]> git.proxmox.com Git - mirror_qemu.git/blob - vl.c
monitor: Improve mux'ed console experience (Jan Kiszka)
[mirror_qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw/hw.h"
25 #include "hw/boards.h"
26 #include "hw/usb.h"
27 #include "hw/pcmcia.h"
28 #include "hw/pc.h"
29 #include "hw/audiodev.h"
30 #include "hw/isa.h"
31 #include "hw/baum.h"
32 #include "hw/bt.h"
33 #include "net.h"
34 #include "monitor.h"
35 #include "console.h"
36 #include "sysemu.h"
37 #include "gdbstub.h"
38 #include "qemu-timer.h"
39 #include "qemu-char.h"
40 #include "cache-utils.h"
41 #include "block.h"
42 #include "audio/audio.h"
43 #include "migration.h"
44 #include "kvm.h"
45 #include "balloon.h"
46
47 #include <unistd.h>
48 #include <fcntl.h>
49 #include <signal.h>
50 #include <time.h>
51 #include <errno.h>
52 #include <sys/time.h>
53 #include <zlib.h>
54
55 #ifndef _WIN32
56 #include <pwd.h>
57 #include <sys/times.h>
58 #include <sys/wait.h>
59 #include <termios.h>
60 #include <sys/mman.h>
61 #include <sys/ioctl.h>
62 #include <sys/resource.h>
63 #include <sys/socket.h>
64 #include <netinet/in.h>
65 #include <net/if.h>
66 #if defined(__NetBSD__)
67 #include <net/if_tap.h>
68 #endif
69 #ifdef __linux__
70 #include <linux/if_tun.h>
71 #endif
72 #include <arpa/inet.h>
73 #include <dirent.h>
74 #include <netdb.h>
75 #include <sys/select.h>
76 #ifdef _BSD
77 #include <sys/stat.h>
78 #ifdef __FreeBSD__
79 #include <libutil.h>
80 #else
81 #include <util.h>
82 #endif
83 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
84 #include <freebsd/stdlib.h>
85 #else
86 #ifdef __linux__
87 #include <pty.h>
88 #include <malloc.h>
89 #include <linux/rtc.h>
90
91 /* For the benefit of older linux systems which don't supply it,
92 we use a local copy of hpet.h. */
93 /* #include <linux/hpet.h> */
94 #include "hpet.h"
95
96 #include <linux/ppdev.h>
97 #include <linux/parport.h>
98 #endif
99 #ifdef __sun__
100 #include <sys/stat.h>
101 #include <sys/ethernet.h>
102 #include <sys/sockio.h>
103 #include <netinet/arp.h>
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/ip.h>
107 #include <netinet/ip_icmp.h> // must come after ip.h
108 #include <netinet/udp.h>
109 #include <netinet/tcp.h>
110 #include <net/if.h>
111 #include <syslog.h>
112 #include <stropts.h>
113 #endif
114 #endif
115 #endif
116
117 #include "qemu_socket.h"
118
119 #if defined(CONFIG_SLIRP)
120 #include "libslirp.h"
121 #endif
122
123 #if defined(__OpenBSD__)
124 #include <util.h>
125 #endif
126
127 #if defined(CONFIG_VDE)
128 #include <libvdeplug.h>
129 #endif
130
131 #ifdef _WIN32
132 #include <malloc.h>
133 #include <sys/timeb.h>
134 #include <mmsystem.h>
135 #define getopt_long_only getopt_long
136 #define memalign(align, size) malloc(size)
137 #endif
138
139 #ifdef CONFIG_SDL
140 #ifdef __APPLE__
141 #include <SDL/SDL.h>
142 int qemu_main(int argc, char **argv, char **envp);
143 int main(int argc, char **argv)
144 {
145 qemu_main(argc, argv, NULL);
146 }
147 #undef main
148 #define main qemu_main
149 #endif
150 #endif /* CONFIG_SDL */
151
152 #ifdef CONFIG_COCOA
153 #undef main
154 #define main qemu_main
155 #endif /* CONFIG_COCOA */
156
157 #include "disas.h"
158
159 #include "exec-all.h"
160
161 //#define DEBUG_UNUSED_IOPORT
162 //#define DEBUG_IOPORT
163 //#define DEBUG_NET
164 //#define DEBUG_SLIRP
165
166
167 #ifdef DEBUG_IOPORT
168 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
169 #else
170 # define LOG_IOPORT(...) do { } while (0)
171 #endif
172
173 #define DEFAULT_RAM_SIZE 128
174
175 /* Max number of USB devices that can be specified on the commandline. */
176 #define MAX_USB_CMDLINE 8
177
178 /* Max number of bluetooth switches on the commandline. */
179 #define MAX_BT_CMDLINE 10
180
181 /* XXX: use a two level table to limit memory usage */
182 #define MAX_IOPORTS 65536
183
184 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
185 const char *bios_name = NULL;
186 static void *ioport_opaque[MAX_IOPORTS];
187 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
188 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
189 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
190 to store the VM snapshots */
191 DriveInfo drives_table[MAX_DRIVES+1];
192 int nb_drives;
193 static int vga_ram_size;
194 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
195 static DisplayState *display_state;
196 int nographic;
197 static int curses;
198 static int sdl;
199 const char* keyboard_layout = NULL;
200 int64_t ticks_per_sec;
201 ram_addr_t ram_size;
202 int nb_nics;
203 NICInfo nd_table[MAX_NICS];
204 int vm_running;
205 static int autostart;
206 static int rtc_utc = 1;
207 static int rtc_date_offset = -1; /* -1 means no change */
208 int cirrus_vga_enabled = 1;
209 int std_vga_enabled = 0;
210 int vmsvga_enabled = 0;
211 #ifdef TARGET_SPARC
212 int graphic_width = 1024;
213 int graphic_height = 768;
214 int graphic_depth = 8;
215 #else
216 int graphic_width = 800;
217 int graphic_height = 600;
218 int graphic_depth = 15;
219 #endif
220 static int full_screen = 0;
221 #ifdef CONFIG_SDL
222 static int no_frame = 0;
223 #endif
224 int no_quit = 0;
225 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
226 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
227 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
228 #ifdef TARGET_I386
229 int win2k_install_hack = 0;
230 int rtc_td_hack = 0;
231 #endif
232 int usb_enabled = 0;
233 int smp_cpus = 1;
234 const char *vnc_display;
235 int acpi_enabled = 1;
236 int no_hpet = 0;
237 int fd_bootchk = 1;
238 int no_reboot = 0;
239 int no_shutdown = 0;
240 int cursor_hide = 1;
241 int graphic_rotate = 0;
242 int daemonize = 0;
243 const char *option_rom[MAX_OPTION_ROMS];
244 int nb_option_roms;
245 int semihosting_enabled = 0;
246 #ifdef TARGET_ARM
247 int old_param = 0;
248 #endif
249 const char *qemu_name;
250 int alt_grab = 0;
251 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
252 unsigned int nb_prom_envs = 0;
253 const char *prom_envs[MAX_PROM_ENVS];
254 #endif
255 int nb_drives_opt;
256 struct drive_opt drives_opt[MAX_DRIVES];
257
258 static CPUState *cur_cpu;
259 static CPUState *next_cpu;
260 static int event_pending = 1;
261 /* Conversion factor from emulated instructions to virtual clock ticks. */
262 static int icount_time_shift;
263 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
264 #define MAX_ICOUNT_SHIFT 10
265 /* Compensate for varying guest execution speed. */
266 static int64_t qemu_icount_bias;
267 static QEMUTimer *icount_rt_timer;
268 static QEMUTimer *icount_vm_timer;
269 static QEMUTimer *nographic_timer;
270
271 uint8_t qemu_uuid[16];
272
273 /***********************************************************/
274 /* x86 ISA bus support */
275
276 target_phys_addr_t isa_mem_base = 0;
277 PicState2 *isa_pic;
278
279 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
280 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
281
282 static uint32_t ioport_read(int index, uint32_t address)
283 {
284 static IOPortReadFunc *default_func[3] = {
285 default_ioport_readb,
286 default_ioport_readw,
287 default_ioport_readl
288 };
289 IOPortReadFunc *func = ioport_read_table[index][address];
290 if (!func)
291 func = default_func[index];
292 return func(ioport_opaque[address], address);
293 }
294
295 static void ioport_write(int index, uint32_t address, uint32_t data)
296 {
297 static IOPortWriteFunc *default_func[3] = {
298 default_ioport_writeb,
299 default_ioport_writew,
300 default_ioport_writel
301 };
302 IOPortWriteFunc *func = ioport_write_table[index][address];
303 if (!func)
304 func = default_func[index];
305 func(ioport_opaque[address], address, data);
306 }
307
308 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
309 {
310 #ifdef DEBUG_UNUSED_IOPORT
311 fprintf(stderr, "unused inb: port=0x%04x\n", address);
312 #endif
313 return 0xff;
314 }
315
316 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
317 {
318 #ifdef DEBUG_UNUSED_IOPORT
319 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
320 #endif
321 }
322
323 /* default is to make two byte accesses */
324 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
325 {
326 uint32_t data;
327 data = ioport_read(0, address);
328 address = (address + 1) & (MAX_IOPORTS - 1);
329 data |= ioport_read(0, address) << 8;
330 return data;
331 }
332
333 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
334 {
335 ioport_write(0, address, data & 0xff);
336 address = (address + 1) & (MAX_IOPORTS - 1);
337 ioport_write(0, address, (data >> 8) & 0xff);
338 }
339
340 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
341 {
342 #ifdef DEBUG_UNUSED_IOPORT
343 fprintf(stderr, "unused inl: port=0x%04x\n", address);
344 #endif
345 return 0xffffffff;
346 }
347
348 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
349 {
350 #ifdef DEBUG_UNUSED_IOPORT
351 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
352 #endif
353 }
354
355 /* size is the word size in byte */
356 int register_ioport_read(int start, int length, int size,
357 IOPortReadFunc *func, void *opaque)
358 {
359 int i, bsize;
360
361 if (size == 1) {
362 bsize = 0;
363 } else if (size == 2) {
364 bsize = 1;
365 } else if (size == 4) {
366 bsize = 2;
367 } else {
368 hw_error("register_ioport_read: invalid size");
369 return -1;
370 }
371 for(i = start; i < start + length; i += size) {
372 ioport_read_table[bsize][i] = func;
373 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
374 hw_error("register_ioport_read: invalid opaque");
375 ioport_opaque[i] = opaque;
376 }
377 return 0;
378 }
379
380 /* size is the word size in byte */
381 int register_ioport_write(int start, int length, int size,
382 IOPortWriteFunc *func, void *opaque)
383 {
384 int i, bsize;
385
386 if (size == 1) {
387 bsize = 0;
388 } else if (size == 2) {
389 bsize = 1;
390 } else if (size == 4) {
391 bsize = 2;
392 } else {
393 hw_error("register_ioport_write: invalid size");
394 return -1;
395 }
396 for(i = start; i < start + length; i += size) {
397 ioport_write_table[bsize][i] = func;
398 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
399 hw_error("register_ioport_write: invalid opaque");
400 ioport_opaque[i] = opaque;
401 }
402 return 0;
403 }
404
405 void isa_unassign_ioport(int start, int length)
406 {
407 int i;
408
409 for(i = start; i < start + length; i++) {
410 ioport_read_table[0][i] = default_ioport_readb;
411 ioport_read_table[1][i] = default_ioport_readw;
412 ioport_read_table[2][i] = default_ioport_readl;
413
414 ioport_write_table[0][i] = default_ioport_writeb;
415 ioport_write_table[1][i] = default_ioport_writew;
416 ioport_write_table[2][i] = default_ioport_writel;
417
418 ioport_opaque[i] = NULL;
419 }
420 }
421
422 /***********************************************************/
423
424 void cpu_outb(CPUState *env, int addr, int val)
425 {
426 LOG_IOPORT("outb: %04x %02x\n", addr, val);
427 ioport_write(0, addr, val);
428 #ifdef USE_KQEMU
429 if (env)
430 env->last_io_time = cpu_get_time_fast();
431 #endif
432 }
433
434 void cpu_outw(CPUState *env, int addr, int val)
435 {
436 LOG_IOPORT("outw: %04x %04x\n", addr, val);
437 ioport_write(1, addr, val);
438 #ifdef USE_KQEMU
439 if (env)
440 env->last_io_time = cpu_get_time_fast();
441 #endif
442 }
443
444 void cpu_outl(CPUState *env, int addr, int val)
445 {
446 LOG_IOPORT("outl: %04x %08x\n", addr, val);
447 ioport_write(2, addr, val);
448 #ifdef USE_KQEMU
449 if (env)
450 env->last_io_time = cpu_get_time_fast();
451 #endif
452 }
453
454 int cpu_inb(CPUState *env, int addr)
455 {
456 int val;
457 val = ioport_read(0, addr);
458 LOG_IOPORT("inb : %04x %02x\n", addr, val);
459 #ifdef USE_KQEMU
460 if (env)
461 env->last_io_time = cpu_get_time_fast();
462 #endif
463 return val;
464 }
465
466 int cpu_inw(CPUState *env, int addr)
467 {
468 int val;
469 val = ioport_read(1, addr);
470 LOG_IOPORT("inw : %04x %04x\n", addr, val);
471 #ifdef USE_KQEMU
472 if (env)
473 env->last_io_time = cpu_get_time_fast();
474 #endif
475 return val;
476 }
477
478 int cpu_inl(CPUState *env, int addr)
479 {
480 int val;
481 val = ioport_read(2, addr);
482 LOG_IOPORT("inl : %04x %08x\n", addr, val);
483 #ifdef USE_KQEMU
484 if (env)
485 env->last_io_time = cpu_get_time_fast();
486 #endif
487 return val;
488 }
489
490 /***********************************************************/
491 void hw_error(const char *fmt, ...)
492 {
493 va_list ap;
494 CPUState *env;
495
496 va_start(ap, fmt);
497 fprintf(stderr, "qemu: hardware error: ");
498 vfprintf(stderr, fmt, ap);
499 fprintf(stderr, "\n");
500 for(env = first_cpu; env != NULL; env = env->next_cpu) {
501 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
502 #ifdef TARGET_I386
503 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
504 #else
505 cpu_dump_state(env, stderr, fprintf, 0);
506 #endif
507 }
508 va_end(ap);
509 abort();
510 }
511
512 /***************/
513 /* ballooning */
514
515 static QEMUBalloonEvent *qemu_balloon_event;
516 void *qemu_balloon_event_opaque;
517
518 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
519 {
520 qemu_balloon_event = func;
521 qemu_balloon_event_opaque = opaque;
522 }
523
524 void qemu_balloon(ram_addr_t target)
525 {
526 if (qemu_balloon_event)
527 qemu_balloon_event(qemu_balloon_event_opaque, target);
528 }
529
530 ram_addr_t qemu_balloon_status(void)
531 {
532 if (qemu_balloon_event)
533 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
534 return 0;
535 }
536
537 /***********************************************************/
538 /* keyboard/mouse */
539
540 static QEMUPutKBDEvent *qemu_put_kbd_event;
541 static void *qemu_put_kbd_event_opaque;
542 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
543 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
544
545 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
546 {
547 qemu_put_kbd_event_opaque = opaque;
548 qemu_put_kbd_event = func;
549 }
550
551 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
552 void *opaque, int absolute,
553 const char *name)
554 {
555 QEMUPutMouseEntry *s, *cursor;
556
557 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
558
559 s->qemu_put_mouse_event = func;
560 s->qemu_put_mouse_event_opaque = opaque;
561 s->qemu_put_mouse_event_absolute = absolute;
562 s->qemu_put_mouse_event_name = qemu_strdup(name);
563 s->next = NULL;
564
565 if (!qemu_put_mouse_event_head) {
566 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
567 return s;
568 }
569
570 cursor = qemu_put_mouse_event_head;
571 while (cursor->next != NULL)
572 cursor = cursor->next;
573
574 cursor->next = s;
575 qemu_put_mouse_event_current = s;
576
577 return s;
578 }
579
580 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
581 {
582 QEMUPutMouseEntry *prev = NULL, *cursor;
583
584 if (!qemu_put_mouse_event_head || entry == NULL)
585 return;
586
587 cursor = qemu_put_mouse_event_head;
588 while (cursor != NULL && cursor != entry) {
589 prev = cursor;
590 cursor = cursor->next;
591 }
592
593 if (cursor == NULL) // does not exist or list empty
594 return;
595 else if (prev == NULL) { // entry is head
596 qemu_put_mouse_event_head = cursor->next;
597 if (qemu_put_mouse_event_current == entry)
598 qemu_put_mouse_event_current = cursor->next;
599 qemu_free(entry->qemu_put_mouse_event_name);
600 qemu_free(entry);
601 return;
602 }
603
604 prev->next = entry->next;
605
606 if (qemu_put_mouse_event_current == entry)
607 qemu_put_mouse_event_current = prev;
608
609 qemu_free(entry->qemu_put_mouse_event_name);
610 qemu_free(entry);
611 }
612
613 void kbd_put_keycode(int keycode)
614 {
615 if (qemu_put_kbd_event) {
616 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
617 }
618 }
619
620 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
621 {
622 QEMUPutMouseEvent *mouse_event;
623 void *mouse_event_opaque;
624 int width;
625
626 if (!qemu_put_mouse_event_current) {
627 return;
628 }
629
630 mouse_event =
631 qemu_put_mouse_event_current->qemu_put_mouse_event;
632 mouse_event_opaque =
633 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
634
635 if (mouse_event) {
636 if (graphic_rotate) {
637 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
638 width = 0x7fff;
639 else
640 width = graphic_width - 1;
641 mouse_event(mouse_event_opaque,
642 width - dy, dx, dz, buttons_state);
643 } else
644 mouse_event(mouse_event_opaque,
645 dx, dy, dz, buttons_state);
646 }
647 }
648
649 int kbd_mouse_is_absolute(void)
650 {
651 if (!qemu_put_mouse_event_current)
652 return 0;
653
654 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
655 }
656
657 void do_info_mice(Monitor *mon)
658 {
659 QEMUPutMouseEntry *cursor;
660 int index = 0;
661
662 if (!qemu_put_mouse_event_head) {
663 monitor_printf(mon, "No mouse devices connected\n");
664 return;
665 }
666
667 monitor_printf(mon, "Mouse devices available:\n");
668 cursor = qemu_put_mouse_event_head;
669 while (cursor != NULL) {
670 monitor_printf(mon, "%c Mouse #%d: %s\n",
671 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
672 index, cursor->qemu_put_mouse_event_name);
673 index++;
674 cursor = cursor->next;
675 }
676 }
677
678 void do_mouse_set(Monitor *mon, int index)
679 {
680 QEMUPutMouseEntry *cursor;
681 int i = 0;
682
683 if (!qemu_put_mouse_event_head) {
684 monitor_printf(mon, "No mouse devices connected\n");
685 return;
686 }
687
688 cursor = qemu_put_mouse_event_head;
689 while (cursor != NULL && index != i) {
690 i++;
691 cursor = cursor->next;
692 }
693
694 if (cursor != NULL)
695 qemu_put_mouse_event_current = cursor;
696 else
697 monitor_printf(mon, "Mouse at given index not found\n");
698 }
699
700 /* compute with 96 bit intermediate result: (a*b)/c */
701 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
702 {
703 union {
704 uint64_t ll;
705 struct {
706 #ifdef WORDS_BIGENDIAN
707 uint32_t high, low;
708 #else
709 uint32_t low, high;
710 #endif
711 } l;
712 } u, res;
713 uint64_t rl, rh;
714
715 u.ll = a;
716 rl = (uint64_t)u.l.low * (uint64_t)b;
717 rh = (uint64_t)u.l.high * (uint64_t)b;
718 rh += (rl >> 32);
719 res.l.high = rh / c;
720 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
721 return res.ll;
722 }
723
724 /***********************************************************/
725 /* real time host monotonic timer */
726
727 #define QEMU_TIMER_BASE 1000000000LL
728
729 #ifdef WIN32
730
731 static int64_t clock_freq;
732
733 static void init_get_clock(void)
734 {
735 LARGE_INTEGER freq;
736 int ret;
737 ret = QueryPerformanceFrequency(&freq);
738 if (ret == 0) {
739 fprintf(stderr, "Could not calibrate ticks\n");
740 exit(1);
741 }
742 clock_freq = freq.QuadPart;
743 }
744
745 static int64_t get_clock(void)
746 {
747 LARGE_INTEGER ti;
748 QueryPerformanceCounter(&ti);
749 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
750 }
751
752 #else
753
754 static int use_rt_clock;
755
756 static void init_get_clock(void)
757 {
758 use_rt_clock = 0;
759 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000)
760 {
761 struct timespec ts;
762 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
763 use_rt_clock = 1;
764 }
765 }
766 #endif
767 }
768
769 static int64_t get_clock(void)
770 {
771 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000)
772 if (use_rt_clock) {
773 struct timespec ts;
774 clock_gettime(CLOCK_MONOTONIC, &ts);
775 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
776 } else
777 #endif
778 {
779 /* XXX: using gettimeofday leads to problems if the date
780 changes, so it should be avoided. */
781 struct timeval tv;
782 gettimeofday(&tv, NULL);
783 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
784 }
785 }
786 #endif
787
788 /* Return the virtual CPU time, based on the instruction counter. */
789 static int64_t cpu_get_icount(void)
790 {
791 int64_t icount;
792 CPUState *env = cpu_single_env;;
793 icount = qemu_icount;
794 if (env) {
795 if (!can_do_io(env))
796 fprintf(stderr, "Bad clock read\n");
797 icount -= (env->icount_decr.u16.low + env->icount_extra);
798 }
799 return qemu_icount_bias + (icount << icount_time_shift);
800 }
801
802 /***********************************************************/
803 /* guest cycle counter */
804
805 static int64_t cpu_ticks_prev;
806 static int64_t cpu_ticks_offset;
807 static int64_t cpu_clock_offset;
808 static int cpu_ticks_enabled;
809
810 /* return the host CPU cycle counter and handle stop/restart */
811 int64_t cpu_get_ticks(void)
812 {
813 if (use_icount) {
814 return cpu_get_icount();
815 }
816 if (!cpu_ticks_enabled) {
817 return cpu_ticks_offset;
818 } else {
819 int64_t ticks;
820 ticks = cpu_get_real_ticks();
821 if (cpu_ticks_prev > ticks) {
822 /* Note: non increasing ticks may happen if the host uses
823 software suspend */
824 cpu_ticks_offset += cpu_ticks_prev - ticks;
825 }
826 cpu_ticks_prev = ticks;
827 return ticks + cpu_ticks_offset;
828 }
829 }
830
831 /* return the host CPU monotonic timer and handle stop/restart */
832 static int64_t cpu_get_clock(void)
833 {
834 int64_t ti;
835 if (!cpu_ticks_enabled) {
836 return cpu_clock_offset;
837 } else {
838 ti = get_clock();
839 return ti + cpu_clock_offset;
840 }
841 }
842
843 /* enable cpu_get_ticks() */
844 void cpu_enable_ticks(void)
845 {
846 if (!cpu_ticks_enabled) {
847 cpu_ticks_offset -= cpu_get_real_ticks();
848 cpu_clock_offset -= get_clock();
849 cpu_ticks_enabled = 1;
850 }
851 }
852
853 /* disable cpu_get_ticks() : the clock is stopped. You must not call
854 cpu_get_ticks() after that. */
855 void cpu_disable_ticks(void)
856 {
857 if (cpu_ticks_enabled) {
858 cpu_ticks_offset = cpu_get_ticks();
859 cpu_clock_offset = cpu_get_clock();
860 cpu_ticks_enabled = 0;
861 }
862 }
863
864 /***********************************************************/
865 /* timers */
866
867 #define QEMU_TIMER_REALTIME 0
868 #define QEMU_TIMER_VIRTUAL 1
869
870 struct QEMUClock {
871 int type;
872 /* XXX: add frequency */
873 };
874
875 struct QEMUTimer {
876 QEMUClock *clock;
877 int64_t expire_time;
878 QEMUTimerCB *cb;
879 void *opaque;
880 struct QEMUTimer *next;
881 };
882
883 struct qemu_alarm_timer {
884 char const *name;
885 unsigned int flags;
886
887 int (*start)(struct qemu_alarm_timer *t);
888 void (*stop)(struct qemu_alarm_timer *t);
889 void (*rearm)(struct qemu_alarm_timer *t);
890 void *priv;
891 };
892
893 #define ALARM_FLAG_DYNTICKS 0x1
894 #define ALARM_FLAG_EXPIRED 0x2
895
896 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
897 {
898 return t->flags & ALARM_FLAG_DYNTICKS;
899 }
900
901 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
902 {
903 if (!alarm_has_dynticks(t))
904 return;
905
906 t->rearm(t);
907 }
908
909 /* TODO: MIN_TIMER_REARM_US should be optimized */
910 #define MIN_TIMER_REARM_US 250
911
912 static struct qemu_alarm_timer *alarm_timer;
913 #ifndef _WIN32
914 static int alarm_timer_rfd, alarm_timer_wfd;
915 #endif
916
917 #ifdef _WIN32
918
919 struct qemu_alarm_win32 {
920 MMRESULT timerId;
921 HANDLE host_alarm;
922 unsigned int period;
923 } alarm_win32_data = {0, NULL, -1};
924
925 static int win32_start_timer(struct qemu_alarm_timer *t);
926 static void win32_stop_timer(struct qemu_alarm_timer *t);
927 static void win32_rearm_timer(struct qemu_alarm_timer *t);
928
929 #else
930
931 static int unix_start_timer(struct qemu_alarm_timer *t);
932 static void unix_stop_timer(struct qemu_alarm_timer *t);
933
934 #ifdef __linux__
935
936 static int dynticks_start_timer(struct qemu_alarm_timer *t);
937 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
938 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
939
940 static int hpet_start_timer(struct qemu_alarm_timer *t);
941 static void hpet_stop_timer(struct qemu_alarm_timer *t);
942
943 static int rtc_start_timer(struct qemu_alarm_timer *t);
944 static void rtc_stop_timer(struct qemu_alarm_timer *t);
945
946 #endif /* __linux__ */
947
948 #endif /* _WIN32 */
949
950 /* Correlation between real and virtual time is always going to be
951 fairly approximate, so ignore small variation.
952 When the guest is idle real and virtual time will be aligned in
953 the IO wait loop. */
954 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
955
956 static void icount_adjust(void)
957 {
958 int64_t cur_time;
959 int64_t cur_icount;
960 int64_t delta;
961 static int64_t last_delta;
962 /* If the VM is not running, then do nothing. */
963 if (!vm_running)
964 return;
965
966 cur_time = cpu_get_clock();
967 cur_icount = qemu_get_clock(vm_clock);
968 delta = cur_icount - cur_time;
969 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
970 if (delta > 0
971 && last_delta + ICOUNT_WOBBLE < delta * 2
972 && icount_time_shift > 0) {
973 /* The guest is getting too far ahead. Slow time down. */
974 icount_time_shift--;
975 }
976 if (delta < 0
977 && last_delta - ICOUNT_WOBBLE > delta * 2
978 && icount_time_shift < MAX_ICOUNT_SHIFT) {
979 /* The guest is getting too far behind. Speed time up. */
980 icount_time_shift++;
981 }
982 last_delta = delta;
983 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
984 }
985
986 static void icount_adjust_rt(void * opaque)
987 {
988 qemu_mod_timer(icount_rt_timer,
989 qemu_get_clock(rt_clock) + 1000);
990 icount_adjust();
991 }
992
993 static void icount_adjust_vm(void * opaque)
994 {
995 qemu_mod_timer(icount_vm_timer,
996 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
997 icount_adjust();
998 }
999
1000 static void init_icount_adjust(void)
1001 {
1002 /* Have both realtime and virtual time triggers for speed adjustment.
1003 The realtime trigger catches emulated time passing too slowly,
1004 the virtual time trigger catches emulated time passing too fast.
1005 Realtime triggers occur even when idle, so use them less frequently
1006 than VM triggers. */
1007 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1008 qemu_mod_timer(icount_rt_timer,
1009 qemu_get_clock(rt_clock) + 1000);
1010 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1011 qemu_mod_timer(icount_vm_timer,
1012 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1013 }
1014
1015 static struct qemu_alarm_timer alarm_timers[] = {
1016 #ifndef _WIN32
1017 #ifdef __linux__
1018 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1019 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1020 /* HPET - if available - is preferred */
1021 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1022 /* ...otherwise try RTC */
1023 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1024 #endif
1025 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1026 #else
1027 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1028 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1029 {"win32", 0, win32_start_timer,
1030 win32_stop_timer, NULL, &alarm_win32_data},
1031 #endif
1032 {NULL, }
1033 };
1034
1035 static void show_available_alarms(void)
1036 {
1037 int i;
1038
1039 printf("Available alarm timers, in order of precedence:\n");
1040 for (i = 0; alarm_timers[i].name; i++)
1041 printf("%s\n", alarm_timers[i].name);
1042 }
1043
1044 static void configure_alarms(char const *opt)
1045 {
1046 int i;
1047 int cur = 0;
1048 int count = ARRAY_SIZE(alarm_timers) - 1;
1049 char *arg;
1050 char *name;
1051 struct qemu_alarm_timer tmp;
1052
1053 if (!strcmp(opt, "?")) {
1054 show_available_alarms();
1055 exit(0);
1056 }
1057
1058 arg = strdup(opt);
1059
1060 /* Reorder the array */
1061 name = strtok(arg, ",");
1062 while (name) {
1063 for (i = 0; i < count && alarm_timers[i].name; i++) {
1064 if (!strcmp(alarm_timers[i].name, name))
1065 break;
1066 }
1067
1068 if (i == count) {
1069 fprintf(stderr, "Unknown clock %s\n", name);
1070 goto next;
1071 }
1072
1073 if (i < cur)
1074 /* Ignore */
1075 goto next;
1076
1077 /* Swap */
1078 tmp = alarm_timers[i];
1079 alarm_timers[i] = alarm_timers[cur];
1080 alarm_timers[cur] = tmp;
1081
1082 cur++;
1083 next:
1084 name = strtok(NULL, ",");
1085 }
1086
1087 free(arg);
1088
1089 if (cur) {
1090 /* Disable remaining timers */
1091 for (i = cur; i < count; i++)
1092 alarm_timers[i].name = NULL;
1093 } else {
1094 show_available_alarms();
1095 exit(1);
1096 }
1097 }
1098
1099 QEMUClock *rt_clock;
1100 QEMUClock *vm_clock;
1101
1102 static QEMUTimer *active_timers[2];
1103
1104 static QEMUClock *qemu_new_clock(int type)
1105 {
1106 QEMUClock *clock;
1107 clock = qemu_mallocz(sizeof(QEMUClock));
1108 clock->type = type;
1109 return clock;
1110 }
1111
1112 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1113 {
1114 QEMUTimer *ts;
1115
1116 ts = qemu_mallocz(sizeof(QEMUTimer));
1117 ts->clock = clock;
1118 ts->cb = cb;
1119 ts->opaque = opaque;
1120 return ts;
1121 }
1122
1123 void qemu_free_timer(QEMUTimer *ts)
1124 {
1125 qemu_free(ts);
1126 }
1127
1128 /* stop a timer, but do not dealloc it */
1129 void qemu_del_timer(QEMUTimer *ts)
1130 {
1131 QEMUTimer **pt, *t;
1132
1133 /* NOTE: this code must be signal safe because
1134 qemu_timer_expired() can be called from a signal. */
1135 pt = &active_timers[ts->clock->type];
1136 for(;;) {
1137 t = *pt;
1138 if (!t)
1139 break;
1140 if (t == ts) {
1141 *pt = t->next;
1142 break;
1143 }
1144 pt = &t->next;
1145 }
1146 }
1147
1148 /* modify the current timer so that it will be fired when current_time
1149 >= expire_time. The corresponding callback will be called. */
1150 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1151 {
1152 QEMUTimer **pt, *t;
1153
1154 qemu_del_timer(ts);
1155
1156 /* add the timer in the sorted list */
1157 /* NOTE: this code must be signal safe because
1158 qemu_timer_expired() can be called from a signal. */
1159 pt = &active_timers[ts->clock->type];
1160 for(;;) {
1161 t = *pt;
1162 if (!t)
1163 break;
1164 if (t->expire_time > expire_time)
1165 break;
1166 pt = &t->next;
1167 }
1168 ts->expire_time = expire_time;
1169 ts->next = *pt;
1170 *pt = ts;
1171
1172 /* Rearm if necessary */
1173 if (pt == &active_timers[ts->clock->type]) {
1174 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1175 qemu_rearm_alarm_timer(alarm_timer);
1176 }
1177 /* Interrupt execution to force deadline recalculation. */
1178 if (use_icount && cpu_single_env) {
1179 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
1180 }
1181 }
1182 }
1183
1184 int qemu_timer_pending(QEMUTimer *ts)
1185 {
1186 QEMUTimer *t;
1187 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1188 if (t == ts)
1189 return 1;
1190 }
1191 return 0;
1192 }
1193
1194 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1195 {
1196 if (!timer_head)
1197 return 0;
1198 return (timer_head->expire_time <= current_time);
1199 }
1200
1201 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1202 {
1203 QEMUTimer *ts;
1204
1205 for(;;) {
1206 ts = *ptimer_head;
1207 if (!ts || ts->expire_time > current_time)
1208 break;
1209 /* remove timer from the list before calling the callback */
1210 *ptimer_head = ts->next;
1211 ts->next = NULL;
1212
1213 /* run the callback (the timer list can be modified) */
1214 ts->cb(ts->opaque);
1215 }
1216 }
1217
1218 int64_t qemu_get_clock(QEMUClock *clock)
1219 {
1220 switch(clock->type) {
1221 case QEMU_TIMER_REALTIME:
1222 return get_clock() / 1000000;
1223 default:
1224 case QEMU_TIMER_VIRTUAL:
1225 if (use_icount) {
1226 return cpu_get_icount();
1227 } else {
1228 return cpu_get_clock();
1229 }
1230 }
1231 }
1232
1233 static void init_timers(void)
1234 {
1235 init_get_clock();
1236 ticks_per_sec = QEMU_TIMER_BASE;
1237 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1238 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1239 }
1240
1241 /* save a timer */
1242 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1243 {
1244 uint64_t expire_time;
1245
1246 if (qemu_timer_pending(ts)) {
1247 expire_time = ts->expire_time;
1248 } else {
1249 expire_time = -1;
1250 }
1251 qemu_put_be64(f, expire_time);
1252 }
1253
1254 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1255 {
1256 uint64_t expire_time;
1257
1258 expire_time = qemu_get_be64(f);
1259 if (expire_time != -1) {
1260 qemu_mod_timer(ts, expire_time);
1261 } else {
1262 qemu_del_timer(ts);
1263 }
1264 }
1265
1266 static void timer_save(QEMUFile *f, void *opaque)
1267 {
1268 if (cpu_ticks_enabled) {
1269 hw_error("cannot save state if virtual timers are running");
1270 }
1271 qemu_put_be64(f, cpu_ticks_offset);
1272 qemu_put_be64(f, ticks_per_sec);
1273 qemu_put_be64(f, cpu_clock_offset);
1274 }
1275
1276 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1277 {
1278 if (version_id != 1 && version_id != 2)
1279 return -EINVAL;
1280 if (cpu_ticks_enabled) {
1281 return -EINVAL;
1282 }
1283 cpu_ticks_offset=qemu_get_be64(f);
1284 ticks_per_sec=qemu_get_be64(f);
1285 if (version_id == 2) {
1286 cpu_clock_offset=qemu_get_be64(f);
1287 }
1288 return 0;
1289 }
1290
1291 #ifdef _WIN32
1292 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1293 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1294 #else
1295 static void host_alarm_handler(int host_signum)
1296 #endif
1297 {
1298 #if 0
1299 #define DISP_FREQ 1000
1300 {
1301 static int64_t delta_min = INT64_MAX;
1302 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1303 static int count;
1304 ti = qemu_get_clock(vm_clock);
1305 if (last_clock != 0) {
1306 delta = ti - last_clock;
1307 if (delta < delta_min)
1308 delta_min = delta;
1309 if (delta > delta_max)
1310 delta_max = delta;
1311 delta_cum += delta;
1312 if (++count == DISP_FREQ) {
1313 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1314 muldiv64(delta_min, 1000000, ticks_per_sec),
1315 muldiv64(delta_max, 1000000, ticks_per_sec),
1316 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1317 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1318 count = 0;
1319 delta_min = INT64_MAX;
1320 delta_max = 0;
1321 delta_cum = 0;
1322 }
1323 }
1324 last_clock = ti;
1325 }
1326 #endif
1327 if (alarm_has_dynticks(alarm_timer) ||
1328 (!use_icount &&
1329 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1330 qemu_get_clock(vm_clock))) ||
1331 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1332 qemu_get_clock(rt_clock))) {
1333 CPUState *env = next_cpu;
1334
1335 #ifdef _WIN32
1336 struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1337 SetEvent(data->host_alarm);
1338 #else
1339 static const char byte = 0;
1340 write(alarm_timer_wfd, &byte, sizeof(byte));
1341 #endif
1342 alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1343
1344 if (env) {
1345 /* stop the currently executing cpu because a timer occured */
1346 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1347 #ifdef USE_KQEMU
1348 if (env->kqemu_enabled) {
1349 kqemu_cpu_interrupt(env);
1350 }
1351 #endif
1352 }
1353 event_pending = 1;
1354 }
1355 }
1356
1357 static int64_t qemu_next_deadline(void)
1358 {
1359 int64_t delta;
1360
1361 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1362 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1363 qemu_get_clock(vm_clock);
1364 } else {
1365 /* To avoid problems with overflow limit this to 2^32. */
1366 delta = INT32_MAX;
1367 }
1368
1369 if (delta < 0)
1370 delta = 0;
1371
1372 return delta;
1373 }
1374
1375 #if defined(__linux__) || defined(_WIN32)
1376 static uint64_t qemu_next_deadline_dyntick(void)
1377 {
1378 int64_t delta;
1379 int64_t rtdelta;
1380
1381 if (use_icount)
1382 delta = INT32_MAX;
1383 else
1384 delta = (qemu_next_deadline() + 999) / 1000;
1385
1386 if (active_timers[QEMU_TIMER_REALTIME]) {
1387 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1388 qemu_get_clock(rt_clock))*1000;
1389 if (rtdelta < delta)
1390 delta = rtdelta;
1391 }
1392
1393 if (delta < MIN_TIMER_REARM_US)
1394 delta = MIN_TIMER_REARM_US;
1395
1396 return delta;
1397 }
1398 #endif
1399
1400 #ifndef _WIN32
1401
1402 /* Sets a specific flag */
1403 static int fcntl_setfl(int fd, int flag)
1404 {
1405 int flags;
1406
1407 flags = fcntl(fd, F_GETFL);
1408 if (flags == -1)
1409 return -errno;
1410
1411 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1412 return -errno;
1413
1414 return 0;
1415 }
1416
1417 #if defined(__linux__)
1418
1419 #define RTC_FREQ 1024
1420
1421 static void enable_sigio_timer(int fd)
1422 {
1423 struct sigaction act;
1424
1425 /* timer signal */
1426 sigfillset(&act.sa_mask);
1427 act.sa_flags = 0;
1428 act.sa_handler = host_alarm_handler;
1429
1430 sigaction(SIGIO, &act, NULL);
1431 fcntl_setfl(fd, O_ASYNC);
1432 fcntl(fd, F_SETOWN, getpid());
1433 }
1434
1435 static int hpet_start_timer(struct qemu_alarm_timer *t)
1436 {
1437 struct hpet_info info;
1438 int r, fd;
1439
1440 fd = open("/dev/hpet", O_RDONLY);
1441 if (fd < 0)
1442 return -1;
1443
1444 /* Set frequency */
1445 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1446 if (r < 0) {
1447 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1448 "error, but for better emulation accuracy type:\n"
1449 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1450 goto fail;
1451 }
1452
1453 /* Check capabilities */
1454 r = ioctl(fd, HPET_INFO, &info);
1455 if (r < 0)
1456 goto fail;
1457
1458 /* Enable periodic mode */
1459 r = ioctl(fd, HPET_EPI, 0);
1460 if (info.hi_flags && (r < 0))
1461 goto fail;
1462
1463 /* Enable interrupt */
1464 r = ioctl(fd, HPET_IE_ON, 0);
1465 if (r < 0)
1466 goto fail;
1467
1468 enable_sigio_timer(fd);
1469 t->priv = (void *)(long)fd;
1470
1471 return 0;
1472 fail:
1473 close(fd);
1474 return -1;
1475 }
1476
1477 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1478 {
1479 int fd = (long)t->priv;
1480
1481 close(fd);
1482 }
1483
1484 static int rtc_start_timer(struct qemu_alarm_timer *t)
1485 {
1486 int rtc_fd;
1487 unsigned long current_rtc_freq = 0;
1488
1489 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1490 if (rtc_fd < 0)
1491 return -1;
1492 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1493 if (current_rtc_freq != RTC_FREQ &&
1494 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1495 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1496 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1497 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1498 goto fail;
1499 }
1500 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1501 fail:
1502 close(rtc_fd);
1503 return -1;
1504 }
1505
1506 enable_sigio_timer(rtc_fd);
1507
1508 t->priv = (void *)(long)rtc_fd;
1509
1510 return 0;
1511 }
1512
1513 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1514 {
1515 int rtc_fd = (long)t->priv;
1516
1517 close(rtc_fd);
1518 }
1519
1520 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1521 {
1522 struct sigevent ev;
1523 timer_t host_timer;
1524 struct sigaction act;
1525
1526 sigfillset(&act.sa_mask);
1527 act.sa_flags = 0;
1528 act.sa_handler = host_alarm_handler;
1529
1530 sigaction(SIGALRM, &act, NULL);
1531
1532 ev.sigev_value.sival_int = 0;
1533 ev.sigev_notify = SIGEV_SIGNAL;
1534 ev.sigev_signo = SIGALRM;
1535
1536 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1537 perror("timer_create");
1538
1539 /* disable dynticks */
1540 fprintf(stderr, "Dynamic Ticks disabled\n");
1541
1542 return -1;
1543 }
1544
1545 t->priv = (void *)(long)host_timer;
1546
1547 return 0;
1548 }
1549
1550 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1551 {
1552 timer_t host_timer = (timer_t)(long)t->priv;
1553
1554 timer_delete(host_timer);
1555 }
1556
1557 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1558 {
1559 timer_t host_timer = (timer_t)(long)t->priv;
1560 struct itimerspec timeout;
1561 int64_t nearest_delta_us = INT64_MAX;
1562 int64_t current_us;
1563
1564 if (!active_timers[QEMU_TIMER_REALTIME] &&
1565 !active_timers[QEMU_TIMER_VIRTUAL])
1566 return;
1567
1568 nearest_delta_us = qemu_next_deadline_dyntick();
1569
1570 /* check whether a timer is already running */
1571 if (timer_gettime(host_timer, &timeout)) {
1572 perror("gettime");
1573 fprintf(stderr, "Internal timer error: aborting\n");
1574 exit(1);
1575 }
1576 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1577 if (current_us && current_us <= nearest_delta_us)
1578 return;
1579
1580 timeout.it_interval.tv_sec = 0;
1581 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1582 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1583 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1584 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1585 perror("settime");
1586 fprintf(stderr, "Internal timer error: aborting\n");
1587 exit(1);
1588 }
1589 }
1590
1591 #endif /* defined(__linux__) */
1592
1593 static int unix_start_timer(struct qemu_alarm_timer *t)
1594 {
1595 struct sigaction act;
1596 struct itimerval itv;
1597 int err;
1598
1599 /* timer signal */
1600 sigfillset(&act.sa_mask);
1601 act.sa_flags = 0;
1602 act.sa_handler = host_alarm_handler;
1603
1604 sigaction(SIGALRM, &act, NULL);
1605
1606 itv.it_interval.tv_sec = 0;
1607 /* for i386 kernel 2.6 to get 1 ms */
1608 itv.it_interval.tv_usec = 999;
1609 itv.it_value.tv_sec = 0;
1610 itv.it_value.tv_usec = 10 * 1000;
1611
1612 err = setitimer(ITIMER_REAL, &itv, NULL);
1613 if (err)
1614 return -1;
1615
1616 return 0;
1617 }
1618
1619 static void unix_stop_timer(struct qemu_alarm_timer *t)
1620 {
1621 struct itimerval itv;
1622
1623 memset(&itv, 0, sizeof(itv));
1624 setitimer(ITIMER_REAL, &itv, NULL);
1625 }
1626
1627 #endif /* !defined(_WIN32) */
1628
1629 static void try_to_rearm_timer(void *opaque)
1630 {
1631 struct qemu_alarm_timer *t = opaque;
1632 #ifndef _WIN32
1633 ssize_t len;
1634
1635 /* Drain the notify pipe */
1636 do {
1637 char buffer[512];
1638 len = read(alarm_timer_rfd, buffer, sizeof(buffer));
1639 } while ((len == -1 && errno == EINTR) || len > 0);
1640 #endif
1641
1642 if (t->flags & ALARM_FLAG_EXPIRED) {
1643 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
1644 qemu_rearm_alarm_timer(alarm_timer);
1645 }
1646 }
1647
1648 #ifdef _WIN32
1649
1650 static int win32_start_timer(struct qemu_alarm_timer *t)
1651 {
1652 TIMECAPS tc;
1653 struct qemu_alarm_win32 *data = t->priv;
1654 UINT flags;
1655
1656 data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1657 if (!data->host_alarm) {
1658 perror("Failed CreateEvent");
1659 return -1;
1660 }
1661
1662 memset(&tc, 0, sizeof(tc));
1663 timeGetDevCaps(&tc, sizeof(tc));
1664
1665 if (data->period < tc.wPeriodMin)
1666 data->period = tc.wPeriodMin;
1667
1668 timeBeginPeriod(data->period);
1669
1670 flags = TIME_CALLBACK_FUNCTION;
1671 if (alarm_has_dynticks(t))
1672 flags |= TIME_ONESHOT;
1673 else
1674 flags |= TIME_PERIODIC;
1675
1676 data->timerId = timeSetEvent(1, // interval (ms)
1677 data->period, // resolution
1678 host_alarm_handler, // function
1679 (DWORD)t, // parameter
1680 flags);
1681
1682 if (!data->timerId) {
1683 perror("Failed to initialize win32 alarm timer");
1684
1685 timeEndPeriod(data->period);
1686 CloseHandle(data->host_alarm);
1687 return -1;
1688 }
1689
1690 qemu_add_wait_object(data->host_alarm, try_to_rearm_timer, t);
1691
1692 return 0;
1693 }
1694
1695 static void win32_stop_timer(struct qemu_alarm_timer *t)
1696 {
1697 struct qemu_alarm_win32 *data = t->priv;
1698
1699 timeKillEvent(data->timerId);
1700 timeEndPeriod(data->period);
1701
1702 CloseHandle(data->host_alarm);
1703 }
1704
1705 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1706 {
1707 struct qemu_alarm_win32 *data = t->priv;
1708 uint64_t nearest_delta_us;
1709
1710 if (!active_timers[QEMU_TIMER_REALTIME] &&
1711 !active_timers[QEMU_TIMER_VIRTUAL])
1712 return;
1713
1714 nearest_delta_us = qemu_next_deadline_dyntick();
1715 nearest_delta_us /= 1000;
1716
1717 timeKillEvent(data->timerId);
1718
1719 data->timerId = timeSetEvent(1,
1720 data->period,
1721 host_alarm_handler,
1722 (DWORD)t,
1723 TIME_ONESHOT | TIME_PERIODIC);
1724
1725 if (!data->timerId) {
1726 perror("Failed to re-arm win32 alarm timer");
1727
1728 timeEndPeriod(data->period);
1729 CloseHandle(data->host_alarm);
1730 exit(1);
1731 }
1732 }
1733
1734 #endif /* _WIN32 */
1735
1736 static int init_timer_alarm(void)
1737 {
1738 struct qemu_alarm_timer *t = NULL;
1739 int i, err = -1;
1740
1741 #ifndef _WIN32
1742 int fds[2];
1743
1744 err = pipe(fds);
1745 if (err == -1)
1746 return -errno;
1747
1748 err = fcntl_setfl(fds[0], O_NONBLOCK);
1749 if (err < 0)
1750 goto fail;
1751
1752 err = fcntl_setfl(fds[1], O_NONBLOCK);
1753 if (err < 0)
1754 goto fail;
1755
1756 alarm_timer_rfd = fds[0];
1757 alarm_timer_wfd = fds[1];
1758 #endif
1759
1760 for (i = 0; alarm_timers[i].name; i++) {
1761 t = &alarm_timers[i];
1762
1763 err = t->start(t);
1764 if (!err)
1765 break;
1766 }
1767
1768 if (err) {
1769 err = -ENOENT;
1770 goto fail;
1771 }
1772
1773 #ifndef _WIN32
1774 qemu_set_fd_handler2(alarm_timer_rfd, NULL,
1775 try_to_rearm_timer, NULL, t);
1776 #endif
1777
1778 alarm_timer = t;
1779
1780 return 0;
1781
1782 fail:
1783 #ifndef _WIN32
1784 close(fds[0]);
1785 close(fds[1]);
1786 #endif
1787 return err;
1788 }
1789
1790 static void quit_timers(void)
1791 {
1792 alarm_timer->stop(alarm_timer);
1793 alarm_timer = NULL;
1794 }
1795
1796 /***********************************************************/
1797 /* host time/date access */
1798 void qemu_get_timedate(struct tm *tm, int offset)
1799 {
1800 time_t ti;
1801 struct tm *ret;
1802
1803 time(&ti);
1804 ti += offset;
1805 if (rtc_date_offset == -1) {
1806 if (rtc_utc)
1807 ret = gmtime(&ti);
1808 else
1809 ret = localtime(&ti);
1810 } else {
1811 ti -= rtc_date_offset;
1812 ret = gmtime(&ti);
1813 }
1814
1815 memcpy(tm, ret, sizeof(struct tm));
1816 }
1817
1818 int qemu_timedate_diff(struct tm *tm)
1819 {
1820 time_t seconds;
1821
1822 if (rtc_date_offset == -1)
1823 if (rtc_utc)
1824 seconds = mktimegm(tm);
1825 else
1826 seconds = mktime(tm);
1827 else
1828 seconds = mktimegm(tm) + rtc_date_offset;
1829
1830 return seconds - time(NULL);
1831 }
1832
1833 #ifdef _WIN32
1834 static void socket_cleanup(void)
1835 {
1836 WSACleanup();
1837 }
1838
1839 static int socket_init(void)
1840 {
1841 WSADATA Data;
1842 int ret, err;
1843
1844 ret = WSAStartup(MAKEWORD(2,2), &Data);
1845 if (ret != 0) {
1846 err = WSAGetLastError();
1847 fprintf(stderr, "WSAStartup: %d\n", err);
1848 return -1;
1849 }
1850 atexit(socket_cleanup);
1851 return 0;
1852 }
1853 #endif
1854
1855 const char *get_opt_name(char *buf, int buf_size, const char *p)
1856 {
1857 char *q;
1858
1859 q = buf;
1860 while (*p != '\0' && *p != '=') {
1861 if (q && (q - buf) < buf_size - 1)
1862 *q++ = *p;
1863 p++;
1864 }
1865 if (q)
1866 *q = '\0';
1867
1868 return p;
1869 }
1870
1871 const char *get_opt_value(char *buf, int buf_size, const char *p)
1872 {
1873 char *q;
1874
1875 q = buf;
1876 while (*p != '\0') {
1877 if (*p == ',') {
1878 if (*(p + 1) != ',')
1879 break;
1880 p++;
1881 }
1882 if (q && (q - buf) < buf_size - 1)
1883 *q++ = *p;
1884 p++;
1885 }
1886 if (q)
1887 *q = '\0';
1888
1889 return p;
1890 }
1891
1892 int get_param_value(char *buf, int buf_size,
1893 const char *tag, const char *str)
1894 {
1895 const char *p;
1896 char option[128];
1897
1898 p = str;
1899 for(;;) {
1900 p = get_opt_name(option, sizeof(option), p);
1901 if (*p != '=')
1902 break;
1903 p++;
1904 if (!strcmp(tag, option)) {
1905 (void)get_opt_value(buf, buf_size, p);
1906 return strlen(buf);
1907 } else {
1908 p = get_opt_value(NULL, 0, p);
1909 }
1910 if (*p != ',')
1911 break;
1912 p++;
1913 }
1914 return 0;
1915 }
1916
1917 int check_params(char *buf, int buf_size,
1918 const char * const *params, const char *str)
1919 {
1920 const char *p;
1921 int i;
1922
1923 p = str;
1924 for(;;) {
1925 p = get_opt_name(buf, buf_size, p);
1926 if (*p != '=')
1927 return -1;
1928 p++;
1929 for(i = 0; params[i] != NULL; i++)
1930 if (!strcmp(params[i], buf))
1931 break;
1932 if (params[i] == NULL)
1933 return -1;
1934 p = get_opt_value(NULL, 0, p);
1935 if (*p != ',')
1936 break;
1937 p++;
1938 }
1939 return 0;
1940 }
1941
1942 /***********************************************************/
1943 /* Bluetooth support */
1944 static int nb_hcis;
1945 static int cur_hci;
1946 static struct HCIInfo *hci_table[MAX_NICS];
1947
1948 static struct bt_vlan_s {
1949 struct bt_scatternet_s net;
1950 int id;
1951 struct bt_vlan_s *next;
1952 } *first_bt_vlan;
1953
1954 /* find or alloc a new bluetooth "VLAN" */
1955 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1956 {
1957 struct bt_vlan_s **pvlan, *vlan;
1958 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1959 if (vlan->id == id)
1960 return &vlan->net;
1961 }
1962 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1963 vlan->id = id;
1964 pvlan = &first_bt_vlan;
1965 while (*pvlan != NULL)
1966 pvlan = &(*pvlan)->next;
1967 *pvlan = vlan;
1968 return &vlan->net;
1969 }
1970
1971 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1972 {
1973 }
1974
1975 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1976 {
1977 return -ENOTSUP;
1978 }
1979
1980 static struct HCIInfo null_hci = {
1981 .cmd_send = null_hci_send,
1982 .sco_send = null_hci_send,
1983 .acl_send = null_hci_send,
1984 .bdaddr_set = null_hci_addr_set,
1985 };
1986
1987 struct HCIInfo *qemu_next_hci(void)
1988 {
1989 if (cur_hci == nb_hcis)
1990 return &null_hci;
1991
1992 return hci_table[cur_hci++];
1993 }
1994
1995 static struct HCIInfo *hci_init(const char *str)
1996 {
1997 char *endp;
1998 struct bt_scatternet_s *vlan = 0;
1999
2000 if (!strcmp(str, "null"))
2001 /* null */
2002 return &null_hci;
2003 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
2004 /* host[:hciN] */
2005 return bt_host_hci(str[4] ? str + 5 : "hci0");
2006 else if (!strncmp(str, "hci", 3)) {
2007 /* hci[,vlan=n] */
2008 if (str[3]) {
2009 if (!strncmp(str + 3, ",vlan=", 6)) {
2010 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
2011 if (*endp)
2012 vlan = 0;
2013 }
2014 } else
2015 vlan = qemu_find_bt_vlan(0);
2016 if (vlan)
2017 return bt_new_hci(vlan);
2018 }
2019
2020 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
2021
2022 return 0;
2023 }
2024
2025 static int bt_hci_parse(const char *str)
2026 {
2027 struct HCIInfo *hci;
2028 bdaddr_t bdaddr;
2029
2030 if (nb_hcis >= MAX_NICS) {
2031 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
2032 return -1;
2033 }
2034
2035 hci = hci_init(str);
2036 if (!hci)
2037 return -1;
2038
2039 bdaddr.b[0] = 0x52;
2040 bdaddr.b[1] = 0x54;
2041 bdaddr.b[2] = 0x00;
2042 bdaddr.b[3] = 0x12;
2043 bdaddr.b[4] = 0x34;
2044 bdaddr.b[5] = 0x56 + nb_hcis;
2045 hci->bdaddr_set(hci, bdaddr.b);
2046
2047 hci_table[nb_hcis++] = hci;
2048
2049 return 0;
2050 }
2051
2052 static void bt_vhci_add(int vlan_id)
2053 {
2054 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
2055
2056 if (!vlan->slave)
2057 fprintf(stderr, "qemu: warning: adding a VHCI to "
2058 "an empty scatternet %i\n", vlan_id);
2059
2060 bt_vhci_init(bt_new_hci(vlan));
2061 }
2062
2063 static struct bt_device_s *bt_device_add(const char *opt)
2064 {
2065 struct bt_scatternet_s *vlan;
2066 int vlan_id = 0;
2067 char *endp = strstr(opt, ",vlan=");
2068 int len = (endp ? endp - opt : strlen(opt)) + 1;
2069 char devname[10];
2070
2071 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2072
2073 if (endp) {
2074 vlan_id = strtol(endp + 6, &endp, 0);
2075 if (*endp) {
2076 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2077 return 0;
2078 }
2079 }
2080
2081 vlan = qemu_find_bt_vlan(vlan_id);
2082
2083 if (!vlan->slave)
2084 fprintf(stderr, "qemu: warning: adding a slave device to "
2085 "an empty scatternet %i\n", vlan_id);
2086
2087 if (!strcmp(devname, "keyboard"))
2088 return bt_keyboard_init(vlan);
2089
2090 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2091 return 0;
2092 }
2093
2094 static int bt_parse(const char *opt)
2095 {
2096 const char *endp, *p;
2097 int vlan;
2098
2099 if (strstart(opt, "hci", &endp)) {
2100 if (!*endp || *endp == ',') {
2101 if (*endp)
2102 if (!strstart(endp, ",vlan=", 0))
2103 opt = endp + 1;
2104
2105 return bt_hci_parse(opt);
2106 }
2107 } else if (strstart(opt, "vhci", &endp)) {
2108 if (!*endp || *endp == ',') {
2109 if (*endp) {
2110 if (strstart(endp, ",vlan=", &p)) {
2111 vlan = strtol(p, (char **) &endp, 0);
2112 if (*endp) {
2113 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2114 return 1;
2115 }
2116 } else {
2117 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2118 return 1;
2119 }
2120 } else
2121 vlan = 0;
2122
2123 bt_vhci_add(vlan);
2124 return 0;
2125 }
2126 } else if (strstart(opt, "device:", &endp))
2127 return !bt_device_add(endp);
2128
2129 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2130 return 1;
2131 }
2132
2133 /***********************************************************/
2134 /* QEMU Block devices */
2135
2136 #define HD_ALIAS "index=%d,media=disk"
2137 #ifdef TARGET_PPC
2138 #define CDROM_ALIAS "index=1,media=cdrom"
2139 #else
2140 #define CDROM_ALIAS "index=2,media=cdrom"
2141 #endif
2142 #define FD_ALIAS "index=%d,if=floppy"
2143 #define PFLASH_ALIAS "if=pflash"
2144 #define MTD_ALIAS "if=mtd"
2145 #define SD_ALIAS "index=0,if=sd"
2146
2147 static int drive_opt_get_free_idx(void)
2148 {
2149 int index;
2150
2151 for (index = 0; index < MAX_DRIVES; index++)
2152 if (!drives_opt[index].used) {
2153 drives_opt[index].used = 1;
2154 return index;
2155 }
2156
2157 return -1;
2158 }
2159
2160 static int drive_get_free_idx(void)
2161 {
2162 int index;
2163
2164 for (index = 0; index < MAX_DRIVES; index++)
2165 if (!drives_table[index].used) {
2166 drives_table[index].used = 1;
2167 return index;
2168 }
2169
2170 return -1;
2171 }
2172
2173 int drive_add(const char *file, const char *fmt, ...)
2174 {
2175 va_list ap;
2176 int index = drive_opt_get_free_idx();
2177
2178 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2179 fprintf(stderr, "qemu: too many drives\n");
2180 return -1;
2181 }
2182
2183 drives_opt[index].file = file;
2184 va_start(ap, fmt);
2185 vsnprintf(drives_opt[index].opt,
2186 sizeof(drives_opt[0].opt), fmt, ap);
2187 va_end(ap);
2188
2189 nb_drives_opt++;
2190 return index;
2191 }
2192
2193 void drive_remove(int index)
2194 {
2195 drives_opt[index].used = 0;
2196 nb_drives_opt--;
2197 }
2198
2199 int drive_get_index(BlockInterfaceType type, int bus, int unit)
2200 {
2201 int index;
2202
2203 /* seek interface, bus and unit */
2204
2205 for (index = 0; index < MAX_DRIVES; index++)
2206 if (drives_table[index].type == type &&
2207 drives_table[index].bus == bus &&
2208 drives_table[index].unit == unit &&
2209 drives_table[index].used)
2210 return index;
2211
2212 return -1;
2213 }
2214
2215 int drive_get_max_bus(BlockInterfaceType type)
2216 {
2217 int max_bus;
2218 int index;
2219
2220 max_bus = -1;
2221 for (index = 0; index < nb_drives; index++) {
2222 if(drives_table[index].type == type &&
2223 drives_table[index].bus > max_bus)
2224 max_bus = drives_table[index].bus;
2225 }
2226 return max_bus;
2227 }
2228
2229 const char *drive_get_serial(BlockDriverState *bdrv)
2230 {
2231 int index;
2232
2233 for (index = 0; index < nb_drives; index++)
2234 if (drives_table[index].bdrv == bdrv)
2235 return drives_table[index].serial;
2236
2237 return "\0";
2238 }
2239
2240 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2241 {
2242 int index;
2243
2244 for (index = 0; index < nb_drives; index++)
2245 if (drives_table[index].bdrv == bdrv)
2246 return drives_table[index].onerror;
2247
2248 return BLOCK_ERR_STOP_ENOSPC;
2249 }
2250
2251 static void bdrv_format_print(void *opaque, const char *name)
2252 {
2253 fprintf(stderr, " %s", name);
2254 }
2255
2256 void drive_uninit(BlockDriverState *bdrv)
2257 {
2258 int i;
2259
2260 for (i = 0; i < MAX_DRIVES; i++)
2261 if (drives_table[i].bdrv == bdrv) {
2262 drives_table[i].bdrv = NULL;
2263 drives_table[i].used = 0;
2264 drive_remove(drives_table[i].drive_opt_idx);
2265 nb_drives--;
2266 break;
2267 }
2268 }
2269
2270 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2271 {
2272 char buf[128];
2273 char file[1024];
2274 char devname[128];
2275 char serial[21];
2276 const char *mediastr = "";
2277 BlockInterfaceType type;
2278 enum { MEDIA_DISK, MEDIA_CDROM } media;
2279 int bus_id, unit_id;
2280 int cyls, heads, secs, translation;
2281 BlockDriverState *bdrv;
2282 BlockDriver *drv = NULL;
2283 QEMUMachine *machine = opaque;
2284 int max_devs;
2285 int index;
2286 int cache;
2287 int bdrv_flags, onerror;
2288 int drives_table_idx;
2289 char *str = arg->opt;
2290 static const char * const params[] = { "bus", "unit", "if", "index",
2291 "cyls", "heads", "secs", "trans",
2292 "media", "snapshot", "file",
2293 "cache", "format", "serial", "werror",
2294 NULL };
2295
2296 if (check_params(buf, sizeof(buf), params, str) < 0) {
2297 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2298 buf, str);
2299 return -1;
2300 }
2301
2302 file[0] = 0;
2303 cyls = heads = secs = 0;
2304 bus_id = 0;
2305 unit_id = -1;
2306 translation = BIOS_ATA_TRANSLATION_AUTO;
2307 index = -1;
2308 cache = 3;
2309
2310 if (machine->use_scsi) {
2311 type = IF_SCSI;
2312 max_devs = MAX_SCSI_DEVS;
2313 pstrcpy(devname, sizeof(devname), "scsi");
2314 } else {
2315 type = IF_IDE;
2316 max_devs = MAX_IDE_DEVS;
2317 pstrcpy(devname, sizeof(devname), "ide");
2318 }
2319 media = MEDIA_DISK;
2320
2321 /* extract parameters */
2322
2323 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2324 bus_id = strtol(buf, NULL, 0);
2325 if (bus_id < 0) {
2326 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2327 return -1;
2328 }
2329 }
2330
2331 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2332 unit_id = strtol(buf, NULL, 0);
2333 if (unit_id < 0) {
2334 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2335 return -1;
2336 }
2337 }
2338
2339 if (get_param_value(buf, sizeof(buf), "if", str)) {
2340 pstrcpy(devname, sizeof(devname), buf);
2341 if (!strcmp(buf, "ide")) {
2342 type = IF_IDE;
2343 max_devs = MAX_IDE_DEVS;
2344 } else if (!strcmp(buf, "scsi")) {
2345 type = IF_SCSI;
2346 max_devs = MAX_SCSI_DEVS;
2347 } else if (!strcmp(buf, "floppy")) {
2348 type = IF_FLOPPY;
2349 max_devs = 0;
2350 } else if (!strcmp(buf, "pflash")) {
2351 type = IF_PFLASH;
2352 max_devs = 0;
2353 } else if (!strcmp(buf, "mtd")) {
2354 type = IF_MTD;
2355 max_devs = 0;
2356 } else if (!strcmp(buf, "sd")) {
2357 type = IF_SD;
2358 max_devs = 0;
2359 } else if (!strcmp(buf, "virtio")) {
2360 type = IF_VIRTIO;
2361 max_devs = 0;
2362 } else {
2363 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2364 return -1;
2365 }
2366 }
2367
2368 if (get_param_value(buf, sizeof(buf), "index", str)) {
2369 index = strtol(buf, NULL, 0);
2370 if (index < 0) {
2371 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2372 return -1;
2373 }
2374 }
2375
2376 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2377 cyls = strtol(buf, NULL, 0);
2378 }
2379
2380 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2381 heads = strtol(buf, NULL, 0);
2382 }
2383
2384 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2385 secs = strtol(buf, NULL, 0);
2386 }
2387
2388 if (cyls || heads || secs) {
2389 if (cyls < 1 || cyls > 16383) {
2390 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2391 return -1;
2392 }
2393 if (heads < 1 || heads > 16) {
2394 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2395 return -1;
2396 }
2397 if (secs < 1 || secs > 63) {
2398 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2399 return -1;
2400 }
2401 }
2402
2403 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2404 if (!cyls) {
2405 fprintf(stderr,
2406 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2407 str);
2408 return -1;
2409 }
2410 if (!strcmp(buf, "none"))
2411 translation = BIOS_ATA_TRANSLATION_NONE;
2412 else if (!strcmp(buf, "lba"))
2413 translation = BIOS_ATA_TRANSLATION_LBA;
2414 else if (!strcmp(buf, "auto"))
2415 translation = BIOS_ATA_TRANSLATION_AUTO;
2416 else {
2417 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2418 return -1;
2419 }
2420 }
2421
2422 if (get_param_value(buf, sizeof(buf), "media", str)) {
2423 if (!strcmp(buf, "disk")) {
2424 media = MEDIA_DISK;
2425 } else if (!strcmp(buf, "cdrom")) {
2426 if (cyls || secs || heads) {
2427 fprintf(stderr,
2428 "qemu: '%s' invalid physical CHS format\n", str);
2429 return -1;
2430 }
2431 media = MEDIA_CDROM;
2432 } else {
2433 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2434 return -1;
2435 }
2436 }
2437
2438 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2439 if (!strcmp(buf, "on"))
2440 snapshot = 1;
2441 else if (!strcmp(buf, "off"))
2442 snapshot = 0;
2443 else {
2444 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2445 return -1;
2446 }
2447 }
2448
2449 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2450 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2451 cache = 0;
2452 else if (!strcmp(buf, "writethrough"))
2453 cache = 1;
2454 else if (!strcmp(buf, "writeback"))
2455 cache = 2;
2456 else {
2457 fprintf(stderr, "qemu: invalid cache option\n");
2458 return -1;
2459 }
2460 }
2461
2462 if (get_param_value(buf, sizeof(buf), "format", str)) {
2463 if (strcmp(buf, "?") == 0) {
2464 fprintf(stderr, "qemu: Supported formats:");
2465 bdrv_iterate_format(bdrv_format_print, NULL);
2466 fprintf(stderr, "\n");
2467 return -1;
2468 }
2469 drv = bdrv_find_format(buf);
2470 if (!drv) {
2471 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2472 return -1;
2473 }
2474 }
2475
2476 if (arg->file == NULL)
2477 get_param_value(file, sizeof(file), "file", str);
2478 else
2479 pstrcpy(file, sizeof(file), arg->file);
2480
2481 if (!get_param_value(serial, sizeof(serial), "serial", str))
2482 memset(serial, 0, sizeof(serial));
2483
2484 onerror = BLOCK_ERR_STOP_ENOSPC;
2485 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2486 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2487 fprintf(stderr, "werror is no supported by this format\n");
2488 return -1;
2489 }
2490 if (!strcmp(buf, "ignore"))
2491 onerror = BLOCK_ERR_IGNORE;
2492 else if (!strcmp(buf, "enospc"))
2493 onerror = BLOCK_ERR_STOP_ENOSPC;
2494 else if (!strcmp(buf, "stop"))
2495 onerror = BLOCK_ERR_STOP_ANY;
2496 else if (!strcmp(buf, "report"))
2497 onerror = BLOCK_ERR_REPORT;
2498 else {
2499 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2500 return -1;
2501 }
2502 }
2503
2504 /* compute bus and unit according index */
2505
2506 if (index != -1) {
2507 if (bus_id != 0 || unit_id != -1) {
2508 fprintf(stderr,
2509 "qemu: '%s' index cannot be used with bus and unit\n", str);
2510 return -1;
2511 }
2512 if (max_devs == 0)
2513 {
2514 unit_id = index;
2515 bus_id = 0;
2516 } else {
2517 unit_id = index % max_devs;
2518 bus_id = index / max_devs;
2519 }
2520 }
2521
2522 /* if user doesn't specify a unit_id,
2523 * try to find the first free
2524 */
2525
2526 if (unit_id == -1) {
2527 unit_id = 0;
2528 while (drive_get_index(type, bus_id, unit_id) != -1) {
2529 unit_id++;
2530 if (max_devs && unit_id >= max_devs) {
2531 unit_id -= max_devs;
2532 bus_id++;
2533 }
2534 }
2535 }
2536
2537 /* check unit id */
2538
2539 if (max_devs && unit_id >= max_devs) {
2540 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2541 str, unit_id, max_devs - 1);
2542 return -1;
2543 }
2544
2545 /*
2546 * ignore multiple definitions
2547 */
2548
2549 if (drive_get_index(type, bus_id, unit_id) != -1)
2550 return -2;
2551
2552 /* init */
2553
2554 if (type == IF_IDE || type == IF_SCSI)
2555 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2556 if (max_devs)
2557 snprintf(buf, sizeof(buf), "%s%i%s%i",
2558 devname, bus_id, mediastr, unit_id);
2559 else
2560 snprintf(buf, sizeof(buf), "%s%s%i",
2561 devname, mediastr, unit_id);
2562 bdrv = bdrv_new(buf);
2563 drives_table_idx = drive_get_free_idx();
2564 drives_table[drives_table_idx].bdrv = bdrv;
2565 drives_table[drives_table_idx].type = type;
2566 drives_table[drives_table_idx].bus = bus_id;
2567 drives_table[drives_table_idx].unit = unit_id;
2568 drives_table[drives_table_idx].onerror = onerror;
2569 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2570 strncpy(drives_table[nb_drives].serial, serial, sizeof(serial));
2571 nb_drives++;
2572
2573 switch(type) {
2574 case IF_IDE:
2575 case IF_SCSI:
2576 switch(media) {
2577 case MEDIA_DISK:
2578 if (cyls != 0) {
2579 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2580 bdrv_set_translation_hint(bdrv, translation);
2581 }
2582 break;
2583 case MEDIA_CDROM:
2584 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2585 break;
2586 }
2587 break;
2588 case IF_SD:
2589 /* FIXME: This isn't really a floppy, but it's a reasonable
2590 approximation. */
2591 case IF_FLOPPY:
2592 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2593 break;
2594 case IF_PFLASH:
2595 case IF_MTD:
2596 case IF_VIRTIO:
2597 break;
2598 }
2599 if (!file[0])
2600 return -2;
2601 bdrv_flags = 0;
2602 if (snapshot) {
2603 bdrv_flags |= BDRV_O_SNAPSHOT;
2604 cache = 2; /* always use write-back with snapshot */
2605 }
2606 if (cache == 0) /* no caching */
2607 bdrv_flags |= BDRV_O_NOCACHE;
2608 else if (cache == 2) /* write-back */
2609 bdrv_flags |= BDRV_O_CACHE_WB;
2610 else if (cache == 3) /* not specified */
2611 bdrv_flags |= BDRV_O_CACHE_DEF;
2612 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2613 fprintf(stderr, "qemu: could not open disk image %s\n",
2614 file);
2615 return -1;
2616 }
2617 if (bdrv_key_required(bdrv))
2618 autostart = 0;
2619 return drives_table_idx;
2620 }
2621
2622 /***********************************************************/
2623 /* USB devices */
2624
2625 static USBPort *used_usb_ports;
2626 static USBPort *free_usb_ports;
2627
2628 /* ??? Maybe change this to register a hub to keep track of the topology. */
2629 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2630 usb_attachfn attach)
2631 {
2632 port->opaque = opaque;
2633 port->index = index;
2634 port->attach = attach;
2635 port->next = free_usb_ports;
2636 free_usb_ports = port;
2637 }
2638
2639 int usb_device_add_dev(USBDevice *dev)
2640 {
2641 USBPort *port;
2642
2643 /* Find a USB port to add the device to. */
2644 port = free_usb_ports;
2645 if (!port->next) {
2646 USBDevice *hub;
2647
2648 /* Create a new hub and chain it on. */
2649 free_usb_ports = NULL;
2650 port->next = used_usb_ports;
2651 used_usb_ports = port;
2652
2653 hub = usb_hub_init(VM_USB_HUB_SIZE);
2654 usb_attach(port, hub);
2655 port = free_usb_ports;
2656 }
2657
2658 free_usb_ports = port->next;
2659 port->next = used_usb_ports;
2660 used_usb_ports = port;
2661 usb_attach(port, dev);
2662 return 0;
2663 }
2664
2665 static void usb_msd_password_cb(void *opaque, int err)
2666 {
2667 USBDevice *dev = opaque;
2668
2669 if (!err)
2670 usb_device_add_dev(dev);
2671 else
2672 dev->handle_destroy(dev);
2673 }
2674
2675 static int usb_device_add(const char *devname, int is_hotplug)
2676 {
2677 const char *p;
2678 USBDevice *dev;
2679
2680 if (!free_usb_ports)
2681 return -1;
2682
2683 if (strstart(devname, "host:", &p)) {
2684 dev = usb_host_device_open(p);
2685 } else if (!strcmp(devname, "mouse")) {
2686 dev = usb_mouse_init();
2687 } else if (!strcmp(devname, "tablet")) {
2688 dev = usb_tablet_init();
2689 } else if (!strcmp(devname, "keyboard")) {
2690 dev = usb_keyboard_init();
2691 } else if (strstart(devname, "disk:", &p)) {
2692 BlockDriverState *bs;
2693
2694 dev = usb_msd_init(p);
2695 if (!dev)
2696 return -1;
2697 bs = usb_msd_get_bdrv(dev);
2698 if (bdrv_key_required(bs)) {
2699 autostart = 0;
2700 if (is_hotplug) {
2701 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2702 dev);
2703 return 0;
2704 }
2705 }
2706 } else if (!strcmp(devname, "wacom-tablet")) {
2707 dev = usb_wacom_init();
2708 } else if (strstart(devname, "serial:", &p)) {
2709 dev = usb_serial_init(p);
2710 #ifdef CONFIG_BRLAPI
2711 } else if (!strcmp(devname, "braille")) {
2712 dev = usb_baum_init();
2713 #endif
2714 } else if (strstart(devname, "net:", &p)) {
2715 int nic = nb_nics;
2716
2717 if (net_client_init("nic", p) < 0)
2718 return -1;
2719 nd_table[nic].model = "usb";
2720 dev = usb_net_init(&nd_table[nic]);
2721 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2722 dev = usb_bt_init(devname[2] ? hci_init(p) :
2723 bt_new_hci(qemu_find_bt_vlan(0)));
2724 } else {
2725 return -1;
2726 }
2727 if (!dev)
2728 return -1;
2729
2730 return usb_device_add_dev(dev);
2731 }
2732
2733 int usb_device_del_addr(int bus_num, int addr)
2734 {
2735 USBPort *port;
2736 USBPort **lastp;
2737 USBDevice *dev;
2738
2739 if (!used_usb_ports)
2740 return -1;
2741
2742 if (bus_num != 0)
2743 return -1;
2744
2745 lastp = &used_usb_ports;
2746 port = used_usb_ports;
2747 while (port && port->dev->addr != addr) {
2748 lastp = &port->next;
2749 port = port->next;
2750 }
2751
2752 if (!port)
2753 return -1;
2754
2755 dev = port->dev;
2756 *lastp = port->next;
2757 usb_attach(port, NULL);
2758 dev->handle_destroy(dev);
2759 port->next = free_usb_ports;
2760 free_usb_ports = port;
2761 return 0;
2762 }
2763
2764 static int usb_device_del(const char *devname)
2765 {
2766 int bus_num, addr;
2767 const char *p;
2768
2769 if (strstart(devname, "host:", &p))
2770 return usb_host_device_close(p);
2771
2772 if (!used_usb_ports)
2773 return -1;
2774
2775 p = strchr(devname, '.');
2776 if (!p)
2777 return -1;
2778 bus_num = strtoul(devname, NULL, 0);
2779 addr = strtoul(p + 1, NULL, 0);
2780
2781 return usb_device_del_addr(bus_num, addr);
2782 }
2783
2784 void do_usb_add(Monitor *mon, const char *devname)
2785 {
2786 usb_device_add(devname, 1);
2787 }
2788
2789 void do_usb_del(Monitor *mon, const char *devname)
2790 {
2791 usb_device_del(devname);
2792 }
2793
2794 void usb_info(Monitor *mon)
2795 {
2796 USBDevice *dev;
2797 USBPort *port;
2798 const char *speed_str;
2799
2800 if (!usb_enabled) {
2801 monitor_printf(mon, "USB support not enabled\n");
2802 return;
2803 }
2804
2805 for (port = used_usb_ports; port; port = port->next) {
2806 dev = port->dev;
2807 if (!dev)
2808 continue;
2809 switch(dev->speed) {
2810 case USB_SPEED_LOW:
2811 speed_str = "1.5";
2812 break;
2813 case USB_SPEED_FULL:
2814 speed_str = "12";
2815 break;
2816 case USB_SPEED_HIGH:
2817 speed_str = "480";
2818 break;
2819 default:
2820 speed_str = "?";
2821 break;
2822 }
2823 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2824 0, dev->addr, speed_str, dev->devname);
2825 }
2826 }
2827
2828 /***********************************************************/
2829 /* PCMCIA/Cardbus */
2830
2831 static struct pcmcia_socket_entry_s {
2832 struct pcmcia_socket_s *socket;
2833 struct pcmcia_socket_entry_s *next;
2834 } *pcmcia_sockets = 0;
2835
2836 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
2837 {
2838 struct pcmcia_socket_entry_s *entry;
2839
2840 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2841 entry->socket = socket;
2842 entry->next = pcmcia_sockets;
2843 pcmcia_sockets = entry;
2844 }
2845
2846 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
2847 {
2848 struct pcmcia_socket_entry_s *entry, **ptr;
2849
2850 ptr = &pcmcia_sockets;
2851 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2852 if (entry->socket == socket) {
2853 *ptr = entry->next;
2854 qemu_free(entry);
2855 }
2856 }
2857
2858 void pcmcia_info(Monitor *mon)
2859 {
2860 struct pcmcia_socket_entry_s *iter;
2861
2862 if (!pcmcia_sockets)
2863 monitor_printf(mon, "No PCMCIA sockets\n");
2864
2865 for (iter = pcmcia_sockets; iter; iter = iter->next)
2866 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2867 iter->socket->attached ? iter->socket->card_string :
2868 "Empty");
2869 }
2870
2871 /***********************************************************/
2872 /* register display */
2873
2874 void register_displaystate(DisplayState *ds)
2875 {
2876 DisplayState **s;
2877 s = &display_state;
2878 while (*s != NULL)
2879 s = &(*s)->next;
2880 ds->next = NULL;
2881 *s = ds;
2882 }
2883
2884 DisplayState *get_displaystate(void)
2885 {
2886 return display_state;
2887 }
2888
2889 /* dumb display */
2890
2891 static void dumb_display_init(void)
2892 {
2893 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2894 ds->surface = qemu_create_displaysurface(640, 480, 32, 640 * 4);
2895 register_displaystate(ds);
2896 }
2897
2898 /***********************************************************/
2899 /* I/O handling */
2900
2901 #define MAX_IO_HANDLERS 64
2902
2903 typedef struct IOHandlerRecord {
2904 int fd;
2905 IOCanRWHandler *fd_read_poll;
2906 IOHandler *fd_read;
2907 IOHandler *fd_write;
2908 int deleted;
2909 void *opaque;
2910 /* temporary data */
2911 struct pollfd *ufd;
2912 struct IOHandlerRecord *next;
2913 } IOHandlerRecord;
2914
2915 static IOHandlerRecord *first_io_handler;
2916
2917 /* XXX: fd_read_poll should be suppressed, but an API change is
2918 necessary in the character devices to suppress fd_can_read(). */
2919 int qemu_set_fd_handler2(int fd,
2920 IOCanRWHandler *fd_read_poll,
2921 IOHandler *fd_read,
2922 IOHandler *fd_write,
2923 void *opaque)
2924 {
2925 IOHandlerRecord **pioh, *ioh;
2926
2927 if (!fd_read && !fd_write) {
2928 pioh = &first_io_handler;
2929 for(;;) {
2930 ioh = *pioh;
2931 if (ioh == NULL)
2932 break;
2933 if (ioh->fd == fd) {
2934 ioh->deleted = 1;
2935 break;
2936 }
2937 pioh = &ioh->next;
2938 }
2939 } else {
2940 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2941 if (ioh->fd == fd)
2942 goto found;
2943 }
2944 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2945 ioh->next = first_io_handler;
2946 first_io_handler = ioh;
2947 found:
2948 ioh->fd = fd;
2949 ioh->fd_read_poll = fd_read_poll;
2950 ioh->fd_read = fd_read;
2951 ioh->fd_write = fd_write;
2952 ioh->opaque = opaque;
2953 ioh->deleted = 0;
2954 }
2955 return 0;
2956 }
2957
2958 int qemu_set_fd_handler(int fd,
2959 IOHandler *fd_read,
2960 IOHandler *fd_write,
2961 void *opaque)
2962 {
2963 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2964 }
2965
2966 #ifdef _WIN32
2967 /***********************************************************/
2968 /* Polling handling */
2969
2970 typedef struct PollingEntry {
2971 PollingFunc *func;
2972 void *opaque;
2973 struct PollingEntry *next;
2974 } PollingEntry;
2975
2976 static PollingEntry *first_polling_entry;
2977
2978 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2979 {
2980 PollingEntry **ppe, *pe;
2981 pe = qemu_mallocz(sizeof(PollingEntry));
2982 pe->func = func;
2983 pe->opaque = opaque;
2984 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2985 *ppe = pe;
2986 return 0;
2987 }
2988
2989 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2990 {
2991 PollingEntry **ppe, *pe;
2992 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2993 pe = *ppe;
2994 if (pe->func == func && pe->opaque == opaque) {
2995 *ppe = pe->next;
2996 qemu_free(pe);
2997 break;
2998 }
2999 }
3000 }
3001
3002 /***********************************************************/
3003 /* Wait objects support */
3004 typedef struct WaitObjects {
3005 int num;
3006 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
3007 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
3008 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
3009 } WaitObjects;
3010
3011 static WaitObjects wait_objects = {0};
3012
3013 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3014 {
3015 WaitObjects *w = &wait_objects;
3016
3017 if (w->num >= MAXIMUM_WAIT_OBJECTS)
3018 return -1;
3019 w->events[w->num] = handle;
3020 w->func[w->num] = func;
3021 w->opaque[w->num] = opaque;
3022 w->num++;
3023 return 0;
3024 }
3025
3026 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3027 {
3028 int i, found;
3029 WaitObjects *w = &wait_objects;
3030
3031 found = 0;
3032 for (i = 0; i < w->num; i++) {
3033 if (w->events[i] == handle)
3034 found = 1;
3035 if (found) {
3036 w->events[i] = w->events[i + 1];
3037 w->func[i] = w->func[i + 1];
3038 w->opaque[i] = w->opaque[i + 1];
3039 }
3040 }
3041 if (found)
3042 w->num--;
3043 }
3044 #endif
3045
3046 /***********************************************************/
3047 /* ram save/restore */
3048
3049 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3050 {
3051 int v;
3052
3053 v = qemu_get_byte(f);
3054 switch(v) {
3055 case 0:
3056 if (qemu_get_buffer(f, buf, len) != len)
3057 return -EIO;
3058 break;
3059 case 1:
3060 v = qemu_get_byte(f);
3061 memset(buf, v, len);
3062 break;
3063 default:
3064 return -EINVAL;
3065 }
3066
3067 if (qemu_file_has_error(f))
3068 return -EIO;
3069
3070 return 0;
3071 }
3072
3073 static int ram_load_v1(QEMUFile *f, void *opaque)
3074 {
3075 int ret;
3076 ram_addr_t i;
3077
3078 if (qemu_get_be32(f) != phys_ram_size)
3079 return -EINVAL;
3080 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
3081 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
3082 if (ret)
3083 return ret;
3084 }
3085 return 0;
3086 }
3087
3088 #define BDRV_HASH_BLOCK_SIZE 1024
3089 #define IOBUF_SIZE 4096
3090 #define RAM_CBLOCK_MAGIC 0xfabe
3091
3092 typedef struct RamDecompressState {
3093 z_stream zstream;
3094 QEMUFile *f;
3095 uint8_t buf[IOBUF_SIZE];
3096 } RamDecompressState;
3097
3098 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3099 {
3100 int ret;
3101 memset(s, 0, sizeof(*s));
3102 s->f = f;
3103 ret = inflateInit(&s->zstream);
3104 if (ret != Z_OK)
3105 return -1;
3106 return 0;
3107 }
3108
3109 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3110 {
3111 int ret, clen;
3112
3113 s->zstream.avail_out = len;
3114 s->zstream.next_out = buf;
3115 while (s->zstream.avail_out > 0) {
3116 if (s->zstream.avail_in == 0) {
3117 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3118 return -1;
3119 clen = qemu_get_be16(s->f);
3120 if (clen > IOBUF_SIZE)
3121 return -1;
3122 qemu_get_buffer(s->f, s->buf, clen);
3123 s->zstream.avail_in = clen;
3124 s->zstream.next_in = s->buf;
3125 }
3126 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3127 if (ret != Z_OK && ret != Z_STREAM_END) {
3128 return -1;
3129 }
3130 }
3131 return 0;
3132 }
3133
3134 static void ram_decompress_close(RamDecompressState *s)
3135 {
3136 inflateEnd(&s->zstream);
3137 }
3138
3139 #define RAM_SAVE_FLAG_FULL 0x01
3140 #define RAM_SAVE_FLAG_COMPRESS 0x02
3141 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3142 #define RAM_SAVE_FLAG_PAGE 0x08
3143 #define RAM_SAVE_FLAG_EOS 0x10
3144
3145 static int is_dup_page(uint8_t *page, uint8_t ch)
3146 {
3147 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3148 uint32_t *array = (uint32_t *)page;
3149 int i;
3150
3151 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3152 if (array[i] != val)
3153 return 0;
3154 }
3155
3156 return 1;
3157 }
3158
3159 static int ram_save_block(QEMUFile *f)
3160 {
3161 static ram_addr_t current_addr = 0;
3162 ram_addr_t saved_addr = current_addr;
3163 ram_addr_t addr = 0;
3164 int found = 0;
3165
3166 while (addr < phys_ram_size) {
3167 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3168 uint8_t ch;
3169
3170 cpu_physical_memory_reset_dirty(current_addr,
3171 current_addr + TARGET_PAGE_SIZE,
3172 MIGRATION_DIRTY_FLAG);
3173
3174 ch = *(phys_ram_base + current_addr);
3175
3176 if (is_dup_page(phys_ram_base + current_addr, ch)) {
3177 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3178 qemu_put_byte(f, ch);
3179 } else {
3180 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3181 qemu_put_buffer(f, phys_ram_base + current_addr, TARGET_PAGE_SIZE);
3182 }
3183
3184 found = 1;
3185 break;
3186 }
3187 addr += TARGET_PAGE_SIZE;
3188 current_addr = (saved_addr + addr) % phys_ram_size;
3189 }
3190
3191 return found;
3192 }
3193
3194 static ram_addr_t ram_save_threshold = 10;
3195
3196 static ram_addr_t ram_save_remaining(void)
3197 {
3198 ram_addr_t addr;
3199 ram_addr_t count = 0;
3200
3201 for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
3202 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3203 count++;
3204 }
3205
3206 return count;
3207 }
3208
3209 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3210 {
3211 ram_addr_t addr;
3212
3213 if (stage == 1) {
3214 /* Make sure all dirty bits are set */
3215 for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
3216 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3217 cpu_physical_memory_set_dirty(addr);
3218 }
3219
3220 /* Enable dirty memory tracking */
3221 cpu_physical_memory_set_dirty_tracking(1);
3222
3223 qemu_put_be64(f, phys_ram_size | RAM_SAVE_FLAG_MEM_SIZE);
3224 }
3225
3226 while (!qemu_file_rate_limit(f)) {
3227 int ret;
3228
3229 ret = ram_save_block(f);
3230 if (ret == 0) /* no more blocks */
3231 break;
3232 }
3233
3234 /* try transferring iterative blocks of memory */
3235
3236 if (stage == 3) {
3237 cpu_physical_memory_set_dirty_tracking(0);
3238
3239 /* flush all remaining blocks regardless of rate limiting */
3240 while (ram_save_block(f) != 0);
3241 }
3242
3243 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3244
3245 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3246 }
3247
3248 static int ram_load_dead(QEMUFile *f, void *opaque)
3249 {
3250 RamDecompressState s1, *s = &s1;
3251 uint8_t buf[10];
3252 ram_addr_t i;
3253
3254 if (ram_decompress_open(s, f) < 0)
3255 return -EINVAL;
3256 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
3257 if (ram_decompress_buf(s, buf, 1) < 0) {
3258 fprintf(stderr, "Error while reading ram block header\n");
3259 goto error;
3260 }
3261 if (buf[0] == 0) {
3262 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
3263 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3264 goto error;
3265 }
3266 } else {
3267 error:
3268 printf("Error block header\n");
3269 return -EINVAL;
3270 }
3271 }
3272 ram_decompress_close(s);
3273
3274 return 0;
3275 }
3276
3277 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3278 {
3279 ram_addr_t addr;
3280 int flags;
3281
3282 if (version_id == 1)
3283 return ram_load_v1(f, opaque);
3284
3285 if (version_id == 2) {
3286 if (qemu_get_be32(f) != phys_ram_size)
3287 return -EINVAL;
3288 return ram_load_dead(f, opaque);
3289 }
3290
3291 if (version_id != 3)
3292 return -EINVAL;
3293
3294 do {
3295 addr = qemu_get_be64(f);
3296
3297 flags = addr & ~TARGET_PAGE_MASK;
3298 addr &= TARGET_PAGE_MASK;
3299
3300 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3301 if (addr != phys_ram_size)
3302 return -EINVAL;
3303 }
3304
3305 if (flags & RAM_SAVE_FLAG_FULL) {
3306 if (ram_load_dead(f, opaque) < 0)
3307 return -EINVAL;
3308 }
3309
3310 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3311 uint8_t ch = qemu_get_byte(f);
3312 memset(phys_ram_base + addr, ch, TARGET_PAGE_SIZE);
3313 } else if (flags & RAM_SAVE_FLAG_PAGE)
3314 qemu_get_buffer(f, phys_ram_base + addr, TARGET_PAGE_SIZE);
3315 } while (!(flags & RAM_SAVE_FLAG_EOS));
3316
3317 return 0;
3318 }
3319
3320 void qemu_service_io(void)
3321 {
3322 CPUState *env = cpu_single_env;
3323 if (env) {
3324 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
3325 #ifdef USE_KQEMU
3326 if (env->kqemu_enabled) {
3327 kqemu_cpu_interrupt(env);
3328 }
3329 #endif
3330 }
3331 }
3332
3333 /***********************************************************/
3334 /* bottom halves (can be seen as timers which expire ASAP) */
3335
3336 struct QEMUBH {
3337 QEMUBHFunc *cb;
3338 void *opaque;
3339 int scheduled;
3340 int idle;
3341 int deleted;
3342 QEMUBH *next;
3343 };
3344
3345 static QEMUBH *first_bh = NULL;
3346
3347 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3348 {
3349 QEMUBH *bh;
3350 bh = qemu_mallocz(sizeof(QEMUBH));
3351 bh->cb = cb;
3352 bh->opaque = opaque;
3353 bh->next = first_bh;
3354 first_bh = bh;
3355 return bh;
3356 }
3357
3358 int qemu_bh_poll(void)
3359 {
3360 QEMUBH *bh, **bhp;
3361 int ret;
3362
3363 ret = 0;
3364 for (bh = first_bh; bh; bh = bh->next) {
3365 if (!bh->deleted && bh->scheduled) {
3366 bh->scheduled = 0;
3367 if (!bh->idle)
3368 ret = 1;
3369 bh->idle = 0;
3370 bh->cb(bh->opaque);
3371 }
3372 }
3373
3374 /* remove deleted bhs */
3375 bhp = &first_bh;
3376 while (*bhp) {
3377 bh = *bhp;
3378 if (bh->deleted) {
3379 *bhp = bh->next;
3380 qemu_free(bh);
3381 } else
3382 bhp = &bh->next;
3383 }
3384
3385 return ret;
3386 }
3387
3388 void qemu_bh_schedule_idle(QEMUBH *bh)
3389 {
3390 if (bh->scheduled)
3391 return;
3392 bh->scheduled = 1;
3393 bh->idle = 1;
3394 }
3395
3396 void qemu_bh_schedule(QEMUBH *bh)
3397 {
3398 CPUState *env = cpu_single_env;
3399 if (bh->scheduled)
3400 return;
3401 bh->scheduled = 1;
3402 bh->idle = 0;
3403 /* stop the currently executing CPU to execute the BH ASAP */
3404 if (env) {
3405 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
3406 }
3407 }
3408
3409 void qemu_bh_cancel(QEMUBH *bh)
3410 {
3411 bh->scheduled = 0;
3412 }
3413
3414 void qemu_bh_delete(QEMUBH *bh)
3415 {
3416 bh->scheduled = 0;
3417 bh->deleted = 1;
3418 }
3419
3420 static void qemu_bh_update_timeout(int *timeout)
3421 {
3422 QEMUBH *bh;
3423
3424 for (bh = first_bh; bh; bh = bh->next) {
3425 if (!bh->deleted && bh->scheduled) {
3426 if (bh->idle) {
3427 /* idle bottom halves will be polled at least
3428 * every 10ms */
3429 *timeout = MIN(10, *timeout);
3430 } else {
3431 /* non-idle bottom halves will be executed
3432 * immediately */
3433 *timeout = 0;
3434 break;
3435 }
3436 }
3437 }
3438 }
3439
3440 /***********************************************************/
3441 /* machine registration */
3442
3443 static QEMUMachine *first_machine = NULL;
3444 QEMUMachine *current_machine = NULL;
3445
3446 int qemu_register_machine(QEMUMachine *m)
3447 {
3448 QEMUMachine **pm;
3449 pm = &first_machine;
3450 while (*pm != NULL)
3451 pm = &(*pm)->next;
3452 m->next = NULL;
3453 *pm = m;
3454 return 0;
3455 }
3456
3457 static QEMUMachine *find_machine(const char *name)
3458 {
3459 QEMUMachine *m;
3460
3461 for(m = first_machine; m != NULL; m = m->next) {
3462 if (!strcmp(m->name, name))
3463 return m;
3464 }
3465 return NULL;
3466 }
3467
3468 /***********************************************************/
3469 /* main execution loop */
3470
3471 static void gui_update(void *opaque)
3472 {
3473 uint64_t interval = GUI_REFRESH_INTERVAL;
3474 DisplayState *ds = opaque;
3475 DisplayChangeListener *dcl = ds->listeners;
3476
3477 dpy_refresh(ds);
3478
3479 while (dcl != NULL) {
3480 if (dcl->gui_timer_interval &&
3481 dcl->gui_timer_interval < interval)
3482 interval = dcl->gui_timer_interval;
3483 dcl = dcl->next;
3484 }
3485 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3486 }
3487
3488 static void nographic_update(void *opaque)
3489 {
3490 uint64_t interval = GUI_REFRESH_INTERVAL;
3491
3492 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3493 }
3494
3495 struct vm_change_state_entry {
3496 VMChangeStateHandler *cb;
3497 void *opaque;
3498 LIST_ENTRY (vm_change_state_entry) entries;
3499 };
3500
3501 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3502
3503 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3504 void *opaque)
3505 {
3506 VMChangeStateEntry *e;
3507
3508 e = qemu_mallocz(sizeof (*e));
3509
3510 e->cb = cb;
3511 e->opaque = opaque;
3512 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3513 return e;
3514 }
3515
3516 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3517 {
3518 LIST_REMOVE (e, entries);
3519 qemu_free (e);
3520 }
3521
3522 static void vm_state_notify(int running, int reason)
3523 {
3524 VMChangeStateEntry *e;
3525
3526 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3527 e->cb(e->opaque, running, reason);
3528 }
3529 }
3530
3531 void vm_start(void)
3532 {
3533 if (!vm_running) {
3534 cpu_enable_ticks();
3535 vm_running = 1;
3536 vm_state_notify(1, 0);
3537 qemu_rearm_alarm_timer(alarm_timer);
3538 }
3539 }
3540
3541 void vm_stop(int reason)
3542 {
3543 if (vm_running) {
3544 cpu_disable_ticks();
3545 vm_running = 0;
3546 vm_state_notify(0, reason);
3547 }
3548 }
3549
3550 /* reset/shutdown handler */
3551
3552 typedef struct QEMUResetEntry {
3553 QEMUResetHandler *func;
3554 void *opaque;
3555 struct QEMUResetEntry *next;
3556 } QEMUResetEntry;
3557
3558 static QEMUResetEntry *first_reset_entry;
3559 static int reset_requested;
3560 static int shutdown_requested;
3561 static int powerdown_requested;
3562
3563 int qemu_shutdown_requested(void)
3564 {
3565 int r = shutdown_requested;
3566 shutdown_requested = 0;
3567 return r;
3568 }
3569
3570 int qemu_reset_requested(void)
3571 {
3572 int r = reset_requested;
3573 reset_requested = 0;
3574 return r;
3575 }
3576
3577 int qemu_powerdown_requested(void)
3578 {
3579 int r = powerdown_requested;
3580 powerdown_requested = 0;
3581 return r;
3582 }
3583
3584 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3585 {
3586 QEMUResetEntry **pre, *re;
3587
3588 pre = &first_reset_entry;
3589 while (*pre != NULL)
3590 pre = &(*pre)->next;
3591 re = qemu_mallocz(sizeof(QEMUResetEntry));
3592 re->func = func;
3593 re->opaque = opaque;
3594 re->next = NULL;
3595 *pre = re;
3596 }
3597
3598 void qemu_system_reset(void)
3599 {
3600 QEMUResetEntry *re;
3601
3602 /* reset all devices */
3603 for(re = first_reset_entry; re != NULL; re = re->next) {
3604 re->func(re->opaque);
3605 }
3606 }
3607
3608 void qemu_system_reset_request(void)
3609 {
3610 if (no_reboot) {
3611 shutdown_requested = 1;
3612 } else {
3613 reset_requested = 1;
3614 }
3615 if (cpu_single_env)
3616 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3617 }
3618
3619 void qemu_system_shutdown_request(void)
3620 {
3621 shutdown_requested = 1;
3622 if (cpu_single_env)
3623 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3624 }
3625
3626 void qemu_system_powerdown_request(void)
3627 {
3628 powerdown_requested = 1;
3629 if (cpu_single_env)
3630 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3631 }
3632
3633 #ifdef _WIN32
3634 static void host_main_loop_wait(int *timeout)
3635 {
3636 int ret, ret2, i;
3637 PollingEntry *pe;
3638
3639
3640 /* XXX: need to suppress polling by better using win32 events */
3641 ret = 0;
3642 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3643 ret |= pe->func(pe->opaque);
3644 }
3645 if (ret == 0) {
3646 int err;
3647 WaitObjects *w = &wait_objects;
3648
3649 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3650 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3651 if (w->func[ret - WAIT_OBJECT_0])
3652 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3653
3654 /* Check for additional signaled events */
3655 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3656
3657 /* Check if event is signaled */
3658 ret2 = WaitForSingleObject(w->events[i], 0);
3659 if(ret2 == WAIT_OBJECT_0) {
3660 if (w->func[i])
3661 w->func[i](w->opaque[i]);
3662 } else if (ret2 == WAIT_TIMEOUT) {
3663 } else {
3664 err = GetLastError();
3665 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3666 }
3667 }
3668 } else if (ret == WAIT_TIMEOUT) {
3669 } else {
3670 err = GetLastError();
3671 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3672 }
3673 }
3674
3675 *timeout = 0;
3676 }
3677 #else
3678 static void host_main_loop_wait(int *timeout)
3679 {
3680 }
3681 #endif
3682
3683 void main_loop_wait(int timeout)
3684 {
3685 IOHandlerRecord *ioh;
3686 fd_set rfds, wfds, xfds;
3687 int ret, nfds;
3688 struct timeval tv;
3689
3690 qemu_bh_update_timeout(&timeout);
3691
3692 host_main_loop_wait(&timeout);
3693
3694 /* poll any events */
3695 /* XXX: separate device handlers from system ones */
3696 nfds = -1;
3697 FD_ZERO(&rfds);
3698 FD_ZERO(&wfds);
3699 FD_ZERO(&xfds);
3700 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3701 if (ioh->deleted)
3702 continue;
3703 if (ioh->fd_read &&
3704 (!ioh->fd_read_poll ||
3705 ioh->fd_read_poll(ioh->opaque) != 0)) {
3706 FD_SET(ioh->fd, &rfds);
3707 if (ioh->fd > nfds)
3708 nfds = ioh->fd;
3709 }
3710 if (ioh->fd_write) {
3711 FD_SET(ioh->fd, &wfds);
3712 if (ioh->fd > nfds)
3713 nfds = ioh->fd;
3714 }
3715 }
3716
3717 tv.tv_sec = timeout / 1000;
3718 tv.tv_usec = (timeout % 1000) * 1000;
3719
3720 #if defined(CONFIG_SLIRP)
3721 if (slirp_is_inited()) {
3722 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3723 }
3724 #endif
3725 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3726 if (ret > 0) {
3727 IOHandlerRecord **pioh;
3728
3729 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3730 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3731 ioh->fd_read(ioh->opaque);
3732 }
3733 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3734 ioh->fd_write(ioh->opaque);
3735 }
3736 }
3737
3738 /* remove deleted IO handlers */
3739 pioh = &first_io_handler;
3740 while (*pioh) {
3741 ioh = *pioh;
3742 if (ioh->deleted) {
3743 *pioh = ioh->next;
3744 qemu_free(ioh);
3745 } else
3746 pioh = &ioh->next;
3747 }
3748 }
3749 #if defined(CONFIG_SLIRP)
3750 if (slirp_is_inited()) {
3751 if (ret < 0) {
3752 FD_ZERO(&rfds);
3753 FD_ZERO(&wfds);
3754 FD_ZERO(&xfds);
3755 }
3756 slirp_select_poll(&rfds, &wfds, &xfds);
3757 }
3758 #endif
3759
3760 /* vm time timers */
3761 if (vm_running && likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3762 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
3763 qemu_get_clock(vm_clock));
3764
3765 /* real time timers */
3766 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
3767 qemu_get_clock(rt_clock));
3768
3769 /* Check bottom-halves last in case any of the earlier events triggered
3770 them. */
3771 qemu_bh_poll();
3772
3773 }
3774
3775 static int main_loop(void)
3776 {
3777 int ret, timeout;
3778 #ifdef CONFIG_PROFILER
3779 int64_t ti;
3780 #endif
3781 CPUState *env;
3782
3783 cur_cpu = first_cpu;
3784 next_cpu = cur_cpu->next_cpu ?: first_cpu;
3785 for(;;) {
3786 if (vm_running) {
3787
3788 for(;;) {
3789 /* get next cpu */
3790 env = next_cpu;
3791 #ifdef CONFIG_PROFILER
3792 ti = profile_getclock();
3793 #endif
3794 if (use_icount) {
3795 int64_t count;
3796 int decr;
3797 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
3798 env->icount_decr.u16.low = 0;
3799 env->icount_extra = 0;
3800 count = qemu_next_deadline();
3801 count = (count + (1 << icount_time_shift) - 1)
3802 >> icount_time_shift;
3803 qemu_icount += count;
3804 decr = (count > 0xffff) ? 0xffff : count;
3805 count -= decr;
3806 env->icount_decr.u16.low = decr;
3807 env->icount_extra = count;
3808 }
3809 ret = cpu_exec(env);
3810 #ifdef CONFIG_PROFILER
3811 qemu_time += profile_getclock() - ti;
3812 #endif
3813 if (use_icount) {
3814 /* Fold pending instructions back into the
3815 instruction counter, and clear the interrupt flag. */
3816 qemu_icount -= (env->icount_decr.u16.low
3817 + env->icount_extra);
3818 env->icount_decr.u32 = 0;
3819 env->icount_extra = 0;
3820 }
3821 next_cpu = env->next_cpu ?: first_cpu;
3822 if (event_pending && likely(ret != EXCP_DEBUG)) {
3823 ret = EXCP_INTERRUPT;
3824 event_pending = 0;
3825 break;
3826 }
3827 if (ret == EXCP_HLT) {
3828 /* Give the next CPU a chance to run. */
3829 cur_cpu = env;
3830 continue;
3831 }
3832 if (ret != EXCP_HALTED)
3833 break;
3834 /* all CPUs are halted ? */
3835 if (env == cur_cpu)
3836 break;
3837 }
3838 cur_cpu = env;
3839
3840 if (shutdown_requested) {
3841 ret = EXCP_INTERRUPT;
3842 if (no_shutdown) {
3843 vm_stop(0);
3844 no_shutdown = 0;
3845 }
3846 else
3847 break;
3848 }
3849 if (reset_requested) {
3850 reset_requested = 0;
3851 qemu_system_reset();
3852 ret = EXCP_INTERRUPT;
3853 }
3854 if (powerdown_requested) {
3855 powerdown_requested = 0;
3856 qemu_system_powerdown();
3857 ret = EXCP_INTERRUPT;
3858 }
3859 if (unlikely(ret == EXCP_DEBUG)) {
3860 gdb_set_stop_cpu(cur_cpu);
3861 vm_stop(EXCP_DEBUG);
3862 }
3863 /* If all cpus are halted then wait until the next IRQ */
3864 /* XXX: use timeout computed from timers */
3865 if (ret == EXCP_HALTED) {
3866 if (use_icount) {
3867 int64_t add;
3868 int64_t delta;
3869 /* Advance virtual time to the next event. */
3870 if (use_icount == 1) {
3871 /* When not using an adaptive execution frequency
3872 we tend to get badly out of sync with real time,
3873 so just delay for a reasonable amount of time. */
3874 delta = 0;
3875 } else {
3876 delta = cpu_get_icount() - cpu_get_clock();
3877 }
3878 if (delta > 0) {
3879 /* If virtual time is ahead of real time then just
3880 wait for IO. */
3881 timeout = (delta / 1000000) + 1;
3882 } else {
3883 /* Wait for either IO to occur or the next
3884 timer event. */
3885 add = qemu_next_deadline();
3886 /* We advance the timer before checking for IO.
3887 Limit the amount we advance so that early IO
3888 activity won't get the guest too far ahead. */
3889 if (add > 10000000)
3890 add = 10000000;
3891 delta += add;
3892 add = (add + (1 << icount_time_shift) - 1)
3893 >> icount_time_shift;
3894 qemu_icount += add;
3895 timeout = delta / 1000000;
3896 if (timeout < 0)
3897 timeout = 0;
3898 }
3899 } else {
3900 timeout = 5000;
3901 }
3902 } else {
3903 timeout = 0;
3904 }
3905 } else {
3906 if (shutdown_requested) {
3907 ret = EXCP_INTERRUPT;
3908 break;
3909 }
3910 timeout = 5000;
3911 }
3912 #ifdef CONFIG_PROFILER
3913 ti = profile_getclock();
3914 #endif
3915 main_loop_wait(timeout);
3916 #ifdef CONFIG_PROFILER
3917 dev_time += profile_getclock() - ti;
3918 #endif
3919 }
3920 cpu_disable_ticks();
3921 return ret;
3922 }
3923
3924 static void help(int exitcode)
3925 {
3926 /* Please keep in synch with QEMU_OPTION_ enums, qemu_options[]
3927 and qemu-doc.texi */
3928 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
3929 "usage: %s [options] [disk_image]\n"
3930 "\n"
3931 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
3932 "\n"
3933 "Standard options:\n"
3934 "-h or -help display this help and exit\n"
3935 "-M machine select emulated machine (-M ? for list)\n"
3936 "-cpu cpu select CPU (-cpu ? for list)\n"
3937 "-smp n set the number of CPUs to 'n' [default=1]\n"
3938 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
3939 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
3940 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
3941 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
3942 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
3943 " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
3944 " [,cache=writethrough|writeback|none][,format=f][,serial=s]\n"
3945 " use 'file' as a drive image\n"
3946 "-mtdblock file use 'file' as on-board Flash memory image\n"
3947 "-sd file use 'file' as SecureDigital card image\n"
3948 "-pflash file use 'file' as a parallel flash image\n"
3949 "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
3950 "-snapshot write to temporary files instead of disk image files\n"
3951 "-m megs set virtual RAM size to megs MB [default=%d]\n"
3952 #ifndef _WIN32
3953 "-k language use keyboard layout (for example \"fr\" for French)\n"
3954 #endif
3955 #ifdef HAS_AUDIO
3956 "-audio-help print list of audio drivers and their options\n"
3957 "-soundhw c1,... enable audio support\n"
3958 " and only specified sound cards (comma separated list)\n"
3959 " use -soundhw ? to get the list of supported cards\n"
3960 " use -soundhw all to enable all of them\n"
3961 #endif
3962 "-usb enable the USB driver (will be the default soon)\n"
3963 "-usbdevice name add the host or guest USB device 'name'\n"
3964 "-name string set the name of the guest\n"
3965 "-uuid %%08x-%%04x-%%04x-%%04x-%%012x\n"
3966 " specify machine UUID\n"
3967 "\n"
3968 "Display options:\n"
3969 "-nographic disable graphical output and redirect serial I/Os to console\n"
3970 #ifdef CONFIG_CURSES
3971 "-curses use a curses/ncurses interface instead of SDL\n"
3972 #endif
3973 #ifdef CONFIG_SDL
3974 "-no-frame open SDL window without a frame and window decorations\n"
3975 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
3976 "-no-quit disable SDL window close capability\n"
3977 "-sdl enable SDL\n"
3978 #endif
3979 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n"
3980 "-vga [std|cirrus|vmware|none]\n"
3981 " select video card type\n"
3982 "-full-screen start in full screen\n"
3983 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
3984 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
3985 #endif
3986 "-vnc display start a VNC server on display\n"
3987 "\n"
3988 "Network options:\n"
3989 "-net nic[,vlan=n][,macaddr=addr][,model=type][,name=str]\n"
3990 " create a new Network Interface Card and connect it to VLAN 'n'\n"
3991 #ifdef CONFIG_SLIRP
3992 "-net user[,vlan=n][,name=str][,hostname=host]\n"
3993 " connect the user mode network stack to VLAN 'n' and send\n"
3994 " hostname 'host' to DHCP clients\n"
3995 #endif
3996 #ifdef _WIN32
3997 "-net tap[,vlan=n][,name=str],ifname=name\n"
3998 " connect the host TAP network interface to VLAN 'n'\n"
3999 #else
4000 "-net tap[,vlan=n][,name=str][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
4001 " connect the host TAP network interface to VLAN 'n' and use the\n"
4002 " network scripts 'file' (default=%s)\n"
4003 " and 'dfile' (default=%s);\n"
4004 " use '[down]script=no' to disable script execution;\n"
4005 " use 'fd=h' to connect to an already opened TAP interface\n"
4006 #endif
4007 "-net socket[,vlan=n][,name=str][,fd=h][,listen=[host]:port][,connect=host:port]\n"
4008 " connect the vlan 'n' to another VLAN using a socket connection\n"
4009 "-net socket[,vlan=n][,name=str][,fd=h][,mcast=maddr:port]\n"
4010 " connect the vlan 'n' to multicast maddr and port\n"
4011 #ifdef CONFIG_VDE
4012 "-net vde[,vlan=n][,name=str][,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
4013 " connect the vlan 'n' to port 'n' of a vde switch running\n"
4014 " on host and listening for incoming connections on 'socketpath'.\n"
4015 " Use group 'groupname' and mode 'octalmode' to change default\n"
4016 " ownership and permissions for communication port.\n"
4017 #endif
4018 "-net none use it alone to have zero network devices; if no -net option\n"
4019 " is provided, the default is '-net nic -net user'\n"
4020 #ifdef CONFIG_SLIRP
4021 "-tftp dir allow tftp access to files in dir [-net user]\n"
4022 "-bootp file advertise file in BOOTP replies\n"
4023 #ifndef _WIN32
4024 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
4025 #endif
4026 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
4027 " redirect TCP or UDP connections from host to guest [-net user]\n"
4028 #endif
4029 "\n"
4030 "-bt hci,null dumb bluetooth HCI - doesn't respond to commands\n"
4031 "-bt hci,host[:id]\n"
4032 " use host's HCI with the given name\n"
4033 "-bt hci[,vlan=n]\n"
4034 " emulate a standard HCI in virtual scatternet 'n'\n"
4035 "-bt vhci[,vlan=n]\n"
4036 " add host computer to virtual scatternet 'n' using VHCI\n"
4037 "-bt device:dev[,vlan=n]\n"
4038 " emulate a bluetooth device 'dev' in scatternet 'n'\n"
4039 "\n"
4040 #ifdef TARGET_I386
4041 "\n"
4042 "i386 target only:\n"
4043 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
4044 "-rtc-td-hack use it to fix time drift in Windows ACPI HAL\n"
4045 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
4046 "-no-acpi disable ACPI\n"
4047 "-no-hpet disable HPET\n"
4048 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,data=file1[:file2]...]\n"
4049 " ACPI table description\n"
4050 #endif
4051 "Linux boot specific:\n"
4052 "-kernel bzImage use 'bzImage' as kernel image\n"
4053 "-append cmdline use 'cmdline' as kernel command line\n"
4054 "-initrd file use 'file' as initial ram disk\n"
4055 "\n"
4056 "Debug/Expert options:\n"
4057 "-serial dev redirect the serial port to char device 'dev'\n"
4058 "-parallel dev redirect the parallel port to char device 'dev'\n"
4059 "-monitor dev redirect the monitor to char device 'dev'\n"
4060 "-pidfile file write PID to 'file'\n"
4061 "-S freeze CPU at startup (use 'c' to start execution)\n"
4062 "-s wait gdb connection to port\n"
4063 "-p port set gdb connection port [default=%s]\n"
4064 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
4065 "-hdachs c,h,s[,t]\n"
4066 " force hard disk 0 physical geometry and the optional BIOS\n"
4067 " translation (t=none or lba) (usually qemu can guess them)\n"
4068 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
4069 "-bios file set the filename for the BIOS\n"
4070 #ifdef USE_KQEMU
4071 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
4072 "-no-kqemu disable KQEMU kernel module usage\n"
4073 #endif
4074 #ifdef CONFIG_KVM
4075 "-enable-kvm enable KVM full virtualization support\n"
4076 #endif
4077 "-no-reboot exit instead of rebooting\n"
4078 "-no-shutdown stop before shutdown\n"
4079 "-loadvm [tag|id]\n"
4080 " start right away with a saved state (loadvm in monitor)\n"
4081 #ifndef _WIN32
4082 "-daemonize daemonize QEMU after initializing\n"
4083 #endif
4084 "-option-rom rom load a file, rom, into the option ROM space\n"
4085 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
4086 "-prom-env variable=value\n"
4087 " set OpenBIOS nvram variables\n"
4088 #endif
4089 "-clock force the use of the given methods for timer alarm.\n"
4090 " To see what timers are available use -clock ?\n"
4091 "-localtime set the real time clock to local time [default=utc]\n"
4092 "-startdate select initial date of the clock\n"
4093 "-icount [N|auto]\n"
4094 " enable virtual instruction counter with 2^N clock ticks per instruction\n"
4095 "-echr chr set terminal escape character instead of ctrl-a\n"
4096 "-virtioconsole c\n"
4097 " set virtio console\n"
4098 "-show-cursor show cursor\n"
4099 #if defined(TARGET_ARM) || defined(TARGET_M68K)
4100 "-semihosting semihosting mode\n"
4101 #endif
4102 #if defined(TARGET_ARM)
4103 "-old-param old param mode\n"
4104 #endif
4105 "-tb-size n set TB size\n"
4106 "-incoming p prepare for incoming migration, listen on port p\n"
4107 #ifndef _WIN32
4108 "-chroot dir Chroot to dir just before starting the VM.\n"
4109 "-runas user Change to user id user just before starting the VM.\n"
4110 #endif
4111 "\n"
4112 "During emulation, the following keys are useful:\n"
4113 "ctrl-alt-f toggle full screen\n"
4114 "ctrl-alt-n switch to virtual console 'n'\n"
4115 "ctrl-alt toggle mouse and keyboard grab\n"
4116 "\n"
4117 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4118 ,
4119 "qemu",
4120 DEFAULT_RAM_SIZE,
4121 #ifndef _WIN32
4122 DEFAULT_NETWORK_SCRIPT,
4123 DEFAULT_NETWORK_DOWN_SCRIPT,
4124 #endif
4125 DEFAULT_GDBSTUB_PORT,
4126 "/tmp/qemu.log");
4127 exit(exitcode);
4128 }
4129
4130 #define HAS_ARG 0x0001
4131
4132 enum {
4133 /* Please keep in synch with help, qemu_options[] and
4134 qemu-doc.texi */
4135 /* Standard options: */
4136 QEMU_OPTION_h,
4137 QEMU_OPTION_M,
4138 QEMU_OPTION_cpu,
4139 QEMU_OPTION_smp,
4140 QEMU_OPTION_fda,
4141 QEMU_OPTION_fdb,
4142 QEMU_OPTION_hda,
4143 QEMU_OPTION_hdb,
4144 QEMU_OPTION_hdc,
4145 QEMU_OPTION_hdd,
4146 QEMU_OPTION_cdrom,
4147 QEMU_OPTION_drive,
4148 QEMU_OPTION_mtdblock,
4149 QEMU_OPTION_sd,
4150 QEMU_OPTION_pflash,
4151 QEMU_OPTION_boot,
4152 QEMU_OPTION_snapshot,
4153 QEMU_OPTION_m,
4154 QEMU_OPTION_k,
4155 QEMU_OPTION_audio_help,
4156 QEMU_OPTION_soundhw,
4157 QEMU_OPTION_usb,
4158 QEMU_OPTION_usbdevice,
4159 QEMU_OPTION_name,
4160 QEMU_OPTION_uuid,
4161
4162 /* Display options: */
4163 QEMU_OPTION_nographic,
4164 QEMU_OPTION_curses,
4165 QEMU_OPTION_no_frame,
4166 QEMU_OPTION_alt_grab,
4167 QEMU_OPTION_no_quit,
4168 QEMU_OPTION_sdl,
4169 QEMU_OPTION_portrait,
4170 QEMU_OPTION_vga,
4171 QEMU_OPTION_full_screen,
4172 QEMU_OPTION_g,
4173 QEMU_OPTION_vnc,
4174
4175 /* Network options: */
4176 QEMU_OPTION_net,
4177 QEMU_OPTION_tftp,
4178 QEMU_OPTION_bootp,
4179 QEMU_OPTION_smb,
4180 QEMU_OPTION_redir,
4181 QEMU_OPTION_bt,
4182
4183 /* i386 target only: */
4184 QEMU_OPTION_win2k_hack,
4185 QEMU_OPTION_rtc_td_hack,
4186 QEMU_OPTION_no_fd_bootchk,
4187 QEMU_OPTION_no_acpi,
4188 QEMU_OPTION_no_hpet,
4189 QEMU_OPTION_acpitable,
4190
4191 /* Linux boot specific: */
4192 QEMU_OPTION_kernel,
4193 QEMU_OPTION_append,
4194 QEMU_OPTION_initrd,
4195
4196 /* Debug/Expert options: */
4197 QEMU_OPTION_serial,
4198 QEMU_OPTION_parallel,
4199 QEMU_OPTION_monitor,
4200 QEMU_OPTION_pidfile,
4201 QEMU_OPTION_S,
4202 QEMU_OPTION_s,
4203 QEMU_OPTION_p,
4204 QEMU_OPTION_d,
4205 QEMU_OPTION_hdachs,
4206 QEMU_OPTION_L,
4207 QEMU_OPTION_bios,
4208 QEMU_OPTION_kernel_kqemu,
4209 QEMU_OPTION_no_kqemu,
4210 QEMU_OPTION_enable_kvm,
4211 QEMU_OPTION_no_reboot,
4212 QEMU_OPTION_no_shutdown,
4213 QEMU_OPTION_loadvm,
4214 QEMU_OPTION_daemonize,
4215 QEMU_OPTION_option_rom,
4216 QEMU_OPTION_prom_env,
4217 QEMU_OPTION_clock,
4218 QEMU_OPTION_localtime,
4219 QEMU_OPTION_startdate,
4220 QEMU_OPTION_icount,
4221 QEMU_OPTION_echr,
4222 QEMU_OPTION_virtiocon,
4223 QEMU_OPTION_show_cursor,
4224 QEMU_OPTION_semihosting,
4225 QEMU_OPTION_old_param,
4226 QEMU_OPTION_tb_size,
4227 QEMU_OPTION_incoming,
4228 QEMU_OPTION_chroot,
4229 QEMU_OPTION_runas,
4230 };
4231
4232 typedef struct QEMUOption {
4233 const char *name;
4234 int flags;
4235 int index;
4236 } QEMUOption;
4237
4238 static const QEMUOption qemu_options[] = {
4239 /* Please keep in synch with help, QEMU_OPTION_ enums, and
4240 qemu-doc.texi */
4241 /* Standard options: */
4242 { "h", 0, QEMU_OPTION_h },
4243 { "help", 0, QEMU_OPTION_h },
4244 { "M", HAS_ARG, QEMU_OPTION_M },
4245 { "cpu", HAS_ARG, QEMU_OPTION_cpu },
4246 { "smp", HAS_ARG, QEMU_OPTION_smp },
4247 { "fda", HAS_ARG, QEMU_OPTION_fda },
4248 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
4249 { "hda", HAS_ARG, QEMU_OPTION_hda },
4250 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
4251 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
4252 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
4253 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
4254 { "drive", HAS_ARG, QEMU_OPTION_drive },
4255 { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
4256 { "sd", HAS_ARG, QEMU_OPTION_sd },
4257 { "pflash", HAS_ARG, QEMU_OPTION_pflash },
4258 { "boot", HAS_ARG, QEMU_OPTION_boot },
4259 { "snapshot", 0, QEMU_OPTION_snapshot },
4260 { "m", HAS_ARG, QEMU_OPTION_m },
4261 #ifndef _WIN32
4262 { "k", HAS_ARG, QEMU_OPTION_k },
4263 #endif
4264 #ifdef HAS_AUDIO
4265 { "audio-help", 0, QEMU_OPTION_audio_help },
4266 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
4267 #endif
4268 { "usb", 0, QEMU_OPTION_usb },
4269 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
4270 { "name", HAS_ARG, QEMU_OPTION_name },
4271 { "uuid", HAS_ARG, QEMU_OPTION_uuid },
4272
4273 /* Display options: */
4274 { "nographic", 0, QEMU_OPTION_nographic },
4275 #ifdef CONFIG_CURSES
4276 { "curses", 0, QEMU_OPTION_curses },
4277 #endif
4278 #ifdef CONFIG_SDL
4279 { "no-frame", 0, QEMU_OPTION_no_frame },
4280 { "alt-grab", 0, QEMU_OPTION_alt_grab },
4281 { "no-quit", 0, QEMU_OPTION_no_quit },
4282 { "sdl", 0, QEMU_OPTION_sdl },
4283 #endif
4284 { "portrait", 0, QEMU_OPTION_portrait },
4285 { "vga", HAS_ARG, QEMU_OPTION_vga },
4286 { "full-screen", 0, QEMU_OPTION_full_screen },
4287 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
4288 { "g", 1, QEMU_OPTION_g },
4289 #endif
4290 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
4291
4292 /* Network options: */
4293 { "net", HAS_ARG, QEMU_OPTION_net},
4294 #ifdef CONFIG_SLIRP
4295 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
4296 { "bootp", HAS_ARG, QEMU_OPTION_bootp },
4297 #ifndef _WIN32
4298 { "smb", HAS_ARG, QEMU_OPTION_smb },
4299 #endif
4300 { "redir", HAS_ARG, QEMU_OPTION_redir },
4301 #endif
4302 { "bt", HAS_ARG, QEMU_OPTION_bt },
4303 #ifdef TARGET_I386
4304 /* i386 target only: */
4305 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
4306 { "rtc-td-hack", 0, QEMU_OPTION_rtc_td_hack },
4307 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
4308 { "no-acpi", 0, QEMU_OPTION_no_acpi },
4309 { "no-hpet", 0, QEMU_OPTION_no_hpet },
4310 { "acpitable", HAS_ARG, QEMU_OPTION_acpitable },
4311 #endif
4312
4313 /* Linux boot specific: */
4314 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
4315 { "append", HAS_ARG, QEMU_OPTION_append },
4316 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
4317
4318 /* Debug/Expert options: */
4319 { "serial", HAS_ARG, QEMU_OPTION_serial },
4320 { "parallel", HAS_ARG, QEMU_OPTION_parallel },
4321 { "monitor", HAS_ARG, QEMU_OPTION_monitor },
4322 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
4323 { "S", 0, QEMU_OPTION_S },
4324 { "s", 0, QEMU_OPTION_s },
4325 { "p", HAS_ARG, QEMU_OPTION_p },
4326 { "d", HAS_ARG, QEMU_OPTION_d },
4327 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
4328 { "L", HAS_ARG, QEMU_OPTION_L },
4329 { "bios", HAS_ARG, QEMU_OPTION_bios },
4330 #ifdef USE_KQEMU
4331 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
4332 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
4333 #endif
4334 #ifdef CONFIG_KVM
4335 { "enable-kvm", 0, QEMU_OPTION_enable_kvm },
4336 #endif
4337 { "no-reboot", 0, QEMU_OPTION_no_reboot },
4338 { "no-shutdown", 0, QEMU_OPTION_no_shutdown },
4339 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
4340 { "daemonize", 0, QEMU_OPTION_daemonize },
4341 { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
4342 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
4343 { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
4344 #endif
4345 { "clock", HAS_ARG, QEMU_OPTION_clock },
4346 { "localtime", 0, QEMU_OPTION_localtime },
4347 { "startdate", HAS_ARG, QEMU_OPTION_startdate },
4348 { "icount", HAS_ARG, QEMU_OPTION_icount },
4349 { "echr", HAS_ARG, QEMU_OPTION_echr },
4350 { "virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon },
4351 { "show-cursor", 0, QEMU_OPTION_show_cursor },
4352 #if defined(TARGET_ARM) || defined(TARGET_M68K)
4353 { "semihosting", 0, QEMU_OPTION_semihosting },
4354 #endif
4355 #if defined(TARGET_ARM)
4356 { "old-param", 0, QEMU_OPTION_old_param },
4357 #endif
4358 { "tb-size", HAS_ARG, QEMU_OPTION_tb_size },
4359 { "incoming", HAS_ARG, QEMU_OPTION_incoming },
4360 { "chroot", HAS_ARG, QEMU_OPTION_chroot },
4361 { "runas", HAS_ARG, QEMU_OPTION_runas },
4362 { NULL },
4363 };
4364
4365 #ifdef HAS_AUDIO
4366 struct soundhw soundhw[] = {
4367 #ifdef HAS_AUDIO_CHOICE
4368 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4369 {
4370 "pcspk",
4371 "PC speaker",
4372 0,
4373 1,
4374 { .init_isa = pcspk_audio_init }
4375 },
4376 #endif
4377
4378 #ifdef CONFIG_SB16
4379 {
4380 "sb16",
4381 "Creative Sound Blaster 16",
4382 0,
4383 1,
4384 { .init_isa = SB16_init }
4385 },
4386 #endif
4387
4388 #ifdef CONFIG_CS4231A
4389 {
4390 "cs4231a",
4391 "CS4231A",
4392 0,
4393 1,
4394 { .init_isa = cs4231a_init }
4395 },
4396 #endif
4397
4398 #ifdef CONFIG_ADLIB
4399 {
4400 "adlib",
4401 #ifdef HAS_YMF262
4402 "Yamaha YMF262 (OPL3)",
4403 #else
4404 "Yamaha YM3812 (OPL2)",
4405 #endif
4406 0,
4407 1,
4408 { .init_isa = Adlib_init }
4409 },
4410 #endif
4411
4412 #ifdef CONFIG_GUS
4413 {
4414 "gus",
4415 "Gravis Ultrasound GF1",
4416 0,
4417 1,
4418 { .init_isa = GUS_init }
4419 },
4420 #endif
4421
4422 #ifdef CONFIG_AC97
4423 {
4424 "ac97",
4425 "Intel 82801AA AC97 Audio",
4426 0,
4427 0,
4428 { .init_pci = ac97_init }
4429 },
4430 #endif
4431
4432 #ifdef CONFIG_ES1370
4433 {
4434 "es1370",
4435 "ENSONIQ AudioPCI ES1370",
4436 0,
4437 0,
4438 { .init_pci = es1370_init }
4439 },
4440 #endif
4441
4442 #endif /* HAS_AUDIO_CHOICE */
4443
4444 { NULL, NULL, 0, 0, { NULL } }
4445 };
4446
4447 static void select_soundhw (const char *optarg)
4448 {
4449 struct soundhw *c;
4450
4451 if (*optarg == '?') {
4452 show_valid_cards:
4453
4454 printf ("Valid sound card names (comma separated):\n");
4455 for (c = soundhw; c->name; ++c) {
4456 printf ("%-11s %s\n", c->name, c->descr);
4457 }
4458 printf ("\n-soundhw all will enable all of the above\n");
4459 exit (*optarg != '?');
4460 }
4461 else {
4462 size_t l;
4463 const char *p;
4464 char *e;
4465 int bad_card = 0;
4466
4467 if (!strcmp (optarg, "all")) {
4468 for (c = soundhw; c->name; ++c) {
4469 c->enabled = 1;
4470 }
4471 return;
4472 }
4473
4474 p = optarg;
4475 while (*p) {
4476 e = strchr (p, ',');
4477 l = !e ? strlen (p) : (size_t) (e - p);
4478
4479 for (c = soundhw; c->name; ++c) {
4480 if (!strncmp (c->name, p, l)) {
4481 c->enabled = 1;
4482 break;
4483 }
4484 }
4485
4486 if (!c->name) {
4487 if (l > 80) {
4488 fprintf (stderr,
4489 "Unknown sound card name (too big to show)\n");
4490 }
4491 else {
4492 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4493 (int) l, p);
4494 }
4495 bad_card = 1;
4496 }
4497 p += l + (e != NULL);
4498 }
4499
4500 if (bad_card)
4501 goto show_valid_cards;
4502 }
4503 }
4504 #endif
4505
4506 static void select_vgahw (const char *p)
4507 {
4508 const char *opts;
4509
4510 if (strstart(p, "std", &opts)) {
4511 std_vga_enabled = 1;
4512 cirrus_vga_enabled = 0;
4513 vmsvga_enabled = 0;
4514 } else if (strstart(p, "cirrus", &opts)) {
4515 cirrus_vga_enabled = 1;
4516 std_vga_enabled = 0;
4517 vmsvga_enabled = 0;
4518 } else if (strstart(p, "vmware", &opts)) {
4519 cirrus_vga_enabled = 0;
4520 std_vga_enabled = 0;
4521 vmsvga_enabled = 1;
4522 } else if (strstart(p, "none", &opts)) {
4523 cirrus_vga_enabled = 0;
4524 std_vga_enabled = 0;
4525 vmsvga_enabled = 0;
4526 } else {
4527 invalid_vga:
4528 fprintf(stderr, "Unknown vga type: %s\n", p);
4529 exit(1);
4530 }
4531 while (*opts) {
4532 const char *nextopt;
4533
4534 if (strstart(opts, ",retrace=", &nextopt)) {
4535 opts = nextopt;
4536 if (strstart(opts, "dumb", &nextopt))
4537 vga_retrace_method = VGA_RETRACE_DUMB;
4538 else if (strstart(opts, "precise", &nextopt))
4539 vga_retrace_method = VGA_RETRACE_PRECISE;
4540 else goto invalid_vga;
4541 } else goto invalid_vga;
4542 opts = nextopt;
4543 }
4544 }
4545
4546 #ifdef _WIN32
4547 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4548 {
4549 exit(STATUS_CONTROL_C_EXIT);
4550 return TRUE;
4551 }
4552 #endif
4553
4554 static int qemu_uuid_parse(const char *str, uint8_t *uuid)
4555 {
4556 int ret;
4557
4558 if(strlen(str) != 36)
4559 return -1;
4560
4561 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4562 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4563 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4564
4565 if(ret != 16)
4566 return -1;
4567
4568 return 0;
4569 }
4570
4571 #define MAX_NET_CLIENTS 32
4572
4573 #ifndef _WIN32
4574
4575 static void termsig_handler(int signal)
4576 {
4577 qemu_system_shutdown_request();
4578 }
4579
4580 static void termsig_setup(void)
4581 {
4582 struct sigaction act;
4583
4584 memset(&act, 0, sizeof(act));
4585 act.sa_handler = termsig_handler;
4586 sigaction(SIGINT, &act, NULL);
4587 sigaction(SIGHUP, &act, NULL);
4588 sigaction(SIGTERM, &act, NULL);
4589 }
4590
4591 #endif
4592
4593 int main(int argc, char **argv, char **envp)
4594 {
4595 #ifdef CONFIG_GDBSTUB
4596 int use_gdbstub;
4597 const char *gdbstub_port;
4598 #endif
4599 uint32_t boot_devices_bitmap = 0;
4600 int i;
4601 int snapshot, linux_boot, net_boot;
4602 const char *initrd_filename;
4603 const char *kernel_filename, *kernel_cmdline;
4604 const char *boot_devices = "";
4605 DisplayState *ds;
4606 DisplayChangeListener *dcl;
4607 int cyls, heads, secs, translation;
4608 const char *net_clients[MAX_NET_CLIENTS];
4609 int nb_net_clients;
4610 const char *bt_opts[MAX_BT_CMDLINE];
4611 int nb_bt_opts;
4612 int hda_index;
4613 int optind;
4614 const char *r, *optarg;
4615 CharDriverState *monitor_hd = NULL;
4616 const char *monitor_device;
4617 const char *serial_devices[MAX_SERIAL_PORTS];
4618 int serial_device_index;
4619 const char *parallel_devices[MAX_PARALLEL_PORTS];
4620 int parallel_device_index;
4621 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4622 int virtio_console_index;
4623 const char *loadvm = NULL;
4624 QEMUMachine *machine;
4625 const char *cpu_model;
4626 const char *usb_devices[MAX_USB_CMDLINE];
4627 int usb_devices_index;
4628 int fds[2];
4629 int tb_size;
4630 const char *pid_file = NULL;
4631 const char *incoming = NULL;
4632 int fd = 0;
4633 struct passwd *pwd = NULL;
4634 const char *chroot_dir = NULL;
4635 const char *run_as = NULL;
4636
4637 qemu_cache_utils_init(envp);
4638
4639 LIST_INIT (&vm_change_state_head);
4640 #ifndef _WIN32
4641 {
4642 struct sigaction act;
4643 sigfillset(&act.sa_mask);
4644 act.sa_flags = 0;
4645 act.sa_handler = SIG_IGN;
4646 sigaction(SIGPIPE, &act, NULL);
4647 }
4648 #else
4649 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4650 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4651 QEMU to run on a single CPU */
4652 {
4653 HANDLE h;
4654 DWORD mask, smask;
4655 int i;
4656 h = GetCurrentProcess();
4657 if (GetProcessAffinityMask(h, &mask, &smask)) {
4658 for(i = 0; i < 32; i++) {
4659 if (mask & (1 << i))
4660 break;
4661 }
4662 if (i != 32) {
4663 mask = 1 << i;
4664 SetProcessAffinityMask(h, mask);
4665 }
4666 }
4667 }
4668 #endif
4669
4670 register_machines();
4671 machine = first_machine;
4672 cpu_model = NULL;
4673 initrd_filename = NULL;
4674 ram_size = 0;
4675 vga_ram_size = VGA_RAM_SIZE;
4676 #ifdef CONFIG_GDBSTUB
4677 use_gdbstub = 0;
4678 gdbstub_port = DEFAULT_GDBSTUB_PORT;
4679 #endif
4680 snapshot = 0;
4681 nographic = 0;
4682 curses = 0;
4683 kernel_filename = NULL;
4684 kernel_cmdline = "";
4685 cyls = heads = secs = 0;
4686 translation = BIOS_ATA_TRANSLATION_AUTO;
4687 monitor_device = "vc:80Cx24C";
4688
4689 serial_devices[0] = "vc:80Cx24C";
4690 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4691 serial_devices[i] = NULL;
4692 serial_device_index = 0;
4693
4694 parallel_devices[0] = "vc:80Cx24C";
4695 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4696 parallel_devices[i] = NULL;
4697 parallel_device_index = 0;
4698
4699 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4700 virtio_consoles[i] = NULL;
4701 virtio_console_index = 0;
4702
4703 usb_devices_index = 0;
4704
4705 nb_net_clients = 0;
4706 nb_bt_opts = 0;
4707 nb_drives = 0;
4708 nb_drives_opt = 0;
4709 hda_index = -1;
4710
4711 nb_nics = 0;
4712
4713 tb_size = 0;
4714 autostart= 1;
4715
4716 optind = 1;
4717 for(;;) {
4718 if (optind >= argc)
4719 break;
4720 r = argv[optind];
4721 if (r[0] != '-') {
4722 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4723 } else {
4724 const QEMUOption *popt;
4725
4726 optind++;
4727 /* Treat --foo the same as -foo. */
4728 if (r[1] == '-')
4729 r++;
4730 popt = qemu_options;
4731 for(;;) {
4732 if (!popt->name) {
4733 fprintf(stderr, "%s: invalid option -- '%s'\n",
4734 argv[0], r);
4735 exit(1);
4736 }
4737 if (!strcmp(popt->name, r + 1))
4738 break;
4739 popt++;
4740 }
4741 if (popt->flags & HAS_ARG) {
4742 if (optind >= argc) {
4743 fprintf(stderr, "%s: option '%s' requires an argument\n",
4744 argv[0], r);
4745 exit(1);
4746 }
4747 optarg = argv[optind++];
4748 } else {
4749 optarg = NULL;
4750 }
4751
4752 switch(popt->index) {
4753 case QEMU_OPTION_M:
4754 machine = find_machine(optarg);
4755 if (!machine) {
4756 QEMUMachine *m;
4757 printf("Supported machines are:\n");
4758 for(m = first_machine; m != NULL; m = m->next) {
4759 printf("%-10s %s%s\n",
4760 m->name, m->desc,
4761 m == first_machine ? " (default)" : "");
4762 }
4763 exit(*optarg != '?');
4764 }
4765 break;
4766 case QEMU_OPTION_cpu:
4767 /* hw initialization will check this */
4768 if (*optarg == '?') {
4769 /* XXX: implement xxx_cpu_list for targets that still miss it */
4770 #if defined(cpu_list)
4771 cpu_list(stdout, &fprintf);
4772 #endif
4773 exit(0);
4774 } else {
4775 cpu_model = optarg;
4776 }
4777 break;
4778 case QEMU_OPTION_initrd:
4779 initrd_filename = optarg;
4780 break;
4781 case QEMU_OPTION_hda:
4782 if (cyls == 0)
4783 hda_index = drive_add(optarg, HD_ALIAS, 0);
4784 else
4785 hda_index = drive_add(optarg, HD_ALIAS
4786 ",cyls=%d,heads=%d,secs=%d%s",
4787 0, cyls, heads, secs,
4788 translation == BIOS_ATA_TRANSLATION_LBA ?
4789 ",trans=lba" :
4790 translation == BIOS_ATA_TRANSLATION_NONE ?
4791 ",trans=none" : "");
4792 break;
4793 case QEMU_OPTION_hdb:
4794 case QEMU_OPTION_hdc:
4795 case QEMU_OPTION_hdd:
4796 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4797 break;
4798 case QEMU_OPTION_drive:
4799 drive_add(NULL, "%s", optarg);
4800 break;
4801 case QEMU_OPTION_mtdblock:
4802 drive_add(optarg, MTD_ALIAS);
4803 break;
4804 case QEMU_OPTION_sd:
4805 drive_add(optarg, SD_ALIAS);
4806 break;
4807 case QEMU_OPTION_pflash:
4808 drive_add(optarg, PFLASH_ALIAS);
4809 break;
4810 case QEMU_OPTION_snapshot:
4811 snapshot = 1;
4812 break;
4813 case QEMU_OPTION_hdachs:
4814 {
4815 const char *p;
4816 p = optarg;
4817 cyls = strtol(p, (char **)&p, 0);
4818 if (cyls < 1 || cyls > 16383)
4819 goto chs_fail;
4820 if (*p != ',')
4821 goto chs_fail;
4822 p++;
4823 heads = strtol(p, (char **)&p, 0);
4824 if (heads < 1 || heads > 16)
4825 goto chs_fail;
4826 if (*p != ',')
4827 goto chs_fail;
4828 p++;
4829 secs = strtol(p, (char **)&p, 0);
4830 if (secs < 1 || secs > 63)
4831 goto chs_fail;
4832 if (*p == ',') {
4833 p++;
4834 if (!strcmp(p, "none"))
4835 translation = BIOS_ATA_TRANSLATION_NONE;
4836 else if (!strcmp(p, "lba"))
4837 translation = BIOS_ATA_TRANSLATION_LBA;
4838 else if (!strcmp(p, "auto"))
4839 translation = BIOS_ATA_TRANSLATION_AUTO;
4840 else
4841 goto chs_fail;
4842 } else if (*p != '\0') {
4843 chs_fail:
4844 fprintf(stderr, "qemu: invalid physical CHS format\n");
4845 exit(1);
4846 }
4847 if (hda_index != -1)
4848 snprintf(drives_opt[hda_index].opt,
4849 sizeof(drives_opt[hda_index].opt),
4850 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
4851 0, cyls, heads, secs,
4852 translation == BIOS_ATA_TRANSLATION_LBA ?
4853 ",trans=lba" :
4854 translation == BIOS_ATA_TRANSLATION_NONE ?
4855 ",trans=none" : "");
4856 }
4857 break;
4858 case QEMU_OPTION_nographic:
4859 nographic = 1;
4860 break;
4861 #ifdef CONFIG_CURSES
4862 case QEMU_OPTION_curses:
4863 curses = 1;
4864 break;
4865 #endif
4866 case QEMU_OPTION_portrait:
4867 graphic_rotate = 1;
4868 break;
4869 case QEMU_OPTION_kernel:
4870 kernel_filename = optarg;
4871 break;
4872 case QEMU_OPTION_append:
4873 kernel_cmdline = optarg;
4874 break;
4875 case QEMU_OPTION_cdrom:
4876 drive_add(optarg, CDROM_ALIAS);
4877 break;
4878 case QEMU_OPTION_boot:
4879 boot_devices = optarg;
4880 /* We just do some generic consistency checks */
4881 {
4882 /* Could easily be extended to 64 devices if needed */
4883 const char *p;
4884
4885 boot_devices_bitmap = 0;
4886 for (p = boot_devices; *p != '\0'; p++) {
4887 /* Allowed boot devices are:
4888 * a b : floppy disk drives
4889 * c ... f : IDE disk drives
4890 * g ... m : machine implementation dependant drives
4891 * n ... p : network devices
4892 * It's up to each machine implementation to check
4893 * if the given boot devices match the actual hardware
4894 * implementation and firmware features.
4895 */
4896 if (*p < 'a' || *p > 'q') {
4897 fprintf(stderr, "Invalid boot device '%c'\n", *p);
4898 exit(1);
4899 }
4900 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
4901 fprintf(stderr,
4902 "Boot device '%c' was given twice\n",*p);
4903 exit(1);
4904 }
4905 boot_devices_bitmap |= 1 << (*p - 'a');
4906 }
4907 }
4908 break;
4909 case QEMU_OPTION_fda:
4910 case QEMU_OPTION_fdb:
4911 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
4912 break;
4913 #ifdef TARGET_I386
4914 case QEMU_OPTION_no_fd_bootchk:
4915 fd_bootchk = 0;
4916 break;
4917 #endif
4918 case QEMU_OPTION_net:
4919 if (nb_net_clients >= MAX_NET_CLIENTS) {
4920 fprintf(stderr, "qemu: too many network clients\n");
4921 exit(1);
4922 }
4923 net_clients[nb_net_clients] = optarg;
4924 nb_net_clients++;
4925 break;
4926 #ifdef CONFIG_SLIRP
4927 case QEMU_OPTION_tftp:
4928 tftp_prefix = optarg;
4929 break;
4930 case QEMU_OPTION_bootp:
4931 bootp_filename = optarg;
4932 break;
4933 #ifndef _WIN32
4934 case QEMU_OPTION_smb:
4935 net_slirp_smb(optarg);
4936 break;
4937 #endif
4938 case QEMU_OPTION_redir:
4939 net_slirp_redir(optarg);
4940 break;
4941 #endif
4942 case QEMU_OPTION_bt:
4943 if (nb_bt_opts >= MAX_BT_CMDLINE) {
4944 fprintf(stderr, "qemu: too many bluetooth options\n");
4945 exit(1);
4946 }
4947 bt_opts[nb_bt_opts++] = optarg;
4948 break;
4949 #ifdef HAS_AUDIO
4950 case QEMU_OPTION_audio_help:
4951 AUD_help ();
4952 exit (0);
4953 break;
4954 case QEMU_OPTION_soundhw:
4955 select_soundhw (optarg);
4956 break;
4957 #endif
4958 case QEMU_OPTION_h:
4959 help(0);
4960 break;
4961 case QEMU_OPTION_m: {
4962 uint64_t value;
4963 char *ptr;
4964
4965 value = strtoul(optarg, &ptr, 10);
4966 switch (*ptr) {
4967 case 0: case 'M': case 'm':
4968 value <<= 20;
4969 break;
4970 case 'G': case 'g':
4971 value <<= 30;
4972 break;
4973 default:
4974 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
4975 exit(1);
4976 }
4977
4978 /* On 32-bit hosts, QEMU is limited by virtual address space */
4979 if (value > (2047 << 20)
4980 #ifndef USE_KQEMU
4981 && HOST_LONG_BITS == 32
4982 #endif
4983 ) {
4984 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
4985 exit(1);
4986 }
4987 if (value != (uint64_t)(ram_addr_t)value) {
4988 fprintf(stderr, "qemu: ram size too large\n");
4989 exit(1);
4990 }
4991 ram_size = value;
4992 break;
4993 }
4994 case QEMU_OPTION_d:
4995 {
4996 int mask;
4997 const CPULogItem *item;
4998
4999 mask = cpu_str_to_log_mask(optarg);
5000 if (!mask) {
5001 printf("Log items (comma separated):\n");
5002 for(item = cpu_log_items; item->mask != 0; item++) {
5003 printf("%-10s %s\n", item->name, item->help);
5004 }
5005 exit(1);
5006 }
5007 cpu_set_log(mask);
5008 }
5009 break;
5010 #ifdef CONFIG_GDBSTUB
5011 case QEMU_OPTION_s:
5012 use_gdbstub = 1;
5013 break;
5014 case QEMU_OPTION_p:
5015 gdbstub_port = optarg;
5016 break;
5017 #endif
5018 case QEMU_OPTION_L:
5019 bios_dir = optarg;
5020 break;
5021 case QEMU_OPTION_bios:
5022 bios_name = optarg;
5023 break;
5024 case QEMU_OPTION_S:
5025 autostart = 0;
5026 break;
5027 case QEMU_OPTION_k:
5028 keyboard_layout = optarg;
5029 break;
5030 case QEMU_OPTION_localtime:
5031 rtc_utc = 0;
5032 break;
5033 case QEMU_OPTION_vga:
5034 select_vgahw (optarg);
5035 break;
5036 case QEMU_OPTION_g:
5037 {
5038 const char *p;
5039 int w, h, depth;
5040 p = optarg;
5041 w = strtol(p, (char **)&p, 10);
5042 if (w <= 0) {
5043 graphic_error:
5044 fprintf(stderr, "qemu: invalid resolution or depth\n");
5045 exit(1);
5046 }
5047 if (*p != 'x')
5048 goto graphic_error;
5049 p++;
5050 h = strtol(p, (char **)&p, 10);
5051 if (h <= 0)
5052 goto graphic_error;
5053 if (*p == 'x') {
5054 p++;
5055 depth = strtol(p, (char **)&p, 10);
5056 if (depth != 8 && depth != 15 && depth != 16 &&
5057 depth != 24 && depth != 32)
5058 goto graphic_error;
5059 } else if (*p == '\0') {
5060 depth = graphic_depth;
5061 } else {
5062 goto graphic_error;
5063 }
5064
5065 graphic_width = w;
5066 graphic_height = h;
5067 graphic_depth = depth;
5068 }
5069 break;
5070 case QEMU_OPTION_echr:
5071 {
5072 char *r;
5073 term_escape_char = strtol(optarg, &r, 0);
5074 if (r == optarg)
5075 printf("Bad argument to echr\n");
5076 break;
5077 }
5078 case QEMU_OPTION_monitor:
5079 monitor_device = optarg;
5080 break;
5081 case QEMU_OPTION_serial:
5082 if (serial_device_index >= MAX_SERIAL_PORTS) {
5083 fprintf(stderr, "qemu: too many serial ports\n");
5084 exit(1);
5085 }
5086 serial_devices[serial_device_index] = optarg;
5087 serial_device_index++;
5088 break;
5089 case QEMU_OPTION_virtiocon:
5090 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5091 fprintf(stderr, "qemu: too many virtio consoles\n");
5092 exit(1);
5093 }
5094 virtio_consoles[virtio_console_index] = optarg;
5095 virtio_console_index++;
5096 break;
5097 case QEMU_OPTION_parallel:
5098 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5099 fprintf(stderr, "qemu: too many parallel ports\n");
5100 exit(1);
5101 }
5102 parallel_devices[parallel_device_index] = optarg;
5103 parallel_device_index++;
5104 break;
5105 case QEMU_OPTION_loadvm:
5106 loadvm = optarg;
5107 break;
5108 case QEMU_OPTION_full_screen:
5109 full_screen = 1;
5110 break;
5111 #ifdef CONFIG_SDL
5112 case QEMU_OPTION_no_frame:
5113 no_frame = 1;
5114 break;
5115 case QEMU_OPTION_alt_grab:
5116 alt_grab = 1;
5117 break;
5118 case QEMU_OPTION_no_quit:
5119 no_quit = 1;
5120 break;
5121 case QEMU_OPTION_sdl:
5122 sdl = 1;
5123 break;
5124 #endif
5125 case QEMU_OPTION_pidfile:
5126 pid_file = optarg;
5127 break;
5128 #ifdef TARGET_I386
5129 case QEMU_OPTION_win2k_hack:
5130 win2k_install_hack = 1;
5131 break;
5132 case QEMU_OPTION_rtc_td_hack:
5133 rtc_td_hack = 1;
5134 break;
5135 case QEMU_OPTION_acpitable:
5136 if(acpi_table_add(optarg) < 0) {
5137 fprintf(stderr, "Wrong acpi table provided\n");
5138 exit(1);
5139 }
5140 break;
5141 #endif
5142 #ifdef USE_KQEMU
5143 case QEMU_OPTION_no_kqemu:
5144 kqemu_allowed = 0;
5145 break;
5146 case QEMU_OPTION_kernel_kqemu:
5147 kqemu_allowed = 2;
5148 break;
5149 #endif
5150 #ifdef CONFIG_KVM
5151 case QEMU_OPTION_enable_kvm:
5152 kvm_allowed = 1;
5153 #ifdef USE_KQEMU
5154 kqemu_allowed = 0;
5155 #endif
5156 break;
5157 #endif
5158 case QEMU_OPTION_usb:
5159 usb_enabled = 1;
5160 break;
5161 case QEMU_OPTION_usbdevice:
5162 usb_enabled = 1;
5163 if (usb_devices_index >= MAX_USB_CMDLINE) {
5164 fprintf(stderr, "Too many USB devices\n");
5165 exit(1);
5166 }
5167 usb_devices[usb_devices_index] = optarg;
5168 usb_devices_index++;
5169 break;
5170 case QEMU_OPTION_smp:
5171 smp_cpus = atoi(optarg);
5172 if (smp_cpus < 1) {
5173 fprintf(stderr, "Invalid number of CPUs\n");
5174 exit(1);
5175 }
5176 break;
5177 case QEMU_OPTION_vnc:
5178 vnc_display = optarg;
5179 break;
5180 case QEMU_OPTION_no_acpi:
5181 acpi_enabled = 0;
5182 break;
5183 case QEMU_OPTION_no_hpet:
5184 no_hpet = 1;
5185 break;
5186 case QEMU_OPTION_no_reboot:
5187 no_reboot = 1;
5188 break;
5189 case QEMU_OPTION_no_shutdown:
5190 no_shutdown = 1;
5191 break;
5192 case QEMU_OPTION_show_cursor:
5193 cursor_hide = 0;
5194 break;
5195 case QEMU_OPTION_uuid:
5196 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5197 fprintf(stderr, "Fail to parse UUID string."
5198 " Wrong format.\n");
5199 exit(1);
5200 }
5201 break;
5202 case QEMU_OPTION_daemonize:
5203 daemonize = 1;
5204 break;
5205 case QEMU_OPTION_option_rom:
5206 if (nb_option_roms >= MAX_OPTION_ROMS) {
5207 fprintf(stderr, "Too many option ROMs\n");
5208 exit(1);
5209 }
5210 option_rom[nb_option_roms] = optarg;
5211 nb_option_roms++;
5212 break;
5213 case QEMU_OPTION_semihosting:
5214 semihosting_enabled = 1;
5215 break;
5216 case QEMU_OPTION_name:
5217 qemu_name = optarg;
5218 break;
5219 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5220 case QEMU_OPTION_prom_env:
5221 if (nb_prom_envs >= MAX_PROM_ENVS) {
5222 fprintf(stderr, "Too many prom variables\n");
5223 exit(1);
5224 }
5225 prom_envs[nb_prom_envs] = optarg;
5226 nb_prom_envs++;
5227 break;
5228 #endif
5229 #ifdef TARGET_ARM
5230 case QEMU_OPTION_old_param:
5231 old_param = 1;
5232 break;
5233 #endif
5234 case QEMU_OPTION_clock:
5235 configure_alarms(optarg);
5236 break;
5237 case QEMU_OPTION_startdate:
5238 {
5239 struct tm tm;
5240 time_t rtc_start_date;
5241 if (!strcmp(optarg, "now")) {
5242 rtc_date_offset = -1;
5243 } else {
5244 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5245 &tm.tm_year,
5246 &tm.tm_mon,
5247 &tm.tm_mday,
5248 &tm.tm_hour,
5249 &tm.tm_min,
5250 &tm.tm_sec) == 6) {
5251 /* OK */
5252 } else if (sscanf(optarg, "%d-%d-%d",
5253 &tm.tm_year,
5254 &tm.tm_mon,
5255 &tm.tm_mday) == 3) {
5256 tm.tm_hour = 0;
5257 tm.tm_min = 0;
5258 tm.tm_sec = 0;
5259 } else {
5260 goto date_fail;
5261 }
5262 tm.tm_year -= 1900;
5263 tm.tm_mon--;
5264 rtc_start_date = mktimegm(&tm);
5265 if (rtc_start_date == -1) {
5266 date_fail:
5267 fprintf(stderr, "Invalid date format. Valid format are:\n"
5268 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5269 exit(1);
5270 }
5271 rtc_date_offset = time(NULL) - rtc_start_date;
5272 }
5273 }
5274 break;
5275 case QEMU_OPTION_tb_size:
5276 tb_size = strtol(optarg, NULL, 0);
5277 if (tb_size < 0)
5278 tb_size = 0;
5279 break;
5280 case QEMU_OPTION_icount:
5281 use_icount = 1;
5282 if (strcmp(optarg, "auto") == 0) {
5283 icount_time_shift = -1;
5284 } else {
5285 icount_time_shift = strtol(optarg, NULL, 0);
5286 }
5287 break;
5288 case QEMU_OPTION_incoming:
5289 incoming = optarg;
5290 break;
5291 case QEMU_OPTION_chroot:
5292 chroot_dir = optarg;
5293 break;
5294 case QEMU_OPTION_runas:
5295 run_as = optarg;
5296 break;
5297 }
5298 }
5299 }
5300
5301 #if defined(CONFIG_KVM) && defined(USE_KQEMU)
5302 if (kvm_allowed && kqemu_allowed) {
5303 fprintf(stderr,
5304 "You can not enable both KVM and kqemu at the same time\n");
5305 exit(1);
5306 }
5307 #endif
5308
5309 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5310 if (smp_cpus > machine->max_cpus) {
5311 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5312 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5313 machine->max_cpus);
5314 exit(1);
5315 }
5316
5317 if (nographic) {
5318 if (serial_device_index == 0)
5319 serial_devices[0] = "stdio";
5320 if (parallel_device_index == 0)
5321 parallel_devices[0] = "null";
5322 if (strncmp(monitor_device, "vc", 2) == 0)
5323 monitor_device = "stdio";
5324 }
5325
5326 #ifndef _WIN32
5327 if (daemonize) {
5328 pid_t pid;
5329
5330 if (pipe(fds) == -1)
5331 exit(1);
5332
5333 pid = fork();
5334 if (pid > 0) {
5335 uint8_t status;
5336 ssize_t len;
5337
5338 close(fds[1]);
5339
5340 again:
5341 len = read(fds[0], &status, 1);
5342 if (len == -1 && (errno == EINTR))
5343 goto again;
5344
5345 if (len != 1)
5346 exit(1);
5347 else if (status == 1) {
5348 fprintf(stderr, "Could not acquire pidfile\n");
5349 exit(1);
5350 } else
5351 exit(0);
5352 } else if (pid < 0)
5353 exit(1);
5354
5355 setsid();
5356
5357 pid = fork();
5358 if (pid > 0)
5359 exit(0);
5360 else if (pid < 0)
5361 exit(1);
5362
5363 umask(027);
5364
5365 signal(SIGTSTP, SIG_IGN);
5366 signal(SIGTTOU, SIG_IGN);
5367 signal(SIGTTIN, SIG_IGN);
5368 }
5369 #endif
5370
5371 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5372 if (daemonize) {
5373 uint8_t status = 1;
5374 write(fds[1], &status, 1);
5375 } else
5376 fprintf(stderr, "Could not acquire pid file\n");
5377 exit(1);
5378 }
5379
5380 #ifdef USE_KQEMU
5381 if (smp_cpus > 1)
5382 kqemu_allowed = 0;
5383 #endif
5384 linux_boot = (kernel_filename != NULL);
5385 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5386
5387 if (!linux_boot && net_boot == 0 &&
5388 !machine->nodisk_ok && nb_drives_opt == 0)
5389 help(1);
5390
5391 if (!linux_boot && *kernel_cmdline != '\0') {
5392 fprintf(stderr, "-append only allowed with -kernel option\n");
5393 exit(1);
5394 }
5395
5396 if (!linux_boot && initrd_filename != NULL) {
5397 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5398 exit(1);
5399 }
5400
5401 /* boot to floppy or the default cd if no hard disk defined yet */
5402 if (!boot_devices[0]) {
5403 boot_devices = "cad";
5404 }
5405 setvbuf(stdout, NULL, _IOLBF, 0);
5406
5407 init_timers();
5408 if (init_timer_alarm() < 0) {
5409 fprintf(stderr, "could not initialize alarm timer\n");
5410 exit(1);
5411 }
5412 if (use_icount && icount_time_shift < 0) {
5413 use_icount = 2;
5414 /* 125MIPS seems a reasonable initial guess at the guest speed.
5415 It will be corrected fairly quickly anyway. */
5416 icount_time_shift = 3;
5417 init_icount_adjust();
5418 }
5419
5420 #ifdef _WIN32
5421 socket_init();
5422 #endif
5423
5424 /* init network clients */
5425 if (nb_net_clients == 0) {
5426 /* if no clients, we use a default config */
5427 net_clients[nb_net_clients++] = "nic";
5428 #ifdef CONFIG_SLIRP
5429 net_clients[nb_net_clients++] = "user";
5430 #endif
5431 }
5432
5433 for(i = 0;i < nb_net_clients; i++) {
5434 if (net_client_parse(net_clients[i]) < 0)
5435 exit(1);
5436 }
5437 net_client_check();
5438
5439 #ifdef TARGET_I386
5440 /* XXX: this should be moved in the PC machine instantiation code */
5441 if (net_boot != 0) {
5442 int netroms = 0;
5443 for (i = 0; i < nb_nics && i < 4; i++) {
5444 const char *model = nd_table[i].model;
5445 char buf[1024];
5446 if (net_boot & (1 << i)) {
5447 if (model == NULL)
5448 model = "ne2k_pci";
5449 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5450 if (get_image_size(buf) > 0) {
5451 if (nb_option_roms >= MAX_OPTION_ROMS) {
5452 fprintf(stderr, "Too many option ROMs\n");
5453 exit(1);
5454 }
5455 option_rom[nb_option_roms] = strdup(buf);
5456 nb_option_roms++;
5457 netroms++;
5458 }
5459 }
5460 }
5461 if (netroms == 0) {
5462 fprintf(stderr, "No valid PXE rom found for network device\n");
5463 exit(1);
5464 }
5465 }
5466 #endif
5467
5468 /* init the bluetooth world */
5469 for (i = 0; i < nb_bt_opts; i++)
5470 if (bt_parse(bt_opts[i]))
5471 exit(1);
5472
5473 /* init the memory */
5474 phys_ram_size = machine->ram_require & ~RAMSIZE_FIXED;
5475
5476 if (machine->ram_require & RAMSIZE_FIXED) {
5477 if (ram_size > 0) {
5478 if (ram_size < phys_ram_size) {
5479 fprintf(stderr, "Machine `%s' requires %llu bytes of memory\n",
5480 machine->name, (unsigned long long) phys_ram_size);
5481 exit(-1);
5482 }
5483
5484 phys_ram_size = ram_size;
5485 } else
5486 ram_size = phys_ram_size;
5487 } else {
5488 if (ram_size == 0)
5489 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5490
5491 phys_ram_size += ram_size;
5492 }
5493
5494 phys_ram_base = qemu_vmalloc(phys_ram_size);
5495 if (!phys_ram_base) {
5496 fprintf(stderr, "Could not allocate physical memory\n");
5497 exit(1);
5498 }
5499
5500 /* init the dynamic translator */
5501 cpu_exec_init_all(tb_size * 1024 * 1024);
5502
5503 bdrv_init();
5504
5505 /* we always create the cdrom drive, even if no disk is there */
5506
5507 if (nb_drives_opt < MAX_DRIVES)
5508 drive_add(NULL, CDROM_ALIAS);
5509
5510 /* we always create at least one floppy */
5511
5512 if (nb_drives_opt < MAX_DRIVES)
5513 drive_add(NULL, FD_ALIAS, 0);
5514
5515 /* we always create one sd slot, even if no card is in it */
5516
5517 if (nb_drives_opt < MAX_DRIVES)
5518 drive_add(NULL, SD_ALIAS);
5519
5520 /* open the virtual block devices */
5521
5522 for(i = 0; i < nb_drives_opt; i++)
5523 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5524 exit(1);
5525
5526 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5527 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5528
5529 #ifndef _WIN32
5530 /* must be after terminal init, SDL library changes signal handlers */
5531 termsig_setup();
5532 #endif
5533
5534 /* Maintain compatibility with multiple stdio monitors */
5535 if (!strcmp(monitor_device,"stdio")) {
5536 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5537 const char *devname = serial_devices[i];
5538 if (devname && !strcmp(devname,"mon:stdio")) {
5539 monitor_device = NULL;
5540 break;
5541 } else if (devname && !strcmp(devname,"stdio")) {
5542 monitor_device = NULL;
5543 serial_devices[i] = "mon:stdio";
5544 break;
5545 }
5546 }
5547 }
5548
5549 if (kvm_enabled()) {
5550 int ret;
5551
5552 ret = kvm_init(smp_cpus);
5553 if (ret < 0) {
5554 fprintf(stderr, "failed to initialize KVM\n");
5555 exit(1);
5556 }
5557 }
5558
5559 if (monitor_device) {
5560 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5561 if (!monitor_hd) {
5562 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5563 exit(1);
5564 }
5565 }
5566
5567 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5568 const char *devname = serial_devices[i];
5569 if (devname && strcmp(devname, "none")) {
5570 char label[32];
5571 snprintf(label, sizeof(label), "serial%d", i);
5572 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5573 if (!serial_hds[i]) {
5574 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5575 devname);
5576 exit(1);
5577 }
5578 }
5579 }
5580
5581 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5582 const char *devname = parallel_devices[i];
5583 if (devname && strcmp(devname, "none")) {
5584 char label[32];
5585 snprintf(label, sizeof(label), "parallel%d", i);
5586 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5587 if (!parallel_hds[i]) {
5588 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5589 devname);
5590 exit(1);
5591 }
5592 }
5593 }
5594
5595 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5596 const char *devname = virtio_consoles[i];
5597 if (devname && strcmp(devname, "none")) {
5598 char label[32];
5599 snprintf(label, sizeof(label), "virtcon%d", i);
5600 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5601 if (!virtcon_hds[i]) {
5602 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5603 devname);
5604 exit(1);
5605 }
5606 }
5607 }
5608
5609 machine->init(ram_size, vga_ram_size, boot_devices,
5610 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5611
5612 current_machine = machine;
5613
5614 /* Set KVM's vcpu state to qemu's initial CPUState. */
5615 if (kvm_enabled()) {
5616 int ret;
5617
5618 ret = kvm_sync_vcpus();
5619 if (ret < 0) {
5620 fprintf(stderr, "failed to initialize vcpus\n");
5621 exit(1);
5622 }
5623 }
5624
5625 /* init USB devices */
5626 if (usb_enabled) {
5627 for(i = 0; i < usb_devices_index; i++) {
5628 if (usb_device_add(usb_devices[i], 0) < 0) {
5629 fprintf(stderr, "Warning: could not add USB device %s\n",
5630 usb_devices[i]);
5631 }
5632 }
5633 }
5634
5635 if (!display_state)
5636 dumb_display_init();
5637 /* just use the first displaystate for the moment */
5638 ds = display_state;
5639 /* terminal init */
5640 if (nographic) {
5641 if (curses) {
5642 fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
5643 exit(1);
5644 }
5645 } else {
5646 #if defined(CONFIG_CURSES)
5647 if (curses) {
5648 /* At the moment curses cannot be used with other displays */
5649 curses_display_init(ds, full_screen);
5650 } else
5651 #endif
5652 {
5653 if (vnc_display != NULL) {
5654 vnc_display_init(ds);
5655 if (vnc_display_open(ds, vnc_display) < 0)
5656 exit(1);
5657 }
5658 #if defined(CONFIG_SDL)
5659 if (sdl || !vnc_display)
5660 sdl_display_init(ds, full_screen, no_frame);
5661 #elif defined(CONFIG_COCOA)
5662 if (sdl || !vnc_display)
5663 cocoa_display_init(ds, full_screen);
5664 #endif
5665 }
5666 }
5667 dpy_resize(ds);
5668
5669 dcl = ds->listeners;
5670 while (dcl != NULL) {
5671 if (dcl->dpy_refresh != NULL) {
5672 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5673 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5674 }
5675 dcl = dcl->next;
5676 }
5677
5678 if (nographic || (vnc_display && !sdl)) {
5679 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5680 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5681 }
5682
5683 text_consoles_set_display(display_state);
5684 qemu_chr_initial_reset();
5685
5686 if (monitor_device && monitor_hd)
5687 monitor_init(monitor_hd, MONITOR_IS_DEFAULT);
5688
5689 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5690 const char *devname = serial_devices[i];
5691 if (devname && strcmp(devname, "none")) {
5692 char label[32];
5693 snprintf(label, sizeof(label), "serial%d", i);
5694 if (strstart(devname, "vc", 0))
5695 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5696 }
5697 }
5698
5699 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5700 const char *devname = parallel_devices[i];
5701 if (devname && strcmp(devname, "none")) {
5702 char label[32];
5703 snprintf(label, sizeof(label), "parallel%d", i);
5704 if (strstart(devname, "vc", 0))
5705 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5706 }
5707 }
5708
5709 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5710 const char *devname = virtio_consoles[i];
5711 if (virtcon_hds[i] && devname) {
5712 char label[32];
5713 snprintf(label, sizeof(label), "virtcon%d", i);
5714 if (strstart(devname, "vc", 0))
5715 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
5716 }
5717 }
5718
5719 #ifdef CONFIG_GDBSTUB
5720 if (use_gdbstub) {
5721 /* XXX: use standard host:port notation and modify options
5722 accordingly. */
5723 if (gdbserver_start(gdbstub_port) < 0) {
5724 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
5725 gdbstub_port);
5726 exit(1);
5727 }
5728 }
5729 #endif
5730
5731 if (loadvm)
5732 do_loadvm(cur_mon, loadvm);
5733
5734 if (incoming) {
5735 autostart = 0; /* fixme how to deal with -daemonize */
5736 qemu_start_incoming_migration(incoming);
5737 }
5738
5739 if (autostart)
5740 vm_start();
5741
5742 if (daemonize) {
5743 uint8_t status = 0;
5744 ssize_t len;
5745
5746 again1:
5747 len = write(fds[1], &status, 1);
5748 if (len == -1 && (errno == EINTR))
5749 goto again1;
5750
5751 if (len != 1)
5752 exit(1);
5753
5754 chdir("/");
5755 TFR(fd = open("/dev/null", O_RDWR));
5756 if (fd == -1)
5757 exit(1);
5758 }
5759
5760 #ifndef _WIN32
5761 if (run_as) {
5762 pwd = getpwnam(run_as);
5763 if (!pwd) {
5764 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
5765 exit(1);
5766 }
5767 }
5768
5769 if (chroot_dir) {
5770 if (chroot(chroot_dir) < 0) {
5771 fprintf(stderr, "chroot failed\n");
5772 exit(1);
5773 }
5774 chdir("/");
5775 }
5776
5777 if (run_as) {
5778 if (setgid(pwd->pw_gid) < 0) {
5779 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
5780 exit(1);
5781 }
5782 if (setuid(pwd->pw_uid) < 0) {
5783 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
5784 exit(1);
5785 }
5786 if (setuid(0) != -1) {
5787 fprintf(stderr, "Dropping privileges failed\n");
5788 exit(1);
5789 }
5790 }
5791 #endif
5792
5793 if (daemonize) {
5794 dup2(fd, 0);
5795 dup2(fd, 1);
5796 dup2(fd, 2);
5797
5798 close(fd);
5799 }
5800
5801 main_loop();
5802 quit_timers();
5803 net_cleanup();
5804
5805 return 0;
5806 }