]> git.proxmox.com Git - mirror_qemu.git/blob - vl.c
gdb stub support and loadvm should work together, patch by Jason Wessel
[mirror_qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2007 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "vl.h"
25
26 #include <unistd.h>
27 #include <fcntl.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <errno.h>
31 #include <sys/time.h>
32 #include <zlib.h>
33
34 #ifndef _WIN32
35 #include <sys/times.h>
36 #include <sys/wait.h>
37 #include <termios.h>
38 #include <sys/poll.h>
39 #include <sys/mman.h>
40 #include <sys/ioctl.h>
41 #include <sys/socket.h>
42 #include <netinet/in.h>
43 #include <dirent.h>
44 #include <netdb.h>
45 #ifdef _BSD
46 #include <sys/stat.h>
47 #ifndef __APPLE__
48 #include <libutil.h>
49 #endif
50 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
51 #include <freebsd/stdlib.h>
52 #else
53 #ifndef __sun__
54 #include <linux/if.h>
55 #include <linux/if_tun.h>
56 #include <pty.h>
57 #include <malloc.h>
58 #include <linux/rtc.h>
59 #include <linux/ppdev.h>
60 #include <linux/parport.h>
61 #else
62 #include <sys/stat.h>
63 #include <sys/ethernet.h>
64 #include <sys/sockio.h>
65 #include <arpa/inet.h>
66 #include <netinet/arp.h>
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/ip.h>
70 #include <netinet/ip_icmp.h> // must come after ip.h
71 #include <netinet/udp.h>
72 #include <netinet/tcp.h>
73 #include <net/if.h>
74 #include <syslog.h>
75 #include <stropts.h>
76 #endif
77 #endif
78 #endif
79
80 #if defined(CONFIG_SLIRP)
81 #include "libslirp.h"
82 #endif
83
84 #ifdef _WIN32
85 #include <malloc.h>
86 #include <sys/timeb.h>
87 #include <windows.h>
88 #define getopt_long_only getopt_long
89 #define memalign(align, size) malloc(size)
90 #endif
91
92 #include "qemu_socket.h"
93
94 #ifdef CONFIG_SDL
95 #ifdef __APPLE__
96 #include <SDL/SDL.h>
97 #endif
98 #endif /* CONFIG_SDL */
99
100 #ifdef CONFIG_COCOA
101 #undef main
102 #define main qemu_main
103 #endif /* CONFIG_COCOA */
104
105 #include "disas.h"
106
107 #include "exec-all.h"
108
109 #define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
110 #ifdef __sun__
111 #define SMBD_COMMAND "/usr/sfw/sbin/smbd"
112 #else
113 #define SMBD_COMMAND "/usr/sbin/smbd"
114 #endif
115
116 //#define DEBUG_UNUSED_IOPORT
117 //#define DEBUG_IOPORT
118
119 #define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
120
121 #ifdef TARGET_PPC
122 #define DEFAULT_RAM_SIZE 144
123 #else
124 #define DEFAULT_RAM_SIZE 128
125 #endif
126 /* in ms */
127 #define GUI_REFRESH_INTERVAL 30
128
129 /* Max number of USB devices that can be specified on the commandline. */
130 #define MAX_USB_CMDLINE 8
131
132 /* XXX: use a two level table to limit memory usage */
133 #define MAX_IOPORTS 65536
134
135 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
136 char phys_ram_file[1024];
137 void *ioport_opaque[MAX_IOPORTS];
138 IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
139 IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
140 /* Note: bs_table[MAX_DISKS] is a dummy block driver if none available
141 to store the VM snapshots */
142 BlockDriverState *bs_table[MAX_DISKS + 1], *fd_table[MAX_FD];
143 BlockDriverState *pflash_table[MAX_PFLASH];
144 BlockDriverState *sd_bdrv;
145 BlockDriverState *mtd_bdrv;
146 /* point to the block driver where the snapshots are managed */
147 BlockDriverState *bs_snapshots;
148 int vga_ram_size;
149 static DisplayState display_state;
150 int nographic;
151 const char* keyboard_layout = NULL;
152 int64_t ticks_per_sec;
153 int boot_device = 'c';
154 int ram_size;
155 int pit_min_timer_count = 0;
156 int nb_nics;
157 NICInfo nd_table[MAX_NICS];
158 int vm_running;
159 int rtc_utc = 1;
160 int cirrus_vga_enabled = 1;
161 int vmsvga_enabled = 0;
162 #ifdef TARGET_SPARC
163 int graphic_width = 1024;
164 int graphic_height = 768;
165 int graphic_depth = 8;
166 #else
167 int graphic_width = 800;
168 int graphic_height = 600;
169 int graphic_depth = 15;
170 #endif
171 int full_screen = 0;
172 int no_frame = 0;
173 int no_quit = 0;
174 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
175 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
176 #ifdef TARGET_I386
177 int win2k_install_hack = 0;
178 #endif
179 int usb_enabled = 0;
180 static VLANState *first_vlan;
181 int smp_cpus = 1;
182 const char *vnc_display;
183 #if defined(TARGET_SPARC)
184 #define MAX_CPUS 16
185 #elif defined(TARGET_I386)
186 #define MAX_CPUS 255
187 #else
188 #define MAX_CPUS 1
189 #endif
190 int acpi_enabled = 1;
191 int fd_bootchk = 1;
192 int no_reboot = 0;
193 int cursor_hide = 1;
194 int graphic_rotate = 0;
195 int daemonize = 0;
196 const char *option_rom[MAX_OPTION_ROMS];
197 int nb_option_roms;
198 int semihosting_enabled = 0;
199 int autostart = 1;
200 const char *qemu_name;
201 int alt_grab = 0;
202 #ifdef TARGET_SPARC
203 unsigned int nb_prom_envs = 0;
204 const char *prom_envs[MAX_PROM_ENVS];
205 #endif
206
207 /***********************************************************/
208 /* x86 ISA bus support */
209
210 target_phys_addr_t isa_mem_base = 0;
211 PicState2 *isa_pic;
212
213 uint32_t default_ioport_readb(void *opaque, uint32_t address)
214 {
215 #ifdef DEBUG_UNUSED_IOPORT
216 fprintf(stderr, "unused inb: port=0x%04x\n", address);
217 #endif
218 return 0xff;
219 }
220
221 void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
222 {
223 #ifdef DEBUG_UNUSED_IOPORT
224 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
225 #endif
226 }
227
228 /* default is to make two byte accesses */
229 uint32_t default_ioport_readw(void *opaque, uint32_t address)
230 {
231 uint32_t data;
232 data = ioport_read_table[0][address](ioport_opaque[address], address);
233 address = (address + 1) & (MAX_IOPORTS - 1);
234 data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
235 return data;
236 }
237
238 void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
239 {
240 ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
241 address = (address + 1) & (MAX_IOPORTS - 1);
242 ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
243 }
244
245 uint32_t default_ioport_readl(void *opaque, uint32_t address)
246 {
247 #ifdef DEBUG_UNUSED_IOPORT
248 fprintf(stderr, "unused inl: port=0x%04x\n", address);
249 #endif
250 return 0xffffffff;
251 }
252
253 void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
254 {
255 #ifdef DEBUG_UNUSED_IOPORT
256 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
257 #endif
258 }
259
260 void init_ioports(void)
261 {
262 int i;
263
264 for(i = 0; i < MAX_IOPORTS; i++) {
265 ioport_read_table[0][i] = default_ioport_readb;
266 ioport_write_table[0][i] = default_ioport_writeb;
267 ioport_read_table[1][i] = default_ioport_readw;
268 ioport_write_table[1][i] = default_ioport_writew;
269 ioport_read_table[2][i] = default_ioport_readl;
270 ioport_write_table[2][i] = default_ioport_writel;
271 }
272 }
273
274 /* size is the word size in byte */
275 int register_ioport_read(int start, int length, int size,
276 IOPortReadFunc *func, void *opaque)
277 {
278 int i, bsize;
279
280 if (size == 1) {
281 bsize = 0;
282 } else if (size == 2) {
283 bsize = 1;
284 } else if (size == 4) {
285 bsize = 2;
286 } else {
287 hw_error("register_ioport_read: invalid size");
288 return -1;
289 }
290 for(i = start; i < start + length; i += size) {
291 ioport_read_table[bsize][i] = func;
292 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
293 hw_error("register_ioport_read: invalid opaque");
294 ioport_opaque[i] = opaque;
295 }
296 return 0;
297 }
298
299 /* size is the word size in byte */
300 int register_ioport_write(int start, int length, int size,
301 IOPortWriteFunc *func, void *opaque)
302 {
303 int i, bsize;
304
305 if (size == 1) {
306 bsize = 0;
307 } else if (size == 2) {
308 bsize = 1;
309 } else if (size == 4) {
310 bsize = 2;
311 } else {
312 hw_error("register_ioport_write: invalid size");
313 return -1;
314 }
315 for(i = start; i < start + length; i += size) {
316 ioport_write_table[bsize][i] = func;
317 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
318 hw_error("register_ioport_write: invalid opaque");
319 ioport_opaque[i] = opaque;
320 }
321 return 0;
322 }
323
324 void isa_unassign_ioport(int start, int length)
325 {
326 int i;
327
328 for(i = start; i < start + length; i++) {
329 ioport_read_table[0][i] = default_ioport_readb;
330 ioport_read_table[1][i] = default_ioport_readw;
331 ioport_read_table[2][i] = default_ioport_readl;
332
333 ioport_write_table[0][i] = default_ioport_writeb;
334 ioport_write_table[1][i] = default_ioport_writew;
335 ioport_write_table[2][i] = default_ioport_writel;
336 }
337 }
338
339 /***********************************************************/
340
341 void cpu_outb(CPUState *env, int addr, int val)
342 {
343 #ifdef DEBUG_IOPORT
344 if (loglevel & CPU_LOG_IOPORT)
345 fprintf(logfile, "outb: %04x %02x\n", addr, val);
346 #endif
347 ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
348 #ifdef USE_KQEMU
349 if (env)
350 env->last_io_time = cpu_get_time_fast();
351 #endif
352 }
353
354 void cpu_outw(CPUState *env, int addr, int val)
355 {
356 #ifdef DEBUG_IOPORT
357 if (loglevel & CPU_LOG_IOPORT)
358 fprintf(logfile, "outw: %04x %04x\n", addr, val);
359 #endif
360 ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
361 #ifdef USE_KQEMU
362 if (env)
363 env->last_io_time = cpu_get_time_fast();
364 #endif
365 }
366
367 void cpu_outl(CPUState *env, int addr, int val)
368 {
369 #ifdef DEBUG_IOPORT
370 if (loglevel & CPU_LOG_IOPORT)
371 fprintf(logfile, "outl: %04x %08x\n", addr, val);
372 #endif
373 ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
374 #ifdef USE_KQEMU
375 if (env)
376 env->last_io_time = cpu_get_time_fast();
377 #endif
378 }
379
380 int cpu_inb(CPUState *env, int addr)
381 {
382 int val;
383 val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
384 #ifdef DEBUG_IOPORT
385 if (loglevel & CPU_LOG_IOPORT)
386 fprintf(logfile, "inb : %04x %02x\n", addr, val);
387 #endif
388 #ifdef USE_KQEMU
389 if (env)
390 env->last_io_time = cpu_get_time_fast();
391 #endif
392 return val;
393 }
394
395 int cpu_inw(CPUState *env, int addr)
396 {
397 int val;
398 val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
399 #ifdef DEBUG_IOPORT
400 if (loglevel & CPU_LOG_IOPORT)
401 fprintf(logfile, "inw : %04x %04x\n", addr, val);
402 #endif
403 #ifdef USE_KQEMU
404 if (env)
405 env->last_io_time = cpu_get_time_fast();
406 #endif
407 return val;
408 }
409
410 int cpu_inl(CPUState *env, int addr)
411 {
412 int val;
413 val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
414 #ifdef DEBUG_IOPORT
415 if (loglevel & CPU_LOG_IOPORT)
416 fprintf(logfile, "inl : %04x %08x\n", addr, val);
417 #endif
418 #ifdef USE_KQEMU
419 if (env)
420 env->last_io_time = cpu_get_time_fast();
421 #endif
422 return val;
423 }
424
425 /***********************************************************/
426 void hw_error(const char *fmt, ...)
427 {
428 va_list ap;
429 CPUState *env;
430
431 va_start(ap, fmt);
432 fprintf(stderr, "qemu: hardware error: ");
433 vfprintf(stderr, fmt, ap);
434 fprintf(stderr, "\n");
435 for(env = first_cpu; env != NULL; env = env->next_cpu) {
436 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
437 #ifdef TARGET_I386
438 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
439 #else
440 cpu_dump_state(env, stderr, fprintf, 0);
441 #endif
442 }
443 va_end(ap);
444 abort();
445 }
446
447 /***********************************************************/
448 /* keyboard/mouse */
449
450 static QEMUPutKBDEvent *qemu_put_kbd_event;
451 static void *qemu_put_kbd_event_opaque;
452 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
453 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
454
455 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
456 {
457 qemu_put_kbd_event_opaque = opaque;
458 qemu_put_kbd_event = func;
459 }
460
461 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
462 void *opaque, int absolute,
463 const char *name)
464 {
465 QEMUPutMouseEntry *s, *cursor;
466
467 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
468 if (!s)
469 return NULL;
470
471 s->qemu_put_mouse_event = func;
472 s->qemu_put_mouse_event_opaque = opaque;
473 s->qemu_put_mouse_event_absolute = absolute;
474 s->qemu_put_mouse_event_name = qemu_strdup(name);
475 s->next = NULL;
476
477 if (!qemu_put_mouse_event_head) {
478 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
479 return s;
480 }
481
482 cursor = qemu_put_mouse_event_head;
483 while (cursor->next != NULL)
484 cursor = cursor->next;
485
486 cursor->next = s;
487 qemu_put_mouse_event_current = s;
488
489 return s;
490 }
491
492 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
493 {
494 QEMUPutMouseEntry *prev = NULL, *cursor;
495
496 if (!qemu_put_mouse_event_head || entry == NULL)
497 return;
498
499 cursor = qemu_put_mouse_event_head;
500 while (cursor != NULL && cursor != entry) {
501 prev = cursor;
502 cursor = cursor->next;
503 }
504
505 if (cursor == NULL) // does not exist or list empty
506 return;
507 else if (prev == NULL) { // entry is head
508 qemu_put_mouse_event_head = cursor->next;
509 if (qemu_put_mouse_event_current == entry)
510 qemu_put_mouse_event_current = cursor->next;
511 qemu_free(entry->qemu_put_mouse_event_name);
512 qemu_free(entry);
513 return;
514 }
515
516 prev->next = entry->next;
517
518 if (qemu_put_mouse_event_current == entry)
519 qemu_put_mouse_event_current = prev;
520
521 qemu_free(entry->qemu_put_mouse_event_name);
522 qemu_free(entry);
523 }
524
525 void kbd_put_keycode(int keycode)
526 {
527 if (qemu_put_kbd_event) {
528 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
529 }
530 }
531
532 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
533 {
534 QEMUPutMouseEvent *mouse_event;
535 void *mouse_event_opaque;
536 int width;
537
538 if (!qemu_put_mouse_event_current) {
539 return;
540 }
541
542 mouse_event =
543 qemu_put_mouse_event_current->qemu_put_mouse_event;
544 mouse_event_opaque =
545 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
546
547 if (mouse_event) {
548 if (graphic_rotate) {
549 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
550 width = 0x7fff;
551 else
552 width = graphic_width;
553 mouse_event(mouse_event_opaque,
554 width - dy, dx, dz, buttons_state);
555 } else
556 mouse_event(mouse_event_opaque,
557 dx, dy, dz, buttons_state);
558 }
559 }
560
561 int kbd_mouse_is_absolute(void)
562 {
563 if (!qemu_put_mouse_event_current)
564 return 0;
565
566 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
567 }
568
569 void do_info_mice(void)
570 {
571 QEMUPutMouseEntry *cursor;
572 int index = 0;
573
574 if (!qemu_put_mouse_event_head) {
575 term_printf("No mouse devices connected\n");
576 return;
577 }
578
579 term_printf("Mouse devices available:\n");
580 cursor = qemu_put_mouse_event_head;
581 while (cursor != NULL) {
582 term_printf("%c Mouse #%d: %s\n",
583 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
584 index, cursor->qemu_put_mouse_event_name);
585 index++;
586 cursor = cursor->next;
587 }
588 }
589
590 void do_mouse_set(int index)
591 {
592 QEMUPutMouseEntry *cursor;
593 int i = 0;
594
595 if (!qemu_put_mouse_event_head) {
596 term_printf("No mouse devices connected\n");
597 return;
598 }
599
600 cursor = qemu_put_mouse_event_head;
601 while (cursor != NULL && index != i) {
602 i++;
603 cursor = cursor->next;
604 }
605
606 if (cursor != NULL)
607 qemu_put_mouse_event_current = cursor;
608 else
609 term_printf("Mouse at given index not found\n");
610 }
611
612 /* compute with 96 bit intermediate result: (a*b)/c */
613 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
614 {
615 union {
616 uint64_t ll;
617 struct {
618 #ifdef WORDS_BIGENDIAN
619 uint32_t high, low;
620 #else
621 uint32_t low, high;
622 #endif
623 } l;
624 } u, res;
625 uint64_t rl, rh;
626
627 u.ll = a;
628 rl = (uint64_t)u.l.low * (uint64_t)b;
629 rh = (uint64_t)u.l.high * (uint64_t)b;
630 rh += (rl >> 32);
631 res.l.high = rh / c;
632 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
633 return res.ll;
634 }
635
636 /***********************************************************/
637 /* real time host monotonic timer */
638
639 #define QEMU_TIMER_BASE 1000000000LL
640
641 #ifdef WIN32
642
643 static int64_t clock_freq;
644
645 static void init_get_clock(void)
646 {
647 LARGE_INTEGER freq;
648 int ret;
649 ret = QueryPerformanceFrequency(&freq);
650 if (ret == 0) {
651 fprintf(stderr, "Could not calibrate ticks\n");
652 exit(1);
653 }
654 clock_freq = freq.QuadPart;
655 }
656
657 static int64_t get_clock(void)
658 {
659 LARGE_INTEGER ti;
660 QueryPerformanceCounter(&ti);
661 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
662 }
663
664 #else
665
666 static int use_rt_clock;
667
668 static void init_get_clock(void)
669 {
670 use_rt_clock = 0;
671 #if defined(__linux__)
672 {
673 struct timespec ts;
674 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
675 use_rt_clock = 1;
676 }
677 }
678 #endif
679 }
680
681 static int64_t get_clock(void)
682 {
683 #if defined(__linux__)
684 if (use_rt_clock) {
685 struct timespec ts;
686 clock_gettime(CLOCK_MONOTONIC, &ts);
687 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
688 } else
689 #endif
690 {
691 /* XXX: using gettimeofday leads to problems if the date
692 changes, so it should be avoided. */
693 struct timeval tv;
694 gettimeofday(&tv, NULL);
695 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
696 }
697 }
698
699 #endif
700
701 /***********************************************************/
702 /* guest cycle counter */
703
704 static int64_t cpu_ticks_prev;
705 static int64_t cpu_ticks_offset;
706 static int64_t cpu_clock_offset;
707 static int cpu_ticks_enabled;
708
709 /* return the host CPU cycle counter and handle stop/restart */
710 int64_t cpu_get_ticks(void)
711 {
712 if (!cpu_ticks_enabled) {
713 return cpu_ticks_offset;
714 } else {
715 int64_t ticks;
716 ticks = cpu_get_real_ticks();
717 if (cpu_ticks_prev > ticks) {
718 /* Note: non increasing ticks may happen if the host uses
719 software suspend */
720 cpu_ticks_offset += cpu_ticks_prev - ticks;
721 }
722 cpu_ticks_prev = ticks;
723 return ticks + cpu_ticks_offset;
724 }
725 }
726
727 /* return the host CPU monotonic timer and handle stop/restart */
728 static int64_t cpu_get_clock(void)
729 {
730 int64_t ti;
731 if (!cpu_ticks_enabled) {
732 return cpu_clock_offset;
733 } else {
734 ti = get_clock();
735 return ti + cpu_clock_offset;
736 }
737 }
738
739 /* enable cpu_get_ticks() */
740 void cpu_enable_ticks(void)
741 {
742 if (!cpu_ticks_enabled) {
743 cpu_ticks_offset -= cpu_get_real_ticks();
744 cpu_clock_offset -= get_clock();
745 cpu_ticks_enabled = 1;
746 }
747 }
748
749 /* disable cpu_get_ticks() : the clock is stopped. You must not call
750 cpu_get_ticks() after that. */
751 void cpu_disable_ticks(void)
752 {
753 if (cpu_ticks_enabled) {
754 cpu_ticks_offset = cpu_get_ticks();
755 cpu_clock_offset = cpu_get_clock();
756 cpu_ticks_enabled = 0;
757 }
758 }
759
760 /***********************************************************/
761 /* timers */
762
763 #define QEMU_TIMER_REALTIME 0
764 #define QEMU_TIMER_VIRTUAL 1
765
766 struct QEMUClock {
767 int type;
768 /* XXX: add frequency */
769 };
770
771 struct QEMUTimer {
772 QEMUClock *clock;
773 int64_t expire_time;
774 QEMUTimerCB *cb;
775 void *opaque;
776 struct QEMUTimer *next;
777 };
778
779 QEMUClock *rt_clock;
780 QEMUClock *vm_clock;
781
782 static QEMUTimer *active_timers[2];
783 #ifdef _WIN32
784 static MMRESULT timerID;
785 static HANDLE host_alarm = NULL;
786 static unsigned int period = 1;
787 #else
788 /* frequency of the times() clock tick */
789 static int timer_freq;
790 #endif
791
792 QEMUClock *qemu_new_clock(int type)
793 {
794 QEMUClock *clock;
795 clock = qemu_mallocz(sizeof(QEMUClock));
796 if (!clock)
797 return NULL;
798 clock->type = type;
799 return clock;
800 }
801
802 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
803 {
804 QEMUTimer *ts;
805
806 ts = qemu_mallocz(sizeof(QEMUTimer));
807 ts->clock = clock;
808 ts->cb = cb;
809 ts->opaque = opaque;
810 return ts;
811 }
812
813 void qemu_free_timer(QEMUTimer *ts)
814 {
815 qemu_free(ts);
816 }
817
818 /* stop a timer, but do not dealloc it */
819 void qemu_del_timer(QEMUTimer *ts)
820 {
821 QEMUTimer **pt, *t;
822
823 /* NOTE: this code must be signal safe because
824 qemu_timer_expired() can be called from a signal. */
825 pt = &active_timers[ts->clock->type];
826 for(;;) {
827 t = *pt;
828 if (!t)
829 break;
830 if (t == ts) {
831 *pt = t->next;
832 break;
833 }
834 pt = &t->next;
835 }
836 }
837
838 /* modify the current timer so that it will be fired when current_time
839 >= expire_time. The corresponding callback will be called. */
840 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
841 {
842 QEMUTimer **pt, *t;
843
844 qemu_del_timer(ts);
845
846 /* add the timer in the sorted list */
847 /* NOTE: this code must be signal safe because
848 qemu_timer_expired() can be called from a signal. */
849 pt = &active_timers[ts->clock->type];
850 for(;;) {
851 t = *pt;
852 if (!t)
853 break;
854 if (t->expire_time > expire_time)
855 break;
856 pt = &t->next;
857 }
858 ts->expire_time = expire_time;
859 ts->next = *pt;
860 *pt = ts;
861 }
862
863 int qemu_timer_pending(QEMUTimer *ts)
864 {
865 QEMUTimer *t;
866 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
867 if (t == ts)
868 return 1;
869 }
870 return 0;
871 }
872
873 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
874 {
875 if (!timer_head)
876 return 0;
877 return (timer_head->expire_time <= current_time);
878 }
879
880 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
881 {
882 QEMUTimer *ts;
883
884 for(;;) {
885 ts = *ptimer_head;
886 if (!ts || ts->expire_time > current_time)
887 break;
888 /* remove timer from the list before calling the callback */
889 *ptimer_head = ts->next;
890 ts->next = NULL;
891
892 /* run the callback (the timer list can be modified) */
893 ts->cb(ts->opaque);
894 }
895 }
896
897 int64_t qemu_get_clock(QEMUClock *clock)
898 {
899 switch(clock->type) {
900 case QEMU_TIMER_REALTIME:
901 return get_clock() / 1000000;
902 default:
903 case QEMU_TIMER_VIRTUAL:
904 return cpu_get_clock();
905 }
906 }
907
908 static void init_timers(void)
909 {
910 init_get_clock();
911 ticks_per_sec = QEMU_TIMER_BASE;
912 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
913 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
914 }
915
916 /* save a timer */
917 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
918 {
919 uint64_t expire_time;
920
921 if (qemu_timer_pending(ts)) {
922 expire_time = ts->expire_time;
923 } else {
924 expire_time = -1;
925 }
926 qemu_put_be64(f, expire_time);
927 }
928
929 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
930 {
931 uint64_t expire_time;
932
933 expire_time = qemu_get_be64(f);
934 if (expire_time != -1) {
935 qemu_mod_timer(ts, expire_time);
936 } else {
937 qemu_del_timer(ts);
938 }
939 }
940
941 static void timer_save(QEMUFile *f, void *opaque)
942 {
943 if (cpu_ticks_enabled) {
944 hw_error("cannot save state if virtual timers are running");
945 }
946 qemu_put_be64s(f, &cpu_ticks_offset);
947 qemu_put_be64s(f, &ticks_per_sec);
948 qemu_put_be64s(f, &cpu_clock_offset);
949 }
950
951 static int timer_load(QEMUFile *f, void *opaque, int version_id)
952 {
953 if (version_id != 1 && version_id != 2)
954 return -EINVAL;
955 if (cpu_ticks_enabled) {
956 return -EINVAL;
957 }
958 qemu_get_be64s(f, &cpu_ticks_offset);
959 qemu_get_be64s(f, &ticks_per_sec);
960 if (version_id == 2) {
961 qemu_get_be64s(f, &cpu_clock_offset);
962 }
963 return 0;
964 }
965
966 #ifdef _WIN32
967 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
968 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
969 #else
970 static void host_alarm_handler(int host_signum)
971 #endif
972 {
973 #if 0
974 #define DISP_FREQ 1000
975 {
976 static int64_t delta_min = INT64_MAX;
977 static int64_t delta_max, delta_cum, last_clock, delta, ti;
978 static int count;
979 ti = qemu_get_clock(vm_clock);
980 if (last_clock != 0) {
981 delta = ti - last_clock;
982 if (delta < delta_min)
983 delta_min = delta;
984 if (delta > delta_max)
985 delta_max = delta;
986 delta_cum += delta;
987 if (++count == DISP_FREQ) {
988 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
989 muldiv64(delta_min, 1000000, ticks_per_sec),
990 muldiv64(delta_max, 1000000, ticks_per_sec),
991 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
992 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
993 count = 0;
994 delta_min = INT64_MAX;
995 delta_max = 0;
996 delta_cum = 0;
997 }
998 }
999 last_clock = ti;
1000 }
1001 #endif
1002 if (qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1003 qemu_get_clock(vm_clock)) ||
1004 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1005 qemu_get_clock(rt_clock))) {
1006 #ifdef _WIN32
1007 SetEvent(host_alarm);
1008 #endif
1009 CPUState *env = cpu_single_env;
1010 if (env) {
1011 /* stop the currently executing cpu because a timer occured */
1012 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1013 #ifdef USE_KQEMU
1014 if (env->kqemu_enabled) {
1015 kqemu_cpu_interrupt(env);
1016 }
1017 #endif
1018 }
1019 }
1020 }
1021
1022 #ifndef _WIN32
1023
1024 #if defined(__linux__)
1025
1026 #define RTC_FREQ 1024
1027
1028 static int rtc_fd;
1029
1030 static int start_rtc_timer(void)
1031 {
1032 rtc_fd = open("/dev/rtc", O_RDONLY);
1033 if (rtc_fd < 0)
1034 return -1;
1035 if (ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1036 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1037 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1038 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1039 goto fail;
1040 }
1041 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1042 fail:
1043 close(rtc_fd);
1044 return -1;
1045 }
1046 pit_min_timer_count = PIT_FREQ / RTC_FREQ;
1047 return 0;
1048 }
1049
1050 #else
1051
1052 static int start_rtc_timer(void)
1053 {
1054 return -1;
1055 }
1056
1057 #endif /* !defined(__linux__) */
1058
1059 #endif /* !defined(_WIN32) */
1060
1061 static void init_timer_alarm(void)
1062 {
1063 #ifdef _WIN32
1064 {
1065 int count=0;
1066 TIMECAPS tc;
1067
1068 ZeroMemory(&tc, sizeof(TIMECAPS));
1069 timeGetDevCaps(&tc, sizeof(TIMECAPS));
1070 if (period < tc.wPeriodMin)
1071 period = tc.wPeriodMin;
1072 timeBeginPeriod(period);
1073 timerID = timeSetEvent(1, // interval (ms)
1074 period, // resolution
1075 host_alarm_handler, // function
1076 (DWORD)&count, // user parameter
1077 TIME_PERIODIC | TIME_CALLBACK_FUNCTION);
1078 if( !timerID ) {
1079 perror("failed timer alarm");
1080 exit(1);
1081 }
1082 host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1083 if (!host_alarm) {
1084 perror("failed CreateEvent");
1085 exit(1);
1086 }
1087 qemu_add_wait_object(host_alarm, NULL, NULL);
1088 }
1089 pit_min_timer_count = ((uint64_t)10000 * PIT_FREQ) / 1000000;
1090 #else
1091 {
1092 struct sigaction act;
1093 struct itimerval itv;
1094
1095 /* get times() syscall frequency */
1096 timer_freq = sysconf(_SC_CLK_TCK);
1097
1098 /* timer signal */
1099 sigfillset(&act.sa_mask);
1100 act.sa_flags = 0;
1101 #if defined (TARGET_I386) && defined(USE_CODE_COPY)
1102 act.sa_flags |= SA_ONSTACK;
1103 #endif
1104 act.sa_handler = host_alarm_handler;
1105 sigaction(SIGALRM, &act, NULL);
1106
1107 itv.it_interval.tv_sec = 0;
1108 itv.it_interval.tv_usec = 999; /* for i386 kernel 2.6 to get 1 ms */
1109 itv.it_value.tv_sec = 0;
1110 itv.it_value.tv_usec = 10 * 1000;
1111 setitimer(ITIMER_REAL, &itv, NULL);
1112 /* we probe the tick duration of the kernel to inform the user if
1113 the emulated kernel requested a too high timer frequency */
1114 getitimer(ITIMER_REAL, &itv);
1115
1116 #if defined(__linux__)
1117 /* XXX: force /dev/rtc usage because even 2.6 kernels may not
1118 have timers with 1 ms resolution. The correct solution will
1119 be to use the POSIX real time timers available in recent
1120 2.6 kernels */
1121 if (itv.it_interval.tv_usec > 1000 || 1) {
1122 /* try to use /dev/rtc to have a faster timer */
1123 if (start_rtc_timer() < 0)
1124 goto use_itimer;
1125 /* disable itimer */
1126 itv.it_interval.tv_sec = 0;
1127 itv.it_interval.tv_usec = 0;
1128 itv.it_value.tv_sec = 0;
1129 itv.it_value.tv_usec = 0;
1130 setitimer(ITIMER_REAL, &itv, NULL);
1131
1132 /* use the RTC */
1133 sigaction(SIGIO, &act, NULL);
1134 fcntl(rtc_fd, F_SETFL, O_ASYNC);
1135 fcntl(rtc_fd, F_SETOWN, getpid());
1136 } else
1137 #endif /* defined(__linux__) */
1138 {
1139 use_itimer:
1140 pit_min_timer_count = ((uint64_t)itv.it_interval.tv_usec *
1141 PIT_FREQ) / 1000000;
1142 }
1143 }
1144 #endif
1145 }
1146
1147 void quit_timers(void)
1148 {
1149 #ifdef _WIN32
1150 timeKillEvent(timerID);
1151 timeEndPeriod(period);
1152 if (host_alarm) {
1153 CloseHandle(host_alarm);
1154 host_alarm = NULL;
1155 }
1156 #endif
1157 }
1158
1159 /***********************************************************/
1160 /* character device */
1161
1162 static void qemu_chr_event(CharDriverState *s, int event)
1163 {
1164 if (!s->chr_event)
1165 return;
1166 s->chr_event(s->handler_opaque, event);
1167 }
1168
1169 static void qemu_chr_reset_bh(void *opaque)
1170 {
1171 CharDriverState *s = opaque;
1172 qemu_chr_event(s, CHR_EVENT_RESET);
1173 qemu_bh_delete(s->bh);
1174 s->bh = NULL;
1175 }
1176
1177 void qemu_chr_reset(CharDriverState *s)
1178 {
1179 if (s->bh == NULL) {
1180 s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1181 qemu_bh_schedule(s->bh);
1182 }
1183 }
1184
1185 int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1186 {
1187 return s->chr_write(s, buf, len);
1188 }
1189
1190 int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1191 {
1192 if (!s->chr_ioctl)
1193 return -ENOTSUP;
1194 return s->chr_ioctl(s, cmd, arg);
1195 }
1196
1197 int qemu_chr_can_read(CharDriverState *s)
1198 {
1199 if (!s->chr_can_read)
1200 return 0;
1201 return s->chr_can_read(s->handler_opaque);
1202 }
1203
1204 void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1205 {
1206 s->chr_read(s->handler_opaque, buf, len);
1207 }
1208
1209
1210 void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1211 {
1212 char buf[4096];
1213 va_list ap;
1214 va_start(ap, fmt);
1215 vsnprintf(buf, sizeof(buf), fmt, ap);
1216 qemu_chr_write(s, buf, strlen(buf));
1217 va_end(ap);
1218 }
1219
1220 void qemu_chr_send_event(CharDriverState *s, int event)
1221 {
1222 if (s->chr_send_event)
1223 s->chr_send_event(s, event);
1224 }
1225
1226 void qemu_chr_add_handlers(CharDriverState *s,
1227 IOCanRWHandler *fd_can_read,
1228 IOReadHandler *fd_read,
1229 IOEventHandler *fd_event,
1230 void *opaque)
1231 {
1232 s->chr_can_read = fd_can_read;
1233 s->chr_read = fd_read;
1234 s->chr_event = fd_event;
1235 s->handler_opaque = opaque;
1236 if (s->chr_update_read_handler)
1237 s->chr_update_read_handler(s);
1238 }
1239
1240 static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1241 {
1242 return len;
1243 }
1244
1245 static CharDriverState *qemu_chr_open_null(void)
1246 {
1247 CharDriverState *chr;
1248
1249 chr = qemu_mallocz(sizeof(CharDriverState));
1250 if (!chr)
1251 return NULL;
1252 chr->chr_write = null_chr_write;
1253 return chr;
1254 }
1255
1256 /* MUX driver for serial I/O splitting */
1257 static int term_timestamps;
1258 static int64_t term_timestamps_start;
1259 #define MAX_MUX 4
1260 typedef struct {
1261 IOCanRWHandler *chr_can_read[MAX_MUX];
1262 IOReadHandler *chr_read[MAX_MUX];
1263 IOEventHandler *chr_event[MAX_MUX];
1264 void *ext_opaque[MAX_MUX];
1265 CharDriverState *drv;
1266 int mux_cnt;
1267 int term_got_escape;
1268 int max_size;
1269 } MuxDriver;
1270
1271
1272 static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1273 {
1274 MuxDriver *d = chr->opaque;
1275 int ret;
1276 if (!term_timestamps) {
1277 ret = d->drv->chr_write(d->drv, buf, len);
1278 } else {
1279 int i;
1280
1281 ret = 0;
1282 for(i = 0; i < len; i++) {
1283 ret += d->drv->chr_write(d->drv, buf+i, 1);
1284 if (buf[i] == '\n') {
1285 char buf1[64];
1286 int64_t ti;
1287 int secs;
1288
1289 ti = get_clock();
1290 if (term_timestamps_start == -1)
1291 term_timestamps_start = ti;
1292 ti -= term_timestamps_start;
1293 secs = ti / 1000000000;
1294 snprintf(buf1, sizeof(buf1),
1295 "[%02d:%02d:%02d.%03d] ",
1296 secs / 3600,
1297 (secs / 60) % 60,
1298 secs % 60,
1299 (int)((ti / 1000000) % 1000));
1300 d->drv->chr_write(d->drv, buf1, strlen(buf1));
1301 }
1302 }
1303 }
1304 return ret;
1305 }
1306
1307 static char *mux_help[] = {
1308 "% h print this help\n\r",
1309 "% x exit emulator\n\r",
1310 "% s save disk data back to file (if -snapshot)\n\r",
1311 "% t toggle console timestamps\n\r"
1312 "% b send break (magic sysrq)\n\r",
1313 "% c switch between console and monitor\n\r",
1314 "% % sends %\n\r",
1315 NULL
1316 };
1317
1318 static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1319 static void mux_print_help(CharDriverState *chr)
1320 {
1321 int i, j;
1322 char ebuf[15] = "Escape-Char";
1323 char cbuf[50] = "\n\r";
1324
1325 if (term_escape_char > 0 && term_escape_char < 26) {
1326 sprintf(cbuf,"\n\r");
1327 sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a');
1328 } else {
1329 sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r", term_escape_char);
1330 }
1331 chr->chr_write(chr, cbuf, strlen(cbuf));
1332 for (i = 0; mux_help[i] != NULL; i++) {
1333 for (j=0; mux_help[i][j] != '\0'; j++) {
1334 if (mux_help[i][j] == '%')
1335 chr->chr_write(chr, ebuf, strlen(ebuf));
1336 else
1337 chr->chr_write(chr, &mux_help[i][j], 1);
1338 }
1339 }
1340 }
1341
1342 static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1343 {
1344 if (d->term_got_escape) {
1345 d->term_got_escape = 0;
1346 if (ch == term_escape_char)
1347 goto send_char;
1348 switch(ch) {
1349 case '?':
1350 case 'h':
1351 mux_print_help(chr);
1352 break;
1353 case 'x':
1354 {
1355 char *term = "QEMU: Terminated\n\r";
1356 chr->chr_write(chr,term,strlen(term));
1357 exit(0);
1358 break;
1359 }
1360 case 's':
1361 {
1362 int i;
1363 for (i = 0; i < MAX_DISKS; i++) {
1364 if (bs_table[i])
1365 bdrv_commit(bs_table[i]);
1366 }
1367 if (mtd_bdrv)
1368 bdrv_commit(mtd_bdrv);
1369 }
1370 break;
1371 case 'b':
1372 qemu_chr_event(chr, CHR_EVENT_BREAK);
1373 break;
1374 case 'c':
1375 /* Switch to the next registered device */
1376 chr->focus++;
1377 if (chr->focus >= d->mux_cnt)
1378 chr->focus = 0;
1379 break;
1380 case 't':
1381 term_timestamps = !term_timestamps;
1382 term_timestamps_start = -1;
1383 break;
1384 }
1385 } else if (ch == term_escape_char) {
1386 d->term_got_escape = 1;
1387 } else {
1388 send_char:
1389 return 1;
1390 }
1391 return 0;
1392 }
1393
1394 static int mux_chr_can_read(void *opaque)
1395 {
1396 CharDriverState *chr = opaque;
1397 MuxDriver *d = chr->opaque;
1398 if (d->chr_can_read[chr->focus])
1399 return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
1400 return 0;
1401 }
1402
1403 static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
1404 {
1405 CharDriverState *chr = opaque;
1406 MuxDriver *d = chr->opaque;
1407 int i;
1408 for(i = 0; i < size; i++)
1409 if (mux_proc_byte(chr, d, buf[i]))
1410 d->chr_read[chr->focus](d->ext_opaque[chr->focus], &buf[i], 1);
1411 }
1412
1413 static void mux_chr_event(void *opaque, int event)
1414 {
1415 CharDriverState *chr = opaque;
1416 MuxDriver *d = chr->opaque;
1417 int i;
1418
1419 /* Send the event to all registered listeners */
1420 for (i = 0; i < d->mux_cnt; i++)
1421 if (d->chr_event[i])
1422 d->chr_event[i](d->ext_opaque[i], event);
1423 }
1424
1425 static void mux_chr_update_read_handler(CharDriverState *chr)
1426 {
1427 MuxDriver *d = chr->opaque;
1428
1429 if (d->mux_cnt >= MAX_MUX) {
1430 fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
1431 return;
1432 }
1433 d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
1434 d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
1435 d->chr_read[d->mux_cnt] = chr->chr_read;
1436 d->chr_event[d->mux_cnt] = chr->chr_event;
1437 /* Fix up the real driver with mux routines */
1438 if (d->mux_cnt == 0) {
1439 qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
1440 mux_chr_event, chr);
1441 }
1442 chr->focus = d->mux_cnt;
1443 d->mux_cnt++;
1444 }
1445
1446 CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
1447 {
1448 CharDriverState *chr;
1449 MuxDriver *d;
1450
1451 chr = qemu_mallocz(sizeof(CharDriverState));
1452 if (!chr)
1453 return NULL;
1454 d = qemu_mallocz(sizeof(MuxDriver));
1455 if (!d) {
1456 free(chr);
1457 return NULL;
1458 }
1459
1460 chr->opaque = d;
1461 d->drv = drv;
1462 chr->focus = -1;
1463 chr->chr_write = mux_chr_write;
1464 chr->chr_update_read_handler = mux_chr_update_read_handler;
1465 return chr;
1466 }
1467
1468
1469 #ifdef _WIN32
1470
1471 static void socket_cleanup(void)
1472 {
1473 WSACleanup();
1474 }
1475
1476 static int socket_init(void)
1477 {
1478 WSADATA Data;
1479 int ret, err;
1480
1481 ret = WSAStartup(MAKEWORD(2,2), &Data);
1482 if (ret != 0) {
1483 err = WSAGetLastError();
1484 fprintf(stderr, "WSAStartup: %d\n", err);
1485 return -1;
1486 }
1487 atexit(socket_cleanup);
1488 return 0;
1489 }
1490
1491 static int send_all(int fd, const uint8_t *buf, int len1)
1492 {
1493 int ret, len;
1494
1495 len = len1;
1496 while (len > 0) {
1497 ret = send(fd, buf, len, 0);
1498 if (ret < 0) {
1499 int errno;
1500 errno = WSAGetLastError();
1501 if (errno != WSAEWOULDBLOCK) {
1502 return -1;
1503 }
1504 } else if (ret == 0) {
1505 break;
1506 } else {
1507 buf += ret;
1508 len -= ret;
1509 }
1510 }
1511 return len1 - len;
1512 }
1513
1514 void socket_set_nonblock(int fd)
1515 {
1516 unsigned long opt = 1;
1517 ioctlsocket(fd, FIONBIO, &opt);
1518 }
1519
1520 #else
1521
1522 static int unix_write(int fd, const uint8_t *buf, int len1)
1523 {
1524 int ret, len;
1525
1526 len = len1;
1527 while (len > 0) {
1528 ret = write(fd, buf, len);
1529 if (ret < 0) {
1530 if (errno != EINTR && errno != EAGAIN)
1531 return -1;
1532 } else if (ret == 0) {
1533 break;
1534 } else {
1535 buf += ret;
1536 len -= ret;
1537 }
1538 }
1539 return len1 - len;
1540 }
1541
1542 static inline int send_all(int fd, const uint8_t *buf, int len1)
1543 {
1544 return unix_write(fd, buf, len1);
1545 }
1546
1547 void socket_set_nonblock(int fd)
1548 {
1549 fcntl(fd, F_SETFL, O_NONBLOCK);
1550 }
1551 #endif /* !_WIN32 */
1552
1553 #ifndef _WIN32
1554
1555 typedef struct {
1556 int fd_in, fd_out;
1557 int max_size;
1558 } FDCharDriver;
1559
1560 #define STDIO_MAX_CLIENTS 1
1561 static int stdio_nb_clients = 0;
1562
1563 static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1564 {
1565 FDCharDriver *s = chr->opaque;
1566 return unix_write(s->fd_out, buf, len);
1567 }
1568
1569 static int fd_chr_read_poll(void *opaque)
1570 {
1571 CharDriverState *chr = opaque;
1572 FDCharDriver *s = chr->opaque;
1573
1574 s->max_size = qemu_chr_can_read(chr);
1575 return s->max_size;
1576 }
1577
1578 static void fd_chr_read(void *opaque)
1579 {
1580 CharDriverState *chr = opaque;
1581 FDCharDriver *s = chr->opaque;
1582 int size, len;
1583 uint8_t buf[1024];
1584
1585 len = sizeof(buf);
1586 if (len > s->max_size)
1587 len = s->max_size;
1588 if (len == 0)
1589 return;
1590 size = read(s->fd_in, buf, len);
1591 if (size == 0) {
1592 /* FD has been closed. Remove it from the active list. */
1593 qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
1594 return;
1595 }
1596 if (size > 0) {
1597 qemu_chr_read(chr, buf, size);
1598 }
1599 }
1600
1601 static void fd_chr_update_read_handler(CharDriverState *chr)
1602 {
1603 FDCharDriver *s = chr->opaque;
1604
1605 if (s->fd_in >= 0) {
1606 if (nographic && s->fd_in == 0) {
1607 } else {
1608 qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
1609 fd_chr_read, NULL, chr);
1610 }
1611 }
1612 }
1613
1614 /* open a character device to a unix fd */
1615 static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
1616 {
1617 CharDriverState *chr;
1618 FDCharDriver *s;
1619
1620 chr = qemu_mallocz(sizeof(CharDriverState));
1621 if (!chr)
1622 return NULL;
1623 s = qemu_mallocz(sizeof(FDCharDriver));
1624 if (!s) {
1625 free(chr);
1626 return NULL;
1627 }
1628 s->fd_in = fd_in;
1629 s->fd_out = fd_out;
1630 chr->opaque = s;
1631 chr->chr_write = fd_chr_write;
1632 chr->chr_update_read_handler = fd_chr_update_read_handler;
1633
1634 qemu_chr_reset(chr);
1635
1636 return chr;
1637 }
1638
1639 static CharDriverState *qemu_chr_open_file_out(const char *file_out)
1640 {
1641 int fd_out;
1642
1643 fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666);
1644 if (fd_out < 0)
1645 return NULL;
1646 return qemu_chr_open_fd(-1, fd_out);
1647 }
1648
1649 static CharDriverState *qemu_chr_open_pipe(const char *filename)
1650 {
1651 int fd_in, fd_out;
1652 char filename_in[256], filename_out[256];
1653
1654 snprintf(filename_in, 256, "%s.in", filename);
1655 snprintf(filename_out, 256, "%s.out", filename);
1656 fd_in = open(filename_in, O_RDWR | O_BINARY);
1657 fd_out = open(filename_out, O_RDWR | O_BINARY);
1658 if (fd_in < 0 || fd_out < 0) {
1659 if (fd_in >= 0)
1660 close(fd_in);
1661 if (fd_out >= 0)
1662 close(fd_out);
1663 fd_in = fd_out = open(filename, O_RDWR | O_BINARY);
1664 if (fd_in < 0)
1665 return NULL;
1666 }
1667 return qemu_chr_open_fd(fd_in, fd_out);
1668 }
1669
1670
1671 /* for STDIO, we handle the case where several clients use it
1672 (nographic mode) */
1673
1674 #define TERM_FIFO_MAX_SIZE 1
1675
1676 static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
1677 static int term_fifo_size;
1678
1679 static int stdio_read_poll(void *opaque)
1680 {
1681 CharDriverState *chr = opaque;
1682
1683 /* try to flush the queue if needed */
1684 if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
1685 qemu_chr_read(chr, term_fifo, 1);
1686 term_fifo_size = 0;
1687 }
1688 /* see if we can absorb more chars */
1689 if (term_fifo_size == 0)
1690 return 1;
1691 else
1692 return 0;
1693 }
1694
1695 static void stdio_read(void *opaque)
1696 {
1697 int size;
1698 uint8_t buf[1];
1699 CharDriverState *chr = opaque;
1700
1701 size = read(0, buf, 1);
1702 if (size == 0) {
1703 /* stdin has been closed. Remove it from the active list. */
1704 qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
1705 return;
1706 }
1707 if (size > 0) {
1708 if (qemu_chr_can_read(chr) > 0) {
1709 qemu_chr_read(chr, buf, 1);
1710 } else if (term_fifo_size == 0) {
1711 term_fifo[term_fifo_size++] = buf[0];
1712 }
1713 }
1714 }
1715
1716 /* init terminal so that we can grab keys */
1717 static struct termios oldtty;
1718 static int old_fd0_flags;
1719
1720 static void term_exit(void)
1721 {
1722 tcsetattr (0, TCSANOW, &oldtty);
1723 fcntl(0, F_SETFL, old_fd0_flags);
1724 }
1725
1726 static void term_init(void)
1727 {
1728 struct termios tty;
1729
1730 tcgetattr (0, &tty);
1731 oldtty = tty;
1732 old_fd0_flags = fcntl(0, F_GETFL);
1733
1734 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1735 |INLCR|IGNCR|ICRNL|IXON);
1736 tty.c_oflag |= OPOST;
1737 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
1738 /* if graphical mode, we allow Ctrl-C handling */
1739 if (nographic)
1740 tty.c_lflag &= ~ISIG;
1741 tty.c_cflag &= ~(CSIZE|PARENB);
1742 tty.c_cflag |= CS8;
1743 tty.c_cc[VMIN] = 1;
1744 tty.c_cc[VTIME] = 0;
1745
1746 tcsetattr (0, TCSANOW, &tty);
1747
1748 atexit(term_exit);
1749
1750 fcntl(0, F_SETFL, O_NONBLOCK);
1751 }
1752
1753 static CharDriverState *qemu_chr_open_stdio(void)
1754 {
1755 CharDriverState *chr;
1756
1757 if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
1758 return NULL;
1759 chr = qemu_chr_open_fd(0, 1);
1760 qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
1761 stdio_nb_clients++;
1762 term_init();
1763
1764 return chr;
1765 }
1766
1767 #if defined(__linux__) || defined(__sun__)
1768 static CharDriverState *qemu_chr_open_pty(void)
1769 {
1770 struct termios tty;
1771 char slave_name[1024];
1772 int master_fd, slave_fd;
1773
1774 #if defined(__linux__)
1775 /* Not satisfying */
1776 if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
1777 return NULL;
1778 }
1779 #endif
1780
1781 /* Disabling local echo and line-buffered output */
1782 tcgetattr (master_fd, &tty);
1783 tty.c_lflag &= ~(ECHO|ICANON|ISIG);
1784 tty.c_cc[VMIN] = 1;
1785 tty.c_cc[VTIME] = 0;
1786 tcsetattr (master_fd, TCSAFLUSH, &tty);
1787
1788 fprintf(stderr, "char device redirected to %s\n", slave_name);
1789 return qemu_chr_open_fd(master_fd, master_fd);
1790 }
1791
1792 static void tty_serial_init(int fd, int speed,
1793 int parity, int data_bits, int stop_bits)
1794 {
1795 struct termios tty;
1796 speed_t spd;
1797
1798 #if 0
1799 printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
1800 speed, parity, data_bits, stop_bits);
1801 #endif
1802 tcgetattr (fd, &tty);
1803
1804 switch(speed) {
1805 case 50:
1806 spd = B50;
1807 break;
1808 case 75:
1809 spd = B75;
1810 break;
1811 case 300:
1812 spd = B300;
1813 break;
1814 case 600:
1815 spd = B600;
1816 break;
1817 case 1200:
1818 spd = B1200;
1819 break;
1820 case 2400:
1821 spd = B2400;
1822 break;
1823 case 4800:
1824 spd = B4800;
1825 break;
1826 case 9600:
1827 spd = B9600;
1828 break;
1829 case 19200:
1830 spd = B19200;
1831 break;
1832 case 38400:
1833 spd = B38400;
1834 break;
1835 case 57600:
1836 spd = B57600;
1837 break;
1838 default:
1839 case 115200:
1840 spd = B115200;
1841 break;
1842 }
1843
1844 cfsetispeed(&tty, spd);
1845 cfsetospeed(&tty, spd);
1846
1847 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1848 |INLCR|IGNCR|ICRNL|IXON);
1849 tty.c_oflag |= OPOST;
1850 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
1851 tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
1852 switch(data_bits) {
1853 default:
1854 case 8:
1855 tty.c_cflag |= CS8;
1856 break;
1857 case 7:
1858 tty.c_cflag |= CS7;
1859 break;
1860 case 6:
1861 tty.c_cflag |= CS6;
1862 break;
1863 case 5:
1864 tty.c_cflag |= CS5;
1865 break;
1866 }
1867 switch(parity) {
1868 default:
1869 case 'N':
1870 break;
1871 case 'E':
1872 tty.c_cflag |= PARENB;
1873 break;
1874 case 'O':
1875 tty.c_cflag |= PARENB | PARODD;
1876 break;
1877 }
1878 if (stop_bits == 2)
1879 tty.c_cflag |= CSTOPB;
1880
1881 tcsetattr (fd, TCSANOW, &tty);
1882 }
1883
1884 static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
1885 {
1886 FDCharDriver *s = chr->opaque;
1887
1888 switch(cmd) {
1889 case CHR_IOCTL_SERIAL_SET_PARAMS:
1890 {
1891 QEMUSerialSetParams *ssp = arg;
1892 tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
1893 ssp->data_bits, ssp->stop_bits);
1894 }
1895 break;
1896 case CHR_IOCTL_SERIAL_SET_BREAK:
1897 {
1898 int enable = *(int *)arg;
1899 if (enable)
1900 tcsendbreak(s->fd_in, 1);
1901 }
1902 break;
1903 default:
1904 return -ENOTSUP;
1905 }
1906 return 0;
1907 }
1908
1909 static CharDriverState *qemu_chr_open_tty(const char *filename)
1910 {
1911 CharDriverState *chr;
1912 int fd;
1913
1914 fd = open(filename, O_RDWR | O_NONBLOCK);
1915 if (fd < 0)
1916 return NULL;
1917 fcntl(fd, F_SETFL, O_NONBLOCK);
1918 tty_serial_init(fd, 115200, 'N', 8, 1);
1919 chr = qemu_chr_open_fd(fd, fd);
1920 if (!chr)
1921 return NULL;
1922 chr->chr_ioctl = tty_serial_ioctl;
1923 qemu_chr_reset(chr);
1924 return chr;
1925 }
1926 #else /* ! __linux__ && ! __sun__ */
1927 static CharDriverState *qemu_chr_open_pty(void)
1928 {
1929 return NULL;
1930 }
1931 #endif /* __linux__ || __sun__ */
1932
1933 #if defined(__linux__)
1934 typedef struct {
1935 int fd;
1936 int mode;
1937 } ParallelCharDriver;
1938
1939 static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
1940 {
1941 if (s->mode != mode) {
1942 int m = mode;
1943 if (ioctl(s->fd, PPSETMODE, &m) < 0)
1944 return 0;
1945 s->mode = mode;
1946 }
1947 return 1;
1948 }
1949
1950 static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
1951 {
1952 ParallelCharDriver *drv = chr->opaque;
1953 int fd = drv->fd;
1954 uint8_t b;
1955
1956 switch(cmd) {
1957 case CHR_IOCTL_PP_READ_DATA:
1958 if (ioctl(fd, PPRDATA, &b) < 0)
1959 return -ENOTSUP;
1960 *(uint8_t *)arg = b;
1961 break;
1962 case CHR_IOCTL_PP_WRITE_DATA:
1963 b = *(uint8_t *)arg;
1964 if (ioctl(fd, PPWDATA, &b) < 0)
1965 return -ENOTSUP;
1966 break;
1967 case CHR_IOCTL_PP_READ_CONTROL:
1968 if (ioctl(fd, PPRCONTROL, &b) < 0)
1969 return -ENOTSUP;
1970 /* Linux gives only the lowest bits, and no way to know data
1971 direction! For better compatibility set the fixed upper
1972 bits. */
1973 *(uint8_t *)arg = b | 0xc0;
1974 break;
1975 case CHR_IOCTL_PP_WRITE_CONTROL:
1976 b = *(uint8_t *)arg;
1977 if (ioctl(fd, PPWCONTROL, &b) < 0)
1978 return -ENOTSUP;
1979 break;
1980 case CHR_IOCTL_PP_READ_STATUS:
1981 if (ioctl(fd, PPRSTATUS, &b) < 0)
1982 return -ENOTSUP;
1983 *(uint8_t *)arg = b;
1984 break;
1985 case CHR_IOCTL_PP_EPP_READ_ADDR:
1986 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
1987 struct ParallelIOArg *parg = arg;
1988 int n = read(fd, parg->buffer, parg->count);
1989 if (n != parg->count) {
1990 return -EIO;
1991 }
1992 }
1993 break;
1994 case CHR_IOCTL_PP_EPP_READ:
1995 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
1996 struct ParallelIOArg *parg = arg;
1997 int n = read(fd, parg->buffer, parg->count);
1998 if (n != parg->count) {
1999 return -EIO;
2000 }
2001 }
2002 break;
2003 case CHR_IOCTL_PP_EPP_WRITE_ADDR:
2004 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2005 struct ParallelIOArg *parg = arg;
2006 int n = write(fd, parg->buffer, parg->count);
2007 if (n != parg->count) {
2008 return -EIO;
2009 }
2010 }
2011 break;
2012 case CHR_IOCTL_PP_EPP_WRITE:
2013 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2014 struct ParallelIOArg *parg = arg;
2015 int n = write(fd, parg->buffer, parg->count);
2016 if (n != parg->count) {
2017 return -EIO;
2018 }
2019 }
2020 break;
2021 default:
2022 return -ENOTSUP;
2023 }
2024 return 0;
2025 }
2026
2027 static void pp_close(CharDriverState *chr)
2028 {
2029 ParallelCharDriver *drv = chr->opaque;
2030 int fd = drv->fd;
2031
2032 pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2033 ioctl(fd, PPRELEASE);
2034 close(fd);
2035 qemu_free(drv);
2036 }
2037
2038 static CharDriverState *qemu_chr_open_pp(const char *filename)
2039 {
2040 CharDriverState *chr;
2041 ParallelCharDriver *drv;
2042 int fd;
2043
2044 fd = open(filename, O_RDWR);
2045 if (fd < 0)
2046 return NULL;
2047
2048 if (ioctl(fd, PPCLAIM) < 0) {
2049 close(fd);
2050 return NULL;
2051 }
2052
2053 drv = qemu_mallocz(sizeof(ParallelCharDriver));
2054 if (!drv) {
2055 close(fd);
2056 return NULL;
2057 }
2058 drv->fd = fd;
2059 drv->mode = IEEE1284_MODE_COMPAT;
2060
2061 chr = qemu_mallocz(sizeof(CharDriverState));
2062 if (!chr) {
2063 qemu_free(drv);
2064 close(fd);
2065 return NULL;
2066 }
2067 chr->chr_write = null_chr_write;
2068 chr->chr_ioctl = pp_ioctl;
2069 chr->chr_close = pp_close;
2070 chr->opaque = drv;
2071
2072 qemu_chr_reset(chr);
2073
2074 return chr;
2075 }
2076 #endif /* __linux__ */
2077
2078 #else /* _WIN32 */
2079
2080 typedef struct {
2081 int max_size;
2082 HANDLE hcom, hrecv, hsend;
2083 OVERLAPPED orecv, osend;
2084 BOOL fpipe;
2085 DWORD len;
2086 } WinCharState;
2087
2088 #define NSENDBUF 2048
2089 #define NRECVBUF 2048
2090 #define MAXCONNECT 1
2091 #define NTIMEOUT 5000
2092
2093 static int win_chr_poll(void *opaque);
2094 static int win_chr_pipe_poll(void *opaque);
2095
2096 static void win_chr_close(CharDriverState *chr)
2097 {
2098 WinCharState *s = chr->opaque;
2099
2100 if (s->hsend) {
2101 CloseHandle(s->hsend);
2102 s->hsend = NULL;
2103 }
2104 if (s->hrecv) {
2105 CloseHandle(s->hrecv);
2106 s->hrecv = NULL;
2107 }
2108 if (s->hcom) {
2109 CloseHandle(s->hcom);
2110 s->hcom = NULL;
2111 }
2112 if (s->fpipe)
2113 qemu_del_polling_cb(win_chr_pipe_poll, chr);
2114 else
2115 qemu_del_polling_cb(win_chr_poll, chr);
2116 }
2117
2118 static int win_chr_init(CharDriverState *chr, const char *filename)
2119 {
2120 WinCharState *s = chr->opaque;
2121 COMMCONFIG comcfg;
2122 COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2123 COMSTAT comstat;
2124 DWORD size;
2125 DWORD err;
2126
2127 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2128 if (!s->hsend) {
2129 fprintf(stderr, "Failed CreateEvent\n");
2130 goto fail;
2131 }
2132 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2133 if (!s->hrecv) {
2134 fprintf(stderr, "Failed CreateEvent\n");
2135 goto fail;
2136 }
2137
2138 s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2139 OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2140 if (s->hcom == INVALID_HANDLE_VALUE) {
2141 fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2142 s->hcom = NULL;
2143 goto fail;
2144 }
2145
2146 if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
2147 fprintf(stderr, "Failed SetupComm\n");
2148 goto fail;
2149 }
2150
2151 ZeroMemory(&comcfg, sizeof(COMMCONFIG));
2152 size = sizeof(COMMCONFIG);
2153 GetDefaultCommConfig(filename, &comcfg, &size);
2154 comcfg.dcb.DCBlength = sizeof(DCB);
2155 CommConfigDialog(filename, NULL, &comcfg);
2156
2157 if (!SetCommState(s->hcom, &comcfg.dcb)) {
2158 fprintf(stderr, "Failed SetCommState\n");
2159 goto fail;
2160 }
2161
2162 if (!SetCommMask(s->hcom, EV_ERR)) {
2163 fprintf(stderr, "Failed SetCommMask\n");
2164 goto fail;
2165 }
2166
2167 cto.ReadIntervalTimeout = MAXDWORD;
2168 if (!SetCommTimeouts(s->hcom, &cto)) {
2169 fprintf(stderr, "Failed SetCommTimeouts\n");
2170 goto fail;
2171 }
2172
2173 if (!ClearCommError(s->hcom, &err, &comstat)) {
2174 fprintf(stderr, "Failed ClearCommError\n");
2175 goto fail;
2176 }
2177 qemu_add_polling_cb(win_chr_poll, chr);
2178 return 0;
2179
2180 fail:
2181 win_chr_close(chr);
2182 return -1;
2183 }
2184
2185 static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
2186 {
2187 WinCharState *s = chr->opaque;
2188 DWORD len, ret, size, err;
2189
2190 len = len1;
2191 ZeroMemory(&s->osend, sizeof(s->osend));
2192 s->osend.hEvent = s->hsend;
2193 while (len > 0) {
2194 if (s->hsend)
2195 ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
2196 else
2197 ret = WriteFile(s->hcom, buf, len, &size, NULL);
2198 if (!ret) {
2199 err = GetLastError();
2200 if (err == ERROR_IO_PENDING) {
2201 ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
2202 if (ret) {
2203 buf += size;
2204 len -= size;
2205 } else {
2206 break;
2207 }
2208 } else {
2209 break;
2210 }
2211 } else {
2212 buf += size;
2213 len -= size;
2214 }
2215 }
2216 return len1 - len;
2217 }
2218
2219 static int win_chr_read_poll(CharDriverState *chr)
2220 {
2221 WinCharState *s = chr->opaque;
2222
2223 s->max_size = qemu_chr_can_read(chr);
2224 return s->max_size;
2225 }
2226
2227 static void win_chr_readfile(CharDriverState *chr)
2228 {
2229 WinCharState *s = chr->opaque;
2230 int ret, err;
2231 uint8_t buf[1024];
2232 DWORD size;
2233
2234 ZeroMemory(&s->orecv, sizeof(s->orecv));
2235 s->orecv.hEvent = s->hrecv;
2236 ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
2237 if (!ret) {
2238 err = GetLastError();
2239 if (err == ERROR_IO_PENDING) {
2240 ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
2241 }
2242 }
2243
2244 if (size > 0) {
2245 qemu_chr_read(chr, buf, size);
2246 }
2247 }
2248
2249 static void win_chr_read(CharDriverState *chr)
2250 {
2251 WinCharState *s = chr->opaque;
2252
2253 if (s->len > s->max_size)
2254 s->len = s->max_size;
2255 if (s->len == 0)
2256 return;
2257
2258 win_chr_readfile(chr);
2259 }
2260
2261 static int win_chr_poll(void *opaque)
2262 {
2263 CharDriverState *chr = opaque;
2264 WinCharState *s = chr->opaque;
2265 COMSTAT status;
2266 DWORD comerr;
2267
2268 ClearCommError(s->hcom, &comerr, &status);
2269 if (status.cbInQue > 0) {
2270 s->len = status.cbInQue;
2271 win_chr_read_poll(chr);
2272 win_chr_read(chr);
2273 return 1;
2274 }
2275 return 0;
2276 }
2277
2278 static CharDriverState *qemu_chr_open_win(const char *filename)
2279 {
2280 CharDriverState *chr;
2281 WinCharState *s;
2282
2283 chr = qemu_mallocz(sizeof(CharDriverState));
2284 if (!chr)
2285 return NULL;
2286 s = qemu_mallocz(sizeof(WinCharState));
2287 if (!s) {
2288 free(chr);
2289 return NULL;
2290 }
2291 chr->opaque = s;
2292 chr->chr_write = win_chr_write;
2293 chr->chr_close = win_chr_close;
2294
2295 if (win_chr_init(chr, filename) < 0) {
2296 free(s);
2297 free(chr);
2298 return NULL;
2299 }
2300 qemu_chr_reset(chr);
2301 return chr;
2302 }
2303
2304 static int win_chr_pipe_poll(void *opaque)
2305 {
2306 CharDriverState *chr = opaque;
2307 WinCharState *s = chr->opaque;
2308 DWORD size;
2309
2310 PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
2311 if (size > 0) {
2312 s->len = size;
2313 win_chr_read_poll(chr);
2314 win_chr_read(chr);
2315 return 1;
2316 }
2317 return 0;
2318 }
2319
2320 static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
2321 {
2322 WinCharState *s = chr->opaque;
2323 OVERLAPPED ov;
2324 int ret;
2325 DWORD size;
2326 char openname[256];
2327
2328 s->fpipe = TRUE;
2329
2330 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2331 if (!s->hsend) {
2332 fprintf(stderr, "Failed CreateEvent\n");
2333 goto fail;
2334 }
2335 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2336 if (!s->hrecv) {
2337 fprintf(stderr, "Failed CreateEvent\n");
2338 goto fail;
2339 }
2340
2341 snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2342 s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2343 PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2344 PIPE_WAIT,
2345 MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2346 if (s->hcom == INVALID_HANDLE_VALUE) {
2347 fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2348 s->hcom = NULL;
2349 goto fail;
2350 }
2351
2352 ZeroMemory(&ov, sizeof(ov));
2353 ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2354 ret = ConnectNamedPipe(s->hcom, &ov);
2355 if (ret) {
2356 fprintf(stderr, "Failed ConnectNamedPipe\n");
2357 goto fail;
2358 }
2359
2360 ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2361 if (!ret) {
2362 fprintf(stderr, "Failed GetOverlappedResult\n");
2363 if (ov.hEvent) {
2364 CloseHandle(ov.hEvent);
2365 ov.hEvent = NULL;
2366 }
2367 goto fail;
2368 }
2369
2370 if (ov.hEvent) {
2371 CloseHandle(ov.hEvent);
2372 ov.hEvent = NULL;
2373 }
2374 qemu_add_polling_cb(win_chr_pipe_poll, chr);
2375 return 0;
2376
2377 fail:
2378 win_chr_close(chr);
2379 return -1;
2380 }
2381
2382
2383 static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2384 {
2385 CharDriverState *chr;
2386 WinCharState *s;
2387
2388 chr = qemu_mallocz(sizeof(CharDriverState));
2389 if (!chr)
2390 return NULL;
2391 s = qemu_mallocz(sizeof(WinCharState));
2392 if (!s) {
2393 free(chr);
2394 return NULL;
2395 }
2396 chr->opaque = s;
2397 chr->chr_write = win_chr_write;
2398 chr->chr_close = win_chr_close;
2399
2400 if (win_chr_pipe_init(chr, filename) < 0) {
2401 free(s);
2402 free(chr);
2403 return NULL;
2404 }
2405 qemu_chr_reset(chr);
2406 return chr;
2407 }
2408
2409 static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2410 {
2411 CharDriverState *chr;
2412 WinCharState *s;
2413
2414 chr = qemu_mallocz(sizeof(CharDriverState));
2415 if (!chr)
2416 return NULL;
2417 s = qemu_mallocz(sizeof(WinCharState));
2418 if (!s) {
2419 free(chr);
2420 return NULL;
2421 }
2422 s->hcom = fd_out;
2423 chr->opaque = s;
2424 chr->chr_write = win_chr_write;
2425 qemu_chr_reset(chr);
2426 return chr;
2427 }
2428
2429 static CharDriverState *qemu_chr_open_win_con(const char *filename)
2430 {
2431 return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
2432 }
2433
2434 static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2435 {
2436 HANDLE fd_out;
2437
2438 fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2439 OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2440 if (fd_out == INVALID_HANDLE_VALUE)
2441 return NULL;
2442
2443 return qemu_chr_open_win_file(fd_out);
2444 }
2445 #endif /* !_WIN32 */
2446
2447 /***********************************************************/
2448 /* UDP Net console */
2449
2450 typedef struct {
2451 int fd;
2452 struct sockaddr_in daddr;
2453 char buf[1024];
2454 int bufcnt;
2455 int bufptr;
2456 int max_size;
2457 } NetCharDriver;
2458
2459 static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2460 {
2461 NetCharDriver *s = chr->opaque;
2462
2463 return sendto(s->fd, buf, len, 0,
2464 (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
2465 }
2466
2467 static int udp_chr_read_poll(void *opaque)
2468 {
2469 CharDriverState *chr = opaque;
2470 NetCharDriver *s = chr->opaque;
2471
2472 s->max_size = qemu_chr_can_read(chr);
2473
2474 /* If there were any stray characters in the queue process them
2475 * first
2476 */
2477 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2478 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2479 s->bufptr++;
2480 s->max_size = qemu_chr_can_read(chr);
2481 }
2482 return s->max_size;
2483 }
2484
2485 static void udp_chr_read(void *opaque)
2486 {
2487 CharDriverState *chr = opaque;
2488 NetCharDriver *s = chr->opaque;
2489
2490 if (s->max_size == 0)
2491 return;
2492 s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
2493 s->bufptr = s->bufcnt;
2494 if (s->bufcnt <= 0)
2495 return;
2496
2497 s->bufptr = 0;
2498 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2499 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2500 s->bufptr++;
2501 s->max_size = qemu_chr_can_read(chr);
2502 }
2503 }
2504
2505 static void udp_chr_update_read_handler(CharDriverState *chr)
2506 {
2507 NetCharDriver *s = chr->opaque;
2508
2509 if (s->fd >= 0) {
2510 qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
2511 udp_chr_read, NULL, chr);
2512 }
2513 }
2514
2515 int parse_host_port(struct sockaddr_in *saddr, const char *str);
2516 #ifndef _WIN32
2517 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
2518 #endif
2519 int parse_host_src_port(struct sockaddr_in *haddr,
2520 struct sockaddr_in *saddr,
2521 const char *str);
2522
2523 static CharDriverState *qemu_chr_open_udp(const char *def)
2524 {
2525 CharDriverState *chr = NULL;
2526 NetCharDriver *s = NULL;
2527 int fd = -1;
2528 struct sockaddr_in saddr;
2529
2530 chr = qemu_mallocz(sizeof(CharDriverState));
2531 if (!chr)
2532 goto return_err;
2533 s = qemu_mallocz(sizeof(NetCharDriver));
2534 if (!s)
2535 goto return_err;
2536
2537 fd = socket(PF_INET, SOCK_DGRAM, 0);
2538 if (fd < 0) {
2539 perror("socket(PF_INET, SOCK_DGRAM)");
2540 goto return_err;
2541 }
2542
2543 if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
2544 printf("Could not parse: %s\n", def);
2545 goto return_err;
2546 }
2547
2548 if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
2549 {
2550 perror("bind");
2551 goto return_err;
2552 }
2553
2554 s->fd = fd;
2555 s->bufcnt = 0;
2556 s->bufptr = 0;
2557 chr->opaque = s;
2558 chr->chr_write = udp_chr_write;
2559 chr->chr_update_read_handler = udp_chr_update_read_handler;
2560 return chr;
2561
2562 return_err:
2563 if (chr)
2564 free(chr);
2565 if (s)
2566 free(s);
2567 if (fd >= 0)
2568 closesocket(fd);
2569 return NULL;
2570 }
2571
2572 /***********************************************************/
2573 /* TCP Net console */
2574
2575 typedef struct {
2576 int fd, listen_fd;
2577 int connected;
2578 int max_size;
2579 int do_telnetopt;
2580 int do_nodelay;
2581 int is_unix;
2582 } TCPCharDriver;
2583
2584 static void tcp_chr_accept(void *opaque);
2585
2586 static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2587 {
2588 TCPCharDriver *s = chr->opaque;
2589 if (s->connected) {
2590 return send_all(s->fd, buf, len);
2591 } else {
2592 /* XXX: indicate an error ? */
2593 return len;
2594 }
2595 }
2596
2597 static int tcp_chr_read_poll(void *opaque)
2598 {
2599 CharDriverState *chr = opaque;
2600 TCPCharDriver *s = chr->opaque;
2601 if (!s->connected)
2602 return 0;
2603 s->max_size = qemu_chr_can_read(chr);
2604 return s->max_size;
2605 }
2606
2607 #define IAC 255
2608 #define IAC_BREAK 243
2609 static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
2610 TCPCharDriver *s,
2611 char *buf, int *size)
2612 {
2613 /* Handle any telnet client's basic IAC options to satisfy char by
2614 * char mode with no echo. All IAC options will be removed from
2615 * the buf and the do_telnetopt variable will be used to track the
2616 * state of the width of the IAC information.
2617 *
2618 * IAC commands come in sets of 3 bytes with the exception of the
2619 * "IAC BREAK" command and the double IAC.
2620 */
2621
2622 int i;
2623 int j = 0;
2624
2625 for (i = 0; i < *size; i++) {
2626 if (s->do_telnetopt > 1) {
2627 if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
2628 /* Double IAC means send an IAC */
2629 if (j != i)
2630 buf[j] = buf[i];
2631 j++;
2632 s->do_telnetopt = 1;
2633 } else {
2634 if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
2635 /* Handle IAC break commands by sending a serial break */
2636 qemu_chr_event(chr, CHR_EVENT_BREAK);
2637 s->do_telnetopt++;
2638 }
2639 s->do_telnetopt++;
2640 }
2641 if (s->do_telnetopt >= 4) {
2642 s->do_telnetopt = 1;
2643 }
2644 } else {
2645 if ((unsigned char)buf[i] == IAC) {
2646 s->do_telnetopt = 2;
2647 } else {
2648 if (j != i)
2649 buf[j] = buf[i];
2650 j++;
2651 }
2652 }
2653 }
2654 *size = j;
2655 }
2656
2657 static void tcp_chr_read(void *opaque)
2658 {
2659 CharDriverState *chr = opaque;
2660 TCPCharDriver *s = chr->opaque;
2661 uint8_t buf[1024];
2662 int len, size;
2663
2664 if (!s->connected || s->max_size <= 0)
2665 return;
2666 len = sizeof(buf);
2667 if (len > s->max_size)
2668 len = s->max_size;
2669 size = recv(s->fd, buf, len, 0);
2670 if (size == 0) {
2671 /* connection closed */
2672 s->connected = 0;
2673 if (s->listen_fd >= 0) {
2674 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
2675 }
2676 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
2677 closesocket(s->fd);
2678 s->fd = -1;
2679 } else if (size > 0) {
2680 if (s->do_telnetopt)
2681 tcp_chr_process_IAC_bytes(chr, s, buf, &size);
2682 if (size > 0)
2683 qemu_chr_read(chr, buf, size);
2684 }
2685 }
2686
2687 static void tcp_chr_connect(void *opaque)
2688 {
2689 CharDriverState *chr = opaque;
2690 TCPCharDriver *s = chr->opaque;
2691
2692 s->connected = 1;
2693 qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
2694 tcp_chr_read, NULL, chr);
2695 qemu_chr_reset(chr);
2696 }
2697
2698 #define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
2699 static void tcp_chr_telnet_init(int fd)
2700 {
2701 char buf[3];
2702 /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
2703 IACSET(buf, 0xff, 0xfb, 0x01); /* IAC WILL ECHO */
2704 send(fd, (char *)buf, 3, 0);
2705 IACSET(buf, 0xff, 0xfb, 0x03); /* IAC WILL Suppress go ahead */
2706 send(fd, (char *)buf, 3, 0);
2707 IACSET(buf, 0xff, 0xfb, 0x00); /* IAC WILL Binary */
2708 send(fd, (char *)buf, 3, 0);
2709 IACSET(buf, 0xff, 0xfd, 0x00); /* IAC DO Binary */
2710 send(fd, (char *)buf, 3, 0);
2711 }
2712
2713 static void socket_set_nodelay(int fd)
2714 {
2715 int val = 1;
2716 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2717 }
2718
2719 static void tcp_chr_accept(void *opaque)
2720 {
2721 CharDriverState *chr = opaque;
2722 TCPCharDriver *s = chr->opaque;
2723 struct sockaddr_in saddr;
2724 #ifndef _WIN32
2725 struct sockaddr_un uaddr;
2726 #endif
2727 struct sockaddr *addr;
2728 socklen_t len;
2729 int fd;
2730
2731 for(;;) {
2732 #ifndef _WIN32
2733 if (s->is_unix) {
2734 len = sizeof(uaddr);
2735 addr = (struct sockaddr *)&uaddr;
2736 } else
2737 #endif
2738 {
2739 len = sizeof(saddr);
2740 addr = (struct sockaddr *)&saddr;
2741 }
2742 fd = accept(s->listen_fd, addr, &len);
2743 if (fd < 0 && errno != EINTR) {
2744 return;
2745 } else if (fd >= 0) {
2746 if (s->do_telnetopt)
2747 tcp_chr_telnet_init(fd);
2748 break;
2749 }
2750 }
2751 socket_set_nonblock(fd);
2752 if (s->do_nodelay)
2753 socket_set_nodelay(fd);
2754 s->fd = fd;
2755 qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
2756 tcp_chr_connect(chr);
2757 }
2758
2759 static void tcp_chr_close(CharDriverState *chr)
2760 {
2761 TCPCharDriver *s = chr->opaque;
2762 if (s->fd >= 0)
2763 closesocket(s->fd);
2764 if (s->listen_fd >= 0)
2765 closesocket(s->listen_fd);
2766 qemu_free(s);
2767 }
2768
2769 static CharDriverState *qemu_chr_open_tcp(const char *host_str,
2770 int is_telnet,
2771 int is_unix)
2772 {
2773 CharDriverState *chr = NULL;
2774 TCPCharDriver *s = NULL;
2775 int fd = -1, ret, err, val;
2776 int is_listen = 0;
2777 int is_waitconnect = 1;
2778 int do_nodelay = 0;
2779 const char *ptr;
2780 struct sockaddr_in saddr;
2781 #ifndef _WIN32
2782 struct sockaddr_un uaddr;
2783 #endif
2784 struct sockaddr *addr;
2785 socklen_t addrlen;
2786
2787 #ifndef _WIN32
2788 if (is_unix) {
2789 addr = (struct sockaddr *)&uaddr;
2790 addrlen = sizeof(uaddr);
2791 if (parse_unix_path(&uaddr, host_str) < 0)
2792 goto fail;
2793 } else
2794 #endif
2795 {
2796 addr = (struct sockaddr *)&saddr;
2797 addrlen = sizeof(saddr);
2798 if (parse_host_port(&saddr, host_str) < 0)
2799 goto fail;
2800 }
2801
2802 ptr = host_str;
2803 while((ptr = strchr(ptr,','))) {
2804 ptr++;
2805 if (!strncmp(ptr,"server",6)) {
2806 is_listen = 1;
2807 } else if (!strncmp(ptr,"nowait",6)) {
2808 is_waitconnect = 0;
2809 } else if (!strncmp(ptr,"nodelay",6)) {
2810 do_nodelay = 1;
2811 } else {
2812 printf("Unknown option: %s\n", ptr);
2813 goto fail;
2814 }
2815 }
2816 if (!is_listen)
2817 is_waitconnect = 0;
2818
2819 chr = qemu_mallocz(sizeof(CharDriverState));
2820 if (!chr)
2821 goto fail;
2822 s = qemu_mallocz(sizeof(TCPCharDriver));
2823 if (!s)
2824 goto fail;
2825
2826 #ifndef _WIN32
2827 if (is_unix)
2828 fd = socket(PF_UNIX, SOCK_STREAM, 0);
2829 else
2830 #endif
2831 fd = socket(PF_INET, SOCK_STREAM, 0);
2832
2833 if (fd < 0)
2834 goto fail;
2835
2836 if (!is_waitconnect)
2837 socket_set_nonblock(fd);
2838
2839 s->connected = 0;
2840 s->fd = -1;
2841 s->listen_fd = -1;
2842 s->is_unix = is_unix;
2843 s->do_nodelay = do_nodelay && !is_unix;
2844
2845 chr->opaque = s;
2846 chr->chr_write = tcp_chr_write;
2847 chr->chr_close = tcp_chr_close;
2848
2849 if (is_listen) {
2850 /* allow fast reuse */
2851 #ifndef _WIN32
2852 if (is_unix) {
2853 char path[109];
2854 strncpy(path, uaddr.sun_path, 108);
2855 path[108] = 0;
2856 unlink(path);
2857 } else
2858 #endif
2859 {
2860 val = 1;
2861 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
2862 }
2863
2864 ret = bind(fd, addr, addrlen);
2865 if (ret < 0)
2866 goto fail;
2867
2868 ret = listen(fd, 0);
2869 if (ret < 0)
2870 goto fail;
2871
2872 s->listen_fd = fd;
2873 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
2874 if (is_telnet)
2875 s->do_telnetopt = 1;
2876 } else {
2877 for(;;) {
2878 ret = connect(fd, addr, addrlen);
2879 if (ret < 0) {
2880 err = socket_error();
2881 if (err == EINTR || err == EWOULDBLOCK) {
2882 } else if (err == EINPROGRESS) {
2883 break;
2884 #ifdef _WIN32
2885 } else if (err == WSAEALREADY) {
2886 break;
2887 #endif
2888 } else {
2889 goto fail;
2890 }
2891 } else {
2892 s->connected = 1;
2893 break;
2894 }
2895 }
2896 s->fd = fd;
2897 socket_set_nodelay(fd);
2898 if (s->connected)
2899 tcp_chr_connect(chr);
2900 else
2901 qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
2902 }
2903
2904 if (is_listen && is_waitconnect) {
2905 printf("QEMU waiting for connection on: %s\n", host_str);
2906 tcp_chr_accept(chr);
2907 socket_set_nonblock(s->listen_fd);
2908 }
2909
2910 return chr;
2911 fail:
2912 if (fd >= 0)
2913 closesocket(fd);
2914 qemu_free(s);
2915 qemu_free(chr);
2916 return NULL;
2917 }
2918
2919 CharDriverState *qemu_chr_open(const char *filename)
2920 {
2921 const char *p;
2922
2923 if (!strcmp(filename, "vc")) {
2924 return text_console_init(&display_state);
2925 } else if (!strcmp(filename, "null")) {
2926 return qemu_chr_open_null();
2927 } else
2928 if (strstart(filename, "tcp:", &p)) {
2929 return qemu_chr_open_tcp(p, 0, 0);
2930 } else
2931 if (strstart(filename, "telnet:", &p)) {
2932 return qemu_chr_open_tcp(p, 1, 0);
2933 } else
2934 if (strstart(filename, "udp:", &p)) {
2935 return qemu_chr_open_udp(p);
2936 } else
2937 if (strstart(filename, "mon:", &p)) {
2938 CharDriverState *drv = qemu_chr_open(p);
2939 if (drv) {
2940 drv = qemu_chr_open_mux(drv);
2941 monitor_init(drv, !nographic);
2942 return drv;
2943 }
2944 printf("Unable to open driver: %s\n", p);
2945 return 0;
2946 } else
2947 #ifndef _WIN32
2948 if (strstart(filename, "unix:", &p)) {
2949 return qemu_chr_open_tcp(p, 0, 1);
2950 } else if (strstart(filename, "file:", &p)) {
2951 return qemu_chr_open_file_out(p);
2952 } else if (strstart(filename, "pipe:", &p)) {
2953 return qemu_chr_open_pipe(p);
2954 } else if (!strcmp(filename, "pty")) {
2955 return qemu_chr_open_pty();
2956 } else if (!strcmp(filename, "stdio")) {
2957 return qemu_chr_open_stdio();
2958 } else
2959 #if defined(__linux__)
2960 if (strstart(filename, "/dev/parport", NULL)) {
2961 return qemu_chr_open_pp(filename);
2962 } else
2963 #endif
2964 #if defined(__linux__) || defined(__sun__)
2965 if (strstart(filename, "/dev/", NULL)) {
2966 return qemu_chr_open_tty(filename);
2967 } else
2968 #endif
2969 #else /* !_WIN32 */
2970 if (strstart(filename, "COM", NULL)) {
2971 return qemu_chr_open_win(filename);
2972 } else
2973 if (strstart(filename, "pipe:", &p)) {
2974 return qemu_chr_open_win_pipe(p);
2975 } else
2976 if (strstart(filename, "con:", NULL)) {
2977 return qemu_chr_open_win_con(filename);
2978 } else
2979 if (strstart(filename, "file:", &p)) {
2980 return qemu_chr_open_win_file_out(p);
2981 }
2982 #endif
2983 {
2984 return NULL;
2985 }
2986 }
2987
2988 void qemu_chr_close(CharDriverState *chr)
2989 {
2990 if (chr->chr_close)
2991 chr->chr_close(chr);
2992 }
2993
2994 /***********************************************************/
2995 /* network device redirectors */
2996
2997 void hex_dump(FILE *f, const uint8_t *buf, int size)
2998 {
2999 int len, i, j, c;
3000
3001 for(i=0;i<size;i+=16) {
3002 len = size - i;
3003 if (len > 16)
3004 len = 16;
3005 fprintf(f, "%08x ", i);
3006 for(j=0;j<16;j++) {
3007 if (j < len)
3008 fprintf(f, " %02x", buf[i+j]);
3009 else
3010 fprintf(f, " ");
3011 }
3012 fprintf(f, " ");
3013 for(j=0;j<len;j++) {
3014 c = buf[i+j];
3015 if (c < ' ' || c > '~')
3016 c = '.';
3017 fprintf(f, "%c", c);
3018 }
3019 fprintf(f, "\n");
3020 }
3021 }
3022
3023 static int parse_macaddr(uint8_t *macaddr, const char *p)
3024 {
3025 int i;
3026 for(i = 0; i < 6; i++) {
3027 macaddr[i] = strtol(p, (char **)&p, 16);
3028 if (i == 5) {
3029 if (*p != '\0')
3030 return -1;
3031 } else {
3032 if (*p != ':')
3033 return -1;
3034 p++;
3035 }
3036 }
3037 return 0;
3038 }
3039
3040 static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3041 {
3042 const char *p, *p1;
3043 int len;
3044 p = *pp;
3045 p1 = strchr(p, sep);
3046 if (!p1)
3047 return -1;
3048 len = p1 - p;
3049 p1++;
3050 if (buf_size > 0) {
3051 if (len > buf_size - 1)
3052 len = buf_size - 1;
3053 memcpy(buf, p, len);
3054 buf[len] = '\0';
3055 }
3056 *pp = p1;
3057 return 0;
3058 }
3059
3060 int parse_host_src_port(struct sockaddr_in *haddr,
3061 struct sockaddr_in *saddr,
3062 const char *input_str)
3063 {
3064 char *str = strdup(input_str);
3065 char *host_str = str;
3066 char *src_str;
3067 char *ptr;
3068
3069 /*
3070 * Chop off any extra arguments at the end of the string which
3071 * would start with a comma, then fill in the src port information
3072 * if it was provided else use the "any address" and "any port".
3073 */
3074 if ((ptr = strchr(str,',')))
3075 *ptr = '\0';
3076
3077 if ((src_str = strchr(input_str,'@'))) {
3078 *src_str = '\0';
3079 src_str++;
3080 }
3081
3082 if (parse_host_port(haddr, host_str) < 0)
3083 goto fail;
3084
3085 if (!src_str || *src_str == '\0')
3086 src_str = ":0";
3087
3088 if (parse_host_port(saddr, src_str) < 0)
3089 goto fail;
3090
3091 free(str);
3092 return(0);
3093
3094 fail:
3095 free(str);
3096 return -1;
3097 }
3098
3099 int parse_host_port(struct sockaddr_in *saddr, const char *str)
3100 {
3101 char buf[512];
3102 struct hostent *he;
3103 const char *p, *r;
3104 int port;
3105
3106 p = str;
3107 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3108 return -1;
3109 saddr->sin_family = AF_INET;
3110 if (buf[0] == '\0') {
3111 saddr->sin_addr.s_addr = 0;
3112 } else {
3113 if (isdigit(buf[0])) {
3114 if (!inet_aton(buf, &saddr->sin_addr))
3115 return -1;
3116 } else {
3117 if ((he = gethostbyname(buf)) == NULL)
3118 return - 1;
3119 saddr->sin_addr = *(struct in_addr *)he->h_addr;
3120 }
3121 }
3122 port = strtol(p, (char **)&r, 0);
3123 if (r == p)
3124 return -1;
3125 saddr->sin_port = htons(port);
3126 return 0;
3127 }
3128
3129 #ifndef _WIN32
3130 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
3131 {
3132 const char *p;
3133 int len;
3134
3135 len = MIN(108, strlen(str));
3136 p = strchr(str, ',');
3137 if (p)
3138 len = MIN(len, p - str);
3139
3140 memset(uaddr, 0, sizeof(*uaddr));
3141
3142 uaddr->sun_family = AF_UNIX;
3143 memcpy(uaddr->sun_path, str, len);
3144
3145 return 0;
3146 }
3147 #endif
3148
3149 /* find or alloc a new VLAN */
3150 VLANState *qemu_find_vlan(int id)
3151 {
3152 VLANState **pvlan, *vlan;
3153 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3154 if (vlan->id == id)
3155 return vlan;
3156 }
3157 vlan = qemu_mallocz(sizeof(VLANState));
3158 if (!vlan)
3159 return NULL;
3160 vlan->id = id;
3161 vlan->next = NULL;
3162 pvlan = &first_vlan;
3163 while (*pvlan != NULL)
3164 pvlan = &(*pvlan)->next;
3165 *pvlan = vlan;
3166 return vlan;
3167 }
3168
3169 VLANClientState *qemu_new_vlan_client(VLANState *vlan,
3170 IOReadHandler *fd_read,
3171 IOCanRWHandler *fd_can_read,
3172 void *opaque)
3173 {
3174 VLANClientState *vc, **pvc;
3175 vc = qemu_mallocz(sizeof(VLANClientState));
3176 if (!vc)
3177 return NULL;
3178 vc->fd_read = fd_read;
3179 vc->fd_can_read = fd_can_read;
3180 vc->opaque = opaque;
3181 vc->vlan = vlan;
3182
3183 vc->next = NULL;
3184 pvc = &vlan->first_client;
3185 while (*pvc != NULL)
3186 pvc = &(*pvc)->next;
3187 *pvc = vc;
3188 return vc;
3189 }
3190
3191 int qemu_can_send_packet(VLANClientState *vc1)
3192 {
3193 VLANState *vlan = vc1->vlan;
3194 VLANClientState *vc;
3195
3196 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3197 if (vc != vc1) {
3198 if (vc->fd_can_read && !vc->fd_can_read(vc->opaque))
3199 return 0;
3200 }
3201 }
3202 return 1;
3203 }
3204
3205 void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
3206 {
3207 VLANState *vlan = vc1->vlan;
3208 VLANClientState *vc;
3209
3210 #if 0
3211 printf("vlan %d send:\n", vlan->id);
3212 hex_dump(stdout, buf, size);
3213 #endif
3214 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3215 if (vc != vc1) {
3216 vc->fd_read(vc->opaque, buf, size);
3217 }
3218 }
3219 }
3220
3221 #if defined(CONFIG_SLIRP)
3222
3223 /* slirp network adapter */
3224
3225 static int slirp_inited;
3226 static VLANClientState *slirp_vc;
3227
3228 int slirp_can_output(void)
3229 {
3230 return !slirp_vc || qemu_can_send_packet(slirp_vc);
3231 }
3232
3233 void slirp_output(const uint8_t *pkt, int pkt_len)
3234 {
3235 #if 0
3236 printf("slirp output:\n");
3237 hex_dump(stdout, pkt, pkt_len);
3238 #endif
3239 if (!slirp_vc)
3240 return;
3241 qemu_send_packet(slirp_vc, pkt, pkt_len);
3242 }
3243
3244 static void slirp_receive(void *opaque, const uint8_t *buf, int size)
3245 {
3246 #if 0
3247 printf("slirp input:\n");
3248 hex_dump(stdout, buf, size);
3249 #endif
3250 slirp_input(buf, size);
3251 }
3252
3253 static int net_slirp_init(VLANState *vlan)
3254 {
3255 if (!slirp_inited) {
3256 slirp_inited = 1;
3257 slirp_init();
3258 }
3259 slirp_vc = qemu_new_vlan_client(vlan,
3260 slirp_receive, NULL, NULL);
3261 snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
3262 return 0;
3263 }
3264
3265 static void net_slirp_redir(const char *redir_str)
3266 {
3267 int is_udp;
3268 char buf[256], *r;
3269 const char *p;
3270 struct in_addr guest_addr;
3271 int host_port, guest_port;
3272
3273 if (!slirp_inited) {
3274 slirp_inited = 1;
3275 slirp_init();
3276 }
3277
3278 p = redir_str;
3279 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3280 goto fail;
3281 if (!strcmp(buf, "tcp")) {
3282 is_udp = 0;
3283 } else if (!strcmp(buf, "udp")) {
3284 is_udp = 1;
3285 } else {
3286 goto fail;
3287 }
3288
3289 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3290 goto fail;
3291 host_port = strtol(buf, &r, 0);
3292 if (r == buf)
3293 goto fail;
3294
3295 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3296 goto fail;
3297 if (buf[0] == '\0') {
3298 pstrcpy(buf, sizeof(buf), "10.0.2.15");
3299 }
3300 if (!inet_aton(buf, &guest_addr))
3301 goto fail;
3302
3303 guest_port = strtol(p, &r, 0);
3304 if (r == p)
3305 goto fail;
3306
3307 if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
3308 fprintf(stderr, "qemu: could not set up redirection\n");
3309 exit(1);
3310 }
3311 return;
3312 fail:
3313 fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
3314 exit(1);
3315 }
3316
3317 #ifndef _WIN32
3318
3319 char smb_dir[1024];
3320
3321 static void smb_exit(void)
3322 {
3323 DIR *d;
3324 struct dirent *de;
3325 char filename[1024];
3326
3327 /* erase all the files in the directory */
3328 d = opendir(smb_dir);
3329 for(;;) {
3330 de = readdir(d);
3331 if (!de)
3332 break;
3333 if (strcmp(de->d_name, ".") != 0 &&
3334 strcmp(de->d_name, "..") != 0) {
3335 snprintf(filename, sizeof(filename), "%s/%s",
3336 smb_dir, de->d_name);
3337 unlink(filename);
3338 }
3339 }
3340 closedir(d);
3341 rmdir(smb_dir);
3342 }
3343
3344 /* automatic user mode samba server configuration */
3345 void net_slirp_smb(const char *exported_dir)
3346 {
3347 char smb_conf[1024];
3348 char smb_cmdline[1024];
3349 FILE *f;
3350
3351 if (!slirp_inited) {
3352 slirp_inited = 1;
3353 slirp_init();
3354 }
3355
3356 /* XXX: better tmp dir construction */
3357 snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
3358 if (mkdir(smb_dir, 0700) < 0) {
3359 fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
3360 exit(1);
3361 }
3362 snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
3363
3364 f = fopen(smb_conf, "w");
3365 if (!f) {
3366 fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
3367 exit(1);
3368 }
3369 fprintf(f,
3370 "[global]\n"
3371 "private dir=%s\n"
3372 "smb ports=0\n"
3373 "socket address=127.0.0.1\n"
3374 "pid directory=%s\n"
3375 "lock directory=%s\n"
3376 "log file=%s/log.smbd\n"
3377 "smb passwd file=%s/smbpasswd\n"
3378 "security = share\n"
3379 "[qemu]\n"
3380 "path=%s\n"
3381 "read only=no\n"
3382 "guest ok=yes\n",
3383 smb_dir,
3384 smb_dir,
3385 smb_dir,
3386 smb_dir,
3387 smb_dir,
3388 exported_dir
3389 );
3390 fclose(f);
3391 atexit(smb_exit);
3392
3393 snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
3394 SMBD_COMMAND, smb_conf);
3395
3396 slirp_add_exec(0, smb_cmdline, 4, 139);
3397 }
3398
3399 #endif /* !defined(_WIN32) */
3400
3401 #endif /* CONFIG_SLIRP */
3402
3403 #if !defined(_WIN32)
3404
3405 typedef struct TAPState {
3406 VLANClientState *vc;
3407 int fd;
3408 } TAPState;
3409
3410 static void tap_receive(void *opaque, const uint8_t *buf, int size)
3411 {
3412 TAPState *s = opaque;
3413 int ret;
3414 for(;;) {
3415 ret = write(s->fd, buf, size);
3416 if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
3417 } else {
3418 break;
3419 }
3420 }
3421 }
3422
3423 static void tap_send(void *opaque)
3424 {
3425 TAPState *s = opaque;
3426 uint8_t buf[4096];
3427 int size;
3428
3429 #ifdef __sun__
3430 struct strbuf sbuf;
3431 int f = 0;
3432 sbuf.maxlen = sizeof(buf);
3433 sbuf.buf = buf;
3434 size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
3435 #else
3436 size = read(s->fd, buf, sizeof(buf));
3437 #endif
3438 if (size > 0) {
3439 qemu_send_packet(s->vc, buf, size);
3440 }
3441 }
3442
3443 /* fd support */
3444
3445 static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
3446 {
3447 TAPState *s;
3448
3449 s = qemu_mallocz(sizeof(TAPState));
3450 if (!s)
3451 return NULL;
3452 s->fd = fd;
3453 s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
3454 qemu_set_fd_handler(s->fd, tap_send, NULL, s);
3455 snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
3456 return s;
3457 }
3458
3459 #if defined (_BSD) || defined (__FreeBSD_kernel__)
3460 static int tap_open(char *ifname, int ifname_size)
3461 {
3462 int fd;
3463 char *dev;
3464 struct stat s;
3465
3466 fd = open("/dev/tap", O_RDWR);
3467 if (fd < 0) {
3468 fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
3469 return -1;
3470 }
3471
3472 fstat(fd, &s);
3473 dev = devname(s.st_rdev, S_IFCHR);
3474 pstrcpy(ifname, ifname_size, dev);
3475
3476 fcntl(fd, F_SETFL, O_NONBLOCK);
3477 return fd;
3478 }
3479 #elif defined(__sun__)
3480 #define TUNNEWPPA (('T'<<16) | 0x0001)
3481 /*
3482 * Allocate TAP device, returns opened fd.
3483 * Stores dev name in the first arg(must be large enough).
3484 */
3485 int tap_alloc(char *dev)
3486 {
3487 int tap_fd, if_fd, ppa = -1;
3488 static int ip_fd = 0;
3489 char *ptr;
3490
3491 static int arp_fd = 0;
3492 int ip_muxid, arp_muxid;
3493 struct strioctl strioc_if, strioc_ppa;
3494 int link_type = I_PLINK;;
3495 struct lifreq ifr;
3496 char actual_name[32] = "";
3497
3498 memset(&ifr, 0x0, sizeof(ifr));
3499
3500 if( *dev ){
3501 ptr = dev;
3502 while( *ptr && !isdigit((int)*ptr) ) ptr++;
3503 ppa = atoi(ptr);
3504 }
3505
3506 /* Check if IP device was opened */
3507 if( ip_fd )
3508 close(ip_fd);
3509
3510 if( (ip_fd = open("/dev/udp", O_RDWR, 0)) < 0){
3511 syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
3512 return -1;
3513 }
3514
3515 if( (tap_fd = open("/dev/tap", O_RDWR, 0)) < 0){
3516 syslog(LOG_ERR, "Can't open /dev/tap");
3517 return -1;
3518 }
3519
3520 /* Assign a new PPA and get its unit number. */
3521 strioc_ppa.ic_cmd = TUNNEWPPA;
3522 strioc_ppa.ic_timout = 0;
3523 strioc_ppa.ic_len = sizeof(ppa);
3524 strioc_ppa.ic_dp = (char *)&ppa;
3525 if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
3526 syslog (LOG_ERR, "Can't assign new interface");
3527
3528 if( (if_fd = open("/dev/tap", O_RDWR, 0)) < 0){
3529 syslog(LOG_ERR, "Can't open /dev/tap (2)");
3530 return -1;
3531 }
3532 if(ioctl(if_fd, I_PUSH, "ip") < 0){
3533 syslog(LOG_ERR, "Can't push IP module");
3534 return -1;
3535 }
3536
3537 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
3538 syslog(LOG_ERR, "Can't get flags\n");
3539
3540 snprintf (actual_name, 32, "tap%d", ppa);
3541 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3542
3543 ifr.lifr_ppa = ppa;
3544 /* Assign ppa according to the unit number returned by tun device */
3545
3546 if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
3547 syslog (LOG_ERR, "Can't set PPA %d", ppa);
3548 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
3549 syslog (LOG_ERR, "Can't get flags\n");
3550 /* Push arp module to if_fd */
3551 if (ioctl (if_fd, I_PUSH, "arp") < 0)
3552 syslog (LOG_ERR, "Can't push ARP module (2)");
3553
3554 /* Push arp module to ip_fd */
3555 if (ioctl (ip_fd, I_POP, NULL) < 0)
3556 syslog (LOG_ERR, "I_POP failed\n");
3557 if (ioctl (ip_fd, I_PUSH, "arp") < 0)
3558 syslog (LOG_ERR, "Can't push ARP module (3)\n");
3559 /* Open arp_fd */
3560 if ((arp_fd = open ("/dev/tap", O_RDWR, 0)) < 0)
3561 syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
3562
3563 /* Set ifname to arp */
3564 strioc_if.ic_cmd = SIOCSLIFNAME;
3565 strioc_if.ic_timout = 0;
3566 strioc_if.ic_len = sizeof(ifr);
3567 strioc_if.ic_dp = (char *)&ifr;
3568 if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
3569 syslog (LOG_ERR, "Can't set ifname to arp\n");
3570 }
3571
3572 if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
3573 syslog(LOG_ERR, "Can't link TAP device to IP");
3574 return -1;
3575 }
3576
3577 if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
3578 syslog (LOG_ERR, "Can't link TAP device to ARP");
3579
3580 close (if_fd);
3581
3582 memset(&ifr, 0x0, sizeof(ifr));
3583 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3584 ifr.lifr_ip_muxid = ip_muxid;
3585 ifr.lifr_arp_muxid = arp_muxid;
3586
3587 if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
3588 {
3589 ioctl (ip_fd, I_PUNLINK , arp_muxid);
3590 ioctl (ip_fd, I_PUNLINK, ip_muxid);
3591 syslog (LOG_ERR, "Can't set multiplexor id");
3592 }
3593
3594 sprintf(dev, "tap%d", ppa);
3595 return tap_fd;
3596 }
3597
3598 static int tap_open(char *ifname, int ifname_size)
3599 {
3600 char dev[10]="";
3601 int fd;
3602 if( (fd = tap_alloc(dev)) < 0 ){
3603 fprintf(stderr, "Cannot allocate TAP device\n");
3604 return -1;
3605 }
3606 pstrcpy(ifname, ifname_size, dev);
3607 fcntl(fd, F_SETFL, O_NONBLOCK);
3608 return fd;
3609 }
3610 #else
3611 static int tap_open(char *ifname, int ifname_size)
3612 {
3613 struct ifreq ifr;
3614 int fd, ret;
3615
3616 fd = open("/dev/net/tun", O_RDWR);
3617 if (fd < 0) {
3618 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
3619 return -1;
3620 }
3621 memset(&ifr, 0, sizeof(ifr));
3622 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
3623 if (ifname[0] != '\0')
3624 pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
3625 else
3626 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
3627 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
3628 if (ret != 0) {
3629 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
3630 close(fd);
3631 return -1;
3632 }
3633 pstrcpy(ifname, ifname_size, ifr.ifr_name);
3634 fcntl(fd, F_SETFL, O_NONBLOCK);
3635 return fd;
3636 }
3637 #endif
3638
3639 static int net_tap_init(VLANState *vlan, const char *ifname1,
3640 const char *setup_script)
3641 {
3642 TAPState *s;
3643 int pid, status, fd;
3644 char *args[3];
3645 char **parg;
3646 char ifname[128];
3647
3648 if (ifname1 != NULL)
3649 pstrcpy(ifname, sizeof(ifname), ifname1);
3650 else
3651 ifname[0] = '\0';
3652 fd = tap_open(ifname, sizeof(ifname));
3653 if (fd < 0)
3654 return -1;
3655
3656 if (!setup_script || !strcmp(setup_script, "no"))
3657 setup_script = "";
3658 if (setup_script[0] != '\0') {
3659 /* try to launch network init script */
3660 pid = fork();
3661 if (pid >= 0) {
3662 if (pid == 0) {
3663 int open_max = sysconf (_SC_OPEN_MAX), i;
3664 for (i = 0; i < open_max; i++)
3665 if (i != STDIN_FILENO &&
3666 i != STDOUT_FILENO &&
3667 i != STDERR_FILENO &&
3668 i != fd)
3669 close(i);
3670
3671 parg = args;
3672 *parg++ = (char *)setup_script;
3673 *parg++ = ifname;
3674 *parg++ = NULL;
3675 execv(setup_script, args);
3676 _exit(1);
3677 }
3678 while (waitpid(pid, &status, 0) != pid);
3679 if (!WIFEXITED(status) ||
3680 WEXITSTATUS(status) != 0) {
3681 fprintf(stderr, "%s: could not launch network script\n",
3682 setup_script);
3683 return -1;
3684 }
3685 }
3686 }
3687 s = net_tap_fd_init(vlan, fd);
3688 if (!s)
3689 return -1;
3690 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3691 "tap: ifname=%s setup_script=%s", ifname, setup_script);
3692 return 0;
3693 }
3694
3695 #endif /* !_WIN32 */
3696
3697 /* network connection */
3698 typedef struct NetSocketState {
3699 VLANClientState *vc;
3700 int fd;
3701 int state; /* 0 = getting length, 1 = getting data */
3702 int index;
3703 int packet_len;
3704 uint8_t buf[4096];
3705 struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
3706 } NetSocketState;
3707
3708 typedef struct NetSocketListenState {
3709 VLANState *vlan;
3710 int fd;
3711 } NetSocketListenState;
3712
3713 /* XXX: we consider we can send the whole packet without blocking */
3714 static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
3715 {
3716 NetSocketState *s = opaque;
3717 uint32_t len;
3718 len = htonl(size);
3719
3720 send_all(s->fd, (const uint8_t *)&len, sizeof(len));
3721 send_all(s->fd, buf, size);
3722 }
3723
3724 static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
3725 {
3726 NetSocketState *s = opaque;
3727 sendto(s->fd, buf, size, 0,
3728 (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
3729 }
3730
3731 static void net_socket_send(void *opaque)
3732 {
3733 NetSocketState *s = opaque;
3734 int l, size, err;
3735 uint8_t buf1[4096];
3736 const uint8_t *buf;
3737
3738 size = recv(s->fd, buf1, sizeof(buf1), 0);
3739 if (size < 0) {
3740 err = socket_error();
3741 if (err != EWOULDBLOCK)
3742 goto eoc;
3743 } else if (size == 0) {
3744 /* end of connection */
3745 eoc:
3746 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3747 closesocket(s->fd);
3748 return;
3749 }
3750 buf = buf1;
3751 while (size > 0) {
3752 /* reassemble a packet from the network */
3753 switch(s->state) {
3754 case 0:
3755 l = 4 - s->index;
3756 if (l > size)
3757 l = size;
3758 memcpy(s->buf + s->index, buf, l);
3759 buf += l;
3760 size -= l;
3761 s->index += l;
3762 if (s->index == 4) {
3763 /* got length */
3764 s->packet_len = ntohl(*(uint32_t *)s->buf);
3765 s->index = 0;
3766 s->state = 1;
3767 }
3768 break;
3769 case 1:
3770 l = s->packet_len - s->index;
3771 if (l > size)
3772 l = size;
3773 memcpy(s->buf + s->index, buf, l);
3774 s->index += l;
3775 buf += l;
3776 size -= l;
3777 if (s->index >= s->packet_len) {
3778 qemu_send_packet(s->vc, s->buf, s->packet_len);
3779 s->index = 0;
3780 s->state = 0;
3781 }
3782 break;
3783 }
3784 }
3785 }
3786
3787 static void net_socket_send_dgram(void *opaque)
3788 {
3789 NetSocketState *s = opaque;
3790 int size;
3791
3792 size = recv(s->fd, s->buf, sizeof(s->buf), 0);
3793 if (size < 0)
3794 return;
3795 if (size == 0) {
3796 /* end of connection */
3797 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3798 return;
3799 }
3800 qemu_send_packet(s->vc, s->buf, size);
3801 }
3802
3803 static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
3804 {
3805 struct ip_mreq imr;
3806 int fd;
3807 int val, ret;
3808 if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
3809 fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
3810 inet_ntoa(mcastaddr->sin_addr),
3811 (int)ntohl(mcastaddr->sin_addr.s_addr));
3812 return -1;
3813
3814 }
3815 fd = socket(PF_INET, SOCK_DGRAM, 0);
3816 if (fd < 0) {
3817 perror("socket(PF_INET, SOCK_DGRAM)");
3818 return -1;
3819 }
3820
3821 val = 1;
3822 ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
3823 (const char *)&val, sizeof(val));
3824 if (ret < 0) {
3825 perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
3826 goto fail;
3827 }
3828
3829 ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
3830 if (ret < 0) {
3831 perror("bind");
3832 goto fail;
3833 }
3834
3835 /* Add host to multicast group */
3836 imr.imr_multiaddr = mcastaddr->sin_addr;
3837 imr.imr_interface.s_addr = htonl(INADDR_ANY);
3838
3839 ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
3840 (const char *)&imr, sizeof(struct ip_mreq));
3841 if (ret < 0) {
3842 perror("setsockopt(IP_ADD_MEMBERSHIP)");
3843 goto fail;
3844 }
3845
3846 /* Force mcast msgs to loopback (eg. several QEMUs in same host */
3847 val = 1;
3848 ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
3849 (const char *)&val, sizeof(val));
3850 if (ret < 0) {
3851 perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
3852 goto fail;
3853 }
3854
3855 socket_set_nonblock(fd);
3856 return fd;
3857 fail:
3858 if (fd >= 0)
3859 closesocket(fd);
3860 return -1;
3861 }
3862
3863 static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
3864 int is_connected)
3865 {
3866 struct sockaddr_in saddr;
3867 int newfd;
3868 socklen_t saddr_len;
3869 NetSocketState *s;
3870
3871 /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
3872 * Because this may be "shared" socket from a "master" process, datagrams would be recv()
3873 * by ONLY ONE process: we must "clone" this dgram socket --jjo
3874 */
3875
3876 if (is_connected) {
3877 if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
3878 /* must be bound */
3879 if (saddr.sin_addr.s_addr==0) {
3880 fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
3881 fd);
3882 return NULL;
3883 }
3884 /* clone dgram socket */
3885 newfd = net_socket_mcast_create(&saddr);
3886 if (newfd < 0) {
3887 /* error already reported by net_socket_mcast_create() */
3888 close(fd);
3889 return NULL;
3890 }
3891 /* clone newfd to fd, close newfd */
3892 dup2(newfd, fd);
3893 close(newfd);
3894
3895 } else {
3896 fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
3897 fd, strerror(errno));
3898 return NULL;
3899 }
3900 }
3901
3902 s = qemu_mallocz(sizeof(NetSocketState));
3903 if (!s)
3904 return NULL;
3905 s->fd = fd;
3906
3907 s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
3908 qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
3909
3910 /* mcast: save bound address as dst */
3911 if (is_connected) s->dgram_dst=saddr;
3912
3913 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3914 "socket: fd=%d (%s mcast=%s:%d)",
3915 fd, is_connected? "cloned" : "",
3916 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
3917 return s;
3918 }
3919
3920 static void net_socket_connect(void *opaque)
3921 {
3922 NetSocketState *s = opaque;
3923 qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
3924 }
3925
3926 static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
3927 int is_connected)
3928 {
3929 NetSocketState *s;
3930 s = qemu_mallocz(sizeof(NetSocketState));
3931 if (!s)
3932 return NULL;
3933 s->fd = fd;
3934 s->vc = qemu_new_vlan_client(vlan,
3935 net_socket_receive, NULL, s);
3936 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
3937 "socket: fd=%d", fd);
3938 if (is_connected) {
3939 net_socket_connect(s);
3940 } else {
3941 qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
3942 }
3943 return s;
3944 }
3945
3946 static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
3947 int is_connected)
3948 {
3949 int so_type=-1, optlen=sizeof(so_type);
3950
3951 if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type, &optlen)< 0) {
3952 fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
3953 return NULL;
3954 }
3955 switch(so_type) {
3956 case SOCK_DGRAM:
3957 return net_socket_fd_init_dgram(vlan, fd, is_connected);
3958 case SOCK_STREAM:
3959 return net_socket_fd_init_stream(vlan, fd, is_connected);
3960 default:
3961 /* who knows ... this could be a eg. a pty, do warn and continue as stream */
3962 fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
3963 return net_socket_fd_init_stream(vlan, fd, is_connected);
3964 }
3965 return NULL;
3966 }
3967
3968 static void net_socket_accept(void *opaque)
3969 {
3970 NetSocketListenState *s = opaque;
3971 NetSocketState *s1;
3972 struct sockaddr_in saddr;
3973 socklen_t len;
3974 int fd;
3975
3976 for(;;) {
3977 len = sizeof(saddr);
3978 fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
3979 if (fd < 0 && errno != EINTR) {
3980 return;
3981 } else if (fd >= 0) {
3982 break;
3983 }
3984 }
3985 s1 = net_socket_fd_init(s->vlan, fd, 1);
3986 if (!s1) {
3987 closesocket(fd);
3988 } else {
3989 snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
3990 "socket: connection from %s:%d",
3991 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
3992 }
3993 }
3994
3995 static int net_socket_listen_init(VLANState *vlan, const char *host_str)
3996 {
3997 NetSocketListenState *s;
3998 int fd, val, ret;
3999 struct sockaddr_in saddr;
4000
4001 if (parse_host_port(&saddr, host_str) < 0)
4002 return -1;
4003
4004 s = qemu_mallocz(sizeof(NetSocketListenState));
4005 if (!s)
4006 return -1;
4007
4008 fd = socket(PF_INET, SOCK_STREAM, 0);
4009 if (fd < 0) {
4010 perror("socket");
4011 return -1;
4012 }
4013 socket_set_nonblock(fd);
4014
4015 /* allow fast reuse */
4016 val = 1;
4017 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
4018
4019 ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4020 if (ret < 0) {
4021 perror("bind");
4022 return -1;
4023 }
4024 ret = listen(fd, 0);
4025 if (ret < 0) {
4026 perror("listen");
4027 return -1;
4028 }
4029 s->vlan = vlan;
4030 s->fd = fd;
4031 qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
4032 return 0;
4033 }
4034
4035 static int net_socket_connect_init(VLANState *vlan, const char *host_str)
4036 {
4037 NetSocketState *s;
4038 int fd, connected, ret, err;
4039 struct sockaddr_in saddr;
4040
4041 if (parse_host_port(&saddr, host_str) < 0)
4042 return -1;
4043
4044 fd = socket(PF_INET, SOCK_STREAM, 0);
4045 if (fd < 0) {
4046 perror("socket");
4047 return -1;
4048 }
4049 socket_set_nonblock(fd);
4050
4051 connected = 0;
4052 for(;;) {
4053 ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4054 if (ret < 0) {
4055 err = socket_error();
4056 if (err == EINTR || err == EWOULDBLOCK) {
4057 } else if (err == EINPROGRESS) {
4058 break;
4059 #ifdef _WIN32
4060 } else if (err == WSAEALREADY) {
4061 break;
4062 #endif
4063 } else {
4064 perror("connect");
4065 closesocket(fd);
4066 return -1;
4067 }
4068 } else {
4069 connected = 1;
4070 break;
4071 }
4072 }
4073 s = net_socket_fd_init(vlan, fd, connected);
4074 if (!s)
4075 return -1;
4076 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4077 "socket: connect to %s:%d",
4078 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4079 return 0;
4080 }
4081
4082 static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
4083 {
4084 NetSocketState *s;
4085 int fd;
4086 struct sockaddr_in saddr;
4087
4088 if (parse_host_port(&saddr, host_str) < 0)
4089 return -1;
4090
4091
4092 fd = net_socket_mcast_create(&saddr);
4093 if (fd < 0)
4094 return -1;
4095
4096 s = net_socket_fd_init(vlan, fd, 0);
4097 if (!s)
4098 return -1;
4099
4100 s->dgram_dst = saddr;
4101
4102 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4103 "socket: mcast=%s:%d",
4104 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4105 return 0;
4106
4107 }
4108
4109 static int get_param_value(char *buf, int buf_size,
4110 const char *tag, const char *str)
4111 {
4112 const char *p;
4113 char *q;
4114 char option[128];
4115
4116 p = str;
4117 for(;;) {
4118 q = option;
4119 while (*p != '\0' && *p != '=') {
4120 if ((q - option) < sizeof(option) - 1)
4121 *q++ = *p;
4122 p++;
4123 }
4124 *q = '\0';
4125 if (*p != '=')
4126 break;
4127 p++;
4128 if (!strcmp(tag, option)) {
4129 q = buf;
4130 while (*p != '\0' && *p != ',') {
4131 if ((q - buf) < buf_size - 1)
4132 *q++ = *p;
4133 p++;
4134 }
4135 *q = '\0';
4136 return q - buf;
4137 } else {
4138 while (*p != '\0' && *p != ',') {
4139 p++;
4140 }
4141 }
4142 if (*p != ',')
4143 break;
4144 p++;
4145 }
4146 return 0;
4147 }
4148
4149 static int net_client_init(const char *str)
4150 {
4151 const char *p;
4152 char *q;
4153 char device[64];
4154 char buf[1024];
4155 int vlan_id, ret;
4156 VLANState *vlan;
4157
4158 p = str;
4159 q = device;
4160 while (*p != '\0' && *p != ',') {
4161 if ((q - device) < sizeof(device) - 1)
4162 *q++ = *p;
4163 p++;
4164 }
4165 *q = '\0';
4166 if (*p == ',')
4167 p++;
4168 vlan_id = 0;
4169 if (get_param_value(buf, sizeof(buf), "vlan", p)) {
4170 vlan_id = strtol(buf, NULL, 0);
4171 }
4172 vlan = qemu_find_vlan(vlan_id);
4173 if (!vlan) {
4174 fprintf(stderr, "Could not create vlan %d\n", vlan_id);
4175 return -1;
4176 }
4177 if (!strcmp(device, "nic")) {
4178 NICInfo *nd;
4179 uint8_t *macaddr;
4180
4181 if (nb_nics >= MAX_NICS) {
4182 fprintf(stderr, "Too Many NICs\n");
4183 return -1;
4184 }
4185 nd = &nd_table[nb_nics];
4186 macaddr = nd->macaddr;
4187 macaddr[0] = 0x52;
4188 macaddr[1] = 0x54;
4189 macaddr[2] = 0x00;
4190 macaddr[3] = 0x12;
4191 macaddr[4] = 0x34;
4192 macaddr[5] = 0x56 + nb_nics;
4193
4194 if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
4195 if (parse_macaddr(macaddr, buf) < 0) {
4196 fprintf(stderr, "invalid syntax for ethernet address\n");
4197 return -1;
4198 }
4199 }
4200 if (get_param_value(buf, sizeof(buf), "model", p)) {
4201 nd->model = strdup(buf);
4202 }
4203 nd->vlan = vlan;
4204 nb_nics++;
4205 vlan->nb_guest_devs++;
4206 ret = 0;
4207 } else
4208 if (!strcmp(device, "none")) {
4209 /* does nothing. It is needed to signal that no network cards
4210 are wanted */
4211 ret = 0;
4212 } else
4213 #ifdef CONFIG_SLIRP
4214 if (!strcmp(device, "user")) {
4215 if (get_param_value(buf, sizeof(buf), "hostname", p)) {
4216 pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
4217 }
4218 vlan->nb_host_devs++;
4219 ret = net_slirp_init(vlan);
4220 } else
4221 #endif
4222 #ifdef _WIN32
4223 if (!strcmp(device, "tap")) {
4224 char ifname[64];
4225 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4226 fprintf(stderr, "tap: no interface name\n");
4227 return -1;
4228 }
4229 vlan->nb_host_devs++;
4230 ret = tap_win32_init(vlan, ifname);
4231 } else
4232 #else
4233 if (!strcmp(device, "tap")) {
4234 char ifname[64];
4235 char setup_script[1024];
4236 int fd;
4237 vlan->nb_host_devs++;
4238 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4239 fd = strtol(buf, NULL, 0);
4240 ret = -1;
4241 if (net_tap_fd_init(vlan, fd))
4242 ret = 0;
4243 } else {
4244 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4245 ifname[0] = '\0';
4246 }
4247 if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
4248 pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
4249 }
4250 ret = net_tap_init(vlan, ifname, setup_script);
4251 }
4252 } else
4253 #endif
4254 if (!strcmp(device, "socket")) {
4255 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4256 int fd;
4257 fd = strtol(buf, NULL, 0);
4258 ret = -1;
4259 if (net_socket_fd_init(vlan, fd, 1))
4260 ret = 0;
4261 } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
4262 ret = net_socket_listen_init(vlan, buf);
4263 } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
4264 ret = net_socket_connect_init(vlan, buf);
4265 } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
4266 ret = net_socket_mcast_init(vlan, buf);
4267 } else {
4268 fprintf(stderr, "Unknown socket options: %s\n", p);
4269 return -1;
4270 }
4271 vlan->nb_host_devs++;
4272 } else
4273 {
4274 fprintf(stderr, "Unknown network device: %s\n", device);
4275 return -1;
4276 }
4277 if (ret < 0) {
4278 fprintf(stderr, "Could not initialize device '%s'\n", device);
4279 }
4280
4281 return ret;
4282 }
4283
4284 void do_info_network(void)
4285 {
4286 VLANState *vlan;
4287 VLANClientState *vc;
4288
4289 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4290 term_printf("VLAN %d devices:\n", vlan->id);
4291 for(vc = vlan->first_client; vc != NULL; vc = vc->next)
4292 term_printf(" %s\n", vc->info_str);
4293 }
4294 }
4295
4296 /***********************************************************/
4297 /* USB devices */
4298
4299 static USBPort *used_usb_ports;
4300 static USBPort *free_usb_ports;
4301
4302 /* ??? Maybe change this to register a hub to keep track of the topology. */
4303 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
4304 usb_attachfn attach)
4305 {
4306 port->opaque = opaque;
4307 port->index = index;
4308 port->attach = attach;
4309 port->next = free_usb_ports;
4310 free_usb_ports = port;
4311 }
4312
4313 static int usb_device_add(const char *devname)
4314 {
4315 const char *p;
4316 USBDevice *dev;
4317 USBPort *port;
4318
4319 if (!free_usb_ports)
4320 return -1;
4321
4322 if (strstart(devname, "host:", &p)) {
4323 dev = usb_host_device_open(p);
4324 } else if (!strcmp(devname, "mouse")) {
4325 dev = usb_mouse_init();
4326 } else if (!strcmp(devname, "tablet")) {
4327 dev = usb_tablet_init();
4328 } else if (!strcmp(devname, "keyboard")) {
4329 dev = usb_keyboard_init();
4330 } else if (strstart(devname, "disk:", &p)) {
4331 dev = usb_msd_init(p);
4332 } else if (!strcmp(devname, "wacom-tablet")) {
4333 dev = usb_wacom_init();
4334 } else {
4335 return -1;
4336 }
4337 if (!dev)
4338 return -1;
4339
4340 /* Find a USB port to add the device to. */
4341 port = free_usb_ports;
4342 if (!port->next) {
4343 USBDevice *hub;
4344
4345 /* Create a new hub and chain it on. */
4346 free_usb_ports = NULL;
4347 port->next = used_usb_ports;
4348 used_usb_ports = port;
4349
4350 hub = usb_hub_init(VM_USB_HUB_SIZE);
4351 usb_attach(port, hub);
4352 port = free_usb_ports;
4353 }
4354
4355 free_usb_ports = port->next;
4356 port->next = used_usb_ports;
4357 used_usb_ports = port;
4358 usb_attach(port, dev);
4359 return 0;
4360 }
4361
4362 static int usb_device_del(const char *devname)
4363 {
4364 USBPort *port;
4365 USBPort **lastp;
4366 USBDevice *dev;
4367 int bus_num, addr;
4368 const char *p;
4369
4370 if (!used_usb_ports)
4371 return -1;
4372
4373 p = strchr(devname, '.');
4374 if (!p)
4375 return -1;
4376 bus_num = strtoul(devname, NULL, 0);
4377 addr = strtoul(p + 1, NULL, 0);
4378 if (bus_num != 0)
4379 return -1;
4380
4381 lastp = &used_usb_ports;
4382 port = used_usb_ports;
4383 while (port && port->dev->addr != addr) {
4384 lastp = &port->next;
4385 port = port->next;
4386 }
4387
4388 if (!port)
4389 return -1;
4390
4391 dev = port->dev;
4392 *lastp = port->next;
4393 usb_attach(port, NULL);
4394 dev->handle_destroy(dev);
4395 port->next = free_usb_ports;
4396 free_usb_ports = port;
4397 return 0;
4398 }
4399
4400 void do_usb_add(const char *devname)
4401 {
4402 int ret;
4403 ret = usb_device_add(devname);
4404 if (ret < 0)
4405 term_printf("Could not add USB device '%s'\n", devname);
4406 }
4407
4408 void do_usb_del(const char *devname)
4409 {
4410 int ret;
4411 ret = usb_device_del(devname);
4412 if (ret < 0)
4413 term_printf("Could not remove USB device '%s'\n", devname);
4414 }
4415
4416 void usb_info(void)
4417 {
4418 USBDevice *dev;
4419 USBPort *port;
4420 const char *speed_str;
4421
4422 if (!usb_enabled) {
4423 term_printf("USB support not enabled\n");
4424 return;
4425 }
4426
4427 for (port = used_usb_ports; port; port = port->next) {
4428 dev = port->dev;
4429 if (!dev)
4430 continue;
4431 switch(dev->speed) {
4432 case USB_SPEED_LOW:
4433 speed_str = "1.5";
4434 break;
4435 case USB_SPEED_FULL:
4436 speed_str = "12";
4437 break;
4438 case USB_SPEED_HIGH:
4439 speed_str = "480";
4440 break;
4441 default:
4442 speed_str = "?";
4443 break;
4444 }
4445 term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n",
4446 0, dev->addr, speed_str, dev->devname);
4447 }
4448 }
4449
4450 /***********************************************************/
4451 /* PCMCIA/Cardbus */
4452
4453 static struct pcmcia_socket_entry_s {
4454 struct pcmcia_socket_s *socket;
4455 struct pcmcia_socket_entry_s *next;
4456 } *pcmcia_sockets = 0;
4457
4458 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
4459 {
4460 struct pcmcia_socket_entry_s *entry;
4461
4462 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
4463 entry->socket = socket;
4464 entry->next = pcmcia_sockets;
4465 pcmcia_sockets = entry;
4466 }
4467
4468 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
4469 {
4470 struct pcmcia_socket_entry_s *entry, **ptr;
4471
4472 ptr = &pcmcia_sockets;
4473 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
4474 if (entry->socket == socket) {
4475 *ptr = entry->next;
4476 qemu_free(entry);
4477 }
4478 }
4479
4480 void pcmcia_info(void)
4481 {
4482 struct pcmcia_socket_entry_s *iter;
4483 if (!pcmcia_sockets)
4484 term_printf("No PCMCIA sockets\n");
4485
4486 for (iter = pcmcia_sockets; iter; iter = iter->next)
4487 term_printf("%s: %s\n", iter->socket->slot_string,
4488 iter->socket->attached ? iter->socket->card_string :
4489 "Empty");
4490 }
4491
4492 /***********************************************************/
4493 /* dumb display */
4494
4495 static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
4496 {
4497 }
4498
4499 static void dumb_resize(DisplayState *ds, int w, int h)
4500 {
4501 }
4502
4503 static void dumb_refresh(DisplayState *ds)
4504 {
4505 #if defined(CONFIG_SDL)
4506 vga_hw_update();
4507 #endif
4508 }
4509
4510 static void dumb_display_init(DisplayState *ds)
4511 {
4512 ds->data = NULL;
4513 ds->linesize = 0;
4514 ds->depth = 0;
4515 ds->dpy_update = dumb_update;
4516 ds->dpy_resize = dumb_resize;
4517 ds->dpy_refresh = dumb_refresh;
4518 }
4519
4520 /***********************************************************/
4521 /* I/O handling */
4522
4523 #define MAX_IO_HANDLERS 64
4524
4525 typedef struct IOHandlerRecord {
4526 int fd;
4527 IOCanRWHandler *fd_read_poll;
4528 IOHandler *fd_read;
4529 IOHandler *fd_write;
4530 int deleted;
4531 void *opaque;
4532 /* temporary data */
4533 struct pollfd *ufd;
4534 struct IOHandlerRecord *next;
4535 } IOHandlerRecord;
4536
4537 static IOHandlerRecord *first_io_handler;
4538
4539 /* XXX: fd_read_poll should be suppressed, but an API change is
4540 necessary in the character devices to suppress fd_can_read(). */
4541 int qemu_set_fd_handler2(int fd,
4542 IOCanRWHandler *fd_read_poll,
4543 IOHandler *fd_read,
4544 IOHandler *fd_write,
4545 void *opaque)
4546 {
4547 IOHandlerRecord **pioh, *ioh;
4548
4549 if (!fd_read && !fd_write) {
4550 pioh = &first_io_handler;
4551 for(;;) {
4552 ioh = *pioh;
4553 if (ioh == NULL)
4554 break;
4555 if (ioh->fd == fd) {
4556 ioh->deleted = 1;
4557 break;
4558 }
4559 pioh = &ioh->next;
4560 }
4561 } else {
4562 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4563 if (ioh->fd == fd)
4564 goto found;
4565 }
4566 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
4567 if (!ioh)
4568 return -1;
4569 ioh->next = first_io_handler;
4570 first_io_handler = ioh;
4571 found:
4572 ioh->fd = fd;
4573 ioh->fd_read_poll = fd_read_poll;
4574 ioh->fd_read = fd_read;
4575 ioh->fd_write = fd_write;
4576 ioh->opaque = opaque;
4577 ioh->deleted = 0;
4578 }
4579 return 0;
4580 }
4581
4582 int qemu_set_fd_handler(int fd,
4583 IOHandler *fd_read,
4584 IOHandler *fd_write,
4585 void *opaque)
4586 {
4587 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
4588 }
4589
4590 /***********************************************************/
4591 /* Polling handling */
4592
4593 typedef struct PollingEntry {
4594 PollingFunc *func;
4595 void *opaque;
4596 struct PollingEntry *next;
4597 } PollingEntry;
4598
4599 static PollingEntry *first_polling_entry;
4600
4601 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
4602 {
4603 PollingEntry **ppe, *pe;
4604 pe = qemu_mallocz(sizeof(PollingEntry));
4605 if (!pe)
4606 return -1;
4607 pe->func = func;
4608 pe->opaque = opaque;
4609 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
4610 *ppe = pe;
4611 return 0;
4612 }
4613
4614 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
4615 {
4616 PollingEntry **ppe, *pe;
4617 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
4618 pe = *ppe;
4619 if (pe->func == func && pe->opaque == opaque) {
4620 *ppe = pe->next;
4621 qemu_free(pe);
4622 break;
4623 }
4624 }
4625 }
4626
4627 #ifdef _WIN32
4628 /***********************************************************/
4629 /* Wait objects support */
4630 typedef struct WaitObjects {
4631 int num;
4632 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
4633 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
4634 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
4635 } WaitObjects;
4636
4637 static WaitObjects wait_objects = {0};
4638
4639 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
4640 {
4641 WaitObjects *w = &wait_objects;
4642
4643 if (w->num >= MAXIMUM_WAIT_OBJECTS)
4644 return -1;
4645 w->events[w->num] = handle;
4646 w->func[w->num] = func;
4647 w->opaque[w->num] = opaque;
4648 w->num++;
4649 return 0;
4650 }
4651
4652 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
4653 {
4654 int i, found;
4655 WaitObjects *w = &wait_objects;
4656
4657 found = 0;
4658 for (i = 0; i < w->num; i++) {
4659 if (w->events[i] == handle)
4660 found = 1;
4661 if (found) {
4662 w->events[i] = w->events[i + 1];
4663 w->func[i] = w->func[i + 1];
4664 w->opaque[i] = w->opaque[i + 1];
4665 }
4666 }
4667 if (found)
4668 w->num--;
4669 }
4670 #endif
4671
4672 /***********************************************************/
4673 /* savevm/loadvm support */
4674
4675 #define IO_BUF_SIZE 32768
4676
4677 struct QEMUFile {
4678 FILE *outfile;
4679 BlockDriverState *bs;
4680 int is_file;
4681 int is_writable;
4682 int64_t base_offset;
4683 int64_t buf_offset; /* start of buffer when writing, end of buffer
4684 when reading */
4685 int buf_index;
4686 int buf_size; /* 0 when writing */
4687 uint8_t buf[IO_BUF_SIZE];
4688 };
4689
4690 QEMUFile *qemu_fopen(const char *filename, const char *mode)
4691 {
4692 QEMUFile *f;
4693
4694 f = qemu_mallocz(sizeof(QEMUFile));
4695 if (!f)
4696 return NULL;
4697 if (!strcmp(mode, "wb")) {
4698 f->is_writable = 1;
4699 } else if (!strcmp(mode, "rb")) {
4700 f->is_writable = 0;
4701 } else {
4702 goto fail;
4703 }
4704 f->outfile = fopen(filename, mode);
4705 if (!f->outfile)
4706 goto fail;
4707 f->is_file = 1;
4708 return f;
4709 fail:
4710 if (f->outfile)
4711 fclose(f->outfile);
4712 qemu_free(f);
4713 return NULL;
4714 }
4715
4716 QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
4717 {
4718 QEMUFile *f;
4719
4720 f = qemu_mallocz(sizeof(QEMUFile));
4721 if (!f)
4722 return NULL;
4723 f->is_file = 0;
4724 f->bs = bs;
4725 f->is_writable = is_writable;
4726 f->base_offset = offset;
4727 return f;
4728 }
4729
4730 void qemu_fflush(QEMUFile *f)
4731 {
4732 if (!f->is_writable)
4733 return;
4734 if (f->buf_index > 0) {
4735 if (f->is_file) {
4736 fseek(f->outfile, f->buf_offset, SEEK_SET);
4737 fwrite(f->buf, 1, f->buf_index, f->outfile);
4738 } else {
4739 bdrv_pwrite(f->bs, f->base_offset + f->buf_offset,
4740 f->buf, f->buf_index);
4741 }
4742 f->buf_offset += f->buf_index;
4743 f->buf_index = 0;
4744 }
4745 }
4746
4747 static void qemu_fill_buffer(QEMUFile *f)
4748 {
4749 int len;
4750
4751 if (f->is_writable)
4752 return;
4753 if (f->is_file) {
4754 fseek(f->outfile, f->buf_offset, SEEK_SET);
4755 len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
4756 if (len < 0)
4757 len = 0;
4758 } else {
4759 len = bdrv_pread(f->bs, f->base_offset + f->buf_offset,
4760 f->buf, IO_BUF_SIZE);
4761 if (len < 0)
4762 len = 0;
4763 }
4764 f->buf_index = 0;
4765 f->buf_size = len;
4766 f->buf_offset += len;
4767 }
4768
4769 void qemu_fclose(QEMUFile *f)
4770 {
4771 if (f->is_writable)
4772 qemu_fflush(f);
4773 if (f->is_file) {
4774 fclose(f->outfile);
4775 }
4776 qemu_free(f);
4777 }
4778
4779 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
4780 {
4781 int l;
4782 while (size > 0) {
4783 l = IO_BUF_SIZE - f->buf_index;
4784 if (l > size)
4785 l = size;
4786 memcpy(f->buf + f->buf_index, buf, l);
4787 f->buf_index += l;
4788 buf += l;
4789 size -= l;
4790 if (f->buf_index >= IO_BUF_SIZE)
4791 qemu_fflush(f);
4792 }
4793 }
4794
4795 void qemu_put_byte(QEMUFile *f, int v)
4796 {
4797 f->buf[f->buf_index++] = v;
4798 if (f->buf_index >= IO_BUF_SIZE)
4799 qemu_fflush(f);
4800 }
4801
4802 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
4803 {
4804 int size, l;
4805
4806 size = size1;
4807 while (size > 0) {
4808 l = f->buf_size - f->buf_index;
4809 if (l == 0) {
4810 qemu_fill_buffer(f);
4811 l = f->buf_size - f->buf_index;
4812 if (l == 0)
4813 break;
4814 }
4815 if (l > size)
4816 l = size;
4817 memcpy(buf, f->buf + f->buf_index, l);
4818 f->buf_index += l;
4819 buf += l;
4820 size -= l;
4821 }
4822 return size1 - size;
4823 }
4824
4825 int qemu_get_byte(QEMUFile *f)
4826 {
4827 if (f->buf_index >= f->buf_size) {
4828 qemu_fill_buffer(f);
4829 if (f->buf_index >= f->buf_size)
4830 return 0;
4831 }
4832 return f->buf[f->buf_index++];
4833 }
4834
4835 int64_t qemu_ftell(QEMUFile *f)
4836 {
4837 return f->buf_offset - f->buf_size + f->buf_index;
4838 }
4839
4840 int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
4841 {
4842 if (whence == SEEK_SET) {
4843 /* nothing to do */
4844 } else if (whence == SEEK_CUR) {
4845 pos += qemu_ftell(f);
4846 } else {
4847 /* SEEK_END not supported */
4848 return -1;
4849 }
4850 if (f->is_writable) {
4851 qemu_fflush(f);
4852 f->buf_offset = pos;
4853 } else {
4854 f->buf_offset = pos;
4855 f->buf_index = 0;
4856 f->buf_size = 0;
4857 }
4858 return pos;
4859 }
4860
4861 void qemu_put_be16(QEMUFile *f, unsigned int v)
4862 {
4863 qemu_put_byte(f, v >> 8);
4864 qemu_put_byte(f, v);
4865 }
4866
4867 void qemu_put_be32(QEMUFile *f, unsigned int v)
4868 {
4869 qemu_put_byte(f, v >> 24);
4870 qemu_put_byte(f, v >> 16);
4871 qemu_put_byte(f, v >> 8);
4872 qemu_put_byte(f, v);
4873 }
4874
4875 void qemu_put_be64(QEMUFile *f, uint64_t v)
4876 {
4877 qemu_put_be32(f, v >> 32);
4878 qemu_put_be32(f, v);
4879 }
4880
4881 unsigned int qemu_get_be16(QEMUFile *f)
4882 {
4883 unsigned int v;
4884 v = qemu_get_byte(f) << 8;
4885 v |= qemu_get_byte(f);
4886 return v;
4887 }
4888
4889 unsigned int qemu_get_be32(QEMUFile *f)
4890 {
4891 unsigned int v;
4892 v = qemu_get_byte(f) << 24;
4893 v |= qemu_get_byte(f) << 16;
4894 v |= qemu_get_byte(f) << 8;
4895 v |= qemu_get_byte(f);
4896 return v;
4897 }
4898
4899 uint64_t qemu_get_be64(QEMUFile *f)
4900 {
4901 uint64_t v;
4902 v = (uint64_t)qemu_get_be32(f) << 32;
4903 v |= qemu_get_be32(f);
4904 return v;
4905 }
4906
4907 typedef struct SaveStateEntry {
4908 char idstr[256];
4909 int instance_id;
4910 int version_id;
4911 SaveStateHandler *save_state;
4912 LoadStateHandler *load_state;
4913 void *opaque;
4914 struct SaveStateEntry *next;
4915 } SaveStateEntry;
4916
4917 static SaveStateEntry *first_se;
4918
4919 int register_savevm(const char *idstr,
4920 int instance_id,
4921 int version_id,
4922 SaveStateHandler *save_state,
4923 LoadStateHandler *load_state,
4924 void *opaque)
4925 {
4926 SaveStateEntry *se, **pse;
4927
4928 se = qemu_malloc(sizeof(SaveStateEntry));
4929 if (!se)
4930 return -1;
4931 pstrcpy(se->idstr, sizeof(se->idstr), idstr);
4932 se->instance_id = instance_id;
4933 se->version_id = version_id;
4934 se->save_state = save_state;
4935 se->load_state = load_state;
4936 se->opaque = opaque;
4937 se->next = NULL;
4938
4939 /* add at the end of list */
4940 pse = &first_se;
4941 while (*pse != NULL)
4942 pse = &(*pse)->next;
4943 *pse = se;
4944 return 0;
4945 }
4946
4947 #define QEMU_VM_FILE_MAGIC 0x5145564d
4948 #define QEMU_VM_FILE_VERSION 0x00000002
4949
4950 int qemu_savevm_state(QEMUFile *f)
4951 {
4952 SaveStateEntry *se;
4953 int len, ret;
4954 int64_t cur_pos, len_pos, total_len_pos;
4955
4956 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
4957 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
4958 total_len_pos = qemu_ftell(f);
4959 qemu_put_be64(f, 0); /* total size */
4960
4961 for(se = first_se; se != NULL; se = se->next) {
4962 /* ID string */
4963 len = strlen(se->idstr);
4964 qemu_put_byte(f, len);
4965 qemu_put_buffer(f, se->idstr, len);
4966
4967 qemu_put_be32(f, se->instance_id);
4968 qemu_put_be32(f, se->version_id);
4969
4970 /* record size: filled later */
4971 len_pos = qemu_ftell(f);
4972 qemu_put_be32(f, 0);
4973
4974 se->save_state(f, se->opaque);
4975
4976 /* fill record size */
4977 cur_pos = qemu_ftell(f);
4978 len = cur_pos - len_pos - 4;
4979 qemu_fseek(f, len_pos, SEEK_SET);
4980 qemu_put_be32(f, len);
4981 qemu_fseek(f, cur_pos, SEEK_SET);
4982 }
4983 cur_pos = qemu_ftell(f);
4984 qemu_fseek(f, total_len_pos, SEEK_SET);
4985 qemu_put_be64(f, cur_pos - total_len_pos - 8);
4986 qemu_fseek(f, cur_pos, SEEK_SET);
4987
4988 ret = 0;
4989 return ret;
4990 }
4991
4992 static SaveStateEntry *find_se(const char *idstr, int instance_id)
4993 {
4994 SaveStateEntry *se;
4995
4996 for(se = first_se; se != NULL; se = se->next) {
4997 if (!strcmp(se->idstr, idstr) &&
4998 instance_id == se->instance_id)
4999 return se;
5000 }
5001 return NULL;
5002 }
5003
5004 int qemu_loadvm_state(QEMUFile *f)
5005 {
5006 SaveStateEntry *se;
5007 int len, ret, instance_id, record_len, version_id;
5008 int64_t total_len, end_pos, cur_pos;
5009 unsigned int v;
5010 char idstr[256];
5011
5012 v = qemu_get_be32(f);
5013 if (v != QEMU_VM_FILE_MAGIC)
5014 goto fail;
5015 v = qemu_get_be32(f);
5016 if (v != QEMU_VM_FILE_VERSION) {
5017 fail:
5018 ret = -1;
5019 goto the_end;
5020 }
5021 total_len = qemu_get_be64(f);
5022 end_pos = total_len + qemu_ftell(f);
5023 for(;;) {
5024 if (qemu_ftell(f) >= end_pos)
5025 break;
5026 len = qemu_get_byte(f);
5027 qemu_get_buffer(f, idstr, len);
5028 idstr[len] = '\0';
5029 instance_id = qemu_get_be32(f);
5030 version_id = qemu_get_be32(f);
5031 record_len = qemu_get_be32(f);
5032 #if 0
5033 printf("idstr=%s instance=0x%x version=%d len=%d\n",
5034 idstr, instance_id, version_id, record_len);
5035 #endif
5036 cur_pos = qemu_ftell(f);
5037 se = find_se(idstr, instance_id);
5038 if (!se) {
5039 fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
5040 instance_id, idstr);
5041 } else {
5042 ret = se->load_state(f, se->opaque, version_id);
5043 if (ret < 0) {
5044 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
5045 instance_id, idstr);
5046 }
5047 }
5048 /* always seek to exact end of record */
5049 qemu_fseek(f, cur_pos + record_len, SEEK_SET);
5050 }
5051 ret = 0;
5052 the_end:
5053 return ret;
5054 }
5055
5056 /* device can contain snapshots */
5057 static int bdrv_can_snapshot(BlockDriverState *bs)
5058 {
5059 return (bs &&
5060 !bdrv_is_removable(bs) &&
5061 !bdrv_is_read_only(bs));
5062 }
5063
5064 /* device must be snapshots in order to have a reliable snapshot */
5065 static int bdrv_has_snapshot(BlockDriverState *bs)
5066 {
5067 return (bs &&
5068 !bdrv_is_removable(bs) &&
5069 !bdrv_is_read_only(bs));
5070 }
5071
5072 static BlockDriverState *get_bs_snapshots(void)
5073 {
5074 BlockDriverState *bs;
5075 int i;
5076
5077 if (bs_snapshots)
5078 return bs_snapshots;
5079 for(i = 0; i <= MAX_DISKS; i++) {
5080 bs = bs_table[i];
5081 if (bdrv_can_snapshot(bs))
5082 goto ok;
5083 }
5084 return NULL;
5085 ok:
5086 bs_snapshots = bs;
5087 return bs;
5088 }
5089
5090 static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
5091 const char *name)
5092 {
5093 QEMUSnapshotInfo *sn_tab, *sn;
5094 int nb_sns, i, ret;
5095
5096 ret = -ENOENT;
5097 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5098 if (nb_sns < 0)
5099 return ret;
5100 for(i = 0; i < nb_sns; i++) {
5101 sn = &sn_tab[i];
5102 if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
5103 *sn_info = *sn;
5104 ret = 0;
5105 break;
5106 }
5107 }
5108 qemu_free(sn_tab);
5109 return ret;
5110 }
5111
5112 void do_savevm(const char *name)
5113 {
5114 BlockDriverState *bs, *bs1;
5115 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
5116 int must_delete, ret, i;
5117 BlockDriverInfo bdi1, *bdi = &bdi1;
5118 QEMUFile *f;
5119 int saved_vm_running;
5120 #ifdef _WIN32
5121 struct _timeb tb;
5122 #else
5123 struct timeval tv;
5124 #endif
5125
5126 bs = get_bs_snapshots();
5127 if (!bs) {
5128 term_printf("No block device can accept snapshots\n");
5129 return;
5130 }
5131
5132 /* ??? Should this occur after vm_stop? */
5133 qemu_aio_flush();
5134
5135 saved_vm_running = vm_running;
5136 vm_stop(0);
5137
5138 must_delete = 0;
5139 if (name) {
5140 ret = bdrv_snapshot_find(bs, old_sn, name);
5141 if (ret >= 0) {
5142 must_delete = 1;
5143 }
5144 }
5145 memset(sn, 0, sizeof(*sn));
5146 if (must_delete) {
5147 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
5148 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
5149 } else {
5150 if (name)
5151 pstrcpy(sn->name, sizeof(sn->name), name);
5152 }
5153
5154 /* fill auxiliary fields */
5155 #ifdef _WIN32
5156 _ftime(&tb);
5157 sn->date_sec = tb.time;
5158 sn->date_nsec = tb.millitm * 1000000;
5159 #else
5160 gettimeofday(&tv, NULL);
5161 sn->date_sec = tv.tv_sec;
5162 sn->date_nsec = tv.tv_usec * 1000;
5163 #endif
5164 sn->vm_clock_nsec = qemu_get_clock(vm_clock);
5165
5166 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5167 term_printf("Device %s does not support VM state snapshots\n",
5168 bdrv_get_device_name(bs));
5169 goto the_end;
5170 }
5171
5172 /* save the VM state */
5173 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
5174 if (!f) {
5175 term_printf("Could not open VM state file\n");
5176 goto the_end;
5177 }
5178 ret = qemu_savevm_state(f);
5179 sn->vm_state_size = qemu_ftell(f);
5180 qemu_fclose(f);
5181 if (ret < 0) {
5182 term_printf("Error %d while writing VM\n", ret);
5183 goto the_end;
5184 }
5185
5186 /* create the snapshots */
5187
5188 for(i = 0; i < MAX_DISKS; i++) {
5189 bs1 = bs_table[i];
5190 if (bdrv_has_snapshot(bs1)) {
5191 if (must_delete) {
5192 ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
5193 if (ret < 0) {
5194 term_printf("Error while deleting snapshot on '%s'\n",
5195 bdrv_get_device_name(bs1));
5196 }
5197 }
5198 ret = bdrv_snapshot_create(bs1, sn);
5199 if (ret < 0) {
5200 term_printf("Error while creating snapshot on '%s'\n",
5201 bdrv_get_device_name(bs1));
5202 }
5203 }
5204 }
5205
5206 the_end:
5207 if (saved_vm_running)
5208 vm_start();
5209 }
5210
5211 void do_loadvm(const char *name)
5212 {
5213 BlockDriverState *bs, *bs1;
5214 BlockDriverInfo bdi1, *bdi = &bdi1;
5215 QEMUFile *f;
5216 int i, ret;
5217 int saved_vm_running;
5218
5219 bs = get_bs_snapshots();
5220 if (!bs) {
5221 term_printf("No block device supports snapshots\n");
5222 return;
5223 }
5224
5225 /* Flush all IO requests so they don't interfere with the new state. */
5226 qemu_aio_flush();
5227
5228 saved_vm_running = vm_running;
5229 vm_stop(0);
5230
5231 for(i = 0; i <= MAX_DISKS; i++) {
5232 bs1 = bs_table[i];
5233 if (bdrv_has_snapshot(bs1)) {
5234 ret = bdrv_snapshot_goto(bs1, name);
5235 if (ret < 0) {
5236 if (bs != bs1)
5237 term_printf("Warning: ");
5238 switch(ret) {
5239 case -ENOTSUP:
5240 term_printf("Snapshots not supported on device '%s'\n",
5241 bdrv_get_device_name(bs1));
5242 break;
5243 case -ENOENT:
5244 term_printf("Could not find snapshot '%s' on device '%s'\n",
5245 name, bdrv_get_device_name(bs1));
5246 break;
5247 default:
5248 term_printf("Error %d while activating snapshot on '%s'\n",
5249 ret, bdrv_get_device_name(bs1));
5250 break;
5251 }
5252 /* fatal on snapshot block device */
5253 if (bs == bs1)
5254 goto the_end;
5255 }
5256 }
5257 }
5258
5259 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5260 term_printf("Device %s does not support VM state snapshots\n",
5261 bdrv_get_device_name(bs));
5262 return;
5263 }
5264
5265 /* restore the VM state */
5266 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
5267 if (!f) {
5268 term_printf("Could not open VM state file\n");
5269 goto the_end;
5270 }
5271 ret = qemu_loadvm_state(f);
5272 qemu_fclose(f);
5273 if (ret < 0) {
5274 term_printf("Error %d while loading VM state\n", ret);
5275 }
5276 the_end:
5277 if (saved_vm_running)
5278 vm_start();
5279 }
5280
5281 void do_delvm(const char *name)
5282 {
5283 BlockDriverState *bs, *bs1;
5284 int i, ret;
5285
5286 bs = get_bs_snapshots();
5287 if (!bs) {
5288 term_printf("No block device supports snapshots\n");
5289 return;
5290 }
5291
5292 for(i = 0; i <= MAX_DISKS; i++) {
5293 bs1 = bs_table[i];
5294 if (bdrv_has_snapshot(bs1)) {
5295 ret = bdrv_snapshot_delete(bs1, name);
5296 if (ret < 0) {
5297 if (ret == -ENOTSUP)
5298 term_printf("Snapshots not supported on device '%s'\n",
5299 bdrv_get_device_name(bs1));
5300 else
5301 term_printf("Error %d while deleting snapshot on '%s'\n",
5302 ret, bdrv_get_device_name(bs1));
5303 }
5304 }
5305 }
5306 }
5307
5308 void do_info_snapshots(void)
5309 {
5310 BlockDriverState *bs, *bs1;
5311 QEMUSnapshotInfo *sn_tab, *sn;
5312 int nb_sns, i;
5313 char buf[256];
5314
5315 bs = get_bs_snapshots();
5316 if (!bs) {
5317 term_printf("No available block device supports snapshots\n");
5318 return;
5319 }
5320 term_printf("Snapshot devices:");
5321 for(i = 0; i <= MAX_DISKS; i++) {
5322 bs1 = bs_table[i];
5323 if (bdrv_has_snapshot(bs1)) {
5324 if (bs == bs1)
5325 term_printf(" %s", bdrv_get_device_name(bs1));
5326 }
5327 }
5328 term_printf("\n");
5329
5330 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5331 if (nb_sns < 0) {
5332 term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
5333 return;
5334 }
5335 term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
5336 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
5337 for(i = 0; i < nb_sns; i++) {
5338 sn = &sn_tab[i];
5339 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
5340 }
5341 qemu_free(sn_tab);
5342 }
5343
5344 /***********************************************************/
5345 /* cpu save/restore */
5346
5347 #if defined(TARGET_I386)
5348
5349 static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
5350 {
5351 qemu_put_be32(f, dt->selector);
5352 qemu_put_betl(f, dt->base);
5353 qemu_put_be32(f, dt->limit);
5354 qemu_put_be32(f, dt->flags);
5355 }
5356
5357 static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
5358 {
5359 dt->selector = qemu_get_be32(f);
5360 dt->base = qemu_get_betl(f);
5361 dt->limit = qemu_get_be32(f);
5362 dt->flags = qemu_get_be32(f);
5363 }
5364
5365 void cpu_save(QEMUFile *f, void *opaque)
5366 {
5367 CPUState *env = opaque;
5368 uint16_t fptag, fpus, fpuc, fpregs_format;
5369 uint32_t hflags;
5370 int i;
5371
5372 for(i = 0; i < CPU_NB_REGS; i++)
5373 qemu_put_betls(f, &env->regs[i]);
5374 qemu_put_betls(f, &env->eip);
5375 qemu_put_betls(f, &env->eflags);
5376 hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
5377 qemu_put_be32s(f, &hflags);
5378
5379 /* FPU */
5380 fpuc = env->fpuc;
5381 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
5382 fptag = 0;
5383 for(i = 0; i < 8; i++) {
5384 fptag |= ((!env->fptags[i]) << i);
5385 }
5386
5387 qemu_put_be16s(f, &fpuc);
5388 qemu_put_be16s(f, &fpus);
5389 qemu_put_be16s(f, &fptag);
5390
5391 #ifdef USE_X86LDOUBLE
5392 fpregs_format = 0;
5393 #else
5394 fpregs_format = 1;
5395 #endif
5396 qemu_put_be16s(f, &fpregs_format);
5397
5398 for(i = 0; i < 8; i++) {
5399 #ifdef USE_X86LDOUBLE
5400 {
5401 uint64_t mant;
5402 uint16_t exp;
5403 /* we save the real CPU data (in case of MMX usage only 'mant'
5404 contains the MMX register */
5405 cpu_get_fp80(&mant, &exp, env->fpregs[i].d);
5406 qemu_put_be64(f, mant);
5407 qemu_put_be16(f, exp);
5408 }
5409 #else
5410 /* if we use doubles for float emulation, we save the doubles to
5411 avoid losing information in case of MMX usage. It can give
5412 problems if the image is restored on a CPU where long
5413 doubles are used instead. */
5414 qemu_put_be64(f, env->fpregs[i].mmx.MMX_Q(0));
5415 #endif
5416 }
5417
5418 for(i = 0; i < 6; i++)
5419 cpu_put_seg(f, &env->segs[i]);
5420 cpu_put_seg(f, &env->ldt);
5421 cpu_put_seg(f, &env->tr);
5422 cpu_put_seg(f, &env->gdt);
5423 cpu_put_seg(f, &env->idt);
5424
5425 qemu_put_be32s(f, &env->sysenter_cs);
5426 qemu_put_be32s(f, &env->sysenter_esp);
5427 qemu_put_be32s(f, &env->sysenter_eip);
5428
5429 qemu_put_betls(f, &env->cr[0]);
5430 qemu_put_betls(f, &env->cr[2]);
5431 qemu_put_betls(f, &env->cr[3]);
5432 qemu_put_betls(f, &env->cr[4]);
5433
5434 for(i = 0; i < 8; i++)
5435 qemu_put_betls(f, &env->dr[i]);
5436
5437 /* MMU */
5438 qemu_put_be32s(f, &env->a20_mask);
5439
5440 /* XMM */
5441 qemu_put_be32s(f, &env->mxcsr);
5442 for(i = 0; i < CPU_NB_REGS; i++) {
5443 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5444 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5445 }
5446
5447 #ifdef TARGET_X86_64
5448 qemu_put_be64s(f, &env->efer);
5449 qemu_put_be64s(f, &env->star);
5450 qemu_put_be64s(f, &env->lstar);
5451 qemu_put_be64s(f, &env->cstar);
5452 qemu_put_be64s(f, &env->fmask);
5453 qemu_put_be64s(f, &env->kernelgsbase);
5454 #endif
5455 qemu_put_be32s(f, &env->smbase);
5456 }
5457
5458 #ifdef USE_X86LDOUBLE
5459 /* XXX: add that in a FPU generic layer */
5460 union x86_longdouble {
5461 uint64_t mant;
5462 uint16_t exp;
5463 };
5464
5465 #define MANTD1(fp) (fp & ((1LL << 52) - 1))
5466 #define EXPBIAS1 1023
5467 #define EXPD1(fp) ((fp >> 52) & 0x7FF)
5468 #define SIGND1(fp) ((fp >> 32) & 0x80000000)
5469
5470 static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
5471 {
5472 int e;
5473 /* mantissa */
5474 p->mant = (MANTD1(temp) << 11) | (1LL << 63);
5475 /* exponent + sign */
5476 e = EXPD1(temp) - EXPBIAS1 + 16383;
5477 e |= SIGND1(temp) >> 16;
5478 p->exp = e;
5479 }
5480 #endif
5481
5482 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5483 {
5484 CPUState *env = opaque;
5485 int i, guess_mmx;
5486 uint32_t hflags;
5487 uint16_t fpus, fpuc, fptag, fpregs_format;
5488
5489 if (version_id != 3 && version_id != 4)
5490 return -EINVAL;
5491 for(i = 0; i < CPU_NB_REGS; i++)
5492 qemu_get_betls(f, &env->regs[i]);
5493 qemu_get_betls(f, &env->eip);
5494 qemu_get_betls(f, &env->eflags);
5495 qemu_get_be32s(f, &hflags);
5496
5497 qemu_get_be16s(f, &fpuc);
5498 qemu_get_be16s(f, &fpus);
5499 qemu_get_be16s(f, &fptag);
5500 qemu_get_be16s(f, &fpregs_format);
5501
5502 /* NOTE: we cannot always restore the FPU state if the image come
5503 from a host with a different 'USE_X86LDOUBLE' define. We guess
5504 if we are in an MMX state to restore correctly in that case. */
5505 guess_mmx = ((fptag == 0xff) && (fpus & 0x3800) == 0);
5506 for(i = 0; i < 8; i++) {
5507 uint64_t mant;
5508 uint16_t exp;
5509
5510 switch(fpregs_format) {
5511 case 0:
5512 mant = qemu_get_be64(f);
5513 exp = qemu_get_be16(f);
5514 #ifdef USE_X86LDOUBLE
5515 env->fpregs[i].d = cpu_set_fp80(mant, exp);
5516 #else
5517 /* difficult case */
5518 if (guess_mmx)
5519 env->fpregs[i].mmx.MMX_Q(0) = mant;
5520 else
5521 env->fpregs[i].d = cpu_set_fp80(mant, exp);
5522 #endif
5523 break;
5524 case 1:
5525 mant = qemu_get_be64(f);
5526 #ifdef USE_X86LDOUBLE
5527 {
5528 union x86_longdouble *p;
5529 /* difficult case */
5530 p = (void *)&env->fpregs[i];
5531 if (guess_mmx) {
5532 p->mant = mant;
5533 p->exp = 0xffff;
5534 } else {
5535 fp64_to_fp80(p, mant);
5536 }
5537 }
5538 #else
5539 env->fpregs[i].mmx.MMX_Q(0) = mant;
5540 #endif
5541 break;
5542 default:
5543 return -EINVAL;
5544 }
5545 }
5546
5547 env->fpuc = fpuc;
5548 /* XXX: restore FPU round state */
5549 env->fpstt = (fpus >> 11) & 7;
5550 env->fpus = fpus & ~0x3800;
5551 fptag ^= 0xff;
5552 for(i = 0; i < 8; i++) {
5553 env->fptags[i] = (fptag >> i) & 1;
5554 }
5555
5556 for(i = 0; i < 6; i++)
5557 cpu_get_seg(f, &env->segs[i]);
5558 cpu_get_seg(f, &env->ldt);
5559 cpu_get_seg(f, &env->tr);
5560 cpu_get_seg(f, &env->gdt);
5561 cpu_get_seg(f, &env->idt);
5562
5563 qemu_get_be32s(f, &env->sysenter_cs);
5564 qemu_get_be32s(f, &env->sysenter_esp);
5565 qemu_get_be32s(f, &env->sysenter_eip);
5566
5567 qemu_get_betls(f, &env->cr[0]);
5568 qemu_get_betls(f, &env->cr[2]);
5569 qemu_get_betls(f, &env->cr[3]);
5570 qemu_get_betls(f, &env->cr[4]);
5571
5572 for(i = 0; i < 8; i++)
5573 qemu_get_betls(f, &env->dr[i]);
5574
5575 /* MMU */
5576 qemu_get_be32s(f, &env->a20_mask);
5577
5578 qemu_get_be32s(f, &env->mxcsr);
5579 for(i = 0; i < CPU_NB_REGS; i++) {
5580 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5581 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5582 }
5583
5584 #ifdef TARGET_X86_64
5585 qemu_get_be64s(f, &env->efer);
5586 qemu_get_be64s(f, &env->star);
5587 qemu_get_be64s(f, &env->lstar);
5588 qemu_get_be64s(f, &env->cstar);
5589 qemu_get_be64s(f, &env->fmask);
5590 qemu_get_be64s(f, &env->kernelgsbase);
5591 #endif
5592 if (version_id >= 4)
5593 qemu_get_be32s(f, &env->smbase);
5594
5595 /* XXX: compute hflags from scratch, except for CPL and IIF */
5596 env->hflags = hflags;
5597 tlb_flush(env, 1);
5598 return 0;
5599 }
5600
5601 #elif defined(TARGET_PPC)
5602 void cpu_save(QEMUFile *f, void *opaque)
5603 {
5604 }
5605
5606 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5607 {
5608 return 0;
5609 }
5610
5611 #elif defined(TARGET_MIPS)
5612 void cpu_save(QEMUFile *f, void *opaque)
5613 {
5614 }
5615
5616 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5617 {
5618 return 0;
5619 }
5620
5621 #elif defined(TARGET_SPARC)
5622 void cpu_save(QEMUFile *f, void *opaque)
5623 {
5624 CPUState *env = opaque;
5625 int i;
5626 uint32_t tmp;
5627
5628 for(i = 0; i < 8; i++)
5629 qemu_put_betls(f, &env->gregs[i]);
5630 for(i = 0; i < NWINDOWS * 16; i++)
5631 qemu_put_betls(f, &env->regbase[i]);
5632
5633 /* FPU */
5634 for(i = 0; i < TARGET_FPREGS; i++) {
5635 union {
5636 float32 f;
5637 uint32_t i;
5638 } u;
5639 u.f = env->fpr[i];
5640 qemu_put_be32(f, u.i);
5641 }
5642
5643 qemu_put_betls(f, &env->pc);
5644 qemu_put_betls(f, &env->npc);
5645 qemu_put_betls(f, &env->y);
5646 tmp = GET_PSR(env);
5647 qemu_put_be32(f, tmp);
5648 qemu_put_betls(f, &env->fsr);
5649 qemu_put_betls(f, &env->tbr);
5650 #ifndef TARGET_SPARC64
5651 qemu_put_be32s(f, &env->wim);
5652 /* MMU */
5653 for(i = 0; i < 16; i++)
5654 qemu_put_be32s(f, &env->mmuregs[i]);
5655 #endif
5656 }
5657
5658 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5659 {
5660 CPUState *env = opaque;
5661 int i;
5662 uint32_t tmp;
5663
5664 for(i = 0; i < 8; i++)
5665 qemu_get_betls(f, &env->gregs[i]);
5666 for(i = 0; i < NWINDOWS * 16; i++)
5667 qemu_get_betls(f, &env->regbase[i]);
5668
5669 /* FPU */
5670 for(i = 0; i < TARGET_FPREGS; i++) {
5671 union {
5672 float32 f;
5673 uint32_t i;
5674 } u;
5675 u.i = qemu_get_be32(f);
5676 env->fpr[i] = u.f;
5677 }
5678
5679 qemu_get_betls(f, &env->pc);
5680 qemu_get_betls(f, &env->npc);
5681 qemu_get_betls(f, &env->y);
5682 tmp = qemu_get_be32(f);
5683 env->cwp = 0; /* needed to ensure that the wrapping registers are
5684 correctly updated */
5685 PUT_PSR(env, tmp);
5686 qemu_get_betls(f, &env->fsr);
5687 qemu_get_betls(f, &env->tbr);
5688 #ifndef TARGET_SPARC64
5689 qemu_get_be32s(f, &env->wim);
5690 /* MMU */
5691 for(i = 0; i < 16; i++)
5692 qemu_get_be32s(f, &env->mmuregs[i]);
5693 #endif
5694 tlb_flush(env, 1);
5695 return 0;
5696 }
5697
5698 #elif defined(TARGET_ARM)
5699
5700 void cpu_save(QEMUFile *f, void *opaque)
5701 {
5702 int i;
5703 CPUARMState *env = (CPUARMState *)opaque;
5704
5705 for (i = 0; i < 16; i++) {
5706 qemu_put_be32(f, env->regs[i]);
5707 }
5708 qemu_put_be32(f, cpsr_read(env));
5709 qemu_put_be32(f, env->spsr);
5710 for (i = 0; i < 6; i++) {
5711 qemu_put_be32(f, env->banked_spsr[i]);
5712 qemu_put_be32(f, env->banked_r13[i]);
5713 qemu_put_be32(f, env->banked_r14[i]);
5714 }
5715 for (i = 0; i < 5; i++) {
5716 qemu_put_be32(f, env->usr_regs[i]);
5717 qemu_put_be32(f, env->fiq_regs[i]);
5718 }
5719 qemu_put_be32(f, env->cp15.c0_cpuid);
5720 qemu_put_be32(f, env->cp15.c0_cachetype);
5721 qemu_put_be32(f, env->cp15.c1_sys);
5722 qemu_put_be32(f, env->cp15.c1_coproc);
5723 qemu_put_be32(f, env->cp15.c1_xscaleauxcr);
5724 qemu_put_be32(f, env->cp15.c2_base);
5725 qemu_put_be32(f, env->cp15.c2_data);
5726 qemu_put_be32(f, env->cp15.c2_insn);
5727 qemu_put_be32(f, env->cp15.c3);
5728 qemu_put_be32(f, env->cp15.c5_insn);
5729 qemu_put_be32(f, env->cp15.c5_data);
5730 for (i = 0; i < 8; i++) {
5731 qemu_put_be32(f, env->cp15.c6_region[i]);
5732 }
5733 qemu_put_be32(f, env->cp15.c6_insn);
5734 qemu_put_be32(f, env->cp15.c6_data);
5735 qemu_put_be32(f, env->cp15.c9_insn);
5736 qemu_put_be32(f, env->cp15.c9_data);
5737 qemu_put_be32(f, env->cp15.c13_fcse);
5738 qemu_put_be32(f, env->cp15.c13_context);
5739 qemu_put_be32(f, env->cp15.c15_cpar);
5740
5741 qemu_put_be32(f, env->features);
5742
5743 if (arm_feature(env, ARM_FEATURE_VFP)) {
5744 for (i = 0; i < 16; i++) {
5745 CPU_DoubleU u;
5746 u.d = env->vfp.regs[i];
5747 qemu_put_be32(f, u.l.upper);
5748 qemu_put_be32(f, u.l.lower);
5749 }
5750 for (i = 0; i < 16; i++) {
5751 qemu_put_be32(f, env->vfp.xregs[i]);
5752 }
5753
5754 /* TODO: Should use proper FPSCR access functions. */
5755 qemu_put_be32(f, env->vfp.vec_len);
5756 qemu_put_be32(f, env->vfp.vec_stride);
5757 }
5758
5759 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
5760 for (i = 0; i < 16; i++) {
5761 qemu_put_be64(f, env->iwmmxt.regs[i]);
5762 }
5763 for (i = 0; i < 16; i++) {
5764 qemu_put_be32(f, env->iwmmxt.cregs[i]);
5765 }
5766 }
5767 }
5768
5769 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5770 {
5771 CPUARMState *env = (CPUARMState *)opaque;
5772 int i;
5773
5774 if (version_id != 0)
5775 return -EINVAL;
5776
5777 for (i = 0; i < 16; i++) {
5778 env->regs[i] = qemu_get_be32(f);
5779 }
5780 cpsr_write(env, qemu_get_be32(f), 0xffffffff);
5781 env->spsr = qemu_get_be32(f);
5782 for (i = 0; i < 6; i++) {
5783 env->banked_spsr[i] = qemu_get_be32(f);
5784 env->banked_r13[i] = qemu_get_be32(f);
5785 env->banked_r14[i] = qemu_get_be32(f);
5786 }
5787 for (i = 0; i < 5; i++) {
5788 env->usr_regs[i] = qemu_get_be32(f);
5789 env->fiq_regs[i] = qemu_get_be32(f);
5790 }
5791 env->cp15.c0_cpuid = qemu_get_be32(f);
5792 env->cp15.c0_cachetype = qemu_get_be32(f);
5793 env->cp15.c1_sys = qemu_get_be32(f);
5794 env->cp15.c1_coproc = qemu_get_be32(f);
5795 env->cp15.c1_xscaleauxcr = qemu_get_be32(f);
5796 env->cp15.c2_base = qemu_get_be32(f);
5797 env->cp15.c2_data = qemu_get_be32(f);
5798 env->cp15.c2_insn = qemu_get_be32(f);
5799 env->cp15.c3 = qemu_get_be32(f);
5800 env->cp15.c5_insn = qemu_get_be32(f);
5801 env->cp15.c5_data = qemu_get_be32(f);
5802 for (i = 0; i < 8; i++) {
5803 env->cp15.c6_region[i] = qemu_get_be32(f);
5804 }
5805 env->cp15.c6_insn = qemu_get_be32(f);
5806 env->cp15.c6_data = qemu_get_be32(f);
5807 env->cp15.c9_insn = qemu_get_be32(f);
5808 env->cp15.c9_data = qemu_get_be32(f);
5809 env->cp15.c13_fcse = qemu_get_be32(f);
5810 env->cp15.c13_context = qemu_get_be32(f);
5811 env->cp15.c15_cpar = qemu_get_be32(f);
5812
5813 env->features = qemu_get_be32(f);
5814
5815 if (arm_feature(env, ARM_FEATURE_VFP)) {
5816 for (i = 0; i < 16; i++) {
5817 CPU_DoubleU u;
5818 u.l.upper = qemu_get_be32(f);
5819 u.l.lower = qemu_get_be32(f);
5820 env->vfp.regs[i] = u.d;
5821 }
5822 for (i = 0; i < 16; i++) {
5823 env->vfp.xregs[i] = qemu_get_be32(f);
5824 }
5825
5826 /* TODO: Should use proper FPSCR access functions. */
5827 env->vfp.vec_len = qemu_get_be32(f);
5828 env->vfp.vec_stride = qemu_get_be32(f);
5829 }
5830
5831 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
5832 for (i = 0; i < 16; i++) {
5833 env->iwmmxt.regs[i] = qemu_get_be64(f);
5834 }
5835 for (i = 0; i < 16; i++) {
5836 env->iwmmxt.cregs[i] = qemu_get_be32(f);
5837 }
5838 }
5839
5840 return 0;
5841 }
5842
5843 #else
5844
5845 #warning No CPU save/restore functions
5846
5847 #endif
5848
5849 /***********************************************************/
5850 /* ram save/restore */
5851
5852 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
5853 {
5854 int v;
5855
5856 v = qemu_get_byte(f);
5857 switch(v) {
5858 case 0:
5859 if (qemu_get_buffer(f, buf, len) != len)
5860 return -EIO;
5861 break;
5862 case 1:
5863 v = qemu_get_byte(f);
5864 memset(buf, v, len);
5865 break;
5866 default:
5867 return -EINVAL;
5868 }
5869 return 0;
5870 }
5871
5872 static int ram_load_v1(QEMUFile *f, void *opaque)
5873 {
5874 int i, ret;
5875
5876 if (qemu_get_be32(f) != phys_ram_size)
5877 return -EINVAL;
5878 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
5879 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
5880 if (ret)
5881 return ret;
5882 }
5883 return 0;
5884 }
5885
5886 #define BDRV_HASH_BLOCK_SIZE 1024
5887 #define IOBUF_SIZE 4096
5888 #define RAM_CBLOCK_MAGIC 0xfabe
5889
5890 typedef struct RamCompressState {
5891 z_stream zstream;
5892 QEMUFile *f;
5893 uint8_t buf[IOBUF_SIZE];
5894 } RamCompressState;
5895
5896 static int ram_compress_open(RamCompressState *s, QEMUFile *f)
5897 {
5898 int ret;
5899 memset(s, 0, sizeof(*s));
5900 s->f = f;
5901 ret = deflateInit2(&s->zstream, 1,
5902 Z_DEFLATED, 15,
5903 9, Z_DEFAULT_STRATEGY);
5904 if (ret != Z_OK)
5905 return -1;
5906 s->zstream.avail_out = IOBUF_SIZE;
5907 s->zstream.next_out = s->buf;
5908 return 0;
5909 }
5910
5911 static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
5912 {
5913 qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
5914 qemu_put_be16(s->f, len);
5915 qemu_put_buffer(s->f, buf, len);
5916 }
5917
5918 static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
5919 {
5920 int ret;
5921
5922 s->zstream.avail_in = len;
5923 s->zstream.next_in = (uint8_t *)buf;
5924 while (s->zstream.avail_in > 0) {
5925 ret = deflate(&s->zstream, Z_NO_FLUSH);
5926 if (ret != Z_OK)
5927 return -1;
5928 if (s->zstream.avail_out == 0) {
5929 ram_put_cblock(s, s->buf, IOBUF_SIZE);
5930 s->zstream.avail_out = IOBUF_SIZE;
5931 s->zstream.next_out = s->buf;
5932 }
5933 }
5934 return 0;
5935 }
5936
5937 static void ram_compress_close(RamCompressState *s)
5938 {
5939 int len, ret;
5940
5941 /* compress last bytes */
5942 for(;;) {
5943 ret = deflate(&s->zstream, Z_FINISH);
5944 if (ret == Z_OK || ret == Z_STREAM_END) {
5945 len = IOBUF_SIZE - s->zstream.avail_out;
5946 if (len > 0) {
5947 ram_put_cblock(s, s->buf, len);
5948 }
5949 s->zstream.avail_out = IOBUF_SIZE;
5950 s->zstream.next_out = s->buf;
5951 if (ret == Z_STREAM_END)
5952 break;
5953 } else {
5954 goto fail;
5955 }
5956 }
5957 fail:
5958 deflateEnd(&s->zstream);
5959 }
5960
5961 typedef struct RamDecompressState {
5962 z_stream zstream;
5963 QEMUFile *f;
5964 uint8_t buf[IOBUF_SIZE];
5965 } RamDecompressState;
5966
5967 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
5968 {
5969 int ret;
5970 memset(s, 0, sizeof(*s));
5971 s->f = f;
5972 ret = inflateInit(&s->zstream);
5973 if (ret != Z_OK)
5974 return -1;
5975 return 0;
5976 }
5977
5978 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
5979 {
5980 int ret, clen;
5981
5982 s->zstream.avail_out = len;
5983 s->zstream.next_out = buf;
5984 while (s->zstream.avail_out > 0) {
5985 if (s->zstream.avail_in == 0) {
5986 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
5987 return -1;
5988 clen = qemu_get_be16(s->f);
5989 if (clen > IOBUF_SIZE)
5990 return -1;
5991 qemu_get_buffer(s->f, s->buf, clen);
5992 s->zstream.avail_in = clen;
5993 s->zstream.next_in = s->buf;
5994 }
5995 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
5996 if (ret != Z_OK && ret != Z_STREAM_END) {
5997 return -1;
5998 }
5999 }
6000 return 0;
6001 }
6002
6003 static void ram_decompress_close(RamDecompressState *s)
6004 {
6005 inflateEnd(&s->zstream);
6006 }
6007
6008 static void ram_save(QEMUFile *f, void *opaque)
6009 {
6010 int i;
6011 RamCompressState s1, *s = &s1;
6012 uint8_t buf[10];
6013
6014 qemu_put_be32(f, phys_ram_size);
6015 if (ram_compress_open(s, f) < 0)
6016 return;
6017 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6018 #if 0
6019 if (tight_savevm_enabled) {
6020 int64_t sector_num;
6021 int j;
6022
6023 /* find if the memory block is available on a virtual
6024 block device */
6025 sector_num = -1;
6026 for(j = 0; j < MAX_DISKS; j++) {
6027 if (bs_table[j]) {
6028 sector_num = bdrv_hash_find(bs_table[j],
6029 phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6030 if (sector_num >= 0)
6031 break;
6032 }
6033 }
6034 if (j == MAX_DISKS)
6035 goto normal_compress;
6036 buf[0] = 1;
6037 buf[1] = j;
6038 cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
6039 ram_compress_buf(s, buf, 10);
6040 } else
6041 #endif
6042 {
6043 // normal_compress:
6044 buf[0] = 0;
6045 ram_compress_buf(s, buf, 1);
6046 ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6047 }
6048 }
6049 ram_compress_close(s);
6050 }
6051
6052 static int ram_load(QEMUFile *f, void *opaque, int version_id)
6053 {
6054 RamDecompressState s1, *s = &s1;
6055 uint8_t buf[10];
6056 int i;
6057
6058 if (version_id == 1)
6059 return ram_load_v1(f, opaque);
6060 if (version_id != 2)
6061 return -EINVAL;
6062 if (qemu_get_be32(f) != phys_ram_size)
6063 return -EINVAL;
6064 if (ram_decompress_open(s, f) < 0)
6065 return -EINVAL;
6066 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6067 if (ram_decompress_buf(s, buf, 1) < 0) {
6068 fprintf(stderr, "Error while reading ram block header\n");
6069 goto error;
6070 }
6071 if (buf[0] == 0) {
6072 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
6073 fprintf(stderr, "Error while reading ram block address=0x%08x", i);
6074 goto error;
6075 }
6076 } else
6077 #if 0
6078 if (buf[0] == 1) {
6079 int bs_index;
6080 int64_t sector_num;
6081
6082 ram_decompress_buf(s, buf + 1, 9);
6083 bs_index = buf[1];
6084 sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
6085 if (bs_index >= MAX_DISKS || bs_table[bs_index] == NULL) {
6086 fprintf(stderr, "Invalid block device index %d\n", bs_index);
6087 goto error;
6088 }
6089 if (bdrv_read(bs_table[bs_index], sector_num, phys_ram_base + i,
6090 BDRV_HASH_BLOCK_SIZE / 512) < 0) {
6091 fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
6092 bs_index, sector_num);
6093 goto error;
6094 }
6095 } else
6096 #endif
6097 {
6098 error:
6099 printf("Error block header\n");
6100 return -EINVAL;
6101 }
6102 }
6103 ram_decompress_close(s);
6104 return 0;
6105 }
6106
6107 /***********************************************************/
6108 /* bottom halves (can be seen as timers which expire ASAP) */
6109
6110 struct QEMUBH {
6111 QEMUBHFunc *cb;
6112 void *opaque;
6113 int scheduled;
6114 QEMUBH *next;
6115 };
6116
6117 static QEMUBH *first_bh = NULL;
6118
6119 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
6120 {
6121 QEMUBH *bh;
6122 bh = qemu_mallocz(sizeof(QEMUBH));
6123 if (!bh)
6124 return NULL;
6125 bh->cb = cb;
6126 bh->opaque = opaque;
6127 return bh;
6128 }
6129
6130 int qemu_bh_poll(void)
6131 {
6132 QEMUBH *bh, **pbh;
6133 int ret;
6134
6135 ret = 0;
6136 for(;;) {
6137 pbh = &first_bh;
6138 bh = *pbh;
6139 if (!bh)
6140 break;
6141 ret = 1;
6142 *pbh = bh->next;
6143 bh->scheduled = 0;
6144 bh->cb(bh->opaque);
6145 }
6146 return ret;
6147 }
6148
6149 void qemu_bh_schedule(QEMUBH *bh)
6150 {
6151 CPUState *env = cpu_single_env;
6152 if (bh->scheduled)
6153 return;
6154 bh->scheduled = 1;
6155 bh->next = first_bh;
6156 first_bh = bh;
6157
6158 /* stop the currently executing CPU to execute the BH ASAP */
6159 if (env) {
6160 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
6161 }
6162 }
6163
6164 void qemu_bh_cancel(QEMUBH *bh)
6165 {
6166 QEMUBH **pbh;
6167 if (bh->scheduled) {
6168 pbh = &first_bh;
6169 while (*pbh != bh)
6170 pbh = &(*pbh)->next;
6171 *pbh = bh->next;
6172 bh->scheduled = 0;
6173 }
6174 }
6175
6176 void qemu_bh_delete(QEMUBH *bh)
6177 {
6178 qemu_bh_cancel(bh);
6179 qemu_free(bh);
6180 }
6181
6182 /***********************************************************/
6183 /* machine registration */
6184
6185 QEMUMachine *first_machine = NULL;
6186
6187 int qemu_register_machine(QEMUMachine *m)
6188 {
6189 QEMUMachine **pm;
6190 pm = &first_machine;
6191 while (*pm != NULL)
6192 pm = &(*pm)->next;
6193 m->next = NULL;
6194 *pm = m;
6195 return 0;
6196 }
6197
6198 QEMUMachine *find_machine(const char *name)
6199 {
6200 QEMUMachine *m;
6201
6202 for(m = first_machine; m != NULL; m = m->next) {
6203 if (!strcmp(m->name, name))
6204 return m;
6205 }
6206 return NULL;
6207 }
6208
6209 /***********************************************************/
6210 /* main execution loop */
6211
6212 void gui_update(void *opaque)
6213 {
6214 DisplayState *ds = opaque;
6215 ds->dpy_refresh(ds);
6216 qemu_mod_timer(ds->gui_timer, GUI_REFRESH_INTERVAL + qemu_get_clock(rt_clock));
6217 }
6218
6219 struct vm_change_state_entry {
6220 VMChangeStateHandler *cb;
6221 void *opaque;
6222 LIST_ENTRY (vm_change_state_entry) entries;
6223 };
6224
6225 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
6226
6227 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
6228 void *opaque)
6229 {
6230 VMChangeStateEntry *e;
6231
6232 e = qemu_mallocz(sizeof (*e));
6233 if (!e)
6234 return NULL;
6235
6236 e->cb = cb;
6237 e->opaque = opaque;
6238 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
6239 return e;
6240 }
6241
6242 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
6243 {
6244 LIST_REMOVE (e, entries);
6245 qemu_free (e);
6246 }
6247
6248 static void vm_state_notify(int running)
6249 {
6250 VMChangeStateEntry *e;
6251
6252 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
6253 e->cb(e->opaque, running);
6254 }
6255 }
6256
6257 /* XXX: support several handlers */
6258 static VMStopHandler *vm_stop_cb;
6259 static void *vm_stop_opaque;
6260
6261 int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
6262 {
6263 vm_stop_cb = cb;
6264 vm_stop_opaque = opaque;
6265 return 0;
6266 }
6267
6268 void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
6269 {
6270 vm_stop_cb = NULL;
6271 }
6272
6273 void vm_start(void)
6274 {
6275 if (!vm_running) {
6276 cpu_enable_ticks();
6277 vm_running = 1;
6278 vm_state_notify(1);
6279 }
6280 }
6281
6282 void vm_stop(int reason)
6283 {
6284 if (vm_running) {
6285 cpu_disable_ticks();
6286 vm_running = 0;
6287 if (reason != 0) {
6288 if (vm_stop_cb) {
6289 vm_stop_cb(vm_stop_opaque, reason);
6290 }
6291 }
6292 vm_state_notify(0);
6293 }
6294 }
6295
6296 /* reset/shutdown handler */
6297
6298 typedef struct QEMUResetEntry {
6299 QEMUResetHandler *func;
6300 void *opaque;
6301 struct QEMUResetEntry *next;
6302 } QEMUResetEntry;
6303
6304 static QEMUResetEntry *first_reset_entry;
6305 static int reset_requested;
6306 static int shutdown_requested;
6307 static int powerdown_requested;
6308
6309 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
6310 {
6311 QEMUResetEntry **pre, *re;
6312
6313 pre = &first_reset_entry;
6314 while (*pre != NULL)
6315 pre = &(*pre)->next;
6316 re = qemu_mallocz(sizeof(QEMUResetEntry));
6317 re->func = func;
6318 re->opaque = opaque;
6319 re->next = NULL;
6320 *pre = re;
6321 }
6322
6323 static void qemu_system_reset(void)
6324 {
6325 QEMUResetEntry *re;
6326
6327 /* reset all devices */
6328 for(re = first_reset_entry; re != NULL; re = re->next) {
6329 re->func(re->opaque);
6330 }
6331 }
6332
6333 void qemu_system_reset_request(void)
6334 {
6335 if (no_reboot) {
6336 shutdown_requested = 1;
6337 } else {
6338 reset_requested = 1;
6339 }
6340 if (cpu_single_env)
6341 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6342 }
6343
6344 void qemu_system_shutdown_request(void)
6345 {
6346 shutdown_requested = 1;
6347 if (cpu_single_env)
6348 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6349 }
6350
6351 void qemu_system_powerdown_request(void)
6352 {
6353 powerdown_requested = 1;
6354 if (cpu_single_env)
6355 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6356 }
6357
6358 void main_loop_wait(int timeout)
6359 {
6360 IOHandlerRecord *ioh;
6361 fd_set rfds, wfds, xfds;
6362 int ret, nfds;
6363 #ifdef _WIN32
6364 int ret2, i;
6365 #endif
6366 struct timeval tv;
6367 PollingEntry *pe;
6368
6369
6370 /* XXX: need to suppress polling by better using win32 events */
6371 ret = 0;
6372 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
6373 ret |= pe->func(pe->opaque);
6374 }
6375 #ifdef _WIN32
6376 if (ret == 0) {
6377 int err;
6378 WaitObjects *w = &wait_objects;
6379
6380 ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
6381 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
6382 if (w->func[ret - WAIT_OBJECT_0])
6383 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
6384
6385 /* Check for additional signaled events */
6386 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
6387
6388 /* Check if event is signaled */
6389 ret2 = WaitForSingleObject(w->events[i], 0);
6390 if(ret2 == WAIT_OBJECT_0) {
6391 if (w->func[i])
6392 w->func[i](w->opaque[i]);
6393 } else if (ret2 == WAIT_TIMEOUT) {
6394 } else {
6395 err = GetLastError();
6396 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
6397 }
6398 }
6399 } else if (ret == WAIT_TIMEOUT) {
6400 } else {
6401 err = GetLastError();
6402 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
6403 }
6404 }
6405 #endif
6406 /* poll any events */
6407 /* XXX: separate device handlers from system ones */
6408 nfds = -1;
6409 FD_ZERO(&rfds);
6410 FD_ZERO(&wfds);
6411 FD_ZERO(&xfds);
6412 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6413 if (ioh->deleted)
6414 continue;
6415 if (ioh->fd_read &&
6416 (!ioh->fd_read_poll ||
6417 ioh->fd_read_poll(ioh->opaque) != 0)) {
6418 FD_SET(ioh->fd, &rfds);
6419 if (ioh->fd > nfds)
6420 nfds = ioh->fd;
6421 }
6422 if (ioh->fd_write) {
6423 FD_SET(ioh->fd, &wfds);
6424 if (ioh->fd > nfds)
6425 nfds = ioh->fd;
6426 }
6427 }
6428
6429 tv.tv_sec = 0;
6430 #ifdef _WIN32
6431 tv.tv_usec = 0;
6432 #else
6433 tv.tv_usec = timeout * 1000;
6434 #endif
6435 #if defined(CONFIG_SLIRP)
6436 if (slirp_inited) {
6437 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
6438 }
6439 #endif
6440 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
6441 if (ret > 0) {
6442 IOHandlerRecord **pioh;
6443
6444 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6445 if (ioh->deleted)
6446 continue;
6447 if (FD_ISSET(ioh->fd, &rfds)) {
6448 ioh->fd_read(ioh->opaque);
6449 }
6450 if (FD_ISSET(ioh->fd, &wfds)) {
6451 ioh->fd_write(ioh->opaque);
6452 }
6453 }
6454
6455 /* remove deleted IO handlers */
6456 pioh = &first_io_handler;
6457 while (*pioh) {
6458 ioh = *pioh;
6459 if (ioh->deleted) {
6460 *pioh = ioh->next;
6461 qemu_free(ioh);
6462 } else
6463 pioh = &ioh->next;
6464 }
6465 }
6466 #if defined(CONFIG_SLIRP)
6467 if (slirp_inited) {
6468 if (ret < 0) {
6469 FD_ZERO(&rfds);
6470 FD_ZERO(&wfds);
6471 FD_ZERO(&xfds);
6472 }
6473 slirp_select_poll(&rfds, &wfds, &xfds);
6474 }
6475 #endif
6476 qemu_aio_poll();
6477
6478 if (vm_running) {
6479 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
6480 qemu_get_clock(vm_clock));
6481 /* run dma transfers, if any */
6482 DMA_run();
6483 }
6484
6485 /* real time timers */
6486 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
6487 qemu_get_clock(rt_clock));
6488
6489 /* Check bottom-halves last in case any of the earlier events triggered
6490 them. */
6491 qemu_bh_poll();
6492
6493 }
6494
6495 static CPUState *cur_cpu;
6496
6497 int main_loop(void)
6498 {
6499 int ret, timeout;
6500 #ifdef CONFIG_PROFILER
6501 int64_t ti;
6502 #endif
6503 CPUState *env;
6504
6505 cur_cpu = first_cpu;
6506 for(;;) {
6507 if (vm_running) {
6508
6509 env = cur_cpu;
6510 for(;;) {
6511 /* get next cpu */
6512 env = env->next_cpu;
6513 if (!env)
6514 env = first_cpu;
6515 #ifdef CONFIG_PROFILER
6516 ti = profile_getclock();
6517 #endif
6518 ret = cpu_exec(env);
6519 #ifdef CONFIG_PROFILER
6520 qemu_time += profile_getclock() - ti;
6521 #endif
6522 if (ret == EXCP_HLT) {
6523 /* Give the next CPU a chance to run. */
6524 cur_cpu = env;
6525 continue;
6526 }
6527 if (ret != EXCP_HALTED)
6528 break;
6529 /* all CPUs are halted ? */
6530 if (env == cur_cpu)
6531 break;
6532 }
6533 cur_cpu = env;
6534
6535 if (shutdown_requested) {
6536 ret = EXCP_INTERRUPT;
6537 break;
6538 }
6539 if (reset_requested) {
6540 reset_requested = 0;
6541 qemu_system_reset();
6542 ret = EXCP_INTERRUPT;
6543 }
6544 if (powerdown_requested) {
6545 powerdown_requested = 0;
6546 qemu_system_powerdown();
6547 ret = EXCP_INTERRUPT;
6548 }
6549 if (ret == EXCP_DEBUG) {
6550 vm_stop(EXCP_DEBUG);
6551 }
6552 /* If all cpus are halted then wait until the next IRQ */
6553 /* XXX: use timeout computed from timers */
6554 if (ret == EXCP_HALTED)
6555 timeout = 10;
6556 else
6557 timeout = 0;
6558 } else {
6559 timeout = 10;
6560 }
6561 #ifdef CONFIG_PROFILER
6562 ti = profile_getclock();
6563 #endif
6564 main_loop_wait(timeout);
6565 #ifdef CONFIG_PROFILER
6566 dev_time += profile_getclock() - ti;
6567 #endif
6568 }
6569 cpu_disable_ticks();
6570 return ret;
6571 }
6572
6573 static void help(int exitcode)
6574 {
6575 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2007 Fabrice Bellard\n"
6576 "usage: %s [options] [disk_image]\n"
6577 "\n"
6578 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
6579 "\n"
6580 "Standard options:\n"
6581 "-M machine select emulated machine (-M ? for list)\n"
6582 "-cpu cpu select CPU (-cpu ? for list)\n"
6583 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
6584 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
6585 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
6586 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
6587 "-mtdblock file use 'file' as on-board Flash memory image\n"
6588 "-sd file use 'file' as SecureDigital card image\n"
6589 "-pflash file use 'file' as a parallel flash image\n"
6590 "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
6591 "-snapshot write to temporary files instead of disk image files\n"
6592 #ifdef CONFIG_SDL
6593 "-no-frame open SDL window without a frame and window decorations\n"
6594 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
6595 "-no-quit disable SDL window close capability\n"
6596 #endif
6597 #ifdef TARGET_I386
6598 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
6599 #endif
6600 "-m megs set virtual RAM size to megs MB [default=%d]\n"
6601 "-smp n set the number of CPUs to 'n' [default=1]\n"
6602 "-nographic disable graphical output and redirect serial I/Os to console\n"
6603 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n"
6604 #ifndef _WIN32
6605 "-k language use keyboard layout (for example \"fr\" for French)\n"
6606 #endif
6607 #ifdef HAS_AUDIO
6608 "-audio-help print list of audio drivers and their options\n"
6609 "-soundhw c1,... enable audio support\n"
6610 " and only specified sound cards (comma separated list)\n"
6611 " use -soundhw ? to get the list of supported cards\n"
6612 " use -soundhw all to enable all of them\n"
6613 #endif
6614 "-localtime set the real time clock to local time [default=utc]\n"
6615 "-full-screen start in full screen\n"
6616 #ifdef TARGET_I386
6617 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
6618 #endif
6619 "-usb enable the USB driver (will be the default soon)\n"
6620 "-usbdevice name add the host or guest USB device 'name'\n"
6621 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
6622 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
6623 #endif
6624 "-name string set the name of the guest\n"
6625 "\n"
6626 "Network options:\n"
6627 "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
6628 " create a new Network Interface Card and connect it to VLAN 'n'\n"
6629 #ifdef CONFIG_SLIRP
6630 "-net user[,vlan=n][,hostname=host]\n"
6631 " connect the user mode network stack to VLAN 'n' and send\n"
6632 " hostname 'host' to DHCP clients\n"
6633 #endif
6634 #ifdef _WIN32
6635 "-net tap[,vlan=n],ifname=name\n"
6636 " connect the host TAP network interface to VLAN 'n'\n"
6637 #else
6638 "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file]\n"
6639 " connect the host TAP network interface to VLAN 'n' and use\n"
6640 " the network script 'file' (default=%s);\n"
6641 " use 'script=no' to disable script execution;\n"
6642 " use 'fd=h' to connect to an already opened TAP interface\n"
6643 #endif
6644 "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
6645 " connect the vlan 'n' to another VLAN using a socket connection\n"
6646 "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
6647 " connect the vlan 'n' to multicast maddr and port\n"
6648 "-net none use it alone to have zero network devices; if no -net option\n"
6649 " is provided, the default is '-net nic -net user'\n"
6650 "\n"
6651 #ifdef CONFIG_SLIRP
6652 "-tftp dir allow tftp access to files in dir [-net user]\n"
6653 "-bootp file advertise file in BOOTP replies\n"
6654 #ifndef _WIN32
6655 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
6656 #endif
6657 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
6658 " redirect TCP or UDP connections from host to guest [-net user]\n"
6659 #endif
6660 "\n"
6661 "Linux boot specific:\n"
6662 "-kernel bzImage use 'bzImage' as kernel image\n"
6663 "-append cmdline use 'cmdline' as kernel command line\n"
6664 "-initrd file use 'file' as initial ram disk\n"
6665 "\n"
6666 "Debug/Expert options:\n"
6667 "-monitor dev redirect the monitor to char device 'dev'\n"
6668 "-serial dev redirect the serial port to char device 'dev'\n"
6669 "-parallel dev redirect the parallel port to char device 'dev'\n"
6670 "-pidfile file Write PID to 'file'\n"
6671 "-S freeze CPU at startup (use 'c' to start execution)\n"
6672 "-s wait gdb connection to port\n"
6673 "-p port set gdb connection port [default=%s]\n"
6674 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
6675 "-hdachs c,h,s[,t] force hard disk 0 physical geometry and the optional BIOS\n"
6676 " translation (t=none or lba) (usually qemu can guess them)\n"
6677 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
6678 #ifdef USE_KQEMU
6679 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
6680 "-no-kqemu disable KQEMU kernel module usage\n"
6681 #endif
6682 #ifdef USE_CODE_COPY
6683 "-no-code-copy disable code copy acceleration\n"
6684 #endif
6685 #ifdef TARGET_I386
6686 "-std-vga simulate a standard VGA card with VESA Bochs Extensions\n"
6687 " (default is CL-GD5446 PCI VGA)\n"
6688 "-no-acpi disable ACPI\n"
6689 #endif
6690 "-no-reboot exit instead of rebooting\n"
6691 "-loadvm file start right away with a saved state (loadvm in monitor)\n"
6692 "-vnc display start a VNC server on display\n"
6693 #ifndef _WIN32
6694 "-daemonize daemonize QEMU after initializing\n"
6695 #endif
6696 "-option-rom rom load a file, rom, into the option ROM space\n"
6697 #ifdef TARGET_SPARC
6698 "-prom-env variable=value set OpenBIOS nvram variables\n"
6699 #endif
6700 "\n"
6701 "During emulation, the following keys are useful:\n"
6702 "ctrl-alt-f toggle full screen\n"
6703 "ctrl-alt-n switch to virtual console 'n'\n"
6704 "ctrl-alt toggle mouse and keyboard grab\n"
6705 "\n"
6706 "When using -nographic, press 'ctrl-a h' to get some help.\n"
6707 ,
6708 "qemu",
6709 DEFAULT_RAM_SIZE,
6710 #ifndef _WIN32
6711 DEFAULT_NETWORK_SCRIPT,
6712 #endif
6713 DEFAULT_GDBSTUB_PORT,
6714 "/tmp/qemu.log");
6715 exit(exitcode);
6716 }
6717
6718 #define HAS_ARG 0x0001
6719
6720 enum {
6721 QEMU_OPTION_h,
6722
6723 QEMU_OPTION_M,
6724 QEMU_OPTION_cpu,
6725 QEMU_OPTION_fda,
6726 QEMU_OPTION_fdb,
6727 QEMU_OPTION_hda,
6728 QEMU_OPTION_hdb,
6729 QEMU_OPTION_hdc,
6730 QEMU_OPTION_hdd,
6731 QEMU_OPTION_cdrom,
6732 QEMU_OPTION_mtdblock,
6733 QEMU_OPTION_sd,
6734 QEMU_OPTION_pflash,
6735 QEMU_OPTION_boot,
6736 QEMU_OPTION_snapshot,
6737 #ifdef TARGET_I386
6738 QEMU_OPTION_no_fd_bootchk,
6739 #endif
6740 QEMU_OPTION_m,
6741 QEMU_OPTION_nographic,
6742 QEMU_OPTION_portrait,
6743 #ifdef HAS_AUDIO
6744 QEMU_OPTION_audio_help,
6745 QEMU_OPTION_soundhw,
6746 #endif
6747
6748 QEMU_OPTION_net,
6749 QEMU_OPTION_tftp,
6750 QEMU_OPTION_bootp,
6751 QEMU_OPTION_smb,
6752 QEMU_OPTION_redir,
6753
6754 QEMU_OPTION_kernel,
6755 QEMU_OPTION_append,
6756 QEMU_OPTION_initrd,
6757
6758 QEMU_OPTION_S,
6759 QEMU_OPTION_s,
6760 QEMU_OPTION_p,
6761 QEMU_OPTION_d,
6762 QEMU_OPTION_hdachs,
6763 QEMU_OPTION_L,
6764 QEMU_OPTION_no_code_copy,
6765 QEMU_OPTION_k,
6766 QEMU_OPTION_localtime,
6767 QEMU_OPTION_cirrusvga,
6768 QEMU_OPTION_vmsvga,
6769 QEMU_OPTION_g,
6770 QEMU_OPTION_std_vga,
6771 QEMU_OPTION_echr,
6772 QEMU_OPTION_monitor,
6773 QEMU_OPTION_serial,
6774 QEMU_OPTION_parallel,
6775 QEMU_OPTION_loadvm,
6776 QEMU_OPTION_full_screen,
6777 QEMU_OPTION_no_frame,
6778 QEMU_OPTION_alt_grab,
6779 QEMU_OPTION_no_quit,
6780 QEMU_OPTION_pidfile,
6781 QEMU_OPTION_no_kqemu,
6782 QEMU_OPTION_kernel_kqemu,
6783 QEMU_OPTION_win2k_hack,
6784 QEMU_OPTION_usb,
6785 QEMU_OPTION_usbdevice,
6786 QEMU_OPTION_smp,
6787 QEMU_OPTION_vnc,
6788 QEMU_OPTION_no_acpi,
6789 QEMU_OPTION_no_reboot,
6790 QEMU_OPTION_show_cursor,
6791 QEMU_OPTION_daemonize,
6792 QEMU_OPTION_option_rom,
6793 QEMU_OPTION_semihosting,
6794 QEMU_OPTION_name,
6795 QEMU_OPTION_prom_env,
6796 };
6797
6798 typedef struct QEMUOption {
6799 const char *name;
6800 int flags;
6801 int index;
6802 } QEMUOption;
6803
6804 const QEMUOption qemu_options[] = {
6805 { "h", 0, QEMU_OPTION_h },
6806 { "help", 0, QEMU_OPTION_h },
6807
6808 { "M", HAS_ARG, QEMU_OPTION_M },
6809 { "cpu", HAS_ARG, QEMU_OPTION_cpu },
6810 { "fda", HAS_ARG, QEMU_OPTION_fda },
6811 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
6812 { "hda", HAS_ARG, QEMU_OPTION_hda },
6813 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
6814 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
6815 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
6816 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
6817 { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
6818 { "sd", HAS_ARG, QEMU_OPTION_sd },
6819 { "pflash", HAS_ARG, QEMU_OPTION_pflash },
6820 { "boot", HAS_ARG, QEMU_OPTION_boot },
6821 { "snapshot", 0, QEMU_OPTION_snapshot },
6822 #ifdef TARGET_I386
6823 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
6824 #endif
6825 { "m", HAS_ARG, QEMU_OPTION_m },
6826 { "nographic", 0, QEMU_OPTION_nographic },
6827 { "portrait", 0, QEMU_OPTION_portrait },
6828 { "k", HAS_ARG, QEMU_OPTION_k },
6829 #ifdef HAS_AUDIO
6830 { "audio-help", 0, QEMU_OPTION_audio_help },
6831 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
6832 #endif
6833
6834 { "net", HAS_ARG, QEMU_OPTION_net},
6835 #ifdef CONFIG_SLIRP
6836 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
6837 { "bootp", HAS_ARG, QEMU_OPTION_bootp },
6838 #ifndef _WIN32
6839 { "smb", HAS_ARG, QEMU_OPTION_smb },
6840 #endif
6841 { "redir", HAS_ARG, QEMU_OPTION_redir },
6842 #endif
6843
6844 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
6845 { "append", HAS_ARG, QEMU_OPTION_append },
6846 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
6847
6848 { "S", 0, QEMU_OPTION_S },
6849 { "s", 0, QEMU_OPTION_s },
6850 { "p", HAS_ARG, QEMU_OPTION_p },
6851 { "d", HAS_ARG, QEMU_OPTION_d },
6852 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
6853 { "L", HAS_ARG, QEMU_OPTION_L },
6854 { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
6855 #ifdef USE_KQEMU
6856 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
6857 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
6858 #endif
6859 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
6860 { "g", 1, QEMU_OPTION_g },
6861 #endif
6862 { "localtime", 0, QEMU_OPTION_localtime },
6863 { "std-vga", 0, QEMU_OPTION_std_vga },
6864 { "echr", HAS_ARG, QEMU_OPTION_echr },
6865 { "monitor", HAS_ARG, QEMU_OPTION_monitor },
6866 { "serial", HAS_ARG, QEMU_OPTION_serial },
6867 { "parallel", HAS_ARG, QEMU_OPTION_parallel },
6868 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
6869 { "full-screen", 0, QEMU_OPTION_full_screen },
6870 #ifdef CONFIG_SDL
6871 { "no-frame", 0, QEMU_OPTION_no_frame },
6872 { "alt-grab", 0, QEMU_OPTION_alt_grab },
6873 { "no-quit", 0, QEMU_OPTION_no_quit },
6874 #endif
6875 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
6876 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
6877 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
6878 { "smp", HAS_ARG, QEMU_OPTION_smp },
6879 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
6880
6881 /* temporary options */
6882 { "usb", 0, QEMU_OPTION_usb },
6883 { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
6884 { "vmwarevga", 0, QEMU_OPTION_vmsvga },
6885 { "no-acpi", 0, QEMU_OPTION_no_acpi },
6886 { "no-reboot", 0, QEMU_OPTION_no_reboot },
6887 { "show-cursor", 0, QEMU_OPTION_show_cursor },
6888 { "daemonize", 0, QEMU_OPTION_daemonize },
6889 { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
6890 #if defined(TARGET_ARM) || defined(TARGET_M68K)
6891 { "semihosting", 0, QEMU_OPTION_semihosting },
6892 #endif
6893 { "name", HAS_ARG, QEMU_OPTION_name },
6894 #if defined(TARGET_SPARC)
6895 { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
6896 #endif
6897 { NULL },
6898 };
6899
6900 #if defined (TARGET_I386) && defined(USE_CODE_COPY)
6901
6902 /* this stack is only used during signal handling */
6903 #define SIGNAL_STACK_SIZE 32768
6904
6905 static uint8_t *signal_stack;
6906
6907 #endif
6908
6909 /* password input */
6910
6911 int qemu_key_check(BlockDriverState *bs, const char *name)
6912 {
6913 char password[256];
6914 int i;
6915
6916 if (!bdrv_is_encrypted(bs))
6917 return 0;
6918
6919 term_printf("%s is encrypted.\n", name);
6920 for(i = 0; i < 3; i++) {
6921 monitor_readline("Password: ", 1, password, sizeof(password));
6922 if (bdrv_set_key(bs, password) == 0)
6923 return 0;
6924 term_printf("invalid password\n");
6925 }
6926 return -EPERM;
6927 }
6928
6929 static BlockDriverState *get_bdrv(int index)
6930 {
6931 BlockDriverState *bs;
6932
6933 if (index < 4) {
6934 bs = bs_table[index];
6935 } else if (index < 6) {
6936 bs = fd_table[index - 4];
6937 } else {
6938 bs = NULL;
6939 }
6940 return bs;
6941 }
6942
6943 static void read_passwords(void)
6944 {
6945 BlockDriverState *bs;
6946 int i;
6947
6948 for(i = 0; i < 6; i++) {
6949 bs = get_bdrv(i);
6950 if (bs)
6951 qemu_key_check(bs, bdrv_get_device_name(bs));
6952 }
6953 }
6954
6955 /* XXX: currently we cannot use simultaneously different CPUs */
6956 void register_machines(void)
6957 {
6958 #if defined(TARGET_I386)
6959 qemu_register_machine(&pc_machine);
6960 qemu_register_machine(&isapc_machine);
6961 #elif defined(TARGET_PPC)
6962 qemu_register_machine(&heathrow_machine);
6963 qemu_register_machine(&core99_machine);
6964 qemu_register_machine(&prep_machine);
6965 qemu_register_machine(&ref405ep_machine);
6966 qemu_register_machine(&taihu_machine);
6967 #elif defined(TARGET_MIPS)
6968 qemu_register_machine(&mips_machine);
6969 qemu_register_machine(&mips_malta_machine);
6970 qemu_register_machine(&mips_pica61_machine);
6971 #elif defined(TARGET_SPARC)
6972 #ifdef TARGET_SPARC64
6973 qemu_register_machine(&sun4u_machine);
6974 #else
6975 qemu_register_machine(&ss5_machine);
6976 qemu_register_machine(&ss10_machine);
6977 #endif
6978 #elif defined(TARGET_ARM)
6979 qemu_register_machine(&integratorcp_machine);
6980 qemu_register_machine(&versatilepb_machine);
6981 qemu_register_machine(&versatileab_machine);
6982 qemu_register_machine(&realview_machine);
6983 qemu_register_machine(&akitapda_machine);
6984 qemu_register_machine(&spitzpda_machine);
6985 qemu_register_machine(&borzoipda_machine);
6986 qemu_register_machine(&terrierpda_machine);
6987 #elif defined(TARGET_SH4)
6988 qemu_register_machine(&shix_machine);
6989 #elif defined(TARGET_ALPHA)
6990 /* XXX: TODO */
6991 #elif defined(TARGET_M68K)
6992 qemu_register_machine(&mcf5208evb_machine);
6993 qemu_register_machine(&an5206_machine);
6994 #else
6995 #error unsupported CPU
6996 #endif
6997 }
6998
6999 #ifdef HAS_AUDIO
7000 struct soundhw soundhw[] = {
7001 #ifdef HAS_AUDIO_CHOICE
7002 #ifdef TARGET_I386
7003 {
7004 "pcspk",
7005 "PC speaker",
7006 0,
7007 1,
7008 { .init_isa = pcspk_audio_init }
7009 },
7010 #endif
7011 {
7012 "sb16",
7013 "Creative Sound Blaster 16",
7014 0,
7015 1,
7016 { .init_isa = SB16_init }
7017 },
7018
7019 #ifdef CONFIG_ADLIB
7020 {
7021 "adlib",
7022 #ifdef HAS_YMF262
7023 "Yamaha YMF262 (OPL3)",
7024 #else
7025 "Yamaha YM3812 (OPL2)",
7026 #endif
7027 0,
7028 1,
7029 { .init_isa = Adlib_init }
7030 },
7031 #endif
7032
7033 #ifdef CONFIG_GUS
7034 {
7035 "gus",
7036 "Gravis Ultrasound GF1",
7037 0,
7038 1,
7039 { .init_isa = GUS_init }
7040 },
7041 #endif
7042
7043 {
7044 "es1370",
7045 "ENSONIQ AudioPCI ES1370",
7046 0,
7047 0,
7048 { .init_pci = es1370_init }
7049 },
7050 #endif
7051
7052 { NULL, NULL, 0, 0, { NULL } }
7053 };
7054
7055 static void select_soundhw (const char *optarg)
7056 {
7057 struct soundhw *c;
7058
7059 if (*optarg == '?') {
7060 show_valid_cards:
7061
7062 printf ("Valid sound card names (comma separated):\n");
7063 for (c = soundhw; c->name; ++c) {
7064 printf ("%-11s %s\n", c->name, c->descr);
7065 }
7066 printf ("\n-soundhw all will enable all of the above\n");
7067 exit (*optarg != '?');
7068 }
7069 else {
7070 size_t l;
7071 const char *p;
7072 char *e;
7073 int bad_card = 0;
7074
7075 if (!strcmp (optarg, "all")) {
7076 for (c = soundhw; c->name; ++c) {
7077 c->enabled = 1;
7078 }
7079 return;
7080 }
7081
7082 p = optarg;
7083 while (*p) {
7084 e = strchr (p, ',');
7085 l = !e ? strlen (p) : (size_t) (e - p);
7086
7087 for (c = soundhw; c->name; ++c) {
7088 if (!strncmp (c->name, p, l)) {
7089 c->enabled = 1;
7090 break;
7091 }
7092 }
7093
7094 if (!c->name) {
7095 if (l > 80) {
7096 fprintf (stderr,
7097 "Unknown sound card name (too big to show)\n");
7098 }
7099 else {
7100 fprintf (stderr, "Unknown sound card name `%.*s'\n",
7101 (int) l, p);
7102 }
7103 bad_card = 1;
7104 }
7105 p += l + (e != NULL);
7106 }
7107
7108 if (bad_card)
7109 goto show_valid_cards;
7110 }
7111 }
7112 #endif
7113
7114 #ifdef _WIN32
7115 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
7116 {
7117 exit(STATUS_CONTROL_C_EXIT);
7118 return TRUE;
7119 }
7120 #endif
7121
7122 #define MAX_NET_CLIENTS 32
7123
7124 int main(int argc, char **argv)
7125 {
7126 #ifdef CONFIG_GDBSTUB
7127 int use_gdbstub;
7128 const char *gdbstub_port;
7129 #endif
7130 int i, cdrom_index, pflash_index;
7131 int snapshot, linux_boot;
7132 const char *initrd_filename;
7133 const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD];
7134 const char *pflash_filename[MAX_PFLASH];
7135 const char *sd_filename;
7136 const char *mtd_filename;
7137 const char *kernel_filename, *kernel_cmdline;
7138 DisplayState *ds = &display_state;
7139 int cyls, heads, secs, translation;
7140 char net_clients[MAX_NET_CLIENTS][256];
7141 int nb_net_clients;
7142 int optind;
7143 const char *r, *optarg;
7144 CharDriverState *monitor_hd;
7145 char monitor_device[128];
7146 char serial_devices[MAX_SERIAL_PORTS][128];
7147 int serial_device_index;
7148 char parallel_devices[MAX_PARALLEL_PORTS][128];
7149 int parallel_device_index;
7150 const char *loadvm = NULL;
7151 QEMUMachine *machine;
7152 const char *cpu_model;
7153 char usb_devices[MAX_USB_CMDLINE][128];
7154 int usb_devices_index;
7155 int fds[2];
7156 const char *pid_file = NULL;
7157 VLANState *vlan;
7158
7159 LIST_INIT (&vm_change_state_head);
7160 #ifndef _WIN32
7161 {
7162 struct sigaction act;
7163 sigfillset(&act.sa_mask);
7164 act.sa_flags = 0;
7165 act.sa_handler = SIG_IGN;
7166 sigaction(SIGPIPE, &act, NULL);
7167 }
7168 #else
7169 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
7170 /* Note: cpu_interrupt() is currently not SMP safe, so we force
7171 QEMU to run on a single CPU */
7172 {
7173 HANDLE h;
7174 DWORD mask, smask;
7175 int i;
7176 h = GetCurrentProcess();
7177 if (GetProcessAffinityMask(h, &mask, &smask)) {
7178 for(i = 0; i < 32; i++) {
7179 if (mask & (1 << i))
7180 break;
7181 }
7182 if (i != 32) {
7183 mask = 1 << i;
7184 SetProcessAffinityMask(h, mask);
7185 }
7186 }
7187 }
7188 #endif
7189
7190 register_machines();
7191 machine = first_machine;
7192 cpu_model = NULL;
7193 initrd_filename = NULL;
7194 for(i = 0; i < MAX_FD; i++)
7195 fd_filename[i] = NULL;
7196 for(i = 0; i < MAX_DISKS; i++)
7197 hd_filename[i] = NULL;
7198 for(i = 0; i < MAX_PFLASH; i++)
7199 pflash_filename[i] = NULL;
7200 pflash_index = 0;
7201 sd_filename = NULL;
7202 mtd_filename = NULL;
7203 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
7204 vga_ram_size = VGA_RAM_SIZE;
7205 #ifdef CONFIG_GDBSTUB
7206 use_gdbstub = 0;
7207 gdbstub_port = DEFAULT_GDBSTUB_PORT;
7208 #endif
7209 snapshot = 0;
7210 nographic = 0;
7211 kernel_filename = NULL;
7212 kernel_cmdline = "";
7213 #ifdef TARGET_PPC
7214 cdrom_index = 1;
7215 #else
7216 cdrom_index = 2;
7217 #endif
7218 cyls = heads = secs = 0;
7219 translation = BIOS_ATA_TRANSLATION_AUTO;
7220 pstrcpy(monitor_device, sizeof(monitor_device), "vc");
7221
7222 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "vc");
7223 for(i = 1; i < MAX_SERIAL_PORTS; i++)
7224 serial_devices[i][0] = '\0';
7225 serial_device_index = 0;
7226
7227 pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "vc");
7228 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
7229 parallel_devices[i][0] = '\0';
7230 parallel_device_index = 0;
7231
7232 usb_devices_index = 0;
7233
7234 nb_net_clients = 0;
7235
7236 nb_nics = 0;
7237 /* default mac address of the first network interface */
7238
7239 optind = 1;
7240 for(;;) {
7241 if (optind >= argc)
7242 break;
7243 r = argv[optind];
7244 if (r[0] != '-') {
7245 hd_filename[0] = argv[optind++];
7246 } else {
7247 const QEMUOption *popt;
7248
7249 optind++;
7250 /* Treat --foo the same as -foo. */
7251 if (r[1] == '-')
7252 r++;
7253 popt = qemu_options;
7254 for(;;) {
7255 if (!popt->name) {
7256 fprintf(stderr, "%s: invalid option -- '%s'\n",
7257 argv[0], r);
7258 exit(1);
7259 }
7260 if (!strcmp(popt->name, r + 1))
7261 break;
7262 popt++;
7263 }
7264 if (popt->flags & HAS_ARG) {
7265 if (optind >= argc) {
7266 fprintf(stderr, "%s: option '%s' requires an argument\n",
7267 argv[0], r);
7268 exit(1);
7269 }
7270 optarg = argv[optind++];
7271 } else {
7272 optarg = NULL;
7273 }
7274
7275 switch(popt->index) {
7276 case QEMU_OPTION_M:
7277 machine = find_machine(optarg);
7278 if (!machine) {
7279 QEMUMachine *m;
7280 printf("Supported machines are:\n");
7281 for(m = first_machine; m != NULL; m = m->next) {
7282 printf("%-10s %s%s\n",
7283 m->name, m->desc,
7284 m == first_machine ? " (default)" : "");
7285 }
7286 exit(*optarg != '?');
7287 }
7288 break;
7289 case QEMU_OPTION_cpu:
7290 /* hw initialization will check this */
7291 if (*optarg == '?') {
7292 #if defined(TARGET_PPC)
7293 ppc_cpu_list(stdout, &fprintf);
7294 #elif defined(TARGET_ARM)
7295 arm_cpu_list();
7296 #elif defined(TARGET_MIPS)
7297 mips_cpu_list(stdout, &fprintf);
7298 #elif defined(TARGET_SPARC)
7299 sparc_cpu_list(stdout, &fprintf);
7300 #endif
7301 exit(0);
7302 } else {
7303 cpu_model = optarg;
7304 }
7305 break;
7306 case QEMU_OPTION_initrd:
7307 initrd_filename = optarg;
7308 break;
7309 case QEMU_OPTION_hda:
7310 case QEMU_OPTION_hdb:
7311 case QEMU_OPTION_hdc:
7312 case QEMU_OPTION_hdd:
7313 {
7314 int hd_index;
7315 hd_index = popt->index - QEMU_OPTION_hda;
7316 hd_filename[hd_index] = optarg;
7317 if (hd_index == cdrom_index)
7318 cdrom_index = -1;
7319 }
7320 break;
7321 case QEMU_OPTION_mtdblock:
7322 mtd_filename = optarg;
7323 break;
7324 case QEMU_OPTION_sd:
7325 sd_filename = optarg;
7326 break;
7327 case QEMU_OPTION_pflash:
7328 if (pflash_index >= MAX_PFLASH) {
7329 fprintf(stderr, "qemu: too many parallel flash images\n");
7330 exit(1);
7331 }
7332 pflash_filename[pflash_index++] = optarg;
7333 break;
7334 case QEMU_OPTION_snapshot:
7335 snapshot = 1;
7336 break;
7337 case QEMU_OPTION_hdachs:
7338 {
7339 const char *p;
7340 p = optarg;
7341 cyls = strtol(p, (char **)&p, 0);
7342 if (cyls < 1 || cyls > 16383)
7343 goto chs_fail;
7344 if (*p != ',')
7345 goto chs_fail;
7346 p++;
7347 heads = strtol(p, (char **)&p, 0);
7348 if (heads < 1 || heads > 16)
7349 goto chs_fail;
7350 if (*p != ',')
7351 goto chs_fail;
7352 p++;
7353 secs = strtol(p, (char **)&p, 0);
7354 if (secs < 1 || secs > 63)
7355 goto chs_fail;
7356 if (*p == ',') {
7357 p++;
7358 if (!strcmp(p, "none"))
7359 translation = BIOS_ATA_TRANSLATION_NONE;
7360 else if (!strcmp(p, "lba"))
7361 translation = BIOS_ATA_TRANSLATION_LBA;
7362 else if (!strcmp(p, "auto"))
7363 translation = BIOS_ATA_TRANSLATION_AUTO;
7364 else
7365 goto chs_fail;
7366 } else if (*p != '\0') {
7367 chs_fail:
7368 fprintf(stderr, "qemu: invalid physical CHS format\n");
7369 exit(1);
7370 }
7371 }
7372 break;
7373 case QEMU_OPTION_nographic:
7374 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "stdio");
7375 pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "null");
7376 pstrcpy(monitor_device, sizeof(monitor_device), "stdio");
7377 nographic = 1;
7378 break;
7379 case QEMU_OPTION_portrait:
7380 graphic_rotate = 1;
7381 break;
7382 case QEMU_OPTION_kernel:
7383 kernel_filename = optarg;
7384 break;
7385 case QEMU_OPTION_append:
7386 kernel_cmdline = optarg;
7387 break;
7388 case QEMU_OPTION_cdrom:
7389 if (cdrom_index >= 0) {
7390 hd_filename[cdrom_index] = optarg;
7391 }
7392 break;
7393 case QEMU_OPTION_boot:
7394 boot_device = optarg[0];
7395 if (boot_device != 'a' &&
7396 #if defined(TARGET_SPARC) || defined(TARGET_I386)
7397 // Network boot
7398 boot_device != 'n' &&
7399 #endif
7400 boot_device != 'c' && boot_device != 'd') {
7401 fprintf(stderr, "qemu: invalid boot device '%c'\n", boot_device);
7402 exit(1);
7403 }
7404 break;
7405 case QEMU_OPTION_fda:
7406 fd_filename[0] = optarg;
7407 break;
7408 case QEMU_OPTION_fdb:
7409 fd_filename[1] = optarg;
7410 break;
7411 #ifdef TARGET_I386
7412 case QEMU_OPTION_no_fd_bootchk:
7413 fd_bootchk = 0;
7414 break;
7415 #endif
7416 case QEMU_OPTION_no_code_copy:
7417 code_copy_enabled = 0;
7418 break;
7419 case QEMU_OPTION_net:
7420 if (nb_net_clients >= MAX_NET_CLIENTS) {
7421 fprintf(stderr, "qemu: too many network clients\n");
7422 exit(1);
7423 }
7424 pstrcpy(net_clients[nb_net_clients],
7425 sizeof(net_clients[0]),
7426 optarg);
7427 nb_net_clients++;
7428 break;
7429 #ifdef CONFIG_SLIRP
7430 case QEMU_OPTION_tftp:
7431 tftp_prefix = optarg;
7432 break;
7433 case QEMU_OPTION_bootp:
7434 bootp_filename = optarg;
7435 break;
7436 #ifndef _WIN32
7437 case QEMU_OPTION_smb:
7438 net_slirp_smb(optarg);
7439 break;
7440 #endif
7441 case QEMU_OPTION_redir:
7442 net_slirp_redir(optarg);
7443 break;
7444 #endif
7445 #ifdef HAS_AUDIO
7446 case QEMU_OPTION_audio_help:
7447 AUD_help ();
7448 exit (0);
7449 break;
7450 case QEMU_OPTION_soundhw:
7451 select_soundhw (optarg);
7452 break;
7453 #endif
7454 case QEMU_OPTION_h:
7455 help(0);
7456 break;
7457 case QEMU_OPTION_m:
7458 ram_size = atoi(optarg) * 1024 * 1024;
7459 if (ram_size <= 0)
7460 help(1);
7461 if (ram_size > PHYS_RAM_MAX_SIZE) {
7462 fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
7463 PHYS_RAM_MAX_SIZE / (1024 * 1024));
7464 exit(1);
7465 }
7466 break;
7467 case QEMU_OPTION_d:
7468 {
7469 int mask;
7470 CPULogItem *item;
7471
7472 mask = cpu_str_to_log_mask(optarg);
7473 if (!mask) {
7474 printf("Log items (comma separated):\n");
7475 for(item = cpu_log_items; item->mask != 0; item++) {
7476 printf("%-10s %s\n", item->name, item->help);
7477 }
7478 exit(1);
7479 }
7480 cpu_set_log(mask);
7481 }
7482 break;
7483 #ifdef CONFIG_GDBSTUB
7484 case QEMU_OPTION_s:
7485 use_gdbstub = 1;
7486 break;
7487 case QEMU_OPTION_p:
7488 gdbstub_port = optarg;
7489 break;
7490 #endif
7491 case QEMU_OPTION_L:
7492 bios_dir = optarg;
7493 break;
7494 case QEMU_OPTION_S:
7495 autostart = 0;
7496 break;
7497 case QEMU_OPTION_k:
7498 keyboard_layout = optarg;
7499 break;
7500 case QEMU_OPTION_localtime:
7501 rtc_utc = 0;
7502 break;
7503 case QEMU_OPTION_cirrusvga:
7504 cirrus_vga_enabled = 1;
7505 vmsvga_enabled = 0;
7506 break;
7507 case QEMU_OPTION_vmsvga:
7508 cirrus_vga_enabled = 0;
7509 vmsvga_enabled = 1;
7510 break;
7511 case QEMU_OPTION_std_vga:
7512 cirrus_vga_enabled = 0;
7513 vmsvga_enabled = 0;
7514 break;
7515 case QEMU_OPTION_g:
7516 {
7517 const char *p;
7518 int w, h, depth;
7519 p = optarg;
7520 w = strtol(p, (char **)&p, 10);
7521 if (w <= 0) {
7522 graphic_error:
7523 fprintf(stderr, "qemu: invalid resolution or depth\n");
7524 exit(1);
7525 }
7526 if (*p != 'x')
7527 goto graphic_error;
7528 p++;
7529 h = strtol(p, (char **)&p, 10);
7530 if (h <= 0)
7531 goto graphic_error;
7532 if (*p == 'x') {
7533 p++;
7534 depth = strtol(p, (char **)&p, 10);
7535 if (depth != 8 && depth != 15 && depth != 16 &&
7536 depth != 24 && depth != 32)
7537 goto graphic_error;
7538 } else if (*p == '\0') {
7539 depth = graphic_depth;
7540 } else {
7541 goto graphic_error;
7542 }
7543
7544 graphic_width = w;
7545 graphic_height = h;
7546 graphic_depth = depth;
7547 }
7548 break;
7549 case QEMU_OPTION_echr:
7550 {
7551 char *r;
7552 term_escape_char = strtol(optarg, &r, 0);
7553 if (r == optarg)
7554 printf("Bad argument to echr\n");
7555 break;
7556 }
7557 case QEMU_OPTION_monitor:
7558 pstrcpy(monitor_device, sizeof(monitor_device), optarg);
7559 break;
7560 case QEMU_OPTION_serial:
7561 if (serial_device_index >= MAX_SERIAL_PORTS) {
7562 fprintf(stderr, "qemu: too many serial ports\n");
7563 exit(1);
7564 }
7565 pstrcpy(serial_devices[serial_device_index],
7566 sizeof(serial_devices[0]), optarg);
7567 serial_device_index++;
7568 break;
7569 case QEMU_OPTION_parallel:
7570 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
7571 fprintf(stderr, "qemu: too many parallel ports\n");
7572 exit(1);
7573 }
7574 pstrcpy(parallel_devices[parallel_device_index],
7575 sizeof(parallel_devices[0]), optarg);
7576 parallel_device_index++;
7577 break;
7578 case QEMU_OPTION_loadvm:
7579 loadvm = optarg;
7580 break;
7581 case QEMU_OPTION_full_screen:
7582 full_screen = 1;
7583 break;
7584 #ifdef CONFIG_SDL
7585 case QEMU_OPTION_no_frame:
7586 no_frame = 1;
7587 break;
7588 case QEMU_OPTION_alt_grab:
7589 alt_grab = 1;
7590 break;
7591 case QEMU_OPTION_no_quit:
7592 no_quit = 1;
7593 break;
7594 #endif
7595 case QEMU_OPTION_pidfile:
7596 pid_file = optarg;
7597 break;
7598 #ifdef TARGET_I386
7599 case QEMU_OPTION_win2k_hack:
7600 win2k_install_hack = 1;
7601 break;
7602 #endif
7603 #ifdef USE_KQEMU
7604 case QEMU_OPTION_no_kqemu:
7605 kqemu_allowed = 0;
7606 break;
7607 case QEMU_OPTION_kernel_kqemu:
7608 kqemu_allowed = 2;
7609 break;
7610 #endif
7611 case QEMU_OPTION_usb:
7612 usb_enabled = 1;
7613 break;
7614 case QEMU_OPTION_usbdevice:
7615 usb_enabled = 1;
7616 if (usb_devices_index >= MAX_USB_CMDLINE) {
7617 fprintf(stderr, "Too many USB devices\n");
7618 exit(1);
7619 }
7620 pstrcpy(usb_devices[usb_devices_index],
7621 sizeof(usb_devices[usb_devices_index]),
7622 optarg);
7623 usb_devices_index++;
7624 break;
7625 case QEMU_OPTION_smp:
7626 smp_cpus = atoi(optarg);
7627 if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
7628 fprintf(stderr, "Invalid number of CPUs\n");
7629 exit(1);
7630 }
7631 break;
7632 case QEMU_OPTION_vnc:
7633 vnc_display = optarg;
7634 break;
7635 case QEMU_OPTION_no_acpi:
7636 acpi_enabled = 0;
7637 break;
7638 case QEMU_OPTION_no_reboot:
7639 no_reboot = 1;
7640 break;
7641 case QEMU_OPTION_show_cursor:
7642 cursor_hide = 0;
7643 break;
7644 case QEMU_OPTION_daemonize:
7645 daemonize = 1;
7646 break;
7647 case QEMU_OPTION_option_rom:
7648 if (nb_option_roms >= MAX_OPTION_ROMS) {
7649 fprintf(stderr, "Too many option ROMs\n");
7650 exit(1);
7651 }
7652 option_rom[nb_option_roms] = optarg;
7653 nb_option_roms++;
7654 break;
7655 case QEMU_OPTION_semihosting:
7656 semihosting_enabled = 1;
7657 break;
7658 case QEMU_OPTION_name:
7659 qemu_name = optarg;
7660 break;
7661 #ifdef TARGET_SPARC
7662 case QEMU_OPTION_prom_env:
7663 if (nb_prom_envs >= MAX_PROM_ENVS) {
7664 fprintf(stderr, "Too many prom variables\n");
7665 exit(1);
7666 }
7667 prom_envs[nb_prom_envs] = optarg;
7668 nb_prom_envs++;
7669 break;
7670 #endif
7671 }
7672 }
7673 }
7674
7675 #ifndef _WIN32
7676 if (daemonize && !nographic && vnc_display == NULL) {
7677 fprintf(stderr, "Can only daemonize if using -nographic or -vnc\n");
7678 daemonize = 0;
7679 }
7680
7681 if (daemonize) {
7682 pid_t pid;
7683
7684 if (pipe(fds) == -1)
7685 exit(1);
7686
7687 pid = fork();
7688 if (pid > 0) {
7689 uint8_t status;
7690 ssize_t len;
7691
7692 close(fds[1]);
7693
7694 again:
7695 len = read(fds[0], &status, 1);
7696 if (len == -1 && (errno == EINTR))
7697 goto again;
7698
7699 if (len != 1)
7700 exit(1);
7701 else if (status == 1) {
7702 fprintf(stderr, "Could not acquire pidfile\n");
7703 exit(1);
7704 } else
7705 exit(0);
7706 } else if (pid < 0)
7707 exit(1);
7708
7709 setsid();
7710
7711 pid = fork();
7712 if (pid > 0)
7713 exit(0);
7714 else if (pid < 0)
7715 exit(1);
7716
7717 umask(027);
7718 chdir("/");
7719
7720 signal(SIGTSTP, SIG_IGN);
7721 signal(SIGTTOU, SIG_IGN);
7722 signal(SIGTTIN, SIG_IGN);
7723 }
7724 #endif
7725
7726 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
7727 if (daemonize) {
7728 uint8_t status = 1;
7729 write(fds[1], &status, 1);
7730 } else
7731 fprintf(stderr, "Could not acquire pid file\n");
7732 exit(1);
7733 }
7734
7735 #ifdef USE_KQEMU
7736 if (smp_cpus > 1)
7737 kqemu_allowed = 0;
7738 #endif
7739 linux_boot = (kernel_filename != NULL);
7740
7741 if (!linux_boot &&
7742 boot_device != 'n' &&
7743 hd_filename[0] == '\0' &&
7744 (cdrom_index >= 0 && hd_filename[cdrom_index] == '\0') &&
7745 fd_filename[0] == '\0')
7746 help(1);
7747
7748 /* boot to floppy or the default cd if no hard disk defined yet */
7749 if (hd_filename[0] == '\0' && boot_device == 'c') {
7750 if (fd_filename[0] != '\0')
7751 boot_device = 'a';
7752 else
7753 boot_device = 'd';
7754 }
7755
7756 setvbuf(stdout, NULL, _IOLBF, 0);
7757
7758 init_timers();
7759 init_timer_alarm();
7760 qemu_aio_init();
7761
7762 #ifdef _WIN32
7763 socket_init();
7764 #endif
7765
7766 /* init network clients */
7767 if (nb_net_clients == 0) {
7768 /* if no clients, we use a default config */
7769 pstrcpy(net_clients[0], sizeof(net_clients[0]),
7770 "nic");
7771 pstrcpy(net_clients[1], sizeof(net_clients[0]),
7772 "user");
7773 nb_net_clients = 2;
7774 }
7775
7776 for(i = 0;i < nb_net_clients; i++) {
7777 if (net_client_init(net_clients[i]) < 0)
7778 exit(1);
7779 }
7780 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
7781 if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
7782 continue;
7783 if (vlan->nb_guest_devs == 0) {
7784 fprintf(stderr, "Invalid vlan (%d) with no nics\n", vlan->id);
7785 exit(1);
7786 }
7787 if (vlan->nb_host_devs == 0)
7788 fprintf(stderr,
7789 "Warning: vlan %d is not connected to host network\n",
7790 vlan->id);
7791 }
7792
7793 #ifdef TARGET_I386
7794 if (boot_device == 'n') {
7795 for (i = 0; i < nb_nics; i++) {
7796 const char *model = nd_table[i].model;
7797 char buf[1024];
7798 if (model == NULL)
7799 model = "ne2k_pci";
7800 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
7801 if (get_image_size(buf) > 0) {
7802 option_rom[nb_option_roms] = strdup(buf);
7803 nb_option_roms++;
7804 break;
7805 }
7806 }
7807 if (i == nb_nics) {
7808 fprintf(stderr, "No valid PXE rom found for network device\n");
7809 exit(1);
7810 }
7811 boot_device = 'c'; /* to prevent confusion by the BIOS */
7812 }
7813 #endif
7814
7815 /* init the memory */
7816 phys_ram_size = ram_size + vga_ram_size + MAX_BIOS_SIZE;
7817
7818 phys_ram_base = qemu_vmalloc(phys_ram_size);
7819 if (!phys_ram_base) {
7820 fprintf(stderr, "Could not allocate physical memory\n");
7821 exit(1);
7822 }
7823
7824 /* we always create the cdrom drive, even if no disk is there */
7825 bdrv_init();
7826 if (cdrom_index >= 0) {
7827 bs_table[cdrom_index] = bdrv_new("cdrom");
7828 bdrv_set_type_hint(bs_table[cdrom_index], BDRV_TYPE_CDROM);
7829 }
7830
7831 /* open the virtual block devices */
7832 for(i = 0; i < MAX_DISKS; i++) {
7833 if (hd_filename[i]) {
7834 if (!bs_table[i]) {
7835 char buf[64];
7836 snprintf(buf, sizeof(buf), "hd%c", i + 'a');
7837 bs_table[i] = bdrv_new(buf);
7838 }
7839 if (bdrv_open(bs_table[i], hd_filename[i], snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7840 fprintf(stderr, "qemu: could not open hard disk image '%s'\n",
7841 hd_filename[i]);
7842 exit(1);
7843 }
7844 if (i == 0 && cyls != 0) {
7845 bdrv_set_geometry_hint(bs_table[i], cyls, heads, secs);
7846 bdrv_set_translation_hint(bs_table[i], translation);
7847 }
7848 }
7849 }
7850
7851 /* we always create at least one floppy disk */
7852 fd_table[0] = bdrv_new("fda");
7853 bdrv_set_type_hint(fd_table[0], BDRV_TYPE_FLOPPY);
7854
7855 for(i = 0; i < MAX_FD; i++) {
7856 if (fd_filename[i]) {
7857 if (!fd_table[i]) {
7858 char buf[64];
7859 snprintf(buf, sizeof(buf), "fd%c", i + 'a');
7860 fd_table[i] = bdrv_new(buf);
7861 bdrv_set_type_hint(fd_table[i], BDRV_TYPE_FLOPPY);
7862 }
7863 if (fd_filename[i][0] != '\0') {
7864 if (bdrv_open(fd_table[i], fd_filename[i],
7865 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7866 fprintf(stderr, "qemu: could not open floppy disk image '%s'\n",
7867 fd_filename[i]);
7868 exit(1);
7869 }
7870 }
7871 }
7872 }
7873
7874 /* Open the virtual parallel flash block devices */
7875 for(i = 0; i < MAX_PFLASH; i++) {
7876 if (pflash_filename[i]) {
7877 if (!pflash_table[i]) {
7878 char buf[64];
7879 snprintf(buf, sizeof(buf), "fl%c", i + 'a');
7880 pflash_table[i] = bdrv_new(buf);
7881 }
7882 if (bdrv_open(pflash_table[i], pflash_filename[i],
7883 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7884 fprintf(stderr, "qemu: could not open flash image '%s'\n",
7885 pflash_filename[i]);
7886 exit(1);
7887 }
7888 }
7889 }
7890
7891 sd_bdrv = bdrv_new ("sd");
7892 /* FIXME: This isn't really a floppy, but it's a reasonable
7893 approximation. */
7894 bdrv_set_type_hint(sd_bdrv, BDRV_TYPE_FLOPPY);
7895 if (sd_filename) {
7896 if (bdrv_open(sd_bdrv, sd_filename,
7897 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
7898 fprintf(stderr, "qemu: could not open SD card image %s\n",
7899 sd_filename);
7900 } else
7901 qemu_key_check(sd_bdrv, sd_filename);
7902 }
7903
7904 if (mtd_filename) {
7905 mtd_bdrv = bdrv_new ("mtd");
7906 if (bdrv_open(mtd_bdrv, mtd_filename,
7907 snapshot ? BDRV_O_SNAPSHOT : 0) < 0 ||
7908 qemu_key_check(mtd_bdrv, mtd_filename)) {
7909 fprintf(stderr, "qemu: could not open Flash image %s\n",
7910 mtd_filename);
7911 bdrv_delete(mtd_bdrv);
7912 mtd_bdrv = 0;
7913 }
7914 }
7915
7916 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
7917 register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
7918
7919 init_ioports();
7920
7921 /* terminal init */
7922 memset(&display_state, 0, sizeof(display_state));
7923 if (nographic) {
7924 /* nearly nothing to do */
7925 dumb_display_init(ds);
7926 } else if (vnc_display != NULL) {
7927 vnc_display_init(ds, vnc_display);
7928 } else {
7929 #if defined(CONFIG_SDL)
7930 sdl_display_init(ds, full_screen, no_frame);
7931 #elif defined(CONFIG_COCOA)
7932 cocoa_display_init(ds, full_screen);
7933 #endif
7934 }
7935
7936 /* Maintain compatibility with multiple stdio monitors */
7937 if (!strcmp(monitor_device,"stdio")) {
7938 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
7939 if (!strcmp(serial_devices[i],"mon:stdio")) {
7940 monitor_device[0] = '\0';
7941 break;
7942 } else if (!strcmp(serial_devices[i],"stdio")) {
7943 monitor_device[0] = '\0';
7944 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "mon:stdio");
7945 break;
7946 }
7947 }
7948 }
7949 if (monitor_device[0] != '\0') {
7950 monitor_hd = qemu_chr_open(monitor_device);
7951 if (!monitor_hd) {
7952 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
7953 exit(1);
7954 }
7955 monitor_init(monitor_hd, !nographic);
7956 }
7957
7958 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
7959 const char *devname = serial_devices[i];
7960 if (devname[0] != '\0' && strcmp(devname, "none")) {
7961 serial_hds[i] = qemu_chr_open(devname);
7962 if (!serial_hds[i]) {
7963 fprintf(stderr, "qemu: could not open serial device '%s'\n",
7964 devname);
7965 exit(1);
7966 }
7967 if (!strcmp(devname, "vc"))
7968 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
7969 }
7970 }
7971
7972 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
7973 const char *devname = parallel_devices[i];
7974 if (devname[0] != '\0' && strcmp(devname, "none")) {
7975 parallel_hds[i] = qemu_chr_open(devname);
7976 if (!parallel_hds[i]) {
7977 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
7978 devname);
7979 exit(1);
7980 }
7981 if (!strcmp(devname, "vc"))
7982 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
7983 }
7984 }
7985
7986 machine->init(ram_size, vga_ram_size, boot_device,
7987 ds, fd_filename, snapshot,
7988 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
7989
7990 /* init USB devices */
7991 if (usb_enabled) {
7992 for(i = 0; i < usb_devices_index; i++) {
7993 if (usb_device_add(usb_devices[i]) < 0) {
7994 fprintf(stderr, "Warning: could not add USB device %s\n",
7995 usb_devices[i]);
7996 }
7997 }
7998 }
7999
8000 if (display_state.dpy_refresh) {
8001 display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
8002 qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
8003 }
8004
8005 #ifdef CONFIG_GDBSTUB
8006 if (use_gdbstub) {
8007 /* XXX: use standard host:port notation and modify options
8008 accordingly. */
8009 if (gdbserver_start(gdbstub_port) < 0) {
8010 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
8011 gdbstub_port);
8012 exit(1);
8013 }
8014 }
8015 #endif
8016
8017 if (loadvm)
8018 do_loadvm(loadvm);
8019
8020 {
8021 /* XXX: simplify init */
8022 read_passwords();
8023 if (autostart) {
8024 vm_start();
8025 }
8026 }
8027
8028 if (daemonize) {
8029 uint8_t status = 0;
8030 ssize_t len;
8031 int fd;
8032
8033 again1:
8034 len = write(fds[1], &status, 1);
8035 if (len == -1 && (errno == EINTR))
8036 goto again1;
8037
8038 if (len != 1)
8039 exit(1);
8040
8041 fd = open("/dev/null", O_RDWR);
8042 if (fd == -1)
8043 exit(1);
8044
8045 dup2(fd, 0);
8046 dup2(fd, 1);
8047 dup2(fd, 2);
8048
8049 close(fd);
8050 }
8051
8052 main_loop();
8053 quit_timers();
8054 return 0;
8055 }