]> git.proxmox.com Git - mirror_qemu.git/blob - vl.c
Revert r5274 which breaks savevm/loadvm
[mirror_qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw/hw.h"
25 #include "hw/boards.h"
26 #include "hw/usb.h"
27 #include "hw/pcmcia.h"
28 #include "hw/pc.h"
29 #include "hw/audiodev.h"
30 #include "hw/isa.h"
31 #include "hw/baum.h"
32 #include "net.h"
33 #include "console.h"
34 #include "sysemu.h"
35 #include "gdbstub.h"
36 #include "qemu-timer.h"
37 #include "qemu-char.h"
38 #include "block.h"
39 #include "audio/audio.h"
40
41 #include <unistd.h>
42 #include <fcntl.h>
43 #include <signal.h>
44 #include <time.h>
45 #include <errno.h>
46 #include <sys/time.h>
47 #include <zlib.h>
48
49 #ifndef _WIN32
50 #include <sys/times.h>
51 #include <sys/wait.h>
52 #include <termios.h>
53 #include <sys/poll.h>
54 #include <sys/mman.h>
55 #include <sys/ioctl.h>
56 #include <sys/socket.h>
57 #include <netinet/in.h>
58 #include <dirent.h>
59 #include <netdb.h>
60 #include <sys/select.h>
61 #include <arpa/inet.h>
62 #ifdef _BSD
63 #include <sys/stat.h>
64 #if !defined(__APPLE__) && !defined(__OpenBSD__)
65 #include <libutil.h>
66 #endif
67 #ifdef __OpenBSD__
68 #include <net/if.h>
69 #endif
70 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
71 #include <freebsd/stdlib.h>
72 #else
73 #ifndef __sun__
74 #include <linux/if.h>
75 #include <linux/if_tun.h>
76 #include <pty.h>
77 #include <malloc.h>
78 #include <linux/rtc.h>
79
80 /* For the benefit of older linux systems which don't supply it,
81 we use a local copy of hpet.h. */
82 /* #include <linux/hpet.h> */
83 #include "hpet.h"
84
85 #include <linux/ppdev.h>
86 #include <linux/parport.h>
87 #else
88 #include <sys/stat.h>
89 #include <sys/ethernet.h>
90 #include <sys/sockio.h>
91 #include <netinet/arp.h>
92 #include <netinet/in.h>
93 #include <netinet/in_systm.h>
94 #include <netinet/ip.h>
95 #include <netinet/ip_icmp.h> // must come after ip.h
96 #include <netinet/udp.h>
97 #include <netinet/tcp.h>
98 #include <net/if.h>
99 #include <syslog.h>
100 #include <stropts.h>
101 #endif
102 #endif
103 #endif
104
105 #include "qemu_socket.h"
106
107 #if defined(CONFIG_SLIRP)
108 #include "libslirp.h"
109 #endif
110
111 #if defined(__OpenBSD__)
112 #include <util.h>
113 #endif
114
115 #if defined(CONFIG_VDE)
116 #include <libvdeplug.h>
117 #endif
118
119 #ifdef _WIN32
120 #include <malloc.h>
121 #include <sys/timeb.h>
122 #include <mmsystem.h>
123 #define getopt_long_only getopt_long
124 #define memalign(align, size) malloc(size)
125 #endif
126
127 #ifdef CONFIG_SDL
128 #ifdef __APPLE__
129 #include <SDL/SDL.h>
130 #endif
131 #endif /* CONFIG_SDL */
132
133 #ifdef CONFIG_COCOA
134 #undef main
135 #define main qemu_main
136 #endif /* CONFIG_COCOA */
137
138 #include "disas.h"
139
140 #include "exec-all.h"
141
142 #define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
143 #define DEFAULT_NETWORK_DOWN_SCRIPT "/etc/qemu-ifdown"
144 #ifdef __sun__
145 #define SMBD_COMMAND "/usr/sfw/sbin/smbd"
146 #else
147 #define SMBD_COMMAND "/usr/sbin/smbd"
148 #endif
149
150 //#define DEBUG_UNUSED_IOPORT
151 //#define DEBUG_IOPORT
152
153 #ifdef TARGET_PPC
154 #define DEFAULT_RAM_SIZE 144
155 #else
156 #define DEFAULT_RAM_SIZE 128
157 #endif
158
159 /* Max number of USB devices that can be specified on the commandline. */
160 #define MAX_USB_CMDLINE 8
161
162 /* XXX: use a two level table to limit memory usage */
163 #define MAX_IOPORTS 65536
164
165 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
166 const char *bios_name = NULL;
167 void *ioport_opaque[MAX_IOPORTS];
168 IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
169 IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
170 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
171 to store the VM snapshots */
172 DriveInfo drives_table[MAX_DRIVES+1];
173 int nb_drives;
174 /* point to the block driver where the snapshots are managed */
175 BlockDriverState *bs_snapshots;
176 int vga_ram_size;
177 static DisplayState display_state;
178 int nographic;
179 int curses;
180 const char* keyboard_layout = NULL;
181 int64_t ticks_per_sec;
182 ram_addr_t ram_size;
183 int pit_min_timer_count = 0;
184 int nb_nics;
185 NICInfo nd_table[MAX_NICS];
186 int vm_running;
187 static int rtc_utc = 1;
188 static int rtc_date_offset = -1; /* -1 means no change */
189 int cirrus_vga_enabled = 1;
190 int vmsvga_enabled = 0;
191 #ifdef TARGET_SPARC
192 int graphic_width = 1024;
193 int graphic_height = 768;
194 int graphic_depth = 8;
195 #else
196 int graphic_width = 800;
197 int graphic_height = 600;
198 int graphic_depth = 15;
199 #endif
200 int full_screen = 0;
201 int no_frame = 0;
202 int no_quit = 0;
203 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
204 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
205 #ifdef TARGET_I386
206 int win2k_install_hack = 0;
207 #endif
208 int usb_enabled = 0;
209 static VLANState *first_vlan;
210 int smp_cpus = 1;
211 const char *vnc_display;
212 #if defined(TARGET_SPARC)
213 #define MAX_CPUS 16
214 #elif defined(TARGET_I386)
215 #define MAX_CPUS 255
216 #else
217 #define MAX_CPUS 1
218 #endif
219 int acpi_enabled = 1;
220 int fd_bootchk = 1;
221 int no_reboot = 0;
222 int no_shutdown = 0;
223 int cursor_hide = 1;
224 int graphic_rotate = 0;
225 int daemonize = 0;
226 const char *option_rom[MAX_OPTION_ROMS];
227 int nb_option_roms;
228 int semihosting_enabled = 0;
229 int autostart = 1;
230 #ifdef TARGET_ARM
231 int old_param = 0;
232 #endif
233 const char *qemu_name;
234 int alt_grab = 0;
235 #ifdef TARGET_SPARC
236 unsigned int nb_prom_envs = 0;
237 const char *prom_envs[MAX_PROM_ENVS];
238 #endif
239 int nb_drives_opt;
240 struct drive_opt {
241 const char *file;
242 char opt[1024];
243 } drives_opt[MAX_DRIVES];
244
245 static CPUState *cur_cpu;
246 static CPUState *next_cpu;
247 static int event_pending = 1;
248 /* Conversion factor from emulated instructions to virtual clock ticks. */
249 static int icount_time_shift;
250 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
251 #define MAX_ICOUNT_SHIFT 10
252 /* Compensate for varying guest execution speed. */
253 static int64_t qemu_icount_bias;
254 QEMUTimer *icount_rt_timer;
255 QEMUTimer *icount_vm_timer;
256
257 uint8_t qemu_uuid[16];
258
259 #define TFR(expr) do { if ((expr) != -1) break; } while (errno == EINTR)
260
261 /***********************************************************/
262 /* x86 ISA bus support */
263
264 target_phys_addr_t isa_mem_base = 0;
265 PicState2 *isa_pic;
266
267 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
268 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
269
270 static uint32_t ioport_read(int index, uint32_t address)
271 {
272 static IOPortReadFunc *default_func[3] = {
273 default_ioport_readb,
274 default_ioport_readw,
275 default_ioport_readl
276 };
277 IOPortReadFunc *func = ioport_read_table[index][address];
278 if (!func)
279 func = default_func[index];
280 return func(ioport_opaque[address], address);
281 }
282
283 static void ioport_write(int index, uint32_t address, uint32_t data)
284 {
285 static IOPortWriteFunc *default_func[3] = {
286 default_ioport_writeb,
287 default_ioport_writew,
288 default_ioport_writel
289 };
290 IOPortWriteFunc *func = ioport_write_table[index][address];
291 if (!func)
292 func = default_func[index];
293 func(ioport_opaque[address], address, data);
294 }
295
296 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
297 {
298 #ifdef DEBUG_UNUSED_IOPORT
299 fprintf(stderr, "unused inb: port=0x%04x\n", address);
300 #endif
301 return 0xff;
302 }
303
304 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
305 {
306 #ifdef DEBUG_UNUSED_IOPORT
307 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
308 #endif
309 }
310
311 /* default is to make two byte accesses */
312 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
313 {
314 uint32_t data;
315 data = ioport_read(0, address);
316 address = (address + 1) & (MAX_IOPORTS - 1);
317 data |= ioport_read(0, address) << 8;
318 return data;
319 }
320
321 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
322 {
323 ioport_write(0, address, data & 0xff);
324 address = (address + 1) & (MAX_IOPORTS - 1);
325 ioport_write(0, address, (data >> 8) & 0xff);
326 }
327
328 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
329 {
330 #ifdef DEBUG_UNUSED_IOPORT
331 fprintf(stderr, "unused inl: port=0x%04x\n", address);
332 #endif
333 return 0xffffffff;
334 }
335
336 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
337 {
338 #ifdef DEBUG_UNUSED_IOPORT
339 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
340 #endif
341 }
342
343 /* size is the word size in byte */
344 int register_ioport_read(int start, int length, int size,
345 IOPortReadFunc *func, void *opaque)
346 {
347 int i, bsize;
348
349 if (size == 1) {
350 bsize = 0;
351 } else if (size == 2) {
352 bsize = 1;
353 } else if (size == 4) {
354 bsize = 2;
355 } else {
356 hw_error("register_ioport_read: invalid size");
357 return -1;
358 }
359 for(i = start; i < start + length; i += size) {
360 ioport_read_table[bsize][i] = func;
361 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
362 hw_error("register_ioport_read: invalid opaque");
363 ioport_opaque[i] = opaque;
364 }
365 return 0;
366 }
367
368 /* size is the word size in byte */
369 int register_ioport_write(int start, int length, int size,
370 IOPortWriteFunc *func, void *opaque)
371 {
372 int i, bsize;
373
374 if (size == 1) {
375 bsize = 0;
376 } else if (size == 2) {
377 bsize = 1;
378 } else if (size == 4) {
379 bsize = 2;
380 } else {
381 hw_error("register_ioport_write: invalid size");
382 return -1;
383 }
384 for(i = start; i < start + length; i += size) {
385 ioport_write_table[bsize][i] = func;
386 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
387 hw_error("register_ioport_write: invalid opaque");
388 ioport_opaque[i] = opaque;
389 }
390 return 0;
391 }
392
393 void isa_unassign_ioport(int start, int length)
394 {
395 int i;
396
397 for(i = start; i < start + length; i++) {
398 ioport_read_table[0][i] = default_ioport_readb;
399 ioport_read_table[1][i] = default_ioport_readw;
400 ioport_read_table[2][i] = default_ioport_readl;
401
402 ioport_write_table[0][i] = default_ioport_writeb;
403 ioport_write_table[1][i] = default_ioport_writew;
404 ioport_write_table[2][i] = default_ioport_writel;
405 }
406 }
407
408 /***********************************************************/
409
410 void cpu_outb(CPUState *env, int addr, int val)
411 {
412 #ifdef DEBUG_IOPORT
413 if (loglevel & CPU_LOG_IOPORT)
414 fprintf(logfile, "outb: %04x %02x\n", addr, val);
415 #endif
416 ioport_write(0, addr, val);
417 #ifdef USE_KQEMU
418 if (env)
419 env->last_io_time = cpu_get_time_fast();
420 #endif
421 }
422
423 void cpu_outw(CPUState *env, int addr, int val)
424 {
425 #ifdef DEBUG_IOPORT
426 if (loglevel & CPU_LOG_IOPORT)
427 fprintf(logfile, "outw: %04x %04x\n", addr, val);
428 #endif
429 ioport_write(1, addr, val);
430 #ifdef USE_KQEMU
431 if (env)
432 env->last_io_time = cpu_get_time_fast();
433 #endif
434 }
435
436 void cpu_outl(CPUState *env, int addr, int val)
437 {
438 #ifdef DEBUG_IOPORT
439 if (loglevel & CPU_LOG_IOPORT)
440 fprintf(logfile, "outl: %04x %08x\n", addr, val);
441 #endif
442 ioport_write(2, addr, val);
443 #ifdef USE_KQEMU
444 if (env)
445 env->last_io_time = cpu_get_time_fast();
446 #endif
447 }
448
449 int cpu_inb(CPUState *env, int addr)
450 {
451 int val;
452 val = ioport_read(0, addr);
453 #ifdef DEBUG_IOPORT
454 if (loglevel & CPU_LOG_IOPORT)
455 fprintf(logfile, "inb : %04x %02x\n", addr, val);
456 #endif
457 #ifdef USE_KQEMU
458 if (env)
459 env->last_io_time = cpu_get_time_fast();
460 #endif
461 return val;
462 }
463
464 int cpu_inw(CPUState *env, int addr)
465 {
466 int val;
467 val = ioport_read(1, addr);
468 #ifdef DEBUG_IOPORT
469 if (loglevel & CPU_LOG_IOPORT)
470 fprintf(logfile, "inw : %04x %04x\n", addr, val);
471 #endif
472 #ifdef USE_KQEMU
473 if (env)
474 env->last_io_time = cpu_get_time_fast();
475 #endif
476 return val;
477 }
478
479 int cpu_inl(CPUState *env, int addr)
480 {
481 int val;
482 val = ioport_read(2, addr);
483 #ifdef DEBUG_IOPORT
484 if (loglevel & CPU_LOG_IOPORT)
485 fprintf(logfile, "inl : %04x %08x\n", addr, val);
486 #endif
487 #ifdef USE_KQEMU
488 if (env)
489 env->last_io_time = cpu_get_time_fast();
490 #endif
491 return val;
492 }
493
494 /***********************************************************/
495 void hw_error(const char *fmt, ...)
496 {
497 va_list ap;
498 CPUState *env;
499
500 va_start(ap, fmt);
501 fprintf(stderr, "qemu: hardware error: ");
502 vfprintf(stderr, fmt, ap);
503 fprintf(stderr, "\n");
504 for(env = first_cpu; env != NULL; env = env->next_cpu) {
505 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
506 #ifdef TARGET_I386
507 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
508 #else
509 cpu_dump_state(env, stderr, fprintf, 0);
510 #endif
511 }
512 va_end(ap);
513 abort();
514 }
515
516 /***********************************************************/
517 /* keyboard/mouse */
518
519 static QEMUPutKBDEvent *qemu_put_kbd_event;
520 static void *qemu_put_kbd_event_opaque;
521 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
522 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
523
524 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
525 {
526 qemu_put_kbd_event_opaque = opaque;
527 qemu_put_kbd_event = func;
528 }
529
530 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
531 void *opaque, int absolute,
532 const char *name)
533 {
534 QEMUPutMouseEntry *s, *cursor;
535
536 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
537 if (!s)
538 return NULL;
539
540 s->qemu_put_mouse_event = func;
541 s->qemu_put_mouse_event_opaque = opaque;
542 s->qemu_put_mouse_event_absolute = absolute;
543 s->qemu_put_mouse_event_name = qemu_strdup(name);
544 s->next = NULL;
545
546 if (!qemu_put_mouse_event_head) {
547 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
548 return s;
549 }
550
551 cursor = qemu_put_mouse_event_head;
552 while (cursor->next != NULL)
553 cursor = cursor->next;
554
555 cursor->next = s;
556 qemu_put_mouse_event_current = s;
557
558 return s;
559 }
560
561 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
562 {
563 QEMUPutMouseEntry *prev = NULL, *cursor;
564
565 if (!qemu_put_mouse_event_head || entry == NULL)
566 return;
567
568 cursor = qemu_put_mouse_event_head;
569 while (cursor != NULL && cursor != entry) {
570 prev = cursor;
571 cursor = cursor->next;
572 }
573
574 if (cursor == NULL) // does not exist or list empty
575 return;
576 else if (prev == NULL) { // entry is head
577 qemu_put_mouse_event_head = cursor->next;
578 if (qemu_put_mouse_event_current == entry)
579 qemu_put_mouse_event_current = cursor->next;
580 qemu_free(entry->qemu_put_mouse_event_name);
581 qemu_free(entry);
582 return;
583 }
584
585 prev->next = entry->next;
586
587 if (qemu_put_mouse_event_current == entry)
588 qemu_put_mouse_event_current = prev;
589
590 qemu_free(entry->qemu_put_mouse_event_name);
591 qemu_free(entry);
592 }
593
594 void kbd_put_keycode(int keycode)
595 {
596 if (qemu_put_kbd_event) {
597 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
598 }
599 }
600
601 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
602 {
603 QEMUPutMouseEvent *mouse_event;
604 void *mouse_event_opaque;
605 int width;
606
607 if (!qemu_put_mouse_event_current) {
608 return;
609 }
610
611 mouse_event =
612 qemu_put_mouse_event_current->qemu_put_mouse_event;
613 mouse_event_opaque =
614 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
615
616 if (mouse_event) {
617 if (graphic_rotate) {
618 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
619 width = 0x7fff;
620 else
621 width = graphic_width - 1;
622 mouse_event(mouse_event_opaque,
623 width - dy, dx, dz, buttons_state);
624 } else
625 mouse_event(mouse_event_opaque,
626 dx, dy, dz, buttons_state);
627 }
628 }
629
630 int kbd_mouse_is_absolute(void)
631 {
632 if (!qemu_put_mouse_event_current)
633 return 0;
634
635 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
636 }
637
638 void do_info_mice(void)
639 {
640 QEMUPutMouseEntry *cursor;
641 int index = 0;
642
643 if (!qemu_put_mouse_event_head) {
644 term_printf("No mouse devices connected\n");
645 return;
646 }
647
648 term_printf("Mouse devices available:\n");
649 cursor = qemu_put_mouse_event_head;
650 while (cursor != NULL) {
651 term_printf("%c Mouse #%d: %s\n",
652 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
653 index, cursor->qemu_put_mouse_event_name);
654 index++;
655 cursor = cursor->next;
656 }
657 }
658
659 void do_mouse_set(int index)
660 {
661 QEMUPutMouseEntry *cursor;
662 int i = 0;
663
664 if (!qemu_put_mouse_event_head) {
665 term_printf("No mouse devices connected\n");
666 return;
667 }
668
669 cursor = qemu_put_mouse_event_head;
670 while (cursor != NULL && index != i) {
671 i++;
672 cursor = cursor->next;
673 }
674
675 if (cursor != NULL)
676 qemu_put_mouse_event_current = cursor;
677 else
678 term_printf("Mouse at given index not found\n");
679 }
680
681 /* compute with 96 bit intermediate result: (a*b)/c */
682 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
683 {
684 union {
685 uint64_t ll;
686 struct {
687 #ifdef WORDS_BIGENDIAN
688 uint32_t high, low;
689 #else
690 uint32_t low, high;
691 #endif
692 } l;
693 } u, res;
694 uint64_t rl, rh;
695
696 u.ll = a;
697 rl = (uint64_t)u.l.low * (uint64_t)b;
698 rh = (uint64_t)u.l.high * (uint64_t)b;
699 rh += (rl >> 32);
700 res.l.high = rh / c;
701 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
702 return res.ll;
703 }
704
705 /***********************************************************/
706 /* real time host monotonic timer */
707
708 #define QEMU_TIMER_BASE 1000000000LL
709
710 #ifdef WIN32
711
712 static int64_t clock_freq;
713
714 static void init_get_clock(void)
715 {
716 LARGE_INTEGER freq;
717 int ret;
718 ret = QueryPerformanceFrequency(&freq);
719 if (ret == 0) {
720 fprintf(stderr, "Could not calibrate ticks\n");
721 exit(1);
722 }
723 clock_freq = freq.QuadPart;
724 }
725
726 static int64_t get_clock(void)
727 {
728 LARGE_INTEGER ti;
729 QueryPerformanceCounter(&ti);
730 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
731 }
732
733 #else
734
735 static int use_rt_clock;
736
737 static void init_get_clock(void)
738 {
739 use_rt_clock = 0;
740 #if defined(__linux__)
741 {
742 struct timespec ts;
743 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
744 use_rt_clock = 1;
745 }
746 }
747 #endif
748 }
749
750 static int64_t get_clock(void)
751 {
752 #if defined(__linux__)
753 if (use_rt_clock) {
754 struct timespec ts;
755 clock_gettime(CLOCK_MONOTONIC, &ts);
756 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
757 } else
758 #endif
759 {
760 /* XXX: using gettimeofday leads to problems if the date
761 changes, so it should be avoided. */
762 struct timeval tv;
763 gettimeofday(&tv, NULL);
764 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
765 }
766 }
767 #endif
768
769 /* Return the virtual CPU time, based on the instruction counter. */
770 static int64_t cpu_get_icount(void)
771 {
772 int64_t icount;
773 CPUState *env = cpu_single_env;;
774 icount = qemu_icount;
775 if (env) {
776 if (!can_do_io(env))
777 fprintf(stderr, "Bad clock read\n");
778 icount -= (env->icount_decr.u16.low + env->icount_extra);
779 }
780 return qemu_icount_bias + (icount << icount_time_shift);
781 }
782
783 /***********************************************************/
784 /* guest cycle counter */
785
786 static int64_t cpu_ticks_prev;
787 static int64_t cpu_ticks_offset;
788 static int64_t cpu_clock_offset;
789 static int cpu_ticks_enabled;
790
791 /* return the host CPU cycle counter and handle stop/restart */
792 int64_t cpu_get_ticks(void)
793 {
794 if (use_icount) {
795 return cpu_get_icount();
796 }
797 if (!cpu_ticks_enabled) {
798 return cpu_ticks_offset;
799 } else {
800 int64_t ticks;
801 ticks = cpu_get_real_ticks();
802 if (cpu_ticks_prev > ticks) {
803 /* Note: non increasing ticks may happen if the host uses
804 software suspend */
805 cpu_ticks_offset += cpu_ticks_prev - ticks;
806 }
807 cpu_ticks_prev = ticks;
808 return ticks + cpu_ticks_offset;
809 }
810 }
811
812 /* return the host CPU monotonic timer and handle stop/restart */
813 static int64_t cpu_get_clock(void)
814 {
815 int64_t ti;
816 if (!cpu_ticks_enabled) {
817 return cpu_clock_offset;
818 } else {
819 ti = get_clock();
820 return ti + cpu_clock_offset;
821 }
822 }
823
824 /* enable cpu_get_ticks() */
825 void cpu_enable_ticks(void)
826 {
827 if (!cpu_ticks_enabled) {
828 cpu_ticks_offset -= cpu_get_real_ticks();
829 cpu_clock_offset -= get_clock();
830 cpu_ticks_enabled = 1;
831 }
832 }
833
834 /* disable cpu_get_ticks() : the clock is stopped. You must not call
835 cpu_get_ticks() after that. */
836 void cpu_disable_ticks(void)
837 {
838 if (cpu_ticks_enabled) {
839 cpu_ticks_offset = cpu_get_ticks();
840 cpu_clock_offset = cpu_get_clock();
841 cpu_ticks_enabled = 0;
842 }
843 }
844
845 /***********************************************************/
846 /* timers */
847
848 #define QEMU_TIMER_REALTIME 0
849 #define QEMU_TIMER_VIRTUAL 1
850
851 struct QEMUClock {
852 int type;
853 /* XXX: add frequency */
854 };
855
856 struct QEMUTimer {
857 QEMUClock *clock;
858 int64_t expire_time;
859 QEMUTimerCB *cb;
860 void *opaque;
861 struct QEMUTimer *next;
862 };
863
864 struct qemu_alarm_timer {
865 char const *name;
866 unsigned int flags;
867
868 int (*start)(struct qemu_alarm_timer *t);
869 void (*stop)(struct qemu_alarm_timer *t);
870 void (*rearm)(struct qemu_alarm_timer *t);
871 void *priv;
872 };
873
874 #define ALARM_FLAG_DYNTICKS 0x1
875 #define ALARM_FLAG_EXPIRED 0x2
876
877 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
878 {
879 return t->flags & ALARM_FLAG_DYNTICKS;
880 }
881
882 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
883 {
884 if (!alarm_has_dynticks(t))
885 return;
886
887 t->rearm(t);
888 }
889
890 /* TODO: MIN_TIMER_REARM_US should be optimized */
891 #define MIN_TIMER_REARM_US 250
892
893 static struct qemu_alarm_timer *alarm_timer;
894
895 #ifdef _WIN32
896
897 struct qemu_alarm_win32 {
898 MMRESULT timerId;
899 HANDLE host_alarm;
900 unsigned int period;
901 } alarm_win32_data = {0, NULL, -1};
902
903 static int win32_start_timer(struct qemu_alarm_timer *t);
904 static void win32_stop_timer(struct qemu_alarm_timer *t);
905 static void win32_rearm_timer(struct qemu_alarm_timer *t);
906
907 #else
908
909 static int unix_start_timer(struct qemu_alarm_timer *t);
910 static void unix_stop_timer(struct qemu_alarm_timer *t);
911
912 #ifdef __linux__
913
914 static int dynticks_start_timer(struct qemu_alarm_timer *t);
915 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
916 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
917
918 static int hpet_start_timer(struct qemu_alarm_timer *t);
919 static void hpet_stop_timer(struct qemu_alarm_timer *t);
920
921 static int rtc_start_timer(struct qemu_alarm_timer *t);
922 static void rtc_stop_timer(struct qemu_alarm_timer *t);
923
924 #endif /* __linux__ */
925
926 #endif /* _WIN32 */
927
928 /* Correlation between real and virtual time is always going to be
929 fairly approximate, so ignore small variation.
930 When the guest is idle real and virtual time will be aligned in
931 the IO wait loop. */
932 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
933
934 static void icount_adjust(void)
935 {
936 int64_t cur_time;
937 int64_t cur_icount;
938 int64_t delta;
939 static int64_t last_delta;
940 /* If the VM is not running, then do nothing. */
941 if (!vm_running)
942 return;
943
944 cur_time = cpu_get_clock();
945 cur_icount = qemu_get_clock(vm_clock);
946 delta = cur_icount - cur_time;
947 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
948 if (delta > 0
949 && last_delta + ICOUNT_WOBBLE < delta * 2
950 && icount_time_shift > 0) {
951 /* The guest is getting too far ahead. Slow time down. */
952 icount_time_shift--;
953 }
954 if (delta < 0
955 && last_delta - ICOUNT_WOBBLE > delta * 2
956 && icount_time_shift < MAX_ICOUNT_SHIFT) {
957 /* The guest is getting too far behind. Speed time up. */
958 icount_time_shift++;
959 }
960 last_delta = delta;
961 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
962 }
963
964 static void icount_adjust_rt(void * opaque)
965 {
966 qemu_mod_timer(icount_rt_timer,
967 qemu_get_clock(rt_clock) + 1000);
968 icount_adjust();
969 }
970
971 static void icount_adjust_vm(void * opaque)
972 {
973 qemu_mod_timer(icount_vm_timer,
974 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
975 icount_adjust();
976 }
977
978 static void init_icount_adjust(void)
979 {
980 /* Have both realtime and virtual time triggers for speed adjustment.
981 The realtime trigger catches emulated time passing too slowly,
982 the virtual time trigger catches emulated time passing too fast.
983 Realtime triggers occur even when idle, so use them less frequently
984 than VM triggers. */
985 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
986 qemu_mod_timer(icount_rt_timer,
987 qemu_get_clock(rt_clock) + 1000);
988 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
989 qemu_mod_timer(icount_vm_timer,
990 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
991 }
992
993 static struct qemu_alarm_timer alarm_timers[] = {
994 #ifndef _WIN32
995 #ifdef __linux__
996 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
997 dynticks_stop_timer, dynticks_rearm_timer, NULL},
998 /* HPET - if available - is preferred */
999 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1000 /* ...otherwise try RTC */
1001 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1002 #endif
1003 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1004 #else
1005 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1006 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1007 {"win32", 0, win32_start_timer,
1008 win32_stop_timer, NULL, &alarm_win32_data},
1009 #endif
1010 {NULL, }
1011 };
1012
1013 static void show_available_alarms(void)
1014 {
1015 int i;
1016
1017 printf("Available alarm timers, in order of precedence:\n");
1018 for (i = 0; alarm_timers[i].name; i++)
1019 printf("%s\n", alarm_timers[i].name);
1020 }
1021
1022 static void configure_alarms(char const *opt)
1023 {
1024 int i;
1025 int cur = 0;
1026 int count = (sizeof(alarm_timers) / sizeof(*alarm_timers)) - 1;
1027 char *arg;
1028 char *name;
1029 struct qemu_alarm_timer tmp;
1030
1031 if (!strcmp(opt, "?")) {
1032 show_available_alarms();
1033 exit(0);
1034 }
1035
1036 arg = strdup(opt);
1037
1038 /* Reorder the array */
1039 name = strtok(arg, ",");
1040 while (name) {
1041 for (i = 0; i < count && alarm_timers[i].name; i++) {
1042 if (!strcmp(alarm_timers[i].name, name))
1043 break;
1044 }
1045
1046 if (i == count) {
1047 fprintf(stderr, "Unknown clock %s\n", name);
1048 goto next;
1049 }
1050
1051 if (i < cur)
1052 /* Ignore */
1053 goto next;
1054
1055 /* Swap */
1056 tmp = alarm_timers[i];
1057 alarm_timers[i] = alarm_timers[cur];
1058 alarm_timers[cur] = tmp;
1059
1060 cur++;
1061 next:
1062 name = strtok(NULL, ",");
1063 }
1064
1065 free(arg);
1066
1067 if (cur) {
1068 /* Disable remaining timers */
1069 for (i = cur; i < count; i++)
1070 alarm_timers[i].name = NULL;
1071 } else {
1072 show_available_alarms();
1073 exit(1);
1074 }
1075 }
1076
1077 QEMUClock *rt_clock;
1078 QEMUClock *vm_clock;
1079
1080 static QEMUTimer *active_timers[2];
1081
1082 static QEMUClock *qemu_new_clock(int type)
1083 {
1084 QEMUClock *clock;
1085 clock = qemu_mallocz(sizeof(QEMUClock));
1086 if (!clock)
1087 return NULL;
1088 clock->type = type;
1089 return clock;
1090 }
1091
1092 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1093 {
1094 QEMUTimer *ts;
1095
1096 ts = qemu_mallocz(sizeof(QEMUTimer));
1097 ts->clock = clock;
1098 ts->cb = cb;
1099 ts->opaque = opaque;
1100 return ts;
1101 }
1102
1103 void qemu_free_timer(QEMUTimer *ts)
1104 {
1105 qemu_free(ts);
1106 }
1107
1108 /* stop a timer, but do not dealloc it */
1109 void qemu_del_timer(QEMUTimer *ts)
1110 {
1111 QEMUTimer **pt, *t;
1112
1113 /* NOTE: this code must be signal safe because
1114 qemu_timer_expired() can be called from a signal. */
1115 pt = &active_timers[ts->clock->type];
1116 for(;;) {
1117 t = *pt;
1118 if (!t)
1119 break;
1120 if (t == ts) {
1121 *pt = t->next;
1122 break;
1123 }
1124 pt = &t->next;
1125 }
1126 }
1127
1128 /* modify the current timer so that it will be fired when current_time
1129 >= expire_time. The corresponding callback will be called. */
1130 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1131 {
1132 QEMUTimer **pt, *t;
1133
1134 qemu_del_timer(ts);
1135
1136 /* add the timer in the sorted list */
1137 /* NOTE: this code must be signal safe because
1138 qemu_timer_expired() can be called from a signal. */
1139 pt = &active_timers[ts->clock->type];
1140 for(;;) {
1141 t = *pt;
1142 if (!t)
1143 break;
1144 if (t->expire_time > expire_time)
1145 break;
1146 pt = &t->next;
1147 }
1148 ts->expire_time = expire_time;
1149 ts->next = *pt;
1150 *pt = ts;
1151
1152 /* Rearm if necessary */
1153 if (pt == &active_timers[ts->clock->type]) {
1154 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1155 qemu_rearm_alarm_timer(alarm_timer);
1156 }
1157 /* Interrupt execution to force deadline recalculation. */
1158 if (use_icount && cpu_single_env) {
1159 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
1160 }
1161 }
1162 }
1163
1164 int qemu_timer_pending(QEMUTimer *ts)
1165 {
1166 QEMUTimer *t;
1167 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1168 if (t == ts)
1169 return 1;
1170 }
1171 return 0;
1172 }
1173
1174 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1175 {
1176 if (!timer_head)
1177 return 0;
1178 return (timer_head->expire_time <= current_time);
1179 }
1180
1181 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1182 {
1183 QEMUTimer *ts;
1184
1185 for(;;) {
1186 ts = *ptimer_head;
1187 if (!ts || ts->expire_time > current_time)
1188 break;
1189 /* remove timer from the list before calling the callback */
1190 *ptimer_head = ts->next;
1191 ts->next = NULL;
1192
1193 /* run the callback (the timer list can be modified) */
1194 ts->cb(ts->opaque);
1195 }
1196 }
1197
1198 int64_t qemu_get_clock(QEMUClock *clock)
1199 {
1200 switch(clock->type) {
1201 case QEMU_TIMER_REALTIME:
1202 return get_clock() / 1000000;
1203 default:
1204 case QEMU_TIMER_VIRTUAL:
1205 if (use_icount) {
1206 return cpu_get_icount();
1207 } else {
1208 return cpu_get_clock();
1209 }
1210 }
1211 }
1212
1213 static void init_timers(void)
1214 {
1215 init_get_clock();
1216 ticks_per_sec = QEMU_TIMER_BASE;
1217 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1218 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1219 }
1220
1221 /* save a timer */
1222 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1223 {
1224 uint64_t expire_time;
1225
1226 if (qemu_timer_pending(ts)) {
1227 expire_time = ts->expire_time;
1228 } else {
1229 expire_time = -1;
1230 }
1231 qemu_put_be64(f, expire_time);
1232 }
1233
1234 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1235 {
1236 uint64_t expire_time;
1237
1238 expire_time = qemu_get_be64(f);
1239 if (expire_time != -1) {
1240 qemu_mod_timer(ts, expire_time);
1241 } else {
1242 qemu_del_timer(ts);
1243 }
1244 }
1245
1246 static void timer_save(QEMUFile *f, void *opaque)
1247 {
1248 if (cpu_ticks_enabled) {
1249 hw_error("cannot save state if virtual timers are running");
1250 }
1251 qemu_put_be64(f, cpu_ticks_offset);
1252 qemu_put_be64(f, ticks_per_sec);
1253 qemu_put_be64(f, cpu_clock_offset);
1254 }
1255
1256 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1257 {
1258 if (version_id != 1 && version_id != 2)
1259 return -EINVAL;
1260 if (cpu_ticks_enabled) {
1261 return -EINVAL;
1262 }
1263 cpu_ticks_offset=qemu_get_be64(f);
1264 ticks_per_sec=qemu_get_be64(f);
1265 if (version_id == 2) {
1266 cpu_clock_offset=qemu_get_be64(f);
1267 }
1268 return 0;
1269 }
1270
1271 #ifdef _WIN32
1272 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1273 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1274 #else
1275 static void host_alarm_handler(int host_signum)
1276 #endif
1277 {
1278 #if 0
1279 #define DISP_FREQ 1000
1280 {
1281 static int64_t delta_min = INT64_MAX;
1282 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1283 static int count;
1284 ti = qemu_get_clock(vm_clock);
1285 if (last_clock != 0) {
1286 delta = ti - last_clock;
1287 if (delta < delta_min)
1288 delta_min = delta;
1289 if (delta > delta_max)
1290 delta_max = delta;
1291 delta_cum += delta;
1292 if (++count == DISP_FREQ) {
1293 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1294 muldiv64(delta_min, 1000000, ticks_per_sec),
1295 muldiv64(delta_max, 1000000, ticks_per_sec),
1296 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1297 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1298 count = 0;
1299 delta_min = INT64_MAX;
1300 delta_max = 0;
1301 delta_cum = 0;
1302 }
1303 }
1304 last_clock = ti;
1305 }
1306 #endif
1307 if (alarm_has_dynticks(alarm_timer) ||
1308 (!use_icount &&
1309 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1310 qemu_get_clock(vm_clock))) ||
1311 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1312 qemu_get_clock(rt_clock))) {
1313 #ifdef _WIN32
1314 struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1315 SetEvent(data->host_alarm);
1316 #endif
1317 CPUState *env = next_cpu;
1318
1319 alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1320
1321 if (env) {
1322 /* stop the currently executing cpu because a timer occured */
1323 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1324 #ifdef USE_KQEMU
1325 if (env->kqemu_enabled) {
1326 kqemu_cpu_interrupt(env);
1327 }
1328 #endif
1329 }
1330 event_pending = 1;
1331 }
1332 }
1333
1334 static int64_t qemu_next_deadline(void)
1335 {
1336 int64_t delta;
1337
1338 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1339 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1340 qemu_get_clock(vm_clock);
1341 } else {
1342 /* To avoid problems with overflow limit this to 2^32. */
1343 delta = INT32_MAX;
1344 }
1345
1346 if (delta < 0)
1347 delta = 0;
1348
1349 return delta;
1350 }
1351
1352 #if defined(__linux__) || defined(_WIN32)
1353 static uint64_t qemu_next_deadline_dyntick(void)
1354 {
1355 int64_t delta;
1356 int64_t rtdelta;
1357
1358 if (use_icount)
1359 delta = INT32_MAX;
1360 else
1361 delta = (qemu_next_deadline() + 999) / 1000;
1362
1363 if (active_timers[QEMU_TIMER_REALTIME]) {
1364 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1365 qemu_get_clock(rt_clock))*1000;
1366 if (rtdelta < delta)
1367 delta = rtdelta;
1368 }
1369
1370 if (delta < MIN_TIMER_REARM_US)
1371 delta = MIN_TIMER_REARM_US;
1372
1373 return delta;
1374 }
1375 #endif
1376
1377 #ifndef _WIN32
1378
1379 #if defined(__linux__)
1380
1381 #define RTC_FREQ 1024
1382
1383 static void enable_sigio_timer(int fd)
1384 {
1385 struct sigaction act;
1386
1387 /* timer signal */
1388 sigfillset(&act.sa_mask);
1389 act.sa_flags = 0;
1390 act.sa_handler = host_alarm_handler;
1391
1392 sigaction(SIGIO, &act, NULL);
1393 fcntl(fd, F_SETFL, O_ASYNC);
1394 fcntl(fd, F_SETOWN, getpid());
1395 }
1396
1397 static int hpet_start_timer(struct qemu_alarm_timer *t)
1398 {
1399 struct hpet_info info;
1400 int r, fd;
1401
1402 fd = open("/dev/hpet", O_RDONLY);
1403 if (fd < 0)
1404 return -1;
1405
1406 /* Set frequency */
1407 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1408 if (r < 0) {
1409 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1410 "error, but for better emulation accuracy type:\n"
1411 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1412 goto fail;
1413 }
1414
1415 /* Check capabilities */
1416 r = ioctl(fd, HPET_INFO, &info);
1417 if (r < 0)
1418 goto fail;
1419
1420 /* Enable periodic mode */
1421 r = ioctl(fd, HPET_EPI, 0);
1422 if (info.hi_flags && (r < 0))
1423 goto fail;
1424
1425 /* Enable interrupt */
1426 r = ioctl(fd, HPET_IE_ON, 0);
1427 if (r < 0)
1428 goto fail;
1429
1430 enable_sigio_timer(fd);
1431 t->priv = (void *)(long)fd;
1432
1433 return 0;
1434 fail:
1435 close(fd);
1436 return -1;
1437 }
1438
1439 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1440 {
1441 int fd = (long)t->priv;
1442
1443 close(fd);
1444 }
1445
1446 static int rtc_start_timer(struct qemu_alarm_timer *t)
1447 {
1448 int rtc_fd;
1449 unsigned long current_rtc_freq = 0;
1450
1451 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1452 if (rtc_fd < 0)
1453 return -1;
1454 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1455 if (current_rtc_freq != RTC_FREQ &&
1456 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1457 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1458 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1459 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1460 goto fail;
1461 }
1462 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1463 fail:
1464 close(rtc_fd);
1465 return -1;
1466 }
1467
1468 enable_sigio_timer(rtc_fd);
1469
1470 t->priv = (void *)(long)rtc_fd;
1471
1472 return 0;
1473 }
1474
1475 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1476 {
1477 int rtc_fd = (long)t->priv;
1478
1479 close(rtc_fd);
1480 }
1481
1482 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1483 {
1484 struct sigevent ev;
1485 timer_t host_timer;
1486 struct sigaction act;
1487
1488 sigfillset(&act.sa_mask);
1489 act.sa_flags = 0;
1490 act.sa_handler = host_alarm_handler;
1491
1492 sigaction(SIGALRM, &act, NULL);
1493
1494 ev.sigev_value.sival_int = 0;
1495 ev.sigev_notify = SIGEV_SIGNAL;
1496 ev.sigev_signo = SIGALRM;
1497
1498 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1499 perror("timer_create");
1500
1501 /* disable dynticks */
1502 fprintf(stderr, "Dynamic Ticks disabled\n");
1503
1504 return -1;
1505 }
1506
1507 t->priv = (void *)host_timer;
1508
1509 return 0;
1510 }
1511
1512 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1513 {
1514 timer_t host_timer = (timer_t)t->priv;
1515
1516 timer_delete(host_timer);
1517 }
1518
1519 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1520 {
1521 timer_t host_timer = (timer_t)t->priv;
1522 struct itimerspec timeout;
1523 int64_t nearest_delta_us = INT64_MAX;
1524 int64_t current_us;
1525
1526 if (!active_timers[QEMU_TIMER_REALTIME] &&
1527 !active_timers[QEMU_TIMER_VIRTUAL])
1528 return;
1529
1530 nearest_delta_us = qemu_next_deadline_dyntick();
1531
1532 /* check whether a timer is already running */
1533 if (timer_gettime(host_timer, &timeout)) {
1534 perror("gettime");
1535 fprintf(stderr, "Internal timer error: aborting\n");
1536 exit(1);
1537 }
1538 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1539 if (current_us && current_us <= nearest_delta_us)
1540 return;
1541
1542 timeout.it_interval.tv_sec = 0;
1543 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1544 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1545 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1546 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1547 perror("settime");
1548 fprintf(stderr, "Internal timer error: aborting\n");
1549 exit(1);
1550 }
1551 }
1552
1553 #endif /* defined(__linux__) */
1554
1555 static int unix_start_timer(struct qemu_alarm_timer *t)
1556 {
1557 struct sigaction act;
1558 struct itimerval itv;
1559 int err;
1560
1561 /* timer signal */
1562 sigfillset(&act.sa_mask);
1563 act.sa_flags = 0;
1564 act.sa_handler = host_alarm_handler;
1565
1566 sigaction(SIGALRM, &act, NULL);
1567
1568 itv.it_interval.tv_sec = 0;
1569 /* for i386 kernel 2.6 to get 1 ms */
1570 itv.it_interval.tv_usec = 999;
1571 itv.it_value.tv_sec = 0;
1572 itv.it_value.tv_usec = 10 * 1000;
1573
1574 err = setitimer(ITIMER_REAL, &itv, NULL);
1575 if (err)
1576 return -1;
1577
1578 return 0;
1579 }
1580
1581 static void unix_stop_timer(struct qemu_alarm_timer *t)
1582 {
1583 struct itimerval itv;
1584
1585 memset(&itv, 0, sizeof(itv));
1586 setitimer(ITIMER_REAL, &itv, NULL);
1587 }
1588
1589 #endif /* !defined(_WIN32) */
1590
1591 #ifdef _WIN32
1592
1593 static int win32_start_timer(struct qemu_alarm_timer *t)
1594 {
1595 TIMECAPS tc;
1596 struct qemu_alarm_win32 *data = t->priv;
1597 UINT flags;
1598
1599 data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1600 if (!data->host_alarm) {
1601 perror("Failed CreateEvent");
1602 return -1;
1603 }
1604
1605 memset(&tc, 0, sizeof(tc));
1606 timeGetDevCaps(&tc, sizeof(tc));
1607
1608 if (data->period < tc.wPeriodMin)
1609 data->period = tc.wPeriodMin;
1610
1611 timeBeginPeriod(data->period);
1612
1613 flags = TIME_CALLBACK_FUNCTION;
1614 if (alarm_has_dynticks(t))
1615 flags |= TIME_ONESHOT;
1616 else
1617 flags |= TIME_PERIODIC;
1618
1619 data->timerId = timeSetEvent(1, // interval (ms)
1620 data->period, // resolution
1621 host_alarm_handler, // function
1622 (DWORD)t, // parameter
1623 flags);
1624
1625 if (!data->timerId) {
1626 perror("Failed to initialize win32 alarm timer");
1627
1628 timeEndPeriod(data->period);
1629 CloseHandle(data->host_alarm);
1630 return -1;
1631 }
1632
1633 qemu_add_wait_object(data->host_alarm, NULL, NULL);
1634
1635 return 0;
1636 }
1637
1638 static void win32_stop_timer(struct qemu_alarm_timer *t)
1639 {
1640 struct qemu_alarm_win32 *data = t->priv;
1641
1642 timeKillEvent(data->timerId);
1643 timeEndPeriod(data->period);
1644
1645 CloseHandle(data->host_alarm);
1646 }
1647
1648 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1649 {
1650 struct qemu_alarm_win32 *data = t->priv;
1651 uint64_t nearest_delta_us;
1652
1653 if (!active_timers[QEMU_TIMER_REALTIME] &&
1654 !active_timers[QEMU_TIMER_VIRTUAL])
1655 return;
1656
1657 nearest_delta_us = qemu_next_deadline_dyntick();
1658 nearest_delta_us /= 1000;
1659
1660 timeKillEvent(data->timerId);
1661
1662 data->timerId = timeSetEvent(1,
1663 data->period,
1664 host_alarm_handler,
1665 (DWORD)t,
1666 TIME_ONESHOT | TIME_PERIODIC);
1667
1668 if (!data->timerId) {
1669 perror("Failed to re-arm win32 alarm timer");
1670
1671 timeEndPeriod(data->period);
1672 CloseHandle(data->host_alarm);
1673 exit(1);
1674 }
1675 }
1676
1677 #endif /* _WIN32 */
1678
1679 static void init_timer_alarm(void)
1680 {
1681 struct qemu_alarm_timer *t;
1682 int i, err = -1;
1683
1684 for (i = 0; alarm_timers[i].name; i++) {
1685 t = &alarm_timers[i];
1686
1687 err = t->start(t);
1688 if (!err)
1689 break;
1690 }
1691
1692 if (err) {
1693 fprintf(stderr, "Unable to find any suitable alarm timer.\n");
1694 fprintf(stderr, "Terminating\n");
1695 exit(1);
1696 }
1697
1698 alarm_timer = t;
1699 }
1700
1701 static void quit_timers(void)
1702 {
1703 alarm_timer->stop(alarm_timer);
1704 alarm_timer = NULL;
1705 }
1706
1707 /***********************************************************/
1708 /* host time/date access */
1709 void qemu_get_timedate(struct tm *tm, int offset)
1710 {
1711 time_t ti;
1712 struct tm *ret;
1713
1714 time(&ti);
1715 ti += offset;
1716 if (rtc_date_offset == -1) {
1717 if (rtc_utc)
1718 ret = gmtime(&ti);
1719 else
1720 ret = localtime(&ti);
1721 } else {
1722 ti -= rtc_date_offset;
1723 ret = gmtime(&ti);
1724 }
1725
1726 memcpy(tm, ret, sizeof(struct tm));
1727 }
1728
1729 int qemu_timedate_diff(struct tm *tm)
1730 {
1731 time_t seconds;
1732
1733 if (rtc_date_offset == -1)
1734 if (rtc_utc)
1735 seconds = mktimegm(tm);
1736 else
1737 seconds = mktime(tm);
1738 else
1739 seconds = mktimegm(tm) + rtc_date_offset;
1740
1741 return seconds - time(NULL);
1742 }
1743
1744 /***********************************************************/
1745 /* character device */
1746
1747 static void qemu_chr_event(CharDriverState *s, int event)
1748 {
1749 if (!s->chr_event)
1750 return;
1751 s->chr_event(s->handler_opaque, event);
1752 }
1753
1754 static void qemu_chr_reset_bh(void *opaque)
1755 {
1756 CharDriverState *s = opaque;
1757 qemu_chr_event(s, CHR_EVENT_RESET);
1758 qemu_bh_delete(s->bh);
1759 s->bh = NULL;
1760 }
1761
1762 void qemu_chr_reset(CharDriverState *s)
1763 {
1764 if (s->bh == NULL) {
1765 s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1766 qemu_bh_schedule(s->bh);
1767 }
1768 }
1769
1770 int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1771 {
1772 return s->chr_write(s, buf, len);
1773 }
1774
1775 int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1776 {
1777 if (!s->chr_ioctl)
1778 return -ENOTSUP;
1779 return s->chr_ioctl(s, cmd, arg);
1780 }
1781
1782 int qemu_chr_can_read(CharDriverState *s)
1783 {
1784 if (!s->chr_can_read)
1785 return 0;
1786 return s->chr_can_read(s->handler_opaque);
1787 }
1788
1789 void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1790 {
1791 s->chr_read(s->handler_opaque, buf, len);
1792 }
1793
1794 void qemu_chr_accept_input(CharDriverState *s)
1795 {
1796 if (s->chr_accept_input)
1797 s->chr_accept_input(s);
1798 }
1799
1800 void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1801 {
1802 char buf[4096];
1803 va_list ap;
1804 va_start(ap, fmt);
1805 vsnprintf(buf, sizeof(buf), fmt, ap);
1806 qemu_chr_write(s, (uint8_t *)buf, strlen(buf));
1807 va_end(ap);
1808 }
1809
1810 void qemu_chr_send_event(CharDriverState *s, int event)
1811 {
1812 if (s->chr_send_event)
1813 s->chr_send_event(s, event);
1814 }
1815
1816 void qemu_chr_add_handlers(CharDriverState *s,
1817 IOCanRWHandler *fd_can_read,
1818 IOReadHandler *fd_read,
1819 IOEventHandler *fd_event,
1820 void *opaque)
1821 {
1822 s->chr_can_read = fd_can_read;
1823 s->chr_read = fd_read;
1824 s->chr_event = fd_event;
1825 s->handler_opaque = opaque;
1826 if (s->chr_update_read_handler)
1827 s->chr_update_read_handler(s);
1828 }
1829
1830 static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1831 {
1832 return len;
1833 }
1834
1835 static CharDriverState *qemu_chr_open_null(void)
1836 {
1837 CharDriverState *chr;
1838
1839 chr = qemu_mallocz(sizeof(CharDriverState));
1840 if (!chr)
1841 return NULL;
1842 chr->chr_write = null_chr_write;
1843 return chr;
1844 }
1845
1846 /* MUX driver for serial I/O splitting */
1847 static int term_timestamps;
1848 static int64_t term_timestamps_start;
1849 #define MAX_MUX 4
1850 #define MUX_BUFFER_SIZE 32 /* Must be a power of 2. */
1851 #define MUX_BUFFER_MASK (MUX_BUFFER_SIZE - 1)
1852 typedef struct {
1853 IOCanRWHandler *chr_can_read[MAX_MUX];
1854 IOReadHandler *chr_read[MAX_MUX];
1855 IOEventHandler *chr_event[MAX_MUX];
1856 void *ext_opaque[MAX_MUX];
1857 CharDriverState *drv;
1858 unsigned char buffer[MUX_BUFFER_SIZE];
1859 int prod;
1860 int cons;
1861 int mux_cnt;
1862 int term_got_escape;
1863 int max_size;
1864 } MuxDriver;
1865
1866
1867 static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1868 {
1869 MuxDriver *d = chr->opaque;
1870 int ret;
1871 if (!term_timestamps) {
1872 ret = d->drv->chr_write(d->drv, buf, len);
1873 } else {
1874 int i;
1875
1876 ret = 0;
1877 for(i = 0; i < len; i++) {
1878 ret += d->drv->chr_write(d->drv, buf+i, 1);
1879 if (buf[i] == '\n') {
1880 char buf1[64];
1881 int64_t ti;
1882 int secs;
1883
1884 ti = get_clock();
1885 if (term_timestamps_start == -1)
1886 term_timestamps_start = ti;
1887 ti -= term_timestamps_start;
1888 secs = ti / 1000000000;
1889 snprintf(buf1, sizeof(buf1),
1890 "[%02d:%02d:%02d.%03d] ",
1891 secs / 3600,
1892 (secs / 60) % 60,
1893 secs % 60,
1894 (int)((ti / 1000000) % 1000));
1895 d->drv->chr_write(d->drv, (uint8_t *)buf1, strlen(buf1));
1896 }
1897 }
1898 }
1899 return ret;
1900 }
1901
1902 static const char * const mux_help[] = {
1903 "% h print this help\n\r",
1904 "% x exit emulator\n\r",
1905 "% s save disk data back to file (if -snapshot)\n\r",
1906 "% t toggle console timestamps\n\r"
1907 "% b send break (magic sysrq)\n\r",
1908 "% c switch between console and monitor\n\r",
1909 "% % sends %\n\r",
1910 NULL
1911 };
1912
1913 static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1914 static void mux_print_help(CharDriverState *chr)
1915 {
1916 int i, j;
1917 char ebuf[15] = "Escape-Char";
1918 char cbuf[50] = "\n\r";
1919
1920 if (term_escape_char > 0 && term_escape_char < 26) {
1921 snprintf(cbuf, sizeof(cbuf), "\n\r");
1922 snprintf(ebuf, sizeof(ebuf), "C-%c", term_escape_char - 1 + 'a');
1923 } else {
1924 snprintf(cbuf, sizeof(cbuf),
1925 "\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r",
1926 term_escape_char);
1927 }
1928 chr->chr_write(chr, (uint8_t *)cbuf, strlen(cbuf));
1929 for (i = 0; mux_help[i] != NULL; i++) {
1930 for (j=0; mux_help[i][j] != '\0'; j++) {
1931 if (mux_help[i][j] == '%')
1932 chr->chr_write(chr, (uint8_t *)ebuf, strlen(ebuf));
1933 else
1934 chr->chr_write(chr, (uint8_t *)&mux_help[i][j], 1);
1935 }
1936 }
1937 }
1938
1939 static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1940 {
1941 if (d->term_got_escape) {
1942 d->term_got_escape = 0;
1943 if (ch == term_escape_char)
1944 goto send_char;
1945 switch(ch) {
1946 case '?':
1947 case 'h':
1948 mux_print_help(chr);
1949 break;
1950 case 'x':
1951 {
1952 const char *term = "QEMU: Terminated\n\r";
1953 chr->chr_write(chr,(uint8_t *)term,strlen(term));
1954 exit(0);
1955 break;
1956 }
1957 case 's':
1958 {
1959 int i;
1960 for (i = 0; i < nb_drives; i++) {
1961 bdrv_commit(drives_table[i].bdrv);
1962 }
1963 }
1964 break;
1965 case 'b':
1966 qemu_chr_event(chr, CHR_EVENT_BREAK);
1967 break;
1968 case 'c':
1969 /* Switch to the next registered device */
1970 chr->focus++;
1971 if (chr->focus >= d->mux_cnt)
1972 chr->focus = 0;
1973 break;
1974 case 't':
1975 term_timestamps = !term_timestamps;
1976 term_timestamps_start = -1;
1977 break;
1978 }
1979 } else if (ch == term_escape_char) {
1980 d->term_got_escape = 1;
1981 } else {
1982 send_char:
1983 return 1;
1984 }
1985 return 0;
1986 }
1987
1988 static void mux_chr_accept_input(CharDriverState *chr)
1989 {
1990 int m = chr->focus;
1991 MuxDriver *d = chr->opaque;
1992
1993 while (d->prod != d->cons &&
1994 d->chr_can_read[m] &&
1995 d->chr_can_read[m](d->ext_opaque[m])) {
1996 d->chr_read[m](d->ext_opaque[m],
1997 &d->buffer[d->cons++ & MUX_BUFFER_MASK], 1);
1998 }
1999 }
2000
2001 static int mux_chr_can_read(void *opaque)
2002 {
2003 CharDriverState *chr = opaque;
2004 MuxDriver *d = chr->opaque;
2005
2006 if ((d->prod - d->cons) < MUX_BUFFER_SIZE)
2007 return 1;
2008 if (d->chr_can_read[chr->focus])
2009 return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
2010 return 0;
2011 }
2012
2013 static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
2014 {
2015 CharDriverState *chr = opaque;
2016 MuxDriver *d = chr->opaque;
2017 int m = chr->focus;
2018 int i;
2019
2020 mux_chr_accept_input (opaque);
2021
2022 for(i = 0; i < size; i++)
2023 if (mux_proc_byte(chr, d, buf[i])) {
2024 if (d->prod == d->cons &&
2025 d->chr_can_read[m] &&
2026 d->chr_can_read[m](d->ext_opaque[m]))
2027 d->chr_read[m](d->ext_opaque[m], &buf[i], 1);
2028 else
2029 d->buffer[d->prod++ & MUX_BUFFER_MASK] = buf[i];
2030 }
2031 }
2032
2033 static void mux_chr_event(void *opaque, int event)
2034 {
2035 CharDriverState *chr = opaque;
2036 MuxDriver *d = chr->opaque;
2037 int i;
2038
2039 /* Send the event to all registered listeners */
2040 for (i = 0; i < d->mux_cnt; i++)
2041 if (d->chr_event[i])
2042 d->chr_event[i](d->ext_opaque[i], event);
2043 }
2044
2045 static void mux_chr_update_read_handler(CharDriverState *chr)
2046 {
2047 MuxDriver *d = chr->opaque;
2048
2049 if (d->mux_cnt >= MAX_MUX) {
2050 fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
2051 return;
2052 }
2053 d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
2054 d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
2055 d->chr_read[d->mux_cnt] = chr->chr_read;
2056 d->chr_event[d->mux_cnt] = chr->chr_event;
2057 /* Fix up the real driver with mux routines */
2058 if (d->mux_cnt == 0) {
2059 qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
2060 mux_chr_event, chr);
2061 }
2062 chr->focus = d->mux_cnt;
2063 d->mux_cnt++;
2064 }
2065
2066 static CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
2067 {
2068 CharDriverState *chr;
2069 MuxDriver *d;
2070
2071 chr = qemu_mallocz(sizeof(CharDriverState));
2072 if (!chr)
2073 return NULL;
2074 d = qemu_mallocz(sizeof(MuxDriver));
2075 if (!d) {
2076 free(chr);
2077 return NULL;
2078 }
2079
2080 chr->opaque = d;
2081 d->drv = drv;
2082 chr->focus = -1;
2083 chr->chr_write = mux_chr_write;
2084 chr->chr_update_read_handler = mux_chr_update_read_handler;
2085 chr->chr_accept_input = mux_chr_accept_input;
2086 return chr;
2087 }
2088
2089
2090 #ifdef _WIN32
2091
2092 static void socket_cleanup(void)
2093 {
2094 WSACleanup();
2095 }
2096
2097 static int socket_init(void)
2098 {
2099 WSADATA Data;
2100 int ret, err;
2101
2102 ret = WSAStartup(MAKEWORD(2,2), &Data);
2103 if (ret != 0) {
2104 err = WSAGetLastError();
2105 fprintf(stderr, "WSAStartup: %d\n", err);
2106 return -1;
2107 }
2108 atexit(socket_cleanup);
2109 return 0;
2110 }
2111
2112 static int send_all(int fd, const uint8_t *buf, int len1)
2113 {
2114 int ret, len;
2115
2116 len = len1;
2117 while (len > 0) {
2118 ret = send(fd, buf, len, 0);
2119 if (ret < 0) {
2120 int errno;
2121 errno = WSAGetLastError();
2122 if (errno != WSAEWOULDBLOCK) {
2123 return -1;
2124 }
2125 } else if (ret == 0) {
2126 break;
2127 } else {
2128 buf += ret;
2129 len -= ret;
2130 }
2131 }
2132 return len1 - len;
2133 }
2134
2135 #else
2136
2137 static int unix_write(int fd, const uint8_t *buf, int len1)
2138 {
2139 int ret, len;
2140
2141 len = len1;
2142 while (len > 0) {
2143 ret = write(fd, buf, len);
2144 if (ret < 0) {
2145 if (errno != EINTR && errno != EAGAIN)
2146 return -1;
2147 } else if (ret == 0) {
2148 break;
2149 } else {
2150 buf += ret;
2151 len -= ret;
2152 }
2153 }
2154 return len1 - len;
2155 }
2156
2157 static inline int send_all(int fd, const uint8_t *buf, int len1)
2158 {
2159 return unix_write(fd, buf, len1);
2160 }
2161 #endif /* !_WIN32 */
2162
2163 #ifndef _WIN32
2164
2165 typedef struct {
2166 int fd_in, fd_out;
2167 int max_size;
2168 } FDCharDriver;
2169
2170 #define STDIO_MAX_CLIENTS 1
2171 static int stdio_nb_clients = 0;
2172
2173 static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2174 {
2175 FDCharDriver *s = chr->opaque;
2176 return unix_write(s->fd_out, buf, len);
2177 }
2178
2179 static int fd_chr_read_poll(void *opaque)
2180 {
2181 CharDriverState *chr = opaque;
2182 FDCharDriver *s = chr->opaque;
2183
2184 s->max_size = qemu_chr_can_read(chr);
2185 return s->max_size;
2186 }
2187
2188 static void fd_chr_read(void *opaque)
2189 {
2190 CharDriverState *chr = opaque;
2191 FDCharDriver *s = chr->opaque;
2192 int size, len;
2193 uint8_t buf[1024];
2194
2195 len = sizeof(buf);
2196 if (len > s->max_size)
2197 len = s->max_size;
2198 if (len == 0)
2199 return;
2200 size = read(s->fd_in, buf, len);
2201 if (size == 0) {
2202 /* FD has been closed. Remove it from the active list. */
2203 qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
2204 return;
2205 }
2206 if (size > 0) {
2207 qemu_chr_read(chr, buf, size);
2208 }
2209 }
2210
2211 static void fd_chr_update_read_handler(CharDriverState *chr)
2212 {
2213 FDCharDriver *s = chr->opaque;
2214
2215 if (s->fd_in >= 0) {
2216 if (nographic && s->fd_in == 0) {
2217 } else {
2218 qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
2219 fd_chr_read, NULL, chr);
2220 }
2221 }
2222 }
2223
2224 static void fd_chr_close(struct CharDriverState *chr)
2225 {
2226 FDCharDriver *s = chr->opaque;
2227
2228 if (s->fd_in >= 0) {
2229 if (nographic && s->fd_in == 0) {
2230 } else {
2231 qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
2232 }
2233 }
2234
2235 qemu_free(s);
2236 }
2237
2238 /* open a character device to a unix fd */
2239 static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
2240 {
2241 CharDriverState *chr;
2242 FDCharDriver *s;
2243
2244 chr = qemu_mallocz(sizeof(CharDriverState));
2245 if (!chr)
2246 return NULL;
2247 s = qemu_mallocz(sizeof(FDCharDriver));
2248 if (!s) {
2249 free(chr);
2250 return NULL;
2251 }
2252 s->fd_in = fd_in;
2253 s->fd_out = fd_out;
2254 chr->opaque = s;
2255 chr->chr_write = fd_chr_write;
2256 chr->chr_update_read_handler = fd_chr_update_read_handler;
2257 chr->chr_close = fd_chr_close;
2258
2259 qemu_chr_reset(chr);
2260
2261 return chr;
2262 }
2263
2264 static CharDriverState *qemu_chr_open_file_out(const char *file_out)
2265 {
2266 int fd_out;
2267
2268 TFR(fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666));
2269 if (fd_out < 0)
2270 return NULL;
2271 return qemu_chr_open_fd(-1, fd_out);
2272 }
2273
2274 static CharDriverState *qemu_chr_open_pipe(const char *filename)
2275 {
2276 int fd_in, fd_out;
2277 char filename_in[256], filename_out[256];
2278
2279 snprintf(filename_in, 256, "%s.in", filename);
2280 snprintf(filename_out, 256, "%s.out", filename);
2281 TFR(fd_in = open(filename_in, O_RDWR | O_BINARY));
2282 TFR(fd_out = open(filename_out, O_RDWR | O_BINARY));
2283 if (fd_in < 0 || fd_out < 0) {
2284 if (fd_in >= 0)
2285 close(fd_in);
2286 if (fd_out >= 0)
2287 close(fd_out);
2288 TFR(fd_in = fd_out = open(filename, O_RDWR | O_BINARY));
2289 if (fd_in < 0)
2290 return NULL;
2291 }
2292 return qemu_chr_open_fd(fd_in, fd_out);
2293 }
2294
2295
2296 /* for STDIO, we handle the case where several clients use it
2297 (nographic mode) */
2298
2299 #define TERM_FIFO_MAX_SIZE 1
2300
2301 static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
2302 static int term_fifo_size;
2303
2304 static int stdio_read_poll(void *opaque)
2305 {
2306 CharDriverState *chr = opaque;
2307
2308 /* try to flush the queue if needed */
2309 if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
2310 qemu_chr_read(chr, term_fifo, 1);
2311 term_fifo_size = 0;
2312 }
2313 /* see if we can absorb more chars */
2314 if (term_fifo_size == 0)
2315 return 1;
2316 else
2317 return 0;
2318 }
2319
2320 static void stdio_read(void *opaque)
2321 {
2322 int size;
2323 uint8_t buf[1];
2324 CharDriverState *chr = opaque;
2325
2326 size = read(0, buf, 1);
2327 if (size == 0) {
2328 /* stdin has been closed. Remove it from the active list. */
2329 qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2330 return;
2331 }
2332 if (size > 0) {
2333 if (qemu_chr_can_read(chr) > 0) {
2334 qemu_chr_read(chr, buf, 1);
2335 } else if (term_fifo_size == 0) {
2336 term_fifo[term_fifo_size++] = buf[0];
2337 }
2338 }
2339 }
2340
2341 /* init terminal so that we can grab keys */
2342 static struct termios oldtty;
2343 static int old_fd0_flags;
2344 static int term_atexit_done;
2345
2346 static void term_exit(void)
2347 {
2348 tcsetattr (0, TCSANOW, &oldtty);
2349 fcntl(0, F_SETFL, old_fd0_flags);
2350 }
2351
2352 static void term_init(void)
2353 {
2354 struct termios tty;
2355
2356 tcgetattr (0, &tty);
2357 oldtty = tty;
2358 old_fd0_flags = fcntl(0, F_GETFL);
2359
2360 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2361 |INLCR|IGNCR|ICRNL|IXON);
2362 tty.c_oflag |= OPOST;
2363 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
2364 /* if graphical mode, we allow Ctrl-C handling */
2365 if (nographic)
2366 tty.c_lflag &= ~ISIG;
2367 tty.c_cflag &= ~(CSIZE|PARENB);
2368 tty.c_cflag |= CS8;
2369 tty.c_cc[VMIN] = 1;
2370 tty.c_cc[VTIME] = 0;
2371
2372 tcsetattr (0, TCSANOW, &tty);
2373
2374 if (!term_atexit_done++)
2375 atexit(term_exit);
2376
2377 fcntl(0, F_SETFL, O_NONBLOCK);
2378 }
2379
2380 static void qemu_chr_close_stdio(struct CharDriverState *chr)
2381 {
2382 term_exit();
2383 stdio_nb_clients--;
2384 qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2385 fd_chr_close(chr);
2386 }
2387
2388 static CharDriverState *qemu_chr_open_stdio(void)
2389 {
2390 CharDriverState *chr;
2391
2392 if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
2393 return NULL;
2394 chr = qemu_chr_open_fd(0, 1);
2395 chr->chr_close = qemu_chr_close_stdio;
2396 qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
2397 stdio_nb_clients++;
2398 term_init();
2399
2400 return chr;
2401 }
2402
2403 #ifdef __sun__
2404 /* Once Solaris has openpty(), this is going to be removed. */
2405 int openpty(int *amaster, int *aslave, char *name,
2406 struct termios *termp, struct winsize *winp)
2407 {
2408 const char *slave;
2409 int mfd = -1, sfd = -1;
2410
2411 *amaster = *aslave = -1;
2412
2413 mfd = open("/dev/ptmx", O_RDWR | O_NOCTTY);
2414 if (mfd < 0)
2415 goto err;
2416
2417 if (grantpt(mfd) == -1 || unlockpt(mfd) == -1)
2418 goto err;
2419
2420 if ((slave = ptsname(mfd)) == NULL)
2421 goto err;
2422
2423 if ((sfd = open(slave, O_RDONLY | O_NOCTTY)) == -1)
2424 goto err;
2425
2426 if (ioctl(sfd, I_PUSH, "ptem") == -1 ||
2427 (termp != NULL && tcgetattr(sfd, termp) < 0))
2428 goto err;
2429
2430 if (amaster)
2431 *amaster = mfd;
2432 if (aslave)
2433 *aslave = sfd;
2434 if (winp)
2435 ioctl(sfd, TIOCSWINSZ, winp);
2436
2437 return 0;
2438
2439 err:
2440 if (sfd != -1)
2441 close(sfd);
2442 close(mfd);
2443 return -1;
2444 }
2445
2446 void cfmakeraw (struct termios *termios_p)
2447 {
2448 termios_p->c_iflag &=
2449 ~(IGNBRK|BRKINT|PARMRK|ISTRIP|INLCR|IGNCR|ICRNL|IXON);
2450 termios_p->c_oflag &= ~OPOST;
2451 termios_p->c_lflag &= ~(ECHO|ECHONL|ICANON|ISIG|IEXTEN);
2452 termios_p->c_cflag &= ~(CSIZE|PARENB);
2453 termios_p->c_cflag |= CS8;
2454
2455 termios_p->c_cc[VMIN] = 0;
2456 termios_p->c_cc[VTIME] = 0;
2457 }
2458 #endif
2459
2460 #if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
2461 || defined(__NetBSD__) || defined(__OpenBSD__)
2462
2463 typedef struct {
2464 int fd;
2465 int connected;
2466 int polling;
2467 int read_bytes;
2468 QEMUTimer *timer;
2469 } PtyCharDriver;
2470
2471 static void pty_chr_update_read_handler(CharDriverState *chr);
2472 static void pty_chr_state(CharDriverState *chr, int connected);
2473
2474 static int pty_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2475 {
2476 PtyCharDriver *s = chr->opaque;
2477
2478 if (!s->connected) {
2479 /* guest sends data, check for (re-)connect */
2480 pty_chr_update_read_handler(chr);
2481 return 0;
2482 }
2483 return unix_write(s->fd, buf, len);
2484 }
2485
2486 static int pty_chr_read_poll(void *opaque)
2487 {
2488 CharDriverState *chr = opaque;
2489 PtyCharDriver *s = chr->opaque;
2490
2491 s->read_bytes = qemu_chr_can_read(chr);
2492 return s->read_bytes;
2493 }
2494
2495 static void pty_chr_read(void *opaque)
2496 {
2497 CharDriverState *chr = opaque;
2498 PtyCharDriver *s = chr->opaque;
2499 int size, len;
2500 uint8_t buf[1024];
2501
2502 len = sizeof(buf);
2503 if (len > s->read_bytes)
2504 len = s->read_bytes;
2505 if (len == 0)
2506 return;
2507 size = read(s->fd, buf, len);
2508 if ((size == -1 && errno == EIO) ||
2509 (size == 0)) {
2510 pty_chr_state(chr, 0);
2511 return;
2512 }
2513 if (size > 0) {
2514 pty_chr_state(chr, 1);
2515 qemu_chr_read(chr, buf, size);
2516 }
2517 }
2518
2519 static void pty_chr_update_read_handler(CharDriverState *chr)
2520 {
2521 PtyCharDriver *s = chr->opaque;
2522
2523 qemu_set_fd_handler2(s->fd, pty_chr_read_poll,
2524 pty_chr_read, NULL, chr);
2525 s->polling = 1;
2526 /*
2527 * Short timeout here: just need wait long enougth that qemu makes
2528 * it through the poll loop once. When reconnected we want a
2529 * short timeout so we notice it almost instantly. Otherwise
2530 * read() gives us -EIO instantly, making pty_chr_state() reset the
2531 * timeout to the normal (much longer) poll interval before the
2532 * timer triggers.
2533 */
2534 qemu_mod_timer(s->timer, qemu_get_clock(rt_clock) + 10);
2535 }
2536
2537 static void pty_chr_state(CharDriverState *chr, int connected)
2538 {
2539 PtyCharDriver *s = chr->opaque;
2540
2541 if (!connected) {
2542 qemu_set_fd_handler2(s->fd, NULL, NULL, NULL, NULL);
2543 s->connected = 0;
2544 s->polling = 0;
2545 /* (re-)connect poll interval for idle guests: once per second.
2546 * We check more frequently in case the guests sends data to
2547 * the virtual device linked to our pty. */
2548 qemu_mod_timer(s->timer, qemu_get_clock(rt_clock) + 1000);
2549 } else {
2550 if (!s->connected)
2551 qemu_chr_reset(chr);
2552 s->connected = 1;
2553 }
2554 }
2555
2556 static void pty_chr_timer(void *opaque)
2557 {
2558 struct CharDriverState *chr = opaque;
2559 PtyCharDriver *s = chr->opaque;
2560
2561 if (s->connected)
2562 return;
2563 if (s->polling) {
2564 /* If we arrive here without polling being cleared due
2565 * read returning -EIO, then we are (re-)connected */
2566 pty_chr_state(chr, 1);
2567 return;
2568 }
2569
2570 /* Next poll ... */
2571 pty_chr_update_read_handler(chr);
2572 }
2573
2574 static void pty_chr_close(struct CharDriverState *chr)
2575 {
2576 PtyCharDriver *s = chr->opaque;
2577
2578 qemu_set_fd_handler2(s->fd, NULL, NULL, NULL, NULL);
2579 close(s->fd);
2580 qemu_free(s);
2581 }
2582
2583 static CharDriverState *qemu_chr_open_pty(void)
2584 {
2585 CharDriverState *chr;
2586 PtyCharDriver *s;
2587 struct termios tty;
2588 int slave_fd;
2589 #if defined(__OpenBSD__)
2590 char pty_name[PATH_MAX];
2591 #define q_ptsname(x) pty_name
2592 #else
2593 char *pty_name = NULL;
2594 #define q_ptsname(x) ptsname(x)
2595 #endif
2596
2597 chr = qemu_mallocz(sizeof(CharDriverState));
2598 if (!chr)
2599 return NULL;
2600 s = qemu_mallocz(sizeof(PtyCharDriver));
2601 if (!s) {
2602 qemu_free(chr);
2603 return NULL;
2604 }
2605
2606 if (openpty(&s->fd, &slave_fd, pty_name, NULL, NULL) < 0) {
2607 return NULL;
2608 }
2609
2610 /* Set raw attributes on the pty. */
2611 cfmakeraw(&tty);
2612 tcsetattr(slave_fd, TCSAFLUSH, &tty);
2613 close(slave_fd);
2614
2615 fprintf(stderr, "char device redirected to %s\n", q_ptsname(s->fd));
2616
2617 chr->opaque = s;
2618 chr->chr_write = pty_chr_write;
2619 chr->chr_update_read_handler = pty_chr_update_read_handler;
2620 chr->chr_close = pty_chr_close;
2621
2622 s->timer = qemu_new_timer(rt_clock, pty_chr_timer, chr);
2623
2624 return chr;
2625 }
2626
2627 static void tty_serial_init(int fd, int speed,
2628 int parity, int data_bits, int stop_bits)
2629 {
2630 struct termios tty;
2631 speed_t spd;
2632
2633 #if 0
2634 printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
2635 speed, parity, data_bits, stop_bits);
2636 #endif
2637 tcgetattr (fd, &tty);
2638
2639 #define MARGIN 1.1
2640 if (speed <= 50 * MARGIN)
2641 spd = B50;
2642 else if (speed <= 75 * MARGIN)
2643 spd = B75;
2644 else if (speed <= 300 * MARGIN)
2645 spd = B300;
2646 else if (speed <= 600 * MARGIN)
2647 spd = B600;
2648 else if (speed <= 1200 * MARGIN)
2649 spd = B1200;
2650 else if (speed <= 2400 * MARGIN)
2651 spd = B2400;
2652 else if (speed <= 4800 * MARGIN)
2653 spd = B4800;
2654 else if (speed <= 9600 * MARGIN)
2655 spd = B9600;
2656 else if (speed <= 19200 * MARGIN)
2657 spd = B19200;
2658 else if (speed <= 38400 * MARGIN)
2659 spd = B38400;
2660 else if (speed <= 57600 * MARGIN)
2661 spd = B57600;
2662 else if (speed <= 115200 * MARGIN)
2663 spd = B115200;
2664 else
2665 spd = B115200;
2666
2667 cfsetispeed(&tty, spd);
2668 cfsetospeed(&tty, spd);
2669
2670 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2671 |INLCR|IGNCR|ICRNL|IXON);
2672 tty.c_oflag |= OPOST;
2673 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
2674 tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
2675 switch(data_bits) {
2676 default:
2677 case 8:
2678 tty.c_cflag |= CS8;
2679 break;
2680 case 7:
2681 tty.c_cflag |= CS7;
2682 break;
2683 case 6:
2684 tty.c_cflag |= CS6;
2685 break;
2686 case 5:
2687 tty.c_cflag |= CS5;
2688 break;
2689 }
2690 switch(parity) {
2691 default:
2692 case 'N':
2693 break;
2694 case 'E':
2695 tty.c_cflag |= PARENB;
2696 break;
2697 case 'O':
2698 tty.c_cflag |= PARENB | PARODD;
2699 break;
2700 }
2701 if (stop_bits == 2)
2702 tty.c_cflag |= CSTOPB;
2703
2704 tcsetattr (fd, TCSANOW, &tty);
2705 }
2706
2707 static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
2708 {
2709 FDCharDriver *s = chr->opaque;
2710
2711 switch(cmd) {
2712 case CHR_IOCTL_SERIAL_SET_PARAMS:
2713 {
2714 QEMUSerialSetParams *ssp = arg;
2715 tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
2716 ssp->data_bits, ssp->stop_bits);
2717 }
2718 break;
2719 case CHR_IOCTL_SERIAL_SET_BREAK:
2720 {
2721 int enable = *(int *)arg;
2722 if (enable)
2723 tcsendbreak(s->fd_in, 1);
2724 }
2725 break;
2726 case CHR_IOCTL_SERIAL_GET_TIOCM:
2727 {
2728 int sarg = 0;
2729 int *targ = (int *)arg;
2730 ioctl(s->fd_in, TIOCMGET, &sarg);
2731 *targ = 0;
2732 if (sarg | TIOCM_CTS)
2733 *targ |= CHR_TIOCM_CTS;
2734 if (sarg | TIOCM_CAR)
2735 *targ |= CHR_TIOCM_CAR;
2736 if (sarg | TIOCM_DSR)
2737 *targ |= CHR_TIOCM_DSR;
2738 if (sarg | TIOCM_RI)
2739 *targ |= CHR_TIOCM_RI;
2740 if (sarg | TIOCM_DTR)
2741 *targ |= CHR_TIOCM_DTR;
2742 if (sarg | TIOCM_RTS)
2743 *targ |= CHR_TIOCM_RTS;
2744 }
2745 break;
2746 case CHR_IOCTL_SERIAL_SET_TIOCM:
2747 {
2748 int sarg = *(int *)arg;
2749 int targ = 0;
2750 if (sarg | CHR_TIOCM_DTR)
2751 targ |= TIOCM_DTR;
2752 if (sarg | CHR_TIOCM_RTS)
2753 targ |= TIOCM_RTS;
2754 ioctl(s->fd_in, TIOCMSET, &targ);
2755 }
2756 break;
2757 default:
2758 return -ENOTSUP;
2759 }
2760 return 0;
2761 }
2762
2763 static CharDriverState *qemu_chr_open_tty(const char *filename)
2764 {
2765 CharDriverState *chr;
2766 int fd;
2767
2768 TFR(fd = open(filename, O_RDWR | O_NONBLOCK));
2769 tty_serial_init(fd, 115200, 'N', 8, 1);
2770 chr = qemu_chr_open_fd(fd, fd);
2771 if (!chr) {
2772 close(fd);
2773 return NULL;
2774 }
2775 chr->chr_ioctl = tty_serial_ioctl;
2776 qemu_chr_reset(chr);
2777 return chr;
2778 }
2779 #else /* ! __linux__ && ! __sun__ */
2780 static CharDriverState *qemu_chr_open_pty(void)
2781 {
2782 return NULL;
2783 }
2784 #endif /* __linux__ || __sun__ */
2785
2786 #if defined(__linux__)
2787 typedef struct {
2788 int fd;
2789 int mode;
2790 } ParallelCharDriver;
2791
2792 static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
2793 {
2794 if (s->mode != mode) {
2795 int m = mode;
2796 if (ioctl(s->fd, PPSETMODE, &m) < 0)
2797 return 0;
2798 s->mode = mode;
2799 }
2800 return 1;
2801 }
2802
2803 static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
2804 {
2805 ParallelCharDriver *drv = chr->opaque;
2806 int fd = drv->fd;
2807 uint8_t b;
2808
2809 switch(cmd) {
2810 case CHR_IOCTL_PP_READ_DATA:
2811 if (ioctl(fd, PPRDATA, &b) < 0)
2812 return -ENOTSUP;
2813 *(uint8_t *)arg = b;
2814 break;
2815 case CHR_IOCTL_PP_WRITE_DATA:
2816 b = *(uint8_t *)arg;
2817 if (ioctl(fd, PPWDATA, &b) < 0)
2818 return -ENOTSUP;
2819 break;
2820 case CHR_IOCTL_PP_READ_CONTROL:
2821 if (ioctl(fd, PPRCONTROL, &b) < 0)
2822 return -ENOTSUP;
2823 /* Linux gives only the lowest bits, and no way to know data
2824 direction! For better compatibility set the fixed upper
2825 bits. */
2826 *(uint8_t *)arg = b | 0xc0;
2827 break;
2828 case CHR_IOCTL_PP_WRITE_CONTROL:
2829 b = *(uint8_t *)arg;
2830 if (ioctl(fd, PPWCONTROL, &b) < 0)
2831 return -ENOTSUP;
2832 break;
2833 case CHR_IOCTL_PP_READ_STATUS:
2834 if (ioctl(fd, PPRSTATUS, &b) < 0)
2835 return -ENOTSUP;
2836 *(uint8_t *)arg = b;
2837 break;
2838 case CHR_IOCTL_PP_DATA_DIR:
2839 if (ioctl(fd, PPDATADIR, (int *)arg) < 0)
2840 return -ENOTSUP;
2841 break;
2842 case CHR_IOCTL_PP_EPP_READ_ADDR:
2843 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2844 struct ParallelIOArg *parg = arg;
2845 int n = read(fd, parg->buffer, parg->count);
2846 if (n != parg->count) {
2847 return -EIO;
2848 }
2849 }
2850 break;
2851 case CHR_IOCTL_PP_EPP_READ:
2852 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2853 struct ParallelIOArg *parg = arg;
2854 int n = read(fd, parg->buffer, parg->count);
2855 if (n != parg->count) {
2856 return -EIO;
2857 }
2858 }
2859 break;
2860 case CHR_IOCTL_PP_EPP_WRITE_ADDR:
2861 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2862 struct ParallelIOArg *parg = arg;
2863 int n = write(fd, parg->buffer, parg->count);
2864 if (n != parg->count) {
2865 return -EIO;
2866 }
2867 }
2868 break;
2869 case CHR_IOCTL_PP_EPP_WRITE:
2870 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2871 struct ParallelIOArg *parg = arg;
2872 int n = write(fd, parg->buffer, parg->count);
2873 if (n != parg->count) {
2874 return -EIO;
2875 }
2876 }
2877 break;
2878 default:
2879 return -ENOTSUP;
2880 }
2881 return 0;
2882 }
2883
2884 static void pp_close(CharDriverState *chr)
2885 {
2886 ParallelCharDriver *drv = chr->opaque;
2887 int fd = drv->fd;
2888
2889 pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2890 ioctl(fd, PPRELEASE);
2891 close(fd);
2892 qemu_free(drv);
2893 }
2894
2895 static CharDriverState *qemu_chr_open_pp(const char *filename)
2896 {
2897 CharDriverState *chr;
2898 ParallelCharDriver *drv;
2899 int fd;
2900
2901 TFR(fd = open(filename, O_RDWR));
2902 if (fd < 0)
2903 return NULL;
2904
2905 if (ioctl(fd, PPCLAIM) < 0) {
2906 close(fd);
2907 return NULL;
2908 }
2909
2910 drv = qemu_mallocz(sizeof(ParallelCharDriver));
2911 if (!drv) {
2912 close(fd);
2913 return NULL;
2914 }
2915 drv->fd = fd;
2916 drv->mode = IEEE1284_MODE_COMPAT;
2917
2918 chr = qemu_mallocz(sizeof(CharDriverState));
2919 if (!chr) {
2920 qemu_free(drv);
2921 close(fd);
2922 return NULL;
2923 }
2924 chr->chr_write = null_chr_write;
2925 chr->chr_ioctl = pp_ioctl;
2926 chr->chr_close = pp_close;
2927 chr->opaque = drv;
2928
2929 qemu_chr_reset(chr);
2930
2931 return chr;
2932 }
2933 #endif /* __linux__ */
2934
2935 #else /* _WIN32 */
2936
2937 typedef struct {
2938 int max_size;
2939 HANDLE hcom, hrecv, hsend;
2940 OVERLAPPED orecv, osend;
2941 BOOL fpipe;
2942 DWORD len;
2943 } WinCharState;
2944
2945 #define NSENDBUF 2048
2946 #define NRECVBUF 2048
2947 #define MAXCONNECT 1
2948 #define NTIMEOUT 5000
2949
2950 static int win_chr_poll(void *opaque);
2951 static int win_chr_pipe_poll(void *opaque);
2952
2953 static void win_chr_close(CharDriverState *chr)
2954 {
2955 WinCharState *s = chr->opaque;
2956
2957 if (s->hsend) {
2958 CloseHandle(s->hsend);
2959 s->hsend = NULL;
2960 }
2961 if (s->hrecv) {
2962 CloseHandle(s->hrecv);
2963 s->hrecv = NULL;
2964 }
2965 if (s->hcom) {
2966 CloseHandle(s->hcom);
2967 s->hcom = NULL;
2968 }
2969 if (s->fpipe)
2970 qemu_del_polling_cb(win_chr_pipe_poll, chr);
2971 else
2972 qemu_del_polling_cb(win_chr_poll, chr);
2973 }
2974
2975 static int win_chr_init(CharDriverState *chr, const char *filename)
2976 {
2977 WinCharState *s = chr->opaque;
2978 COMMCONFIG comcfg;
2979 COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2980 COMSTAT comstat;
2981 DWORD size;
2982 DWORD err;
2983
2984 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2985 if (!s->hsend) {
2986 fprintf(stderr, "Failed CreateEvent\n");
2987 goto fail;
2988 }
2989 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2990 if (!s->hrecv) {
2991 fprintf(stderr, "Failed CreateEvent\n");
2992 goto fail;
2993 }
2994
2995 s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2996 OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2997 if (s->hcom == INVALID_HANDLE_VALUE) {
2998 fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2999 s->hcom = NULL;
3000 goto fail;
3001 }
3002
3003 if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
3004 fprintf(stderr, "Failed SetupComm\n");
3005 goto fail;
3006 }
3007
3008 ZeroMemory(&comcfg, sizeof(COMMCONFIG));
3009 size = sizeof(COMMCONFIG);
3010 GetDefaultCommConfig(filename, &comcfg, &size);
3011 comcfg.dcb.DCBlength = sizeof(DCB);
3012 CommConfigDialog(filename, NULL, &comcfg);
3013
3014 if (!SetCommState(s->hcom, &comcfg.dcb)) {
3015 fprintf(stderr, "Failed SetCommState\n");
3016 goto fail;
3017 }
3018
3019 if (!SetCommMask(s->hcom, EV_ERR)) {
3020 fprintf(stderr, "Failed SetCommMask\n");
3021 goto fail;
3022 }
3023
3024 cto.ReadIntervalTimeout = MAXDWORD;
3025 if (!SetCommTimeouts(s->hcom, &cto)) {
3026 fprintf(stderr, "Failed SetCommTimeouts\n");
3027 goto fail;
3028 }
3029
3030 if (!ClearCommError(s->hcom, &err, &comstat)) {
3031 fprintf(stderr, "Failed ClearCommError\n");
3032 goto fail;
3033 }
3034 qemu_add_polling_cb(win_chr_poll, chr);
3035 return 0;
3036
3037 fail:
3038 win_chr_close(chr);
3039 return -1;
3040 }
3041
3042 static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
3043 {
3044 WinCharState *s = chr->opaque;
3045 DWORD len, ret, size, err;
3046
3047 len = len1;
3048 ZeroMemory(&s->osend, sizeof(s->osend));
3049 s->osend.hEvent = s->hsend;
3050 while (len > 0) {
3051 if (s->hsend)
3052 ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
3053 else
3054 ret = WriteFile(s->hcom, buf, len, &size, NULL);
3055 if (!ret) {
3056 err = GetLastError();
3057 if (err == ERROR_IO_PENDING) {
3058 ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
3059 if (ret) {
3060 buf += size;
3061 len -= size;
3062 } else {
3063 break;
3064 }
3065 } else {
3066 break;
3067 }
3068 } else {
3069 buf += size;
3070 len -= size;
3071 }
3072 }
3073 return len1 - len;
3074 }
3075
3076 static int win_chr_read_poll(CharDriverState *chr)
3077 {
3078 WinCharState *s = chr->opaque;
3079
3080 s->max_size = qemu_chr_can_read(chr);
3081 return s->max_size;
3082 }
3083
3084 static void win_chr_readfile(CharDriverState *chr)
3085 {
3086 WinCharState *s = chr->opaque;
3087 int ret, err;
3088 uint8_t buf[1024];
3089 DWORD size;
3090
3091 ZeroMemory(&s->orecv, sizeof(s->orecv));
3092 s->orecv.hEvent = s->hrecv;
3093 ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
3094 if (!ret) {
3095 err = GetLastError();
3096 if (err == ERROR_IO_PENDING) {
3097 ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
3098 }
3099 }
3100
3101 if (size > 0) {
3102 qemu_chr_read(chr, buf, size);
3103 }
3104 }
3105
3106 static void win_chr_read(CharDriverState *chr)
3107 {
3108 WinCharState *s = chr->opaque;
3109
3110 if (s->len > s->max_size)
3111 s->len = s->max_size;
3112 if (s->len == 0)
3113 return;
3114
3115 win_chr_readfile(chr);
3116 }
3117
3118 static int win_chr_poll(void *opaque)
3119 {
3120 CharDriverState *chr = opaque;
3121 WinCharState *s = chr->opaque;
3122 COMSTAT status;
3123 DWORD comerr;
3124
3125 ClearCommError(s->hcom, &comerr, &status);
3126 if (status.cbInQue > 0) {
3127 s->len = status.cbInQue;
3128 win_chr_read_poll(chr);
3129 win_chr_read(chr);
3130 return 1;
3131 }
3132 return 0;
3133 }
3134
3135 static CharDriverState *qemu_chr_open_win(const char *filename)
3136 {
3137 CharDriverState *chr;
3138 WinCharState *s;
3139
3140 chr = qemu_mallocz(sizeof(CharDriverState));
3141 if (!chr)
3142 return NULL;
3143 s = qemu_mallocz(sizeof(WinCharState));
3144 if (!s) {
3145 free(chr);
3146 return NULL;
3147 }
3148 chr->opaque = s;
3149 chr->chr_write = win_chr_write;
3150 chr->chr_close = win_chr_close;
3151
3152 if (win_chr_init(chr, filename) < 0) {
3153 free(s);
3154 free(chr);
3155 return NULL;
3156 }
3157 qemu_chr_reset(chr);
3158 return chr;
3159 }
3160
3161 static int win_chr_pipe_poll(void *opaque)
3162 {
3163 CharDriverState *chr = opaque;
3164 WinCharState *s = chr->opaque;
3165 DWORD size;
3166
3167 PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
3168 if (size > 0) {
3169 s->len = size;
3170 win_chr_read_poll(chr);
3171 win_chr_read(chr);
3172 return 1;
3173 }
3174 return 0;
3175 }
3176
3177 static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
3178 {
3179 WinCharState *s = chr->opaque;
3180 OVERLAPPED ov;
3181 int ret;
3182 DWORD size;
3183 char openname[256];
3184
3185 s->fpipe = TRUE;
3186
3187 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
3188 if (!s->hsend) {
3189 fprintf(stderr, "Failed CreateEvent\n");
3190 goto fail;
3191 }
3192 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
3193 if (!s->hrecv) {
3194 fprintf(stderr, "Failed CreateEvent\n");
3195 goto fail;
3196 }
3197
3198 snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
3199 s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
3200 PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
3201 PIPE_WAIT,
3202 MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
3203 if (s->hcom == INVALID_HANDLE_VALUE) {
3204 fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
3205 s->hcom = NULL;
3206 goto fail;
3207 }
3208
3209 ZeroMemory(&ov, sizeof(ov));
3210 ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
3211 ret = ConnectNamedPipe(s->hcom, &ov);
3212 if (ret) {
3213 fprintf(stderr, "Failed ConnectNamedPipe\n");
3214 goto fail;
3215 }
3216
3217 ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
3218 if (!ret) {
3219 fprintf(stderr, "Failed GetOverlappedResult\n");
3220 if (ov.hEvent) {
3221 CloseHandle(ov.hEvent);
3222 ov.hEvent = NULL;
3223 }
3224 goto fail;
3225 }
3226
3227 if (ov.hEvent) {
3228 CloseHandle(ov.hEvent);
3229 ov.hEvent = NULL;
3230 }
3231 qemu_add_polling_cb(win_chr_pipe_poll, chr);
3232 return 0;
3233
3234 fail:
3235 win_chr_close(chr);
3236 return -1;
3237 }
3238
3239
3240 static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
3241 {
3242 CharDriverState *chr;
3243 WinCharState *s;
3244
3245 chr = qemu_mallocz(sizeof(CharDriverState));
3246 if (!chr)
3247 return NULL;
3248 s = qemu_mallocz(sizeof(WinCharState));
3249 if (!s) {
3250 free(chr);
3251 return NULL;
3252 }
3253 chr->opaque = s;
3254 chr->chr_write = win_chr_write;
3255 chr->chr_close = win_chr_close;
3256
3257 if (win_chr_pipe_init(chr, filename) < 0) {
3258 free(s);
3259 free(chr);
3260 return NULL;
3261 }
3262 qemu_chr_reset(chr);
3263 return chr;
3264 }
3265
3266 static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
3267 {
3268 CharDriverState *chr;
3269 WinCharState *s;
3270
3271 chr = qemu_mallocz(sizeof(CharDriverState));
3272 if (!chr)
3273 return NULL;
3274 s = qemu_mallocz(sizeof(WinCharState));
3275 if (!s) {
3276 free(chr);
3277 return NULL;
3278 }
3279 s->hcom = fd_out;
3280 chr->opaque = s;
3281 chr->chr_write = win_chr_write;
3282 qemu_chr_reset(chr);
3283 return chr;
3284 }
3285
3286 static CharDriverState *qemu_chr_open_win_con(const char *filename)
3287 {
3288 return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
3289 }
3290
3291 static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
3292 {
3293 HANDLE fd_out;
3294
3295 fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
3296 OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
3297 if (fd_out == INVALID_HANDLE_VALUE)
3298 return NULL;
3299
3300 return qemu_chr_open_win_file(fd_out);
3301 }
3302 #endif /* !_WIN32 */
3303
3304 /***********************************************************/
3305 /* UDP Net console */
3306
3307 typedef struct {
3308 int fd;
3309 struct sockaddr_in daddr;
3310 uint8_t buf[1024];
3311 int bufcnt;
3312 int bufptr;
3313 int max_size;
3314 } NetCharDriver;
3315
3316 static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
3317 {
3318 NetCharDriver *s = chr->opaque;
3319
3320 return sendto(s->fd, buf, len, 0,
3321 (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
3322 }
3323
3324 static int udp_chr_read_poll(void *opaque)
3325 {
3326 CharDriverState *chr = opaque;
3327 NetCharDriver *s = chr->opaque;
3328
3329 s->max_size = qemu_chr_can_read(chr);
3330
3331 /* If there were any stray characters in the queue process them
3332 * first
3333 */
3334 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
3335 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
3336 s->bufptr++;
3337 s->max_size = qemu_chr_can_read(chr);
3338 }
3339 return s->max_size;
3340 }
3341
3342 static void udp_chr_read(void *opaque)
3343 {
3344 CharDriverState *chr = opaque;
3345 NetCharDriver *s = chr->opaque;
3346
3347 if (s->max_size == 0)
3348 return;
3349 s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
3350 s->bufptr = s->bufcnt;
3351 if (s->bufcnt <= 0)
3352 return;
3353
3354 s->bufptr = 0;
3355 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
3356 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
3357 s->bufptr++;
3358 s->max_size = qemu_chr_can_read(chr);
3359 }
3360 }
3361
3362 static void udp_chr_update_read_handler(CharDriverState *chr)
3363 {
3364 NetCharDriver *s = chr->opaque;
3365
3366 if (s->fd >= 0) {
3367 qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
3368 udp_chr_read, NULL, chr);
3369 }
3370 }
3371
3372 int parse_host_port(struct sockaddr_in *saddr, const char *str);
3373 #ifndef _WIN32
3374 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
3375 #endif
3376 int parse_host_src_port(struct sockaddr_in *haddr,
3377 struct sockaddr_in *saddr,
3378 const char *str);
3379
3380 static CharDriverState *qemu_chr_open_udp(const char *def)
3381 {
3382 CharDriverState *chr = NULL;
3383 NetCharDriver *s = NULL;
3384 int fd = -1;
3385 struct sockaddr_in saddr;
3386
3387 chr = qemu_mallocz(sizeof(CharDriverState));
3388 if (!chr)
3389 goto return_err;
3390 s = qemu_mallocz(sizeof(NetCharDriver));
3391 if (!s)
3392 goto return_err;
3393
3394 fd = socket(PF_INET, SOCK_DGRAM, 0);
3395 if (fd < 0) {
3396 perror("socket(PF_INET, SOCK_DGRAM)");
3397 goto return_err;
3398 }
3399
3400 if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
3401 printf("Could not parse: %s\n", def);
3402 goto return_err;
3403 }
3404
3405 if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
3406 {
3407 perror("bind");
3408 goto return_err;
3409 }
3410
3411 s->fd = fd;
3412 s->bufcnt = 0;
3413 s->bufptr = 0;
3414 chr->opaque = s;
3415 chr->chr_write = udp_chr_write;
3416 chr->chr_update_read_handler = udp_chr_update_read_handler;
3417 return chr;
3418
3419 return_err:
3420 if (chr)
3421 free(chr);
3422 if (s)
3423 free(s);
3424 if (fd >= 0)
3425 closesocket(fd);
3426 return NULL;
3427 }
3428
3429 /***********************************************************/
3430 /* TCP Net console */
3431
3432 typedef struct {
3433 int fd, listen_fd;
3434 int connected;
3435 int max_size;
3436 int do_telnetopt;
3437 int do_nodelay;
3438 int is_unix;
3439 } TCPCharDriver;
3440
3441 static void tcp_chr_accept(void *opaque);
3442
3443 static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
3444 {
3445 TCPCharDriver *s = chr->opaque;
3446 if (s->connected) {
3447 return send_all(s->fd, buf, len);
3448 } else {
3449 /* XXX: indicate an error ? */
3450 return len;
3451 }
3452 }
3453
3454 static int tcp_chr_read_poll(void *opaque)
3455 {
3456 CharDriverState *chr = opaque;
3457 TCPCharDriver *s = chr->opaque;
3458 if (!s->connected)
3459 return 0;
3460 s->max_size = qemu_chr_can_read(chr);
3461 return s->max_size;
3462 }
3463
3464 #define IAC 255
3465 #define IAC_BREAK 243
3466 static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
3467 TCPCharDriver *s,
3468 uint8_t *buf, int *size)
3469 {
3470 /* Handle any telnet client's basic IAC options to satisfy char by
3471 * char mode with no echo. All IAC options will be removed from
3472 * the buf and the do_telnetopt variable will be used to track the
3473 * state of the width of the IAC information.
3474 *
3475 * IAC commands come in sets of 3 bytes with the exception of the
3476 * "IAC BREAK" command and the double IAC.
3477 */
3478
3479 int i;
3480 int j = 0;
3481
3482 for (i = 0; i < *size; i++) {
3483 if (s->do_telnetopt > 1) {
3484 if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
3485 /* Double IAC means send an IAC */
3486 if (j != i)
3487 buf[j] = buf[i];
3488 j++;
3489 s->do_telnetopt = 1;
3490 } else {
3491 if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
3492 /* Handle IAC break commands by sending a serial break */
3493 qemu_chr_event(chr, CHR_EVENT_BREAK);
3494 s->do_telnetopt++;
3495 }
3496 s->do_telnetopt++;
3497 }
3498 if (s->do_telnetopt >= 4) {
3499 s->do_telnetopt = 1;
3500 }
3501 } else {
3502 if ((unsigned char)buf[i] == IAC) {
3503 s->do_telnetopt = 2;
3504 } else {
3505 if (j != i)
3506 buf[j] = buf[i];
3507 j++;
3508 }
3509 }
3510 }
3511 *size = j;
3512 }
3513
3514 static void tcp_chr_read(void *opaque)
3515 {
3516 CharDriverState *chr = opaque;
3517 TCPCharDriver *s = chr->opaque;
3518 uint8_t buf[1024];
3519 int len, size;
3520
3521 if (!s->connected || s->max_size <= 0)
3522 return;
3523 len = sizeof(buf);
3524 if (len > s->max_size)
3525 len = s->max_size;
3526 size = recv(s->fd, buf, len, 0);
3527 if (size == 0) {
3528 /* connection closed */
3529 s->connected = 0;
3530 if (s->listen_fd >= 0) {
3531 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3532 }
3533 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3534 closesocket(s->fd);
3535 s->fd = -1;
3536 } else if (size > 0) {
3537 if (s->do_telnetopt)
3538 tcp_chr_process_IAC_bytes(chr, s, buf, &size);
3539 if (size > 0)
3540 qemu_chr_read(chr, buf, size);
3541 }
3542 }
3543
3544 static void tcp_chr_connect(void *opaque)
3545 {
3546 CharDriverState *chr = opaque;
3547 TCPCharDriver *s = chr->opaque;
3548
3549 s->connected = 1;
3550 qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
3551 tcp_chr_read, NULL, chr);
3552 qemu_chr_reset(chr);
3553 }
3554
3555 #define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
3556 static void tcp_chr_telnet_init(int fd)
3557 {
3558 char buf[3];
3559 /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
3560 IACSET(buf, 0xff, 0xfb, 0x01); /* IAC WILL ECHO */
3561 send(fd, (char *)buf, 3, 0);
3562 IACSET(buf, 0xff, 0xfb, 0x03); /* IAC WILL Suppress go ahead */
3563 send(fd, (char *)buf, 3, 0);
3564 IACSET(buf, 0xff, 0xfb, 0x00); /* IAC WILL Binary */
3565 send(fd, (char *)buf, 3, 0);
3566 IACSET(buf, 0xff, 0xfd, 0x00); /* IAC DO Binary */
3567 send(fd, (char *)buf, 3, 0);
3568 }
3569
3570 static void socket_set_nodelay(int fd)
3571 {
3572 int val = 1;
3573 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
3574 }
3575
3576 static void tcp_chr_accept(void *opaque)
3577 {
3578 CharDriverState *chr = opaque;
3579 TCPCharDriver *s = chr->opaque;
3580 struct sockaddr_in saddr;
3581 #ifndef _WIN32
3582 struct sockaddr_un uaddr;
3583 #endif
3584 struct sockaddr *addr;
3585 socklen_t len;
3586 int fd;
3587
3588 for(;;) {
3589 #ifndef _WIN32
3590 if (s->is_unix) {
3591 len = sizeof(uaddr);
3592 addr = (struct sockaddr *)&uaddr;
3593 } else
3594 #endif
3595 {
3596 len = sizeof(saddr);
3597 addr = (struct sockaddr *)&saddr;
3598 }
3599 fd = accept(s->listen_fd, addr, &len);
3600 if (fd < 0 && errno != EINTR) {
3601 return;
3602 } else if (fd >= 0) {
3603 if (s->do_telnetopt)
3604 tcp_chr_telnet_init(fd);
3605 break;
3606 }
3607 }
3608 socket_set_nonblock(fd);
3609 if (s->do_nodelay)
3610 socket_set_nodelay(fd);
3611 s->fd = fd;
3612 qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
3613 tcp_chr_connect(chr);
3614 }
3615
3616 static void tcp_chr_close(CharDriverState *chr)
3617 {
3618 TCPCharDriver *s = chr->opaque;
3619 if (s->fd >= 0)
3620 closesocket(s->fd);
3621 if (s->listen_fd >= 0)
3622 closesocket(s->listen_fd);
3623 qemu_free(s);
3624 }
3625
3626 static CharDriverState *qemu_chr_open_tcp(const char *host_str,
3627 int is_telnet,
3628 int is_unix)
3629 {
3630 CharDriverState *chr = NULL;
3631 TCPCharDriver *s = NULL;
3632 int fd = -1, ret, err, val;
3633 int is_listen = 0;
3634 int is_waitconnect = 1;
3635 int do_nodelay = 0;
3636 const char *ptr;
3637 struct sockaddr_in saddr;
3638 #ifndef _WIN32
3639 struct sockaddr_un uaddr;
3640 #endif
3641 struct sockaddr *addr;
3642 socklen_t addrlen;
3643
3644 #ifndef _WIN32
3645 if (is_unix) {
3646 addr = (struct sockaddr *)&uaddr;
3647 addrlen = sizeof(uaddr);
3648 if (parse_unix_path(&uaddr, host_str) < 0)
3649 goto fail;
3650 } else
3651 #endif
3652 {
3653 addr = (struct sockaddr *)&saddr;
3654 addrlen = sizeof(saddr);
3655 if (parse_host_port(&saddr, host_str) < 0)
3656 goto fail;
3657 }
3658
3659 ptr = host_str;
3660 while((ptr = strchr(ptr,','))) {
3661 ptr++;
3662 if (!strncmp(ptr,"server",6)) {
3663 is_listen = 1;
3664 } else if (!strncmp(ptr,"nowait",6)) {
3665 is_waitconnect = 0;
3666 } else if (!strncmp(ptr,"nodelay",6)) {
3667 do_nodelay = 1;
3668 } else {
3669 printf("Unknown option: %s\n", ptr);
3670 goto fail;
3671 }
3672 }
3673 if (!is_listen)
3674 is_waitconnect = 0;
3675
3676 chr = qemu_mallocz(sizeof(CharDriverState));
3677 if (!chr)
3678 goto fail;
3679 s = qemu_mallocz(sizeof(TCPCharDriver));
3680 if (!s)
3681 goto fail;
3682
3683 #ifndef _WIN32
3684 if (is_unix)
3685 fd = socket(PF_UNIX, SOCK_STREAM, 0);
3686 else
3687 #endif
3688 fd = socket(PF_INET, SOCK_STREAM, 0);
3689
3690 if (fd < 0)
3691 goto fail;
3692
3693 if (!is_waitconnect)
3694 socket_set_nonblock(fd);
3695
3696 s->connected = 0;
3697 s->fd = -1;
3698 s->listen_fd = -1;
3699 s->is_unix = is_unix;
3700 s->do_nodelay = do_nodelay && !is_unix;
3701
3702 chr->opaque = s;
3703 chr->chr_write = tcp_chr_write;
3704 chr->chr_close = tcp_chr_close;
3705
3706 if (is_listen) {
3707 /* allow fast reuse */
3708 #ifndef _WIN32
3709 if (is_unix) {
3710 char path[109];
3711 pstrcpy(path, sizeof(path), uaddr.sun_path);
3712 unlink(path);
3713 } else
3714 #endif
3715 {
3716 val = 1;
3717 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3718 }
3719
3720 ret = bind(fd, addr, addrlen);
3721 if (ret < 0)
3722 goto fail;
3723
3724 ret = listen(fd, 0);
3725 if (ret < 0)
3726 goto fail;
3727
3728 s->listen_fd = fd;
3729 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3730 if (is_telnet)
3731 s->do_telnetopt = 1;
3732 } else {
3733 for(;;) {
3734 ret = connect(fd, addr, addrlen);
3735 if (ret < 0) {
3736 err = socket_error();
3737 if (err == EINTR || err == EWOULDBLOCK) {
3738 } else if (err == EINPROGRESS) {
3739 break;
3740 #ifdef _WIN32
3741 } else if (err == WSAEALREADY) {
3742 break;
3743 #endif
3744 } else {
3745 goto fail;
3746 }
3747 } else {
3748 s->connected = 1;
3749 break;
3750 }
3751 }
3752 s->fd = fd;
3753 socket_set_nodelay(fd);
3754 if (s->connected)
3755 tcp_chr_connect(chr);
3756 else
3757 qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
3758 }
3759
3760 if (is_listen && is_waitconnect) {
3761 printf("QEMU waiting for connection on: %s\n", host_str);
3762 tcp_chr_accept(chr);
3763 socket_set_nonblock(s->listen_fd);
3764 }
3765
3766 return chr;
3767 fail:
3768 if (fd >= 0)
3769 closesocket(fd);
3770 qemu_free(s);
3771 qemu_free(chr);
3772 return NULL;
3773 }
3774
3775 CharDriverState *qemu_chr_open(const char *filename)
3776 {
3777 const char *p;
3778
3779 if (!strcmp(filename, "vc")) {
3780 return text_console_init(&display_state, 0);
3781 } else if (strstart(filename, "vc:", &p)) {
3782 return text_console_init(&display_state, p);
3783 } else if (!strcmp(filename, "null")) {
3784 return qemu_chr_open_null();
3785 } else
3786 if (strstart(filename, "tcp:", &p)) {
3787 return qemu_chr_open_tcp(p, 0, 0);
3788 } else
3789 if (strstart(filename, "telnet:", &p)) {
3790 return qemu_chr_open_tcp(p, 1, 0);
3791 } else
3792 if (strstart(filename, "udp:", &p)) {
3793 return qemu_chr_open_udp(p);
3794 } else
3795 if (strstart(filename, "mon:", &p)) {
3796 CharDriverState *drv = qemu_chr_open(p);
3797 if (drv) {
3798 drv = qemu_chr_open_mux(drv);
3799 monitor_init(drv, !nographic);
3800 return drv;
3801 }
3802 printf("Unable to open driver: %s\n", p);
3803 return 0;
3804 } else
3805 #ifndef _WIN32
3806 if (strstart(filename, "unix:", &p)) {
3807 return qemu_chr_open_tcp(p, 0, 1);
3808 } else if (strstart(filename, "file:", &p)) {
3809 return qemu_chr_open_file_out(p);
3810 } else if (strstart(filename, "pipe:", &p)) {
3811 return qemu_chr_open_pipe(p);
3812 } else if (!strcmp(filename, "pty")) {
3813 return qemu_chr_open_pty();
3814 } else if (!strcmp(filename, "stdio")) {
3815 return qemu_chr_open_stdio();
3816 } else
3817 #if defined(__linux__)
3818 if (strstart(filename, "/dev/parport", NULL)) {
3819 return qemu_chr_open_pp(filename);
3820 } else
3821 #endif
3822 #if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
3823 || defined(__NetBSD__) || defined(__OpenBSD__)
3824 if (strstart(filename, "/dev/", NULL)) {
3825 return qemu_chr_open_tty(filename);
3826 } else
3827 #endif
3828 #else /* !_WIN32 */
3829 if (strstart(filename, "COM", NULL)) {
3830 return qemu_chr_open_win(filename);
3831 } else
3832 if (strstart(filename, "pipe:", &p)) {
3833 return qemu_chr_open_win_pipe(p);
3834 } else
3835 if (strstart(filename, "con:", NULL)) {
3836 return qemu_chr_open_win_con(filename);
3837 } else
3838 if (strstart(filename, "file:", &p)) {
3839 return qemu_chr_open_win_file_out(p);
3840 } else
3841 #endif
3842 #ifdef CONFIG_BRLAPI
3843 if (!strcmp(filename, "braille")) {
3844 return chr_baum_init();
3845 } else
3846 #endif
3847 {
3848 return NULL;
3849 }
3850 }
3851
3852 void qemu_chr_close(CharDriverState *chr)
3853 {
3854 if (chr->chr_close)
3855 chr->chr_close(chr);
3856 qemu_free(chr);
3857 }
3858
3859 /***********************************************************/
3860 /* network device redirectors */
3861
3862 __attribute__ (( unused ))
3863 static void hex_dump(FILE *f, const uint8_t *buf, int size)
3864 {
3865 int len, i, j, c;
3866
3867 for(i=0;i<size;i+=16) {
3868 len = size - i;
3869 if (len > 16)
3870 len = 16;
3871 fprintf(f, "%08x ", i);
3872 for(j=0;j<16;j++) {
3873 if (j < len)
3874 fprintf(f, " %02x", buf[i+j]);
3875 else
3876 fprintf(f, " ");
3877 }
3878 fprintf(f, " ");
3879 for(j=0;j<len;j++) {
3880 c = buf[i+j];
3881 if (c < ' ' || c > '~')
3882 c = '.';
3883 fprintf(f, "%c", c);
3884 }
3885 fprintf(f, "\n");
3886 }
3887 }
3888
3889 static int parse_macaddr(uint8_t *macaddr, const char *p)
3890 {
3891 int i;
3892 char *last_char;
3893 long int offset;
3894
3895 errno = 0;
3896 offset = strtol(p, &last_char, 0);
3897 if (0 == errno && '\0' == *last_char &&
3898 offset >= 0 && offset <= 0xFFFFFF) {
3899 macaddr[3] = (offset & 0xFF0000) >> 16;
3900 macaddr[4] = (offset & 0xFF00) >> 8;
3901 macaddr[5] = offset & 0xFF;
3902 return 0;
3903 } else {
3904 for(i = 0; i < 6; i++) {
3905 macaddr[i] = strtol(p, (char **)&p, 16);
3906 if (i == 5) {
3907 if (*p != '\0')
3908 return -1;
3909 } else {
3910 if (*p != ':' && *p != '-')
3911 return -1;
3912 p++;
3913 }
3914 }
3915 return 0;
3916 }
3917
3918 return -1;
3919 }
3920
3921 static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3922 {
3923 const char *p, *p1;
3924 int len;
3925 p = *pp;
3926 p1 = strchr(p, sep);
3927 if (!p1)
3928 return -1;
3929 len = p1 - p;
3930 p1++;
3931 if (buf_size > 0) {
3932 if (len > buf_size - 1)
3933 len = buf_size - 1;
3934 memcpy(buf, p, len);
3935 buf[len] = '\0';
3936 }
3937 *pp = p1;
3938 return 0;
3939 }
3940
3941 int parse_host_src_port(struct sockaddr_in *haddr,
3942 struct sockaddr_in *saddr,
3943 const char *input_str)
3944 {
3945 char *str = strdup(input_str);
3946 char *host_str = str;
3947 char *src_str;
3948 const char *src_str2;
3949 char *ptr;
3950
3951 /*
3952 * Chop off any extra arguments at the end of the string which
3953 * would start with a comma, then fill in the src port information
3954 * if it was provided else use the "any address" and "any port".
3955 */
3956 if ((ptr = strchr(str,',')))
3957 *ptr = '\0';
3958
3959 if ((src_str = strchr(input_str,'@'))) {
3960 *src_str = '\0';
3961 src_str++;
3962 }
3963
3964 if (parse_host_port(haddr, host_str) < 0)
3965 goto fail;
3966
3967 src_str2 = src_str;
3968 if (!src_str || *src_str == '\0')
3969 src_str2 = ":0";
3970
3971 if (parse_host_port(saddr, src_str2) < 0)
3972 goto fail;
3973
3974 free(str);
3975 return(0);
3976
3977 fail:
3978 free(str);
3979 return -1;
3980 }
3981
3982 int parse_host_port(struct sockaddr_in *saddr, const char *str)
3983 {
3984 char buf[512];
3985 struct hostent *he;
3986 const char *p, *r;
3987 int port;
3988
3989 p = str;
3990 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3991 return -1;
3992 saddr->sin_family = AF_INET;
3993 if (buf[0] == '\0') {
3994 saddr->sin_addr.s_addr = 0;
3995 } else {
3996 if (isdigit(buf[0])) {
3997 if (!inet_aton(buf, &saddr->sin_addr))
3998 return -1;
3999 } else {
4000 if ((he = gethostbyname(buf)) == NULL)
4001 return - 1;
4002 saddr->sin_addr = *(struct in_addr *)he->h_addr;
4003 }
4004 }
4005 port = strtol(p, (char **)&r, 0);
4006 if (r == p)
4007 return -1;
4008 saddr->sin_port = htons(port);
4009 return 0;
4010 }
4011
4012 #ifndef _WIN32
4013 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
4014 {
4015 const char *p;
4016 int len;
4017
4018 len = MIN(108, strlen(str));
4019 p = strchr(str, ',');
4020 if (p)
4021 len = MIN(len, p - str);
4022
4023 memset(uaddr, 0, sizeof(*uaddr));
4024
4025 uaddr->sun_family = AF_UNIX;
4026 memcpy(uaddr->sun_path, str, len);
4027
4028 return 0;
4029 }
4030 #endif
4031
4032 /* find or alloc a new VLAN */
4033 VLANState *qemu_find_vlan(int id)
4034 {
4035 VLANState **pvlan, *vlan;
4036 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4037 if (vlan->id == id)
4038 return vlan;
4039 }
4040 vlan = qemu_mallocz(sizeof(VLANState));
4041 if (!vlan)
4042 return NULL;
4043 vlan->id = id;
4044 vlan->next = NULL;
4045 pvlan = &first_vlan;
4046 while (*pvlan != NULL)
4047 pvlan = &(*pvlan)->next;
4048 *pvlan = vlan;
4049 return vlan;
4050 }
4051
4052 VLANClientState *qemu_new_vlan_client(VLANState *vlan,
4053 IOReadHandler *fd_read,
4054 IOCanRWHandler *fd_can_read,
4055 void *opaque)
4056 {
4057 VLANClientState *vc, **pvc;
4058 vc = qemu_mallocz(sizeof(VLANClientState));
4059 if (!vc)
4060 return NULL;
4061 vc->fd_read = fd_read;
4062 vc->fd_can_read = fd_can_read;
4063 vc->opaque = opaque;
4064 vc->vlan = vlan;
4065
4066 vc->next = NULL;
4067 pvc = &vlan->first_client;
4068 while (*pvc != NULL)
4069 pvc = &(*pvc)->next;
4070 *pvc = vc;
4071 return vc;
4072 }
4073
4074 void qemu_del_vlan_client(VLANClientState *vc)
4075 {
4076 VLANClientState **pvc = &vc->vlan->first_client;
4077
4078 while (*pvc != NULL)
4079 if (*pvc == vc) {
4080 *pvc = vc->next;
4081 free(vc);
4082 break;
4083 } else
4084 pvc = &(*pvc)->next;
4085 }
4086
4087 int qemu_can_send_packet(VLANClientState *vc1)
4088 {
4089 VLANState *vlan = vc1->vlan;
4090 VLANClientState *vc;
4091
4092 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
4093 if (vc != vc1) {
4094 if (vc->fd_can_read && vc->fd_can_read(vc->opaque))
4095 return 1;
4096 }
4097 }
4098 return 0;
4099 }
4100
4101 void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
4102 {
4103 VLANState *vlan = vc1->vlan;
4104 VLANClientState *vc;
4105
4106 #if 0
4107 printf("vlan %d send:\n", vlan->id);
4108 hex_dump(stdout, buf, size);
4109 #endif
4110 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
4111 if (vc != vc1) {
4112 vc->fd_read(vc->opaque, buf, size);
4113 }
4114 }
4115 }
4116
4117 #if defined(CONFIG_SLIRP)
4118
4119 /* slirp network adapter */
4120
4121 static int slirp_inited;
4122 static VLANClientState *slirp_vc;
4123
4124 int slirp_can_output(void)
4125 {
4126 return !slirp_vc || qemu_can_send_packet(slirp_vc);
4127 }
4128
4129 void slirp_output(const uint8_t *pkt, int pkt_len)
4130 {
4131 #if 0
4132 printf("slirp output:\n");
4133 hex_dump(stdout, pkt, pkt_len);
4134 #endif
4135 if (!slirp_vc)
4136 return;
4137 qemu_send_packet(slirp_vc, pkt, pkt_len);
4138 }
4139
4140 static void slirp_receive(void *opaque, const uint8_t *buf, int size)
4141 {
4142 #if 0
4143 printf("slirp input:\n");
4144 hex_dump(stdout, buf, size);
4145 #endif
4146 slirp_input(buf, size);
4147 }
4148
4149 static int net_slirp_init(VLANState *vlan)
4150 {
4151 if (!slirp_inited) {
4152 slirp_inited = 1;
4153 slirp_init();
4154 }
4155 slirp_vc = qemu_new_vlan_client(vlan,
4156 slirp_receive, NULL, NULL);
4157 snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
4158 return 0;
4159 }
4160
4161 static void net_slirp_redir(const char *redir_str)
4162 {
4163 int is_udp;
4164 char buf[256], *r;
4165 const char *p;
4166 struct in_addr guest_addr;
4167 int host_port, guest_port;
4168
4169 if (!slirp_inited) {
4170 slirp_inited = 1;
4171 slirp_init();
4172 }
4173
4174 p = redir_str;
4175 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
4176 goto fail;
4177 if (!strcmp(buf, "tcp")) {
4178 is_udp = 0;
4179 } else if (!strcmp(buf, "udp")) {
4180 is_udp = 1;
4181 } else {
4182 goto fail;
4183 }
4184
4185 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
4186 goto fail;
4187 host_port = strtol(buf, &r, 0);
4188 if (r == buf)
4189 goto fail;
4190
4191 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
4192 goto fail;
4193 if (buf[0] == '\0') {
4194 pstrcpy(buf, sizeof(buf), "10.0.2.15");
4195 }
4196 if (!inet_aton(buf, &guest_addr))
4197 goto fail;
4198
4199 guest_port = strtol(p, &r, 0);
4200 if (r == p)
4201 goto fail;
4202
4203 if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
4204 fprintf(stderr, "qemu: could not set up redirection\n");
4205 exit(1);
4206 }
4207 return;
4208 fail:
4209 fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
4210 exit(1);
4211 }
4212
4213 #ifndef _WIN32
4214
4215 char smb_dir[1024];
4216
4217 static void erase_dir(char *dir_name)
4218 {
4219 DIR *d;
4220 struct dirent *de;
4221 char filename[1024];
4222
4223 /* erase all the files in the directory */
4224 if ((d = opendir(dir_name)) != 0) {
4225 for(;;) {
4226 de = readdir(d);
4227 if (!de)
4228 break;
4229 if (strcmp(de->d_name, ".") != 0 &&
4230 strcmp(de->d_name, "..") != 0) {
4231 snprintf(filename, sizeof(filename), "%s/%s",
4232 smb_dir, de->d_name);
4233 if (unlink(filename) != 0) /* is it a directory? */
4234 erase_dir(filename);
4235 }
4236 }
4237 closedir(d);
4238 rmdir(dir_name);
4239 }
4240 }
4241
4242 /* automatic user mode samba server configuration */
4243 static void smb_exit(void)
4244 {
4245 erase_dir(smb_dir);
4246 }
4247
4248 /* automatic user mode samba server configuration */
4249 static void net_slirp_smb(const char *exported_dir)
4250 {
4251 char smb_conf[1024];
4252 char smb_cmdline[1024];
4253 FILE *f;
4254
4255 if (!slirp_inited) {
4256 slirp_inited = 1;
4257 slirp_init();
4258 }
4259
4260 /* XXX: better tmp dir construction */
4261 snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
4262 if (mkdir(smb_dir, 0700) < 0) {
4263 fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
4264 exit(1);
4265 }
4266 snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
4267
4268 f = fopen(smb_conf, "w");
4269 if (!f) {
4270 fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
4271 exit(1);
4272 }
4273 fprintf(f,
4274 "[global]\n"
4275 "private dir=%s\n"
4276 "smb ports=0\n"
4277 "socket address=127.0.0.1\n"
4278 "pid directory=%s\n"
4279 "lock directory=%s\n"
4280 "log file=%s/log.smbd\n"
4281 "smb passwd file=%s/smbpasswd\n"
4282 "security = share\n"
4283 "[qemu]\n"
4284 "path=%s\n"
4285 "read only=no\n"
4286 "guest ok=yes\n",
4287 smb_dir,
4288 smb_dir,
4289 smb_dir,
4290 smb_dir,
4291 smb_dir,
4292 exported_dir
4293 );
4294 fclose(f);
4295 atexit(smb_exit);
4296
4297 snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
4298 SMBD_COMMAND, smb_conf);
4299
4300 slirp_add_exec(0, smb_cmdline, 4, 139);
4301 }
4302
4303 #endif /* !defined(_WIN32) */
4304 void do_info_slirp(void)
4305 {
4306 slirp_stats();
4307 }
4308
4309 #endif /* CONFIG_SLIRP */
4310
4311 #if !defined(_WIN32)
4312
4313 typedef struct TAPState {
4314 VLANClientState *vc;
4315 int fd;
4316 char down_script[1024];
4317 } TAPState;
4318
4319 static void tap_receive(void *opaque, const uint8_t *buf, int size)
4320 {
4321 TAPState *s = opaque;
4322 int ret;
4323 for(;;) {
4324 ret = write(s->fd, buf, size);
4325 if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
4326 } else {
4327 break;
4328 }
4329 }
4330 }
4331
4332 static void tap_send(void *opaque)
4333 {
4334 TAPState *s = opaque;
4335 uint8_t buf[4096];
4336 int size;
4337
4338 #ifdef __sun__
4339 struct strbuf sbuf;
4340 int f = 0;
4341 sbuf.maxlen = sizeof(buf);
4342 sbuf.buf = buf;
4343 size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
4344 #else
4345 size = read(s->fd, buf, sizeof(buf));
4346 #endif
4347 if (size > 0) {
4348 qemu_send_packet(s->vc, buf, size);
4349 }
4350 }
4351
4352 /* fd support */
4353
4354 static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
4355 {
4356 TAPState *s;
4357
4358 s = qemu_mallocz(sizeof(TAPState));
4359 if (!s)
4360 return NULL;
4361 s->fd = fd;
4362 s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
4363 qemu_set_fd_handler(s->fd, tap_send, NULL, s);
4364 snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
4365 return s;
4366 }
4367
4368 #if defined (_BSD) || defined (__FreeBSD_kernel__)
4369 static int tap_open(char *ifname, int ifname_size)
4370 {
4371 int fd;
4372 char *dev;
4373 struct stat s;
4374
4375 TFR(fd = open("/dev/tap", O_RDWR));
4376 if (fd < 0) {
4377 fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
4378 return -1;
4379 }
4380
4381 fstat(fd, &s);
4382 dev = devname(s.st_rdev, S_IFCHR);
4383 pstrcpy(ifname, ifname_size, dev);
4384
4385 fcntl(fd, F_SETFL, O_NONBLOCK);
4386 return fd;
4387 }
4388 #elif defined(__sun__)
4389 #define TUNNEWPPA (('T'<<16) | 0x0001)
4390 /*
4391 * Allocate TAP device, returns opened fd.
4392 * Stores dev name in the first arg(must be large enough).
4393 */
4394 int tap_alloc(char *dev, size_t dev_size)
4395 {
4396 int tap_fd, if_fd, ppa = -1;
4397 static int ip_fd = 0;
4398 char *ptr;
4399
4400 static int arp_fd = 0;
4401 int ip_muxid, arp_muxid;
4402 struct strioctl strioc_if, strioc_ppa;
4403 int link_type = I_PLINK;;
4404 struct lifreq ifr;
4405 char actual_name[32] = "";
4406
4407 memset(&ifr, 0x0, sizeof(ifr));
4408
4409 if( *dev ){
4410 ptr = dev;
4411 while( *ptr && !isdigit((int)*ptr) ) ptr++;
4412 ppa = atoi(ptr);
4413 }
4414
4415 /* Check if IP device was opened */
4416 if( ip_fd )
4417 close(ip_fd);
4418
4419 TFR(ip_fd = open("/dev/udp", O_RDWR, 0));
4420 if (ip_fd < 0) {
4421 syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
4422 return -1;
4423 }
4424
4425 TFR(tap_fd = open("/dev/tap", O_RDWR, 0));
4426 if (tap_fd < 0) {
4427 syslog(LOG_ERR, "Can't open /dev/tap");
4428 return -1;
4429 }
4430
4431 /* Assign a new PPA and get its unit number. */
4432 strioc_ppa.ic_cmd = TUNNEWPPA;
4433 strioc_ppa.ic_timout = 0;
4434 strioc_ppa.ic_len = sizeof(ppa);
4435 strioc_ppa.ic_dp = (char *)&ppa;
4436 if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
4437 syslog (LOG_ERR, "Can't assign new interface");
4438
4439 TFR(if_fd = open("/dev/tap", O_RDWR, 0));
4440 if (if_fd < 0) {
4441 syslog(LOG_ERR, "Can't open /dev/tap (2)");
4442 return -1;
4443 }
4444 if(ioctl(if_fd, I_PUSH, "ip") < 0){
4445 syslog(LOG_ERR, "Can't push IP module");
4446 return -1;
4447 }
4448
4449 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
4450 syslog(LOG_ERR, "Can't get flags\n");
4451
4452 snprintf (actual_name, 32, "tap%d", ppa);
4453 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
4454
4455 ifr.lifr_ppa = ppa;
4456 /* Assign ppa according to the unit number returned by tun device */
4457
4458 if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
4459 syslog (LOG_ERR, "Can't set PPA %d", ppa);
4460 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
4461 syslog (LOG_ERR, "Can't get flags\n");
4462 /* Push arp module to if_fd */
4463 if (ioctl (if_fd, I_PUSH, "arp") < 0)
4464 syslog (LOG_ERR, "Can't push ARP module (2)");
4465
4466 /* Push arp module to ip_fd */
4467 if (ioctl (ip_fd, I_POP, NULL) < 0)
4468 syslog (LOG_ERR, "I_POP failed\n");
4469 if (ioctl (ip_fd, I_PUSH, "arp") < 0)
4470 syslog (LOG_ERR, "Can't push ARP module (3)\n");
4471 /* Open arp_fd */
4472 TFR(arp_fd = open ("/dev/tap", O_RDWR, 0));
4473 if (arp_fd < 0)
4474 syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
4475
4476 /* Set ifname to arp */
4477 strioc_if.ic_cmd = SIOCSLIFNAME;
4478 strioc_if.ic_timout = 0;
4479 strioc_if.ic_len = sizeof(ifr);
4480 strioc_if.ic_dp = (char *)&ifr;
4481 if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
4482 syslog (LOG_ERR, "Can't set ifname to arp\n");
4483 }
4484
4485 if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
4486 syslog(LOG_ERR, "Can't link TAP device to IP");
4487 return -1;
4488 }
4489
4490 if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
4491 syslog (LOG_ERR, "Can't link TAP device to ARP");
4492
4493 close (if_fd);
4494
4495 memset(&ifr, 0x0, sizeof(ifr));
4496 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
4497 ifr.lifr_ip_muxid = ip_muxid;
4498 ifr.lifr_arp_muxid = arp_muxid;
4499
4500 if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
4501 {
4502 ioctl (ip_fd, I_PUNLINK , arp_muxid);
4503 ioctl (ip_fd, I_PUNLINK, ip_muxid);
4504 syslog (LOG_ERR, "Can't set multiplexor id");
4505 }
4506
4507 snprintf(dev, dev_size, "tap%d", ppa);
4508 return tap_fd;
4509 }
4510
4511 static int tap_open(char *ifname, int ifname_size)
4512 {
4513 char dev[10]="";
4514 int fd;
4515 if( (fd = tap_alloc(dev, sizeof(dev))) < 0 ){
4516 fprintf(stderr, "Cannot allocate TAP device\n");
4517 return -1;
4518 }
4519 pstrcpy(ifname, ifname_size, dev);
4520 fcntl(fd, F_SETFL, O_NONBLOCK);
4521 return fd;
4522 }
4523 #else
4524 static int tap_open(char *ifname, int ifname_size)
4525 {
4526 struct ifreq ifr;
4527 int fd, ret;
4528
4529 TFR(fd = open("/dev/net/tun", O_RDWR));
4530 if (fd < 0) {
4531 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
4532 return -1;
4533 }
4534 memset(&ifr, 0, sizeof(ifr));
4535 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
4536 if (ifname[0] != '\0')
4537 pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
4538 else
4539 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
4540 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
4541 if (ret != 0) {
4542 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
4543 close(fd);
4544 return -1;
4545 }
4546 pstrcpy(ifname, ifname_size, ifr.ifr_name);
4547 fcntl(fd, F_SETFL, O_NONBLOCK);
4548 return fd;
4549 }
4550 #endif
4551
4552 static int launch_script(const char *setup_script, const char *ifname, int fd)
4553 {
4554 int pid, status;
4555 char *args[3];
4556 char **parg;
4557
4558 /* try to launch network script */
4559 pid = fork();
4560 if (pid >= 0) {
4561 if (pid == 0) {
4562 int open_max = sysconf (_SC_OPEN_MAX), i;
4563 for (i = 0; i < open_max; i++)
4564 if (i != STDIN_FILENO &&
4565 i != STDOUT_FILENO &&
4566 i != STDERR_FILENO &&
4567 i != fd)
4568 close(i);
4569
4570 parg = args;
4571 *parg++ = (char *)setup_script;
4572 *parg++ = (char *)ifname;
4573 *parg++ = NULL;
4574 execv(setup_script, args);
4575 _exit(1);
4576 }
4577 while (waitpid(pid, &status, 0) != pid);
4578 if (!WIFEXITED(status) ||
4579 WEXITSTATUS(status) != 0) {
4580 fprintf(stderr, "%s: could not launch network script\n",
4581 setup_script);
4582 return -1;
4583 }
4584 }
4585 return 0;
4586 }
4587
4588 static int net_tap_init(VLANState *vlan, const char *ifname1,
4589 const char *setup_script, const char *down_script)
4590 {
4591 TAPState *s;
4592 int fd;
4593 char ifname[128];
4594
4595 if (ifname1 != NULL)
4596 pstrcpy(ifname, sizeof(ifname), ifname1);
4597 else
4598 ifname[0] = '\0';
4599 TFR(fd = tap_open(ifname, sizeof(ifname)));
4600 if (fd < 0)
4601 return -1;
4602
4603 if (!setup_script || !strcmp(setup_script, "no"))
4604 setup_script = "";
4605 if (setup_script[0] != '\0') {
4606 if (launch_script(setup_script, ifname, fd))
4607 return -1;
4608 }
4609 s = net_tap_fd_init(vlan, fd);
4610 if (!s)
4611 return -1;
4612 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4613 "tap: ifname=%s setup_script=%s", ifname, setup_script);
4614 if (down_script && strcmp(down_script, "no"))
4615 snprintf(s->down_script, sizeof(s->down_script), "%s", down_script);
4616 return 0;
4617 }
4618
4619 #endif /* !_WIN32 */
4620
4621 #if defined(CONFIG_VDE)
4622 typedef struct VDEState {
4623 VLANClientState *vc;
4624 VDECONN *vde;
4625 } VDEState;
4626
4627 static void vde_to_qemu(void *opaque)
4628 {
4629 VDEState *s = opaque;
4630 uint8_t buf[4096];
4631 int size;
4632
4633 size = vde_recv(s->vde, buf, sizeof(buf), 0);
4634 if (size > 0) {
4635 qemu_send_packet(s->vc, buf, size);
4636 }
4637 }
4638
4639 static void vde_from_qemu(void *opaque, const uint8_t *buf, int size)
4640 {
4641 VDEState *s = opaque;
4642 int ret;
4643 for(;;) {
4644 ret = vde_send(s->vde, buf, size, 0);
4645 if (ret < 0 && errno == EINTR) {
4646 } else {
4647 break;
4648 }
4649 }
4650 }
4651
4652 static int net_vde_init(VLANState *vlan, const char *sock, int port,
4653 const char *group, int mode)
4654 {
4655 VDEState *s;
4656 char *init_group = strlen(group) ? (char *)group : NULL;
4657 char *init_sock = strlen(sock) ? (char *)sock : NULL;
4658
4659 struct vde_open_args args = {
4660 .port = port,
4661 .group = init_group,
4662 .mode = mode,
4663 };
4664
4665 s = qemu_mallocz(sizeof(VDEState));
4666 if (!s)
4667 return -1;
4668 s->vde = vde_open(init_sock, "QEMU", &args);
4669 if (!s->vde){
4670 free(s);
4671 return -1;
4672 }
4673 s->vc = qemu_new_vlan_client(vlan, vde_from_qemu, NULL, s);
4674 qemu_set_fd_handler(vde_datafd(s->vde), vde_to_qemu, NULL, s);
4675 snprintf(s->vc->info_str, sizeof(s->vc->info_str), "vde: sock=%s fd=%d",
4676 sock, vde_datafd(s->vde));
4677 return 0;
4678 }
4679 #endif
4680
4681 /* network connection */
4682 typedef struct NetSocketState {
4683 VLANClientState *vc;
4684 int fd;
4685 int state; /* 0 = getting length, 1 = getting data */
4686 int index;
4687 int packet_len;
4688 uint8_t buf[4096];
4689 struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
4690 } NetSocketState;
4691
4692 typedef struct NetSocketListenState {
4693 VLANState *vlan;
4694 int fd;
4695 } NetSocketListenState;
4696
4697 /* XXX: we consider we can send the whole packet without blocking */
4698 static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
4699 {
4700 NetSocketState *s = opaque;
4701 uint32_t len;
4702 len = htonl(size);
4703
4704 send_all(s->fd, (const uint8_t *)&len, sizeof(len));
4705 send_all(s->fd, buf, size);
4706 }
4707
4708 static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
4709 {
4710 NetSocketState *s = opaque;
4711 sendto(s->fd, buf, size, 0,
4712 (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
4713 }
4714
4715 static void net_socket_send(void *opaque)
4716 {
4717 NetSocketState *s = opaque;
4718 int l, size, err;
4719 uint8_t buf1[4096];
4720 const uint8_t *buf;
4721
4722 size = recv(s->fd, buf1, sizeof(buf1), 0);
4723 if (size < 0) {
4724 err = socket_error();
4725 if (err != EWOULDBLOCK)
4726 goto eoc;
4727 } else if (size == 0) {
4728 /* end of connection */
4729 eoc:
4730 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4731 closesocket(s->fd);
4732 return;
4733 }
4734 buf = buf1;
4735 while (size > 0) {
4736 /* reassemble a packet from the network */
4737 switch(s->state) {
4738 case 0:
4739 l = 4 - s->index;
4740 if (l > size)
4741 l = size;
4742 memcpy(s->buf + s->index, buf, l);
4743 buf += l;
4744 size -= l;
4745 s->index += l;
4746 if (s->index == 4) {
4747 /* got length */
4748 s->packet_len = ntohl(*(uint32_t *)s->buf);
4749 s->index = 0;
4750 s->state = 1;
4751 }
4752 break;
4753 case 1:
4754 l = s->packet_len - s->index;
4755 if (l > size)
4756 l = size;
4757 memcpy(s->buf + s->index, buf, l);
4758 s->index += l;
4759 buf += l;
4760 size -= l;
4761 if (s->index >= s->packet_len) {
4762 qemu_send_packet(s->vc, s->buf, s->packet_len);
4763 s->index = 0;
4764 s->state = 0;
4765 }
4766 break;
4767 }
4768 }
4769 }
4770
4771 static void net_socket_send_dgram(void *opaque)
4772 {
4773 NetSocketState *s = opaque;
4774 int size;
4775
4776 size = recv(s->fd, s->buf, sizeof(s->buf), 0);
4777 if (size < 0)
4778 return;
4779 if (size == 0) {
4780 /* end of connection */
4781 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4782 return;
4783 }
4784 qemu_send_packet(s->vc, s->buf, size);
4785 }
4786
4787 static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
4788 {
4789 struct ip_mreq imr;
4790 int fd;
4791 int val, ret;
4792 if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
4793 fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
4794 inet_ntoa(mcastaddr->sin_addr),
4795 (int)ntohl(mcastaddr->sin_addr.s_addr));
4796 return -1;
4797
4798 }
4799 fd = socket(PF_INET, SOCK_DGRAM, 0);
4800 if (fd < 0) {
4801 perror("socket(PF_INET, SOCK_DGRAM)");
4802 return -1;
4803 }
4804
4805 val = 1;
4806 ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
4807 (const char *)&val, sizeof(val));
4808 if (ret < 0) {
4809 perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
4810 goto fail;
4811 }
4812
4813 ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
4814 if (ret < 0) {
4815 perror("bind");
4816 goto fail;
4817 }
4818
4819 /* Add host to multicast group */
4820 imr.imr_multiaddr = mcastaddr->sin_addr;
4821 imr.imr_interface.s_addr = htonl(INADDR_ANY);
4822
4823 ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
4824 (const char *)&imr, sizeof(struct ip_mreq));
4825 if (ret < 0) {
4826 perror("setsockopt(IP_ADD_MEMBERSHIP)");
4827 goto fail;
4828 }
4829
4830 /* Force mcast msgs to loopback (eg. several QEMUs in same host */
4831 val = 1;
4832 ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
4833 (const char *)&val, sizeof(val));
4834 if (ret < 0) {
4835 perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
4836 goto fail;
4837 }
4838
4839 socket_set_nonblock(fd);
4840 return fd;
4841 fail:
4842 if (fd >= 0)
4843 closesocket(fd);
4844 return -1;
4845 }
4846
4847 static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
4848 int is_connected)
4849 {
4850 struct sockaddr_in saddr;
4851 int newfd;
4852 socklen_t saddr_len;
4853 NetSocketState *s;
4854
4855 /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
4856 * Because this may be "shared" socket from a "master" process, datagrams would be recv()
4857 * by ONLY ONE process: we must "clone" this dgram socket --jjo
4858 */
4859
4860 if (is_connected) {
4861 if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
4862 /* must be bound */
4863 if (saddr.sin_addr.s_addr==0) {
4864 fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
4865 fd);
4866 return NULL;
4867 }
4868 /* clone dgram socket */
4869 newfd = net_socket_mcast_create(&saddr);
4870 if (newfd < 0) {
4871 /* error already reported by net_socket_mcast_create() */
4872 close(fd);
4873 return NULL;
4874 }
4875 /* clone newfd to fd, close newfd */
4876 dup2(newfd, fd);
4877 close(newfd);
4878
4879 } else {
4880 fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
4881 fd, strerror(errno));
4882 return NULL;
4883 }
4884 }
4885
4886 s = qemu_mallocz(sizeof(NetSocketState));
4887 if (!s)
4888 return NULL;
4889 s->fd = fd;
4890
4891 s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
4892 qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
4893
4894 /* mcast: save bound address as dst */
4895 if (is_connected) s->dgram_dst=saddr;
4896
4897 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4898 "socket: fd=%d (%s mcast=%s:%d)",
4899 fd, is_connected? "cloned" : "",
4900 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4901 return s;
4902 }
4903
4904 static void net_socket_connect(void *opaque)
4905 {
4906 NetSocketState *s = opaque;
4907 qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
4908 }
4909
4910 static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
4911 int is_connected)
4912 {
4913 NetSocketState *s;
4914 s = qemu_mallocz(sizeof(NetSocketState));
4915 if (!s)
4916 return NULL;
4917 s->fd = fd;
4918 s->vc = qemu_new_vlan_client(vlan,
4919 net_socket_receive, NULL, s);
4920 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4921 "socket: fd=%d", fd);
4922 if (is_connected) {
4923 net_socket_connect(s);
4924 } else {
4925 qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
4926 }
4927 return s;
4928 }
4929
4930 static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
4931 int is_connected)
4932 {
4933 int so_type=-1, optlen=sizeof(so_type);
4934
4935 if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type,
4936 (socklen_t *)&optlen)< 0) {
4937 fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
4938 return NULL;
4939 }
4940 switch(so_type) {
4941 case SOCK_DGRAM:
4942 return net_socket_fd_init_dgram(vlan, fd, is_connected);
4943 case SOCK_STREAM:
4944 return net_socket_fd_init_stream(vlan, fd, is_connected);
4945 default:
4946 /* who knows ... this could be a eg. a pty, do warn and continue as stream */
4947 fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
4948 return net_socket_fd_init_stream(vlan, fd, is_connected);
4949 }
4950 return NULL;
4951 }
4952
4953 static void net_socket_accept(void *opaque)
4954 {
4955 NetSocketListenState *s = opaque;
4956 NetSocketState *s1;
4957 struct sockaddr_in saddr;
4958 socklen_t len;
4959 int fd;
4960
4961 for(;;) {
4962 len = sizeof(saddr);
4963 fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
4964 if (fd < 0 && errno != EINTR) {
4965 return;
4966 } else if (fd >= 0) {
4967 break;
4968 }
4969 }
4970 s1 = net_socket_fd_init(s->vlan, fd, 1);
4971 if (!s1) {
4972 closesocket(fd);
4973 } else {
4974 snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
4975 "socket: connection from %s:%d",
4976 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4977 }
4978 }
4979
4980 static int net_socket_listen_init(VLANState *vlan, const char *host_str)
4981 {
4982 NetSocketListenState *s;
4983 int fd, val, ret;
4984 struct sockaddr_in saddr;
4985
4986 if (parse_host_port(&saddr, host_str) < 0)
4987 return -1;
4988
4989 s = qemu_mallocz(sizeof(NetSocketListenState));
4990 if (!s)
4991 return -1;
4992
4993 fd = socket(PF_INET, SOCK_STREAM, 0);
4994 if (fd < 0) {
4995 perror("socket");
4996 return -1;
4997 }
4998 socket_set_nonblock(fd);
4999
5000 /* allow fast reuse */
5001 val = 1;
5002 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
5003
5004 ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
5005 if (ret < 0) {
5006 perror("bind");
5007 return -1;
5008 }
5009 ret = listen(fd, 0);
5010 if (ret < 0) {
5011 perror("listen");
5012 return -1;
5013 }
5014 s->vlan = vlan;
5015 s->fd = fd;
5016 qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
5017 return 0;
5018 }
5019
5020 static int net_socket_connect_init(VLANState *vlan, const char *host_str)
5021 {
5022 NetSocketState *s;
5023 int fd, connected, ret, err;
5024 struct sockaddr_in saddr;
5025
5026 if (parse_host_port(&saddr, host_str) < 0)
5027 return -1;
5028
5029 fd = socket(PF_INET, SOCK_STREAM, 0);
5030 if (fd < 0) {
5031 perror("socket");
5032 return -1;
5033 }
5034 socket_set_nonblock(fd);
5035
5036 connected = 0;
5037 for(;;) {
5038 ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
5039 if (ret < 0) {
5040 err = socket_error();
5041 if (err == EINTR || err == EWOULDBLOCK) {
5042 } else if (err == EINPROGRESS) {
5043 break;
5044 #ifdef _WIN32
5045 } else if (err == WSAEALREADY) {
5046 break;
5047 #endif
5048 } else {
5049 perror("connect");
5050 closesocket(fd);
5051 return -1;
5052 }
5053 } else {
5054 connected = 1;
5055 break;
5056 }
5057 }
5058 s = net_socket_fd_init(vlan, fd, connected);
5059 if (!s)
5060 return -1;
5061 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
5062 "socket: connect to %s:%d",
5063 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
5064 return 0;
5065 }
5066
5067 static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
5068 {
5069 NetSocketState *s;
5070 int fd;
5071 struct sockaddr_in saddr;
5072
5073 if (parse_host_port(&saddr, host_str) < 0)
5074 return -1;
5075
5076
5077 fd = net_socket_mcast_create(&saddr);
5078 if (fd < 0)
5079 return -1;
5080
5081 s = net_socket_fd_init(vlan, fd, 0);
5082 if (!s)
5083 return -1;
5084
5085 s->dgram_dst = saddr;
5086
5087 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
5088 "socket: mcast=%s:%d",
5089 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
5090 return 0;
5091
5092 }
5093
5094 static const char *get_opt_name(char *buf, int buf_size, const char *p)
5095 {
5096 char *q;
5097
5098 q = buf;
5099 while (*p != '\0' && *p != '=') {
5100 if (q && (q - buf) < buf_size - 1)
5101 *q++ = *p;
5102 p++;
5103 }
5104 if (q)
5105 *q = '\0';
5106
5107 return p;
5108 }
5109
5110 static const char *get_opt_value(char *buf, int buf_size, const char *p)
5111 {
5112 char *q;
5113
5114 q = buf;
5115 while (*p != '\0') {
5116 if (*p == ',') {
5117 if (*(p + 1) != ',')
5118 break;
5119 p++;
5120 }
5121 if (q && (q - buf) < buf_size - 1)
5122 *q++ = *p;
5123 p++;
5124 }
5125 if (q)
5126 *q = '\0';
5127
5128 return p;
5129 }
5130
5131 static int get_param_value(char *buf, int buf_size,
5132 const char *tag, const char *str)
5133 {
5134 const char *p;
5135 char option[128];
5136
5137 p = str;
5138 for(;;) {
5139 p = get_opt_name(option, sizeof(option), p);
5140 if (*p != '=')
5141 break;
5142 p++;
5143 if (!strcmp(tag, option)) {
5144 (void)get_opt_value(buf, buf_size, p);
5145 return strlen(buf);
5146 } else {
5147 p = get_opt_value(NULL, 0, p);
5148 }
5149 if (*p != ',')
5150 break;
5151 p++;
5152 }
5153 return 0;
5154 }
5155
5156 static int check_params(char *buf, int buf_size,
5157 const char * const *params, const char *str)
5158 {
5159 const char *p;
5160 int i;
5161
5162 p = str;
5163 for(;;) {
5164 p = get_opt_name(buf, buf_size, p);
5165 if (*p != '=')
5166 return -1;
5167 p++;
5168 for(i = 0; params[i] != NULL; i++)
5169 if (!strcmp(params[i], buf))
5170 break;
5171 if (params[i] == NULL)
5172 return -1;
5173 p = get_opt_value(NULL, 0, p);
5174 if (*p != ',')
5175 break;
5176 p++;
5177 }
5178 return 0;
5179 }
5180
5181 static int net_client_init(const char *device, const char *p)
5182 {
5183 char buf[1024];
5184 int vlan_id, ret;
5185 VLANState *vlan;
5186
5187 vlan_id = 0;
5188 if (get_param_value(buf, sizeof(buf), "vlan", p)) {
5189 vlan_id = strtol(buf, NULL, 0);
5190 }
5191 vlan = qemu_find_vlan(vlan_id);
5192 if (!vlan) {
5193 fprintf(stderr, "Could not create vlan %d\n", vlan_id);
5194 return -1;
5195 }
5196 if (!strcmp(device, "nic")) {
5197 NICInfo *nd;
5198 uint8_t *macaddr;
5199
5200 if (nb_nics >= MAX_NICS) {
5201 fprintf(stderr, "Too Many NICs\n");
5202 return -1;
5203 }
5204 nd = &nd_table[nb_nics];
5205 macaddr = nd->macaddr;
5206 macaddr[0] = 0x52;
5207 macaddr[1] = 0x54;
5208 macaddr[2] = 0x00;
5209 macaddr[3] = 0x12;
5210 macaddr[4] = 0x34;
5211 macaddr[5] = 0x56 + nb_nics;
5212
5213 if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
5214 if (parse_macaddr(macaddr, buf) < 0) {
5215 fprintf(stderr, "invalid syntax for ethernet address\n");
5216 return -1;
5217 }
5218 }
5219 if (get_param_value(buf, sizeof(buf), "model", p)) {
5220 nd->model = strdup(buf);
5221 }
5222 nd->vlan = vlan;
5223 nb_nics++;
5224 vlan->nb_guest_devs++;
5225 ret = 0;
5226 } else
5227 if (!strcmp(device, "none")) {
5228 /* does nothing. It is needed to signal that no network cards
5229 are wanted */
5230 ret = 0;
5231 } else
5232 #ifdef CONFIG_SLIRP
5233 if (!strcmp(device, "user")) {
5234 if (get_param_value(buf, sizeof(buf), "hostname", p)) {
5235 pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
5236 }
5237 vlan->nb_host_devs++;
5238 ret = net_slirp_init(vlan);
5239 } else
5240 #endif
5241 #ifdef _WIN32
5242 if (!strcmp(device, "tap")) {
5243 char ifname[64];
5244 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
5245 fprintf(stderr, "tap: no interface name\n");
5246 return -1;
5247 }
5248 vlan->nb_host_devs++;
5249 ret = tap_win32_init(vlan, ifname);
5250 } else
5251 #else
5252 if (!strcmp(device, "tap")) {
5253 char ifname[64];
5254 char setup_script[1024], down_script[1024];
5255 int fd;
5256 vlan->nb_host_devs++;
5257 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
5258 fd = strtol(buf, NULL, 0);
5259 fcntl(fd, F_SETFL, O_NONBLOCK);
5260 ret = -1;
5261 if (net_tap_fd_init(vlan, fd))
5262 ret = 0;
5263 } else {
5264 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
5265 ifname[0] = '\0';
5266 }
5267 if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
5268 pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
5269 }
5270 if (get_param_value(down_script, sizeof(down_script), "downscript", p) == 0) {
5271 pstrcpy(down_script, sizeof(down_script), DEFAULT_NETWORK_DOWN_SCRIPT);
5272 }
5273 ret = net_tap_init(vlan, ifname, setup_script, down_script);
5274 }
5275 } else
5276 #endif
5277 if (!strcmp(device, "socket")) {
5278 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
5279 int fd;
5280 fd = strtol(buf, NULL, 0);
5281 ret = -1;
5282 if (net_socket_fd_init(vlan, fd, 1))
5283 ret = 0;
5284 } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
5285 ret = net_socket_listen_init(vlan, buf);
5286 } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
5287 ret = net_socket_connect_init(vlan, buf);
5288 } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
5289 ret = net_socket_mcast_init(vlan, buf);
5290 } else {
5291 fprintf(stderr, "Unknown socket options: %s\n", p);
5292 return -1;
5293 }
5294 vlan->nb_host_devs++;
5295 } else
5296 #ifdef CONFIG_VDE
5297 if (!strcmp(device, "vde")) {
5298 char vde_sock[1024], vde_group[512];
5299 int vde_port, vde_mode;
5300 vlan->nb_host_devs++;
5301 if (get_param_value(vde_sock, sizeof(vde_sock), "sock", p) <= 0) {
5302 vde_sock[0] = '\0';
5303 }
5304 if (get_param_value(buf, sizeof(buf), "port", p) > 0) {
5305 vde_port = strtol(buf, NULL, 10);
5306 } else {
5307 vde_port = 0;
5308 }
5309 if (get_param_value(vde_group, sizeof(vde_group), "group", p) <= 0) {
5310 vde_group[0] = '\0';
5311 }
5312 if (get_param_value(buf, sizeof(buf), "mode", p) > 0) {
5313 vde_mode = strtol(buf, NULL, 8);
5314 } else {
5315 vde_mode = 0700;
5316 }
5317 ret = net_vde_init(vlan, vde_sock, vde_port, vde_group, vde_mode);
5318 } else
5319 #endif
5320 {
5321 fprintf(stderr, "Unknown network device: %s\n", device);
5322 return -1;
5323 }
5324 if (ret < 0) {
5325 fprintf(stderr, "Could not initialize device '%s'\n", device);
5326 }
5327
5328 return ret;
5329 }
5330
5331 static int net_client_parse(const char *str)
5332 {
5333 const char *p;
5334 char *q;
5335 char device[64];
5336
5337 p = str;
5338 q = device;
5339 while (*p != '\0' && *p != ',') {
5340 if ((q - device) < sizeof(device) - 1)
5341 *q++ = *p;
5342 p++;
5343 }
5344 *q = '\0';
5345 if (*p == ',')
5346 p++;
5347
5348 return net_client_init(device, p);
5349 }
5350
5351 void do_info_network(void)
5352 {
5353 VLANState *vlan;
5354 VLANClientState *vc;
5355
5356 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
5357 term_printf("VLAN %d devices:\n", vlan->id);
5358 for(vc = vlan->first_client; vc != NULL; vc = vc->next)
5359 term_printf(" %s\n", vc->info_str);
5360 }
5361 }
5362
5363 #define HD_ALIAS "index=%d,media=disk"
5364 #ifdef TARGET_PPC
5365 #define CDROM_ALIAS "index=1,media=cdrom"
5366 #else
5367 #define CDROM_ALIAS "index=2,media=cdrom"
5368 #endif
5369 #define FD_ALIAS "index=%d,if=floppy"
5370 #define PFLASH_ALIAS "if=pflash"
5371 #define MTD_ALIAS "if=mtd"
5372 #define SD_ALIAS "index=0,if=sd"
5373
5374 static int drive_add(const char *file, const char *fmt, ...)
5375 {
5376 va_list ap;
5377
5378 if (nb_drives_opt >= MAX_DRIVES) {
5379 fprintf(stderr, "qemu: too many drives\n");
5380 exit(1);
5381 }
5382
5383 drives_opt[nb_drives_opt].file = file;
5384 va_start(ap, fmt);
5385 vsnprintf(drives_opt[nb_drives_opt].opt,
5386 sizeof(drives_opt[0].opt), fmt, ap);
5387 va_end(ap);
5388
5389 return nb_drives_opt++;
5390 }
5391
5392 int drive_get_index(BlockInterfaceType type, int bus, int unit)
5393 {
5394 int index;
5395
5396 /* seek interface, bus and unit */
5397
5398 for (index = 0; index < nb_drives; index++)
5399 if (drives_table[index].type == type &&
5400 drives_table[index].bus == bus &&
5401 drives_table[index].unit == unit)
5402 return index;
5403
5404 return -1;
5405 }
5406
5407 int drive_get_max_bus(BlockInterfaceType type)
5408 {
5409 int max_bus;
5410 int index;
5411
5412 max_bus = -1;
5413 for (index = 0; index < nb_drives; index++) {
5414 if(drives_table[index].type == type &&
5415 drives_table[index].bus > max_bus)
5416 max_bus = drives_table[index].bus;
5417 }
5418 return max_bus;
5419 }
5420
5421 static void bdrv_format_print(void *opaque, const char *name)
5422 {
5423 fprintf(stderr, " %s", name);
5424 }
5425
5426 static int drive_init(struct drive_opt *arg, int snapshot,
5427 QEMUMachine *machine)
5428 {
5429 char buf[128];
5430 char file[1024];
5431 char devname[128];
5432 const char *mediastr = "";
5433 BlockInterfaceType type;
5434 enum { MEDIA_DISK, MEDIA_CDROM } media;
5435 int bus_id, unit_id;
5436 int cyls, heads, secs, translation;
5437 BlockDriverState *bdrv;
5438 BlockDriver *drv = NULL;
5439 int max_devs;
5440 int index;
5441 int cache;
5442 int bdrv_flags;
5443 char *str = arg->opt;
5444 static const char * const params[] = { "bus", "unit", "if", "index",
5445 "cyls", "heads", "secs", "trans",
5446 "media", "snapshot", "file",
5447 "cache", "format", NULL };
5448
5449 if (check_params(buf, sizeof(buf), params, str) < 0) {
5450 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
5451 buf, str);
5452 return -1;
5453 }
5454
5455 file[0] = 0;
5456 cyls = heads = secs = 0;
5457 bus_id = 0;
5458 unit_id = -1;
5459 translation = BIOS_ATA_TRANSLATION_AUTO;
5460 index = -1;
5461 cache = 1;
5462
5463 if (!strcmp(machine->name, "realview") ||
5464 !strcmp(machine->name, "SS-5") ||
5465 !strcmp(machine->name, "SS-10") ||
5466 !strcmp(machine->name, "SS-600MP") ||
5467 !strcmp(machine->name, "versatilepb") ||
5468 !strcmp(machine->name, "versatileab")) {
5469 type = IF_SCSI;
5470 max_devs = MAX_SCSI_DEVS;
5471 pstrcpy(devname, sizeof(devname), "scsi");
5472 } else {
5473 type = IF_IDE;
5474 max_devs = MAX_IDE_DEVS;
5475 pstrcpy(devname, sizeof(devname), "ide");
5476 }
5477 media = MEDIA_DISK;
5478
5479 /* extract parameters */
5480
5481 if (get_param_value(buf, sizeof(buf), "bus", str)) {
5482 bus_id = strtol(buf, NULL, 0);
5483 if (bus_id < 0) {
5484 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
5485 return -1;
5486 }
5487 }
5488
5489 if (get_param_value(buf, sizeof(buf), "unit", str)) {
5490 unit_id = strtol(buf, NULL, 0);
5491 if (unit_id < 0) {
5492 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
5493 return -1;
5494 }
5495 }
5496
5497 if (get_param_value(buf, sizeof(buf), "if", str)) {
5498 pstrcpy(devname, sizeof(devname), buf);
5499 if (!strcmp(buf, "ide")) {
5500 type = IF_IDE;
5501 max_devs = MAX_IDE_DEVS;
5502 } else if (!strcmp(buf, "scsi")) {
5503 type = IF_SCSI;
5504 max_devs = MAX_SCSI_DEVS;
5505 } else if (!strcmp(buf, "floppy")) {
5506 type = IF_FLOPPY;
5507 max_devs = 0;
5508 } else if (!strcmp(buf, "pflash")) {
5509 type = IF_PFLASH;
5510 max_devs = 0;
5511 } else if (!strcmp(buf, "mtd")) {
5512 type = IF_MTD;
5513 max_devs = 0;
5514 } else if (!strcmp(buf, "sd")) {
5515 type = IF_SD;
5516 max_devs = 0;
5517 } else {
5518 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
5519 return -1;
5520 }
5521 }
5522
5523 if (get_param_value(buf, sizeof(buf), "index", str)) {
5524 index = strtol(buf, NULL, 0);
5525 if (index < 0) {
5526 fprintf(stderr, "qemu: '%s' invalid index\n", str);
5527 return -1;
5528 }
5529 }
5530
5531 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
5532 cyls = strtol(buf, NULL, 0);
5533 }
5534
5535 if (get_param_value(buf, sizeof(buf), "heads", str)) {
5536 heads = strtol(buf, NULL, 0);
5537 }
5538
5539 if (get_param_value(buf, sizeof(buf), "secs", str)) {
5540 secs = strtol(buf, NULL, 0);
5541 }
5542
5543 if (cyls || heads || secs) {
5544 if (cyls < 1 || cyls > 16383) {
5545 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
5546 return -1;
5547 }
5548 if (heads < 1 || heads > 16) {
5549 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
5550 return -1;
5551 }
5552 if (secs < 1 || secs > 63) {
5553 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
5554 return -1;
5555 }
5556 }
5557
5558 if (get_param_value(buf, sizeof(buf), "trans", str)) {
5559 if (!cyls) {
5560 fprintf(stderr,
5561 "qemu: '%s' trans must be used with cyls,heads and secs\n",
5562 str);
5563 return -1;
5564 }
5565 if (!strcmp(buf, "none"))
5566 translation = BIOS_ATA_TRANSLATION_NONE;
5567 else if (!strcmp(buf, "lba"))
5568 translation = BIOS_ATA_TRANSLATION_LBA;
5569 else if (!strcmp(buf, "auto"))
5570 translation = BIOS_ATA_TRANSLATION_AUTO;
5571 else {
5572 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
5573 return -1;
5574 }
5575 }
5576
5577 if (get_param_value(buf, sizeof(buf), "media", str)) {
5578 if (!strcmp(buf, "disk")) {
5579 media = MEDIA_DISK;
5580 } else if (!strcmp(buf, "cdrom")) {
5581 if (cyls || secs || heads) {
5582 fprintf(stderr,
5583 "qemu: '%s' invalid physical CHS format\n", str);
5584 return -1;
5585 }
5586 media = MEDIA_CDROM;
5587 } else {
5588 fprintf(stderr, "qemu: '%s' invalid media\n", str);
5589 return -1;
5590 }
5591 }
5592
5593 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
5594 if (!strcmp(buf, "on"))
5595 snapshot = 1;
5596 else if (!strcmp(buf, "off"))
5597 snapshot = 0;
5598 else {
5599 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
5600 return -1;
5601 }
5602 }
5603
5604 if (get_param_value(buf, sizeof(buf), "cache", str)) {
5605 if (!strcmp(buf, "off"))
5606 cache = 0;
5607 else if (!strcmp(buf, "on"))
5608 cache = 1;
5609 else {
5610 fprintf(stderr, "qemu: invalid cache option\n");
5611 return -1;
5612 }
5613 }
5614
5615 if (get_param_value(buf, sizeof(buf), "format", str)) {
5616 if (strcmp(buf, "?") == 0) {
5617 fprintf(stderr, "qemu: Supported formats:");
5618 bdrv_iterate_format(bdrv_format_print, NULL);
5619 fprintf(stderr, "\n");
5620 return -1;
5621 }
5622 drv = bdrv_find_format(buf);
5623 if (!drv) {
5624 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
5625 return -1;
5626 }
5627 }
5628
5629 if (arg->file == NULL)
5630 get_param_value(file, sizeof(file), "file", str);
5631 else
5632 pstrcpy(file, sizeof(file), arg->file);
5633
5634 /* compute bus and unit according index */
5635
5636 if (index != -1) {
5637 if (bus_id != 0 || unit_id != -1) {
5638 fprintf(stderr,
5639 "qemu: '%s' index cannot be used with bus and unit\n", str);
5640 return -1;
5641 }
5642 if (max_devs == 0)
5643 {
5644 unit_id = index;
5645 bus_id = 0;
5646 } else {
5647 unit_id = index % max_devs;
5648 bus_id = index / max_devs;
5649 }
5650 }
5651
5652 /* if user doesn't specify a unit_id,
5653 * try to find the first free
5654 */
5655
5656 if (unit_id == -1) {
5657 unit_id = 0;
5658 while (drive_get_index(type, bus_id, unit_id) != -1) {
5659 unit_id++;
5660 if (max_devs && unit_id >= max_devs) {
5661 unit_id -= max_devs;
5662 bus_id++;
5663 }
5664 }
5665 }
5666
5667 /* check unit id */
5668
5669 if (max_devs && unit_id >= max_devs) {
5670 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
5671 str, unit_id, max_devs - 1);
5672 return -1;
5673 }
5674
5675 /*
5676 * ignore multiple definitions
5677 */
5678
5679 if (drive_get_index(type, bus_id, unit_id) != -1)
5680 return 0;
5681
5682 /* init */
5683
5684 if (type == IF_IDE || type == IF_SCSI)
5685 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
5686 if (max_devs)
5687 snprintf(buf, sizeof(buf), "%s%i%s%i",
5688 devname, bus_id, mediastr, unit_id);
5689 else
5690 snprintf(buf, sizeof(buf), "%s%s%i",
5691 devname, mediastr, unit_id);
5692 bdrv = bdrv_new(buf);
5693 drives_table[nb_drives].bdrv = bdrv;
5694 drives_table[nb_drives].type = type;
5695 drives_table[nb_drives].bus = bus_id;
5696 drives_table[nb_drives].unit = unit_id;
5697 nb_drives++;
5698
5699 switch(type) {
5700 case IF_IDE:
5701 case IF_SCSI:
5702 switch(media) {
5703 case MEDIA_DISK:
5704 if (cyls != 0) {
5705 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
5706 bdrv_set_translation_hint(bdrv, translation);
5707 }
5708 break;
5709 case MEDIA_CDROM:
5710 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
5711 break;
5712 }
5713 break;
5714 case IF_SD:
5715 /* FIXME: This isn't really a floppy, but it's a reasonable
5716 approximation. */
5717 case IF_FLOPPY:
5718 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
5719 break;
5720 case IF_PFLASH:
5721 case IF_MTD:
5722 break;
5723 }
5724 if (!file[0])
5725 return 0;
5726 bdrv_flags = 0;
5727 if (snapshot)
5728 bdrv_flags |= BDRV_O_SNAPSHOT;
5729 if (!cache)
5730 bdrv_flags |= BDRV_O_DIRECT;
5731 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0 || qemu_key_check(bdrv, file)) {
5732 fprintf(stderr, "qemu: could not open disk image %s\n",
5733 file);
5734 return -1;
5735 }
5736 return 0;
5737 }
5738
5739 /***********************************************************/
5740 /* USB devices */
5741
5742 static USBPort *used_usb_ports;
5743 static USBPort *free_usb_ports;
5744
5745 /* ??? Maybe change this to register a hub to keep track of the topology. */
5746 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
5747 usb_attachfn attach)
5748 {
5749 port->opaque = opaque;
5750 port->index = index;
5751 port->attach = attach;
5752 port->next = free_usb_ports;
5753 free_usb_ports = port;
5754 }
5755
5756 int usb_device_add_dev(USBDevice *dev)
5757 {
5758 USBPort *port;
5759
5760 /* Find a USB port to add the device to. */
5761 port = free_usb_ports;
5762 if (!port->next) {
5763 USBDevice *hub;
5764
5765 /* Create a new hub and chain it on. */
5766 free_usb_ports = NULL;
5767 port->next = used_usb_ports;
5768 used_usb_ports = port;
5769
5770 hub = usb_hub_init(VM_USB_HUB_SIZE);
5771 usb_attach(port, hub);
5772 port = free_usb_ports;
5773 }
5774
5775 free_usb_ports = port->next;
5776 port->next = used_usb_ports;
5777 used_usb_ports = port;
5778 usb_attach(port, dev);
5779 return 0;
5780 }
5781
5782 static int usb_device_add(const char *devname)
5783 {
5784 const char *p;
5785 USBDevice *dev;
5786
5787 if (!free_usb_ports)
5788 return -1;
5789
5790 if (strstart(devname, "host:", &p)) {
5791 dev = usb_host_device_open(p);
5792 } else if (!strcmp(devname, "mouse")) {
5793 dev = usb_mouse_init();
5794 } else if (!strcmp(devname, "tablet")) {
5795 dev = usb_tablet_init();
5796 } else if (!strcmp(devname, "keyboard")) {
5797 dev = usb_keyboard_init();
5798 } else if (strstart(devname, "disk:", &p)) {
5799 dev = usb_msd_init(p);
5800 } else if (!strcmp(devname, "wacom-tablet")) {
5801 dev = usb_wacom_init();
5802 } else if (strstart(devname, "serial:", &p)) {
5803 dev = usb_serial_init(p);
5804 #ifdef CONFIG_BRLAPI
5805 } else if (!strcmp(devname, "braille")) {
5806 dev = usb_baum_init();
5807 #endif
5808 } else if (strstart(devname, "net:", &p)) {
5809 int nic = nb_nics;
5810
5811 if (net_client_init("nic", p) < 0)
5812 return -1;
5813 nd_table[nic].model = "usb";
5814 dev = usb_net_init(&nd_table[nic]);
5815 } else {
5816 return -1;
5817 }
5818 if (!dev)
5819 return -1;
5820
5821 return usb_device_add_dev(dev);
5822 }
5823
5824 int usb_device_del_addr(int bus_num, int addr)
5825 {
5826 USBPort *port;
5827 USBPort **lastp;
5828 USBDevice *dev;
5829
5830 if (!used_usb_ports)
5831 return -1;
5832
5833 if (bus_num != 0)
5834 return -1;
5835
5836 lastp = &used_usb_ports;
5837 port = used_usb_ports;
5838 while (port && port->dev->addr != addr) {
5839 lastp = &port->next;
5840 port = port->next;
5841 }
5842
5843 if (!port)
5844 return -1;
5845
5846 dev = port->dev;
5847 *lastp = port->next;
5848 usb_attach(port, NULL);
5849 dev->handle_destroy(dev);
5850 port->next = free_usb_ports;
5851 free_usb_ports = port;
5852 return 0;
5853 }
5854
5855 static int usb_device_del(const char *devname)
5856 {
5857 int bus_num, addr;
5858 const char *p;
5859
5860 if (strstart(devname, "host:", &p))
5861 return usb_host_device_close(p);
5862
5863 if (!used_usb_ports)
5864 return -1;
5865
5866 p = strchr(devname, '.');
5867 if (!p)
5868 return -1;
5869 bus_num = strtoul(devname, NULL, 0);
5870 addr = strtoul(p + 1, NULL, 0);
5871
5872 return usb_device_del_addr(bus_num, addr);
5873 }
5874
5875 void do_usb_add(const char *devname)
5876 {
5877 usb_device_add(devname);
5878 }
5879
5880 void do_usb_del(const char *devname)
5881 {
5882 usb_device_del(devname);
5883 }
5884
5885 void usb_info(void)
5886 {
5887 USBDevice *dev;
5888 USBPort *port;
5889 const char *speed_str;
5890
5891 if (!usb_enabled) {
5892 term_printf("USB support not enabled\n");
5893 return;
5894 }
5895
5896 for (port = used_usb_ports; port; port = port->next) {
5897 dev = port->dev;
5898 if (!dev)
5899 continue;
5900 switch(dev->speed) {
5901 case USB_SPEED_LOW:
5902 speed_str = "1.5";
5903 break;
5904 case USB_SPEED_FULL:
5905 speed_str = "12";
5906 break;
5907 case USB_SPEED_HIGH:
5908 speed_str = "480";
5909 break;
5910 default:
5911 speed_str = "?";
5912 break;
5913 }
5914 term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n",
5915 0, dev->addr, speed_str, dev->devname);
5916 }
5917 }
5918
5919 /***********************************************************/
5920 /* PCMCIA/Cardbus */
5921
5922 static struct pcmcia_socket_entry_s {
5923 struct pcmcia_socket_s *socket;
5924 struct pcmcia_socket_entry_s *next;
5925 } *pcmcia_sockets = 0;
5926
5927 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
5928 {
5929 struct pcmcia_socket_entry_s *entry;
5930
5931 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
5932 entry->socket = socket;
5933 entry->next = pcmcia_sockets;
5934 pcmcia_sockets = entry;
5935 }
5936
5937 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
5938 {
5939 struct pcmcia_socket_entry_s *entry, **ptr;
5940
5941 ptr = &pcmcia_sockets;
5942 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
5943 if (entry->socket == socket) {
5944 *ptr = entry->next;
5945 qemu_free(entry);
5946 }
5947 }
5948
5949 void pcmcia_info(void)
5950 {
5951 struct pcmcia_socket_entry_s *iter;
5952 if (!pcmcia_sockets)
5953 term_printf("No PCMCIA sockets\n");
5954
5955 for (iter = pcmcia_sockets; iter; iter = iter->next)
5956 term_printf("%s: %s\n", iter->socket->slot_string,
5957 iter->socket->attached ? iter->socket->card_string :
5958 "Empty");
5959 }
5960
5961 /***********************************************************/
5962 /* dumb display */
5963
5964 static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
5965 {
5966 }
5967
5968 static void dumb_resize(DisplayState *ds, int w, int h)
5969 {
5970 }
5971
5972 static void dumb_refresh(DisplayState *ds)
5973 {
5974 #if defined(CONFIG_SDL)
5975 vga_hw_update();
5976 #endif
5977 }
5978
5979 static void dumb_display_init(DisplayState *ds)
5980 {
5981 ds->data = NULL;
5982 ds->linesize = 0;
5983 ds->depth = 0;
5984 ds->dpy_update = dumb_update;
5985 ds->dpy_resize = dumb_resize;
5986 ds->dpy_refresh = dumb_refresh;
5987 ds->gui_timer_interval = 500;
5988 ds->idle = 1;
5989 }
5990
5991 /***********************************************************/
5992 /* I/O handling */
5993
5994 #define MAX_IO_HANDLERS 64
5995
5996 typedef struct IOHandlerRecord {
5997 int fd;
5998 IOCanRWHandler *fd_read_poll;
5999 IOHandler *fd_read;
6000 IOHandler *fd_write;
6001 int deleted;
6002 void *opaque;
6003 /* temporary data */
6004 struct pollfd *ufd;
6005 struct IOHandlerRecord *next;
6006 } IOHandlerRecord;
6007
6008 static IOHandlerRecord *first_io_handler;
6009
6010 /* XXX: fd_read_poll should be suppressed, but an API change is
6011 necessary in the character devices to suppress fd_can_read(). */
6012 int qemu_set_fd_handler2(int fd,
6013 IOCanRWHandler *fd_read_poll,
6014 IOHandler *fd_read,
6015 IOHandler *fd_write,
6016 void *opaque)
6017 {
6018 IOHandlerRecord **pioh, *ioh;
6019
6020 if (!fd_read && !fd_write) {
6021 pioh = &first_io_handler;
6022 for(;;) {
6023 ioh = *pioh;
6024 if (ioh == NULL)
6025 break;
6026 if (ioh->fd == fd) {
6027 ioh->deleted = 1;
6028 break;
6029 }
6030 pioh = &ioh->next;
6031 }
6032 } else {
6033 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6034 if (ioh->fd == fd)
6035 goto found;
6036 }
6037 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
6038 if (!ioh)
6039 return -1;
6040 ioh->next = first_io_handler;
6041 first_io_handler = ioh;
6042 found:
6043 ioh->fd = fd;
6044 ioh->fd_read_poll = fd_read_poll;
6045 ioh->fd_read = fd_read;
6046 ioh->fd_write = fd_write;
6047 ioh->opaque = opaque;
6048 ioh->deleted = 0;
6049 }
6050 return 0;
6051 }
6052
6053 int qemu_set_fd_handler(int fd,
6054 IOHandler *fd_read,
6055 IOHandler *fd_write,
6056 void *opaque)
6057 {
6058 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
6059 }
6060
6061 /***********************************************************/
6062 /* Polling handling */
6063
6064 typedef struct PollingEntry {
6065 PollingFunc *func;
6066 void *opaque;
6067 struct PollingEntry *next;
6068 } PollingEntry;
6069
6070 static PollingEntry *first_polling_entry;
6071
6072 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
6073 {
6074 PollingEntry **ppe, *pe;
6075 pe = qemu_mallocz(sizeof(PollingEntry));
6076 if (!pe)
6077 return -1;
6078 pe->func = func;
6079 pe->opaque = opaque;
6080 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
6081 *ppe = pe;
6082 return 0;
6083 }
6084
6085 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
6086 {
6087 PollingEntry **ppe, *pe;
6088 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
6089 pe = *ppe;
6090 if (pe->func == func && pe->opaque == opaque) {
6091 *ppe = pe->next;
6092 qemu_free(pe);
6093 break;
6094 }
6095 }
6096 }
6097
6098 #ifdef _WIN32
6099 /***********************************************************/
6100 /* Wait objects support */
6101 typedef struct WaitObjects {
6102 int num;
6103 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
6104 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
6105 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
6106 } WaitObjects;
6107
6108 static WaitObjects wait_objects = {0};
6109
6110 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
6111 {
6112 WaitObjects *w = &wait_objects;
6113
6114 if (w->num >= MAXIMUM_WAIT_OBJECTS)
6115 return -1;
6116 w->events[w->num] = handle;
6117 w->func[w->num] = func;
6118 w->opaque[w->num] = opaque;
6119 w->num++;
6120 return 0;
6121 }
6122
6123 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
6124 {
6125 int i, found;
6126 WaitObjects *w = &wait_objects;
6127
6128 found = 0;
6129 for (i = 0; i < w->num; i++) {
6130 if (w->events[i] == handle)
6131 found = 1;
6132 if (found) {
6133 w->events[i] = w->events[i + 1];
6134 w->func[i] = w->func[i + 1];
6135 w->opaque[i] = w->opaque[i + 1];
6136 }
6137 }
6138 if (found)
6139 w->num--;
6140 }
6141 #endif
6142
6143 /***********************************************************/
6144 /* savevm/loadvm support */
6145
6146 #define IO_BUF_SIZE 32768
6147
6148 struct QEMUFile {
6149 FILE *outfile;
6150 BlockDriverState *bs;
6151 int is_file;
6152 int is_writable;
6153 int64_t base_offset;
6154 int64_t buf_offset; /* start of buffer when writing, end of buffer
6155 when reading */
6156 int buf_index;
6157 int buf_size; /* 0 when writing */
6158 uint8_t buf[IO_BUF_SIZE];
6159 };
6160
6161 QEMUFile *qemu_fopen(const char *filename, const char *mode)
6162 {
6163 QEMUFile *f;
6164
6165 f = qemu_mallocz(sizeof(QEMUFile));
6166 if (!f)
6167 return NULL;
6168 if (!strcmp(mode, "wb")) {
6169 f->is_writable = 1;
6170 } else if (!strcmp(mode, "rb")) {
6171 f->is_writable = 0;
6172 } else {
6173 goto fail;
6174 }
6175 f->outfile = fopen(filename, mode);
6176 if (!f->outfile)
6177 goto fail;
6178 f->is_file = 1;
6179 return f;
6180 fail:
6181 if (f->outfile)
6182 fclose(f->outfile);
6183 qemu_free(f);
6184 return NULL;
6185 }
6186
6187 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
6188 {
6189 QEMUFile *f;
6190
6191 f = qemu_mallocz(sizeof(QEMUFile));
6192 if (!f)
6193 return NULL;
6194 f->is_file = 0;
6195 f->bs = bs;
6196 f->is_writable = is_writable;
6197 f->base_offset = offset;
6198 return f;
6199 }
6200
6201 void qemu_fflush(QEMUFile *f)
6202 {
6203 if (!f->is_writable)
6204 return;
6205 if (f->buf_index > 0) {
6206 if (f->is_file) {
6207 fseek(f->outfile, f->buf_offset, SEEK_SET);
6208 fwrite(f->buf, 1, f->buf_index, f->outfile);
6209 } else {
6210 bdrv_pwrite(f->bs, f->base_offset + f->buf_offset,
6211 f->buf, f->buf_index);
6212 }
6213 f->buf_offset += f->buf_index;
6214 f->buf_index = 0;
6215 }
6216 }
6217
6218 static void qemu_fill_buffer(QEMUFile *f)
6219 {
6220 int len;
6221
6222 if (f->is_writable)
6223 return;
6224 if (f->is_file) {
6225 fseek(f->outfile, f->buf_offset, SEEK_SET);
6226 len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
6227 if (len < 0)
6228 len = 0;
6229 } else {
6230 len = bdrv_pread(f->bs, f->base_offset + f->buf_offset,
6231 f->buf, IO_BUF_SIZE);
6232 if (len < 0)
6233 len = 0;
6234 }
6235 f->buf_index = 0;
6236 f->buf_size = len;
6237 f->buf_offset += len;
6238 }
6239
6240 void qemu_fclose(QEMUFile *f)
6241 {
6242 if (f->is_writable)
6243 qemu_fflush(f);
6244 if (f->is_file) {
6245 fclose(f->outfile);
6246 }
6247 qemu_free(f);
6248 }
6249
6250 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
6251 {
6252 int l;
6253 while (size > 0) {
6254 l = IO_BUF_SIZE - f->buf_index;
6255 if (l > size)
6256 l = size;
6257 memcpy(f->buf + f->buf_index, buf, l);
6258 f->buf_index += l;
6259 buf += l;
6260 size -= l;
6261 if (f->buf_index >= IO_BUF_SIZE)
6262 qemu_fflush(f);
6263 }
6264 }
6265
6266 void qemu_put_byte(QEMUFile *f, int v)
6267 {
6268 f->buf[f->buf_index++] = v;
6269 if (f->buf_index >= IO_BUF_SIZE)
6270 qemu_fflush(f);
6271 }
6272
6273 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
6274 {
6275 int size, l;
6276
6277 size = size1;
6278 while (size > 0) {
6279 l = f->buf_size - f->buf_index;
6280 if (l == 0) {
6281 qemu_fill_buffer(f);
6282 l = f->buf_size - f->buf_index;
6283 if (l == 0)
6284 break;
6285 }
6286 if (l > size)
6287 l = size;
6288 memcpy(buf, f->buf + f->buf_index, l);
6289 f->buf_index += l;
6290 buf += l;
6291 size -= l;
6292 }
6293 return size1 - size;
6294 }
6295
6296 int qemu_get_byte(QEMUFile *f)
6297 {
6298 if (f->buf_index >= f->buf_size) {
6299 qemu_fill_buffer(f);
6300 if (f->buf_index >= f->buf_size)
6301 return 0;
6302 }
6303 return f->buf[f->buf_index++];
6304 }
6305
6306 int64_t qemu_ftell(QEMUFile *f)
6307 {
6308 return f->buf_offset - f->buf_size + f->buf_index;
6309 }
6310
6311 int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
6312 {
6313 if (whence == SEEK_SET) {
6314 /* nothing to do */
6315 } else if (whence == SEEK_CUR) {
6316 pos += qemu_ftell(f);
6317 } else {
6318 /* SEEK_END not supported */
6319 return -1;
6320 }
6321 if (f->is_writable) {
6322 qemu_fflush(f);
6323 f->buf_offset = pos;
6324 } else {
6325 f->buf_offset = pos;
6326 f->buf_index = 0;
6327 f->buf_size = 0;
6328 }
6329 return pos;
6330 }
6331
6332 void qemu_put_be16(QEMUFile *f, unsigned int v)
6333 {
6334 qemu_put_byte(f, v >> 8);
6335 qemu_put_byte(f, v);
6336 }
6337
6338 void qemu_put_be32(QEMUFile *f, unsigned int v)
6339 {
6340 qemu_put_byte(f, v >> 24);
6341 qemu_put_byte(f, v >> 16);
6342 qemu_put_byte(f, v >> 8);
6343 qemu_put_byte(f, v);
6344 }
6345
6346 void qemu_put_be64(QEMUFile *f, uint64_t v)
6347 {
6348 qemu_put_be32(f, v >> 32);
6349 qemu_put_be32(f, v);
6350 }
6351
6352 unsigned int qemu_get_be16(QEMUFile *f)
6353 {
6354 unsigned int v;
6355 v = qemu_get_byte(f) << 8;
6356 v |= qemu_get_byte(f);
6357 return v;
6358 }
6359
6360 unsigned int qemu_get_be32(QEMUFile *f)
6361 {
6362 unsigned int v;
6363 v = qemu_get_byte(f) << 24;
6364 v |= qemu_get_byte(f) << 16;
6365 v |= qemu_get_byte(f) << 8;
6366 v |= qemu_get_byte(f);
6367 return v;
6368 }
6369
6370 uint64_t qemu_get_be64(QEMUFile *f)
6371 {
6372 uint64_t v;
6373 v = (uint64_t)qemu_get_be32(f) << 32;
6374 v |= qemu_get_be32(f);
6375 return v;
6376 }
6377
6378 typedef struct SaveStateEntry {
6379 char idstr[256];
6380 int instance_id;
6381 int version_id;
6382 SaveStateHandler *save_state;
6383 LoadStateHandler *load_state;
6384 void *opaque;
6385 struct SaveStateEntry *next;
6386 } SaveStateEntry;
6387
6388 static SaveStateEntry *first_se;
6389
6390 /* TODO: Individual devices generally have very little idea about the rest
6391 of the system, so instance_id should be removed/replaced.
6392 Meanwhile pass -1 as instance_id if you do not already have a clearly
6393 distinguishing id for all instances of your device class. */
6394 int register_savevm(const char *idstr,
6395 int instance_id,
6396 int version_id,
6397 SaveStateHandler *save_state,
6398 LoadStateHandler *load_state,
6399 void *opaque)
6400 {
6401 SaveStateEntry *se, **pse;
6402
6403 se = qemu_malloc(sizeof(SaveStateEntry));
6404 if (!se)
6405 return -1;
6406 pstrcpy(se->idstr, sizeof(se->idstr), idstr);
6407 se->instance_id = (instance_id == -1) ? 0 : instance_id;
6408 se->version_id = version_id;
6409 se->save_state = save_state;
6410 se->load_state = load_state;
6411 se->opaque = opaque;
6412 se->next = NULL;
6413
6414 /* add at the end of list */
6415 pse = &first_se;
6416 while (*pse != NULL) {
6417 if (instance_id == -1
6418 && strcmp(se->idstr, (*pse)->idstr) == 0
6419 && se->instance_id <= (*pse)->instance_id)
6420 se->instance_id = (*pse)->instance_id + 1;
6421 pse = &(*pse)->next;
6422 }
6423 *pse = se;
6424 return 0;
6425 }
6426
6427 #define QEMU_VM_FILE_MAGIC 0x5145564d
6428 #define QEMU_VM_FILE_VERSION 0x00000002
6429
6430 static int qemu_savevm_state(QEMUFile *f)
6431 {
6432 SaveStateEntry *se;
6433 int len, ret;
6434 int64_t cur_pos, len_pos, total_len_pos;
6435
6436 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
6437 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
6438 total_len_pos = qemu_ftell(f);
6439 qemu_put_be64(f, 0); /* total size */
6440
6441 for(se = first_se; se != NULL; se = se->next) {
6442 if (se->save_state == NULL)
6443 /* this one has a loader only, for backwards compatibility */
6444 continue;
6445
6446 /* ID string */
6447 len = strlen(se->idstr);
6448 qemu_put_byte(f, len);
6449 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
6450
6451 qemu_put_be32(f, se->instance_id);
6452 qemu_put_be32(f, se->version_id);
6453
6454 /* record size: filled later */
6455 len_pos = qemu_ftell(f);
6456 qemu_put_be32(f, 0);
6457 se->save_state(f, se->opaque);
6458
6459 /* fill record size */
6460 cur_pos = qemu_ftell(f);
6461 len = cur_pos - len_pos - 4;
6462 qemu_fseek(f, len_pos, SEEK_SET);
6463 qemu_put_be32(f, len);
6464 qemu_fseek(f, cur_pos, SEEK_SET);
6465 }
6466 cur_pos = qemu_ftell(f);
6467 qemu_fseek(f, total_len_pos, SEEK_SET);
6468 qemu_put_be64(f, cur_pos - total_len_pos - 8);
6469 qemu_fseek(f, cur_pos, SEEK_SET);
6470
6471 ret = 0;
6472 return ret;
6473 }
6474
6475 static SaveStateEntry *find_se(const char *idstr, int instance_id)
6476 {
6477 SaveStateEntry *se;
6478
6479 for(se = first_se; se != NULL; se = se->next) {
6480 if (!strcmp(se->idstr, idstr) &&
6481 instance_id == se->instance_id)
6482 return se;
6483 }
6484 return NULL;
6485 }
6486
6487 static int qemu_loadvm_state(QEMUFile *f)
6488 {
6489 SaveStateEntry *se;
6490 int len, ret, instance_id, record_len, version_id;
6491 int64_t total_len, end_pos, cur_pos;
6492 unsigned int v;
6493 char idstr[256];
6494
6495 v = qemu_get_be32(f);
6496 if (v != QEMU_VM_FILE_MAGIC)
6497 goto fail;
6498 v = qemu_get_be32(f);
6499 if (v != QEMU_VM_FILE_VERSION) {
6500 fail:
6501 ret = -1;
6502 goto the_end;
6503 }
6504 total_len = qemu_get_be64(f);
6505 end_pos = total_len + qemu_ftell(f);
6506 for(;;) {
6507 if (qemu_ftell(f) >= end_pos)
6508 break;
6509 len = qemu_get_byte(f);
6510 qemu_get_buffer(f, (uint8_t *)idstr, len);
6511 idstr[len] = '\0';
6512 instance_id = qemu_get_be32(f);
6513 version_id = qemu_get_be32(f);
6514 record_len = qemu_get_be32(f);
6515 #if 0
6516 printf("idstr=%s instance=0x%x version=%d len=%d\n",
6517 idstr, instance_id, version_id, record_len);
6518 #endif
6519 cur_pos = qemu_ftell(f);
6520 se = find_se(idstr, instance_id);
6521 if (!se) {
6522 fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
6523 instance_id, idstr);
6524 } else {
6525 ret = se->load_state(f, se->opaque, version_id);
6526 if (ret < 0) {
6527 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
6528 instance_id, idstr);
6529 }
6530 }
6531 /* always seek to exact end of record */
6532 qemu_fseek(f, cur_pos + record_len, SEEK_SET);
6533 }
6534 ret = 0;
6535 the_end:
6536 return ret;
6537 }
6538
6539 /* device can contain snapshots */
6540 static int bdrv_can_snapshot(BlockDriverState *bs)
6541 {
6542 return (bs &&
6543 !bdrv_is_removable(bs) &&
6544 !bdrv_is_read_only(bs));
6545 }
6546
6547 /* device must be snapshots in order to have a reliable snapshot */
6548 static int bdrv_has_snapshot(BlockDriverState *bs)
6549 {
6550 return (bs &&
6551 !bdrv_is_removable(bs) &&
6552 !bdrv_is_read_only(bs));
6553 }
6554
6555 static BlockDriverState *get_bs_snapshots(void)
6556 {
6557 BlockDriverState *bs;
6558 int i;
6559
6560 if (bs_snapshots)
6561 return bs_snapshots;
6562 for(i = 0; i <= nb_drives; i++) {
6563 bs = drives_table[i].bdrv;
6564 if (bdrv_can_snapshot(bs))
6565 goto ok;
6566 }
6567 return NULL;
6568 ok:
6569 bs_snapshots = bs;
6570 return bs;
6571 }
6572
6573 static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
6574 const char *name)
6575 {
6576 QEMUSnapshotInfo *sn_tab, *sn;
6577 int nb_sns, i, ret;
6578
6579 ret = -ENOENT;
6580 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
6581 if (nb_sns < 0)
6582 return ret;
6583 for(i = 0; i < nb_sns; i++) {
6584 sn = &sn_tab[i];
6585 if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
6586 *sn_info = *sn;
6587 ret = 0;
6588 break;
6589 }
6590 }
6591 qemu_free(sn_tab);
6592 return ret;
6593 }
6594
6595 void do_savevm(const char *name)
6596 {
6597 BlockDriverState *bs, *bs1;
6598 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
6599 int must_delete, ret, i;
6600 BlockDriverInfo bdi1, *bdi = &bdi1;
6601 QEMUFile *f;
6602 int saved_vm_running;
6603 #ifdef _WIN32
6604 struct _timeb tb;
6605 #else
6606 struct timeval tv;
6607 #endif
6608
6609 bs = get_bs_snapshots();
6610 if (!bs) {
6611 term_printf("No block device can accept snapshots\n");
6612 return;
6613 }
6614
6615 /* ??? Should this occur after vm_stop? */
6616 qemu_aio_flush();
6617
6618 saved_vm_running = vm_running;
6619 vm_stop(0);
6620
6621 must_delete = 0;
6622 if (name) {
6623 ret = bdrv_snapshot_find(bs, old_sn, name);
6624 if (ret >= 0) {
6625 must_delete = 1;
6626 }
6627 }
6628 memset(sn, 0, sizeof(*sn));
6629 if (must_delete) {
6630 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
6631 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
6632 } else {
6633 if (name)
6634 pstrcpy(sn->name, sizeof(sn->name), name);
6635 }
6636
6637 /* fill auxiliary fields */
6638 #ifdef _WIN32
6639 _ftime(&tb);
6640 sn->date_sec = tb.time;
6641 sn->date_nsec = tb.millitm * 1000000;
6642 #else
6643 gettimeofday(&tv, NULL);
6644 sn->date_sec = tv.tv_sec;
6645 sn->date_nsec = tv.tv_usec * 1000;
6646 #endif
6647 sn->vm_clock_nsec = qemu_get_clock(vm_clock);
6648
6649 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
6650 term_printf("Device %s does not support VM state snapshots\n",
6651 bdrv_get_device_name(bs));
6652 goto the_end;
6653 }
6654
6655 /* save the VM state */
6656 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
6657 if (!f) {
6658 term_printf("Could not open VM state file\n");
6659 goto the_end;
6660 }
6661 ret = qemu_savevm_state(f);
6662 sn->vm_state_size = qemu_ftell(f);
6663 qemu_fclose(f);
6664 if (ret < 0) {
6665 term_printf("Error %d while writing VM\n", ret);
6666 goto the_end;
6667 }
6668
6669 /* create the snapshots */
6670
6671 for(i = 0; i < nb_drives; i++) {
6672 bs1 = drives_table[i].bdrv;
6673 if (bdrv_has_snapshot(bs1)) {
6674 if (must_delete) {
6675 ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
6676 if (ret < 0) {
6677 term_printf("Error while deleting snapshot on '%s'\n",
6678 bdrv_get_device_name(bs1));
6679 }
6680 }
6681 ret = bdrv_snapshot_create(bs1, sn);
6682 if (ret < 0) {
6683 term_printf("Error while creating snapshot on '%s'\n",
6684 bdrv_get_device_name(bs1));
6685 }
6686 }
6687 }
6688
6689 the_end:
6690 if (saved_vm_running)
6691 vm_start();
6692 }
6693
6694 void do_loadvm(const char *name)
6695 {
6696 BlockDriverState *bs, *bs1;
6697 BlockDriverInfo bdi1, *bdi = &bdi1;
6698 QEMUFile *f;
6699 int i, ret;
6700 int saved_vm_running;
6701
6702 bs = get_bs_snapshots();
6703 if (!bs) {
6704 term_printf("No block device supports snapshots\n");
6705 return;
6706 }
6707
6708 /* Flush all IO requests so they don't interfere with the new state. */
6709 qemu_aio_flush();
6710
6711 saved_vm_running = vm_running;
6712 vm_stop(0);
6713
6714 for(i = 0; i <= nb_drives; i++) {
6715 bs1 = drives_table[i].bdrv;
6716 if (bdrv_has_snapshot(bs1)) {
6717 ret = bdrv_snapshot_goto(bs1, name);
6718 if (ret < 0) {
6719 if (bs != bs1)
6720 term_printf("Warning: ");
6721 switch(ret) {
6722 case -ENOTSUP:
6723 term_printf("Snapshots not supported on device '%s'\n",
6724 bdrv_get_device_name(bs1));
6725 break;
6726 case -ENOENT:
6727 term_printf("Could not find snapshot '%s' on device '%s'\n",
6728 name, bdrv_get_device_name(bs1));
6729 break;
6730 default:
6731 term_printf("Error %d while activating snapshot on '%s'\n",
6732 ret, bdrv_get_device_name(bs1));
6733 break;
6734 }
6735 /* fatal on snapshot block device */
6736 if (bs == bs1)
6737 goto the_end;
6738 }
6739 }
6740 }
6741
6742 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
6743 term_printf("Device %s does not support VM state snapshots\n",
6744 bdrv_get_device_name(bs));
6745 return;
6746 }
6747
6748 /* restore the VM state */
6749 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
6750 if (!f) {
6751 term_printf("Could not open VM state file\n");
6752 goto the_end;
6753 }
6754 ret = qemu_loadvm_state(f);
6755 qemu_fclose(f);
6756 if (ret < 0) {
6757 term_printf("Error %d while loading VM state\n", ret);
6758 }
6759 the_end:
6760 if (saved_vm_running)
6761 vm_start();
6762 }
6763
6764 void do_delvm(const char *name)
6765 {
6766 BlockDriverState *bs, *bs1;
6767 int i, ret;
6768
6769 bs = get_bs_snapshots();
6770 if (!bs) {
6771 term_printf("No block device supports snapshots\n");
6772 return;
6773 }
6774
6775 for(i = 0; i <= nb_drives; i++) {
6776 bs1 = drives_table[i].bdrv;
6777 if (bdrv_has_snapshot(bs1)) {
6778 ret = bdrv_snapshot_delete(bs1, name);
6779 if (ret < 0) {
6780 if (ret == -ENOTSUP)
6781 term_printf("Snapshots not supported on device '%s'\n",
6782 bdrv_get_device_name(bs1));
6783 else
6784 term_printf("Error %d while deleting snapshot on '%s'\n",
6785 ret, bdrv_get_device_name(bs1));
6786 }
6787 }
6788 }
6789 }
6790
6791 void do_info_snapshots(void)
6792 {
6793 BlockDriverState *bs, *bs1;
6794 QEMUSnapshotInfo *sn_tab, *sn;
6795 int nb_sns, i;
6796 char buf[256];
6797
6798 bs = get_bs_snapshots();
6799 if (!bs) {
6800 term_printf("No available block device supports snapshots\n");
6801 return;
6802 }
6803 term_printf("Snapshot devices:");
6804 for(i = 0; i <= nb_drives; i++) {
6805 bs1 = drives_table[i].bdrv;
6806 if (bdrv_has_snapshot(bs1)) {
6807 if (bs == bs1)
6808 term_printf(" %s", bdrv_get_device_name(bs1));
6809 }
6810 }
6811 term_printf("\n");
6812
6813 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
6814 if (nb_sns < 0) {
6815 term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
6816 return;
6817 }
6818 term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
6819 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
6820 for(i = 0; i < nb_sns; i++) {
6821 sn = &sn_tab[i];
6822 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
6823 }
6824 qemu_free(sn_tab);
6825 }
6826
6827 /***********************************************************/
6828 /* ram save/restore */
6829
6830 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
6831 {
6832 int v;
6833
6834 v = qemu_get_byte(f);
6835 switch(v) {
6836 case 0:
6837 if (qemu_get_buffer(f, buf, len) != len)
6838 return -EIO;
6839 break;
6840 case 1:
6841 v = qemu_get_byte(f);
6842 memset(buf, v, len);
6843 break;
6844 default:
6845 return -EINVAL;
6846 }
6847 return 0;
6848 }
6849
6850 static int ram_load_v1(QEMUFile *f, void *opaque)
6851 {
6852 int ret;
6853 ram_addr_t i;
6854
6855 if (qemu_get_be32(f) != phys_ram_size)
6856 return -EINVAL;
6857 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
6858 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
6859 if (ret)
6860 return ret;
6861 }
6862 return 0;
6863 }
6864
6865 #define BDRV_HASH_BLOCK_SIZE 1024
6866 #define IOBUF_SIZE 4096
6867 #define RAM_CBLOCK_MAGIC 0xfabe
6868
6869 typedef struct RamCompressState {
6870 z_stream zstream;
6871 QEMUFile *f;
6872 uint8_t buf[IOBUF_SIZE];
6873 } RamCompressState;
6874
6875 static int ram_compress_open(RamCompressState *s, QEMUFile *f)
6876 {
6877 int ret;
6878 memset(s, 0, sizeof(*s));
6879 s->f = f;
6880 ret = deflateInit2(&s->zstream, 1,
6881 Z_DEFLATED, 15,
6882 9, Z_DEFAULT_STRATEGY);
6883 if (ret != Z_OK)
6884 return -1;
6885 s->zstream.avail_out = IOBUF_SIZE;
6886 s->zstream.next_out = s->buf;
6887 return 0;
6888 }
6889
6890 static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
6891 {
6892 qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
6893 qemu_put_be16(s->f, len);
6894 qemu_put_buffer(s->f, buf, len);
6895 }
6896
6897 static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
6898 {
6899 int ret;
6900
6901 s->zstream.avail_in = len;
6902 s->zstream.next_in = (uint8_t *)buf;
6903 while (s->zstream.avail_in > 0) {
6904 ret = deflate(&s->zstream, Z_NO_FLUSH);
6905 if (ret != Z_OK)
6906 return -1;
6907 if (s->zstream.avail_out == 0) {
6908 ram_put_cblock(s, s->buf, IOBUF_SIZE);
6909 s->zstream.avail_out = IOBUF_SIZE;
6910 s->zstream.next_out = s->buf;
6911 }
6912 }
6913 return 0;
6914 }
6915
6916 static void ram_compress_close(RamCompressState *s)
6917 {
6918 int len, ret;
6919
6920 /* compress last bytes */
6921 for(;;) {
6922 ret = deflate(&s->zstream, Z_FINISH);
6923 if (ret == Z_OK || ret == Z_STREAM_END) {
6924 len = IOBUF_SIZE - s->zstream.avail_out;
6925 if (len > 0) {
6926 ram_put_cblock(s, s->buf, len);
6927 }
6928 s->zstream.avail_out = IOBUF_SIZE;
6929 s->zstream.next_out = s->buf;
6930 if (ret == Z_STREAM_END)
6931 break;
6932 } else {
6933 goto fail;
6934 }
6935 }
6936 fail:
6937 deflateEnd(&s->zstream);
6938 }
6939
6940 typedef struct RamDecompressState {
6941 z_stream zstream;
6942 QEMUFile *f;
6943 uint8_t buf[IOBUF_SIZE];
6944 } RamDecompressState;
6945
6946 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
6947 {
6948 int ret;
6949 memset(s, 0, sizeof(*s));
6950 s->f = f;
6951 ret = inflateInit(&s->zstream);
6952 if (ret != Z_OK)
6953 return -1;
6954 return 0;
6955 }
6956
6957 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
6958 {
6959 int ret, clen;
6960
6961 s->zstream.avail_out = len;
6962 s->zstream.next_out = buf;
6963 while (s->zstream.avail_out > 0) {
6964 if (s->zstream.avail_in == 0) {
6965 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
6966 return -1;
6967 clen = qemu_get_be16(s->f);
6968 if (clen > IOBUF_SIZE)
6969 return -1;
6970 qemu_get_buffer(s->f, s->buf, clen);
6971 s->zstream.avail_in = clen;
6972 s->zstream.next_in = s->buf;
6973 }
6974 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
6975 if (ret != Z_OK && ret != Z_STREAM_END) {
6976 return -1;
6977 }
6978 }
6979 return 0;
6980 }
6981
6982 static void ram_decompress_close(RamDecompressState *s)
6983 {
6984 inflateEnd(&s->zstream);
6985 }
6986
6987 static void ram_save(QEMUFile *f, void *opaque)
6988 {
6989 ram_addr_t i;
6990 RamCompressState s1, *s = &s1;
6991 uint8_t buf[10];
6992
6993 qemu_put_be32(f, phys_ram_size);
6994 if (ram_compress_open(s, f) < 0)
6995 return;
6996 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6997 #if 0
6998 if (tight_savevm_enabled) {
6999 int64_t sector_num;
7000 int j;
7001
7002 /* find if the memory block is available on a virtual
7003 block device */
7004 sector_num = -1;
7005 for(j = 0; j < nb_drives; j++) {
7006 sector_num = bdrv_hash_find(drives_table[j].bdrv,
7007 phys_ram_base + i,
7008 BDRV_HASH_BLOCK_SIZE);
7009 if (sector_num >= 0)
7010 break;
7011 }
7012 if (j == nb_drives)
7013 goto normal_compress;
7014 buf[0] = 1;
7015 buf[1] = j;
7016 cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
7017 ram_compress_buf(s, buf, 10);
7018 } else
7019 #endif
7020 {
7021 // normal_compress:
7022 buf[0] = 0;
7023 ram_compress_buf(s, buf, 1);
7024 ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
7025 }
7026 }
7027 ram_compress_close(s);
7028 }
7029
7030 static int ram_load(QEMUFile *f, void *opaque, int version_id)
7031 {
7032 RamDecompressState s1, *s = &s1;
7033 uint8_t buf[10];
7034 ram_addr_t i;
7035
7036 if (version_id == 1)
7037 return ram_load_v1(f, opaque);
7038 if (version_id != 2)
7039 return -EINVAL;
7040 if (qemu_get_be32(f) != phys_ram_size)
7041 return -EINVAL;
7042 if (ram_decompress_open(s, f) < 0)
7043 return -EINVAL;
7044 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
7045 if (ram_decompress_buf(s, buf, 1) < 0) {
7046 fprintf(stderr, "Error while reading ram block header\n");
7047 goto error;
7048 }
7049 if (buf[0] == 0) {
7050 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
7051 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
7052 goto error;
7053 }
7054 } else
7055 #if 0
7056 if (buf[0] == 1) {
7057 int bs_index;
7058 int64_t sector_num;
7059
7060 ram_decompress_buf(s, buf + 1, 9);
7061 bs_index = buf[1];
7062 sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
7063 if (bs_index >= nb_drives) {
7064 fprintf(stderr, "Invalid block device index %d\n", bs_index);
7065 goto error;
7066 }
7067 if (bdrv_read(drives_table[bs_index].bdrv, sector_num,
7068 phys_ram_base + i,
7069 BDRV_HASH_BLOCK_SIZE / 512) < 0) {
7070 fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
7071 bs_index, sector_num);
7072 goto error;
7073 }
7074 } else
7075 #endif
7076 {
7077 error:
7078 printf("Error block header\n");
7079 return -EINVAL;
7080 }
7081 }
7082 ram_decompress_close(s);
7083 return 0;
7084 }
7085
7086 /***********************************************************/
7087 /* bottom halves (can be seen as timers which expire ASAP) */
7088
7089 struct QEMUBH {
7090 QEMUBHFunc *cb;
7091 void *opaque;
7092 int scheduled;
7093 QEMUBH *next;
7094 };
7095
7096 static QEMUBH *first_bh = NULL;
7097
7098 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
7099 {
7100 QEMUBH *bh;
7101 bh = qemu_mallocz(sizeof(QEMUBH));
7102 if (!bh)
7103 return NULL;
7104 bh->cb = cb;
7105 bh->opaque = opaque;
7106 return bh;
7107 }
7108
7109 int qemu_bh_poll(void)
7110 {
7111 QEMUBH *bh, **pbh;
7112 int ret;
7113
7114 ret = 0;
7115 for(;;) {
7116 pbh = &first_bh;
7117 bh = *pbh;
7118 if (!bh)
7119 break;
7120 ret = 1;
7121 *pbh = bh->next;
7122 bh->scheduled = 0;
7123 bh->cb(bh->opaque);
7124 }
7125 return ret;
7126 }
7127
7128 void qemu_bh_schedule(QEMUBH *bh)
7129 {
7130 CPUState *env = cpu_single_env;
7131 if (bh->scheduled)
7132 return;
7133 bh->scheduled = 1;
7134 bh->next = first_bh;
7135 first_bh = bh;
7136
7137 /* stop the currently executing CPU to execute the BH ASAP */
7138 if (env) {
7139 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
7140 }
7141 }
7142
7143 void qemu_bh_cancel(QEMUBH *bh)
7144 {
7145 QEMUBH **pbh;
7146 if (bh->scheduled) {
7147 pbh = &first_bh;
7148 while (*pbh != bh)
7149 pbh = &(*pbh)->next;
7150 *pbh = bh->next;
7151 bh->scheduled = 0;
7152 }
7153 }
7154
7155 void qemu_bh_delete(QEMUBH *bh)
7156 {
7157 qemu_bh_cancel(bh);
7158 qemu_free(bh);
7159 }
7160
7161 /***********************************************************/
7162 /* machine registration */
7163
7164 QEMUMachine *first_machine = NULL;
7165
7166 int qemu_register_machine(QEMUMachine *m)
7167 {
7168 QEMUMachine **pm;
7169 pm = &first_machine;
7170 while (*pm != NULL)
7171 pm = &(*pm)->next;
7172 m->next = NULL;
7173 *pm = m;
7174 return 0;
7175 }
7176
7177 static QEMUMachine *find_machine(const char *name)
7178 {
7179 QEMUMachine *m;
7180
7181 for(m = first_machine; m != NULL; m = m->next) {
7182 if (!strcmp(m->name, name))
7183 return m;
7184 }
7185 return NULL;
7186 }
7187
7188 /***********************************************************/
7189 /* main execution loop */
7190
7191 static void gui_update(void *opaque)
7192 {
7193 DisplayState *ds = opaque;
7194 ds->dpy_refresh(ds);
7195 qemu_mod_timer(ds->gui_timer,
7196 (ds->gui_timer_interval ?
7197 ds->gui_timer_interval :
7198 GUI_REFRESH_INTERVAL)
7199 + qemu_get_clock(rt_clock));
7200 }
7201
7202 struct vm_change_state_entry {
7203 VMChangeStateHandler *cb;
7204 void *opaque;
7205 LIST_ENTRY (vm_change_state_entry) entries;
7206 };
7207
7208 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
7209
7210 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
7211 void *opaque)
7212 {
7213 VMChangeStateEntry *e;
7214
7215 e = qemu_mallocz(sizeof (*e));
7216 if (!e)
7217 return NULL;
7218
7219 e->cb = cb;
7220 e->opaque = opaque;
7221 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
7222 return e;
7223 }
7224
7225 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
7226 {
7227 LIST_REMOVE (e, entries);
7228 qemu_free (e);
7229 }
7230
7231 static void vm_state_notify(int running)
7232 {
7233 VMChangeStateEntry *e;
7234
7235 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
7236 e->cb(e->opaque, running);
7237 }
7238 }
7239
7240 /* XXX: support several handlers */
7241 static VMStopHandler *vm_stop_cb;
7242 static void *vm_stop_opaque;
7243
7244 int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
7245 {
7246 vm_stop_cb = cb;
7247 vm_stop_opaque = opaque;
7248 return 0;
7249 }
7250
7251 void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
7252 {
7253 vm_stop_cb = NULL;
7254 }
7255
7256 void vm_start(void)
7257 {
7258 if (!vm_running) {
7259 cpu_enable_ticks();
7260 vm_running = 1;
7261 vm_state_notify(1);
7262 qemu_rearm_alarm_timer(alarm_timer);
7263 }
7264 }
7265
7266 void vm_stop(int reason)
7267 {
7268 if (vm_running) {
7269 cpu_disable_ticks();
7270 vm_running = 0;
7271 if (reason != 0) {
7272 if (vm_stop_cb) {
7273 vm_stop_cb(vm_stop_opaque, reason);
7274 }
7275 }
7276 vm_state_notify(0);
7277 }
7278 }
7279
7280 /* reset/shutdown handler */
7281
7282 typedef struct QEMUResetEntry {
7283 QEMUResetHandler *func;
7284 void *opaque;
7285 struct QEMUResetEntry *next;
7286 } QEMUResetEntry;
7287
7288 static QEMUResetEntry *first_reset_entry;
7289 static int reset_requested;
7290 static int shutdown_requested;
7291 static int powerdown_requested;
7292
7293 int qemu_shutdown_requested(void)
7294 {
7295 int r = shutdown_requested;
7296 shutdown_requested = 0;
7297 return r;
7298 }
7299
7300 int qemu_reset_requested(void)
7301 {
7302 int r = reset_requested;
7303 reset_requested = 0;
7304 return r;
7305 }
7306
7307 int qemu_powerdown_requested(void)
7308 {
7309 int r = powerdown_requested;
7310 powerdown_requested = 0;
7311 return r;
7312 }
7313
7314 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
7315 {
7316 QEMUResetEntry **pre, *re;
7317
7318 pre = &first_reset_entry;
7319 while (*pre != NULL)
7320 pre = &(*pre)->next;
7321 re = qemu_mallocz(sizeof(QEMUResetEntry));
7322 re->func = func;
7323 re->opaque = opaque;
7324 re->next = NULL;
7325 *pre = re;
7326 }
7327
7328 void qemu_system_reset(void)
7329 {
7330 QEMUResetEntry *re;
7331
7332 /* reset all devices */
7333 for(re = first_reset_entry; re != NULL; re = re->next) {
7334 re->func(re->opaque);
7335 }
7336 }
7337
7338 void qemu_system_reset_request(void)
7339 {
7340 if (no_reboot) {
7341 shutdown_requested = 1;
7342 } else {
7343 reset_requested = 1;
7344 }
7345 if (cpu_single_env)
7346 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7347 }
7348
7349 void qemu_system_shutdown_request(void)
7350 {
7351 shutdown_requested = 1;
7352 if (cpu_single_env)
7353 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7354 }
7355
7356 void qemu_system_powerdown_request(void)
7357 {
7358 powerdown_requested = 1;
7359 if (cpu_single_env)
7360 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7361 }
7362
7363 void main_loop_wait(int timeout)
7364 {
7365 IOHandlerRecord *ioh;
7366 fd_set rfds, wfds, xfds;
7367 int ret, nfds;
7368 #ifdef _WIN32
7369 int ret2, i;
7370 #endif
7371 struct timeval tv;
7372 PollingEntry *pe;
7373
7374
7375 /* XXX: need to suppress polling by better using win32 events */
7376 ret = 0;
7377 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
7378 ret |= pe->func(pe->opaque);
7379 }
7380 #ifdef _WIN32
7381 if (ret == 0) {
7382 int err;
7383 WaitObjects *w = &wait_objects;
7384
7385 ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
7386 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
7387 if (w->func[ret - WAIT_OBJECT_0])
7388 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
7389
7390 /* Check for additional signaled events */
7391 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
7392
7393 /* Check if event is signaled */
7394 ret2 = WaitForSingleObject(w->events[i], 0);
7395 if(ret2 == WAIT_OBJECT_0) {
7396 if (w->func[i])
7397 w->func[i](w->opaque[i]);
7398 } else if (ret2 == WAIT_TIMEOUT) {
7399 } else {
7400 err = GetLastError();
7401 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
7402 }
7403 }
7404 } else if (ret == WAIT_TIMEOUT) {
7405 } else {
7406 err = GetLastError();
7407 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
7408 }
7409 }
7410 #endif
7411 /* poll any events */
7412 /* XXX: separate device handlers from system ones */
7413 nfds = -1;
7414 FD_ZERO(&rfds);
7415 FD_ZERO(&wfds);
7416 FD_ZERO(&xfds);
7417 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
7418 if (ioh->deleted)
7419 continue;
7420 if (ioh->fd_read &&
7421 (!ioh->fd_read_poll ||
7422 ioh->fd_read_poll(ioh->opaque) != 0)) {
7423 FD_SET(ioh->fd, &rfds);
7424 if (ioh->fd > nfds)
7425 nfds = ioh->fd;
7426 }
7427 if (ioh->fd_write) {
7428 FD_SET(ioh->fd, &wfds);
7429 if (ioh->fd > nfds)
7430 nfds = ioh->fd;
7431 }
7432 }
7433
7434 tv.tv_sec = 0;
7435 #ifdef _WIN32
7436 tv.tv_usec = 0;
7437 #else
7438 tv.tv_usec = timeout * 1000;
7439 #endif
7440 #if defined(CONFIG_SLIRP)
7441 if (slirp_inited) {
7442 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
7443 }
7444 #endif
7445 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
7446 if (ret > 0) {
7447 IOHandlerRecord **pioh;
7448
7449 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
7450 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
7451 ioh->fd_read(ioh->opaque);
7452 }
7453 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
7454 ioh->fd_write(ioh->opaque);
7455 }
7456 }
7457
7458 /* remove deleted IO handlers */
7459 pioh = &first_io_handler;
7460 while (*pioh) {
7461 ioh = *pioh;
7462 if (ioh->deleted) {
7463 *pioh = ioh->next;
7464 qemu_free(ioh);
7465 } else
7466 pioh = &ioh->next;
7467 }
7468 }
7469 #if defined(CONFIG_SLIRP)
7470 if (slirp_inited) {
7471 if (ret < 0) {
7472 FD_ZERO(&rfds);
7473 FD_ZERO(&wfds);
7474 FD_ZERO(&xfds);
7475 }
7476 slirp_select_poll(&rfds, &wfds, &xfds);
7477 }
7478 #endif
7479
7480 if (vm_running) {
7481 if (likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
7482 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
7483 qemu_get_clock(vm_clock));
7484 /* run dma transfers, if any */
7485 DMA_run();
7486 }
7487
7488 /* real time timers */
7489 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
7490 qemu_get_clock(rt_clock));
7491
7492 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
7493 alarm_timer->flags &= ~(ALARM_FLAG_EXPIRED);
7494 qemu_rearm_alarm_timer(alarm_timer);
7495 }
7496
7497 /* Check bottom-halves last in case any of the earlier events triggered
7498 them. */
7499 qemu_bh_poll();
7500
7501 }
7502
7503 static int main_loop(void)
7504 {
7505 int ret, timeout;
7506 #ifdef CONFIG_PROFILER
7507 int64_t ti;
7508 #endif
7509 CPUState *env;
7510
7511 cur_cpu = first_cpu;
7512 next_cpu = cur_cpu->next_cpu ?: first_cpu;
7513 for(;;) {
7514 if (vm_running) {
7515
7516 for(;;) {
7517 /* get next cpu */
7518 env = next_cpu;
7519 #ifdef CONFIG_PROFILER
7520 ti = profile_getclock();
7521 #endif
7522 if (use_icount) {
7523 int64_t count;
7524 int decr;
7525 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
7526 env->icount_decr.u16.low = 0;
7527 env->icount_extra = 0;
7528 count = qemu_next_deadline();
7529 count = (count + (1 << icount_time_shift) - 1)
7530 >> icount_time_shift;
7531 qemu_icount += count;
7532 decr = (count > 0xffff) ? 0xffff : count;
7533 count -= decr;
7534 env->icount_decr.u16.low = decr;
7535 env->icount_extra = count;
7536 }
7537 ret = cpu_exec(env);
7538 #ifdef CONFIG_PROFILER
7539 qemu_time += profile_getclock() - ti;
7540 #endif
7541 if (use_icount) {
7542 /* Fold pending instructions back into the
7543 instruction counter, and clear the interrupt flag. */
7544 qemu_icount -= (env->icount_decr.u16.low
7545 + env->icount_extra);
7546 env->icount_decr.u32 = 0;
7547 env->icount_extra = 0;
7548 }
7549 next_cpu = env->next_cpu ?: first_cpu;
7550 if (event_pending && likely(ret != EXCP_DEBUG)) {
7551 ret = EXCP_INTERRUPT;
7552 event_pending = 0;
7553 break;
7554 }
7555 if (ret == EXCP_HLT) {
7556 /* Give the next CPU a chance to run. */
7557 cur_cpu = env;
7558 continue;
7559 }
7560 if (ret != EXCP_HALTED)
7561 break;
7562 /* all CPUs are halted ? */
7563 if (env == cur_cpu)
7564 break;
7565 }
7566 cur_cpu = env;
7567
7568 if (shutdown_requested) {
7569 ret = EXCP_INTERRUPT;
7570 if (no_shutdown) {
7571 vm_stop(0);
7572 no_shutdown = 0;
7573 }
7574 else
7575 break;
7576 }
7577 if (reset_requested) {
7578 reset_requested = 0;
7579 qemu_system_reset();
7580 ret = EXCP_INTERRUPT;
7581 }
7582 if (powerdown_requested) {
7583 powerdown_requested = 0;
7584 qemu_system_powerdown();
7585 ret = EXCP_INTERRUPT;
7586 }
7587 if (unlikely(ret == EXCP_DEBUG)) {
7588 vm_stop(EXCP_DEBUG);
7589 }
7590 /* If all cpus are halted then wait until the next IRQ */
7591 /* XXX: use timeout computed from timers */
7592 if (ret == EXCP_HALTED) {
7593 if (use_icount) {
7594 int64_t add;
7595 int64_t delta;
7596 /* Advance virtual time to the next event. */
7597 if (use_icount == 1) {
7598 /* When not using an adaptive execution frequency
7599 we tend to get badly out of sync with real time,
7600 so just delay for a reasonable amount of time. */
7601 delta = 0;
7602 } else {
7603 delta = cpu_get_icount() - cpu_get_clock();
7604 }
7605 if (delta > 0) {
7606 /* If virtual time is ahead of real time then just
7607 wait for IO. */
7608 timeout = (delta / 1000000) + 1;
7609 } else {
7610 /* Wait for either IO to occur or the next
7611 timer event. */
7612 add = qemu_next_deadline();
7613 /* We advance the timer before checking for IO.
7614 Limit the amount we advance so that early IO
7615 activity won't get the guest too far ahead. */
7616 if (add > 10000000)
7617 add = 10000000;
7618 delta += add;
7619 add = (add + (1 << icount_time_shift) - 1)
7620 >> icount_time_shift;
7621 qemu_icount += add;
7622 timeout = delta / 1000000;
7623 if (timeout < 0)
7624 timeout = 0;
7625 }
7626 } else {
7627 timeout = 10;
7628 }
7629 } else {
7630 timeout = 0;
7631 }
7632 } else {
7633 if (shutdown_requested)
7634 break;
7635 timeout = 10;
7636 }
7637 #ifdef CONFIG_PROFILER
7638 ti = profile_getclock();
7639 #endif
7640 main_loop_wait(timeout);
7641 #ifdef CONFIG_PROFILER
7642 dev_time += profile_getclock() - ti;
7643 #endif
7644 }
7645 cpu_disable_ticks();
7646 return ret;
7647 }
7648
7649 static void help(int exitcode)
7650 {
7651 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
7652 "usage: %s [options] [disk_image]\n"
7653 "\n"
7654 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
7655 "\n"
7656 "Standard options:\n"
7657 "-M machine select emulated machine (-M ? for list)\n"
7658 "-cpu cpu select CPU (-cpu ? for list)\n"
7659 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
7660 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
7661 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
7662 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
7663 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
7664 " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
7665 " [,cache=on|off][,format=f]\n"
7666 " use 'file' as a drive image\n"
7667 "-mtdblock file use 'file' as on-board Flash memory image\n"
7668 "-sd file use 'file' as SecureDigital card image\n"
7669 "-pflash file use 'file' as a parallel flash image\n"
7670 "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
7671 "-snapshot write to temporary files instead of disk image files\n"
7672 #ifdef CONFIG_SDL
7673 "-no-frame open SDL window without a frame and window decorations\n"
7674 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
7675 "-no-quit disable SDL window close capability\n"
7676 #endif
7677 #ifdef TARGET_I386
7678 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
7679 #endif
7680 "-m megs set virtual RAM size to megs MB [default=%d]\n"
7681 "-smp n set the number of CPUs to 'n' [default=1]\n"
7682 "-nographic disable graphical output and redirect serial I/Os to console\n"
7683 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n"
7684 #ifndef _WIN32
7685 "-k language use keyboard layout (for example \"fr\" for French)\n"
7686 #endif
7687 #ifdef HAS_AUDIO
7688 "-audio-help print list of audio drivers and their options\n"
7689 "-soundhw c1,... enable audio support\n"
7690 " and only specified sound cards (comma separated list)\n"
7691 " use -soundhw ? to get the list of supported cards\n"
7692 " use -soundhw all to enable all of them\n"
7693 #endif
7694 "-localtime set the real time clock to local time [default=utc]\n"
7695 "-full-screen start in full screen\n"
7696 #ifdef TARGET_I386
7697 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
7698 #endif
7699 "-usb enable the USB driver (will be the default soon)\n"
7700 "-usbdevice name add the host or guest USB device 'name'\n"
7701 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
7702 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
7703 #endif
7704 "-name string set the name of the guest\n"
7705 "-uuid %%08x-%%04x-%%04x-%%04x-%%012x specify machine UUID\n"
7706 "\n"
7707 "Network options:\n"
7708 "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
7709 " create a new Network Interface Card and connect it to VLAN 'n'\n"
7710 #ifdef CONFIG_SLIRP
7711 "-net user[,vlan=n][,hostname=host]\n"
7712 " connect the user mode network stack to VLAN 'n' and send\n"
7713 " hostname 'host' to DHCP clients\n"
7714 #endif
7715 #ifdef _WIN32
7716 "-net tap[,vlan=n],ifname=name\n"
7717 " connect the host TAP network interface to VLAN 'n'\n"
7718 #else
7719 "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
7720 " connect the host TAP network interface to VLAN 'n' and use the\n"
7721 " network scripts 'file' (default=%s)\n"
7722 " and 'dfile' (default=%s);\n"
7723 " use '[down]script=no' to disable script execution;\n"
7724 " use 'fd=h' to connect to an already opened TAP interface\n"
7725 #endif
7726 "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
7727 " connect the vlan 'n' to another VLAN using a socket connection\n"
7728 "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
7729 " connect the vlan 'n' to multicast maddr and port\n"
7730 #ifdef CONFIG_VDE
7731 "-net vde[,vlan=n][,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
7732 " connect the vlan 'n' to port 'n' of a vde switch running\n"
7733 " on host and listening for incoming connections on 'socketpath'.\n"
7734 " Use group 'groupname' and mode 'octalmode' to change default\n"
7735 " ownership and permissions for communication port.\n"
7736 #endif
7737 "-net none use it alone to have zero network devices; if no -net option\n"
7738 " is provided, the default is '-net nic -net user'\n"
7739 "\n"
7740 #ifdef CONFIG_SLIRP
7741 "-tftp dir allow tftp access to files in dir [-net user]\n"
7742 "-bootp file advertise file in BOOTP replies\n"
7743 #ifndef _WIN32
7744 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
7745 #endif
7746 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
7747 " redirect TCP or UDP connections from host to guest [-net user]\n"
7748 #endif
7749 "\n"
7750 "Linux boot specific:\n"
7751 "-kernel bzImage use 'bzImage' as kernel image\n"
7752 "-append cmdline use 'cmdline' as kernel command line\n"
7753 "-initrd file use 'file' as initial ram disk\n"
7754 "\n"
7755 "Debug/Expert options:\n"
7756 "-monitor dev redirect the monitor to char device 'dev'\n"
7757 "-serial dev redirect the serial port to char device 'dev'\n"
7758 "-parallel dev redirect the parallel port to char device 'dev'\n"
7759 "-pidfile file Write PID to 'file'\n"
7760 "-S freeze CPU at startup (use 'c' to start execution)\n"
7761 "-s wait gdb connection to port\n"
7762 "-p port set gdb connection port [default=%s]\n"
7763 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
7764 "-hdachs c,h,s[,t] force hard disk 0 physical geometry and the optional BIOS\n"
7765 " translation (t=none or lba) (usually qemu can guess them)\n"
7766 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
7767 #ifdef USE_KQEMU
7768 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
7769 "-no-kqemu disable KQEMU kernel module usage\n"
7770 #endif
7771 #ifdef TARGET_I386
7772 "-std-vga simulate a standard VGA card with VESA Bochs Extensions\n"
7773 " (default is CL-GD5446 PCI VGA)\n"
7774 "-no-acpi disable ACPI\n"
7775 #endif
7776 #ifdef CONFIG_CURSES
7777 "-curses use a curses/ncurses interface instead of SDL\n"
7778 #endif
7779 "-no-reboot exit instead of rebooting\n"
7780 "-no-shutdown stop before shutdown\n"
7781 "-loadvm [tag|id] start right away with a saved state (loadvm in monitor)\n"
7782 "-vnc display start a VNC server on display\n"
7783 #ifndef _WIN32
7784 "-daemonize daemonize QEMU after initializing\n"
7785 #endif
7786 "-option-rom rom load a file, rom, into the option ROM space\n"
7787 #ifdef TARGET_SPARC
7788 "-prom-env variable=value set OpenBIOS nvram variables\n"
7789 #endif
7790 "-clock force the use of the given methods for timer alarm.\n"
7791 " To see what timers are available use -clock ?\n"
7792 "-startdate select initial date of the clock\n"
7793 "-icount [N|auto]\n"
7794 " Enable virtual instruction counter with 2^N clock ticks per instruction\n"
7795 "\n"
7796 "During emulation, the following keys are useful:\n"
7797 "ctrl-alt-f toggle full screen\n"
7798 "ctrl-alt-n switch to virtual console 'n'\n"
7799 "ctrl-alt toggle mouse and keyboard grab\n"
7800 "\n"
7801 "When using -nographic, press 'ctrl-a h' to get some help.\n"
7802 ,
7803 "qemu",
7804 DEFAULT_RAM_SIZE,
7805 #ifndef _WIN32
7806 DEFAULT_NETWORK_SCRIPT,
7807 DEFAULT_NETWORK_DOWN_SCRIPT,
7808 #endif
7809 DEFAULT_GDBSTUB_PORT,
7810 "/tmp/qemu.log");
7811 exit(exitcode);
7812 }
7813
7814 #define HAS_ARG 0x0001
7815
7816 enum {
7817 QEMU_OPTION_h,
7818
7819 QEMU_OPTION_M,
7820 QEMU_OPTION_cpu,
7821 QEMU_OPTION_fda,
7822 QEMU_OPTION_fdb,
7823 QEMU_OPTION_hda,
7824 QEMU_OPTION_hdb,
7825 QEMU_OPTION_hdc,
7826 QEMU_OPTION_hdd,
7827 QEMU_OPTION_drive,
7828 QEMU_OPTION_cdrom,
7829 QEMU_OPTION_mtdblock,
7830 QEMU_OPTION_sd,
7831 QEMU_OPTION_pflash,
7832 QEMU_OPTION_boot,
7833 QEMU_OPTION_snapshot,
7834 #ifdef TARGET_I386
7835 QEMU_OPTION_no_fd_bootchk,
7836 #endif
7837 QEMU_OPTION_m,
7838 QEMU_OPTION_nographic,
7839 QEMU_OPTION_portrait,
7840 #ifdef HAS_AUDIO
7841 QEMU_OPTION_audio_help,
7842 QEMU_OPTION_soundhw,
7843 #endif
7844
7845 QEMU_OPTION_net,
7846 QEMU_OPTION_tftp,
7847 QEMU_OPTION_bootp,
7848 QEMU_OPTION_smb,
7849 QEMU_OPTION_redir,
7850
7851 QEMU_OPTION_kernel,
7852 QEMU_OPTION_append,
7853 QEMU_OPTION_initrd,
7854
7855 QEMU_OPTION_S,
7856 QEMU_OPTION_s,
7857 QEMU_OPTION_p,
7858 QEMU_OPTION_d,
7859 QEMU_OPTION_hdachs,
7860 QEMU_OPTION_L,
7861 QEMU_OPTION_bios,
7862 QEMU_OPTION_k,
7863 QEMU_OPTION_localtime,
7864 QEMU_OPTION_cirrusvga,
7865 QEMU_OPTION_vmsvga,
7866 QEMU_OPTION_g,
7867 QEMU_OPTION_std_vga,
7868 QEMU_OPTION_echr,
7869 QEMU_OPTION_monitor,
7870 QEMU_OPTION_serial,
7871 QEMU_OPTION_parallel,
7872 QEMU_OPTION_loadvm,
7873 QEMU_OPTION_full_screen,
7874 QEMU_OPTION_no_frame,
7875 QEMU_OPTION_alt_grab,
7876 QEMU_OPTION_no_quit,
7877 QEMU_OPTION_pidfile,
7878 QEMU_OPTION_no_kqemu,
7879 QEMU_OPTION_kernel_kqemu,
7880 QEMU_OPTION_win2k_hack,
7881 QEMU_OPTION_usb,
7882 QEMU_OPTION_usbdevice,
7883 QEMU_OPTION_smp,
7884 QEMU_OPTION_vnc,
7885 QEMU_OPTION_no_acpi,
7886 QEMU_OPTION_curses,
7887 QEMU_OPTION_no_reboot,
7888 QEMU_OPTION_no_shutdown,
7889 QEMU_OPTION_show_cursor,
7890 QEMU_OPTION_daemonize,
7891 QEMU_OPTION_option_rom,
7892 QEMU_OPTION_semihosting,
7893 QEMU_OPTION_name,
7894 QEMU_OPTION_prom_env,
7895 QEMU_OPTION_old_param,
7896 QEMU_OPTION_clock,
7897 QEMU_OPTION_startdate,
7898 QEMU_OPTION_tb_size,
7899 QEMU_OPTION_icount,
7900 QEMU_OPTION_uuid,
7901 };
7902
7903 typedef struct QEMUOption {
7904 const char *name;
7905 int flags;
7906 int index;
7907 } QEMUOption;
7908
7909 const QEMUOption qemu_options[] = {
7910 { "h", 0, QEMU_OPTION_h },
7911 { "help", 0, QEMU_OPTION_h },
7912
7913 { "M", HAS_ARG, QEMU_OPTION_M },
7914 { "cpu", HAS_ARG, QEMU_OPTION_cpu },
7915 { "fda", HAS_ARG, QEMU_OPTION_fda },
7916 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
7917 { "hda", HAS_ARG, QEMU_OPTION_hda },
7918 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
7919 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
7920 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
7921 { "drive", HAS_ARG, QEMU_OPTION_drive },
7922 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
7923 { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
7924 { "sd", HAS_ARG, QEMU_OPTION_sd },
7925 { "pflash", HAS_ARG, QEMU_OPTION_pflash },
7926 { "boot", HAS_ARG, QEMU_OPTION_boot },
7927 { "snapshot", 0, QEMU_OPTION_snapshot },
7928 #ifdef TARGET_I386
7929 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
7930 #endif
7931 { "m", HAS_ARG, QEMU_OPTION_m },
7932 { "nographic", 0, QEMU_OPTION_nographic },
7933 { "portrait", 0, QEMU_OPTION_portrait },
7934 { "k", HAS_ARG, QEMU_OPTION_k },
7935 #ifdef HAS_AUDIO
7936 { "audio-help", 0, QEMU_OPTION_audio_help },
7937 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
7938 #endif
7939
7940 { "net", HAS_ARG, QEMU_OPTION_net},
7941 #ifdef CONFIG_SLIRP
7942 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
7943 { "bootp", HAS_ARG, QEMU_OPTION_bootp },
7944 #ifndef _WIN32
7945 { "smb", HAS_ARG, QEMU_OPTION_smb },
7946 #endif
7947 { "redir", HAS_ARG, QEMU_OPTION_redir },
7948 #endif
7949
7950 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
7951 { "append", HAS_ARG, QEMU_OPTION_append },
7952 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
7953
7954 { "S", 0, QEMU_OPTION_S },
7955 { "s", 0, QEMU_OPTION_s },
7956 { "p", HAS_ARG, QEMU_OPTION_p },
7957 { "d", HAS_ARG, QEMU_OPTION_d },
7958 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
7959 { "L", HAS_ARG, QEMU_OPTION_L },
7960 { "bios", HAS_ARG, QEMU_OPTION_bios },
7961 #ifdef USE_KQEMU
7962 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
7963 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
7964 #endif
7965 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
7966 { "g", 1, QEMU_OPTION_g },
7967 #endif
7968 { "localtime", 0, QEMU_OPTION_localtime },
7969 { "std-vga", 0, QEMU_OPTION_std_vga },
7970 { "echr", HAS_ARG, QEMU_OPTION_echr },
7971 { "monitor", HAS_ARG, QEMU_OPTION_monitor },
7972 { "serial", HAS_ARG, QEMU_OPTION_serial },
7973 { "parallel", HAS_ARG, QEMU_OPTION_parallel },
7974 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
7975 { "full-screen", 0, QEMU_OPTION_full_screen },
7976 #ifdef CONFIG_SDL
7977 { "no-frame", 0, QEMU_OPTION_no_frame },
7978 { "alt-grab", 0, QEMU_OPTION_alt_grab },
7979 { "no-quit", 0, QEMU_OPTION_no_quit },
7980 #endif
7981 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
7982 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
7983 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
7984 { "smp", HAS_ARG, QEMU_OPTION_smp },
7985 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
7986 #ifdef CONFIG_CURSES
7987 { "curses", 0, QEMU_OPTION_curses },
7988 #endif
7989 { "uuid", HAS_ARG, QEMU_OPTION_uuid },
7990
7991 /* temporary options */
7992 { "usb", 0, QEMU_OPTION_usb },
7993 { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
7994 { "vmwarevga", 0, QEMU_OPTION_vmsvga },
7995 { "no-acpi", 0, QEMU_OPTION_no_acpi },
7996 { "no-reboot", 0, QEMU_OPTION_no_reboot },
7997 { "no-shutdown", 0, QEMU_OPTION_no_shutdown },
7998 { "show-cursor", 0, QEMU_OPTION_show_cursor },
7999 { "daemonize", 0, QEMU_OPTION_daemonize },
8000 { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
8001 #if defined(TARGET_ARM) || defined(TARGET_M68K)
8002 { "semihosting", 0, QEMU_OPTION_semihosting },
8003 #endif
8004 { "name", HAS_ARG, QEMU_OPTION_name },
8005 #if defined(TARGET_SPARC)
8006 { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
8007 #endif
8008 #if defined(TARGET_ARM)
8009 { "old-param", 0, QEMU_OPTION_old_param },
8010 #endif
8011 { "clock", HAS_ARG, QEMU_OPTION_clock },
8012 { "startdate", HAS_ARG, QEMU_OPTION_startdate },
8013 { "tb-size", HAS_ARG, QEMU_OPTION_tb_size },
8014 { "icount", HAS_ARG, QEMU_OPTION_icount },
8015 { NULL },
8016 };
8017
8018 /* password input */
8019
8020 int qemu_key_check(BlockDriverState *bs, const char *name)
8021 {
8022 char password[256];
8023 int i;
8024
8025 if (!bdrv_is_encrypted(bs))
8026 return 0;
8027
8028 term_printf("%s is encrypted.\n", name);
8029 for(i = 0; i < 3; i++) {
8030 monitor_readline("Password: ", 1, password, sizeof(password));
8031 if (bdrv_set_key(bs, password) == 0)
8032 return 0;
8033 term_printf("invalid password\n");
8034 }
8035 return -EPERM;
8036 }
8037
8038 static BlockDriverState *get_bdrv(int index)
8039 {
8040 if (index > nb_drives)
8041 return NULL;
8042 return drives_table[index].bdrv;
8043 }
8044
8045 static void read_passwords(void)
8046 {
8047 BlockDriverState *bs;
8048 int i;
8049
8050 for(i = 0; i < 6; i++) {
8051 bs = get_bdrv(i);
8052 if (bs)
8053 qemu_key_check(bs, bdrv_get_device_name(bs));
8054 }
8055 }
8056
8057 #ifdef HAS_AUDIO
8058 struct soundhw soundhw[] = {
8059 #ifdef HAS_AUDIO_CHOICE
8060 #if defined(TARGET_I386) || defined(TARGET_MIPS)
8061 {
8062 "pcspk",
8063 "PC speaker",
8064 0,
8065 1,
8066 { .init_isa = pcspk_audio_init }
8067 },
8068 #endif
8069 {
8070 "sb16",
8071 "Creative Sound Blaster 16",
8072 0,
8073 1,
8074 { .init_isa = SB16_init }
8075 },
8076
8077 #ifdef CONFIG_CS4231A
8078 {
8079 "cs4231a",
8080 "CS4231A",
8081 0,
8082 1,
8083 { .init_isa = cs4231a_init }
8084 },
8085 #endif
8086
8087 #ifdef CONFIG_ADLIB
8088 {
8089 "adlib",
8090 #ifdef HAS_YMF262
8091 "Yamaha YMF262 (OPL3)",
8092 #else
8093 "Yamaha YM3812 (OPL2)",
8094 #endif
8095 0,
8096 1,
8097 { .init_isa = Adlib_init }
8098 },
8099 #endif
8100
8101 #ifdef CONFIG_GUS
8102 {
8103 "gus",
8104 "Gravis Ultrasound GF1",
8105 0,
8106 1,
8107 { .init_isa = GUS_init }
8108 },
8109 #endif
8110
8111 #ifdef CONFIG_AC97
8112 {
8113 "ac97",
8114 "Intel 82801AA AC97 Audio",
8115 0,
8116 0,
8117 { .init_pci = ac97_init }
8118 },
8119 #endif
8120
8121 {
8122 "es1370",
8123 "ENSONIQ AudioPCI ES1370",
8124 0,
8125 0,
8126 { .init_pci = es1370_init }
8127 },
8128 #endif
8129
8130 { NULL, NULL, 0, 0, { NULL } }
8131 };
8132
8133 static void select_soundhw (const char *optarg)
8134 {
8135 struct soundhw *c;
8136
8137 if (*optarg == '?') {
8138 show_valid_cards:
8139
8140 printf ("Valid sound card names (comma separated):\n");
8141 for (c = soundhw; c->name; ++c) {
8142 printf ("%-11s %s\n", c->name, c->descr);
8143 }
8144 printf ("\n-soundhw all will enable all of the above\n");
8145 exit (*optarg != '?');
8146 }
8147 else {
8148 size_t l;
8149 const char *p;
8150 char *e;
8151 int bad_card = 0;
8152
8153 if (!strcmp (optarg, "all")) {
8154 for (c = soundhw; c->name; ++c) {
8155 c->enabled = 1;
8156 }
8157 return;
8158 }
8159
8160 p = optarg;
8161 while (*p) {
8162 e = strchr (p, ',');
8163 l = !e ? strlen (p) : (size_t) (e - p);
8164
8165 for (c = soundhw; c->name; ++c) {
8166 if (!strncmp (c->name, p, l)) {
8167 c->enabled = 1;
8168 break;
8169 }
8170 }
8171
8172 if (!c->name) {
8173 if (l > 80) {
8174 fprintf (stderr,
8175 "Unknown sound card name (too big to show)\n");
8176 }
8177 else {
8178 fprintf (stderr, "Unknown sound card name `%.*s'\n",
8179 (int) l, p);
8180 }
8181 bad_card = 1;
8182 }
8183 p += l + (e != NULL);
8184 }
8185
8186 if (bad_card)
8187 goto show_valid_cards;
8188 }
8189 }
8190 #endif
8191
8192 #ifdef _WIN32
8193 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
8194 {
8195 exit(STATUS_CONTROL_C_EXIT);
8196 return TRUE;
8197 }
8198 #endif
8199
8200 static int qemu_uuid_parse(const char *str, uint8_t *uuid)
8201 {
8202 int ret;
8203
8204 if(strlen(str) != 36)
8205 return -1;
8206
8207 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
8208 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
8209 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
8210
8211 if(ret != 16)
8212 return -1;
8213
8214 return 0;
8215 }
8216
8217 #define MAX_NET_CLIENTS 32
8218
8219 #ifndef _WIN32
8220
8221 static void termsig_handler(int signal)
8222 {
8223 qemu_system_shutdown_request();
8224 }
8225
8226 static void termsig_setup(void)
8227 {
8228 struct sigaction act;
8229
8230 memset(&act, 0, sizeof(act));
8231 act.sa_handler = termsig_handler;
8232 sigaction(SIGINT, &act, NULL);
8233 sigaction(SIGHUP, &act, NULL);
8234 sigaction(SIGTERM, &act, NULL);
8235 }
8236
8237 #endif
8238
8239 int main(int argc, char **argv)
8240 {
8241 #ifdef CONFIG_GDBSTUB
8242 int use_gdbstub;
8243 const char *gdbstub_port;
8244 #endif
8245 uint32_t boot_devices_bitmap = 0;
8246 int i;
8247 int snapshot, linux_boot, net_boot;
8248 const char *initrd_filename;
8249 const char *kernel_filename, *kernel_cmdline;
8250 const char *boot_devices = "";
8251 DisplayState *ds = &display_state;
8252 int cyls, heads, secs, translation;
8253 const char *net_clients[MAX_NET_CLIENTS];
8254 int nb_net_clients;
8255 int hda_index;
8256 int optind;
8257 const char *r, *optarg;
8258 CharDriverState *monitor_hd;
8259 const char *monitor_device;
8260 const char *serial_devices[MAX_SERIAL_PORTS];
8261 int serial_device_index;
8262 const char *parallel_devices[MAX_PARALLEL_PORTS];
8263 int parallel_device_index;
8264 const char *loadvm = NULL;
8265 QEMUMachine *machine;
8266 const char *cpu_model;
8267 const char *usb_devices[MAX_USB_CMDLINE];
8268 int usb_devices_index;
8269 int fds[2];
8270 int tb_size;
8271 const char *pid_file = NULL;
8272 VLANState *vlan;
8273
8274 LIST_INIT (&vm_change_state_head);
8275 #ifndef _WIN32
8276 {
8277 struct sigaction act;
8278 sigfillset(&act.sa_mask);
8279 act.sa_flags = 0;
8280 act.sa_handler = SIG_IGN;
8281 sigaction(SIGPIPE, &act, NULL);
8282 }
8283 #else
8284 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
8285 /* Note: cpu_interrupt() is currently not SMP safe, so we force
8286 QEMU to run on a single CPU */
8287 {
8288 HANDLE h;
8289 DWORD mask, smask;
8290 int i;
8291 h = GetCurrentProcess();
8292 if (GetProcessAffinityMask(h, &mask, &smask)) {
8293 for(i = 0; i < 32; i++) {
8294 if (mask & (1 << i))
8295 break;
8296 }
8297 if (i != 32) {
8298 mask = 1 << i;
8299 SetProcessAffinityMask(h, mask);
8300 }
8301 }
8302 }
8303 #endif
8304
8305 register_machines();
8306 machine = first_machine;
8307 cpu_model = NULL;
8308 initrd_filename = NULL;
8309 ram_size = 0;
8310 vga_ram_size = VGA_RAM_SIZE;
8311 #ifdef CONFIG_GDBSTUB
8312 use_gdbstub = 0;
8313 gdbstub_port = DEFAULT_GDBSTUB_PORT;
8314 #endif
8315 snapshot = 0;
8316 nographic = 0;
8317 curses = 0;
8318 kernel_filename = NULL;
8319 kernel_cmdline = "";
8320 cyls = heads = secs = 0;
8321 translation = BIOS_ATA_TRANSLATION_AUTO;
8322 monitor_device = "vc";
8323
8324 serial_devices[0] = "vc:80Cx24C";
8325 for(i = 1; i < MAX_SERIAL_PORTS; i++)
8326 serial_devices[i] = NULL;
8327 serial_device_index = 0;
8328
8329 parallel_devices[0] = "vc:640x480";
8330 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
8331 parallel_devices[i] = NULL;
8332 parallel_device_index = 0;
8333
8334 usb_devices_index = 0;
8335
8336 nb_net_clients = 0;
8337 nb_drives = 0;
8338 nb_drives_opt = 0;
8339 hda_index = -1;
8340
8341 nb_nics = 0;
8342
8343 tb_size = 0;
8344
8345 optind = 1;
8346 for(;;) {
8347 if (optind >= argc)
8348 break;
8349 r = argv[optind];
8350 if (r[0] != '-') {
8351 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
8352 } else {
8353 const QEMUOption *popt;
8354
8355 optind++;
8356 /* Treat --foo the same as -foo. */
8357 if (r[1] == '-')
8358 r++;
8359 popt = qemu_options;
8360 for(;;) {
8361 if (!popt->name) {
8362 fprintf(stderr, "%s: invalid option -- '%s'\n",
8363 argv[0], r);
8364 exit(1);
8365 }
8366 if (!strcmp(popt->name, r + 1))
8367 break;
8368 popt++;
8369 }
8370 if (popt->flags & HAS_ARG) {
8371 if (optind >= argc) {
8372 fprintf(stderr, "%s: option '%s' requires an argument\n",
8373 argv[0], r);
8374 exit(1);
8375 }
8376 optarg = argv[optind++];
8377 } else {
8378 optarg = NULL;
8379 }
8380
8381 switch(popt->index) {
8382 case QEMU_OPTION_M:
8383 machine = find_machine(optarg);
8384 if (!machine) {
8385 QEMUMachine *m;
8386 printf("Supported machines are:\n");
8387 for(m = first_machine; m != NULL; m = m->next) {
8388 printf("%-10s %s%s\n",
8389 m->name, m->desc,
8390 m == first_machine ? " (default)" : "");
8391 }
8392 exit(*optarg != '?');
8393 }
8394 break;
8395 case QEMU_OPTION_cpu:
8396 /* hw initialization will check this */
8397 if (*optarg == '?') {
8398 /* XXX: implement xxx_cpu_list for targets that still miss it */
8399 #if defined(cpu_list)
8400 cpu_list(stdout, &fprintf);
8401 #endif
8402 exit(0);
8403 } else {
8404 cpu_model = optarg;
8405 }
8406 break;
8407 case QEMU_OPTION_initrd:
8408 initrd_filename = optarg;
8409 break;
8410 case QEMU_OPTION_hda:
8411 if (cyls == 0)
8412 hda_index = drive_add(optarg, HD_ALIAS, 0);
8413 else
8414 hda_index = drive_add(optarg, HD_ALIAS
8415 ",cyls=%d,heads=%d,secs=%d%s",
8416 0, cyls, heads, secs,
8417 translation == BIOS_ATA_TRANSLATION_LBA ?
8418 ",trans=lba" :
8419 translation == BIOS_ATA_TRANSLATION_NONE ?
8420 ",trans=none" : "");
8421 break;
8422 case QEMU_OPTION_hdb:
8423 case QEMU_OPTION_hdc:
8424 case QEMU_OPTION_hdd:
8425 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
8426 break;
8427 case QEMU_OPTION_drive:
8428 drive_add(NULL, "%s", optarg);
8429 break;
8430 case QEMU_OPTION_mtdblock:
8431 drive_add(optarg, MTD_ALIAS);
8432 break;
8433 case QEMU_OPTION_sd:
8434 drive_add(optarg, SD_ALIAS);
8435 break;
8436 case QEMU_OPTION_pflash:
8437 drive_add(optarg, PFLASH_ALIAS);
8438 break;
8439 case QEMU_OPTION_snapshot:
8440 snapshot = 1;
8441 break;
8442 case QEMU_OPTION_hdachs:
8443 {
8444 const char *p;
8445 p = optarg;
8446 cyls = strtol(p, (char **)&p, 0);
8447 if (cyls < 1 || cyls > 16383)
8448 goto chs_fail;
8449 if (*p != ',')
8450 goto chs_fail;
8451 p++;
8452 heads = strtol(p, (char **)&p, 0);
8453 if (heads < 1 || heads > 16)
8454 goto chs_fail;
8455 if (*p != ',')
8456 goto chs_fail;
8457 p++;
8458 secs = strtol(p, (char **)&p, 0);
8459 if (secs < 1 || secs > 63)
8460 goto chs_fail;
8461 if (*p == ',') {
8462 p++;
8463 if (!strcmp(p, "none"))
8464 translation = BIOS_ATA_TRANSLATION_NONE;
8465 else if (!strcmp(p, "lba"))
8466 translation = BIOS_ATA_TRANSLATION_LBA;
8467 else if (!strcmp(p, "auto"))
8468 translation = BIOS_ATA_TRANSLATION_AUTO;
8469 else
8470 goto chs_fail;
8471 } else if (*p != '\0') {
8472 chs_fail:
8473 fprintf(stderr, "qemu: invalid physical CHS format\n");
8474 exit(1);
8475 }
8476 if (hda_index != -1)
8477 snprintf(drives_opt[hda_index].opt,
8478 sizeof(drives_opt[hda_index].opt),
8479 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
8480 0, cyls, heads, secs,
8481 translation == BIOS_ATA_TRANSLATION_LBA ?
8482 ",trans=lba" :
8483 translation == BIOS_ATA_TRANSLATION_NONE ?
8484 ",trans=none" : "");
8485 }
8486 break;
8487 case QEMU_OPTION_nographic:
8488 nographic = 1;
8489 break;
8490 #ifdef CONFIG_CURSES
8491 case QEMU_OPTION_curses:
8492 curses = 1;
8493 break;
8494 #endif
8495 case QEMU_OPTION_portrait:
8496 graphic_rotate = 1;
8497 break;
8498 case QEMU_OPTION_kernel:
8499 kernel_filename = optarg;
8500 break;
8501 case QEMU_OPTION_append:
8502 kernel_cmdline = optarg;
8503 break;
8504 case QEMU_OPTION_cdrom:
8505 drive_add(optarg, CDROM_ALIAS);
8506 break;
8507 case QEMU_OPTION_boot:
8508 boot_devices = optarg;
8509 /* We just do some generic consistency checks */
8510 {
8511 /* Could easily be extended to 64 devices if needed */
8512 const char *p;
8513
8514 boot_devices_bitmap = 0;
8515 for (p = boot_devices; *p != '\0'; p++) {
8516 /* Allowed boot devices are:
8517 * a b : floppy disk drives
8518 * c ... f : IDE disk drives
8519 * g ... m : machine implementation dependant drives
8520 * n ... p : network devices
8521 * It's up to each machine implementation to check
8522 * if the given boot devices match the actual hardware
8523 * implementation and firmware features.
8524 */
8525 if (*p < 'a' || *p > 'q') {
8526 fprintf(stderr, "Invalid boot device '%c'\n", *p);
8527 exit(1);
8528 }
8529 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
8530 fprintf(stderr,
8531 "Boot device '%c' was given twice\n",*p);
8532 exit(1);
8533 }
8534 boot_devices_bitmap |= 1 << (*p - 'a');
8535 }
8536 }
8537 break;
8538 case QEMU_OPTION_fda:
8539 case QEMU_OPTION_fdb:
8540 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
8541 break;
8542 #ifdef TARGET_I386
8543 case QEMU_OPTION_no_fd_bootchk:
8544 fd_bootchk = 0;
8545 break;
8546 #endif
8547 case QEMU_OPTION_net:
8548 if (nb_net_clients >= MAX_NET_CLIENTS) {
8549 fprintf(stderr, "qemu: too many network clients\n");
8550 exit(1);
8551 }
8552 net_clients[nb_net_clients] = optarg;
8553 nb_net_clients++;
8554 break;
8555 #ifdef CONFIG_SLIRP
8556 case QEMU_OPTION_tftp:
8557 tftp_prefix = optarg;
8558 break;
8559 case QEMU_OPTION_bootp:
8560 bootp_filename = optarg;
8561 break;
8562 #ifndef _WIN32
8563 case QEMU_OPTION_smb:
8564 net_slirp_smb(optarg);
8565 break;
8566 #endif
8567 case QEMU_OPTION_redir:
8568 net_slirp_redir(optarg);
8569 break;
8570 #endif
8571 #ifdef HAS_AUDIO
8572 case QEMU_OPTION_audio_help:
8573 AUD_help ();
8574 exit (0);
8575 break;
8576 case QEMU_OPTION_soundhw:
8577 select_soundhw (optarg);
8578 break;
8579 #endif
8580 case QEMU_OPTION_h:
8581 help(0);
8582 break;
8583 case QEMU_OPTION_m: {
8584 uint64_t value;
8585 char *ptr;
8586
8587 value = strtoul(optarg, &ptr, 10);
8588 switch (*ptr) {
8589 case 0: case 'M': case 'm':
8590 value <<= 20;
8591 break;
8592 case 'G': case 'g':
8593 value <<= 30;
8594 break;
8595 default:
8596 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
8597 exit(1);
8598 }
8599
8600 /* On 32-bit hosts, QEMU is limited by virtual address space */
8601 if (value > (2047 << 20)
8602 #ifndef USE_KQEMU
8603 && HOST_LONG_BITS == 32
8604 #endif
8605 ) {
8606 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
8607 exit(1);
8608 }
8609 if (value != (uint64_t)(ram_addr_t)value) {
8610 fprintf(stderr, "qemu: ram size too large\n");
8611 exit(1);
8612 }
8613 ram_size = value;
8614 break;
8615 }
8616 case QEMU_OPTION_d:
8617 {
8618 int mask;
8619 CPULogItem *item;
8620
8621 mask = cpu_str_to_log_mask(optarg);
8622 if (!mask) {
8623 printf("Log items (comma separated):\n");
8624 for(item = cpu_log_items; item->mask != 0; item++) {
8625 printf("%-10s %s\n", item->name, item->help);
8626 }
8627 exit(1);
8628 }
8629 cpu_set_log(mask);
8630 }
8631 break;
8632 #ifdef CONFIG_GDBSTUB
8633 case QEMU_OPTION_s:
8634 use_gdbstub = 1;
8635 break;
8636 case QEMU_OPTION_p:
8637 gdbstub_port = optarg;
8638 break;
8639 #endif
8640 case QEMU_OPTION_L:
8641 bios_dir = optarg;
8642 break;
8643 case QEMU_OPTION_bios:
8644 bios_name = optarg;
8645 break;
8646 case QEMU_OPTION_S:
8647 autostart = 0;
8648 break;
8649 case QEMU_OPTION_k:
8650 keyboard_layout = optarg;
8651 break;
8652 case QEMU_OPTION_localtime:
8653 rtc_utc = 0;
8654 break;
8655 case QEMU_OPTION_cirrusvga:
8656 cirrus_vga_enabled = 1;
8657 vmsvga_enabled = 0;
8658 break;
8659 case QEMU_OPTION_vmsvga:
8660 cirrus_vga_enabled = 0;
8661 vmsvga_enabled = 1;
8662 break;
8663 case QEMU_OPTION_std_vga:
8664 cirrus_vga_enabled = 0;
8665 vmsvga_enabled = 0;
8666 break;
8667 case QEMU_OPTION_g:
8668 {
8669 const char *p;
8670 int w, h, depth;
8671 p = optarg;
8672 w = strtol(p, (char **)&p, 10);
8673 if (w <= 0) {
8674 graphic_error:
8675 fprintf(stderr, "qemu: invalid resolution or depth\n");
8676 exit(1);
8677 }
8678 if (*p != 'x')
8679 goto graphic_error;
8680 p++;
8681 h = strtol(p, (char **)&p, 10);
8682 if (h <= 0)
8683 goto graphic_error;
8684 if (*p == 'x') {
8685 p++;
8686 depth = strtol(p, (char **)&p, 10);
8687 if (depth != 8 && depth != 15 && depth != 16 &&
8688 depth != 24 && depth != 32)
8689 goto graphic_error;
8690 } else if (*p == '\0') {
8691 depth = graphic_depth;
8692 } else {
8693 goto graphic_error;
8694 }
8695
8696 graphic_width = w;
8697 graphic_height = h;
8698 graphic_depth = depth;
8699 }
8700 break;
8701 case QEMU_OPTION_echr:
8702 {
8703 char *r;
8704 term_escape_char = strtol(optarg, &r, 0);
8705 if (r == optarg)
8706 printf("Bad argument to echr\n");
8707 break;
8708 }
8709 case QEMU_OPTION_monitor:
8710 monitor_device = optarg;
8711 break;
8712 case QEMU_OPTION_serial:
8713 if (serial_device_index >= MAX_SERIAL_PORTS) {
8714 fprintf(stderr, "qemu: too many serial ports\n");
8715 exit(1);
8716 }
8717 serial_devices[serial_device_index] = optarg;
8718 serial_device_index++;
8719 break;
8720 case QEMU_OPTION_parallel:
8721 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
8722 fprintf(stderr, "qemu: too many parallel ports\n");
8723 exit(1);
8724 }
8725 parallel_devices[parallel_device_index] = optarg;
8726 parallel_device_index++;
8727 break;
8728 case QEMU_OPTION_loadvm:
8729 loadvm = optarg;
8730 break;
8731 case QEMU_OPTION_full_screen:
8732 full_screen = 1;
8733 break;
8734 #ifdef CONFIG_SDL
8735 case QEMU_OPTION_no_frame:
8736 no_frame = 1;
8737 break;
8738 case QEMU_OPTION_alt_grab:
8739 alt_grab = 1;
8740 break;
8741 case QEMU_OPTION_no_quit:
8742 no_quit = 1;
8743 break;
8744 #endif
8745 case QEMU_OPTION_pidfile:
8746 pid_file = optarg;
8747 break;
8748 #ifdef TARGET_I386
8749 case QEMU_OPTION_win2k_hack:
8750 win2k_install_hack = 1;
8751 break;
8752 #endif
8753 #ifdef USE_KQEMU
8754 case QEMU_OPTION_no_kqemu:
8755 kqemu_allowed = 0;
8756 break;
8757 case QEMU_OPTION_kernel_kqemu:
8758 kqemu_allowed = 2;
8759 break;
8760 #endif
8761 case QEMU_OPTION_usb:
8762 usb_enabled = 1;
8763 break;
8764 case QEMU_OPTION_usbdevice:
8765 usb_enabled = 1;
8766 if (usb_devices_index >= MAX_USB_CMDLINE) {
8767 fprintf(stderr, "Too many USB devices\n");
8768 exit(1);
8769 }
8770 usb_devices[usb_devices_index] = optarg;
8771 usb_devices_index++;
8772 break;
8773 case QEMU_OPTION_smp:
8774 smp_cpus = atoi(optarg);
8775 if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
8776 fprintf(stderr, "Invalid number of CPUs\n");
8777 exit(1);
8778 }
8779 break;
8780 case QEMU_OPTION_vnc:
8781 vnc_display = optarg;
8782 break;
8783 case QEMU_OPTION_no_acpi:
8784 acpi_enabled = 0;
8785 break;
8786 case QEMU_OPTION_no_reboot:
8787 no_reboot = 1;
8788 break;
8789 case QEMU_OPTION_no_shutdown:
8790 no_shutdown = 1;
8791 break;
8792 case QEMU_OPTION_show_cursor:
8793 cursor_hide = 0;
8794 break;
8795 case QEMU_OPTION_uuid:
8796 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
8797 fprintf(stderr, "Fail to parse UUID string."
8798 " Wrong format.\n");
8799 exit(1);
8800 }
8801 break;
8802 case QEMU_OPTION_daemonize:
8803 daemonize = 1;
8804 break;
8805 case QEMU_OPTION_option_rom:
8806 if (nb_option_roms >= MAX_OPTION_ROMS) {
8807 fprintf(stderr, "Too many option ROMs\n");
8808 exit(1);
8809 }
8810 option_rom[nb_option_roms] = optarg;
8811 nb_option_roms++;
8812 break;
8813 case QEMU_OPTION_semihosting:
8814 semihosting_enabled = 1;
8815 break;
8816 case QEMU_OPTION_name:
8817 qemu_name = optarg;
8818 break;
8819 #ifdef TARGET_SPARC
8820 case QEMU_OPTION_prom_env:
8821 if (nb_prom_envs >= MAX_PROM_ENVS) {
8822 fprintf(stderr, "Too many prom variables\n");
8823 exit(1);
8824 }
8825 prom_envs[nb_prom_envs] = optarg;
8826 nb_prom_envs++;
8827 break;
8828 #endif
8829 #ifdef TARGET_ARM
8830 case QEMU_OPTION_old_param:
8831 old_param = 1;
8832 break;
8833 #endif
8834 case QEMU_OPTION_clock:
8835 configure_alarms(optarg);
8836 break;
8837 case QEMU_OPTION_startdate:
8838 {
8839 struct tm tm;
8840 time_t rtc_start_date;
8841 if (!strcmp(optarg, "now")) {
8842 rtc_date_offset = -1;
8843 } else {
8844 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
8845 &tm.tm_year,
8846 &tm.tm_mon,
8847 &tm.tm_mday,
8848 &tm.tm_hour,
8849 &tm.tm_min,
8850 &tm.tm_sec) == 6) {
8851 /* OK */
8852 } else if (sscanf(optarg, "%d-%d-%d",
8853 &tm.tm_year,
8854 &tm.tm_mon,
8855 &tm.tm_mday) == 3) {
8856 tm.tm_hour = 0;
8857 tm.tm_min = 0;
8858 tm.tm_sec = 0;
8859 } else {
8860 goto date_fail;
8861 }
8862 tm.tm_year -= 1900;
8863 tm.tm_mon--;
8864 rtc_start_date = mktimegm(&tm);
8865 if (rtc_start_date == -1) {
8866 date_fail:
8867 fprintf(stderr, "Invalid date format. Valid format are:\n"
8868 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
8869 exit(1);
8870 }
8871 rtc_date_offset = time(NULL) - rtc_start_date;
8872 }
8873 }
8874 break;
8875 case QEMU_OPTION_tb_size:
8876 tb_size = strtol(optarg, NULL, 0);
8877 if (tb_size < 0)
8878 tb_size = 0;
8879 break;
8880 case QEMU_OPTION_icount:
8881 use_icount = 1;
8882 if (strcmp(optarg, "auto") == 0) {
8883 icount_time_shift = -1;
8884 } else {
8885 icount_time_shift = strtol(optarg, NULL, 0);
8886 }
8887 break;
8888 }
8889 }
8890 }
8891
8892 if (nographic) {
8893 if (serial_device_index == 0)
8894 serial_devices[0] = "stdio";
8895 if (parallel_device_index == 0)
8896 parallel_devices[0] = "null";
8897 if (strncmp(monitor_device, "vc", 2) == 0)
8898 monitor_device = "stdio";
8899 }
8900
8901 #ifndef _WIN32
8902 if (daemonize) {
8903 pid_t pid;
8904
8905 if (pipe(fds) == -1)
8906 exit(1);
8907
8908 pid = fork();
8909 if (pid > 0) {
8910 uint8_t status;
8911 ssize_t len;
8912
8913 close(fds[1]);
8914
8915 again:
8916 len = read(fds[0], &status, 1);
8917 if (len == -1 && (errno == EINTR))
8918 goto again;
8919
8920 if (len != 1)
8921 exit(1);
8922 else if (status == 1) {
8923 fprintf(stderr, "Could not acquire pidfile\n");
8924 exit(1);
8925 } else
8926 exit(0);
8927 } else if (pid < 0)
8928 exit(1);
8929
8930 setsid();
8931
8932 pid = fork();
8933 if (pid > 0)
8934 exit(0);
8935 else if (pid < 0)
8936 exit(1);
8937
8938 umask(027);
8939
8940 signal(SIGTSTP, SIG_IGN);
8941 signal(SIGTTOU, SIG_IGN);
8942 signal(SIGTTIN, SIG_IGN);
8943 }
8944 #endif
8945
8946 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
8947 if (daemonize) {
8948 uint8_t status = 1;
8949 write(fds[1], &status, 1);
8950 } else
8951 fprintf(stderr, "Could not acquire pid file\n");
8952 exit(1);
8953 }
8954
8955 #ifdef USE_KQEMU
8956 if (smp_cpus > 1)
8957 kqemu_allowed = 0;
8958 #endif
8959 linux_boot = (kernel_filename != NULL);
8960 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
8961
8962 if (!linux_boot && net_boot == 0 &&
8963 !machine->nodisk_ok && nb_drives_opt == 0)
8964 help(1);
8965
8966 if (!linux_boot && *kernel_cmdline != '\0') {
8967 fprintf(stderr, "-append only allowed with -kernel option\n");
8968 exit(1);
8969 }
8970
8971 if (!linux_boot && initrd_filename != NULL) {
8972 fprintf(stderr, "-initrd only allowed with -kernel option\n");
8973 exit(1);
8974 }
8975
8976 /* boot to floppy or the default cd if no hard disk defined yet */
8977 if (!boot_devices[0]) {
8978 boot_devices = "cad";
8979 }
8980 setvbuf(stdout, NULL, _IOLBF, 0);
8981
8982 init_timers();
8983 init_timer_alarm();
8984 if (use_icount && icount_time_shift < 0) {
8985 use_icount = 2;
8986 /* 125MIPS seems a reasonable initial guess at the guest speed.
8987 It will be corrected fairly quickly anyway. */
8988 icount_time_shift = 3;
8989 init_icount_adjust();
8990 }
8991
8992 #ifdef _WIN32
8993 socket_init();
8994 #endif
8995
8996 /* init network clients */
8997 if (nb_net_clients == 0) {
8998 /* if no clients, we use a default config */
8999 net_clients[nb_net_clients++] = "nic";
9000 #ifdef CONFIG_SLIRP
9001 net_clients[nb_net_clients++] = "user";
9002 #endif
9003 }
9004
9005 for(i = 0;i < nb_net_clients; i++) {
9006 if (net_client_parse(net_clients[i]) < 0)
9007 exit(1);
9008 }
9009 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
9010 if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
9011 continue;
9012 if (vlan->nb_guest_devs == 0)
9013 fprintf(stderr, "Warning: vlan %d with no nics\n", vlan->id);
9014 if (vlan->nb_host_devs == 0)
9015 fprintf(stderr,
9016 "Warning: vlan %d is not connected to host network\n",
9017 vlan->id);
9018 }
9019
9020 #ifdef TARGET_I386
9021 /* XXX: this should be moved in the PC machine instantiation code */
9022 if (net_boot != 0) {
9023 int netroms = 0;
9024 for (i = 0; i < nb_nics && i < 4; i++) {
9025 const char *model = nd_table[i].model;
9026 char buf[1024];
9027 if (net_boot & (1 << i)) {
9028 if (model == NULL)
9029 model = "ne2k_pci";
9030 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
9031 if (get_image_size(buf) > 0) {
9032 if (nb_option_roms >= MAX_OPTION_ROMS) {
9033 fprintf(stderr, "Too many option ROMs\n");
9034 exit(1);
9035 }
9036 option_rom[nb_option_roms] = strdup(buf);
9037 nb_option_roms++;
9038 netroms++;
9039 }
9040 }
9041 }
9042 if (netroms == 0) {
9043 fprintf(stderr, "No valid PXE rom found for network device\n");
9044 exit(1);
9045 }
9046 }
9047 #endif
9048
9049 /* init the memory */
9050 phys_ram_size = machine->ram_require & ~RAMSIZE_FIXED;
9051
9052 if (machine->ram_require & RAMSIZE_FIXED) {
9053 if (ram_size > 0) {
9054 if (ram_size < phys_ram_size) {
9055 fprintf(stderr, "Machine `%s' requires %llu bytes of memory\n",
9056 machine->name, (unsigned long long) phys_ram_size);
9057 exit(-1);
9058 }
9059
9060 phys_ram_size = ram_size;
9061 } else
9062 ram_size = phys_ram_size;
9063 } else {
9064 if (ram_size == 0)
9065 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
9066
9067 phys_ram_size += ram_size;
9068 }
9069
9070 phys_ram_base = qemu_vmalloc(phys_ram_size);
9071 if (!phys_ram_base) {
9072 fprintf(stderr, "Could not allocate physical memory\n");
9073 exit(1);
9074 }
9075
9076 /* init the dynamic translator */
9077 cpu_exec_init_all(tb_size * 1024 * 1024);
9078
9079 bdrv_init();
9080
9081 /* we always create the cdrom drive, even if no disk is there */
9082
9083 if (nb_drives_opt < MAX_DRIVES)
9084 drive_add(NULL, CDROM_ALIAS);
9085
9086 /* we always create at least one floppy */
9087
9088 if (nb_drives_opt < MAX_DRIVES)
9089 drive_add(NULL, FD_ALIAS, 0);
9090
9091 /* we always create one sd slot, even if no card is in it */
9092
9093 if (nb_drives_opt < MAX_DRIVES)
9094 drive_add(NULL, SD_ALIAS);
9095
9096 /* open the virtual block devices */
9097
9098 for(i = 0; i < nb_drives_opt; i++)
9099 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
9100 exit(1);
9101
9102 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
9103 register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
9104
9105 /* terminal init */
9106 memset(&display_state, 0, sizeof(display_state));
9107 if (nographic) {
9108 if (curses) {
9109 fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
9110 exit(1);
9111 }
9112 /* nearly nothing to do */
9113 dumb_display_init(ds);
9114 } else if (vnc_display != NULL) {
9115 vnc_display_init(ds);
9116 if (vnc_display_open(ds, vnc_display) < 0)
9117 exit(1);
9118 } else
9119 #if defined(CONFIG_CURSES)
9120 if (curses) {
9121 curses_display_init(ds, full_screen);
9122 } else
9123 #endif
9124 {
9125 #if defined(CONFIG_SDL)
9126 sdl_display_init(ds, full_screen, no_frame);
9127 #elif defined(CONFIG_COCOA)
9128 cocoa_display_init(ds, full_screen);
9129 #else
9130 dumb_display_init(ds);
9131 #endif
9132 }
9133
9134 #ifndef _WIN32
9135 /* must be after terminal init, SDL library changes signal handlers */
9136 termsig_setup();
9137 #endif
9138
9139 /* Maintain compatibility with multiple stdio monitors */
9140 if (!strcmp(monitor_device,"stdio")) {
9141 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
9142 const char *devname = serial_devices[i];
9143 if (devname && !strcmp(devname,"mon:stdio")) {
9144 monitor_device = NULL;
9145 break;
9146 } else if (devname && !strcmp(devname,"stdio")) {
9147 monitor_device = NULL;
9148 serial_devices[i] = "mon:stdio";
9149 break;
9150 }
9151 }
9152 }
9153 if (monitor_device) {
9154 monitor_hd = qemu_chr_open(monitor_device);
9155 if (!monitor_hd) {
9156 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
9157 exit(1);
9158 }
9159 monitor_init(monitor_hd, !nographic);
9160 }
9161
9162 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
9163 const char *devname = serial_devices[i];
9164 if (devname && strcmp(devname, "none")) {
9165 serial_hds[i] = qemu_chr_open(devname);
9166 if (!serial_hds[i]) {
9167 fprintf(stderr, "qemu: could not open serial device '%s'\n",
9168 devname);
9169 exit(1);
9170 }
9171 if (strstart(devname, "vc", 0))
9172 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
9173 }
9174 }
9175
9176 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
9177 const char *devname = parallel_devices[i];
9178 if (devname && strcmp(devname, "none")) {
9179 parallel_hds[i] = qemu_chr_open(devname);
9180 if (!parallel_hds[i]) {
9181 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
9182 devname);
9183 exit(1);
9184 }
9185 if (strstart(devname, "vc", 0))
9186 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
9187 }
9188 }
9189
9190 machine->init(ram_size, vga_ram_size, boot_devices, ds,
9191 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
9192
9193 /* init USB devices */
9194 if (usb_enabled) {
9195 for(i = 0; i < usb_devices_index; i++) {
9196 if (usb_device_add(usb_devices[i]) < 0) {
9197 fprintf(stderr, "Warning: could not add USB device %s\n",
9198 usb_devices[i]);
9199 }
9200 }
9201 }
9202
9203 if (display_state.dpy_refresh) {
9204 display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
9205 qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
9206 }
9207
9208 #ifdef CONFIG_GDBSTUB
9209 if (use_gdbstub) {
9210 /* XXX: use standard host:port notation and modify options
9211 accordingly. */
9212 if (gdbserver_start(gdbstub_port) < 0) {
9213 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
9214 gdbstub_port);
9215 exit(1);
9216 }
9217 }
9218 #endif
9219
9220 if (loadvm)
9221 do_loadvm(loadvm);
9222
9223 {
9224 /* XXX: simplify init */
9225 read_passwords();
9226 if (autostart) {
9227 vm_start();
9228 }
9229 }
9230
9231 if (daemonize) {
9232 uint8_t status = 0;
9233 ssize_t len;
9234 int fd;
9235
9236 again1:
9237 len = write(fds[1], &status, 1);
9238 if (len == -1 && (errno == EINTR))
9239 goto again1;
9240
9241 if (len != 1)
9242 exit(1);
9243
9244 chdir("/");
9245 TFR(fd = open("/dev/null", O_RDWR));
9246 if (fd == -1)
9247 exit(1);
9248
9249 dup2(fd, 0);
9250 dup2(fd, 1);
9251 dup2(fd, 2);
9252
9253 close(fd);
9254 }
9255
9256 main_loop();
9257 quit_timers();
9258
9259 #if !defined(_WIN32)
9260 /* close network clients */
9261 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
9262 VLANClientState *vc;
9263
9264 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
9265 if (vc->fd_read == tap_receive) {
9266 char ifname[64];
9267 TAPState *s = vc->opaque;
9268
9269 if (sscanf(vc->info_str, "tap: ifname=%63s ", ifname) == 1 &&
9270 s->down_script[0])
9271 launch_script(s->down_script, ifname, s->fd);
9272 }
9273 #if defined(CONFIG_VDE)
9274 if (vc->fd_read == vde_from_qemu) {
9275 VDEState *s = vc->opaque;
9276 vde_close(s->vde);
9277 }
9278 #endif
9279 }
9280 }
9281 #endif
9282 return 0;
9283 }