]> git.proxmox.com Git - mirror_qemu.git/blob - vl.c
qemu: refactor main_loop (Marcelo Tosatti)
[mirror_qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
31
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
34
35 #ifndef _WIN32
36 #include <pwd.h>
37 #include <sys/times.h>
38 #include <sys/wait.h>
39 #include <termios.h>
40 #include <sys/mman.h>
41 #include <sys/ioctl.h>
42 #include <sys/resource.h>
43 #include <sys/socket.h>
44 #include <netinet/in.h>
45 #include <net/if.h>
46 #if defined(__NetBSD__)
47 #include <net/if_tap.h>
48 #endif
49 #ifdef __linux__
50 #include <linux/if_tun.h>
51 #endif
52 #include <arpa/inet.h>
53 #include <dirent.h>
54 #include <netdb.h>
55 #include <sys/select.h>
56 #ifdef HOST_BSD
57 #include <sys/stat.h>
58 #if defined(__FreeBSD__) || defined(__DragonFly__)
59 #include <libutil.h>
60 #else
61 #include <util.h>
62 #endif
63 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
64 #include <freebsd/stdlib.h>
65 #else
66 #ifdef __linux__
67 #include <pty.h>
68 #include <malloc.h>
69 #include <linux/rtc.h>
70
71 /* For the benefit of older linux systems which don't supply it,
72 we use a local copy of hpet.h. */
73 /* #include <linux/hpet.h> */
74 #include "hpet.h"
75
76 #include <linux/ppdev.h>
77 #include <linux/parport.h>
78 #endif
79 #ifdef __sun__
80 #include <sys/stat.h>
81 #include <sys/ethernet.h>
82 #include <sys/sockio.h>
83 #include <netinet/arp.h>
84 #include <netinet/in.h>
85 #include <netinet/in_systm.h>
86 #include <netinet/ip.h>
87 #include <netinet/ip_icmp.h> // must come after ip.h
88 #include <netinet/udp.h>
89 #include <netinet/tcp.h>
90 #include <net/if.h>
91 #include <syslog.h>
92 #include <stropts.h>
93 #endif
94 #endif
95 #endif
96
97 #if defined(__OpenBSD__)
98 #include <util.h>
99 #endif
100
101 #if defined(CONFIG_VDE)
102 #include <libvdeplug.h>
103 #endif
104
105 #ifdef _WIN32
106 #include <windows.h>
107 #include <malloc.h>
108 #include <sys/timeb.h>
109 #include <mmsystem.h>
110 #define getopt_long_only getopt_long
111 #define memalign(align, size) malloc(size)
112 #endif
113
114 #ifdef CONFIG_SDL
115 #ifdef __APPLE__
116 #include <SDL/SDL.h>
117 int qemu_main(int argc, char **argv, char **envp);
118 int main(int argc, char **argv)
119 {
120 qemu_main(argc, argv, NULL);
121 }
122 #undef main
123 #define main qemu_main
124 #endif
125 #endif /* CONFIG_SDL */
126
127 #ifdef CONFIG_COCOA
128 #undef main
129 #define main qemu_main
130 #endif /* CONFIG_COCOA */
131
132 #include "hw/hw.h"
133 #include "hw/boards.h"
134 #include "hw/usb.h"
135 #include "hw/pcmcia.h"
136 #include "hw/pc.h"
137 #include "hw/audiodev.h"
138 #include "hw/isa.h"
139 #include "hw/baum.h"
140 #include "hw/bt.h"
141 #include "hw/smbios.h"
142 #include "hw/xen.h"
143 #include "bt-host.h"
144 #include "net.h"
145 #include "monitor.h"
146 #include "console.h"
147 #include "sysemu.h"
148 #include "gdbstub.h"
149 #include "qemu-timer.h"
150 #include "qemu-char.h"
151 #include "cache-utils.h"
152 #include "block.h"
153 #include "dma.h"
154 #include "audio/audio.h"
155 #include "migration.h"
156 #include "kvm.h"
157 #include "balloon.h"
158
159 #include "disas.h"
160
161 #include "exec-all.h"
162
163 #include "qemu_socket.h"
164
165 #if defined(CONFIG_SLIRP)
166 #include "libslirp.h"
167 #endif
168
169 //#define DEBUG_UNUSED_IOPORT
170 //#define DEBUG_IOPORT
171 //#define DEBUG_NET
172 //#define DEBUG_SLIRP
173
174
175 #ifdef DEBUG_IOPORT
176 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
177 #else
178 # define LOG_IOPORT(...) do { } while (0)
179 #endif
180
181 #define DEFAULT_RAM_SIZE 128
182
183 /* Max number of USB devices that can be specified on the commandline. */
184 #define MAX_USB_CMDLINE 8
185
186 /* Max number of bluetooth switches on the commandline. */
187 #define MAX_BT_CMDLINE 10
188
189 /* XXX: use a two level table to limit memory usage */
190 #define MAX_IOPORTS 65536
191
192 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
193 const char *bios_name = NULL;
194 static void *ioport_opaque[MAX_IOPORTS];
195 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
196 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
197 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
198 to store the VM snapshots */
199 DriveInfo drives_table[MAX_DRIVES+1];
200 int nb_drives;
201 static int vga_ram_size;
202 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
203 static DisplayState *display_state;
204 int nographic;
205 static int curses;
206 static int sdl;
207 const char* keyboard_layout = NULL;
208 int64_t ticks_per_sec;
209 ram_addr_t ram_size;
210 int nb_nics;
211 NICInfo nd_table[MAX_NICS];
212 int vm_running;
213 static int autostart;
214 static int rtc_utc = 1;
215 static int rtc_date_offset = -1; /* -1 means no change */
216 int cirrus_vga_enabled = 1;
217 int std_vga_enabled = 0;
218 int vmsvga_enabled = 0;
219 int xenfb_enabled = 0;
220 #ifdef TARGET_SPARC
221 int graphic_width = 1024;
222 int graphic_height = 768;
223 int graphic_depth = 8;
224 #else
225 int graphic_width = 800;
226 int graphic_height = 600;
227 int graphic_depth = 15;
228 #endif
229 static int full_screen = 0;
230 #ifdef CONFIG_SDL
231 static int no_frame = 0;
232 #endif
233 int no_quit = 0;
234 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
235 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
236 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
237 #ifdef TARGET_I386
238 int win2k_install_hack = 0;
239 int rtc_td_hack = 0;
240 #endif
241 int usb_enabled = 0;
242 int singlestep = 0;
243 int smp_cpus = 1;
244 const char *vnc_display;
245 int acpi_enabled = 1;
246 int no_hpet = 0;
247 int fd_bootchk = 1;
248 int no_reboot = 0;
249 int no_shutdown = 0;
250 int cursor_hide = 1;
251 int graphic_rotate = 0;
252 #ifndef _WIN32
253 int daemonize = 0;
254 #endif
255 const char *option_rom[MAX_OPTION_ROMS];
256 int nb_option_roms;
257 int semihosting_enabled = 0;
258 #ifdef TARGET_ARM
259 int old_param = 0;
260 #endif
261 const char *qemu_name;
262 int alt_grab = 0;
263 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
264 unsigned int nb_prom_envs = 0;
265 const char *prom_envs[MAX_PROM_ENVS];
266 #endif
267 int nb_drives_opt;
268 struct drive_opt drives_opt[MAX_DRIVES];
269
270 int nb_numa_nodes;
271 uint64_t node_mem[MAX_NODES];
272 uint64_t node_cpumask[MAX_NODES];
273
274 static CPUState *cur_cpu;
275 static CPUState *next_cpu;
276 static int timer_alarm_pending = 1;
277 /* Conversion factor from emulated instructions to virtual clock ticks. */
278 static int icount_time_shift;
279 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
280 #define MAX_ICOUNT_SHIFT 10
281 /* Compensate for varying guest execution speed. */
282 static int64_t qemu_icount_bias;
283 static QEMUTimer *icount_rt_timer;
284 static QEMUTimer *icount_vm_timer;
285 static QEMUTimer *nographic_timer;
286
287 uint8_t qemu_uuid[16];
288
289 /***********************************************************/
290 /* x86 ISA bus support */
291
292 target_phys_addr_t isa_mem_base = 0;
293 PicState2 *isa_pic;
294
295 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
296 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
297
298 static uint32_t ioport_read(int index, uint32_t address)
299 {
300 static IOPortReadFunc *default_func[3] = {
301 default_ioport_readb,
302 default_ioport_readw,
303 default_ioport_readl
304 };
305 IOPortReadFunc *func = ioport_read_table[index][address];
306 if (!func)
307 func = default_func[index];
308 return func(ioport_opaque[address], address);
309 }
310
311 static void ioport_write(int index, uint32_t address, uint32_t data)
312 {
313 static IOPortWriteFunc *default_func[3] = {
314 default_ioport_writeb,
315 default_ioport_writew,
316 default_ioport_writel
317 };
318 IOPortWriteFunc *func = ioport_write_table[index][address];
319 if (!func)
320 func = default_func[index];
321 func(ioport_opaque[address], address, data);
322 }
323
324 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
325 {
326 #ifdef DEBUG_UNUSED_IOPORT
327 fprintf(stderr, "unused inb: port=0x%04x\n", address);
328 #endif
329 return 0xff;
330 }
331
332 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
333 {
334 #ifdef DEBUG_UNUSED_IOPORT
335 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
336 #endif
337 }
338
339 /* default is to make two byte accesses */
340 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
341 {
342 uint32_t data;
343 data = ioport_read(0, address);
344 address = (address + 1) & (MAX_IOPORTS - 1);
345 data |= ioport_read(0, address) << 8;
346 return data;
347 }
348
349 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
350 {
351 ioport_write(0, address, data & 0xff);
352 address = (address + 1) & (MAX_IOPORTS - 1);
353 ioport_write(0, address, (data >> 8) & 0xff);
354 }
355
356 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
357 {
358 #ifdef DEBUG_UNUSED_IOPORT
359 fprintf(stderr, "unused inl: port=0x%04x\n", address);
360 #endif
361 return 0xffffffff;
362 }
363
364 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
365 {
366 #ifdef DEBUG_UNUSED_IOPORT
367 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
368 #endif
369 }
370
371 /* size is the word size in byte */
372 int register_ioport_read(int start, int length, int size,
373 IOPortReadFunc *func, void *opaque)
374 {
375 int i, bsize;
376
377 if (size == 1) {
378 bsize = 0;
379 } else if (size == 2) {
380 bsize = 1;
381 } else if (size == 4) {
382 bsize = 2;
383 } else {
384 hw_error("register_ioport_read: invalid size");
385 return -1;
386 }
387 for(i = start; i < start + length; i += size) {
388 ioport_read_table[bsize][i] = func;
389 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
390 hw_error("register_ioport_read: invalid opaque");
391 ioport_opaque[i] = opaque;
392 }
393 return 0;
394 }
395
396 /* size is the word size in byte */
397 int register_ioport_write(int start, int length, int size,
398 IOPortWriteFunc *func, void *opaque)
399 {
400 int i, bsize;
401
402 if (size == 1) {
403 bsize = 0;
404 } else if (size == 2) {
405 bsize = 1;
406 } else if (size == 4) {
407 bsize = 2;
408 } else {
409 hw_error("register_ioport_write: invalid size");
410 return -1;
411 }
412 for(i = start; i < start + length; i += size) {
413 ioport_write_table[bsize][i] = func;
414 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
415 hw_error("register_ioport_write: invalid opaque");
416 ioport_opaque[i] = opaque;
417 }
418 return 0;
419 }
420
421 void isa_unassign_ioport(int start, int length)
422 {
423 int i;
424
425 for(i = start; i < start + length; i++) {
426 ioport_read_table[0][i] = default_ioport_readb;
427 ioport_read_table[1][i] = default_ioport_readw;
428 ioport_read_table[2][i] = default_ioport_readl;
429
430 ioport_write_table[0][i] = default_ioport_writeb;
431 ioport_write_table[1][i] = default_ioport_writew;
432 ioport_write_table[2][i] = default_ioport_writel;
433
434 ioport_opaque[i] = NULL;
435 }
436 }
437
438 /***********************************************************/
439
440 void cpu_outb(CPUState *env, int addr, int val)
441 {
442 LOG_IOPORT("outb: %04x %02x\n", addr, val);
443 ioport_write(0, addr, val);
444 #ifdef CONFIG_KQEMU
445 if (env)
446 env->last_io_time = cpu_get_time_fast();
447 #endif
448 }
449
450 void cpu_outw(CPUState *env, int addr, int val)
451 {
452 LOG_IOPORT("outw: %04x %04x\n", addr, val);
453 ioport_write(1, addr, val);
454 #ifdef CONFIG_KQEMU
455 if (env)
456 env->last_io_time = cpu_get_time_fast();
457 #endif
458 }
459
460 void cpu_outl(CPUState *env, int addr, int val)
461 {
462 LOG_IOPORT("outl: %04x %08x\n", addr, val);
463 ioport_write(2, addr, val);
464 #ifdef CONFIG_KQEMU
465 if (env)
466 env->last_io_time = cpu_get_time_fast();
467 #endif
468 }
469
470 int cpu_inb(CPUState *env, int addr)
471 {
472 int val;
473 val = ioport_read(0, addr);
474 LOG_IOPORT("inb : %04x %02x\n", addr, val);
475 #ifdef CONFIG_KQEMU
476 if (env)
477 env->last_io_time = cpu_get_time_fast();
478 #endif
479 return val;
480 }
481
482 int cpu_inw(CPUState *env, int addr)
483 {
484 int val;
485 val = ioport_read(1, addr);
486 LOG_IOPORT("inw : %04x %04x\n", addr, val);
487 #ifdef CONFIG_KQEMU
488 if (env)
489 env->last_io_time = cpu_get_time_fast();
490 #endif
491 return val;
492 }
493
494 int cpu_inl(CPUState *env, int addr)
495 {
496 int val;
497 val = ioport_read(2, addr);
498 LOG_IOPORT("inl : %04x %08x\n", addr, val);
499 #ifdef CONFIG_KQEMU
500 if (env)
501 env->last_io_time = cpu_get_time_fast();
502 #endif
503 return val;
504 }
505
506 /***********************************************************/
507 void hw_error(const char *fmt, ...)
508 {
509 va_list ap;
510 CPUState *env;
511
512 va_start(ap, fmt);
513 fprintf(stderr, "qemu: hardware error: ");
514 vfprintf(stderr, fmt, ap);
515 fprintf(stderr, "\n");
516 for(env = first_cpu; env != NULL; env = env->next_cpu) {
517 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
518 #ifdef TARGET_I386
519 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
520 #else
521 cpu_dump_state(env, stderr, fprintf, 0);
522 #endif
523 }
524 va_end(ap);
525 abort();
526 }
527
528 /***************/
529 /* ballooning */
530
531 static QEMUBalloonEvent *qemu_balloon_event;
532 void *qemu_balloon_event_opaque;
533
534 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
535 {
536 qemu_balloon_event = func;
537 qemu_balloon_event_opaque = opaque;
538 }
539
540 void qemu_balloon(ram_addr_t target)
541 {
542 if (qemu_balloon_event)
543 qemu_balloon_event(qemu_balloon_event_opaque, target);
544 }
545
546 ram_addr_t qemu_balloon_status(void)
547 {
548 if (qemu_balloon_event)
549 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
550 return 0;
551 }
552
553 /***********************************************************/
554 /* keyboard/mouse */
555
556 static QEMUPutKBDEvent *qemu_put_kbd_event;
557 static void *qemu_put_kbd_event_opaque;
558 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
559 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
560
561 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
562 {
563 qemu_put_kbd_event_opaque = opaque;
564 qemu_put_kbd_event = func;
565 }
566
567 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
568 void *opaque, int absolute,
569 const char *name)
570 {
571 QEMUPutMouseEntry *s, *cursor;
572
573 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
574
575 s->qemu_put_mouse_event = func;
576 s->qemu_put_mouse_event_opaque = opaque;
577 s->qemu_put_mouse_event_absolute = absolute;
578 s->qemu_put_mouse_event_name = qemu_strdup(name);
579 s->next = NULL;
580
581 if (!qemu_put_mouse_event_head) {
582 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
583 return s;
584 }
585
586 cursor = qemu_put_mouse_event_head;
587 while (cursor->next != NULL)
588 cursor = cursor->next;
589
590 cursor->next = s;
591 qemu_put_mouse_event_current = s;
592
593 return s;
594 }
595
596 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
597 {
598 QEMUPutMouseEntry *prev = NULL, *cursor;
599
600 if (!qemu_put_mouse_event_head || entry == NULL)
601 return;
602
603 cursor = qemu_put_mouse_event_head;
604 while (cursor != NULL && cursor != entry) {
605 prev = cursor;
606 cursor = cursor->next;
607 }
608
609 if (cursor == NULL) // does not exist or list empty
610 return;
611 else if (prev == NULL) { // entry is head
612 qemu_put_mouse_event_head = cursor->next;
613 if (qemu_put_mouse_event_current == entry)
614 qemu_put_mouse_event_current = cursor->next;
615 qemu_free(entry->qemu_put_mouse_event_name);
616 qemu_free(entry);
617 return;
618 }
619
620 prev->next = entry->next;
621
622 if (qemu_put_mouse_event_current == entry)
623 qemu_put_mouse_event_current = prev;
624
625 qemu_free(entry->qemu_put_mouse_event_name);
626 qemu_free(entry);
627 }
628
629 void kbd_put_keycode(int keycode)
630 {
631 if (qemu_put_kbd_event) {
632 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
633 }
634 }
635
636 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
637 {
638 QEMUPutMouseEvent *mouse_event;
639 void *mouse_event_opaque;
640 int width;
641
642 if (!qemu_put_mouse_event_current) {
643 return;
644 }
645
646 mouse_event =
647 qemu_put_mouse_event_current->qemu_put_mouse_event;
648 mouse_event_opaque =
649 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
650
651 if (mouse_event) {
652 if (graphic_rotate) {
653 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
654 width = 0x7fff;
655 else
656 width = graphic_width - 1;
657 mouse_event(mouse_event_opaque,
658 width - dy, dx, dz, buttons_state);
659 } else
660 mouse_event(mouse_event_opaque,
661 dx, dy, dz, buttons_state);
662 }
663 }
664
665 int kbd_mouse_is_absolute(void)
666 {
667 if (!qemu_put_mouse_event_current)
668 return 0;
669
670 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
671 }
672
673 void do_info_mice(Monitor *mon)
674 {
675 QEMUPutMouseEntry *cursor;
676 int index = 0;
677
678 if (!qemu_put_mouse_event_head) {
679 monitor_printf(mon, "No mouse devices connected\n");
680 return;
681 }
682
683 monitor_printf(mon, "Mouse devices available:\n");
684 cursor = qemu_put_mouse_event_head;
685 while (cursor != NULL) {
686 monitor_printf(mon, "%c Mouse #%d: %s\n",
687 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
688 index, cursor->qemu_put_mouse_event_name);
689 index++;
690 cursor = cursor->next;
691 }
692 }
693
694 void do_mouse_set(Monitor *mon, int index)
695 {
696 QEMUPutMouseEntry *cursor;
697 int i = 0;
698
699 if (!qemu_put_mouse_event_head) {
700 monitor_printf(mon, "No mouse devices connected\n");
701 return;
702 }
703
704 cursor = qemu_put_mouse_event_head;
705 while (cursor != NULL && index != i) {
706 i++;
707 cursor = cursor->next;
708 }
709
710 if (cursor != NULL)
711 qemu_put_mouse_event_current = cursor;
712 else
713 monitor_printf(mon, "Mouse at given index not found\n");
714 }
715
716 /* compute with 96 bit intermediate result: (a*b)/c */
717 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
718 {
719 union {
720 uint64_t ll;
721 struct {
722 #ifdef WORDS_BIGENDIAN
723 uint32_t high, low;
724 #else
725 uint32_t low, high;
726 #endif
727 } l;
728 } u, res;
729 uint64_t rl, rh;
730
731 u.ll = a;
732 rl = (uint64_t)u.l.low * (uint64_t)b;
733 rh = (uint64_t)u.l.high * (uint64_t)b;
734 rh += (rl >> 32);
735 res.l.high = rh / c;
736 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
737 return res.ll;
738 }
739
740 /***********************************************************/
741 /* real time host monotonic timer */
742
743 #define QEMU_TIMER_BASE 1000000000LL
744
745 #ifdef WIN32
746
747 static int64_t clock_freq;
748
749 static void init_get_clock(void)
750 {
751 LARGE_INTEGER freq;
752 int ret;
753 ret = QueryPerformanceFrequency(&freq);
754 if (ret == 0) {
755 fprintf(stderr, "Could not calibrate ticks\n");
756 exit(1);
757 }
758 clock_freq = freq.QuadPart;
759 }
760
761 static int64_t get_clock(void)
762 {
763 LARGE_INTEGER ti;
764 QueryPerformanceCounter(&ti);
765 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
766 }
767
768 #else
769
770 static int use_rt_clock;
771
772 static void init_get_clock(void)
773 {
774 use_rt_clock = 0;
775 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
776 || defined(__DragonFly__)
777 {
778 struct timespec ts;
779 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
780 use_rt_clock = 1;
781 }
782 }
783 #endif
784 }
785
786 static int64_t get_clock(void)
787 {
788 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
789 || defined(__DragonFly__)
790 if (use_rt_clock) {
791 struct timespec ts;
792 clock_gettime(CLOCK_MONOTONIC, &ts);
793 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
794 } else
795 #endif
796 {
797 /* XXX: using gettimeofday leads to problems if the date
798 changes, so it should be avoided. */
799 struct timeval tv;
800 gettimeofday(&tv, NULL);
801 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
802 }
803 }
804 #endif
805
806 /* Return the virtual CPU time, based on the instruction counter. */
807 static int64_t cpu_get_icount(void)
808 {
809 int64_t icount;
810 CPUState *env = cpu_single_env;;
811 icount = qemu_icount;
812 if (env) {
813 if (!can_do_io(env))
814 fprintf(stderr, "Bad clock read\n");
815 icount -= (env->icount_decr.u16.low + env->icount_extra);
816 }
817 return qemu_icount_bias + (icount << icount_time_shift);
818 }
819
820 /***********************************************************/
821 /* guest cycle counter */
822
823 static int64_t cpu_ticks_prev;
824 static int64_t cpu_ticks_offset;
825 static int64_t cpu_clock_offset;
826 static int cpu_ticks_enabled;
827
828 /* return the host CPU cycle counter and handle stop/restart */
829 int64_t cpu_get_ticks(void)
830 {
831 if (use_icount) {
832 return cpu_get_icount();
833 }
834 if (!cpu_ticks_enabled) {
835 return cpu_ticks_offset;
836 } else {
837 int64_t ticks;
838 ticks = cpu_get_real_ticks();
839 if (cpu_ticks_prev > ticks) {
840 /* Note: non increasing ticks may happen if the host uses
841 software suspend */
842 cpu_ticks_offset += cpu_ticks_prev - ticks;
843 }
844 cpu_ticks_prev = ticks;
845 return ticks + cpu_ticks_offset;
846 }
847 }
848
849 /* return the host CPU monotonic timer and handle stop/restart */
850 static int64_t cpu_get_clock(void)
851 {
852 int64_t ti;
853 if (!cpu_ticks_enabled) {
854 return cpu_clock_offset;
855 } else {
856 ti = get_clock();
857 return ti + cpu_clock_offset;
858 }
859 }
860
861 /* enable cpu_get_ticks() */
862 void cpu_enable_ticks(void)
863 {
864 if (!cpu_ticks_enabled) {
865 cpu_ticks_offset -= cpu_get_real_ticks();
866 cpu_clock_offset -= get_clock();
867 cpu_ticks_enabled = 1;
868 }
869 }
870
871 /* disable cpu_get_ticks() : the clock is stopped. You must not call
872 cpu_get_ticks() after that. */
873 void cpu_disable_ticks(void)
874 {
875 if (cpu_ticks_enabled) {
876 cpu_ticks_offset = cpu_get_ticks();
877 cpu_clock_offset = cpu_get_clock();
878 cpu_ticks_enabled = 0;
879 }
880 }
881
882 /***********************************************************/
883 /* timers */
884
885 #define QEMU_TIMER_REALTIME 0
886 #define QEMU_TIMER_VIRTUAL 1
887
888 struct QEMUClock {
889 int type;
890 /* XXX: add frequency */
891 };
892
893 struct QEMUTimer {
894 QEMUClock *clock;
895 int64_t expire_time;
896 QEMUTimerCB *cb;
897 void *opaque;
898 struct QEMUTimer *next;
899 };
900
901 struct qemu_alarm_timer {
902 char const *name;
903 unsigned int flags;
904
905 int (*start)(struct qemu_alarm_timer *t);
906 void (*stop)(struct qemu_alarm_timer *t);
907 void (*rearm)(struct qemu_alarm_timer *t);
908 void *priv;
909 };
910
911 #define ALARM_FLAG_DYNTICKS 0x1
912 #define ALARM_FLAG_EXPIRED 0x2
913
914 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
915 {
916 return t->flags & ALARM_FLAG_DYNTICKS;
917 }
918
919 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
920 {
921 if (!alarm_has_dynticks(t))
922 return;
923
924 t->rearm(t);
925 }
926
927 /* TODO: MIN_TIMER_REARM_US should be optimized */
928 #define MIN_TIMER_REARM_US 250
929
930 static struct qemu_alarm_timer *alarm_timer;
931
932 #ifdef _WIN32
933
934 struct qemu_alarm_win32 {
935 MMRESULT timerId;
936 unsigned int period;
937 } alarm_win32_data = {0, NULL, -1};
938
939 static int win32_start_timer(struct qemu_alarm_timer *t);
940 static void win32_stop_timer(struct qemu_alarm_timer *t);
941 static void win32_rearm_timer(struct qemu_alarm_timer *t);
942
943 #else
944
945 static int unix_start_timer(struct qemu_alarm_timer *t);
946 static void unix_stop_timer(struct qemu_alarm_timer *t);
947
948 #ifdef __linux__
949
950 static int dynticks_start_timer(struct qemu_alarm_timer *t);
951 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
952 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
953
954 static int hpet_start_timer(struct qemu_alarm_timer *t);
955 static void hpet_stop_timer(struct qemu_alarm_timer *t);
956
957 static int rtc_start_timer(struct qemu_alarm_timer *t);
958 static void rtc_stop_timer(struct qemu_alarm_timer *t);
959
960 #endif /* __linux__ */
961
962 #endif /* _WIN32 */
963
964 /* Correlation between real and virtual time is always going to be
965 fairly approximate, so ignore small variation.
966 When the guest is idle real and virtual time will be aligned in
967 the IO wait loop. */
968 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
969
970 static void icount_adjust(void)
971 {
972 int64_t cur_time;
973 int64_t cur_icount;
974 int64_t delta;
975 static int64_t last_delta;
976 /* If the VM is not running, then do nothing. */
977 if (!vm_running)
978 return;
979
980 cur_time = cpu_get_clock();
981 cur_icount = qemu_get_clock(vm_clock);
982 delta = cur_icount - cur_time;
983 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
984 if (delta > 0
985 && last_delta + ICOUNT_WOBBLE < delta * 2
986 && icount_time_shift > 0) {
987 /* The guest is getting too far ahead. Slow time down. */
988 icount_time_shift--;
989 }
990 if (delta < 0
991 && last_delta - ICOUNT_WOBBLE > delta * 2
992 && icount_time_shift < MAX_ICOUNT_SHIFT) {
993 /* The guest is getting too far behind. Speed time up. */
994 icount_time_shift++;
995 }
996 last_delta = delta;
997 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
998 }
999
1000 static void icount_adjust_rt(void * opaque)
1001 {
1002 qemu_mod_timer(icount_rt_timer,
1003 qemu_get_clock(rt_clock) + 1000);
1004 icount_adjust();
1005 }
1006
1007 static void icount_adjust_vm(void * opaque)
1008 {
1009 qemu_mod_timer(icount_vm_timer,
1010 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1011 icount_adjust();
1012 }
1013
1014 static void init_icount_adjust(void)
1015 {
1016 /* Have both realtime and virtual time triggers for speed adjustment.
1017 The realtime trigger catches emulated time passing too slowly,
1018 the virtual time trigger catches emulated time passing too fast.
1019 Realtime triggers occur even when idle, so use them less frequently
1020 than VM triggers. */
1021 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1022 qemu_mod_timer(icount_rt_timer,
1023 qemu_get_clock(rt_clock) + 1000);
1024 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1025 qemu_mod_timer(icount_vm_timer,
1026 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1027 }
1028
1029 static struct qemu_alarm_timer alarm_timers[] = {
1030 #ifndef _WIN32
1031 #ifdef __linux__
1032 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1033 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1034 /* HPET - if available - is preferred */
1035 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1036 /* ...otherwise try RTC */
1037 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1038 #endif
1039 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1040 #else
1041 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1042 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1043 {"win32", 0, win32_start_timer,
1044 win32_stop_timer, NULL, &alarm_win32_data},
1045 #endif
1046 {NULL, }
1047 };
1048
1049 static void show_available_alarms(void)
1050 {
1051 int i;
1052
1053 printf("Available alarm timers, in order of precedence:\n");
1054 for (i = 0; alarm_timers[i].name; i++)
1055 printf("%s\n", alarm_timers[i].name);
1056 }
1057
1058 static void configure_alarms(char const *opt)
1059 {
1060 int i;
1061 int cur = 0;
1062 int count = ARRAY_SIZE(alarm_timers) - 1;
1063 char *arg;
1064 char *name;
1065 struct qemu_alarm_timer tmp;
1066
1067 if (!strcmp(opt, "?")) {
1068 show_available_alarms();
1069 exit(0);
1070 }
1071
1072 arg = strdup(opt);
1073
1074 /* Reorder the array */
1075 name = strtok(arg, ",");
1076 while (name) {
1077 for (i = 0; i < count && alarm_timers[i].name; i++) {
1078 if (!strcmp(alarm_timers[i].name, name))
1079 break;
1080 }
1081
1082 if (i == count) {
1083 fprintf(stderr, "Unknown clock %s\n", name);
1084 goto next;
1085 }
1086
1087 if (i < cur)
1088 /* Ignore */
1089 goto next;
1090
1091 /* Swap */
1092 tmp = alarm_timers[i];
1093 alarm_timers[i] = alarm_timers[cur];
1094 alarm_timers[cur] = tmp;
1095
1096 cur++;
1097 next:
1098 name = strtok(NULL, ",");
1099 }
1100
1101 free(arg);
1102
1103 if (cur) {
1104 /* Disable remaining timers */
1105 for (i = cur; i < count; i++)
1106 alarm_timers[i].name = NULL;
1107 } else {
1108 show_available_alarms();
1109 exit(1);
1110 }
1111 }
1112
1113 QEMUClock *rt_clock;
1114 QEMUClock *vm_clock;
1115
1116 static QEMUTimer *active_timers[2];
1117
1118 static QEMUClock *qemu_new_clock(int type)
1119 {
1120 QEMUClock *clock;
1121 clock = qemu_mallocz(sizeof(QEMUClock));
1122 clock->type = type;
1123 return clock;
1124 }
1125
1126 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1127 {
1128 QEMUTimer *ts;
1129
1130 ts = qemu_mallocz(sizeof(QEMUTimer));
1131 ts->clock = clock;
1132 ts->cb = cb;
1133 ts->opaque = opaque;
1134 return ts;
1135 }
1136
1137 void qemu_free_timer(QEMUTimer *ts)
1138 {
1139 qemu_free(ts);
1140 }
1141
1142 /* stop a timer, but do not dealloc it */
1143 void qemu_del_timer(QEMUTimer *ts)
1144 {
1145 QEMUTimer **pt, *t;
1146
1147 /* NOTE: this code must be signal safe because
1148 qemu_timer_expired() can be called from a signal. */
1149 pt = &active_timers[ts->clock->type];
1150 for(;;) {
1151 t = *pt;
1152 if (!t)
1153 break;
1154 if (t == ts) {
1155 *pt = t->next;
1156 break;
1157 }
1158 pt = &t->next;
1159 }
1160 }
1161
1162 /* modify the current timer so that it will be fired when current_time
1163 >= expire_time. The corresponding callback will be called. */
1164 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1165 {
1166 QEMUTimer **pt, *t;
1167
1168 qemu_del_timer(ts);
1169
1170 /* add the timer in the sorted list */
1171 /* NOTE: this code must be signal safe because
1172 qemu_timer_expired() can be called from a signal. */
1173 pt = &active_timers[ts->clock->type];
1174 for(;;) {
1175 t = *pt;
1176 if (!t)
1177 break;
1178 if (t->expire_time > expire_time)
1179 break;
1180 pt = &t->next;
1181 }
1182 ts->expire_time = expire_time;
1183 ts->next = *pt;
1184 *pt = ts;
1185
1186 /* Rearm if necessary */
1187 if (pt == &active_timers[ts->clock->type]) {
1188 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1189 qemu_rearm_alarm_timer(alarm_timer);
1190 }
1191 /* Interrupt execution to force deadline recalculation. */
1192 if (use_icount)
1193 qemu_notify_event();
1194 }
1195 }
1196
1197 int qemu_timer_pending(QEMUTimer *ts)
1198 {
1199 QEMUTimer *t;
1200 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1201 if (t == ts)
1202 return 1;
1203 }
1204 return 0;
1205 }
1206
1207 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1208 {
1209 if (!timer_head)
1210 return 0;
1211 return (timer_head->expire_time <= current_time);
1212 }
1213
1214 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1215 {
1216 QEMUTimer *ts;
1217
1218 for(;;) {
1219 ts = *ptimer_head;
1220 if (!ts || ts->expire_time > current_time)
1221 break;
1222 /* remove timer from the list before calling the callback */
1223 *ptimer_head = ts->next;
1224 ts->next = NULL;
1225
1226 /* run the callback (the timer list can be modified) */
1227 ts->cb(ts->opaque);
1228 }
1229 }
1230
1231 int64_t qemu_get_clock(QEMUClock *clock)
1232 {
1233 switch(clock->type) {
1234 case QEMU_TIMER_REALTIME:
1235 return get_clock() / 1000000;
1236 default:
1237 case QEMU_TIMER_VIRTUAL:
1238 if (use_icount) {
1239 return cpu_get_icount();
1240 } else {
1241 return cpu_get_clock();
1242 }
1243 }
1244 }
1245
1246 static void init_timers(void)
1247 {
1248 init_get_clock();
1249 ticks_per_sec = QEMU_TIMER_BASE;
1250 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1251 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1252 }
1253
1254 /* save a timer */
1255 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1256 {
1257 uint64_t expire_time;
1258
1259 if (qemu_timer_pending(ts)) {
1260 expire_time = ts->expire_time;
1261 } else {
1262 expire_time = -1;
1263 }
1264 qemu_put_be64(f, expire_time);
1265 }
1266
1267 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1268 {
1269 uint64_t expire_time;
1270
1271 expire_time = qemu_get_be64(f);
1272 if (expire_time != -1) {
1273 qemu_mod_timer(ts, expire_time);
1274 } else {
1275 qemu_del_timer(ts);
1276 }
1277 }
1278
1279 static void timer_save(QEMUFile *f, void *opaque)
1280 {
1281 if (cpu_ticks_enabled) {
1282 hw_error("cannot save state if virtual timers are running");
1283 }
1284 qemu_put_be64(f, cpu_ticks_offset);
1285 qemu_put_be64(f, ticks_per_sec);
1286 qemu_put_be64(f, cpu_clock_offset);
1287 }
1288
1289 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1290 {
1291 if (version_id != 1 && version_id != 2)
1292 return -EINVAL;
1293 if (cpu_ticks_enabled) {
1294 return -EINVAL;
1295 }
1296 cpu_ticks_offset=qemu_get_be64(f);
1297 ticks_per_sec=qemu_get_be64(f);
1298 if (version_id == 2) {
1299 cpu_clock_offset=qemu_get_be64(f);
1300 }
1301 return 0;
1302 }
1303
1304 static void qemu_event_increment(void);
1305
1306 #ifdef _WIN32
1307 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1308 DWORD_PTR dwUser, DWORD_PTR dw1,
1309 DWORD_PTR dw2)
1310 #else
1311 static void host_alarm_handler(int host_signum)
1312 #endif
1313 {
1314 #if 0
1315 #define DISP_FREQ 1000
1316 {
1317 static int64_t delta_min = INT64_MAX;
1318 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1319 static int count;
1320 ti = qemu_get_clock(vm_clock);
1321 if (last_clock != 0) {
1322 delta = ti - last_clock;
1323 if (delta < delta_min)
1324 delta_min = delta;
1325 if (delta > delta_max)
1326 delta_max = delta;
1327 delta_cum += delta;
1328 if (++count == DISP_FREQ) {
1329 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1330 muldiv64(delta_min, 1000000, ticks_per_sec),
1331 muldiv64(delta_max, 1000000, ticks_per_sec),
1332 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1333 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1334 count = 0;
1335 delta_min = INT64_MAX;
1336 delta_max = 0;
1337 delta_cum = 0;
1338 }
1339 }
1340 last_clock = ti;
1341 }
1342 #endif
1343 if (alarm_has_dynticks(alarm_timer) ||
1344 (!use_icount &&
1345 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1346 qemu_get_clock(vm_clock))) ||
1347 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1348 qemu_get_clock(rt_clock))) {
1349 CPUState *env = next_cpu;
1350
1351 qemu_event_increment();
1352 alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1353
1354 if (env) {
1355 /* stop the currently executing cpu because a timer occured */
1356 cpu_exit(env);
1357 #ifdef CONFIG_KQEMU
1358 if (env->kqemu_enabled) {
1359 kqemu_cpu_interrupt(env);
1360 }
1361 #endif
1362 }
1363 timer_alarm_pending = 1;
1364 qemu_notify_event();
1365 }
1366 }
1367
1368 static int64_t qemu_next_deadline(void)
1369 {
1370 int64_t delta;
1371
1372 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1373 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1374 qemu_get_clock(vm_clock);
1375 } else {
1376 /* To avoid problems with overflow limit this to 2^32. */
1377 delta = INT32_MAX;
1378 }
1379
1380 if (delta < 0)
1381 delta = 0;
1382
1383 return delta;
1384 }
1385
1386 #if defined(__linux__) || defined(_WIN32)
1387 static uint64_t qemu_next_deadline_dyntick(void)
1388 {
1389 int64_t delta;
1390 int64_t rtdelta;
1391
1392 if (use_icount)
1393 delta = INT32_MAX;
1394 else
1395 delta = (qemu_next_deadline() + 999) / 1000;
1396
1397 if (active_timers[QEMU_TIMER_REALTIME]) {
1398 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1399 qemu_get_clock(rt_clock))*1000;
1400 if (rtdelta < delta)
1401 delta = rtdelta;
1402 }
1403
1404 if (delta < MIN_TIMER_REARM_US)
1405 delta = MIN_TIMER_REARM_US;
1406
1407 return delta;
1408 }
1409 #endif
1410
1411 #ifndef _WIN32
1412
1413 /* Sets a specific flag */
1414 static int fcntl_setfl(int fd, int flag)
1415 {
1416 int flags;
1417
1418 flags = fcntl(fd, F_GETFL);
1419 if (flags == -1)
1420 return -errno;
1421
1422 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1423 return -errno;
1424
1425 return 0;
1426 }
1427
1428 #if defined(__linux__)
1429
1430 #define RTC_FREQ 1024
1431
1432 static void enable_sigio_timer(int fd)
1433 {
1434 struct sigaction act;
1435
1436 /* timer signal */
1437 sigfillset(&act.sa_mask);
1438 act.sa_flags = 0;
1439 act.sa_handler = host_alarm_handler;
1440
1441 sigaction(SIGIO, &act, NULL);
1442 fcntl_setfl(fd, O_ASYNC);
1443 fcntl(fd, F_SETOWN, getpid());
1444 }
1445
1446 static int hpet_start_timer(struct qemu_alarm_timer *t)
1447 {
1448 struct hpet_info info;
1449 int r, fd;
1450
1451 fd = open("/dev/hpet", O_RDONLY);
1452 if (fd < 0)
1453 return -1;
1454
1455 /* Set frequency */
1456 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1457 if (r < 0) {
1458 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1459 "error, but for better emulation accuracy type:\n"
1460 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1461 goto fail;
1462 }
1463
1464 /* Check capabilities */
1465 r = ioctl(fd, HPET_INFO, &info);
1466 if (r < 0)
1467 goto fail;
1468
1469 /* Enable periodic mode */
1470 r = ioctl(fd, HPET_EPI, 0);
1471 if (info.hi_flags && (r < 0))
1472 goto fail;
1473
1474 /* Enable interrupt */
1475 r = ioctl(fd, HPET_IE_ON, 0);
1476 if (r < 0)
1477 goto fail;
1478
1479 enable_sigio_timer(fd);
1480 t->priv = (void *)(long)fd;
1481
1482 return 0;
1483 fail:
1484 close(fd);
1485 return -1;
1486 }
1487
1488 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1489 {
1490 int fd = (long)t->priv;
1491
1492 close(fd);
1493 }
1494
1495 static int rtc_start_timer(struct qemu_alarm_timer *t)
1496 {
1497 int rtc_fd;
1498 unsigned long current_rtc_freq = 0;
1499
1500 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1501 if (rtc_fd < 0)
1502 return -1;
1503 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1504 if (current_rtc_freq != RTC_FREQ &&
1505 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1506 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1507 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1508 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1509 goto fail;
1510 }
1511 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1512 fail:
1513 close(rtc_fd);
1514 return -1;
1515 }
1516
1517 enable_sigio_timer(rtc_fd);
1518
1519 t->priv = (void *)(long)rtc_fd;
1520
1521 return 0;
1522 }
1523
1524 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1525 {
1526 int rtc_fd = (long)t->priv;
1527
1528 close(rtc_fd);
1529 }
1530
1531 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1532 {
1533 struct sigevent ev;
1534 timer_t host_timer;
1535 struct sigaction act;
1536
1537 sigfillset(&act.sa_mask);
1538 act.sa_flags = 0;
1539 act.sa_handler = host_alarm_handler;
1540
1541 sigaction(SIGALRM, &act, NULL);
1542
1543 ev.sigev_value.sival_int = 0;
1544 ev.sigev_notify = SIGEV_SIGNAL;
1545 ev.sigev_signo = SIGALRM;
1546
1547 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1548 perror("timer_create");
1549
1550 /* disable dynticks */
1551 fprintf(stderr, "Dynamic Ticks disabled\n");
1552
1553 return -1;
1554 }
1555
1556 t->priv = (void *)(long)host_timer;
1557
1558 return 0;
1559 }
1560
1561 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1562 {
1563 timer_t host_timer = (timer_t)(long)t->priv;
1564
1565 timer_delete(host_timer);
1566 }
1567
1568 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1569 {
1570 timer_t host_timer = (timer_t)(long)t->priv;
1571 struct itimerspec timeout;
1572 int64_t nearest_delta_us = INT64_MAX;
1573 int64_t current_us;
1574
1575 if (!active_timers[QEMU_TIMER_REALTIME] &&
1576 !active_timers[QEMU_TIMER_VIRTUAL])
1577 return;
1578
1579 nearest_delta_us = qemu_next_deadline_dyntick();
1580
1581 /* check whether a timer is already running */
1582 if (timer_gettime(host_timer, &timeout)) {
1583 perror("gettime");
1584 fprintf(stderr, "Internal timer error: aborting\n");
1585 exit(1);
1586 }
1587 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1588 if (current_us && current_us <= nearest_delta_us)
1589 return;
1590
1591 timeout.it_interval.tv_sec = 0;
1592 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1593 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1594 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1595 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1596 perror("settime");
1597 fprintf(stderr, "Internal timer error: aborting\n");
1598 exit(1);
1599 }
1600 }
1601
1602 #endif /* defined(__linux__) */
1603
1604 static int unix_start_timer(struct qemu_alarm_timer *t)
1605 {
1606 struct sigaction act;
1607 struct itimerval itv;
1608 int err;
1609
1610 /* timer signal */
1611 sigfillset(&act.sa_mask);
1612 act.sa_flags = 0;
1613 act.sa_handler = host_alarm_handler;
1614
1615 sigaction(SIGALRM, &act, NULL);
1616
1617 itv.it_interval.tv_sec = 0;
1618 /* for i386 kernel 2.6 to get 1 ms */
1619 itv.it_interval.tv_usec = 999;
1620 itv.it_value.tv_sec = 0;
1621 itv.it_value.tv_usec = 10 * 1000;
1622
1623 err = setitimer(ITIMER_REAL, &itv, NULL);
1624 if (err)
1625 return -1;
1626
1627 return 0;
1628 }
1629
1630 static void unix_stop_timer(struct qemu_alarm_timer *t)
1631 {
1632 struct itimerval itv;
1633
1634 memset(&itv, 0, sizeof(itv));
1635 setitimer(ITIMER_REAL, &itv, NULL);
1636 }
1637
1638 #endif /* !defined(_WIN32) */
1639
1640
1641 #ifdef _WIN32
1642
1643 static int win32_start_timer(struct qemu_alarm_timer *t)
1644 {
1645 TIMECAPS tc;
1646 struct qemu_alarm_win32 *data = t->priv;
1647 UINT flags;
1648
1649 memset(&tc, 0, sizeof(tc));
1650 timeGetDevCaps(&tc, sizeof(tc));
1651
1652 if (data->period < tc.wPeriodMin)
1653 data->period = tc.wPeriodMin;
1654
1655 timeBeginPeriod(data->period);
1656
1657 flags = TIME_CALLBACK_FUNCTION;
1658 if (alarm_has_dynticks(t))
1659 flags |= TIME_ONESHOT;
1660 else
1661 flags |= TIME_PERIODIC;
1662
1663 data->timerId = timeSetEvent(1, // interval (ms)
1664 data->period, // resolution
1665 host_alarm_handler, // function
1666 (DWORD)t, // parameter
1667 flags);
1668
1669 if (!data->timerId) {
1670 perror("Failed to initialize win32 alarm timer");
1671 timeEndPeriod(data->period);
1672 return -1;
1673 }
1674
1675 return 0;
1676 }
1677
1678 static void win32_stop_timer(struct qemu_alarm_timer *t)
1679 {
1680 struct qemu_alarm_win32 *data = t->priv;
1681
1682 timeKillEvent(data->timerId);
1683 timeEndPeriod(data->period);
1684 }
1685
1686 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1687 {
1688 struct qemu_alarm_win32 *data = t->priv;
1689 uint64_t nearest_delta_us;
1690
1691 if (!active_timers[QEMU_TIMER_REALTIME] &&
1692 !active_timers[QEMU_TIMER_VIRTUAL])
1693 return;
1694
1695 nearest_delta_us = qemu_next_deadline_dyntick();
1696 nearest_delta_us /= 1000;
1697
1698 timeKillEvent(data->timerId);
1699
1700 data->timerId = timeSetEvent(1,
1701 data->period,
1702 host_alarm_handler,
1703 (DWORD)t,
1704 TIME_ONESHOT | TIME_PERIODIC);
1705
1706 if (!data->timerId) {
1707 perror("Failed to re-arm win32 alarm timer");
1708
1709 timeEndPeriod(data->period);
1710 exit(1);
1711 }
1712 }
1713
1714 #endif /* _WIN32 */
1715
1716 static int init_timer_alarm(void)
1717 {
1718 struct qemu_alarm_timer *t = NULL;
1719 int i, err = -1;
1720
1721 for (i = 0; alarm_timers[i].name; i++) {
1722 t = &alarm_timers[i];
1723
1724 err = t->start(t);
1725 if (!err)
1726 break;
1727 }
1728
1729 if (err) {
1730 err = -ENOENT;
1731 goto fail;
1732 }
1733
1734 alarm_timer = t;
1735
1736 return 0;
1737
1738 fail:
1739 return err;
1740 }
1741
1742 static void quit_timers(void)
1743 {
1744 alarm_timer->stop(alarm_timer);
1745 alarm_timer = NULL;
1746 }
1747
1748 /***********************************************************/
1749 /* host time/date access */
1750 void qemu_get_timedate(struct tm *tm, int offset)
1751 {
1752 time_t ti;
1753 struct tm *ret;
1754
1755 time(&ti);
1756 ti += offset;
1757 if (rtc_date_offset == -1) {
1758 if (rtc_utc)
1759 ret = gmtime(&ti);
1760 else
1761 ret = localtime(&ti);
1762 } else {
1763 ti -= rtc_date_offset;
1764 ret = gmtime(&ti);
1765 }
1766
1767 memcpy(tm, ret, sizeof(struct tm));
1768 }
1769
1770 int qemu_timedate_diff(struct tm *tm)
1771 {
1772 time_t seconds;
1773
1774 if (rtc_date_offset == -1)
1775 if (rtc_utc)
1776 seconds = mktimegm(tm);
1777 else
1778 seconds = mktime(tm);
1779 else
1780 seconds = mktimegm(tm) + rtc_date_offset;
1781
1782 return seconds - time(NULL);
1783 }
1784
1785 #ifdef _WIN32
1786 static void socket_cleanup(void)
1787 {
1788 WSACleanup();
1789 }
1790
1791 static int socket_init(void)
1792 {
1793 WSADATA Data;
1794 int ret, err;
1795
1796 ret = WSAStartup(MAKEWORD(2,2), &Data);
1797 if (ret != 0) {
1798 err = WSAGetLastError();
1799 fprintf(stderr, "WSAStartup: %d\n", err);
1800 return -1;
1801 }
1802 atexit(socket_cleanup);
1803 return 0;
1804 }
1805 #endif
1806
1807 const char *get_opt_name(char *buf, int buf_size, const char *p, char delim)
1808 {
1809 char *q;
1810
1811 q = buf;
1812 while (*p != '\0' && *p != delim) {
1813 if (q && (q - buf) < buf_size - 1)
1814 *q++ = *p;
1815 p++;
1816 }
1817 if (q)
1818 *q = '\0';
1819
1820 return p;
1821 }
1822
1823 const char *get_opt_value(char *buf, int buf_size, const char *p)
1824 {
1825 char *q;
1826
1827 q = buf;
1828 while (*p != '\0') {
1829 if (*p == ',') {
1830 if (*(p + 1) != ',')
1831 break;
1832 p++;
1833 }
1834 if (q && (q - buf) < buf_size - 1)
1835 *q++ = *p;
1836 p++;
1837 }
1838 if (q)
1839 *q = '\0';
1840
1841 return p;
1842 }
1843
1844 int get_param_value(char *buf, int buf_size,
1845 const char *tag, const char *str)
1846 {
1847 const char *p;
1848 char option[128];
1849
1850 p = str;
1851 for(;;) {
1852 p = get_opt_name(option, sizeof(option), p, '=');
1853 if (*p != '=')
1854 break;
1855 p++;
1856 if (!strcmp(tag, option)) {
1857 (void)get_opt_value(buf, buf_size, p);
1858 return strlen(buf);
1859 } else {
1860 p = get_opt_value(NULL, 0, p);
1861 }
1862 if (*p != ',')
1863 break;
1864 p++;
1865 }
1866 return 0;
1867 }
1868
1869 int check_params(char *buf, int buf_size,
1870 const char * const *params, const char *str)
1871 {
1872 const char *p;
1873 int i;
1874
1875 p = str;
1876 while (*p != '\0') {
1877 p = get_opt_name(buf, buf_size, p, '=');
1878 if (*p != '=')
1879 return -1;
1880 p++;
1881 for(i = 0; params[i] != NULL; i++)
1882 if (!strcmp(params[i], buf))
1883 break;
1884 if (params[i] == NULL)
1885 return -1;
1886 p = get_opt_value(NULL, 0, p);
1887 if (*p != ',')
1888 break;
1889 p++;
1890 }
1891 return 0;
1892 }
1893
1894 /***********************************************************/
1895 /* Bluetooth support */
1896 static int nb_hcis;
1897 static int cur_hci;
1898 static struct HCIInfo *hci_table[MAX_NICS];
1899
1900 static struct bt_vlan_s {
1901 struct bt_scatternet_s net;
1902 int id;
1903 struct bt_vlan_s *next;
1904 } *first_bt_vlan;
1905
1906 /* find or alloc a new bluetooth "VLAN" */
1907 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1908 {
1909 struct bt_vlan_s **pvlan, *vlan;
1910 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1911 if (vlan->id == id)
1912 return &vlan->net;
1913 }
1914 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1915 vlan->id = id;
1916 pvlan = &first_bt_vlan;
1917 while (*pvlan != NULL)
1918 pvlan = &(*pvlan)->next;
1919 *pvlan = vlan;
1920 return &vlan->net;
1921 }
1922
1923 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1924 {
1925 }
1926
1927 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1928 {
1929 return -ENOTSUP;
1930 }
1931
1932 static struct HCIInfo null_hci = {
1933 .cmd_send = null_hci_send,
1934 .sco_send = null_hci_send,
1935 .acl_send = null_hci_send,
1936 .bdaddr_set = null_hci_addr_set,
1937 };
1938
1939 struct HCIInfo *qemu_next_hci(void)
1940 {
1941 if (cur_hci == nb_hcis)
1942 return &null_hci;
1943
1944 return hci_table[cur_hci++];
1945 }
1946
1947 static struct HCIInfo *hci_init(const char *str)
1948 {
1949 char *endp;
1950 struct bt_scatternet_s *vlan = 0;
1951
1952 if (!strcmp(str, "null"))
1953 /* null */
1954 return &null_hci;
1955 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1956 /* host[:hciN] */
1957 return bt_host_hci(str[4] ? str + 5 : "hci0");
1958 else if (!strncmp(str, "hci", 3)) {
1959 /* hci[,vlan=n] */
1960 if (str[3]) {
1961 if (!strncmp(str + 3, ",vlan=", 6)) {
1962 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1963 if (*endp)
1964 vlan = 0;
1965 }
1966 } else
1967 vlan = qemu_find_bt_vlan(0);
1968 if (vlan)
1969 return bt_new_hci(vlan);
1970 }
1971
1972 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1973
1974 return 0;
1975 }
1976
1977 static int bt_hci_parse(const char *str)
1978 {
1979 struct HCIInfo *hci;
1980 bdaddr_t bdaddr;
1981
1982 if (nb_hcis >= MAX_NICS) {
1983 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1984 return -1;
1985 }
1986
1987 hci = hci_init(str);
1988 if (!hci)
1989 return -1;
1990
1991 bdaddr.b[0] = 0x52;
1992 bdaddr.b[1] = 0x54;
1993 bdaddr.b[2] = 0x00;
1994 bdaddr.b[3] = 0x12;
1995 bdaddr.b[4] = 0x34;
1996 bdaddr.b[5] = 0x56 + nb_hcis;
1997 hci->bdaddr_set(hci, bdaddr.b);
1998
1999 hci_table[nb_hcis++] = hci;
2000
2001 return 0;
2002 }
2003
2004 static void bt_vhci_add(int vlan_id)
2005 {
2006 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
2007
2008 if (!vlan->slave)
2009 fprintf(stderr, "qemu: warning: adding a VHCI to "
2010 "an empty scatternet %i\n", vlan_id);
2011
2012 bt_vhci_init(bt_new_hci(vlan));
2013 }
2014
2015 static struct bt_device_s *bt_device_add(const char *opt)
2016 {
2017 struct bt_scatternet_s *vlan;
2018 int vlan_id = 0;
2019 char *endp = strstr(opt, ",vlan=");
2020 int len = (endp ? endp - opt : strlen(opt)) + 1;
2021 char devname[10];
2022
2023 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2024
2025 if (endp) {
2026 vlan_id = strtol(endp + 6, &endp, 0);
2027 if (*endp) {
2028 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2029 return 0;
2030 }
2031 }
2032
2033 vlan = qemu_find_bt_vlan(vlan_id);
2034
2035 if (!vlan->slave)
2036 fprintf(stderr, "qemu: warning: adding a slave device to "
2037 "an empty scatternet %i\n", vlan_id);
2038
2039 if (!strcmp(devname, "keyboard"))
2040 return bt_keyboard_init(vlan);
2041
2042 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2043 return 0;
2044 }
2045
2046 static int bt_parse(const char *opt)
2047 {
2048 const char *endp, *p;
2049 int vlan;
2050
2051 if (strstart(opt, "hci", &endp)) {
2052 if (!*endp || *endp == ',') {
2053 if (*endp)
2054 if (!strstart(endp, ",vlan=", 0))
2055 opt = endp + 1;
2056
2057 return bt_hci_parse(opt);
2058 }
2059 } else if (strstart(opt, "vhci", &endp)) {
2060 if (!*endp || *endp == ',') {
2061 if (*endp) {
2062 if (strstart(endp, ",vlan=", &p)) {
2063 vlan = strtol(p, (char **) &endp, 0);
2064 if (*endp) {
2065 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2066 return 1;
2067 }
2068 } else {
2069 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2070 return 1;
2071 }
2072 } else
2073 vlan = 0;
2074
2075 bt_vhci_add(vlan);
2076 return 0;
2077 }
2078 } else if (strstart(opt, "device:", &endp))
2079 return !bt_device_add(endp);
2080
2081 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2082 return 1;
2083 }
2084
2085 /***********************************************************/
2086 /* QEMU Block devices */
2087
2088 #define HD_ALIAS "index=%d,media=disk"
2089 #define CDROM_ALIAS "index=2,media=cdrom"
2090 #define FD_ALIAS "index=%d,if=floppy"
2091 #define PFLASH_ALIAS "if=pflash"
2092 #define MTD_ALIAS "if=mtd"
2093 #define SD_ALIAS "index=0,if=sd"
2094
2095 static int drive_opt_get_free_idx(void)
2096 {
2097 int index;
2098
2099 for (index = 0; index < MAX_DRIVES; index++)
2100 if (!drives_opt[index].used) {
2101 drives_opt[index].used = 1;
2102 return index;
2103 }
2104
2105 return -1;
2106 }
2107
2108 static int drive_get_free_idx(void)
2109 {
2110 int index;
2111
2112 for (index = 0; index < MAX_DRIVES; index++)
2113 if (!drives_table[index].used) {
2114 drives_table[index].used = 1;
2115 return index;
2116 }
2117
2118 return -1;
2119 }
2120
2121 int drive_add(const char *file, const char *fmt, ...)
2122 {
2123 va_list ap;
2124 int index = drive_opt_get_free_idx();
2125
2126 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2127 fprintf(stderr, "qemu: too many drives\n");
2128 return -1;
2129 }
2130
2131 drives_opt[index].file = file;
2132 va_start(ap, fmt);
2133 vsnprintf(drives_opt[index].opt,
2134 sizeof(drives_opt[0].opt), fmt, ap);
2135 va_end(ap);
2136
2137 nb_drives_opt++;
2138 return index;
2139 }
2140
2141 void drive_remove(int index)
2142 {
2143 drives_opt[index].used = 0;
2144 nb_drives_opt--;
2145 }
2146
2147 int drive_get_index(BlockInterfaceType type, int bus, int unit)
2148 {
2149 int index;
2150
2151 /* seek interface, bus and unit */
2152
2153 for (index = 0; index < MAX_DRIVES; index++)
2154 if (drives_table[index].type == type &&
2155 drives_table[index].bus == bus &&
2156 drives_table[index].unit == unit &&
2157 drives_table[index].used)
2158 return index;
2159
2160 return -1;
2161 }
2162
2163 int drive_get_max_bus(BlockInterfaceType type)
2164 {
2165 int max_bus;
2166 int index;
2167
2168 max_bus = -1;
2169 for (index = 0; index < nb_drives; index++) {
2170 if(drives_table[index].type == type &&
2171 drives_table[index].bus > max_bus)
2172 max_bus = drives_table[index].bus;
2173 }
2174 return max_bus;
2175 }
2176
2177 const char *drive_get_serial(BlockDriverState *bdrv)
2178 {
2179 int index;
2180
2181 for (index = 0; index < nb_drives; index++)
2182 if (drives_table[index].bdrv == bdrv)
2183 return drives_table[index].serial;
2184
2185 return "\0";
2186 }
2187
2188 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2189 {
2190 int index;
2191
2192 for (index = 0; index < nb_drives; index++)
2193 if (drives_table[index].bdrv == bdrv)
2194 return drives_table[index].onerror;
2195
2196 return BLOCK_ERR_STOP_ENOSPC;
2197 }
2198
2199 static void bdrv_format_print(void *opaque, const char *name)
2200 {
2201 fprintf(stderr, " %s", name);
2202 }
2203
2204 void drive_uninit(BlockDriverState *bdrv)
2205 {
2206 int i;
2207
2208 for (i = 0; i < MAX_DRIVES; i++)
2209 if (drives_table[i].bdrv == bdrv) {
2210 drives_table[i].bdrv = NULL;
2211 drives_table[i].used = 0;
2212 drive_remove(drives_table[i].drive_opt_idx);
2213 nb_drives--;
2214 break;
2215 }
2216 }
2217
2218 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2219 {
2220 char buf[128];
2221 char file[1024];
2222 char devname[128];
2223 char serial[21];
2224 const char *mediastr = "";
2225 BlockInterfaceType type;
2226 enum { MEDIA_DISK, MEDIA_CDROM } media;
2227 int bus_id, unit_id;
2228 int cyls, heads, secs, translation;
2229 BlockDriverState *bdrv;
2230 BlockDriver *drv = NULL;
2231 QEMUMachine *machine = opaque;
2232 int max_devs;
2233 int index;
2234 int cache;
2235 int bdrv_flags, onerror;
2236 int drives_table_idx;
2237 char *str = arg->opt;
2238 static const char * const params[] = { "bus", "unit", "if", "index",
2239 "cyls", "heads", "secs", "trans",
2240 "media", "snapshot", "file",
2241 "cache", "format", "serial", "werror",
2242 NULL };
2243
2244 if (check_params(buf, sizeof(buf), params, str) < 0) {
2245 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2246 buf, str);
2247 return -1;
2248 }
2249
2250 file[0] = 0;
2251 cyls = heads = secs = 0;
2252 bus_id = 0;
2253 unit_id = -1;
2254 translation = BIOS_ATA_TRANSLATION_AUTO;
2255 index = -1;
2256 cache = 3;
2257
2258 if (machine->use_scsi) {
2259 type = IF_SCSI;
2260 max_devs = MAX_SCSI_DEVS;
2261 pstrcpy(devname, sizeof(devname), "scsi");
2262 } else {
2263 type = IF_IDE;
2264 max_devs = MAX_IDE_DEVS;
2265 pstrcpy(devname, sizeof(devname), "ide");
2266 }
2267 media = MEDIA_DISK;
2268
2269 /* extract parameters */
2270
2271 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2272 bus_id = strtol(buf, NULL, 0);
2273 if (bus_id < 0) {
2274 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2275 return -1;
2276 }
2277 }
2278
2279 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2280 unit_id = strtol(buf, NULL, 0);
2281 if (unit_id < 0) {
2282 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2283 return -1;
2284 }
2285 }
2286
2287 if (get_param_value(buf, sizeof(buf), "if", str)) {
2288 pstrcpy(devname, sizeof(devname), buf);
2289 if (!strcmp(buf, "ide")) {
2290 type = IF_IDE;
2291 max_devs = MAX_IDE_DEVS;
2292 } else if (!strcmp(buf, "scsi")) {
2293 type = IF_SCSI;
2294 max_devs = MAX_SCSI_DEVS;
2295 } else if (!strcmp(buf, "floppy")) {
2296 type = IF_FLOPPY;
2297 max_devs = 0;
2298 } else if (!strcmp(buf, "pflash")) {
2299 type = IF_PFLASH;
2300 max_devs = 0;
2301 } else if (!strcmp(buf, "mtd")) {
2302 type = IF_MTD;
2303 max_devs = 0;
2304 } else if (!strcmp(buf, "sd")) {
2305 type = IF_SD;
2306 max_devs = 0;
2307 } else if (!strcmp(buf, "virtio")) {
2308 type = IF_VIRTIO;
2309 max_devs = 0;
2310 } else if (!strcmp(buf, "xen")) {
2311 type = IF_XEN;
2312 max_devs = 0;
2313 } else {
2314 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2315 return -1;
2316 }
2317 }
2318
2319 if (get_param_value(buf, sizeof(buf), "index", str)) {
2320 index = strtol(buf, NULL, 0);
2321 if (index < 0) {
2322 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2323 return -1;
2324 }
2325 }
2326
2327 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2328 cyls = strtol(buf, NULL, 0);
2329 }
2330
2331 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2332 heads = strtol(buf, NULL, 0);
2333 }
2334
2335 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2336 secs = strtol(buf, NULL, 0);
2337 }
2338
2339 if (cyls || heads || secs) {
2340 if (cyls < 1 || cyls > 16383) {
2341 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2342 return -1;
2343 }
2344 if (heads < 1 || heads > 16) {
2345 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2346 return -1;
2347 }
2348 if (secs < 1 || secs > 63) {
2349 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2350 return -1;
2351 }
2352 }
2353
2354 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2355 if (!cyls) {
2356 fprintf(stderr,
2357 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2358 str);
2359 return -1;
2360 }
2361 if (!strcmp(buf, "none"))
2362 translation = BIOS_ATA_TRANSLATION_NONE;
2363 else if (!strcmp(buf, "lba"))
2364 translation = BIOS_ATA_TRANSLATION_LBA;
2365 else if (!strcmp(buf, "auto"))
2366 translation = BIOS_ATA_TRANSLATION_AUTO;
2367 else {
2368 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2369 return -1;
2370 }
2371 }
2372
2373 if (get_param_value(buf, sizeof(buf), "media", str)) {
2374 if (!strcmp(buf, "disk")) {
2375 media = MEDIA_DISK;
2376 } else if (!strcmp(buf, "cdrom")) {
2377 if (cyls || secs || heads) {
2378 fprintf(stderr,
2379 "qemu: '%s' invalid physical CHS format\n", str);
2380 return -1;
2381 }
2382 media = MEDIA_CDROM;
2383 } else {
2384 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2385 return -1;
2386 }
2387 }
2388
2389 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2390 if (!strcmp(buf, "on"))
2391 snapshot = 1;
2392 else if (!strcmp(buf, "off"))
2393 snapshot = 0;
2394 else {
2395 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2396 return -1;
2397 }
2398 }
2399
2400 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2401 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2402 cache = 0;
2403 else if (!strcmp(buf, "writethrough"))
2404 cache = 1;
2405 else if (!strcmp(buf, "writeback"))
2406 cache = 2;
2407 else {
2408 fprintf(stderr, "qemu: invalid cache option\n");
2409 return -1;
2410 }
2411 }
2412
2413 if (get_param_value(buf, sizeof(buf), "format", str)) {
2414 if (strcmp(buf, "?") == 0) {
2415 fprintf(stderr, "qemu: Supported formats:");
2416 bdrv_iterate_format(bdrv_format_print, NULL);
2417 fprintf(stderr, "\n");
2418 return -1;
2419 }
2420 drv = bdrv_find_format(buf);
2421 if (!drv) {
2422 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2423 return -1;
2424 }
2425 }
2426
2427 if (arg->file == NULL)
2428 get_param_value(file, sizeof(file), "file", str);
2429 else
2430 pstrcpy(file, sizeof(file), arg->file);
2431
2432 if (!get_param_value(serial, sizeof(serial), "serial", str))
2433 memset(serial, 0, sizeof(serial));
2434
2435 onerror = BLOCK_ERR_STOP_ENOSPC;
2436 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2437 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2438 fprintf(stderr, "werror is no supported by this format\n");
2439 return -1;
2440 }
2441 if (!strcmp(buf, "ignore"))
2442 onerror = BLOCK_ERR_IGNORE;
2443 else if (!strcmp(buf, "enospc"))
2444 onerror = BLOCK_ERR_STOP_ENOSPC;
2445 else if (!strcmp(buf, "stop"))
2446 onerror = BLOCK_ERR_STOP_ANY;
2447 else if (!strcmp(buf, "report"))
2448 onerror = BLOCK_ERR_REPORT;
2449 else {
2450 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2451 return -1;
2452 }
2453 }
2454
2455 /* compute bus and unit according index */
2456
2457 if (index != -1) {
2458 if (bus_id != 0 || unit_id != -1) {
2459 fprintf(stderr,
2460 "qemu: '%s' index cannot be used with bus and unit\n", str);
2461 return -1;
2462 }
2463 if (max_devs == 0)
2464 {
2465 unit_id = index;
2466 bus_id = 0;
2467 } else {
2468 unit_id = index % max_devs;
2469 bus_id = index / max_devs;
2470 }
2471 }
2472
2473 /* if user doesn't specify a unit_id,
2474 * try to find the first free
2475 */
2476
2477 if (unit_id == -1) {
2478 unit_id = 0;
2479 while (drive_get_index(type, bus_id, unit_id) != -1) {
2480 unit_id++;
2481 if (max_devs && unit_id >= max_devs) {
2482 unit_id -= max_devs;
2483 bus_id++;
2484 }
2485 }
2486 }
2487
2488 /* check unit id */
2489
2490 if (max_devs && unit_id >= max_devs) {
2491 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2492 str, unit_id, max_devs - 1);
2493 return -1;
2494 }
2495
2496 /*
2497 * ignore multiple definitions
2498 */
2499
2500 if (drive_get_index(type, bus_id, unit_id) != -1)
2501 return -2;
2502
2503 /* init */
2504
2505 if (type == IF_IDE || type == IF_SCSI)
2506 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2507 if (max_devs)
2508 snprintf(buf, sizeof(buf), "%s%i%s%i",
2509 devname, bus_id, mediastr, unit_id);
2510 else
2511 snprintf(buf, sizeof(buf), "%s%s%i",
2512 devname, mediastr, unit_id);
2513 bdrv = bdrv_new(buf);
2514 drives_table_idx = drive_get_free_idx();
2515 drives_table[drives_table_idx].bdrv = bdrv;
2516 drives_table[drives_table_idx].type = type;
2517 drives_table[drives_table_idx].bus = bus_id;
2518 drives_table[drives_table_idx].unit = unit_id;
2519 drives_table[drives_table_idx].onerror = onerror;
2520 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2521 strncpy(drives_table[nb_drives].serial, serial, sizeof(serial));
2522 nb_drives++;
2523
2524 switch(type) {
2525 case IF_IDE:
2526 case IF_SCSI:
2527 case IF_XEN:
2528 switch(media) {
2529 case MEDIA_DISK:
2530 if (cyls != 0) {
2531 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2532 bdrv_set_translation_hint(bdrv, translation);
2533 }
2534 break;
2535 case MEDIA_CDROM:
2536 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2537 break;
2538 }
2539 break;
2540 case IF_SD:
2541 /* FIXME: This isn't really a floppy, but it's a reasonable
2542 approximation. */
2543 case IF_FLOPPY:
2544 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2545 break;
2546 case IF_PFLASH:
2547 case IF_MTD:
2548 case IF_VIRTIO:
2549 break;
2550 }
2551 if (!file[0])
2552 return -2;
2553 bdrv_flags = 0;
2554 if (snapshot) {
2555 bdrv_flags |= BDRV_O_SNAPSHOT;
2556 cache = 2; /* always use write-back with snapshot */
2557 }
2558 if (cache == 0) /* no caching */
2559 bdrv_flags |= BDRV_O_NOCACHE;
2560 else if (cache == 2) /* write-back */
2561 bdrv_flags |= BDRV_O_CACHE_WB;
2562 else if (cache == 3) /* not specified */
2563 bdrv_flags |= BDRV_O_CACHE_DEF;
2564 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2565 fprintf(stderr, "qemu: could not open disk image %s\n",
2566 file);
2567 return -1;
2568 }
2569 if (bdrv_key_required(bdrv))
2570 autostart = 0;
2571 return drives_table_idx;
2572 }
2573
2574 static void numa_add(const char *optarg)
2575 {
2576 char option[128];
2577 char *endptr;
2578 unsigned long long value, endvalue;
2579 int nodenr;
2580
2581 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2582 if (!strcmp(option, "node")) {
2583 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2584 nodenr = nb_numa_nodes;
2585 } else {
2586 nodenr = strtoull(option, NULL, 10);
2587 }
2588
2589 if (get_param_value(option, 128, "mem", optarg) == 0) {
2590 node_mem[nodenr] = 0;
2591 } else {
2592 value = strtoull(option, &endptr, 0);
2593 switch (*endptr) {
2594 case 0: case 'M': case 'm':
2595 value <<= 20;
2596 break;
2597 case 'G': case 'g':
2598 value <<= 30;
2599 break;
2600 }
2601 node_mem[nodenr] = value;
2602 }
2603 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2604 node_cpumask[nodenr] = 0;
2605 } else {
2606 value = strtoull(option, &endptr, 10);
2607 if (value >= 64) {
2608 value = 63;
2609 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2610 } else {
2611 if (*endptr == '-') {
2612 endvalue = strtoull(endptr+1, &endptr, 10);
2613 if (endvalue >= 63) {
2614 endvalue = 62;
2615 fprintf(stderr,
2616 "only 63 CPUs in NUMA mode supported.\n");
2617 }
2618 value = (1 << (endvalue + 1)) - (1 << value);
2619 } else {
2620 value = 1 << value;
2621 }
2622 }
2623 node_cpumask[nodenr] = value;
2624 }
2625 nb_numa_nodes++;
2626 }
2627 return;
2628 }
2629
2630 /***********************************************************/
2631 /* USB devices */
2632
2633 static USBPort *used_usb_ports;
2634 static USBPort *free_usb_ports;
2635
2636 /* ??? Maybe change this to register a hub to keep track of the topology. */
2637 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2638 usb_attachfn attach)
2639 {
2640 port->opaque = opaque;
2641 port->index = index;
2642 port->attach = attach;
2643 port->next = free_usb_ports;
2644 free_usb_ports = port;
2645 }
2646
2647 int usb_device_add_dev(USBDevice *dev)
2648 {
2649 USBPort *port;
2650
2651 /* Find a USB port to add the device to. */
2652 port = free_usb_ports;
2653 if (!port->next) {
2654 USBDevice *hub;
2655
2656 /* Create a new hub and chain it on. */
2657 free_usb_ports = NULL;
2658 port->next = used_usb_ports;
2659 used_usb_ports = port;
2660
2661 hub = usb_hub_init(VM_USB_HUB_SIZE);
2662 usb_attach(port, hub);
2663 port = free_usb_ports;
2664 }
2665
2666 free_usb_ports = port->next;
2667 port->next = used_usb_ports;
2668 used_usb_ports = port;
2669 usb_attach(port, dev);
2670 return 0;
2671 }
2672
2673 static void usb_msd_password_cb(void *opaque, int err)
2674 {
2675 USBDevice *dev = opaque;
2676
2677 if (!err)
2678 usb_device_add_dev(dev);
2679 else
2680 dev->handle_destroy(dev);
2681 }
2682
2683 static int usb_device_add(const char *devname, int is_hotplug)
2684 {
2685 const char *p;
2686 USBDevice *dev;
2687
2688 if (!free_usb_ports)
2689 return -1;
2690
2691 if (strstart(devname, "host:", &p)) {
2692 dev = usb_host_device_open(p);
2693 } else if (!strcmp(devname, "mouse")) {
2694 dev = usb_mouse_init();
2695 } else if (!strcmp(devname, "tablet")) {
2696 dev = usb_tablet_init();
2697 } else if (!strcmp(devname, "keyboard")) {
2698 dev = usb_keyboard_init();
2699 } else if (strstart(devname, "disk:", &p)) {
2700 BlockDriverState *bs;
2701
2702 dev = usb_msd_init(p);
2703 if (!dev)
2704 return -1;
2705 bs = usb_msd_get_bdrv(dev);
2706 if (bdrv_key_required(bs)) {
2707 autostart = 0;
2708 if (is_hotplug) {
2709 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2710 dev);
2711 return 0;
2712 }
2713 }
2714 } else if (!strcmp(devname, "wacom-tablet")) {
2715 dev = usb_wacom_init();
2716 } else if (strstart(devname, "serial:", &p)) {
2717 dev = usb_serial_init(p);
2718 #ifdef CONFIG_BRLAPI
2719 } else if (!strcmp(devname, "braille")) {
2720 dev = usb_baum_init();
2721 #endif
2722 } else if (strstart(devname, "net:", &p)) {
2723 int nic = nb_nics;
2724
2725 if (net_client_init("nic", p) < 0)
2726 return -1;
2727 nd_table[nic].model = "usb";
2728 dev = usb_net_init(&nd_table[nic]);
2729 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2730 dev = usb_bt_init(devname[2] ? hci_init(p) :
2731 bt_new_hci(qemu_find_bt_vlan(0)));
2732 } else {
2733 return -1;
2734 }
2735 if (!dev)
2736 return -1;
2737
2738 return usb_device_add_dev(dev);
2739 }
2740
2741 int usb_device_del_addr(int bus_num, int addr)
2742 {
2743 USBPort *port;
2744 USBPort **lastp;
2745 USBDevice *dev;
2746
2747 if (!used_usb_ports)
2748 return -1;
2749
2750 if (bus_num != 0)
2751 return -1;
2752
2753 lastp = &used_usb_ports;
2754 port = used_usb_ports;
2755 while (port && port->dev->addr != addr) {
2756 lastp = &port->next;
2757 port = port->next;
2758 }
2759
2760 if (!port)
2761 return -1;
2762
2763 dev = port->dev;
2764 *lastp = port->next;
2765 usb_attach(port, NULL);
2766 dev->handle_destroy(dev);
2767 port->next = free_usb_ports;
2768 free_usb_ports = port;
2769 return 0;
2770 }
2771
2772 static int usb_device_del(const char *devname)
2773 {
2774 int bus_num, addr;
2775 const char *p;
2776
2777 if (strstart(devname, "host:", &p))
2778 return usb_host_device_close(p);
2779
2780 if (!used_usb_ports)
2781 return -1;
2782
2783 p = strchr(devname, '.');
2784 if (!p)
2785 return -1;
2786 bus_num = strtoul(devname, NULL, 0);
2787 addr = strtoul(p + 1, NULL, 0);
2788
2789 return usb_device_del_addr(bus_num, addr);
2790 }
2791
2792 void do_usb_add(Monitor *mon, const char *devname)
2793 {
2794 usb_device_add(devname, 1);
2795 }
2796
2797 void do_usb_del(Monitor *mon, const char *devname)
2798 {
2799 usb_device_del(devname);
2800 }
2801
2802 void usb_info(Monitor *mon)
2803 {
2804 USBDevice *dev;
2805 USBPort *port;
2806 const char *speed_str;
2807
2808 if (!usb_enabled) {
2809 monitor_printf(mon, "USB support not enabled\n");
2810 return;
2811 }
2812
2813 for (port = used_usb_ports; port; port = port->next) {
2814 dev = port->dev;
2815 if (!dev)
2816 continue;
2817 switch(dev->speed) {
2818 case USB_SPEED_LOW:
2819 speed_str = "1.5";
2820 break;
2821 case USB_SPEED_FULL:
2822 speed_str = "12";
2823 break;
2824 case USB_SPEED_HIGH:
2825 speed_str = "480";
2826 break;
2827 default:
2828 speed_str = "?";
2829 break;
2830 }
2831 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2832 0, dev->addr, speed_str, dev->devname);
2833 }
2834 }
2835
2836 /***********************************************************/
2837 /* PCMCIA/Cardbus */
2838
2839 static struct pcmcia_socket_entry_s {
2840 struct pcmcia_socket_s *socket;
2841 struct pcmcia_socket_entry_s *next;
2842 } *pcmcia_sockets = 0;
2843
2844 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
2845 {
2846 struct pcmcia_socket_entry_s *entry;
2847
2848 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2849 entry->socket = socket;
2850 entry->next = pcmcia_sockets;
2851 pcmcia_sockets = entry;
2852 }
2853
2854 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
2855 {
2856 struct pcmcia_socket_entry_s *entry, **ptr;
2857
2858 ptr = &pcmcia_sockets;
2859 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2860 if (entry->socket == socket) {
2861 *ptr = entry->next;
2862 qemu_free(entry);
2863 }
2864 }
2865
2866 void pcmcia_info(Monitor *mon)
2867 {
2868 struct pcmcia_socket_entry_s *iter;
2869
2870 if (!pcmcia_sockets)
2871 monitor_printf(mon, "No PCMCIA sockets\n");
2872
2873 for (iter = pcmcia_sockets; iter; iter = iter->next)
2874 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2875 iter->socket->attached ? iter->socket->card_string :
2876 "Empty");
2877 }
2878
2879 /***********************************************************/
2880 /* register display */
2881
2882 struct DisplayAllocator default_allocator = {
2883 defaultallocator_create_displaysurface,
2884 defaultallocator_resize_displaysurface,
2885 defaultallocator_free_displaysurface
2886 };
2887
2888 void register_displaystate(DisplayState *ds)
2889 {
2890 DisplayState **s;
2891 s = &display_state;
2892 while (*s != NULL)
2893 s = &(*s)->next;
2894 ds->next = NULL;
2895 *s = ds;
2896 }
2897
2898 DisplayState *get_displaystate(void)
2899 {
2900 return display_state;
2901 }
2902
2903 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2904 {
2905 if(ds->allocator == &default_allocator) ds->allocator = da;
2906 return ds->allocator;
2907 }
2908
2909 /* dumb display */
2910
2911 static void dumb_display_init(void)
2912 {
2913 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2914 ds->allocator = &default_allocator;
2915 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2916 register_displaystate(ds);
2917 }
2918
2919 /***********************************************************/
2920 /* I/O handling */
2921
2922 typedef struct IOHandlerRecord {
2923 int fd;
2924 IOCanRWHandler *fd_read_poll;
2925 IOHandler *fd_read;
2926 IOHandler *fd_write;
2927 int deleted;
2928 void *opaque;
2929 /* temporary data */
2930 struct pollfd *ufd;
2931 struct IOHandlerRecord *next;
2932 } IOHandlerRecord;
2933
2934 static IOHandlerRecord *first_io_handler;
2935
2936 /* XXX: fd_read_poll should be suppressed, but an API change is
2937 necessary in the character devices to suppress fd_can_read(). */
2938 int qemu_set_fd_handler2(int fd,
2939 IOCanRWHandler *fd_read_poll,
2940 IOHandler *fd_read,
2941 IOHandler *fd_write,
2942 void *opaque)
2943 {
2944 IOHandlerRecord **pioh, *ioh;
2945
2946 if (!fd_read && !fd_write) {
2947 pioh = &first_io_handler;
2948 for(;;) {
2949 ioh = *pioh;
2950 if (ioh == NULL)
2951 break;
2952 if (ioh->fd == fd) {
2953 ioh->deleted = 1;
2954 break;
2955 }
2956 pioh = &ioh->next;
2957 }
2958 } else {
2959 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2960 if (ioh->fd == fd)
2961 goto found;
2962 }
2963 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2964 ioh->next = first_io_handler;
2965 first_io_handler = ioh;
2966 found:
2967 ioh->fd = fd;
2968 ioh->fd_read_poll = fd_read_poll;
2969 ioh->fd_read = fd_read;
2970 ioh->fd_write = fd_write;
2971 ioh->opaque = opaque;
2972 ioh->deleted = 0;
2973 }
2974 return 0;
2975 }
2976
2977 int qemu_set_fd_handler(int fd,
2978 IOHandler *fd_read,
2979 IOHandler *fd_write,
2980 void *opaque)
2981 {
2982 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2983 }
2984
2985 #ifdef _WIN32
2986 /***********************************************************/
2987 /* Polling handling */
2988
2989 typedef struct PollingEntry {
2990 PollingFunc *func;
2991 void *opaque;
2992 struct PollingEntry *next;
2993 } PollingEntry;
2994
2995 static PollingEntry *first_polling_entry;
2996
2997 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2998 {
2999 PollingEntry **ppe, *pe;
3000 pe = qemu_mallocz(sizeof(PollingEntry));
3001 pe->func = func;
3002 pe->opaque = opaque;
3003 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
3004 *ppe = pe;
3005 return 0;
3006 }
3007
3008 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
3009 {
3010 PollingEntry **ppe, *pe;
3011 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
3012 pe = *ppe;
3013 if (pe->func == func && pe->opaque == opaque) {
3014 *ppe = pe->next;
3015 qemu_free(pe);
3016 break;
3017 }
3018 }
3019 }
3020
3021 /***********************************************************/
3022 /* Wait objects support */
3023 typedef struct WaitObjects {
3024 int num;
3025 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
3026 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
3027 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
3028 } WaitObjects;
3029
3030 static WaitObjects wait_objects = {0};
3031
3032 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3033 {
3034 WaitObjects *w = &wait_objects;
3035
3036 if (w->num >= MAXIMUM_WAIT_OBJECTS)
3037 return -1;
3038 w->events[w->num] = handle;
3039 w->func[w->num] = func;
3040 w->opaque[w->num] = opaque;
3041 w->num++;
3042 return 0;
3043 }
3044
3045 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3046 {
3047 int i, found;
3048 WaitObjects *w = &wait_objects;
3049
3050 found = 0;
3051 for (i = 0; i < w->num; i++) {
3052 if (w->events[i] == handle)
3053 found = 1;
3054 if (found) {
3055 w->events[i] = w->events[i + 1];
3056 w->func[i] = w->func[i + 1];
3057 w->opaque[i] = w->opaque[i + 1];
3058 }
3059 }
3060 if (found)
3061 w->num--;
3062 }
3063 #endif
3064
3065 /***********************************************************/
3066 /* ram save/restore */
3067
3068 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3069 {
3070 int v;
3071
3072 v = qemu_get_byte(f);
3073 switch(v) {
3074 case 0:
3075 if (qemu_get_buffer(f, buf, len) != len)
3076 return -EIO;
3077 break;
3078 case 1:
3079 v = qemu_get_byte(f);
3080 memset(buf, v, len);
3081 break;
3082 default:
3083 return -EINVAL;
3084 }
3085
3086 if (qemu_file_has_error(f))
3087 return -EIO;
3088
3089 return 0;
3090 }
3091
3092 static int ram_load_v1(QEMUFile *f, void *opaque)
3093 {
3094 int ret;
3095 ram_addr_t i;
3096
3097 if (qemu_get_be32(f) != last_ram_offset)
3098 return -EINVAL;
3099 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
3100 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
3101 if (ret)
3102 return ret;
3103 }
3104 return 0;
3105 }
3106
3107 #define BDRV_HASH_BLOCK_SIZE 1024
3108 #define IOBUF_SIZE 4096
3109 #define RAM_CBLOCK_MAGIC 0xfabe
3110
3111 typedef struct RamDecompressState {
3112 z_stream zstream;
3113 QEMUFile *f;
3114 uint8_t buf[IOBUF_SIZE];
3115 } RamDecompressState;
3116
3117 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3118 {
3119 int ret;
3120 memset(s, 0, sizeof(*s));
3121 s->f = f;
3122 ret = inflateInit(&s->zstream);
3123 if (ret != Z_OK)
3124 return -1;
3125 return 0;
3126 }
3127
3128 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3129 {
3130 int ret, clen;
3131
3132 s->zstream.avail_out = len;
3133 s->zstream.next_out = buf;
3134 while (s->zstream.avail_out > 0) {
3135 if (s->zstream.avail_in == 0) {
3136 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3137 return -1;
3138 clen = qemu_get_be16(s->f);
3139 if (clen > IOBUF_SIZE)
3140 return -1;
3141 qemu_get_buffer(s->f, s->buf, clen);
3142 s->zstream.avail_in = clen;
3143 s->zstream.next_in = s->buf;
3144 }
3145 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3146 if (ret != Z_OK && ret != Z_STREAM_END) {
3147 return -1;
3148 }
3149 }
3150 return 0;
3151 }
3152
3153 static void ram_decompress_close(RamDecompressState *s)
3154 {
3155 inflateEnd(&s->zstream);
3156 }
3157
3158 #define RAM_SAVE_FLAG_FULL 0x01
3159 #define RAM_SAVE_FLAG_COMPRESS 0x02
3160 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3161 #define RAM_SAVE_FLAG_PAGE 0x08
3162 #define RAM_SAVE_FLAG_EOS 0x10
3163
3164 static int is_dup_page(uint8_t *page, uint8_t ch)
3165 {
3166 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3167 uint32_t *array = (uint32_t *)page;
3168 int i;
3169
3170 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3171 if (array[i] != val)
3172 return 0;
3173 }
3174
3175 return 1;
3176 }
3177
3178 static int ram_save_block(QEMUFile *f)
3179 {
3180 static ram_addr_t current_addr = 0;
3181 ram_addr_t saved_addr = current_addr;
3182 ram_addr_t addr = 0;
3183 int found = 0;
3184
3185 while (addr < last_ram_offset) {
3186 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3187 uint8_t *p;
3188
3189 cpu_physical_memory_reset_dirty(current_addr,
3190 current_addr + TARGET_PAGE_SIZE,
3191 MIGRATION_DIRTY_FLAG);
3192
3193 p = qemu_get_ram_ptr(current_addr);
3194
3195 if (is_dup_page(p, *p)) {
3196 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3197 qemu_put_byte(f, *p);
3198 } else {
3199 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3200 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3201 }
3202
3203 found = 1;
3204 break;
3205 }
3206 addr += TARGET_PAGE_SIZE;
3207 current_addr = (saved_addr + addr) % last_ram_offset;
3208 }
3209
3210 return found;
3211 }
3212
3213 static ram_addr_t ram_save_threshold = 10;
3214
3215 static ram_addr_t ram_save_remaining(void)
3216 {
3217 ram_addr_t addr;
3218 ram_addr_t count = 0;
3219
3220 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3221 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3222 count++;
3223 }
3224
3225 return count;
3226 }
3227
3228 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3229 {
3230 ram_addr_t addr;
3231
3232 if (stage == 1) {
3233 /* Make sure all dirty bits are set */
3234 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3235 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3236 cpu_physical_memory_set_dirty(addr);
3237 }
3238
3239 /* Enable dirty memory tracking */
3240 cpu_physical_memory_set_dirty_tracking(1);
3241
3242 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3243 }
3244
3245 while (!qemu_file_rate_limit(f)) {
3246 int ret;
3247
3248 ret = ram_save_block(f);
3249 if (ret == 0) /* no more blocks */
3250 break;
3251 }
3252
3253 /* try transferring iterative blocks of memory */
3254
3255 if (stage == 3) {
3256
3257 /* flush all remaining blocks regardless of rate limiting */
3258 while (ram_save_block(f) != 0);
3259 cpu_physical_memory_set_dirty_tracking(0);
3260 }
3261
3262 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3263
3264 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3265 }
3266
3267 static int ram_load_dead(QEMUFile *f, void *opaque)
3268 {
3269 RamDecompressState s1, *s = &s1;
3270 uint8_t buf[10];
3271 ram_addr_t i;
3272
3273 if (ram_decompress_open(s, f) < 0)
3274 return -EINVAL;
3275 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3276 if (ram_decompress_buf(s, buf, 1) < 0) {
3277 fprintf(stderr, "Error while reading ram block header\n");
3278 goto error;
3279 }
3280 if (buf[0] == 0) {
3281 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3282 BDRV_HASH_BLOCK_SIZE) < 0) {
3283 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3284 goto error;
3285 }
3286 } else {
3287 error:
3288 printf("Error block header\n");
3289 return -EINVAL;
3290 }
3291 }
3292 ram_decompress_close(s);
3293
3294 return 0;
3295 }
3296
3297 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3298 {
3299 ram_addr_t addr;
3300 int flags;
3301
3302 if (version_id == 1)
3303 return ram_load_v1(f, opaque);
3304
3305 if (version_id == 2) {
3306 if (qemu_get_be32(f) != last_ram_offset)
3307 return -EINVAL;
3308 return ram_load_dead(f, opaque);
3309 }
3310
3311 if (version_id != 3)
3312 return -EINVAL;
3313
3314 do {
3315 addr = qemu_get_be64(f);
3316
3317 flags = addr & ~TARGET_PAGE_MASK;
3318 addr &= TARGET_PAGE_MASK;
3319
3320 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3321 if (addr != last_ram_offset)
3322 return -EINVAL;
3323 }
3324
3325 if (flags & RAM_SAVE_FLAG_FULL) {
3326 if (ram_load_dead(f, opaque) < 0)
3327 return -EINVAL;
3328 }
3329
3330 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3331 uint8_t ch = qemu_get_byte(f);
3332 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3333 } else if (flags & RAM_SAVE_FLAG_PAGE)
3334 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3335 } while (!(flags & RAM_SAVE_FLAG_EOS));
3336
3337 return 0;
3338 }
3339
3340 void qemu_service_io(void)
3341 {
3342 qemu_notify_event();
3343 }
3344
3345 /***********************************************************/
3346 /* bottom halves (can be seen as timers which expire ASAP) */
3347
3348 struct QEMUBH {
3349 QEMUBHFunc *cb;
3350 void *opaque;
3351 int scheduled;
3352 int idle;
3353 int deleted;
3354 QEMUBH *next;
3355 };
3356
3357 static QEMUBH *first_bh = NULL;
3358
3359 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3360 {
3361 QEMUBH *bh;
3362 bh = qemu_mallocz(sizeof(QEMUBH));
3363 bh->cb = cb;
3364 bh->opaque = opaque;
3365 bh->next = first_bh;
3366 first_bh = bh;
3367 return bh;
3368 }
3369
3370 int qemu_bh_poll(void)
3371 {
3372 QEMUBH *bh, **bhp;
3373 int ret;
3374
3375 ret = 0;
3376 for (bh = first_bh; bh; bh = bh->next) {
3377 if (!bh->deleted && bh->scheduled) {
3378 bh->scheduled = 0;
3379 if (!bh->idle)
3380 ret = 1;
3381 bh->idle = 0;
3382 bh->cb(bh->opaque);
3383 }
3384 }
3385
3386 /* remove deleted bhs */
3387 bhp = &first_bh;
3388 while (*bhp) {
3389 bh = *bhp;
3390 if (bh->deleted) {
3391 *bhp = bh->next;
3392 qemu_free(bh);
3393 } else
3394 bhp = &bh->next;
3395 }
3396
3397 return ret;
3398 }
3399
3400 void qemu_bh_schedule_idle(QEMUBH *bh)
3401 {
3402 if (bh->scheduled)
3403 return;
3404 bh->scheduled = 1;
3405 bh->idle = 1;
3406 }
3407
3408 void qemu_bh_schedule(QEMUBH *bh)
3409 {
3410 if (bh->scheduled)
3411 return;
3412 bh->scheduled = 1;
3413 bh->idle = 0;
3414 /* stop the currently executing CPU to execute the BH ASAP */
3415 qemu_notify_event();
3416 }
3417
3418 void qemu_bh_cancel(QEMUBH *bh)
3419 {
3420 bh->scheduled = 0;
3421 }
3422
3423 void qemu_bh_delete(QEMUBH *bh)
3424 {
3425 bh->scheduled = 0;
3426 bh->deleted = 1;
3427 }
3428
3429 static void qemu_bh_update_timeout(int *timeout)
3430 {
3431 QEMUBH *bh;
3432
3433 for (bh = first_bh; bh; bh = bh->next) {
3434 if (!bh->deleted && bh->scheduled) {
3435 if (bh->idle) {
3436 /* idle bottom halves will be polled at least
3437 * every 10ms */
3438 *timeout = MIN(10, *timeout);
3439 } else {
3440 /* non-idle bottom halves will be executed
3441 * immediately */
3442 *timeout = 0;
3443 break;
3444 }
3445 }
3446 }
3447 }
3448
3449 /***********************************************************/
3450 /* machine registration */
3451
3452 static QEMUMachine *first_machine = NULL;
3453 QEMUMachine *current_machine = NULL;
3454
3455 int qemu_register_machine(QEMUMachine *m)
3456 {
3457 QEMUMachine **pm;
3458 pm = &first_machine;
3459 while (*pm != NULL)
3460 pm = &(*pm)->next;
3461 m->next = NULL;
3462 *pm = m;
3463 return 0;
3464 }
3465
3466 static QEMUMachine *find_machine(const char *name)
3467 {
3468 QEMUMachine *m;
3469
3470 for(m = first_machine; m != NULL; m = m->next) {
3471 if (!strcmp(m->name, name))
3472 return m;
3473 }
3474 return NULL;
3475 }
3476
3477 /***********************************************************/
3478 /* main execution loop */
3479
3480 static void gui_update(void *opaque)
3481 {
3482 uint64_t interval = GUI_REFRESH_INTERVAL;
3483 DisplayState *ds = opaque;
3484 DisplayChangeListener *dcl = ds->listeners;
3485
3486 dpy_refresh(ds);
3487
3488 while (dcl != NULL) {
3489 if (dcl->gui_timer_interval &&
3490 dcl->gui_timer_interval < interval)
3491 interval = dcl->gui_timer_interval;
3492 dcl = dcl->next;
3493 }
3494 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3495 }
3496
3497 static void nographic_update(void *opaque)
3498 {
3499 uint64_t interval = GUI_REFRESH_INTERVAL;
3500
3501 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3502 }
3503
3504 struct vm_change_state_entry {
3505 VMChangeStateHandler *cb;
3506 void *opaque;
3507 LIST_ENTRY (vm_change_state_entry) entries;
3508 };
3509
3510 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3511
3512 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3513 void *opaque)
3514 {
3515 VMChangeStateEntry *e;
3516
3517 e = qemu_mallocz(sizeof (*e));
3518
3519 e->cb = cb;
3520 e->opaque = opaque;
3521 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3522 return e;
3523 }
3524
3525 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3526 {
3527 LIST_REMOVE (e, entries);
3528 qemu_free (e);
3529 }
3530
3531 static void vm_state_notify(int running, int reason)
3532 {
3533 VMChangeStateEntry *e;
3534
3535 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3536 e->cb(e->opaque, running, reason);
3537 }
3538 }
3539
3540 void vm_start(void)
3541 {
3542 if (!vm_running) {
3543 cpu_enable_ticks();
3544 vm_running = 1;
3545 vm_state_notify(1, 0);
3546 qemu_rearm_alarm_timer(alarm_timer);
3547 }
3548 }
3549
3550 void vm_stop(int reason)
3551 {
3552 if (vm_running) {
3553 cpu_disable_ticks();
3554 vm_running = 0;
3555 vm_state_notify(0, reason);
3556 }
3557 }
3558
3559 /* reset/shutdown handler */
3560
3561 typedef struct QEMUResetEntry {
3562 QEMUResetHandler *func;
3563 void *opaque;
3564 struct QEMUResetEntry *next;
3565 } QEMUResetEntry;
3566
3567 static QEMUResetEntry *first_reset_entry;
3568 static int reset_requested;
3569 static int shutdown_requested;
3570 static int powerdown_requested;
3571
3572 int qemu_shutdown_requested(void)
3573 {
3574 int r = shutdown_requested;
3575 shutdown_requested = 0;
3576 return r;
3577 }
3578
3579 int qemu_reset_requested(void)
3580 {
3581 int r = reset_requested;
3582 reset_requested = 0;
3583 return r;
3584 }
3585
3586 int qemu_powerdown_requested(void)
3587 {
3588 int r = powerdown_requested;
3589 powerdown_requested = 0;
3590 return r;
3591 }
3592
3593 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3594 {
3595 QEMUResetEntry **pre, *re;
3596
3597 pre = &first_reset_entry;
3598 while (*pre != NULL)
3599 pre = &(*pre)->next;
3600 re = qemu_mallocz(sizeof(QEMUResetEntry));
3601 re->func = func;
3602 re->opaque = opaque;
3603 re->next = NULL;
3604 *pre = re;
3605 }
3606
3607 void qemu_system_reset(void)
3608 {
3609 QEMUResetEntry *re;
3610
3611 /* reset all devices */
3612 for(re = first_reset_entry; re != NULL; re = re->next) {
3613 re->func(re->opaque);
3614 }
3615 if (kvm_enabled())
3616 kvm_sync_vcpus();
3617 }
3618
3619 void qemu_system_reset_request(void)
3620 {
3621 if (no_reboot) {
3622 shutdown_requested = 1;
3623 } else {
3624 reset_requested = 1;
3625 }
3626 qemu_notify_event();
3627 }
3628
3629 void qemu_system_shutdown_request(void)
3630 {
3631 shutdown_requested = 1;
3632 qemu_notify_event();
3633 }
3634
3635 void qemu_system_powerdown_request(void)
3636 {
3637 powerdown_requested = 1;
3638 qemu_notify_event();
3639 }
3640
3641 void qemu_notify_event(void)
3642 {
3643 CPUState *env = cpu_single_env;
3644
3645 if (env) {
3646 cpu_exit(env);
3647 #ifdef USE_KQEMU
3648 if (env->kqemu_enabled)
3649 kqemu_cpu_interrupt(env);
3650 #endif
3651 }
3652 }
3653
3654 #ifndef _WIN32
3655 static int io_thread_fd = -1;
3656
3657 static void qemu_event_increment(void)
3658 {
3659 static const char byte = 0;
3660
3661 if (io_thread_fd == -1)
3662 return;
3663
3664 write(io_thread_fd, &byte, sizeof(byte));
3665 }
3666
3667 static void qemu_event_read(void *opaque)
3668 {
3669 int fd = (unsigned long)opaque;
3670 ssize_t len;
3671
3672 /* Drain the notify pipe */
3673 do {
3674 char buffer[512];
3675 len = read(fd, buffer, sizeof(buffer));
3676 } while ((len == -1 && errno == EINTR) || len > 0);
3677 }
3678
3679 static int qemu_event_init(void)
3680 {
3681 int err;
3682 int fds[2];
3683
3684 err = pipe(fds);
3685 if (err == -1)
3686 return -errno;
3687
3688 err = fcntl_setfl(fds[0], O_NONBLOCK);
3689 if (err < 0)
3690 goto fail;
3691
3692 err = fcntl_setfl(fds[1], O_NONBLOCK);
3693 if (err < 0)
3694 goto fail;
3695
3696 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3697 (void *)(unsigned long)fds[0]);
3698
3699 io_thread_fd = fds[1];
3700 fail:
3701 close(fds[0]);
3702 close(fds[1]);
3703 return err;
3704 }
3705 #else
3706 HANDLE qemu_event_handle;
3707
3708 static void dummy_event_handler(void *opaque)
3709 {
3710 }
3711
3712 static int qemu_event_init(void)
3713 {
3714 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3715 if (!qemu_event_handle) {
3716 perror("Failed CreateEvent");
3717 return -1;
3718 }
3719 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3720 return 0;
3721 }
3722
3723 static void qemu_event_increment(void)
3724 {
3725 SetEvent(qemu_event_handle);
3726 }
3727 #endif
3728
3729 static int qemu_init_main_loop(void)
3730 {
3731 return qemu_event_init();
3732 }
3733
3734 #ifdef _WIN32
3735 static void host_main_loop_wait(int *timeout)
3736 {
3737 int ret, ret2, i;
3738 PollingEntry *pe;
3739
3740
3741 /* XXX: need to suppress polling by better using win32 events */
3742 ret = 0;
3743 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3744 ret |= pe->func(pe->opaque);
3745 }
3746 if (ret == 0) {
3747 int err;
3748 WaitObjects *w = &wait_objects;
3749
3750 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3751 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3752 if (w->func[ret - WAIT_OBJECT_0])
3753 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3754
3755 /* Check for additional signaled events */
3756 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3757
3758 /* Check if event is signaled */
3759 ret2 = WaitForSingleObject(w->events[i], 0);
3760 if(ret2 == WAIT_OBJECT_0) {
3761 if (w->func[i])
3762 w->func[i](w->opaque[i]);
3763 } else if (ret2 == WAIT_TIMEOUT) {
3764 } else {
3765 err = GetLastError();
3766 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3767 }
3768 }
3769 } else if (ret == WAIT_TIMEOUT) {
3770 } else {
3771 err = GetLastError();
3772 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3773 }
3774 }
3775
3776 *timeout = 0;
3777 }
3778 #else
3779 static void host_main_loop_wait(int *timeout)
3780 {
3781 }
3782 #endif
3783
3784 void main_loop_wait(int timeout)
3785 {
3786 IOHandlerRecord *ioh;
3787 fd_set rfds, wfds, xfds;
3788 int ret, nfds;
3789 struct timeval tv;
3790
3791 qemu_bh_update_timeout(&timeout);
3792
3793 host_main_loop_wait(&timeout);
3794
3795 /* poll any events */
3796 /* XXX: separate device handlers from system ones */
3797 nfds = -1;
3798 FD_ZERO(&rfds);
3799 FD_ZERO(&wfds);
3800 FD_ZERO(&xfds);
3801 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3802 if (ioh->deleted)
3803 continue;
3804 if (ioh->fd_read &&
3805 (!ioh->fd_read_poll ||
3806 ioh->fd_read_poll(ioh->opaque) != 0)) {
3807 FD_SET(ioh->fd, &rfds);
3808 if (ioh->fd > nfds)
3809 nfds = ioh->fd;
3810 }
3811 if (ioh->fd_write) {
3812 FD_SET(ioh->fd, &wfds);
3813 if (ioh->fd > nfds)
3814 nfds = ioh->fd;
3815 }
3816 }
3817
3818 tv.tv_sec = timeout / 1000;
3819 tv.tv_usec = (timeout % 1000) * 1000;
3820
3821 #if defined(CONFIG_SLIRP)
3822 if (slirp_is_inited()) {
3823 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3824 }
3825 #endif
3826 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3827 if (ret > 0) {
3828 IOHandlerRecord **pioh;
3829
3830 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3831 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3832 ioh->fd_read(ioh->opaque);
3833 }
3834 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3835 ioh->fd_write(ioh->opaque);
3836 }
3837 }
3838
3839 /* remove deleted IO handlers */
3840 pioh = &first_io_handler;
3841 while (*pioh) {
3842 ioh = *pioh;
3843 if (ioh->deleted) {
3844 *pioh = ioh->next;
3845 qemu_free(ioh);
3846 } else
3847 pioh = &ioh->next;
3848 }
3849 }
3850 #if defined(CONFIG_SLIRP)
3851 if (slirp_is_inited()) {
3852 if (ret < 0) {
3853 FD_ZERO(&rfds);
3854 FD_ZERO(&wfds);
3855 FD_ZERO(&xfds);
3856 }
3857 slirp_select_poll(&rfds, &wfds, &xfds);
3858 }
3859 #endif
3860
3861 /* rearm timer, if not periodic */
3862 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
3863 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
3864 qemu_rearm_alarm_timer(alarm_timer);
3865 }
3866
3867 /* vm time timers */
3868 if (vm_running && likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3869 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
3870 qemu_get_clock(vm_clock));
3871
3872 /* real time timers */
3873 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
3874 qemu_get_clock(rt_clock));
3875
3876 /* Check bottom-halves last in case any of the earlier events triggered
3877 them. */
3878 qemu_bh_poll();
3879
3880 }
3881
3882 static int qemu_cpu_exec(CPUState *env)
3883 {
3884 int ret;
3885 #ifdef CONFIG_PROFILER
3886 int64_t ti;
3887 #endif
3888
3889 #ifdef CONFIG_PROFILER
3890 ti = profile_getclock();
3891 #endif
3892 if (use_icount) {
3893 int64_t count;
3894 int decr;
3895 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
3896 env->icount_decr.u16.low = 0;
3897 env->icount_extra = 0;
3898 count = qemu_next_deadline();
3899 count = (count + (1 << icount_time_shift) - 1)
3900 >> icount_time_shift;
3901 qemu_icount += count;
3902 decr = (count > 0xffff) ? 0xffff : count;
3903 count -= decr;
3904 env->icount_decr.u16.low = decr;
3905 env->icount_extra = count;
3906 }
3907 ret = cpu_exec(env);
3908 #ifdef CONFIG_PROFILER
3909 qemu_time += profile_getclock() - ti;
3910 #endif
3911 if (use_icount) {
3912 /* Fold pending instructions back into the
3913 instruction counter, and clear the interrupt flag. */
3914 qemu_icount -= (env->icount_decr.u16.low
3915 + env->icount_extra);
3916 env->icount_decr.u32 = 0;
3917 env->icount_extra = 0;
3918 }
3919 return ret;
3920 }
3921
3922 static int cpu_has_work(CPUState *env)
3923 {
3924 if (!env->halted)
3925 return 1;
3926 if (qemu_cpu_has_work(env))
3927 return 1;
3928 return 0;
3929 }
3930
3931 static int tcg_has_work(void)
3932 {
3933 CPUState *env;
3934
3935 for (env = first_cpu; env != NULL; env = env->next_cpu)
3936 if (cpu_has_work(env))
3937 return 1;
3938 return 0;
3939 }
3940
3941 static int qemu_calculate_timeout(void)
3942 {
3943 int timeout;
3944
3945 if (!vm_running)
3946 timeout = 5000;
3947 else if (tcg_has_work())
3948 timeout = 0;
3949 else if (!use_icount)
3950 timeout = 5000;
3951 else {
3952 /* XXX: use timeout computed from timers */
3953 int64_t add;
3954 int64_t delta;
3955 /* Advance virtual time to the next event. */
3956 if (use_icount == 1) {
3957 /* When not using an adaptive execution frequency
3958 we tend to get badly out of sync with real time,
3959 so just delay for a reasonable amount of time. */
3960 delta = 0;
3961 } else {
3962 delta = cpu_get_icount() - cpu_get_clock();
3963 }
3964 if (delta > 0) {
3965 /* If virtual time is ahead of real time then just
3966 wait for IO. */
3967 timeout = (delta / 1000000) + 1;
3968 } else {
3969 /* Wait for either IO to occur or the next
3970 timer event. */
3971 add = qemu_next_deadline();
3972 /* We advance the timer before checking for IO.
3973 Limit the amount we advance so that early IO
3974 activity won't get the guest too far ahead. */
3975 if (add > 10000000)
3976 add = 10000000;
3977 delta += add;
3978 add = (add + (1 << icount_time_shift) - 1)
3979 >> icount_time_shift;
3980 qemu_icount += add;
3981 timeout = delta / 1000000;
3982 if (timeout < 0)
3983 timeout = 0;
3984 }
3985 }
3986
3987 return timeout;
3988 }
3989
3990 static int vm_can_run(void)
3991 {
3992 if (powerdown_requested)
3993 return 0;
3994 if (reset_requested)
3995 return 0;
3996 if (shutdown_requested)
3997 return 0;
3998 return 1;
3999 }
4000
4001 static void main_loop(void)
4002 {
4003 int ret = 0;
4004 #ifdef CONFIG_PROFILER
4005 int64_t ti;
4006 #endif
4007
4008 for (;;) {
4009 do {
4010 if (next_cpu == NULL)
4011 next_cpu = first_cpu;
4012 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4013 CPUState *env = cur_cpu = next_cpu;
4014
4015 if (!vm_running)
4016 break;
4017 if (timer_alarm_pending) {
4018 timer_alarm_pending = 0;
4019 break;
4020 }
4021 ret = qemu_cpu_exec(env);
4022 if (ret == EXCP_DEBUG) {
4023 gdb_set_stop_cpu(env);
4024 break;
4025 }
4026 }
4027 #ifdef CONFIG_PROFILER
4028 ti = profile_getclock();
4029 #endif
4030 main_loop_wait(qemu_calculate_timeout());
4031 #ifdef CONFIG_PROFILER
4032 dev_time += profile_getclock() - ti;
4033 #endif
4034 } while (ret != EXCP_DEBUG && vm_can_run());
4035
4036 if (ret == EXCP_DEBUG)
4037 vm_stop(EXCP_DEBUG);
4038
4039 if (qemu_shutdown_requested()) {
4040 if (no_shutdown) {
4041 vm_stop(0);
4042 no_shutdown = 0;
4043 } else
4044 break;
4045 }
4046 if (qemu_reset_requested())
4047 qemu_system_reset();
4048 if (qemu_powerdown_requested())
4049 qemu_system_powerdown();
4050 }
4051 }
4052
4053 static void version(void)
4054 {
4055 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4056 }
4057
4058 static void help(int exitcode)
4059 {
4060 version();
4061 printf("usage: %s [options] [disk_image]\n"
4062 "\n"
4063 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4064 "\n"
4065 #define DEF(option, opt_arg, opt_enum, opt_help) \
4066 opt_help
4067 #define DEFHEADING(text) stringify(text) "\n"
4068 #include "qemu-options.h"
4069 #undef DEF
4070 #undef DEFHEADING
4071 #undef GEN_DOCS
4072 "\n"
4073 "During emulation, the following keys are useful:\n"
4074 "ctrl-alt-f toggle full screen\n"
4075 "ctrl-alt-n switch to virtual console 'n'\n"
4076 "ctrl-alt toggle mouse and keyboard grab\n"
4077 "\n"
4078 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4079 ,
4080 "qemu",
4081 DEFAULT_RAM_SIZE,
4082 #ifndef _WIN32
4083 DEFAULT_NETWORK_SCRIPT,
4084 DEFAULT_NETWORK_DOWN_SCRIPT,
4085 #endif
4086 DEFAULT_GDBSTUB_PORT,
4087 "/tmp/qemu.log");
4088 exit(exitcode);
4089 }
4090
4091 #define HAS_ARG 0x0001
4092
4093 enum {
4094 #define DEF(option, opt_arg, opt_enum, opt_help) \
4095 opt_enum,
4096 #define DEFHEADING(text)
4097 #include "qemu-options.h"
4098 #undef DEF
4099 #undef DEFHEADING
4100 #undef GEN_DOCS
4101 };
4102
4103 typedef struct QEMUOption {
4104 const char *name;
4105 int flags;
4106 int index;
4107 } QEMUOption;
4108
4109 static const QEMUOption qemu_options[] = {
4110 { "h", 0, QEMU_OPTION_h },
4111 #define DEF(option, opt_arg, opt_enum, opt_help) \
4112 { option, opt_arg, opt_enum },
4113 #define DEFHEADING(text)
4114 #include "qemu-options.h"
4115 #undef DEF
4116 #undef DEFHEADING
4117 #undef GEN_DOCS
4118 { NULL },
4119 };
4120
4121 #ifdef HAS_AUDIO
4122 struct soundhw soundhw[] = {
4123 #ifdef HAS_AUDIO_CHOICE
4124 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4125 {
4126 "pcspk",
4127 "PC speaker",
4128 0,
4129 1,
4130 { .init_isa = pcspk_audio_init }
4131 },
4132 #endif
4133
4134 #ifdef CONFIG_SB16
4135 {
4136 "sb16",
4137 "Creative Sound Blaster 16",
4138 0,
4139 1,
4140 { .init_isa = SB16_init }
4141 },
4142 #endif
4143
4144 #ifdef CONFIG_CS4231A
4145 {
4146 "cs4231a",
4147 "CS4231A",
4148 0,
4149 1,
4150 { .init_isa = cs4231a_init }
4151 },
4152 #endif
4153
4154 #ifdef CONFIG_ADLIB
4155 {
4156 "adlib",
4157 #ifdef HAS_YMF262
4158 "Yamaha YMF262 (OPL3)",
4159 #else
4160 "Yamaha YM3812 (OPL2)",
4161 #endif
4162 0,
4163 1,
4164 { .init_isa = Adlib_init }
4165 },
4166 #endif
4167
4168 #ifdef CONFIG_GUS
4169 {
4170 "gus",
4171 "Gravis Ultrasound GF1",
4172 0,
4173 1,
4174 { .init_isa = GUS_init }
4175 },
4176 #endif
4177
4178 #ifdef CONFIG_AC97
4179 {
4180 "ac97",
4181 "Intel 82801AA AC97 Audio",
4182 0,
4183 0,
4184 { .init_pci = ac97_init }
4185 },
4186 #endif
4187
4188 #ifdef CONFIG_ES1370
4189 {
4190 "es1370",
4191 "ENSONIQ AudioPCI ES1370",
4192 0,
4193 0,
4194 { .init_pci = es1370_init }
4195 },
4196 #endif
4197
4198 #endif /* HAS_AUDIO_CHOICE */
4199
4200 { NULL, NULL, 0, 0, { NULL } }
4201 };
4202
4203 static void select_soundhw (const char *optarg)
4204 {
4205 struct soundhw *c;
4206
4207 if (*optarg == '?') {
4208 show_valid_cards:
4209
4210 printf ("Valid sound card names (comma separated):\n");
4211 for (c = soundhw; c->name; ++c) {
4212 printf ("%-11s %s\n", c->name, c->descr);
4213 }
4214 printf ("\n-soundhw all will enable all of the above\n");
4215 exit (*optarg != '?');
4216 }
4217 else {
4218 size_t l;
4219 const char *p;
4220 char *e;
4221 int bad_card = 0;
4222
4223 if (!strcmp (optarg, "all")) {
4224 for (c = soundhw; c->name; ++c) {
4225 c->enabled = 1;
4226 }
4227 return;
4228 }
4229
4230 p = optarg;
4231 while (*p) {
4232 e = strchr (p, ',');
4233 l = !e ? strlen (p) : (size_t) (e - p);
4234
4235 for (c = soundhw; c->name; ++c) {
4236 if (!strncmp (c->name, p, l)) {
4237 c->enabled = 1;
4238 break;
4239 }
4240 }
4241
4242 if (!c->name) {
4243 if (l > 80) {
4244 fprintf (stderr,
4245 "Unknown sound card name (too big to show)\n");
4246 }
4247 else {
4248 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4249 (int) l, p);
4250 }
4251 bad_card = 1;
4252 }
4253 p += l + (e != NULL);
4254 }
4255
4256 if (bad_card)
4257 goto show_valid_cards;
4258 }
4259 }
4260 #endif
4261
4262 static void select_vgahw (const char *p)
4263 {
4264 const char *opts;
4265
4266 cirrus_vga_enabled = 0;
4267 std_vga_enabled = 0;
4268 vmsvga_enabled = 0;
4269 xenfb_enabled = 0;
4270 if (strstart(p, "std", &opts)) {
4271 std_vga_enabled = 1;
4272 } else if (strstart(p, "cirrus", &opts)) {
4273 cirrus_vga_enabled = 1;
4274 } else if (strstart(p, "vmware", &opts)) {
4275 vmsvga_enabled = 1;
4276 } else if (strstart(p, "xenfb", &opts)) {
4277 xenfb_enabled = 1;
4278 } else if (!strstart(p, "none", &opts)) {
4279 invalid_vga:
4280 fprintf(stderr, "Unknown vga type: %s\n", p);
4281 exit(1);
4282 }
4283 while (*opts) {
4284 const char *nextopt;
4285
4286 if (strstart(opts, ",retrace=", &nextopt)) {
4287 opts = nextopt;
4288 if (strstart(opts, "dumb", &nextopt))
4289 vga_retrace_method = VGA_RETRACE_DUMB;
4290 else if (strstart(opts, "precise", &nextopt))
4291 vga_retrace_method = VGA_RETRACE_PRECISE;
4292 else goto invalid_vga;
4293 } else goto invalid_vga;
4294 opts = nextopt;
4295 }
4296 }
4297
4298 #ifdef _WIN32
4299 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4300 {
4301 exit(STATUS_CONTROL_C_EXIT);
4302 return TRUE;
4303 }
4304 #endif
4305
4306 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4307 {
4308 int ret;
4309
4310 if(strlen(str) != 36)
4311 return -1;
4312
4313 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4314 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4315 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4316
4317 if(ret != 16)
4318 return -1;
4319
4320 #ifdef TARGET_I386
4321 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4322 #endif
4323
4324 return 0;
4325 }
4326
4327 #define MAX_NET_CLIENTS 32
4328
4329 #ifndef _WIN32
4330
4331 static void termsig_handler(int signal)
4332 {
4333 qemu_system_shutdown_request();
4334 }
4335
4336 static void termsig_setup(void)
4337 {
4338 struct sigaction act;
4339
4340 memset(&act, 0, sizeof(act));
4341 act.sa_handler = termsig_handler;
4342 sigaction(SIGINT, &act, NULL);
4343 sigaction(SIGHUP, &act, NULL);
4344 sigaction(SIGTERM, &act, NULL);
4345 }
4346
4347 #endif
4348
4349 int main(int argc, char **argv, char **envp)
4350 {
4351 #ifdef CONFIG_GDBSTUB
4352 const char *gdbstub_dev = NULL;
4353 #endif
4354 uint32_t boot_devices_bitmap = 0;
4355 int i;
4356 int snapshot, linux_boot, net_boot;
4357 const char *initrd_filename;
4358 const char *kernel_filename, *kernel_cmdline;
4359 const char *boot_devices = "";
4360 DisplayState *ds;
4361 DisplayChangeListener *dcl;
4362 int cyls, heads, secs, translation;
4363 const char *net_clients[MAX_NET_CLIENTS];
4364 int nb_net_clients;
4365 const char *bt_opts[MAX_BT_CMDLINE];
4366 int nb_bt_opts;
4367 int hda_index;
4368 int optind;
4369 const char *r, *optarg;
4370 CharDriverState *monitor_hd = NULL;
4371 const char *monitor_device;
4372 const char *serial_devices[MAX_SERIAL_PORTS];
4373 int serial_device_index;
4374 const char *parallel_devices[MAX_PARALLEL_PORTS];
4375 int parallel_device_index;
4376 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4377 int virtio_console_index;
4378 const char *loadvm = NULL;
4379 QEMUMachine *machine;
4380 const char *cpu_model;
4381 const char *usb_devices[MAX_USB_CMDLINE];
4382 int usb_devices_index;
4383 #ifndef _WIN32
4384 int fds[2];
4385 #endif
4386 int tb_size;
4387 const char *pid_file = NULL;
4388 const char *incoming = NULL;
4389 #ifndef _WIN32
4390 int fd = 0;
4391 struct passwd *pwd = NULL;
4392 const char *chroot_dir = NULL;
4393 const char *run_as = NULL;
4394 #endif
4395 CPUState *env;
4396
4397 qemu_cache_utils_init(envp);
4398
4399 LIST_INIT (&vm_change_state_head);
4400 #ifndef _WIN32
4401 {
4402 struct sigaction act;
4403 sigfillset(&act.sa_mask);
4404 act.sa_flags = 0;
4405 act.sa_handler = SIG_IGN;
4406 sigaction(SIGPIPE, &act, NULL);
4407 }
4408 #else
4409 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4410 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4411 QEMU to run on a single CPU */
4412 {
4413 HANDLE h;
4414 DWORD mask, smask;
4415 int i;
4416 h = GetCurrentProcess();
4417 if (GetProcessAffinityMask(h, &mask, &smask)) {
4418 for(i = 0; i < 32; i++) {
4419 if (mask & (1 << i))
4420 break;
4421 }
4422 if (i != 32) {
4423 mask = 1 << i;
4424 SetProcessAffinityMask(h, mask);
4425 }
4426 }
4427 }
4428 #endif
4429
4430 register_machines();
4431 machine = first_machine;
4432 cpu_model = NULL;
4433 initrd_filename = NULL;
4434 ram_size = 0;
4435 vga_ram_size = VGA_RAM_SIZE;
4436 snapshot = 0;
4437 nographic = 0;
4438 curses = 0;
4439 kernel_filename = NULL;
4440 kernel_cmdline = "";
4441 cyls = heads = secs = 0;
4442 translation = BIOS_ATA_TRANSLATION_AUTO;
4443 monitor_device = "vc:80Cx24C";
4444
4445 serial_devices[0] = "vc:80Cx24C";
4446 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4447 serial_devices[i] = NULL;
4448 serial_device_index = 0;
4449
4450 parallel_devices[0] = "vc:80Cx24C";
4451 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4452 parallel_devices[i] = NULL;
4453 parallel_device_index = 0;
4454
4455 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4456 virtio_consoles[i] = NULL;
4457 virtio_console_index = 0;
4458
4459 for (i = 0; i < MAX_NODES; i++) {
4460 node_mem[i] = 0;
4461 node_cpumask[i] = 0;
4462 }
4463
4464 usb_devices_index = 0;
4465
4466 nb_net_clients = 0;
4467 nb_bt_opts = 0;
4468 nb_drives = 0;
4469 nb_drives_opt = 0;
4470 nb_numa_nodes = 0;
4471 hda_index = -1;
4472
4473 nb_nics = 0;
4474
4475 tb_size = 0;
4476 autostart= 1;
4477
4478 optind = 1;
4479 for(;;) {
4480 if (optind >= argc)
4481 break;
4482 r = argv[optind];
4483 if (r[0] != '-') {
4484 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4485 } else {
4486 const QEMUOption *popt;
4487
4488 optind++;
4489 /* Treat --foo the same as -foo. */
4490 if (r[1] == '-')
4491 r++;
4492 popt = qemu_options;
4493 for(;;) {
4494 if (!popt->name) {
4495 fprintf(stderr, "%s: invalid option -- '%s'\n",
4496 argv[0], r);
4497 exit(1);
4498 }
4499 if (!strcmp(popt->name, r + 1))
4500 break;
4501 popt++;
4502 }
4503 if (popt->flags & HAS_ARG) {
4504 if (optind >= argc) {
4505 fprintf(stderr, "%s: option '%s' requires an argument\n",
4506 argv[0], r);
4507 exit(1);
4508 }
4509 optarg = argv[optind++];
4510 } else {
4511 optarg = NULL;
4512 }
4513
4514 switch(popt->index) {
4515 case QEMU_OPTION_M:
4516 machine = find_machine(optarg);
4517 if (!machine) {
4518 QEMUMachine *m;
4519 printf("Supported machines are:\n");
4520 for(m = first_machine; m != NULL; m = m->next) {
4521 printf("%-10s %s%s\n",
4522 m->name, m->desc,
4523 m == first_machine ? " (default)" : "");
4524 }
4525 exit(*optarg != '?');
4526 }
4527 break;
4528 case QEMU_OPTION_cpu:
4529 /* hw initialization will check this */
4530 if (*optarg == '?') {
4531 /* XXX: implement xxx_cpu_list for targets that still miss it */
4532 #if defined(cpu_list)
4533 cpu_list(stdout, &fprintf);
4534 #endif
4535 exit(0);
4536 } else {
4537 cpu_model = optarg;
4538 }
4539 break;
4540 case QEMU_OPTION_initrd:
4541 initrd_filename = optarg;
4542 break;
4543 case QEMU_OPTION_hda:
4544 if (cyls == 0)
4545 hda_index = drive_add(optarg, HD_ALIAS, 0);
4546 else
4547 hda_index = drive_add(optarg, HD_ALIAS
4548 ",cyls=%d,heads=%d,secs=%d%s",
4549 0, cyls, heads, secs,
4550 translation == BIOS_ATA_TRANSLATION_LBA ?
4551 ",trans=lba" :
4552 translation == BIOS_ATA_TRANSLATION_NONE ?
4553 ",trans=none" : "");
4554 break;
4555 case QEMU_OPTION_hdb:
4556 case QEMU_OPTION_hdc:
4557 case QEMU_OPTION_hdd:
4558 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4559 break;
4560 case QEMU_OPTION_drive:
4561 drive_add(NULL, "%s", optarg);
4562 break;
4563 case QEMU_OPTION_mtdblock:
4564 drive_add(optarg, MTD_ALIAS);
4565 break;
4566 case QEMU_OPTION_sd:
4567 drive_add(optarg, SD_ALIAS);
4568 break;
4569 case QEMU_OPTION_pflash:
4570 drive_add(optarg, PFLASH_ALIAS);
4571 break;
4572 case QEMU_OPTION_snapshot:
4573 snapshot = 1;
4574 break;
4575 case QEMU_OPTION_hdachs:
4576 {
4577 const char *p;
4578 p = optarg;
4579 cyls = strtol(p, (char **)&p, 0);
4580 if (cyls < 1 || cyls > 16383)
4581 goto chs_fail;
4582 if (*p != ',')
4583 goto chs_fail;
4584 p++;
4585 heads = strtol(p, (char **)&p, 0);
4586 if (heads < 1 || heads > 16)
4587 goto chs_fail;
4588 if (*p != ',')
4589 goto chs_fail;
4590 p++;
4591 secs = strtol(p, (char **)&p, 0);
4592 if (secs < 1 || secs > 63)
4593 goto chs_fail;
4594 if (*p == ',') {
4595 p++;
4596 if (!strcmp(p, "none"))
4597 translation = BIOS_ATA_TRANSLATION_NONE;
4598 else if (!strcmp(p, "lba"))
4599 translation = BIOS_ATA_TRANSLATION_LBA;
4600 else if (!strcmp(p, "auto"))
4601 translation = BIOS_ATA_TRANSLATION_AUTO;
4602 else
4603 goto chs_fail;
4604 } else if (*p != '\0') {
4605 chs_fail:
4606 fprintf(stderr, "qemu: invalid physical CHS format\n");
4607 exit(1);
4608 }
4609 if (hda_index != -1)
4610 snprintf(drives_opt[hda_index].opt,
4611 sizeof(drives_opt[hda_index].opt),
4612 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
4613 0, cyls, heads, secs,
4614 translation == BIOS_ATA_TRANSLATION_LBA ?
4615 ",trans=lba" :
4616 translation == BIOS_ATA_TRANSLATION_NONE ?
4617 ",trans=none" : "");
4618 }
4619 break;
4620 case QEMU_OPTION_numa:
4621 if (nb_numa_nodes >= MAX_NODES) {
4622 fprintf(stderr, "qemu: too many NUMA nodes\n");
4623 exit(1);
4624 }
4625 numa_add(optarg);
4626 break;
4627 case QEMU_OPTION_nographic:
4628 nographic = 1;
4629 break;
4630 #ifdef CONFIG_CURSES
4631 case QEMU_OPTION_curses:
4632 curses = 1;
4633 break;
4634 #endif
4635 case QEMU_OPTION_portrait:
4636 graphic_rotate = 1;
4637 break;
4638 case QEMU_OPTION_kernel:
4639 kernel_filename = optarg;
4640 break;
4641 case QEMU_OPTION_append:
4642 kernel_cmdline = optarg;
4643 break;
4644 case QEMU_OPTION_cdrom:
4645 drive_add(optarg, CDROM_ALIAS);
4646 break;
4647 case QEMU_OPTION_boot:
4648 boot_devices = optarg;
4649 /* We just do some generic consistency checks */
4650 {
4651 /* Could easily be extended to 64 devices if needed */
4652 const char *p;
4653
4654 boot_devices_bitmap = 0;
4655 for (p = boot_devices; *p != '\0'; p++) {
4656 /* Allowed boot devices are:
4657 * a b : floppy disk drives
4658 * c ... f : IDE disk drives
4659 * g ... m : machine implementation dependant drives
4660 * n ... p : network devices
4661 * It's up to each machine implementation to check
4662 * if the given boot devices match the actual hardware
4663 * implementation and firmware features.
4664 */
4665 if (*p < 'a' || *p > 'q') {
4666 fprintf(stderr, "Invalid boot device '%c'\n", *p);
4667 exit(1);
4668 }
4669 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
4670 fprintf(stderr,
4671 "Boot device '%c' was given twice\n",*p);
4672 exit(1);
4673 }
4674 boot_devices_bitmap |= 1 << (*p - 'a');
4675 }
4676 }
4677 break;
4678 case QEMU_OPTION_fda:
4679 case QEMU_OPTION_fdb:
4680 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
4681 break;
4682 #ifdef TARGET_I386
4683 case QEMU_OPTION_no_fd_bootchk:
4684 fd_bootchk = 0;
4685 break;
4686 #endif
4687 case QEMU_OPTION_net:
4688 if (nb_net_clients >= MAX_NET_CLIENTS) {
4689 fprintf(stderr, "qemu: too many network clients\n");
4690 exit(1);
4691 }
4692 net_clients[nb_net_clients] = optarg;
4693 nb_net_clients++;
4694 break;
4695 #ifdef CONFIG_SLIRP
4696 case QEMU_OPTION_tftp:
4697 tftp_prefix = optarg;
4698 break;
4699 case QEMU_OPTION_bootp:
4700 bootp_filename = optarg;
4701 break;
4702 #ifndef _WIN32
4703 case QEMU_OPTION_smb:
4704 net_slirp_smb(optarg);
4705 break;
4706 #endif
4707 case QEMU_OPTION_redir:
4708 net_slirp_redir(NULL, optarg);
4709 break;
4710 #endif
4711 case QEMU_OPTION_bt:
4712 if (nb_bt_opts >= MAX_BT_CMDLINE) {
4713 fprintf(stderr, "qemu: too many bluetooth options\n");
4714 exit(1);
4715 }
4716 bt_opts[nb_bt_opts++] = optarg;
4717 break;
4718 #ifdef HAS_AUDIO
4719 case QEMU_OPTION_audio_help:
4720 AUD_help ();
4721 exit (0);
4722 break;
4723 case QEMU_OPTION_soundhw:
4724 select_soundhw (optarg);
4725 break;
4726 #endif
4727 case QEMU_OPTION_h:
4728 help(0);
4729 break;
4730 case QEMU_OPTION_version:
4731 version();
4732 exit(0);
4733 break;
4734 case QEMU_OPTION_m: {
4735 uint64_t value;
4736 char *ptr;
4737
4738 value = strtoul(optarg, &ptr, 10);
4739 switch (*ptr) {
4740 case 0: case 'M': case 'm':
4741 value <<= 20;
4742 break;
4743 case 'G': case 'g':
4744 value <<= 30;
4745 break;
4746 default:
4747 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
4748 exit(1);
4749 }
4750
4751 /* On 32-bit hosts, QEMU is limited by virtual address space */
4752 if (value > (2047 << 20)
4753 #ifndef CONFIG_KQEMU
4754 && HOST_LONG_BITS == 32
4755 #endif
4756 ) {
4757 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
4758 exit(1);
4759 }
4760 if (value != (uint64_t)(ram_addr_t)value) {
4761 fprintf(stderr, "qemu: ram size too large\n");
4762 exit(1);
4763 }
4764 ram_size = value;
4765 break;
4766 }
4767 case QEMU_OPTION_d:
4768 {
4769 int mask;
4770 const CPULogItem *item;
4771
4772 mask = cpu_str_to_log_mask(optarg);
4773 if (!mask) {
4774 printf("Log items (comma separated):\n");
4775 for(item = cpu_log_items; item->mask != 0; item++) {
4776 printf("%-10s %s\n", item->name, item->help);
4777 }
4778 exit(1);
4779 }
4780 cpu_set_log(mask);
4781 }
4782 break;
4783 #ifdef CONFIG_GDBSTUB
4784 case QEMU_OPTION_s:
4785 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
4786 break;
4787 case QEMU_OPTION_gdb:
4788 gdbstub_dev = optarg;
4789 break;
4790 #endif
4791 case QEMU_OPTION_L:
4792 bios_dir = optarg;
4793 break;
4794 case QEMU_OPTION_bios:
4795 bios_name = optarg;
4796 break;
4797 case QEMU_OPTION_singlestep:
4798 singlestep = 1;
4799 break;
4800 case QEMU_OPTION_S:
4801 autostart = 0;
4802 break;
4803 #ifndef _WIN32
4804 case QEMU_OPTION_k:
4805 keyboard_layout = optarg;
4806 break;
4807 #endif
4808 case QEMU_OPTION_localtime:
4809 rtc_utc = 0;
4810 break;
4811 case QEMU_OPTION_vga:
4812 select_vgahw (optarg);
4813 break;
4814 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
4815 case QEMU_OPTION_g:
4816 {
4817 const char *p;
4818 int w, h, depth;
4819 p = optarg;
4820 w = strtol(p, (char **)&p, 10);
4821 if (w <= 0) {
4822 graphic_error:
4823 fprintf(stderr, "qemu: invalid resolution or depth\n");
4824 exit(1);
4825 }
4826 if (*p != 'x')
4827 goto graphic_error;
4828 p++;
4829 h = strtol(p, (char **)&p, 10);
4830 if (h <= 0)
4831 goto graphic_error;
4832 if (*p == 'x') {
4833 p++;
4834 depth = strtol(p, (char **)&p, 10);
4835 if (depth != 8 && depth != 15 && depth != 16 &&
4836 depth != 24 && depth != 32)
4837 goto graphic_error;
4838 } else if (*p == '\0') {
4839 depth = graphic_depth;
4840 } else {
4841 goto graphic_error;
4842 }
4843
4844 graphic_width = w;
4845 graphic_height = h;
4846 graphic_depth = depth;
4847 }
4848 break;
4849 #endif
4850 case QEMU_OPTION_echr:
4851 {
4852 char *r;
4853 term_escape_char = strtol(optarg, &r, 0);
4854 if (r == optarg)
4855 printf("Bad argument to echr\n");
4856 break;
4857 }
4858 case QEMU_OPTION_monitor:
4859 monitor_device = optarg;
4860 break;
4861 case QEMU_OPTION_serial:
4862 if (serial_device_index >= MAX_SERIAL_PORTS) {
4863 fprintf(stderr, "qemu: too many serial ports\n");
4864 exit(1);
4865 }
4866 serial_devices[serial_device_index] = optarg;
4867 serial_device_index++;
4868 break;
4869 case QEMU_OPTION_virtiocon:
4870 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
4871 fprintf(stderr, "qemu: too many virtio consoles\n");
4872 exit(1);
4873 }
4874 virtio_consoles[virtio_console_index] = optarg;
4875 virtio_console_index++;
4876 break;
4877 case QEMU_OPTION_parallel:
4878 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
4879 fprintf(stderr, "qemu: too many parallel ports\n");
4880 exit(1);
4881 }
4882 parallel_devices[parallel_device_index] = optarg;
4883 parallel_device_index++;
4884 break;
4885 case QEMU_OPTION_loadvm:
4886 loadvm = optarg;
4887 break;
4888 case QEMU_OPTION_full_screen:
4889 full_screen = 1;
4890 break;
4891 #ifdef CONFIG_SDL
4892 case QEMU_OPTION_no_frame:
4893 no_frame = 1;
4894 break;
4895 case QEMU_OPTION_alt_grab:
4896 alt_grab = 1;
4897 break;
4898 case QEMU_OPTION_no_quit:
4899 no_quit = 1;
4900 break;
4901 case QEMU_OPTION_sdl:
4902 sdl = 1;
4903 break;
4904 #endif
4905 case QEMU_OPTION_pidfile:
4906 pid_file = optarg;
4907 break;
4908 #ifdef TARGET_I386
4909 case QEMU_OPTION_win2k_hack:
4910 win2k_install_hack = 1;
4911 break;
4912 case QEMU_OPTION_rtc_td_hack:
4913 rtc_td_hack = 1;
4914 break;
4915 case QEMU_OPTION_acpitable:
4916 if(acpi_table_add(optarg) < 0) {
4917 fprintf(stderr, "Wrong acpi table provided\n");
4918 exit(1);
4919 }
4920 break;
4921 case QEMU_OPTION_smbios:
4922 if(smbios_entry_add(optarg) < 0) {
4923 fprintf(stderr, "Wrong smbios provided\n");
4924 exit(1);
4925 }
4926 break;
4927 #endif
4928 #ifdef CONFIG_KQEMU
4929 case QEMU_OPTION_no_kqemu:
4930 kqemu_allowed = 0;
4931 break;
4932 case QEMU_OPTION_kernel_kqemu:
4933 kqemu_allowed = 2;
4934 break;
4935 #endif
4936 #ifdef CONFIG_KVM
4937 case QEMU_OPTION_enable_kvm:
4938 kvm_allowed = 1;
4939 #ifdef CONFIG_KQEMU
4940 kqemu_allowed = 0;
4941 #endif
4942 break;
4943 #endif
4944 case QEMU_OPTION_usb:
4945 usb_enabled = 1;
4946 break;
4947 case QEMU_OPTION_usbdevice:
4948 usb_enabled = 1;
4949 if (usb_devices_index >= MAX_USB_CMDLINE) {
4950 fprintf(stderr, "Too many USB devices\n");
4951 exit(1);
4952 }
4953 usb_devices[usb_devices_index] = optarg;
4954 usb_devices_index++;
4955 break;
4956 case QEMU_OPTION_smp:
4957 smp_cpus = atoi(optarg);
4958 if (smp_cpus < 1) {
4959 fprintf(stderr, "Invalid number of CPUs\n");
4960 exit(1);
4961 }
4962 break;
4963 case QEMU_OPTION_vnc:
4964 vnc_display = optarg;
4965 break;
4966 #ifdef TARGET_I386
4967 case QEMU_OPTION_no_acpi:
4968 acpi_enabled = 0;
4969 break;
4970 case QEMU_OPTION_no_hpet:
4971 no_hpet = 1;
4972 break;
4973 #endif
4974 case QEMU_OPTION_no_reboot:
4975 no_reboot = 1;
4976 break;
4977 case QEMU_OPTION_no_shutdown:
4978 no_shutdown = 1;
4979 break;
4980 case QEMU_OPTION_show_cursor:
4981 cursor_hide = 0;
4982 break;
4983 case QEMU_OPTION_uuid:
4984 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
4985 fprintf(stderr, "Fail to parse UUID string."
4986 " Wrong format.\n");
4987 exit(1);
4988 }
4989 break;
4990 #ifndef _WIN32
4991 case QEMU_OPTION_daemonize:
4992 daemonize = 1;
4993 break;
4994 #endif
4995 case QEMU_OPTION_option_rom:
4996 if (nb_option_roms >= MAX_OPTION_ROMS) {
4997 fprintf(stderr, "Too many option ROMs\n");
4998 exit(1);
4999 }
5000 option_rom[nb_option_roms] = optarg;
5001 nb_option_roms++;
5002 break;
5003 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5004 case QEMU_OPTION_semihosting:
5005 semihosting_enabled = 1;
5006 break;
5007 #endif
5008 case QEMU_OPTION_name:
5009 qemu_name = optarg;
5010 break;
5011 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5012 case QEMU_OPTION_prom_env:
5013 if (nb_prom_envs >= MAX_PROM_ENVS) {
5014 fprintf(stderr, "Too many prom variables\n");
5015 exit(1);
5016 }
5017 prom_envs[nb_prom_envs] = optarg;
5018 nb_prom_envs++;
5019 break;
5020 #endif
5021 #ifdef TARGET_ARM
5022 case QEMU_OPTION_old_param:
5023 old_param = 1;
5024 break;
5025 #endif
5026 case QEMU_OPTION_clock:
5027 configure_alarms(optarg);
5028 break;
5029 case QEMU_OPTION_startdate:
5030 {
5031 struct tm tm;
5032 time_t rtc_start_date;
5033 if (!strcmp(optarg, "now")) {
5034 rtc_date_offset = -1;
5035 } else {
5036 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5037 &tm.tm_year,
5038 &tm.tm_mon,
5039 &tm.tm_mday,
5040 &tm.tm_hour,
5041 &tm.tm_min,
5042 &tm.tm_sec) == 6) {
5043 /* OK */
5044 } else if (sscanf(optarg, "%d-%d-%d",
5045 &tm.tm_year,
5046 &tm.tm_mon,
5047 &tm.tm_mday) == 3) {
5048 tm.tm_hour = 0;
5049 tm.tm_min = 0;
5050 tm.tm_sec = 0;
5051 } else {
5052 goto date_fail;
5053 }
5054 tm.tm_year -= 1900;
5055 tm.tm_mon--;
5056 rtc_start_date = mktimegm(&tm);
5057 if (rtc_start_date == -1) {
5058 date_fail:
5059 fprintf(stderr, "Invalid date format. Valid format are:\n"
5060 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5061 exit(1);
5062 }
5063 rtc_date_offset = time(NULL) - rtc_start_date;
5064 }
5065 }
5066 break;
5067 case QEMU_OPTION_tb_size:
5068 tb_size = strtol(optarg, NULL, 0);
5069 if (tb_size < 0)
5070 tb_size = 0;
5071 break;
5072 case QEMU_OPTION_icount:
5073 use_icount = 1;
5074 if (strcmp(optarg, "auto") == 0) {
5075 icount_time_shift = -1;
5076 } else {
5077 icount_time_shift = strtol(optarg, NULL, 0);
5078 }
5079 break;
5080 case QEMU_OPTION_incoming:
5081 incoming = optarg;
5082 break;
5083 #ifndef _WIN32
5084 case QEMU_OPTION_chroot:
5085 chroot_dir = optarg;
5086 break;
5087 case QEMU_OPTION_runas:
5088 run_as = optarg;
5089 break;
5090 #endif
5091 #ifdef CONFIG_XEN
5092 case QEMU_OPTION_xen_domid:
5093 xen_domid = atoi(optarg);
5094 break;
5095 case QEMU_OPTION_xen_create:
5096 xen_mode = XEN_CREATE;
5097 break;
5098 case QEMU_OPTION_xen_attach:
5099 xen_mode = XEN_ATTACH;
5100 break;
5101 #endif
5102 }
5103 }
5104 }
5105
5106 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5107 if (kvm_allowed && kqemu_allowed) {
5108 fprintf(stderr,
5109 "You can not enable both KVM and kqemu at the same time\n");
5110 exit(1);
5111 }
5112 #endif
5113
5114 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5115 if (smp_cpus > machine->max_cpus) {
5116 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5117 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5118 machine->max_cpus);
5119 exit(1);
5120 }
5121
5122 if (nographic) {
5123 if (serial_device_index == 0)
5124 serial_devices[0] = "stdio";
5125 if (parallel_device_index == 0)
5126 parallel_devices[0] = "null";
5127 if (strncmp(monitor_device, "vc", 2) == 0)
5128 monitor_device = "stdio";
5129 }
5130
5131 #ifndef _WIN32
5132 if (daemonize) {
5133 pid_t pid;
5134
5135 if (pipe(fds) == -1)
5136 exit(1);
5137
5138 pid = fork();
5139 if (pid > 0) {
5140 uint8_t status;
5141 ssize_t len;
5142
5143 close(fds[1]);
5144
5145 again:
5146 len = read(fds[0], &status, 1);
5147 if (len == -1 && (errno == EINTR))
5148 goto again;
5149
5150 if (len != 1)
5151 exit(1);
5152 else if (status == 1) {
5153 fprintf(stderr, "Could not acquire pidfile\n");
5154 exit(1);
5155 } else
5156 exit(0);
5157 } else if (pid < 0)
5158 exit(1);
5159
5160 setsid();
5161
5162 pid = fork();
5163 if (pid > 0)
5164 exit(0);
5165 else if (pid < 0)
5166 exit(1);
5167
5168 umask(027);
5169
5170 signal(SIGTSTP, SIG_IGN);
5171 signal(SIGTTOU, SIG_IGN);
5172 signal(SIGTTIN, SIG_IGN);
5173 }
5174
5175 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5176 if (daemonize) {
5177 uint8_t status = 1;
5178 write(fds[1], &status, 1);
5179 } else
5180 fprintf(stderr, "Could not acquire pid file\n");
5181 exit(1);
5182 }
5183 #endif
5184
5185 #ifdef CONFIG_KQEMU
5186 if (smp_cpus > 1)
5187 kqemu_allowed = 0;
5188 #endif
5189 if (qemu_init_main_loop()) {
5190 fprintf(stderr, "qemu_init_main_loop failed\n");
5191 exit(1);
5192 }
5193 linux_boot = (kernel_filename != NULL);
5194 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5195
5196 if (!linux_boot && *kernel_cmdline != '\0') {
5197 fprintf(stderr, "-append only allowed with -kernel option\n");
5198 exit(1);
5199 }
5200
5201 if (!linux_boot && initrd_filename != NULL) {
5202 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5203 exit(1);
5204 }
5205
5206 /* boot to floppy or the default cd if no hard disk defined yet */
5207 if (!boot_devices[0]) {
5208 boot_devices = "cad";
5209 }
5210 setvbuf(stdout, NULL, _IOLBF, 0);
5211
5212 init_timers();
5213 if (init_timer_alarm() < 0) {
5214 fprintf(stderr, "could not initialize alarm timer\n");
5215 exit(1);
5216 }
5217 if (use_icount && icount_time_shift < 0) {
5218 use_icount = 2;
5219 /* 125MIPS seems a reasonable initial guess at the guest speed.
5220 It will be corrected fairly quickly anyway. */
5221 icount_time_shift = 3;
5222 init_icount_adjust();
5223 }
5224
5225 #ifdef _WIN32
5226 socket_init();
5227 #endif
5228
5229 /* init network clients */
5230 if (nb_net_clients == 0) {
5231 /* if no clients, we use a default config */
5232 net_clients[nb_net_clients++] = "nic";
5233 #ifdef CONFIG_SLIRP
5234 net_clients[nb_net_clients++] = "user";
5235 #endif
5236 }
5237
5238 for(i = 0;i < nb_net_clients; i++) {
5239 if (net_client_parse(net_clients[i]) < 0)
5240 exit(1);
5241 }
5242 net_client_check();
5243
5244 #ifdef TARGET_I386
5245 /* XXX: this should be moved in the PC machine instantiation code */
5246 if (net_boot != 0) {
5247 int netroms = 0;
5248 for (i = 0; i < nb_nics && i < 4; i++) {
5249 const char *model = nd_table[i].model;
5250 char buf[1024];
5251 if (net_boot & (1 << i)) {
5252 if (model == NULL)
5253 model = "ne2k_pci";
5254 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5255 if (get_image_size(buf) > 0) {
5256 if (nb_option_roms >= MAX_OPTION_ROMS) {
5257 fprintf(stderr, "Too many option ROMs\n");
5258 exit(1);
5259 }
5260 option_rom[nb_option_roms] = strdup(buf);
5261 nb_option_roms++;
5262 netroms++;
5263 }
5264 }
5265 }
5266 if (netroms == 0) {
5267 fprintf(stderr, "No valid PXE rom found for network device\n");
5268 exit(1);
5269 }
5270 }
5271 #endif
5272
5273 /* init the bluetooth world */
5274 for (i = 0; i < nb_bt_opts; i++)
5275 if (bt_parse(bt_opts[i]))
5276 exit(1);
5277
5278 /* init the memory */
5279 if (ram_size == 0)
5280 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5281
5282 #ifdef CONFIG_KQEMU
5283 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5284 guest ram allocation. It needs to go away. */
5285 if (kqemu_allowed) {
5286 kqemu_phys_ram_size = ram_size + VGA_RAM_SIZE + 4 * 1024 * 1024;
5287 kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
5288 if (!kqemu_phys_ram_base) {
5289 fprintf(stderr, "Could not allocate physical memory\n");
5290 exit(1);
5291 }
5292 }
5293 #endif
5294
5295 /* init the dynamic translator */
5296 cpu_exec_init_all(tb_size * 1024 * 1024);
5297
5298 bdrv_init();
5299 dma_helper_init();
5300
5301 /* we always create the cdrom drive, even if no disk is there */
5302
5303 if (nb_drives_opt < MAX_DRIVES)
5304 drive_add(NULL, CDROM_ALIAS);
5305
5306 /* we always create at least one floppy */
5307
5308 if (nb_drives_opt < MAX_DRIVES)
5309 drive_add(NULL, FD_ALIAS, 0);
5310
5311 /* we always create one sd slot, even if no card is in it */
5312
5313 if (nb_drives_opt < MAX_DRIVES)
5314 drive_add(NULL, SD_ALIAS);
5315
5316 /* open the virtual block devices */
5317
5318 for(i = 0; i < nb_drives_opt; i++)
5319 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5320 exit(1);
5321
5322 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5323 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5324
5325 #ifndef _WIN32
5326 /* must be after terminal init, SDL library changes signal handlers */
5327 termsig_setup();
5328 #endif
5329
5330 /* Maintain compatibility with multiple stdio monitors */
5331 if (!strcmp(monitor_device,"stdio")) {
5332 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5333 const char *devname = serial_devices[i];
5334 if (devname && !strcmp(devname,"mon:stdio")) {
5335 monitor_device = NULL;
5336 break;
5337 } else if (devname && !strcmp(devname,"stdio")) {
5338 monitor_device = NULL;
5339 serial_devices[i] = "mon:stdio";
5340 break;
5341 }
5342 }
5343 }
5344
5345 if (nb_numa_nodes > 0) {
5346 int i;
5347
5348 if (nb_numa_nodes > smp_cpus) {
5349 nb_numa_nodes = smp_cpus;
5350 }
5351
5352 /* If no memory size if given for any node, assume the default case
5353 * and distribute the available memory equally across all nodes
5354 */
5355 for (i = 0; i < nb_numa_nodes; i++) {
5356 if (node_mem[i] != 0)
5357 break;
5358 }
5359 if (i == nb_numa_nodes) {
5360 uint64_t usedmem = 0;
5361
5362 /* On Linux, the each node's border has to be 8MB aligned,
5363 * the final node gets the rest.
5364 */
5365 for (i = 0; i < nb_numa_nodes - 1; i++) {
5366 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5367 usedmem += node_mem[i];
5368 }
5369 node_mem[i] = ram_size - usedmem;
5370 }
5371
5372 for (i = 0; i < nb_numa_nodes; i++) {
5373 if (node_cpumask[i] != 0)
5374 break;
5375 }
5376 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5377 * must cope with this anyway, because there are BIOSes out there in
5378 * real machines which also use this scheme.
5379 */
5380 if (i == nb_numa_nodes) {
5381 for (i = 0; i < smp_cpus; i++) {
5382 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5383 }
5384 }
5385 }
5386
5387 if (kvm_enabled()) {
5388 int ret;
5389
5390 ret = kvm_init(smp_cpus);
5391 if (ret < 0) {
5392 fprintf(stderr, "failed to initialize KVM\n");
5393 exit(1);
5394 }
5395 }
5396
5397 if (monitor_device) {
5398 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5399 if (!monitor_hd) {
5400 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5401 exit(1);
5402 }
5403 }
5404
5405 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5406 const char *devname = serial_devices[i];
5407 if (devname && strcmp(devname, "none")) {
5408 char label[32];
5409 snprintf(label, sizeof(label), "serial%d", i);
5410 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5411 if (!serial_hds[i]) {
5412 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5413 devname);
5414 exit(1);
5415 }
5416 }
5417 }
5418
5419 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5420 const char *devname = parallel_devices[i];
5421 if (devname && strcmp(devname, "none")) {
5422 char label[32];
5423 snprintf(label, sizeof(label), "parallel%d", i);
5424 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5425 if (!parallel_hds[i]) {
5426 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5427 devname);
5428 exit(1);
5429 }
5430 }
5431 }
5432
5433 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5434 const char *devname = virtio_consoles[i];
5435 if (devname && strcmp(devname, "none")) {
5436 char label[32];
5437 snprintf(label, sizeof(label), "virtcon%d", i);
5438 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5439 if (!virtcon_hds[i]) {
5440 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5441 devname);
5442 exit(1);
5443 }
5444 }
5445 }
5446
5447 machine->init(ram_size, vga_ram_size, boot_devices,
5448 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5449
5450
5451 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5452 for (i = 0; i < nb_numa_nodes; i++) {
5453 if (node_cpumask[i] & (1 << env->cpu_index)) {
5454 env->numa_node = i;
5455 }
5456 }
5457 }
5458
5459 current_machine = machine;
5460
5461 /* Set KVM's vcpu state to qemu's initial CPUState. */
5462 if (kvm_enabled()) {
5463 int ret;
5464
5465 ret = kvm_sync_vcpus();
5466 if (ret < 0) {
5467 fprintf(stderr, "failed to initialize vcpus\n");
5468 exit(1);
5469 }
5470 }
5471
5472 /* init USB devices */
5473 if (usb_enabled) {
5474 for(i = 0; i < usb_devices_index; i++) {
5475 if (usb_device_add(usb_devices[i], 0) < 0) {
5476 fprintf(stderr, "Warning: could not add USB device %s\n",
5477 usb_devices[i]);
5478 }
5479 }
5480 }
5481
5482 if (!display_state)
5483 dumb_display_init();
5484 /* just use the first displaystate for the moment */
5485 ds = display_state;
5486 /* terminal init */
5487 if (nographic) {
5488 if (curses) {
5489 fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
5490 exit(1);
5491 }
5492 } else {
5493 #if defined(CONFIG_CURSES)
5494 if (curses) {
5495 /* At the moment curses cannot be used with other displays */
5496 curses_display_init(ds, full_screen);
5497 } else
5498 #endif
5499 {
5500 if (vnc_display != NULL) {
5501 vnc_display_init(ds);
5502 if (vnc_display_open(ds, vnc_display) < 0)
5503 exit(1);
5504 }
5505 #if defined(CONFIG_SDL)
5506 if (sdl || !vnc_display)
5507 sdl_display_init(ds, full_screen, no_frame);
5508 #elif defined(CONFIG_COCOA)
5509 if (sdl || !vnc_display)
5510 cocoa_display_init(ds, full_screen);
5511 #endif
5512 }
5513 }
5514 dpy_resize(ds);
5515
5516 dcl = ds->listeners;
5517 while (dcl != NULL) {
5518 if (dcl->dpy_refresh != NULL) {
5519 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5520 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5521 }
5522 dcl = dcl->next;
5523 }
5524
5525 if (nographic || (vnc_display && !sdl)) {
5526 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5527 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5528 }
5529
5530 text_consoles_set_display(display_state);
5531 qemu_chr_initial_reset();
5532
5533 if (monitor_device && monitor_hd)
5534 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
5535
5536 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5537 const char *devname = serial_devices[i];
5538 if (devname && strcmp(devname, "none")) {
5539 char label[32];
5540 snprintf(label, sizeof(label), "serial%d", i);
5541 if (strstart(devname, "vc", 0))
5542 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5543 }
5544 }
5545
5546 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5547 const char *devname = parallel_devices[i];
5548 if (devname && strcmp(devname, "none")) {
5549 char label[32];
5550 snprintf(label, sizeof(label), "parallel%d", i);
5551 if (strstart(devname, "vc", 0))
5552 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5553 }
5554 }
5555
5556 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5557 const char *devname = virtio_consoles[i];
5558 if (virtcon_hds[i] && devname) {
5559 char label[32];
5560 snprintf(label, sizeof(label), "virtcon%d", i);
5561 if (strstart(devname, "vc", 0))
5562 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
5563 }
5564 }
5565
5566 #ifdef CONFIG_GDBSTUB
5567 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
5568 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
5569 gdbstub_dev);
5570 exit(1);
5571 }
5572 #endif
5573
5574 if (loadvm)
5575 do_loadvm(cur_mon, loadvm);
5576
5577 if (incoming) {
5578 autostart = 0; /* fixme how to deal with -daemonize */
5579 qemu_start_incoming_migration(incoming);
5580 }
5581
5582 if (autostart)
5583 vm_start();
5584
5585 #ifndef _WIN32
5586 if (daemonize) {
5587 uint8_t status = 0;
5588 ssize_t len;
5589
5590 again1:
5591 len = write(fds[1], &status, 1);
5592 if (len == -1 && (errno == EINTR))
5593 goto again1;
5594
5595 if (len != 1)
5596 exit(1);
5597
5598 chdir("/");
5599 TFR(fd = open("/dev/null", O_RDWR));
5600 if (fd == -1)
5601 exit(1);
5602 }
5603
5604 if (run_as) {
5605 pwd = getpwnam(run_as);
5606 if (!pwd) {
5607 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
5608 exit(1);
5609 }
5610 }
5611
5612 if (chroot_dir) {
5613 if (chroot(chroot_dir) < 0) {
5614 fprintf(stderr, "chroot failed\n");
5615 exit(1);
5616 }
5617 chdir("/");
5618 }
5619
5620 if (run_as) {
5621 if (setgid(pwd->pw_gid) < 0) {
5622 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
5623 exit(1);
5624 }
5625 if (setuid(pwd->pw_uid) < 0) {
5626 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
5627 exit(1);
5628 }
5629 if (setuid(0) != -1) {
5630 fprintf(stderr, "Dropping privileges failed\n");
5631 exit(1);
5632 }
5633 }
5634
5635 if (daemonize) {
5636 dup2(fd, 0);
5637 dup2(fd, 1);
5638 dup2(fd, 2);
5639
5640 close(fd);
5641 }
5642 #endif
5643
5644 main_loop();
5645 quit_timers();
5646 net_cleanup();
5647
5648 return 0;
5649 }