BIOS_SIZE;
7473
7474 phys_ram_base = qemu_vmalloc(phys_ram_size);
7475 if (!phys_ram_base) {
7476 fprintf(stderr, "Could not allocate physical memory\n");
7477 exit(1);
7478 }
7479
7480 /* we always create the cdrom drive, even if no disk is there */
7481 bdrv_init();
7482 if (cdrom_index >= 0) {
7483 bs_table[cdrom_index] = bdrv_new("cdrom");
7484 bdrv_set_type_hint(bs_table[cdrom_index], BDRV_TYPE_CDROM);
7485 }
7486
7487 /* open the virtual block devices */
7488 for(i = 0; i < MAX_DISKS; i++) {
7489 if (hd_filename[i]) {
7490 if (!bs_table[i]) {
7491 char buf[64];
7492 snprintf(buf, sizeof(buf), "hd%c", i + 'a');
7493 bs_table[i] = bdrv_new(buf);
7494 }
7495 if (bdrv_open(bs_table[i], hd_filename[i], snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7496 fprintf(stderr, "qemu: could not open hard disk image '%s'\n",
7497 hd_filename[i]);
7498 exit(1);
7499 }
7500 if (i == 0 && cyls != 0) {
7501 bdrv_set_geometry_hint(bs_table[i], cyls, heads, secs);
7502 bdrv_set_translation_hint(bs_table[i], translation);
7503 }
7504 }
7505 }
7506
7507 /* we always create at least one floppy disk */
7508 fd_table[0] = bdrv_new("fda");
7509 bdrv_set_type_hint(fd_table[0], BDRV_TYPE_FLOPPY);
7510
7511 for(i = 0; i < MAX_FD; i++) {
7512 if (fd_filename[i]) {
7513 if (!fd_table[i]) {
7514 char buf[64];
7515 snprintf(buf, sizeof(buf), "fd%c", i + 'a');
7516 fd_table[i] = bdrv_new(buf);
7517 bdrv_set_type_hint(fd_table[i], BDRV_TYPE_FLOPPY);
7518 }
7519 if (fd_filename[i] != '\0') {
7520 if (bdrv_open(fd_table[i], fd_filename[i],
7521 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7522 fprintf(stderr, "qemu: could not open floppy disk image '%s'\n",
7523 fd_filename[i]);
7524 exit(1);
7525 }
7526 }
7527 }
7528 }
7529
7530 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
7531 register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
7532
7533 init_ioports();
7534
7535 /* terminal init */
7536 if (nographic) {
7537 dumb_display_init(ds);
7538 } else if (vnc_display != NULL) {
7539 vnc_display_init(ds, vnc_display);
7540 } else {
7541 #if defined(CONFIG_SDL)
7542 sdl_display_init(ds, full_screen, no_frame);
7543 #elif defined(CONFIG_COCOA)
7544 cocoa_display_init(ds, full_screen);
7545 #else
7546 dumb_display_init(ds);
7547 #endif
7548 }
7549
7550 /* Maintain compatibility with multiple stdio monitors */
7551 if (!strcmp(monitor_device,"stdio")) {
7552 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
7553 if (!strcmp(serial_devices[i],"mon:stdio")) {
7554 monitor_device[0] = '\0';
7555 break;
7556 } else if (!strcmp(serial_devices[i],"stdio")) {
7557 monitor_device[0] = '\0';
7558 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "mon:stdio");
7559 break;
7560 }
7561 }
7562 }
7563 if (monitor_device[0] != '\0') {
7564 monitor_hd = qemu_chr_open(monitor_device);
7565 if (!monitor_hd) {
7566 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
7567 exit(1);
7568 }
7569 monitor_init(monitor_hd, !nographic);
7570 }
7571
7572 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
7573 const char *devname = serial_devices[i];
7574 if (devname[0] != '\0' && strcmp(devname, "none")) {
7575 serial_hds[i] = qemu_chr_open(devname);
7576 if (!serial_hds[i]) {
7577 fprintf(stderr, "qemu: could not open serial device '%s'\n",
7578 devname);
7579 exit(1);
7580 }
7581 if (!strcmp(devname, "vc"))
7582 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
7583 }
7584 }
7585
7586 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
7587 const char *devname = parallel_devices[i];
7588 if (devname[0] != '\0' && strcmp(devname, "none")) {
7589 parallel_hds[i] = qemu_chr_open(devname);
7590 if (!parallel_hds[i]) {
7591 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
7592 devname);
7593 exit(1);
7594 }
7595 if (!strcmp(devname, "vc"))
7596 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
7597 }
7598 }
7599
7600 machine->init(ram_size, vga_ram_size, boot_device,
7601 ds, fd_filename, snapshot,
7602 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
7603
7604 /* init USB devices */
7605 if (usb_enabled) {
7606 for(i = 0; i < usb_devices_index; i++) {
7607 if (usb_device_add(usb_devices[i]) < 0) {
7608 fprintf(stderr, "Warning: could not add USB device %s\n",
7609 usb_devices[i]);
7610 }
7611 }
7612 }
7613
7614 gui_timer = qemu_new_timer(rt_clock, gui_update, NULL);
7615 qemu_mod_timer(gui_timer, qemu_get_clock(rt_clock));
7616
7617 #ifdef CONFIG_GDBSTUB
7618 if (use_gdbstub) {
7619 /* XXX: use standard host:port notation and modify options
7620 accordingly. */
7621 if (gdbserver_start(gdbstub_port) < 0) {
7622 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
7623 gdbstub_port);
7624 exit(1);
7625 }
7626 } else
7627 #endif
7628 if (loadvm)
7629 do_loadvm(loadvm);
7630
7631 {
7632 /* XXX: simplify init */
7633 read_passwords();
7634 if (autostart) {
7635 vm_start();
7636 }
7637 }
7638
7639 if (daemonize) {
7640 uint8_t status = 0;
7641 ssize_t len;
7642 int fd;
7643
7644 again1:
7645 len = write(fds[1], &status, 1);
7646 if (len == -1 && (errno == EINTR))
7647 goto again1;
7648
7649 if (len != 1)
7650 exit(1);
7651
7652 fd = open("/dev/null", O_RDWR);
7653 if (fd == -1)
7654 exit(1);
7655
7656 dup2(fd, 0);
7657 dup2(fd, 1);
7658 dup2(fd, 2);
7659
7660 close(fd);
7661 }
7662
7663 main_loop();
7664 quit_timers();
7665 return 0;
7666 }