]> git.proxmox.com Git - mirror_qemu.git/blob - vl.c
MIPS Magnum R4000 machine
[mirror_qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw/hw.h"
25 #include "hw/boards.h"
26 #include "hw/usb.h"
27 #include "hw/pcmcia.h"
28 #include "hw/pc.h"
29 #include "hw/audiodev.h"
30 #include "hw/isa.h"
31 #include "net.h"
32 #include "console.h"
33 #include "sysemu.h"
34 #include "gdbstub.h"
35 #include "qemu-timer.h"
36 #include "qemu-char.h"
37 #include "block.h"
38 #include "audio/audio.h"
39
40 #include <unistd.h>
41 #include <fcntl.h>
42 #include <signal.h>
43 #include <time.h>
44 #include <errno.h>
45 #include <sys/time.h>
46 #include <zlib.h>
47
48 #ifndef _WIN32
49 #include <sys/times.h>
50 #include <sys/wait.h>
51 #include <termios.h>
52 #include <sys/poll.h>
53 #include <sys/mman.h>
54 #include <sys/ioctl.h>
55 #include <sys/socket.h>
56 #include <netinet/in.h>
57 #include <dirent.h>
58 #include <netdb.h>
59 #include <sys/select.h>
60 #include <arpa/inet.h>
61 #ifdef _BSD
62 #include <sys/stat.h>
63 #ifndef __APPLE__
64 #include <libutil.h>
65 #endif
66 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
67 #include <freebsd/stdlib.h>
68 #else
69 #ifndef __sun__
70 #include <linux/if.h>
71 #include <linux/if_tun.h>
72 #include <pty.h>
73 #include <malloc.h>
74 #include <linux/rtc.h>
75
76 /* For the benefit of older linux systems which don't supply it,
77 we use a local copy of hpet.h. */
78 /* #include <linux/hpet.h> */
79 #include "hpet.h"
80
81 #include <linux/ppdev.h>
82 #include <linux/parport.h>
83 #else
84 #include <sys/stat.h>
85 #include <sys/ethernet.h>
86 #include <sys/sockio.h>
87 #include <netinet/arp.h>
88 #include <netinet/in.h>
89 #include <netinet/in_systm.h>
90 #include <netinet/ip.h>
91 #include <netinet/ip_icmp.h> // must come after ip.h
92 #include <netinet/udp.h>
93 #include <netinet/tcp.h>
94 #include <net/if.h>
95 #include <syslog.h>
96 #include <stropts.h>
97 #endif
98 #endif
99 #else
100 #include <winsock2.h>
101 int inet_aton(const char *cp, struct in_addr *ia);
102 #endif
103
104 #if defined(CONFIG_SLIRP)
105 #include "libslirp.h"
106 #endif
107
108 #ifdef _WIN32
109 #include <malloc.h>
110 #include <sys/timeb.h>
111 #include <mmsystem.h>
112 #define getopt_long_only getopt_long
113 #define memalign(align, size) malloc(size)
114 #endif
115
116 #include "qemu_socket.h"
117
118 #ifdef CONFIG_SDL
119 #ifdef __APPLE__
120 #include <SDL/SDL.h>
121 #endif
122 #endif /* CONFIG_SDL */
123
124 #ifdef CONFIG_COCOA
125 #undef main
126 #define main qemu_main
127 #endif /* CONFIG_COCOA */
128
129 #include "disas.h"
130
131 #include "exec-all.h"
132
133 #define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
134 #define DEFAULT_NETWORK_DOWN_SCRIPT "/etc/qemu-ifdown"
135 #ifdef __sun__
136 #define SMBD_COMMAND "/usr/sfw/sbin/smbd"
137 #else
138 #define SMBD_COMMAND "/usr/sbin/smbd"
139 #endif
140
141 //#define DEBUG_UNUSED_IOPORT
142 //#define DEBUG_IOPORT
143
144 #define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
145
146 #ifdef TARGET_PPC
147 #define DEFAULT_RAM_SIZE 144
148 #else
149 #define DEFAULT_RAM_SIZE 128
150 #endif
151 /* in ms */
152 #define GUI_REFRESH_INTERVAL 30
153
154 /* Max number of USB devices that can be specified on the commandline. */
155 #define MAX_USB_CMDLINE 8
156
157 /* XXX: use a two level table to limit memory usage */
158 #define MAX_IOPORTS 65536
159
160 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
161 const char *bios_name = NULL;
162 void *ioport_opaque[MAX_IOPORTS];
163 IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
164 IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
165 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
166 to store the VM snapshots */
167 DriveInfo drives_table[MAX_DRIVES+1];
168 int nb_drives;
169 /* point to the block driver where the snapshots are managed */
170 BlockDriverState *bs_snapshots;
171 int vga_ram_size;
172 static DisplayState display_state;
173 int nographic;
174 int curses;
175 const char* keyboard_layout = NULL;
176 int64_t ticks_per_sec;
177 int ram_size;
178 int pit_min_timer_count = 0;
179 int nb_nics;
180 NICInfo nd_table[MAX_NICS];
181 int vm_running;
182 static int rtc_utc = 1;
183 static int rtc_date_offset = -1; /* -1 means no change */
184 int cirrus_vga_enabled = 1;
185 int vmsvga_enabled = 0;
186 #ifdef TARGET_SPARC
187 int graphic_width = 1024;
188 int graphic_height = 768;
189 int graphic_depth = 8;
190 #else
191 int graphic_width = 800;
192 int graphic_height = 600;
193 int graphic_depth = 15;
194 #endif
195 int full_screen = 0;
196 int no_frame = 0;
197 int no_quit = 0;
198 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
199 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
200 #ifdef TARGET_I386
201 int win2k_install_hack = 0;
202 #endif
203 int usb_enabled = 0;
204 static VLANState *first_vlan;
205 int smp_cpus = 1;
206 const char *vnc_display;
207 #if defined(TARGET_SPARC)
208 #define MAX_CPUS 16
209 #elif defined(TARGET_I386)
210 #define MAX_CPUS 255
211 #else
212 #define MAX_CPUS 1
213 #endif
214 int acpi_enabled = 1;
215 int fd_bootchk = 1;
216 int no_reboot = 0;
217 int cursor_hide = 1;
218 int graphic_rotate = 0;
219 int daemonize = 0;
220 const char *option_rom[MAX_OPTION_ROMS];
221 int nb_option_roms;
222 int semihosting_enabled = 0;
223 int autostart = 1;
224 #ifdef TARGET_ARM
225 int old_param = 0;
226 #endif
227 const char *qemu_name;
228 int alt_grab = 0;
229 #ifdef TARGET_SPARC
230 unsigned int nb_prom_envs = 0;
231 const char *prom_envs[MAX_PROM_ENVS];
232 #endif
233 int nb_drives_opt;
234 struct drive_opt {
235 const char *file;
236 char opt[1024];
237 } drives_opt[MAX_DRIVES];
238
239 static CPUState *cur_cpu;
240 static CPUState *next_cpu;
241 static int event_pending = 1;
242
243 #define TFR(expr) do { if ((expr) != -1) break; } while (errno == EINTR)
244
245 /***********************************************************/
246 /* x86 ISA bus support */
247
248 target_phys_addr_t isa_mem_base = 0;
249 PicState2 *isa_pic;
250
251 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
252 {
253 #ifdef DEBUG_UNUSED_IOPORT
254 fprintf(stderr, "unused inb: port=0x%04x\n", address);
255 #endif
256 return 0xff;
257 }
258
259 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
260 {
261 #ifdef DEBUG_UNUSED_IOPORT
262 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
263 #endif
264 }
265
266 /* default is to make two byte accesses */
267 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
268 {
269 uint32_t data;
270 data = ioport_read_table[0][address](ioport_opaque[address], address);
271 address = (address + 1) & (MAX_IOPORTS - 1);
272 data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
273 return data;
274 }
275
276 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
277 {
278 ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
279 address = (address + 1) & (MAX_IOPORTS - 1);
280 ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
281 }
282
283 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
284 {
285 #ifdef DEBUG_UNUSED_IOPORT
286 fprintf(stderr, "unused inl: port=0x%04x\n", address);
287 #endif
288 return 0xffffffff;
289 }
290
291 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
292 {
293 #ifdef DEBUG_UNUSED_IOPORT
294 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
295 #endif
296 }
297
298 static void init_ioports(void)
299 {
300 int i;
301
302 for(i = 0; i < MAX_IOPORTS; i++) {
303 ioport_read_table[0][i] = default_ioport_readb;
304 ioport_write_table[0][i] = default_ioport_writeb;
305 ioport_read_table[1][i] = default_ioport_readw;
306 ioport_write_table[1][i] = default_ioport_writew;
307 ioport_read_table[2][i] = default_ioport_readl;
308 ioport_write_table[2][i] = default_ioport_writel;
309 }
310 }
311
312 /* size is the word size in byte */
313 int register_ioport_read(int start, int length, int size,
314 IOPortReadFunc *func, void *opaque)
315 {
316 int i, bsize;
317
318 if (size == 1) {
319 bsize = 0;
320 } else if (size == 2) {
321 bsize = 1;
322 } else if (size == 4) {
323 bsize = 2;
324 } else {
325 hw_error("register_ioport_read: invalid size");
326 return -1;
327 }
328 for(i = start; i < start + length; i += size) {
329 ioport_read_table[bsize][i] = func;
330 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
331 hw_error("register_ioport_read: invalid opaque");
332 ioport_opaque[i] = opaque;
333 }
334 return 0;
335 }
336
337 /* size is the word size in byte */
338 int register_ioport_write(int start, int length, int size,
339 IOPortWriteFunc *func, void *opaque)
340 {
341 int i, bsize;
342
343 if (size == 1) {
344 bsize = 0;
345 } else if (size == 2) {
346 bsize = 1;
347 } else if (size == 4) {
348 bsize = 2;
349 } else {
350 hw_error("register_ioport_write: invalid size");
351 return -1;
352 }
353 for(i = start; i < start + length; i += size) {
354 ioport_write_table[bsize][i] = func;
355 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
356 hw_error("register_ioport_write: invalid opaque");
357 ioport_opaque[i] = opaque;
358 }
359 return 0;
360 }
361
362 void isa_unassign_ioport(int start, int length)
363 {
364 int i;
365
366 for(i = start; i < start + length; i++) {
367 ioport_read_table[0][i] = default_ioport_readb;
368 ioport_read_table[1][i] = default_ioport_readw;
369 ioport_read_table[2][i] = default_ioport_readl;
370
371 ioport_write_table[0][i] = default_ioport_writeb;
372 ioport_write_table[1][i] = default_ioport_writew;
373 ioport_write_table[2][i] = default_ioport_writel;
374 }
375 }
376
377 /***********************************************************/
378
379 void cpu_outb(CPUState *env, int addr, int val)
380 {
381 #ifdef DEBUG_IOPORT
382 if (loglevel & CPU_LOG_IOPORT)
383 fprintf(logfile, "outb: %04x %02x\n", addr, val);
384 #endif
385 ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
386 #ifdef USE_KQEMU
387 if (env)
388 env->last_io_time = cpu_get_time_fast();
389 #endif
390 }
391
392 void cpu_outw(CPUState *env, int addr, int val)
393 {
394 #ifdef DEBUG_IOPORT
395 if (loglevel & CPU_LOG_IOPORT)
396 fprintf(logfile, "outw: %04x %04x\n", addr, val);
397 #endif
398 ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
399 #ifdef USE_KQEMU
400 if (env)
401 env->last_io_time = cpu_get_time_fast();
402 #endif
403 }
404
405 void cpu_outl(CPUState *env, int addr, int val)
406 {
407 #ifdef DEBUG_IOPORT
408 if (loglevel & CPU_LOG_IOPORT)
409 fprintf(logfile, "outl: %04x %08x\n", addr, val);
410 #endif
411 ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
412 #ifdef USE_KQEMU
413 if (env)
414 env->last_io_time = cpu_get_time_fast();
415 #endif
416 }
417
418 int cpu_inb(CPUState *env, int addr)
419 {
420 int val;
421 val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
422 #ifdef DEBUG_IOPORT
423 if (loglevel & CPU_LOG_IOPORT)
424 fprintf(logfile, "inb : %04x %02x\n", addr, val);
425 #endif
426 #ifdef USE_KQEMU
427 if (env)
428 env->last_io_time = cpu_get_time_fast();
429 #endif
430 return val;
431 }
432
433 int cpu_inw(CPUState *env, int addr)
434 {
435 int val;
436 val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
437 #ifdef DEBUG_IOPORT
438 if (loglevel & CPU_LOG_IOPORT)
439 fprintf(logfile, "inw : %04x %04x\n", addr, val);
440 #endif
441 #ifdef USE_KQEMU
442 if (env)
443 env->last_io_time = cpu_get_time_fast();
444 #endif
445 return val;
446 }
447
448 int cpu_inl(CPUState *env, int addr)
449 {
450 int val;
451 val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
452 #ifdef DEBUG_IOPORT
453 if (loglevel & CPU_LOG_IOPORT)
454 fprintf(logfile, "inl : %04x %08x\n", addr, val);
455 #endif
456 #ifdef USE_KQEMU
457 if (env)
458 env->last_io_time = cpu_get_time_fast();
459 #endif
460 return val;
461 }
462
463 /***********************************************************/
464 void hw_error(const char *fmt, ...)
465 {
466 va_list ap;
467 CPUState *env;
468
469 va_start(ap, fmt);
470 fprintf(stderr, "qemu: hardware error: ");
471 vfprintf(stderr, fmt, ap);
472 fprintf(stderr, "\n");
473 for(env = first_cpu; env != NULL; env = env->next_cpu) {
474 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
475 #ifdef TARGET_I386
476 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
477 #else
478 cpu_dump_state(env, stderr, fprintf, 0);
479 #endif
480 }
481 va_end(ap);
482 abort();
483 }
484
485 /***********************************************************/
486 /* keyboard/mouse */
487
488 static QEMUPutKBDEvent *qemu_put_kbd_event;
489 static void *qemu_put_kbd_event_opaque;
490 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
491 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
492
493 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
494 {
495 qemu_put_kbd_event_opaque = opaque;
496 qemu_put_kbd_event = func;
497 }
498
499 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
500 void *opaque, int absolute,
501 const char *name)
502 {
503 QEMUPutMouseEntry *s, *cursor;
504
505 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
506 if (!s)
507 return NULL;
508
509 s->qemu_put_mouse_event = func;
510 s->qemu_put_mouse_event_opaque = opaque;
511 s->qemu_put_mouse_event_absolute = absolute;
512 s->qemu_put_mouse_event_name = qemu_strdup(name);
513 s->next = NULL;
514
515 if (!qemu_put_mouse_event_head) {
516 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
517 return s;
518 }
519
520 cursor = qemu_put_mouse_event_head;
521 while (cursor->next != NULL)
522 cursor = cursor->next;
523
524 cursor->next = s;
525 qemu_put_mouse_event_current = s;
526
527 return s;
528 }
529
530 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
531 {
532 QEMUPutMouseEntry *prev = NULL, *cursor;
533
534 if (!qemu_put_mouse_event_head || entry == NULL)
535 return;
536
537 cursor = qemu_put_mouse_event_head;
538 while (cursor != NULL && cursor != entry) {
539 prev = cursor;
540 cursor = cursor->next;
541 }
542
543 if (cursor == NULL) // does not exist or list empty
544 return;
545 else if (prev == NULL) { // entry is head
546 qemu_put_mouse_event_head = cursor->next;
547 if (qemu_put_mouse_event_current == entry)
548 qemu_put_mouse_event_current = cursor->next;
549 qemu_free(entry->qemu_put_mouse_event_name);
550 qemu_free(entry);
551 return;
552 }
553
554 prev->next = entry->next;
555
556 if (qemu_put_mouse_event_current == entry)
557 qemu_put_mouse_event_current = prev;
558
559 qemu_free(entry->qemu_put_mouse_event_name);
560 qemu_free(entry);
561 }
562
563 void kbd_put_keycode(int keycode)
564 {
565 if (qemu_put_kbd_event) {
566 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
567 }
568 }
569
570 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
571 {
572 QEMUPutMouseEvent *mouse_event;
573 void *mouse_event_opaque;
574 int width;
575
576 if (!qemu_put_mouse_event_current) {
577 return;
578 }
579
580 mouse_event =
581 qemu_put_mouse_event_current->qemu_put_mouse_event;
582 mouse_event_opaque =
583 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
584
585 if (mouse_event) {
586 if (graphic_rotate) {
587 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
588 width = 0x7fff;
589 else
590 width = graphic_width - 1;
591 mouse_event(mouse_event_opaque,
592 width - dy, dx, dz, buttons_state);
593 } else
594 mouse_event(mouse_event_opaque,
595 dx, dy, dz, buttons_state);
596 }
597 }
598
599 int kbd_mouse_is_absolute(void)
600 {
601 if (!qemu_put_mouse_event_current)
602 return 0;
603
604 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
605 }
606
607 void do_info_mice(void)
608 {
609 QEMUPutMouseEntry *cursor;
610 int index = 0;
611
612 if (!qemu_put_mouse_event_head) {
613 term_printf("No mouse devices connected\n");
614 return;
615 }
616
617 term_printf("Mouse devices available:\n");
618 cursor = qemu_put_mouse_event_head;
619 while (cursor != NULL) {
620 term_printf("%c Mouse #%d: %s\n",
621 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
622 index, cursor->qemu_put_mouse_event_name);
623 index++;
624 cursor = cursor->next;
625 }
626 }
627
628 void do_mouse_set(int index)
629 {
630 QEMUPutMouseEntry *cursor;
631 int i = 0;
632
633 if (!qemu_put_mouse_event_head) {
634 term_printf("No mouse devices connected\n");
635 return;
636 }
637
638 cursor = qemu_put_mouse_event_head;
639 while (cursor != NULL && index != i) {
640 i++;
641 cursor = cursor->next;
642 }
643
644 if (cursor != NULL)
645 qemu_put_mouse_event_current = cursor;
646 else
647 term_printf("Mouse at given index not found\n");
648 }
649
650 /* compute with 96 bit intermediate result: (a*b)/c */
651 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
652 {
653 union {
654 uint64_t ll;
655 struct {
656 #ifdef WORDS_BIGENDIAN
657 uint32_t high, low;
658 #else
659 uint32_t low, high;
660 #endif
661 } l;
662 } u, res;
663 uint64_t rl, rh;
664
665 u.ll = a;
666 rl = (uint64_t)u.l.low * (uint64_t)b;
667 rh = (uint64_t)u.l.high * (uint64_t)b;
668 rh += (rl >> 32);
669 res.l.high = rh / c;
670 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
671 return res.ll;
672 }
673
674 /***********************************************************/
675 /* real time host monotonic timer */
676
677 #define QEMU_TIMER_BASE 1000000000LL
678
679 #ifdef WIN32
680
681 static int64_t clock_freq;
682
683 static void init_get_clock(void)
684 {
685 LARGE_INTEGER freq;
686 int ret;
687 ret = QueryPerformanceFrequency(&freq);
688 if (ret == 0) {
689 fprintf(stderr, "Could not calibrate ticks\n");
690 exit(1);
691 }
692 clock_freq = freq.QuadPart;
693 }
694
695 static int64_t get_clock(void)
696 {
697 LARGE_INTEGER ti;
698 QueryPerformanceCounter(&ti);
699 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
700 }
701
702 #else
703
704 static int use_rt_clock;
705
706 static void init_get_clock(void)
707 {
708 use_rt_clock = 0;
709 #if defined(__linux__)
710 {
711 struct timespec ts;
712 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
713 use_rt_clock = 1;
714 }
715 }
716 #endif
717 }
718
719 static int64_t get_clock(void)
720 {
721 #if defined(__linux__)
722 if (use_rt_clock) {
723 struct timespec ts;
724 clock_gettime(CLOCK_MONOTONIC, &ts);
725 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
726 } else
727 #endif
728 {
729 /* XXX: using gettimeofday leads to problems if the date
730 changes, so it should be avoided. */
731 struct timeval tv;
732 gettimeofday(&tv, NULL);
733 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
734 }
735 }
736
737 #endif
738
739 /***********************************************************/
740 /* guest cycle counter */
741
742 static int64_t cpu_ticks_prev;
743 static int64_t cpu_ticks_offset;
744 static int64_t cpu_clock_offset;
745 static int cpu_ticks_enabled;
746
747 /* return the host CPU cycle counter and handle stop/restart */
748 int64_t cpu_get_ticks(void)
749 {
750 if (!cpu_ticks_enabled) {
751 return cpu_ticks_offset;
752 } else {
753 int64_t ticks;
754 ticks = cpu_get_real_ticks();
755 if (cpu_ticks_prev > ticks) {
756 /* Note: non increasing ticks may happen if the host uses
757 software suspend */
758 cpu_ticks_offset += cpu_ticks_prev - ticks;
759 }
760 cpu_ticks_prev = ticks;
761 return ticks + cpu_ticks_offset;
762 }
763 }
764
765 /* return the host CPU monotonic timer and handle stop/restart */
766 static int64_t cpu_get_clock(void)
767 {
768 int64_t ti;
769 if (!cpu_ticks_enabled) {
770 return cpu_clock_offset;
771 } else {
772 ti = get_clock();
773 return ti + cpu_clock_offset;
774 }
775 }
776
777 /* enable cpu_get_ticks() */
778 void cpu_enable_ticks(void)
779 {
780 if (!cpu_ticks_enabled) {
781 cpu_ticks_offset -= cpu_get_real_ticks();
782 cpu_clock_offset -= get_clock();
783 cpu_ticks_enabled = 1;
784 }
785 }
786
787 /* disable cpu_get_ticks() : the clock is stopped. You must not call
788 cpu_get_ticks() after that. */
789 void cpu_disable_ticks(void)
790 {
791 if (cpu_ticks_enabled) {
792 cpu_ticks_offset = cpu_get_ticks();
793 cpu_clock_offset = cpu_get_clock();
794 cpu_ticks_enabled = 0;
795 }
796 }
797
798 /***********************************************************/
799 /* timers */
800
801 #define QEMU_TIMER_REALTIME 0
802 #define QEMU_TIMER_VIRTUAL 1
803
804 struct QEMUClock {
805 int type;
806 /* XXX: add frequency */
807 };
808
809 struct QEMUTimer {
810 QEMUClock *clock;
811 int64_t expire_time;
812 QEMUTimerCB *cb;
813 void *opaque;
814 struct QEMUTimer *next;
815 };
816
817 struct qemu_alarm_timer {
818 char const *name;
819 unsigned int flags;
820
821 int (*start)(struct qemu_alarm_timer *t);
822 void (*stop)(struct qemu_alarm_timer *t);
823 void (*rearm)(struct qemu_alarm_timer *t);
824 void *priv;
825 };
826
827 #define ALARM_FLAG_DYNTICKS 0x1
828 #define ALARM_FLAG_EXPIRED 0x2
829
830 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
831 {
832 return t->flags & ALARM_FLAG_DYNTICKS;
833 }
834
835 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
836 {
837 if (!alarm_has_dynticks(t))
838 return;
839
840 t->rearm(t);
841 }
842
843 /* TODO: MIN_TIMER_REARM_US should be optimized */
844 #define MIN_TIMER_REARM_US 250
845
846 static struct qemu_alarm_timer *alarm_timer;
847
848 #ifdef _WIN32
849
850 struct qemu_alarm_win32 {
851 MMRESULT timerId;
852 HANDLE host_alarm;
853 unsigned int period;
854 } alarm_win32_data = {0, NULL, -1};
855
856 static int win32_start_timer(struct qemu_alarm_timer *t);
857 static void win32_stop_timer(struct qemu_alarm_timer *t);
858 static void win32_rearm_timer(struct qemu_alarm_timer *t);
859
860 #else
861
862 static int unix_start_timer(struct qemu_alarm_timer *t);
863 static void unix_stop_timer(struct qemu_alarm_timer *t);
864
865 #ifdef __linux__
866
867 static int dynticks_start_timer(struct qemu_alarm_timer *t);
868 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
869 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
870
871 static int hpet_start_timer(struct qemu_alarm_timer *t);
872 static void hpet_stop_timer(struct qemu_alarm_timer *t);
873
874 static int rtc_start_timer(struct qemu_alarm_timer *t);
875 static void rtc_stop_timer(struct qemu_alarm_timer *t);
876
877 #endif /* __linux__ */
878
879 #endif /* _WIN32 */
880
881 static struct qemu_alarm_timer alarm_timers[] = {
882 #ifndef _WIN32
883 #ifdef __linux__
884 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
885 dynticks_stop_timer, dynticks_rearm_timer, NULL},
886 /* HPET - if available - is preferred */
887 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
888 /* ...otherwise try RTC */
889 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
890 #endif
891 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
892 #else
893 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
894 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
895 {"win32", 0, win32_start_timer,
896 win32_stop_timer, NULL, &alarm_win32_data},
897 #endif
898 {NULL, }
899 };
900
901 static void show_available_alarms(void)
902 {
903 int i;
904
905 printf("Available alarm timers, in order of precedence:\n");
906 for (i = 0; alarm_timers[i].name; i++)
907 printf("%s\n", alarm_timers[i].name);
908 }
909
910 static void configure_alarms(char const *opt)
911 {
912 int i;
913 int cur = 0;
914 int count = (sizeof(alarm_timers) / sizeof(*alarm_timers)) - 1;
915 char *arg;
916 char *name;
917
918 if (!strcmp(opt, "?")) {
919 show_available_alarms();
920 exit(0);
921 }
922
923 arg = strdup(opt);
924
925 /* Reorder the array */
926 name = strtok(arg, ",");
927 while (name) {
928 struct qemu_alarm_timer tmp;
929
930 for (i = 0; i < count && alarm_timers[i].name; i++) {
931 if (!strcmp(alarm_timers[i].name, name))
932 break;
933 }
934
935 if (i == count) {
936 fprintf(stderr, "Unknown clock %s\n", name);
937 goto next;
938 }
939
940 if (i < cur)
941 /* Ignore */
942 goto next;
943
944 /* Swap */
945 tmp = alarm_timers[i];
946 alarm_timers[i] = alarm_timers[cur];
947 alarm_timers[cur] = tmp;
948
949 cur++;
950 next:
951 name = strtok(NULL, ",");
952 }
953
954 free(arg);
955
956 if (cur) {
957 /* Disable remaining timers */
958 for (i = cur; i < count; i++)
959 alarm_timers[i].name = NULL;
960 } else {
961 show_available_alarms();
962 exit(1);
963 }
964 }
965
966 QEMUClock *rt_clock;
967 QEMUClock *vm_clock;
968
969 static QEMUTimer *active_timers[2];
970
971 static QEMUClock *qemu_new_clock(int type)
972 {
973 QEMUClock *clock;
974 clock = qemu_mallocz(sizeof(QEMUClock));
975 if (!clock)
976 return NULL;
977 clock->type = type;
978 return clock;
979 }
980
981 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
982 {
983 QEMUTimer *ts;
984
985 ts = qemu_mallocz(sizeof(QEMUTimer));
986 ts->clock = clock;
987 ts->cb = cb;
988 ts->opaque = opaque;
989 return ts;
990 }
991
992 void qemu_free_timer(QEMUTimer *ts)
993 {
994 qemu_free(ts);
995 }
996
997 /* stop a timer, but do not dealloc it */
998 void qemu_del_timer(QEMUTimer *ts)
999 {
1000 QEMUTimer **pt, *t;
1001
1002 /* NOTE: this code must be signal safe because
1003 qemu_timer_expired() can be called from a signal. */
1004 pt = &active_timers[ts->clock->type];
1005 for(;;) {
1006 t = *pt;
1007 if (!t)
1008 break;
1009 if (t == ts) {
1010 *pt = t->next;
1011 break;
1012 }
1013 pt = &t->next;
1014 }
1015 }
1016
1017 /* modify the current timer so that it will be fired when current_time
1018 >= expire_time. The corresponding callback will be called. */
1019 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1020 {
1021 QEMUTimer **pt, *t;
1022
1023 qemu_del_timer(ts);
1024
1025 /* add the timer in the sorted list */
1026 /* NOTE: this code must be signal safe because
1027 qemu_timer_expired() can be called from a signal. */
1028 pt = &active_timers[ts->clock->type];
1029 for(;;) {
1030 t = *pt;
1031 if (!t)
1032 break;
1033 if (t->expire_time > expire_time)
1034 break;
1035 pt = &t->next;
1036 }
1037 ts->expire_time = expire_time;
1038 ts->next = *pt;
1039 *pt = ts;
1040
1041 /* Rearm if necessary */
1042 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0 &&
1043 pt == &active_timers[ts->clock->type])
1044 qemu_rearm_alarm_timer(alarm_timer);
1045 }
1046
1047 int qemu_timer_pending(QEMUTimer *ts)
1048 {
1049 QEMUTimer *t;
1050 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1051 if (t == ts)
1052 return 1;
1053 }
1054 return 0;
1055 }
1056
1057 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1058 {
1059 if (!timer_head)
1060 return 0;
1061 return (timer_head->expire_time <= current_time);
1062 }
1063
1064 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1065 {
1066 QEMUTimer *ts;
1067
1068 for(;;) {
1069 ts = *ptimer_head;
1070 if (!ts || ts->expire_time > current_time)
1071 break;
1072 /* remove timer from the list before calling the callback */
1073 *ptimer_head = ts->next;
1074 ts->next = NULL;
1075
1076 /* run the callback (the timer list can be modified) */
1077 ts->cb(ts->opaque);
1078 }
1079 }
1080
1081 int64_t qemu_get_clock(QEMUClock *clock)
1082 {
1083 switch(clock->type) {
1084 case QEMU_TIMER_REALTIME:
1085 return get_clock() / 1000000;
1086 default:
1087 case QEMU_TIMER_VIRTUAL:
1088 return cpu_get_clock();
1089 }
1090 }
1091
1092 static void init_timers(void)
1093 {
1094 init_get_clock();
1095 ticks_per_sec = QEMU_TIMER_BASE;
1096 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1097 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1098 }
1099
1100 /* save a timer */
1101 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1102 {
1103 uint64_t expire_time;
1104
1105 if (qemu_timer_pending(ts)) {
1106 expire_time = ts->expire_time;
1107 } else {
1108 expire_time = -1;
1109 }
1110 qemu_put_be64(f, expire_time);
1111 }
1112
1113 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1114 {
1115 uint64_t expire_time;
1116
1117 expire_time = qemu_get_be64(f);
1118 if (expire_time != -1) {
1119 qemu_mod_timer(ts, expire_time);
1120 } else {
1121 qemu_del_timer(ts);
1122 }
1123 }
1124
1125 static void timer_save(QEMUFile *f, void *opaque)
1126 {
1127 if (cpu_ticks_enabled) {
1128 hw_error("cannot save state if virtual timers are running");
1129 }
1130 qemu_put_be64(f, cpu_ticks_offset);
1131 qemu_put_be64(f, ticks_per_sec);
1132 qemu_put_be64(f, cpu_clock_offset);
1133 }
1134
1135 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1136 {
1137 if (version_id != 1 && version_id != 2)
1138 return -EINVAL;
1139 if (cpu_ticks_enabled) {
1140 return -EINVAL;
1141 }
1142 cpu_ticks_offset=qemu_get_be64(f);
1143 ticks_per_sec=qemu_get_be64(f);
1144 if (version_id == 2) {
1145 cpu_clock_offset=qemu_get_be64(f);
1146 }
1147 return 0;
1148 }
1149
1150 #ifdef _WIN32
1151 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1152 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1153 #else
1154 static void host_alarm_handler(int host_signum)
1155 #endif
1156 {
1157 #if 0
1158 #define DISP_FREQ 1000
1159 {
1160 static int64_t delta_min = INT64_MAX;
1161 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1162 static int count;
1163 ti = qemu_get_clock(vm_clock);
1164 if (last_clock != 0) {
1165 delta = ti - last_clock;
1166 if (delta < delta_min)
1167 delta_min = delta;
1168 if (delta > delta_max)
1169 delta_max = delta;
1170 delta_cum += delta;
1171 if (++count == DISP_FREQ) {
1172 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1173 muldiv64(delta_min, 1000000, ticks_per_sec),
1174 muldiv64(delta_max, 1000000, ticks_per_sec),
1175 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1176 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1177 count = 0;
1178 delta_min = INT64_MAX;
1179 delta_max = 0;
1180 delta_cum = 0;
1181 }
1182 }
1183 last_clock = ti;
1184 }
1185 #endif
1186 if (alarm_has_dynticks(alarm_timer) ||
1187 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1188 qemu_get_clock(vm_clock)) ||
1189 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1190 qemu_get_clock(rt_clock))) {
1191 #ifdef _WIN32
1192 struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1193 SetEvent(data->host_alarm);
1194 #endif
1195 CPUState *env = next_cpu;
1196
1197 alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1198
1199 if (env) {
1200 /* stop the currently executing cpu because a timer occured */
1201 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1202 #ifdef USE_KQEMU
1203 if (env->kqemu_enabled) {
1204 kqemu_cpu_interrupt(env);
1205 }
1206 #endif
1207 }
1208 event_pending = 1;
1209 }
1210 }
1211
1212 static uint64_t qemu_next_deadline(void)
1213 {
1214 int64_t nearest_delta_us = INT64_MAX;
1215 int64_t vmdelta_us;
1216
1217 if (active_timers[QEMU_TIMER_REALTIME])
1218 nearest_delta_us = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1219 qemu_get_clock(rt_clock))*1000;
1220
1221 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1222 /* round up */
1223 vmdelta_us = (active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1224 qemu_get_clock(vm_clock)+999)/1000;
1225 if (vmdelta_us < nearest_delta_us)
1226 nearest_delta_us = vmdelta_us;
1227 }
1228
1229 /* Avoid arming the timer to negative, zero, or too low values */
1230 if (nearest_delta_us <= MIN_TIMER_REARM_US)
1231 nearest_delta_us = MIN_TIMER_REARM_US;
1232
1233 return nearest_delta_us;
1234 }
1235
1236 #ifndef _WIN32
1237
1238 #if defined(__linux__)
1239
1240 #define RTC_FREQ 1024
1241
1242 static void enable_sigio_timer(int fd)
1243 {
1244 struct sigaction act;
1245
1246 /* timer signal */
1247 sigfillset(&act.sa_mask);
1248 act.sa_flags = 0;
1249 act.sa_handler = host_alarm_handler;
1250
1251 sigaction(SIGIO, &act, NULL);
1252 fcntl(fd, F_SETFL, O_ASYNC);
1253 fcntl(fd, F_SETOWN, getpid());
1254 }
1255
1256 static int hpet_start_timer(struct qemu_alarm_timer *t)
1257 {
1258 struct hpet_info info;
1259 int r, fd;
1260
1261 fd = open("/dev/hpet", O_RDONLY);
1262 if (fd < 0)
1263 return -1;
1264
1265 /* Set frequency */
1266 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1267 if (r < 0) {
1268 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1269 "error, but for better emulation accuracy type:\n"
1270 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1271 goto fail;
1272 }
1273
1274 /* Check capabilities */
1275 r = ioctl(fd, HPET_INFO, &info);
1276 if (r < 0)
1277 goto fail;
1278
1279 /* Enable periodic mode */
1280 r = ioctl(fd, HPET_EPI, 0);
1281 if (info.hi_flags && (r < 0))
1282 goto fail;
1283
1284 /* Enable interrupt */
1285 r = ioctl(fd, HPET_IE_ON, 0);
1286 if (r < 0)
1287 goto fail;
1288
1289 enable_sigio_timer(fd);
1290 t->priv = (void *)(long)fd;
1291
1292 return 0;
1293 fail:
1294 close(fd);
1295 return -1;
1296 }
1297
1298 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1299 {
1300 int fd = (long)t->priv;
1301
1302 close(fd);
1303 }
1304
1305 static int rtc_start_timer(struct qemu_alarm_timer *t)
1306 {
1307 int rtc_fd;
1308 unsigned long current_rtc_freq = 0;
1309
1310 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1311 if (rtc_fd < 0)
1312 return -1;
1313 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1314 if (current_rtc_freq != RTC_FREQ &&
1315 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1316 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1317 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1318 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1319 goto fail;
1320 }
1321 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1322 fail:
1323 close(rtc_fd);
1324 return -1;
1325 }
1326
1327 enable_sigio_timer(rtc_fd);
1328
1329 t->priv = (void *)(long)rtc_fd;
1330
1331 return 0;
1332 }
1333
1334 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1335 {
1336 int rtc_fd = (long)t->priv;
1337
1338 close(rtc_fd);
1339 }
1340
1341 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1342 {
1343 struct sigevent ev;
1344 timer_t host_timer;
1345 struct sigaction act;
1346
1347 sigfillset(&act.sa_mask);
1348 act.sa_flags = 0;
1349 act.sa_handler = host_alarm_handler;
1350
1351 sigaction(SIGALRM, &act, NULL);
1352
1353 ev.sigev_value.sival_int = 0;
1354 ev.sigev_notify = SIGEV_SIGNAL;
1355 ev.sigev_signo = SIGALRM;
1356
1357 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1358 perror("timer_create");
1359
1360 /* disable dynticks */
1361 fprintf(stderr, "Dynamic Ticks disabled\n");
1362
1363 return -1;
1364 }
1365
1366 t->priv = (void *)host_timer;
1367
1368 return 0;
1369 }
1370
1371 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1372 {
1373 timer_t host_timer = (timer_t)t->priv;
1374
1375 timer_delete(host_timer);
1376 }
1377
1378 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1379 {
1380 timer_t host_timer = (timer_t)t->priv;
1381 struct itimerspec timeout;
1382 int64_t nearest_delta_us = INT64_MAX;
1383 int64_t current_us;
1384
1385 if (!active_timers[QEMU_TIMER_REALTIME] &&
1386 !active_timers[QEMU_TIMER_VIRTUAL])
1387 return;
1388
1389 nearest_delta_us = qemu_next_deadline();
1390
1391 /* check whether a timer is already running */
1392 if (timer_gettime(host_timer, &timeout)) {
1393 perror("gettime");
1394 fprintf(stderr, "Internal timer error: aborting\n");
1395 exit(1);
1396 }
1397 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1398 if (current_us && current_us <= nearest_delta_us)
1399 return;
1400
1401 timeout.it_interval.tv_sec = 0;
1402 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1403 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1404 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1405 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1406 perror("settime");
1407 fprintf(stderr, "Internal timer error: aborting\n");
1408 exit(1);
1409 }
1410 }
1411
1412 #endif /* defined(__linux__) */
1413
1414 static int unix_start_timer(struct qemu_alarm_timer *t)
1415 {
1416 struct sigaction act;
1417 struct itimerval itv;
1418 int err;
1419
1420 /* timer signal */
1421 sigfillset(&act.sa_mask);
1422 act.sa_flags = 0;
1423 act.sa_handler = host_alarm_handler;
1424
1425 sigaction(SIGALRM, &act, NULL);
1426
1427 itv.it_interval.tv_sec = 0;
1428 /* for i386 kernel 2.6 to get 1 ms */
1429 itv.it_interval.tv_usec = 999;
1430 itv.it_value.tv_sec = 0;
1431 itv.it_value.tv_usec = 10 * 1000;
1432
1433 err = setitimer(ITIMER_REAL, &itv, NULL);
1434 if (err)
1435 return -1;
1436
1437 return 0;
1438 }
1439
1440 static void unix_stop_timer(struct qemu_alarm_timer *t)
1441 {
1442 struct itimerval itv;
1443
1444 memset(&itv, 0, sizeof(itv));
1445 setitimer(ITIMER_REAL, &itv, NULL);
1446 }
1447
1448 #endif /* !defined(_WIN32) */
1449
1450 #ifdef _WIN32
1451
1452 static int win32_start_timer(struct qemu_alarm_timer *t)
1453 {
1454 TIMECAPS tc;
1455 struct qemu_alarm_win32 *data = t->priv;
1456 UINT flags;
1457
1458 data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1459 if (!data->host_alarm) {
1460 perror("Failed CreateEvent");
1461 return -1;
1462 }
1463
1464 memset(&tc, 0, sizeof(tc));
1465 timeGetDevCaps(&tc, sizeof(tc));
1466
1467 if (data->period < tc.wPeriodMin)
1468 data->period = tc.wPeriodMin;
1469
1470 timeBeginPeriod(data->period);
1471
1472 flags = TIME_CALLBACK_FUNCTION;
1473 if (alarm_has_dynticks(t))
1474 flags |= TIME_ONESHOT;
1475 else
1476 flags |= TIME_PERIODIC;
1477
1478 data->timerId = timeSetEvent(1, // interval (ms)
1479 data->period, // resolution
1480 host_alarm_handler, // function
1481 (DWORD)t, // parameter
1482 flags);
1483
1484 if (!data->timerId) {
1485 perror("Failed to initialize win32 alarm timer");
1486
1487 timeEndPeriod(data->period);
1488 CloseHandle(data->host_alarm);
1489 return -1;
1490 }
1491
1492 qemu_add_wait_object(data->host_alarm, NULL, NULL);
1493
1494 return 0;
1495 }
1496
1497 static void win32_stop_timer(struct qemu_alarm_timer *t)
1498 {
1499 struct qemu_alarm_win32 *data = t->priv;
1500
1501 timeKillEvent(data->timerId);
1502 timeEndPeriod(data->period);
1503
1504 CloseHandle(data->host_alarm);
1505 }
1506
1507 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1508 {
1509 struct qemu_alarm_win32 *data = t->priv;
1510 uint64_t nearest_delta_us;
1511
1512 if (!active_timers[QEMU_TIMER_REALTIME] &&
1513 !active_timers[QEMU_TIMER_VIRTUAL])
1514 return;
1515
1516 nearest_delta_us = qemu_next_deadline();
1517 nearest_delta_us /= 1000;
1518
1519 timeKillEvent(data->timerId);
1520
1521 data->timerId = timeSetEvent(1,
1522 data->period,
1523 host_alarm_handler,
1524 (DWORD)t,
1525 TIME_ONESHOT | TIME_PERIODIC);
1526
1527 if (!data->timerId) {
1528 perror("Failed to re-arm win32 alarm timer");
1529
1530 timeEndPeriod(data->period);
1531 CloseHandle(data->host_alarm);
1532 exit(1);
1533 }
1534 }
1535
1536 #endif /* _WIN32 */
1537
1538 static void init_timer_alarm(void)
1539 {
1540 struct qemu_alarm_timer *t;
1541 int i, err = -1;
1542
1543 for (i = 0; alarm_timers[i].name; i++) {
1544 t = &alarm_timers[i];
1545
1546 err = t->start(t);
1547 if (!err)
1548 break;
1549 }
1550
1551 if (err) {
1552 fprintf(stderr, "Unable to find any suitable alarm timer.\n");
1553 fprintf(stderr, "Terminating\n");
1554 exit(1);
1555 }
1556
1557 alarm_timer = t;
1558 }
1559
1560 static void quit_timers(void)
1561 {
1562 alarm_timer->stop(alarm_timer);
1563 alarm_timer = NULL;
1564 }
1565
1566 /***********************************************************/
1567 /* host time/date access */
1568 void qemu_get_timedate(struct tm *tm, int offset)
1569 {
1570 time_t ti;
1571 struct tm *ret;
1572
1573 time(&ti);
1574 ti += offset;
1575 if (rtc_date_offset == -1) {
1576 if (rtc_utc)
1577 ret = gmtime(&ti);
1578 else
1579 ret = localtime(&ti);
1580 } else {
1581 ti -= rtc_date_offset;
1582 ret = gmtime(&ti);
1583 }
1584
1585 memcpy(tm, ret, sizeof(struct tm));
1586 }
1587
1588 int qemu_timedate_diff(struct tm *tm)
1589 {
1590 time_t seconds;
1591
1592 if (rtc_date_offset == -1)
1593 if (rtc_utc)
1594 seconds = mktimegm(tm);
1595 else
1596 seconds = mktime(tm);
1597 else
1598 seconds = mktimegm(tm) + rtc_date_offset;
1599
1600 return seconds - time(NULL);
1601 }
1602
1603 /***********************************************************/
1604 /* character device */
1605
1606 static void qemu_chr_event(CharDriverState *s, int event)
1607 {
1608 if (!s->chr_event)
1609 return;
1610 s->chr_event(s->handler_opaque, event);
1611 }
1612
1613 static void qemu_chr_reset_bh(void *opaque)
1614 {
1615 CharDriverState *s = opaque;
1616 qemu_chr_event(s, CHR_EVENT_RESET);
1617 qemu_bh_delete(s->bh);
1618 s->bh = NULL;
1619 }
1620
1621 void qemu_chr_reset(CharDriverState *s)
1622 {
1623 if (s->bh == NULL) {
1624 s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1625 qemu_bh_schedule(s->bh);
1626 }
1627 }
1628
1629 int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1630 {
1631 return s->chr_write(s, buf, len);
1632 }
1633
1634 int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1635 {
1636 if (!s->chr_ioctl)
1637 return -ENOTSUP;
1638 return s->chr_ioctl(s, cmd, arg);
1639 }
1640
1641 int qemu_chr_can_read(CharDriverState *s)
1642 {
1643 if (!s->chr_can_read)
1644 return 0;
1645 return s->chr_can_read(s->handler_opaque);
1646 }
1647
1648 void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1649 {
1650 s->chr_read(s->handler_opaque, buf, len);
1651 }
1652
1653 void qemu_chr_accept_input(CharDriverState *s)
1654 {
1655 if (s->chr_accept_input)
1656 s->chr_accept_input(s);
1657 }
1658
1659 void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1660 {
1661 char buf[4096];
1662 va_list ap;
1663 va_start(ap, fmt);
1664 vsnprintf(buf, sizeof(buf), fmt, ap);
1665 qemu_chr_write(s, (uint8_t *)buf, strlen(buf));
1666 va_end(ap);
1667 }
1668
1669 void qemu_chr_send_event(CharDriverState *s, int event)
1670 {
1671 if (s->chr_send_event)
1672 s->chr_send_event(s, event);
1673 }
1674
1675 void qemu_chr_add_handlers(CharDriverState *s,
1676 IOCanRWHandler *fd_can_read,
1677 IOReadHandler *fd_read,
1678 IOEventHandler *fd_event,
1679 void *opaque)
1680 {
1681 s->chr_can_read = fd_can_read;
1682 s->chr_read = fd_read;
1683 s->chr_event = fd_event;
1684 s->handler_opaque = opaque;
1685 if (s->chr_update_read_handler)
1686 s->chr_update_read_handler(s);
1687 }
1688
1689 static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1690 {
1691 return len;
1692 }
1693
1694 static CharDriverState *qemu_chr_open_null(void)
1695 {
1696 CharDriverState *chr;
1697
1698 chr = qemu_mallocz(sizeof(CharDriverState));
1699 if (!chr)
1700 return NULL;
1701 chr->chr_write = null_chr_write;
1702 return chr;
1703 }
1704
1705 /* MUX driver for serial I/O splitting */
1706 static int term_timestamps;
1707 static int64_t term_timestamps_start;
1708 #define MAX_MUX 4
1709 #define MUX_BUFFER_SIZE 32 /* Must be a power of 2. */
1710 #define MUX_BUFFER_MASK (MUX_BUFFER_SIZE - 1)
1711 typedef struct {
1712 IOCanRWHandler *chr_can_read[MAX_MUX];
1713 IOReadHandler *chr_read[MAX_MUX];
1714 IOEventHandler *chr_event[MAX_MUX];
1715 void *ext_opaque[MAX_MUX];
1716 CharDriverState *drv;
1717 unsigned char buffer[MUX_BUFFER_SIZE];
1718 int prod;
1719 int cons;
1720 int mux_cnt;
1721 int term_got_escape;
1722 int max_size;
1723 } MuxDriver;
1724
1725
1726 static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1727 {
1728 MuxDriver *d = chr->opaque;
1729 int ret;
1730 if (!term_timestamps) {
1731 ret = d->drv->chr_write(d->drv, buf, len);
1732 } else {
1733 int i;
1734
1735 ret = 0;
1736 for(i = 0; i < len; i++) {
1737 ret += d->drv->chr_write(d->drv, buf+i, 1);
1738 if (buf[i] == '\n') {
1739 char buf1[64];
1740 int64_t ti;
1741 int secs;
1742
1743 ti = get_clock();
1744 if (term_timestamps_start == -1)
1745 term_timestamps_start = ti;
1746 ti -= term_timestamps_start;
1747 secs = ti / 1000000000;
1748 snprintf(buf1, sizeof(buf1),
1749 "[%02d:%02d:%02d.%03d] ",
1750 secs / 3600,
1751 (secs / 60) % 60,
1752 secs % 60,
1753 (int)((ti / 1000000) % 1000));
1754 d->drv->chr_write(d->drv, (uint8_t *)buf1, strlen(buf1));
1755 }
1756 }
1757 }
1758 return ret;
1759 }
1760
1761 static char *mux_help[] = {
1762 "% h print this help\n\r",
1763 "% x exit emulator\n\r",
1764 "% s save disk data back to file (if -snapshot)\n\r",
1765 "% t toggle console timestamps\n\r"
1766 "% b send break (magic sysrq)\n\r",
1767 "% c switch between console and monitor\n\r",
1768 "% % sends %\n\r",
1769 NULL
1770 };
1771
1772 static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1773 static void mux_print_help(CharDriverState *chr)
1774 {
1775 int i, j;
1776 char ebuf[15] = "Escape-Char";
1777 char cbuf[50] = "\n\r";
1778
1779 if (term_escape_char > 0 && term_escape_char < 26) {
1780 sprintf(cbuf,"\n\r");
1781 sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a');
1782 } else {
1783 sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r",
1784 term_escape_char);
1785 }
1786 chr->chr_write(chr, (uint8_t *)cbuf, strlen(cbuf));
1787 for (i = 0; mux_help[i] != NULL; i++) {
1788 for (j=0; mux_help[i][j] != '\0'; j++) {
1789 if (mux_help[i][j] == '%')
1790 chr->chr_write(chr, (uint8_t *)ebuf, strlen(ebuf));
1791 else
1792 chr->chr_write(chr, (uint8_t *)&mux_help[i][j], 1);
1793 }
1794 }
1795 }
1796
1797 static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1798 {
1799 if (d->term_got_escape) {
1800 d->term_got_escape = 0;
1801 if (ch == term_escape_char)
1802 goto send_char;
1803 switch(ch) {
1804 case '?':
1805 case 'h':
1806 mux_print_help(chr);
1807 break;
1808 case 'x':
1809 {
1810 char *term = "QEMU: Terminated\n\r";
1811 chr->chr_write(chr,(uint8_t *)term,strlen(term));
1812 exit(0);
1813 break;
1814 }
1815 case 's':
1816 {
1817 int i;
1818 for (i = 0; i < nb_drives; i++) {
1819 bdrv_commit(drives_table[i].bdrv);
1820 }
1821 }
1822 break;
1823 case 'b':
1824 qemu_chr_event(chr, CHR_EVENT_BREAK);
1825 break;
1826 case 'c':
1827 /* Switch to the next registered device */
1828 chr->focus++;
1829 if (chr->focus >= d->mux_cnt)
1830 chr->focus = 0;
1831 break;
1832 case 't':
1833 term_timestamps = !term_timestamps;
1834 term_timestamps_start = -1;
1835 break;
1836 }
1837 } else if (ch == term_escape_char) {
1838 d->term_got_escape = 1;
1839 } else {
1840 send_char:
1841 return 1;
1842 }
1843 return 0;
1844 }
1845
1846 static void mux_chr_accept_input(CharDriverState *chr)
1847 {
1848 int m = chr->focus;
1849 MuxDriver *d = chr->opaque;
1850
1851 while (d->prod != d->cons &&
1852 d->chr_can_read[m] &&
1853 d->chr_can_read[m](d->ext_opaque[m])) {
1854 d->chr_read[m](d->ext_opaque[m],
1855 &d->buffer[d->cons++ & MUX_BUFFER_MASK], 1);
1856 }
1857 }
1858
1859 static int mux_chr_can_read(void *opaque)
1860 {
1861 CharDriverState *chr = opaque;
1862 MuxDriver *d = chr->opaque;
1863
1864 if ((d->prod - d->cons) < MUX_BUFFER_SIZE)
1865 return 1;
1866 if (d->chr_can_read[chr->focus])
1867 return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
1868 return 0;
1869 }
1870
1871 static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
1872 {
1873 CharDriverState *chr = opaque;
1874 MuxDriver *d = chr->opaque;
1875 int m = chr->focus;
1876 int i;
1877
1878 mux_chr_accept_input (opaque);
1879
1880 for(i = 0; i < size; i++)
1881 if (mux_proc_byte(chr, d, buf[i])) {
1882 if (d->prod == d->cons &&
1883 d->chr_can_read[m] &&
1884 d->chr_can_read[m](d->ext_opaque[m]))
1885 d->chr_read[m](d->ext_opaque[m], &buf[i], 1);
1886 else
1887 d->buffer[d->prod++ & MUX_BUFFER_MASK] = buf[i];
1888 }
1889 }
1890
1891 static void mux_chr_event(void *opaque, int event)
1892 {
1893 CharDriverState *chr = opaque;
1894 MuxDriver *d = chr->opaque;
1895 int i;
1896
1897 /* Send the event to all registered listeners */
1898 for (i = 0; i < d->mux_cnt; i++)
1899 if (d->chr_event[i])
1900 d->chr_event[i](d->ext_opaque[i], event);
1901 }
1902
1903 static void mux_chr_update_read_handler(CharDriverState *chr)
1904 {
1905 MuxDriver *d = chr->opaque;
1906
1907 if (d->mux_cnt >= MAX_MUX) {
1908 fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
1909 return;
1910 }
1911 d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
1912 d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
1913 d->chr_read[d->mux_cnt] = chr->chr_read;
1914 d->chr_event[d->mux_cnt] = chr->chr_event;
1915 /* Fix up the real driver with mux routines */
1916 if (d->mux_cnt == 0) {
1917 qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
1918 mux_chr_event, chr);
1919 }
1920 chr->focus = d->mux_cnt;
1921 d->mux_cnt++;
1922 }
1923
1924 static CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
1925 {
1926 CharDriverState *chr;
1927 MuxDriver *d;
1928
1929 chr = qemu_mallocz(sizeof(CharDriverState));
1930 if (!chr)
1931 return NULL;
1932 d = qemu_mallocz(sizeof(MuxDriver));
1933 if (!d) {
1934 free(chr);
1935 return NULL;
1936 }
1937
1938 chr->opaque = d;
1939 d->drv = drv;
1940 chr->focus = -1;
1941 chr->chr_write = mux_chr_write;
1942 chr->chr_update_read_handler = mux_chr_update_read_handler;
1943 chr->chr_accept_input = mux_chr_accept_input;
1944 return chr;
1945 }
1946
1947
1948 #ifdef _WIN32
1949
1950 static void socket_cleanup(void)
1951 {
1952 WSACleanup();
1953 }
1954
1955 static int socket_init(void)
1956 {
1957 WSADATA Data;
1958 int ret, err;
1959
1960 ret = WSAStartup(MAKEWORD(2,2), &Data);
1961 if (ret != 0) {
1962 err = WSAGetLastError();
1963 fprintf(stderr, "WSAStartup: %d\n", err);
1964 return -1;
1965 }
1966 atexit(socket_cleanup);
1967 return 0;
1968 }
1969
1970 static int send_all(int fd, const uint8_t *buf, int len1)
1971 {
1972 int ret, len;
1973
1974 len = len1;
1975 while (len > 0) {
1976 ret = send(fd, buf, len, 0);
1977 if (ret < 0) {
1978 int errno;
1979 errno = WSAGetLastError();
1980 if (errno != WSAEWOULDBLOCK) {
1981 return -1;
1982 }
1983 } else if (ret == 0) {
1984 break;
1985 } else {
1986 buf += ret;
1987 len -= ret;
1988 }
1989 }
1990 return len1 - len;
1991 }
1992
1993 void socket_set_nonblock(int fd)
1994 {
1995 unsigned long opt = 1;
1996 ioctlsocket(fd, FIONBIO, &opt);
1997 }
1998
1999 #else
2000
2001 static int unix_write(int fd, const uint8_t *buf, int len1)
2002 {
2003 int ret, len;
2004
2005 len = len1;
2006 while (len > 0) {
2007 ret = write(fd, buf, len);
2008 if (ret < 0) {
2009 if (errno != EINTR && errno != EAGAIN)
2010 return -1;
2011 } else if (ret == 0) {
2012 break;
2013 } else {
2014 buf += ret;
2015 len -= ret;
2016 }
2017 }
2018 return len1 - len;
2019 }
2020
2021 static inline int send_all(int fd, const uint8_t *buf, int len1)
2022 {
2023 return unix_write(fd, buf, len1);
2024 }
2025
2026 void socket_set_nonblock(int fd)
2027 {
2028 fcntl(fd, F_SETFL, O_NONBLOCK);
2029 }
2030 #endif /* !_WIN32 */
2031
2032 #ifndef _WIN32
2033
2034 typedef struct {
2035 int fd_in, fd_out;
2036 int max_size;
2037 } FDCharDriver;
2038
2039 #define STDIO_MAX_CLIENTS 1
2040 static int stdio_nb_clients = 0;
2041
2042 static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2043 {
2044 FDCharDriver *s = chr->opaque;
2045 return unix_write(s->fd_out, buf, len);
2046 }
2047
2048 static int fd_chr_read_poll(void *opaque)
2049 {
2050 CharDriverState *chr = opaque;
2051 FDCharDriver *s = chr->opaque;
2052
2053 s->max_size = qemu_chr_can_read(chr);
2054 return s->max_size;
2055 }
2056
2057 static void fd_chr_read(void *opaque)
2058 {
2059 CharDriverState *chr = opaque;
2060 FDCharDriver *s = chr->opaque;
2061 int size, len;
2062 uint8_t buf[1024];
2063
2064 len = sizeof(buf);
2065 if (len > s->max_size)
2066 len = s->max_size;
2067 if (len == 0)
2068 return;
2069 size = read(s->fd_in, buf, len);
2070 if (size == 0) {
2071 /* FD has been closed. Remove it from the active list. */
2072 qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
2073 return;
2074 }
2075 if (size > 0) {
2076 qemu_chr_read(chr, buf, size);
2077 }
2078 }
2079
2080 static void fd_chr_update_read_handler(CharDriverState *chr)
2081 {
2082 FDCharDriver *s = chr->opaque;
2083
2084 if (s->fd_in >= 0) {
2085 if (nographic && s->fd_in == 0) {
2086 } else {
2087 qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
2088 fd_chr_read, NULL, chr);
2089 }
2090 }
2091 }
2092
2093 static void fd_chr_close(struct CharDriverState *chr)
2094 {
2095 FDCharDriver *s = chr->opaque;
2096
2097 if (s->fd_in >= 0) {
2098 if (nographic && s->fd_in == 0) {
2099 } else {
2100 qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
2101 }
2102 }
2103
2104 qemu_free(s);
2105 }
2106
2107 /* open a character device to a unix fd */
2108 static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
2109 {
2110 CharDriverState *chr;
2111 FDCharDriver *s;
2112
2113 chr = qemu_mallocz(sizeof(CharDriverState));
2114 if (!chr)
2115 return NULL;
2116 s = qemu_mallocz(sizeof(FDCharDriver));
2117 if (!s) {
2118 free(chr);
2119 return NULL;
2120 }
2121 s->fd_in = fd_in;
2122 s->fd_out = fd_out;
2123 chr->opaque = s;
2124 chr->chr_write = fd_chr_write;
2125 chr->chr_update_read_handler = fd_chr_update_read_handler;
2126 chr->chr_close = fd_chr_close;
2127
2128 qemu_chr_reset(chr);
2129
2130 return chr;
2131 }
2132
2133 static CharDriverState *qemu_chr_open_file_out(const char *file_out)
2134 {
2135 int fd_out;
2136
2137 TFR(fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666));
2138 if (fd_out < 0)
2139 return NULL;
2140 return qemu_chr_open_fd(-1, fd_out);
2141 }
2142
2143 static CharDriverState *qemu_chr_open_pipe(const char *filename)
2144 {
2145 int fd_in, fd_out;
2146 char filename_in[256], filename_out[256];
2147
2148 snprintf(filename_in, 256, "%s.in", filename);
2149 snprintf(filename_out, 256, "%s.out", filename);
2150 TFR(fd_in = open(filename_in, O_RDWR | O_BINARY));
2151 TFR(fd_out = open(filename_out, O_RDWR | O_BINARY));
2152 if (fd_in < 0 || fd_out < 0) {
2153 if (fd_in >= 0)
2154 close(fd_in);
2155 if (fd_out >= 0)
2156 close(fd_out);
2157 TFR(fd_in = fd_out = open(filename, O_RDWR | O_BINARY));
2158 if (fd_in < 0)
2159 return NULL;
2160 }
2161 return qemu_chr_open_fd(fd_in, fd_out);
2162 }
2163
2164
2165 /* for STDIO, we handle the case where several clients use it
2166 (nographic mode) */
2167
2168 #define TERM_FIFO_MAX_SIZE 1
2169
2170 static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
2171 static int term_fifo_size;
2172
2173 static int stdio_read_poll(void *opaque)
2174 {
2175 CharDriverState *chr = opaque;
2176
2177 /* try to flush the queue if needed */
2178 if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
2179 qemu_chr_read(chr, term_fifo, 1);
2180 term_fifo_size = 0;
2181 }
2182 /* see if we can absorb more chars */
2183 if (term_fifo_size == 0)
2184 return 1;
2185 else
2186 return 0;
2187 }
2188
2189 static void stdio_read(void *opaque)
2190 {
2191 int size;
2192 uint8_t buf[1];
2193 CharDriverState *chr = opaque;
2194
2195 size = read(0, buf, 1);
2196 if (size == 0) {
2197 /* stdin has been closed. Remove it from the active list. */
2198 qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2199 return;
2200 }
2201 if (size > 0) {
2202 if (qemu_chr_can_read(chr) > 0) {
2203 qemu_chr_read(chr, buf, 1);
2204 } else if (term_fifo_size == 0) {
2205 term_fifo[term_fifo_size++] = buf[0];
2206 }
2207 }
2208 }
2209
2210 /* init terminal so that we can grab keys */
2211 static struct termios oldtty;
2212 static int old_fd0_flags;
2213 static int term_atexit_done;
2214
2215 static void term_exit(void)
2216 {
2217 tcsetattr (0, TCSANOW, &oldtty);
2218 fcntl(0, F_SETFL, old_fd0_flags);
2219 }
2220
2221 static void term_init(void)
2222 {
2223 struct termios tty;
2224
2225 tcgetattr (0, &tty);
2226 oldtty = tty;
2227 old_fd0_flags = fcntl(0, F_GETFL);
2228
2229 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2230 |INLCR|IGNCR|ICRNL|IXON);
2231 tty.c_oflag |= OPOST;
2232 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
2233 /* if graphical mode, we allow Ctrl-C handling */
2234 if (nographic)
2235 tty.c_lflag &= ~ISIG;
2236 tty.c_cflag &= ~(CSIZE|PARENB);
2237 tty.c_cflag |= CS8;
2238 tty.c_cc[VMIN] = 1;
2239 tty.c_cc[VTIME] = 0;
2240
2241 tcsetattr (0, TCSANOW, &tty);
2242
2243 if (!term_atexit_done++)
2244 atexit(term_exit);
2245
2246 fcntl(0, F_SETFL, O_NONBLOCK);
2247 }
2248
2249 static void qemu_chr_close_stdio(struct CharDriverState *chr)
2250 {
2251 term_exit();
2252 stdio_nb_clients--;
2253 qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2254 fd_chr_close(chr);
2255 }
2256
2257 static CharDriverState *qemu_chr_open_stdio(void)
2258 {
2259 CharDriverState *chr;
2260
2261 if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
2262 return NULL;
2263 chr = qemu_chr_open_fd(0, 1);
2264 chr->chr_close = qemu_chr_close_stdio;
2265 qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
2266 stdio_nb_clients++;
2267 term_init();
2268
2269 return chr;
2270 }
2271
2272 #if defined(__linux__) || defined(__sun__)
2273 static CharDriverState *qemu_chr_open_pty(void)
2274 {
2275 struct termios tty;
2276 char slave_name[1024];
2277 int master_fd, slave_fd;
2278
2279 #if defined(__linux__)
2280 /* Not satisfying */
2281 if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
2282 return NULL;
2283 }
2284 #endif
2285
2286 /* Disabling local echo and line-buffered output */
2287 tcgetattr (master_fd, &tty);
2288 tty.c_lflag &= ~(ECHO|ICANON|ISIG);
2289 tty.c_cc[VMIN] = 1;
2290 tty.c_cc[VTIME] = 0;
2291 tcsetattr (master_fd, TCSAFLUSH, &tty);
2292
2293 fprintf(stderr, "char device redirected to %s\n", slave_name);
2294 return qemu_chr_open_fd(master_fd, master_fd);
2295 }
2296
2297 static void tty_serial_init(int fd, int speed,
2298 int parity, int data_bits, int stop_bits)
2299 {
2300 struct termios tty;
2301 speed_t spd;
2302
2303 #if 0
2304 printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
2305 speed, parity, data_bits, stop_bits);
2306 #endif
2307 tcgetattr (fd, &tty);
2308
2309 #define MARGIN 1.1
2310 if (speed <= 50 * MARGIN)
2311 spd = B50;
2312 else if (speed <= 75 * MARGIN)
2313 spd = B75;
2314 else if (speed <= 300 * MARGIN)
2315 spd = B300;
2316 else if (speed <= 600 * MARGIN)
2317 spd = B600;
2318 else if (speed <= 1200 * MARGIN)
2319 spd = B1200;
2320 else if (speed <= 2400 * MARGIN)
2321 spd = B2400;
2322 else if (speed <= 4800 * MARGIN)
2323 spd = B4800;
2324 else if (speed <= 9600 * MARGIN)
2325 spd = B9600;
2326 else if (speed <= 19200 * MARGIN)
2327 spd = B19200;
2328 else if (speed <= 38400 * MARGIN)
2329 spd = B38400;
2330 else if (speed <= 57600 * MARGIN)
2331 spd = B57600;
2332 else if (speed <= 115200 * MARGIN)
2333 spd = B115200;
2334 else
2335 spd = B115200;
2336
2337 cfsetispeed(&tty, spd);
2338 cfsetospeed(&tty, spd);
2339
2340 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2341 |INLCR|IGNCR|ICRNL|IXON);
2342 tty.c_oflag |= OPOST;
2343 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
2344 tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
2345 switch(data_bits) {
2346 default:
2347 case 8:
2348 tty.c_cflag |= CS8;
2349 break;
2350 case 7:
2351 tty.c_cflag |= CS7;
2352 break;
2353 case 6:
2354 tty.c_cflag |= CS6;
2355 break;
2356 case 5:
2357 tty.c_cflag |= CS5;
2358 break;
2359 }
2360 switch(parity) {
2361 default:
2362 case 'N':
2363 break;
2364 case 'E':
2365 tty.c_cflag |= PARENB;
2366 break;
2367 case 'O':
2368 tty.c_cflag |= PARENB | PARODD;
2369 break;
2370 }
2371 if (stop_bits == 2)
2372 tty.c_cflag |= CSTOPB;
2373
2374 tcsetattr (fd, TCSANOW, &tty);
2375 }
2376
2377 static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
2378 {
2379 FDCharDriver *s = chr->opaque;
2380
2381 switch(cmd) {
2382 case CHR_IOCTL_SERIAL_SET_PARAMS:
2383 {
2384 QEMUSerialSetParams *ssp = arg;
2385 tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
2386 ssp->data_bits, ssp->stop_bits);
2387 }
2388 break;
2389 case CHR_IOCTL_SERIAL_SET_BREAK:
2390 {
2391 int enable = *(int *)arg;
2392 if (enable)
2393 tcsendbreak(s->fd_in, 1);
2394 }
2395 break;
2396 default:
2397 return -ENOTSUP;
2398 }
2399 return 0;
2400 }
2401
2402 static CharDriverState *qemu_chr_open_tty(const char *filename)
2403 {
2404 CharDriverState *chr;
2405 int fd;
2406
2407 TFR(fd = open(filename, O_RDWR | O_NONBLOCK));
2408 fcntl(fd, F_SETFL, O_NONBLOCK);
2409 tty_serial_init(fd, 115200, 'N', 8, 1);
2410 chr = qemu_chr_open_fd(fd, fd);
2411 if (!chr) {
2412 close(fd);
2413 return NULL;
2414 }
2415 chr->chr_ioctl = tty_serial_ioctl;
2416 qemu_chr_reset(chr);
2417 return chr;
2418 }
2419 #else /* ! __linux__ && ! __sun__ */
2420 static CharDriverState *qemu_chr_open_pty(void)
2421 {
2422 return NULL;
2423 }
2424 #endif /* __linux__ || __sun__ */
2425
2426 #if defined(__linux__)
2427 typedef struct {
2428 int fd;
2429 int mode;
2430 } ParallelCharDriver;
2431
2432 static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
2433 {
2434 if (s->mode != mode) {
2435 int m = mode;
2436 if (ioctl(s->fd, PPSETMODE, &m) < 0)
2437 return 0;
2438 s->mode = mode;
2439 }
2440 return 1;
2441 }
2442
2443 static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
2444 {
2445 ParallelCharDriver *drv = chr->opaque;
2446 int fd = drv->fd;
2447 uint8_t b;
2448
2449 switch(cmd) {
2450 case CHR_IOCTL_PP_READ_DATA:
2451 if (ioctl(fd, PPRDATA, &b) < 0)
2452 return -ENOTSUP;
2453 *(uint8_t *)arg = b;
2454 break;
2455 case CHR_IOCTL_PP_WRITE_DATA:
2456 b = *(uint8_t *)arg;
2457 if (ioctl(fd, PPWDATA, &b) < 0)
2458 return -ENOTSUP;
2459 break;
2460 case CHR_IOCTL_PP_READ_CONTROL:
2461 if (ioctl(fd, PPRCONTROL, &b) < 0)
2462 return -ENOTSUP;
2463 /* Linux gives only the lowest bits, and no way to know data
2464 direction! For better compatibility set the fixed upper
2465 bits. */
2466 *(uint8_t *)arg = b | 0xc0;
2467 break;
2468 case CHR_IOCTL_PP_WRITE_CONTROL:
2469 b = *(uint8_t *)arg;
2470 if (ioctl(fd, PPWCONTROL, &b) < 0)
2471 return -ENOTSUP;
2472 break;
2473 case CHR_IOCTL_PP_READ_STATUS:
2474 if (ioctl(fd, PPRSTATUS, &b) < 0)
2475 return -ENOTSUP;
2476 *(uint8_t *)arg = b;
2477 break;
2478 case CHR_IOCTL_PP_EPP_READ_ADDR:
2479 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2480 struct ParallelIOArg *parg = arg;
2481 int n = read(fd, parg->buffer, parg->count);
2482 if (n != parg->count) {
2483 return -EIO;
2484 }
2485 }
2486 break;
2487 case CHR_IOCTL_PP_EPP_READ:
2488 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2489 struct ParallelIOArg *parg = arg;
2490 int n = read(fd, parg->buffer, parg->count);
2491 if (n != parg->count) {
2492 return -EIO;
2493 }
2494 }
2495 break;
2496 case CHR_IOCTL_PP_EPP_WRITE_ADDR:
2497 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2498 struct ParallelIOArg *parg = arg;
2499 int n = write(fd, parg->buffer, parg->count);
2500 if (n != parg->count) {
2501 return -EIO;
2502 }
2503 }
2504 break;
2505 case CHR_IOCTL_PP_EPP_WRITE:
2506 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2507 struct ParallelIOArg *parg = arg;
2508 int n = write(fd, parg->buffer, parg->count);
2509 if (n != parg->count) {
2510 return -EIO;
2511 }
2512 }
2513 break;
2514 default:
2515 return -ENOTSUP;
2516 }
2517 return 0;
2518 }
2519
2520 static void pp_close(CharDriverState *chr)
2521 {
2522 ParallelCharDriver *drv = chr->opaque;
2523 int fd = drv->fd;
2524
2525 pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2526 ioctl(fd, PPRELEASE);
2527 close(fd);
2528 qemu_free(drv);
2529 }
2530
2531 static CharDriverState *qemu_chr_open_pp(const char *filename)
2532 {
2533 CharDriverState *chr;
2534 ParallelCharDriver *drv;
2535 int fd;
2536
2537 TFR(fd = open(filename, O_RDWR));
2538 if (fd < 0)
2539 return NULL;
2540
2541 if (ioctl(fd, PPCLAIM) < 0) {
2542 close(fd);
2543 return NULL;
2544 }
2545
2546 drv = qemu_mallocz(sizeof(ParallelCharDriver));
2547 if (!drv) {
2548 close(fd);
2549 return NULL;
2550 }
2551 drv->fd = fd;
2552 drv->mode = IEEE1284_MODE_COMPAT;
2553
2554 chr = qemu_mallocz(sizeof(CharDriverState));
2555 if (!chr) {
2556 qemu_free(drv);
2557 close(fd);
2558 return NULL;
2559 }
2560 chr->chr_write = null_chr_write;
2561 chr->chr_ioctl = pp_ioctl;
2562 chr->chr_close = pp_close;
2563 chr->opaque = drv;
2564
2565 qemu_chr_reset(chr);
2566
2567 return chr;
2568 }
2569 #endif /* __linux__ */
2570
2571 #else /* _WIN32 */
2572
2573 typedef struct {
2574 int max_size;
2575 HANDLE hcom, hrecv, hsend;
2576 OVERLAPPED orecv, osend;
2577 BOOL fpipe;
2578 DWORD len;
2579 } WinCharState;
2580
2581 #define NSENDBUF 2048
2582 #define NRECVBUF 2048
2583 #define MAXCONNECT 1
2584 #define NTIMEOUT 5000
2585
2586 static int win_chr_poll(void *opaque);
2587 static int win_chr_pipe_poll(void *opaque);
2588
2589 static void win_chr_close(CharDriverState *chr)
2590 {
2591 WinCharState *s = chr->opaque;
2592
2593 if (s->hsend) {
2594 CloseHandle(s->hsend);
2595 s->hsend = NULL;
2596 }
2597 if (s->hrecv) {
2598 CloseHandle(s->hrecv);
2599 s->hrecv = NULL;
2600 }
2601 if (s->hcom) {
2602 CloseHandle(s->hcom);
2603 s->hcom = NULL;
2604 }
2605 if (s->fpipe)
2606 qemu_del_polling_cb(win_chr_pipe_poll, chr);
2607 else
2608 qemu_del_polling_cb(win_chr_poll, chr);
2609 }
2610
2611 static int win_chr_init(CharDriverState *chr, const char *filename)
2612 {
2613 WinCharState *s = chr->opaque;
2614 COMMCONFIG comcfg;
2615 COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2616 COMSTAT comstat;
2617 DWORD size;
2618 DWORD err;
2619
2620 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2621 if (!s->hsend) {
2622 fprintf(stderr, "Failed CreateEvent\n");
2623 goto fail;
2624 }
2625 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2626 if (!s->hrecv) {
2627 fprintf(stderr, "Failed CreateEvent\n");
2628 goto fail;
2629 }
2630
2631 s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2632 OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2633 if (s->hcom == INVALID_HANDLE_VALUE) {
2634 fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2635 s->hcom = NULL;
2636 goto fail;
2637 }
2638
2639 if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
2640 fprintf(stderr, "Failed SetupComm\n");
2641 goto fail;
2642 }
2643
2644 ZeroMemory(&comcfg, sizeof(COMMCONFIG));
2645 size = sizeof(COMMCONFIG);
2646 GetDefaultCommConfig(filename, &comcfg, &size);
2647 comcfg.dcb.DCBlength = sizeof(DCB);
2648 CommConfigDialog(filename, NULL, &comcfg);
2649
2650 if (!SetCommState(s->hcom, &comcfg.dcb)) {
2651 fprintf(stderr, "Failed SetCommState\n");
2652 goto fail;
2653 }
2654
2655 if (!SetCommMask(s->hcom, EV_ERR)) {
2656 fprintf(stderr, "Failed SetCommMask\n");
2657 goto fail;
2658 }
2659
2660 cto.ReadIntervalTimeout = MAXDWORD;
2661 if (!SetCommTimeouts(s->hcom, &cto)) {
2662 fprintf(stderr, "Failed SetCommTimeouts\n");
2663 goto fail;
2664 }
2665
2666 if (!ClearCommError(s->hcom, &err, &comstat)) {
2667 fprintf(stderr, "Failed ClearCommError\n");
2668 goto fail;
2669 }
2670 qemu_add_polling_cb(win_chr_poll, chr);
2671 return 0;
2672
2673 fail:
2674 win_chr_close(chr);
2675 return -1;
2676 }
2677
2678 static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
2679 {
2680 WinCharState *s = chr->opaque;
2681 DWORD len, ret, size, err;
2682
2683 len = len1;
2684 ZeroMemory(&s->osend, sizeof(s->osend));
2685 s->osend.hEvent = s->hsend;
2686 while (len > 0) {
2687 if (s->hsend)
2688 ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
2689 else
2690 ret = WriteFile(s->hcom, buf, len, &size, NULL);
2691 if (!ret) {
2692 err = GetLastError();
2693 if (err == ERROR_IO_PENDING) {
2694 ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
2695 if (ret) {
2696 buf += size;
2697 len -= size;
2698 } else {
2699 break;
2700 }
2701 } else {
2702 break;
2703 }
2704 } else {
2705 buf += size;
2706 len -= size;
2707 }
2708 }
2709 return len1 - len;
2710 }
2711
2712 static int win_chr_read_poll(CharDriverState *chr)
2713 {
2714 WinCharState *s = chr->opaque;
2715
2716 s->max_size = qemu_chr_can_read(chr);
2717 return s->max_size;
2718 }
2719
2720 static void win_chr_readfile(CharDriverState *chr)
2721 {
2722 WinCharState *s = chr->opaque;
2723 int ret, err;
2724 uint8_t buf[1024];
2725 DWORD size;
2726
2727 ZeroMemory(&s->orecv, sizeof(s->orecv));
2728 s->orecv.hEvent = s->hrecv;
2729 ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
2730 if (!ret) {
2731 err = GetLastError();
2732 if (err == ERROR_IO_PENDING) {
2733 ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
2734 }
2735 }
2736
2737 if (size > 0) {
2738 qemu_chr_read(chr, buf, size);
2739 }
2740 }
2741
2742 static void win_chr_read(CharDriverState *chr)
2743 {
2744 WinCharState *s = chr->opaque;
2745
2746 if (s->len > s->max_size)
2747 s->len = s->max_size;
2748 if (s->len == 0)
2749 return;
2750
2751 win_chr_readfile(chr);
2752 }
2753
2754 static int win_chr_poll(void *opaque)
2755 {
2756 CharDriverState *chr = opaque;
2757 WinCharState *s = chr->opaque;
2758 COMSTAT status;
2759 DWORD comerr;
2760
2761 ClearCommError(s->hcom, &comerr, &status);
2762 if (status.cbInQue > 0) {
2763 s->len = status.cbInQue;
2764 win_chr_read_poll(chr);
2765 win_chr_read(chr);
2766 return 1;
2767 }
2768 return 0;
2769 }
2770
2771 static CharDriverState *qemu_chr_open_win(const char *filename)
2772 {
2773 CharDriverState *chr;
2774 WinCharState *s;
2775
2776 chr = qemu_mallocz(sizeof(CharDriverState));
2777 if (!chr)
2778 return NULL;
2779 s = qemu_mallocz(sizeof(WinCharState));
2780 if (!s) {
2781 free(chr);
2782 return NULL;
2783 }
2784 chr->opaque = s;
2785 chr->chr_write = win_chr_write;
2786 chr->chr_close = win_chr_close;
2787
2788 if (win_chr_init(chr, filename) < 0) {
2789 free(s);
2790 free(chr);
2791 return NULL;
2792 }
2793 qemu_chr_reset(chr);
2794 return chr;
2795 }
2796
2797 static int win_chr_pipe_poll(void *opaque)
2798 {
2799 CharDriverState *chr = opaque;
2800 WinCharState *s = chr->opaque;
2801 DWORD size;
2802
2803 PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
2804 if (size > 0) {
2805 s->len = size;
2806 win_chr_read_poll(chr);
2807 win_chr_read(chr);
2808 return 1;
2809 }
2810 return 0;
2811 }
2812
2813 static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
2814 {
2815 WinCharState *s = chr->opaque;
2816 OVERLAPPED ov;
2817 int ret;
2818 DWORD size;
2819 char openname[256];
2820
2821 s->fpipe = TRUE;
2822
2823 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2824 if (!s->hsend) {
2825 fprintf(stderr, "Failed CreateEvent\n");
2826 goto fail;
2827 }
2828 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2829 if (!s->hrecv) {
2830 fprintf(stderr, "Failed CreateEvent\n");
2831 goto fail;
2832 }
2833
2834 snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2835 s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2836 PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2837 PIPE_WAIT,
2838 MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2839 if (s->hcom == INVALID_HANDLE_VALUE) {
2840 fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2841 s->hcom = NULL;
2842 goto fail;
2843 }
2844
2845 ZeroMemory(&ov, sizeof(ov));
2846 ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2847 ret = ConnectNamedPipe(s->hcom, &ov);
2848 if (ret) {
2849 fprintf(stderr, "Failed ConnectNamedPipe\n");
2850 goto fail;
2851 }
2852
2853 ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2854 if (!ret) {
2855 fprintf(stderr, "Failed GetOverlappedResult\n");
2856 if (ov.hEvent) {
2857 CloseHandle(ov.hEvent);
2858 ov.hEvent = NULL;
2859 }
2860 goto fail;
2861 }
2862
2863 if (ov.hEvent) {
2864 CloseHandle(ov.hEvent);
2865 ov.hEvent = NULL;
2866 }
2867 qemu_add_polling_cb(win_chr_pipe_poll, chr);
2868 return 0;
2869
2870 fail:
2871 win_chr_close(chr);
2872 return -1;
2873 }
2874
2875
2876 static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2877 {
2878 CharDriverState *chr;
2879 WinCharState *s;
2880
2881 chr = qemu_mallocz(sizeof(CharDriverState));
2882 if (!chr)
2883 return NULL;
2884 s = qemu_mallocz(sizeof(WinCharState));
2885 if (!s) {
2886 free(chr);
2887 return NULL;
2888 }
2889 chr->opaque = s;
2890 chr->chr_write = win_chr_write;
2891 chr->chr_close = win_chr_close;
2892
2893 if (win_chr_pipe_init(chr, filename) < 0) {
2894 free(s);
2895 free(chr);
2896 return NULL;
2897 }
2898 qemu_chr_reset(chr);
2899 return chr;
2900 }
2901
2902 static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2903 {
2904 CharDriverState *chr;
2905 WinCharState *s;
2906
2907 chr = qemu_mallocz(sizeof(CharDriverState));
2908 if (!chr)
2909 return NULL;
2910 s = qemu_mallocz(sizeof(WinCharState));
2911 if (!s) {
2912 free(chr);
2913 return NULL;
2914 }
2915 s->hcom = fd_out;
2916 chr->opaque = s;
2917 chr->chr_write = win_chr_write;
2918 qemu_chr_reset(chr);
2919 return chr;
2920 }
2921
2922 static CharDriverState *qemu_chr_open_win_con(const char *filename)
2923 {
2924 return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
2925 }
2926
2927 static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2928 {
2929 HANDLE fd_out;
2930
2931 fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2932 OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2933 if (fd_out == INVALID_HANDLE_VALUE)
2934 return NULL;
2935
2936 return qemu_chr_open_win_file(fd_out);
2937 }
2938 #endif /* !_WIN32 */
2939
2940 /***********************************************************/
2941 /* UDP Net console */
2942
2943 typedef struct {
2944 int fd;
2945 struct sockaddr_in daddr;
2946 uint8_t buf[1024];
2947 int bufcnt;
2948 int bufptr;
2949 int max_size;
2950 } NetCharDriver;
2951
2952 static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2953 {
2954 NetCharDriver *s = chr->opaque;
2955
2956 return sendto(s->fd, buf, len, 0,
2957 (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
2958 }
2959
2960 static int udp_chr_read_poll(void *opaque)
2961 {
2962 CharDriverState *chr = opaque;
2963 NetCharDriver *s = chr->opaque;
2964
2965 s->max_size = qemu_chr_can_read(chr);
2966
2967 /* If there were any stray characters in the queue process them
2968 * first
2969 */
2970 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2971 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2972 s->bufptr++;
2973 s->max_size = qemu_chr_can_read(chr);
2974 }
2975 return s->max_size;
2976 }
2977
2978 static void udp_chr_read(void *opaque)
2979 {
2980 CharDriverState *chr = opaque;
2981 NetCharDriver *s = chr->opaque;
2982
2983 if (s->max_size == 0)
2984 return;
2985 s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
2986 s->bufptr = s->bufcnt;
2987 if (s->bufcnt <= 0)
2988 return;
2989
2990 s->bufptr = 0;
2991 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2992 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2993 s->bufptr++;
2994 s->max_size = qemu_chr_can_read(chr);
2995 }
2996 }
2997
2998 static void udp_chr_update_read_handler(CharDriverState *chr)
2999 {
3000 NetCharDriver *s = chr->opaque;
3001
3002 if (s->fd >= 0) {
3003 qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
3004 udp_chr_read, NULL, chr);
3005 }
3006 }
3007
3008 int parse_host_port(struct sockaddr_in *saddr, const char *str);
3009 #ifndef _WIN32
3010 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
3011 #endif
3012 int parse_host_src_port(struct sockaddr_in *haddr,
3013 struct sockaddr_in *saddr,
3014 const char *str);
3015
3016 static CharDriverState *qemu_chr_open_udp(const char *def)
3017 {
3018 CharDriverState *chr = NULL;
3019 NetCharDriver *s = NULL;
3020 int fd = -1;
3021 struct sockaddr_in saddr;
3022
3023 chr = qemu_mallocz(sizeof(CharDriverState));
3024 if (!chr)
3025 goto return_err;
3026 s = qemu_mallocz(sizeof(NetCharDriver));
3027 if (!s)
3028 goto return_err;
3029
3030 fd = socket(PF_INET, SOCK_DGRAM, 0);
3031 if (fd < 0) {
3032 perror("socket(PF_INET, SOCK_DGRAM)");
3033 goto return_err;
3034 }
3035
3036 if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
3037 printf("Could not parse: %s\n", def);
3038 goto return_err;
3039 }
3040
3041 if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
3042 {
3043 perror("bind");
3044 goto return_err;
3045 }
3046
3047 s->fd = fd;
3048 s->bufcnt = 0;
3049 s->bufptr = 0;
3050 chr->opaque = s;
3051 chr->chr_write = udp_chr_write;
3052 chr->chr_update_read_handler = udp_chr_update_read_handler;
3053 return chr;
3054
3055 return_err:
3056 if (chr)
3057 free(chr);
3058 if (s)
3059 free(s);
3060 if (fd >= 0)
3061 closesocket(fd);
3062 return NULL;
3063 }
3064
3065 /***********************************************************/
3066 /* TCP Net console */
3067
3068 typedef struct {
3069 int fd, listen_fd;
3070 int connected;
3071 int max_size;
3072 int do_telnetopt;
3073 int do_nodelay;
3074 int is_unix;
3075 } TCPCharDriver;
3076
3077 static void tcp_chr_accept(void *opaque);
3078
3079 static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
3080 {
3081 TCPCharDriver *s = chr->opaque;
3082 if (s->connected) {
3083 return send_all(s->fd, buf, len);
3084 } else {
3085 /* XXX: indicate an error ? */
3086 return len;
3087 }
3088 }
3089
3090 static int tcp_chr_read_poll(void *opaque)
3091 {
3092 CharDriverState *chr = opaque;
3093 TCPCharDriver *s = chr->opaque;
3094 if (!s->connected)
3095 return 0;
3096 s->max_size = qemu_chr_can_read(chr);
3097 return s->max_size;
3098 }
3099
3100 #define IAC 255
3101 #define IAC_BREAK 243
3102 static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
3103 TCPCharDriver *s,
3104 uint8_t *buf, int *size)
3105 {
3106 /* Handle any telnet client's basic IAC options to satisfy char by
3107 * char mode with no echo. All IAC options will be removed from
3108 * the buf and the do_telnetopt variable will be used to track the
3109 * state of the width of the IAC information.
3110 *
3111 * IAC commands come in sets of 3 bytes with the exception of the
3112 * "IAC BREAK" command and the double IAC.
3113 */
3114
3115 int i;
3116 int j = 0;
3117
3118 for (i = 0; i < *size; i++) {
3119 if (s->do_telnetopt > 1) {
3120 if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
3121 /* Double IAC means send an IAC */
3122 if (j != i)
3123 buf[j] = buf[i];
3124 j++;
3125 s->do_telnetopt = 1;
3126 } else {
3127 if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
3128 /* Handle IAC break commands by sending a serial break */
3129 qemu_chr_event(chr, CHR_EVENT_BREAK);
3130 s->do_telnetopt++;
3131 }
3132 s->do_telnetopt++;
3133 }
3134 if (s->do_telnetopt >= 4) {
3135 s->do_telnetopt = 1;
3136 }
3137 } else {
3138 if ((unsigned char)buf[i] == IAC) {
3139 s->do_telnetopt = 2;
3140 } else {
3141 if (j != i)
3142 buf[j] = buf[i];
3143 j++;
3144 }
3145 }
3146 }
3147 *size = j;
3148 }
3149
3150 static void tcp_chr_read(void *opaque)
3151 {
3152 CharDriverState *chr = opaque;
3153 TCPCharDriver *s = chr->opaque;
3154 uint8_t buf[1024];
3155 int len, size;
3156
3157 if (!s->connected || s->max_size <= 0)
3158 return;
3159 len = sizeof(buf);
3160 if (len > s->max_size)
3161 len = s->max_size;
3162 size = recv(s->fd, buf, len, 0);
3163 if (size == 0) {
3164 /* connection closed */
3165 s->connected = 0;
3166 if (s->listen_fd >= 0) {
3167 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3168 }
3169 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3170 closesocket(s->fd);
3171 s->fd = -1;
3172 } else if (size > 0) {
3173 if (s->do_telnetopt)
3174 tcp_chr_process_IAC_bytes(chr, s, buf, &size);
3175 if (size > 0)
3176 qemu_chr_read(chr, buf, size);
3177 }
3178 }
3179
3180 static void tcp_chr_connect(void *opaque)
3181 {
3182 CharDriverState *chr = opaque;
3183 TCPCharDriver *s = chr->opaque;
3184
3185 s->connected = 1;
3186 qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
3187 tcp_chr_read, NULL, chr);
3188 qemu_chr_reset(chr);
3189 }
3190
3191 #define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
3192 static void tcp_chr_telnet_init(int fd)
3193 {
3194 char buf[3];
3195 /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
3196 IACSET(buf, 0xff, 0xfb, 0x01); /* IAC WILL ECHO */
3197 send(fd, (char *)buf, 3, 0);
3198 IACSET(buf, 0xff, 0xfb, 0x03); /* IAC WILL Suppress go ahead */
3199 send(fd, (char *)buf, 3, 0);
3200 IACSET(buf, 0xff, 0xfb, 0x00); /* IAC WILL Binary */
3201 send(fd, (char *)buf, 3, 0);
3202 IACSET(buf, 0xff, 0xfd, 0x00); /* IAC DO Binary */
3203 send(fd, (char *)buf, 3, 0);
3204 }
3205
3206 static void socket_set_nodelay(int fd)
3207 {
3208 int val = 1;
3209 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
3210 }
3211
3212 static void tcp_chr_accept(void *opaque)
3213 {
3214 CharDriverState *chr = opaque;
3215 TCPCharDriver *s = chr->opaque;
3216 struct sockaddr_in saddr;
3217 #ifndef _WIN32
3218 struct sockaddr_un uaddr;
3219 #endif
3220 struct sockaddr *addr;
3221 socklen_t len;
3222 int fd;
3223
3224 for(;;) {
3225 #ifndef _WIN32
3226 if (s->is_unix) {
3227 len = sizeof(uaddr);
3228 addr = (struct sockaddr *)&uaddr;
3229 } else
3230 #endif
3231 {
3232 len = sizeof(saddr);
3233 addr = (struct sockaddr *)&saddr;
3234 }
3235 fd = accept(s->listen_fd, addr, &len);
3236 if (fd < 0 && errno != EINTR) {
3237 return;
3238 } else if (fd >= 0) {
3239 if (s->do_telnetopt)
3240 tcp_chr_telnet_init(fd);
3241 break;
3242 }
3243 }
3244 socket_set_nonblock(fd);
3245 if (s->do_nodelay)
3246 socket_set_nodelay(fd);
3247 s->fd = fd;
3248 qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
3249 tcp_chr_connect(chr);
3250 }
3251
3252 static void tcp_chr_close(CharDriverState *chr)
3253 {
3254 TCPCharDriver *s = chr->opaque;
3255 if (s->fd >= 0)
3256 closesocket(s->fd);
3257 if (s->listen_fd >= 0)
3258 closesocket(s->listen_fd);
3259 qemu_free(s);
3260 }
3261
3262 static CharDriverState *qemu_chr_open_tcp(const char *host_str,
3263 int is_telnet,
3264 int is_unix)
3265 {
3266 CharDriverState *chr = NULL;
3267 TCPCharDriver *s = NULL;
3268 int fd = -1, ret, err, val;
3269 int is_listen = 0;
3270 int is_waitconnect = 1;
3271 int do_nodelay = 0;
3272 const char *ptr;
3273 struct sockaddr_in saddr;
3274 #ifndef _WIN32
3275 struct sockaddr_un uaddr;
3276 #endif
3277 struct sockaddr *addr;
3278 socklen_t addrlen;
3279
3280 #ifndef _WIN32
3281 if (is_unix) {
3282 addr = (struct sockaddr *)&uaddr;
3283 addrlen = sizeof(uaddr);
3284 if (parse_unix_path(&uaddr, host_str) < 0)
3285 goto fail;
3286 } else
3287 #endif
3288 {
3289 addr = (struct sockaddr *)&saddr;
3290 addrlen = sizeof(saddr);
3291 if (parse_host_port(&saddr, host_str) < 0)
3292 goto fail;
3293 }
3294
3295 ptr = host_str;
3296 while((ptr = strchr(ptr,','))) {
3297 ptr++;
3298 if (!strncmp(ptr,"server",6)) {
3299 is_listen = 1;
3300 } else if (!strncmp(ptr,"nowait",6)) {
3301 is_waitconnect = 0;
3302 } else if (!strncmp(ptr,"nodelay",6)) {
3303 do_nodelay = 1;
3304 } else {
3305 printf("Unknown option: %s\n", ptr);
3306 goto fail;
3307 }
3308 }
3309 if (!is_listen)
3310 is_waitconnect = 0;
3311
3312 chr = qemu_mallocz(sizeof(CharDriverState));
3313 if (!chr)
3314 goto fail;
3315 s = qemu_mallocz(sizeof(TCPCharDriver));
3316 if (!s)
3317 goto fail;
3318
3319 #ifndef _WIN32
3320 if (is_unix)
3321 fd = socket(PF_UNIX, SOCK_STREAM, 0);
3322 else
3323 #endif
3324 fd = socket(PF_INET, SOCK_STREAM, 0);
3325
3326 if (fd < 0)
3327 goto fail;
3328
3329 if (!is_waitconnect)
3330 socket_set_nonblock(fd);
3331
3332 s->connected = 0;
3333 s->fd = -1;
3334 s->listen_fd = -1;
3335 s->is_unix = is_unix;
3336 s->do_nodelay = do_nodelay && !is_unix;
3337
3338 chr->opaque = s;
3339 chr->chr_write = tcp_chr_write;
3340 chr->chr_close = tcp_chr_close;
3341
3342 if (is_listen) {
3343 /* allow fast reuse */
3344 #ifndef _WIN32
3345 if (is_unix) {
3346 char path[109];
3347 strncpy(path, uaddr.sun_path, 108);
3348 path[108] = 0;
3349 unlink(path);
3350 } else
3351 #endif
3352 {
3353 val = 1;
3354 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3355 }
3356
3357 ret = bind(fd, addr, addrlen);
3358 if (ret < 0)
3359 goto fail;
3360
3361 ret = listen(fd, 0);
3362 if (ret < 0)
3363 goto fail;
3364
3365 s->listen_fd = fd;
3366 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3367 if (is_telnet)
3368 s->do_telnetopt = 1;
3369 } else {
3370 for(;;) {
3371 ret = connect(fd, addr, addrlen);
3372 if (ret < 0) {
3373 err = socket_error();
3374 if (err == EINTR || err == EWOULDBLOCK) {
3375 } else if (err == EINPROGRESS) {
3376 break;
3377 #ifdef _WIN32
3378 } else if (err == WSAEALREADY) {
3379 break;
3380 #endif
3381 } else {
3382 goto fail;
3383 }
3384 } else {
3385 s->connected = 1;
3386 break;
3387 }
3388 }
3389 s->fd = fd;
3390 socket_set_nodelay(fd);
3391 if (s->connected)
3392 tcp_chr_connect(chr);
3393 else
3394 qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
3395 }
3396
3397 if (is_listen && is_waitconnect) {
3398 printf("QEMU waiting for connection on: %s\n", host_str);
3399 tcp_chr_accept(chr);
3400 socket_set_nonblock(s->listen_fd);
3401 }
3402
3403 return chr;
3404 fail:
3405 if (fd >= 0)
3406 closesocket(fd);
3407 qemu_free(s);
3408 qemu_free(chr);
3409 return NULL;
3410 }
3411
3412 CharDriverState *qemu_chr_open(const char *filename)
3413 {
3414 const char *p;
3415
3416 if (!strcmp(filename, "vc")) {
3417 return text_console_init(&display_state, 0);
3418 } else if (strstart(filename, "vc:", &p)) {
3419 return text_console_init(&display_state, p);
3420 } else if (!strcmp(filename, "null")) {
3421 return qemu_chr_open_null();
3422 } else
3423 if (strstart(filename, "tcp:", &p)) {
3424 return qemu_chr_open_tcp(p, 0, 0);
3425 } else
3426 if (strstart(filename, "telnet:", &p)) {
3427 return qemu_chr_open_tcp(p, 1, 0);
3428 } else
3429 if (strstart(filename, "udp:", &p)) {
3430 return qemu_chr_open_udp(p);
3431 } else
3432 if (strstart(filename, "mon:", &p)) {
3433 CharDriverState *drv = qemu_chr_open(p);
3434 if (drv) {
3435 drv = qemu_chr_open_mux(drv);
3436 monitor_init(drv, !nographic);
3437 return drv;
3438 }
3439 printf("Unable to open driver: %s\n", p);
3440 return 0;
3441 } else
3442 #ifndef _WIN32
3443 if (strstart(filename, "unix:", &p)) {
3444 return qemu_chr_open_tcp(p, 0, 1);
3445 } else if (strstart(filename, "file:", &p)) {
3446 return qemu_chr_open_file_out(p);
3447 } else if (strstart(filename, "pipe:", &p)) {
3448 return qemu_chr_open_pipe(p);
3449 } else if (!strcmp(filename, "pty")) {
3450 return qemu_chr_open_pty();
3451 } else if (!strcmp(filename, "stdio")) {
3452 return qemu_chr_open_stdio();
3453 } else
3454 #if defined(__linux__)
3455 if (strstart(filename, "/dev/parport", NULL)) {
3456 return qemu_chr_open_pp(filename);
3457 } else
3458 #endif
3459 #if defined(__linux__) || defined(__sun__)
3460 if (strstart(filename, "/dev/", NULL)) {
3461 return qemu_chr_open_tty(filename);
3462 } else
3463 #endif
3464 #else /* !_WIN32 */
3465 if (strstart(filename, "COM", NULL)) {
3466 return qemu_chr_open_win(filename);
3467 } else
3468 if (strstart(filename, "pipe:", &p)) {
3469 return qemu_chr_open_win_pipe(p);
3470 } else
3471 if (strstart(filename, "con:", NULL)) {
3472 return qemu_chr_open_win_con(filename);
3473 } else
3474 if (strstart(filename, "file:", &p)) {
3475 return qemu_chr_open_win_file_out(p);
3476 }
3477 #endif
3478 {
3479 return NULL;
3480 }
3481 }
3482
3483 void qemu_chr_close(CharDriverState *chr)
3484 {
3485 if (chr->chr_close)
3486 chr->chr_close(chr);
3487 qemu_free(chr);
3488 }
3489
3490 /***********************************************************/
3491 /* network device redirectors */
3492
3493 __attribute__ (( unused ))
3494 static void hex_dump(FILE *f, const uint8_t *buf, int size)
3495 {
3496 int len, i, j, c;
3497
3498 for(i=0;i<size;i+=16) {
3499 len = size - i;
3500 if (len > 16)
3501 len = 16;
3502 fprintf(f, "%08x ", i);
3503 for(j=0;j<16;j++) {
3504 if (j < len)
3505 fprintf(f, " %02x", buf[i+j]);
3506 else
3507 fprintf(f, " ");
3508 }
3509 fprintf(f, " ");
3510 for(j=0;j<len;j++) {
3511 c = buf[i+j];
3512 if (c < ' ' || c > '~')
3513 c = '.';
3514 fprintf(f, "%c", c);
3515 }
3516 fprintf(f, "\n");
3517 }
3518 }
3519
3520 static int parse_macaddr(uint8_t *macaddr, const char *p)
3521 {
3522 int i;
3523 char *last_char;
3524 long int offset;
3525
3526 errno = 0;
3527 offset = strtol(p, &last_char, 0);
3528 if (0 == errno && '\0' == *last_char &&
3529 offset >= 0 && offset <= 0xFFFFFF) {
3530 macaddr[3] = (offset & 0xFF0000) >> 16;
3531 macaddr[4] = (offset & 0xFF00) >> 8;
3532 macaddr[5] = offset & 0xFF;
3533 return 0;
3534 } else {
3535 for(i = 0; i < 6; i++) {
3536 macaddr[i] = strtol(p, (char **)&p, 16);
3537 if (i == 5) {
3538 if (*p != '\0')
3539 return -1;
3540 } else {
3541 if (*p != ':' && *p != '-')
3542 return -1;
3543 p++;
3544 }
3545 }
3546 return 0;
3547 }
3548
3549 return -1;
3550 }
3551
3552 static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3553 {
3554 const char *p, *p1;
3555 int len;
3556 p = *pp;
3557 p1 = strchr(p, sep);
3558 if (!p1)
3559 return -1;
3560 len = p1 - p;
3561 p1++;
3562 if (buf_size > 0) {
3563 if (len > buf_size - 1)
3564 len = buf_size - 1;
3565 memcpy(buf, p, len);
3566 buf[len] = '\0';
3567 }
3568 *pp = p1;
3569 return 0;
3570 }
3571
3572 int parse_host_src_port(struct sockaddr_in *haddr,
3573 struct sockaddr_in *saddr,
3574 const char *input_str)
3575 {
3576 char *str = strdup(input_str);
3577 char *host_str = str;
3578 char *src_str;
3579 char *ptr;
3580
3581 /*
3582 * Chop off any extra arguments at the end of the string which
3583 * would start with a comma, then fill in the src port information
3584 * if it was provided else use the "any address" and "any port".
3585 */
3586 if ((ptr = strchr(str,',')))
3587 *ptr = '\0';
3588
3589 if ((src_str = strchr(input_str,'@'))) {
3590 *src_str = '\0';
3591 src_str++;
3592 }
3593
3594 if (parse_host_port(haddr, host_str) < 0)
3595 goto fail;
3596
3597 if (!src_str || *src_str == '\0')
3598 src_str = ":0";
3599
3600 if (parse_host_port(saddr, src_str) < 0)
3601 goto fail;
3602
3603 free(str);
3604 return(0);
3605
3606 fail:
3607 free(str);
3608 return -1;
3609 }
3610
3611 int parse_host_port(struct sockaddr_in *saddr, const char *str)
3612 {
3613 char buf[512];
3614 struct hostent *he;
3615 const char *p, *r;
3616 int port;
3617
3618 p = str;
3619 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3620 return -1;
3621 saddr->sin_family = AF_INET;
3622 if (buf[0] == '\0') {
3623 saddr->sin_addr.s_addr = 0;
3624 } else {
3625 if (isdigit(buf[0])) {
3626 if (!inet_aton(buf, &saddr->sin_addr))
3627 return -1;
3628 } else {
3629 if ((he = gethostbyname(buf)) == NULL)
3630 return - 1;
3631 saddr->sin_addr = *(struct in_addr *)he->h_addr;
3632 }
3633 }
3634 port = strtol(p, (char **)&r, 0);
3635 if (r == p)
3636 return -1;
3637 saddr->sin_port = htons(port);
3638 return 0;
3639 }
3640
3641 #ifndef _WIN32
3642 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
3643 {
3644 const char *p;
3645 int len;
3646
3647 len = MIN(108, strlen(str));
3648 p = strchr(str, ',');
3649 if (p)
3650 len = MIN(len, p - str);
3651
3652 memset(uaddr, 0, sizeof(*uaddr));
3653
3654 uaddr->sun_family = AF_UNIX;
3655 memcpy(uaddr->sun_path, str, len);
3656
3657 return 0;
3658 }
3659 #endif
3660
3661 /* find or alloc a new VLAN */
3662 VLANState *qemu_find_vlan(int id)
3663 {
3664 VLANState **pvlan, *vlan;
3665 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3666 if (vlan->id == id)
3667 return vlan;
3668 }
3669 vlan = qemu_mallocz(sizeof(VLANState));
3670 if (!vlan)
3671 return NULL;
3672 vlan->id = id;
3673 vlan->next = NULL;
3674 pvlan = &first_vlan;
3675 while (*pvlan != NULL)
3676 pvlan = &(*pvlan)->next;
3677 *pvlan = vlan;
3678 return vlan;
3679 }
3680
3681 VLANClientState *qemu_new_vlan_client(VLANState *vlan,
3682 IOReadHandler *fd_read,
3683 IOCanRWHandler *fd_can_read,
3684 void *opaque)
3685 {
3686 VLANClientState *vc, **pvc;
3687 vc = qemu_mallocz(sizeof(VLANClientState));
3688 if (!vc)
3689 return NULL;
3690 vc->fd_read = fd_read;
3691 vc->fd_can_read = fd_can_read;
3692 vc->opaque = opaque;
3693 vc->vlan = vlan;
3694
3695 vc->next = NULL;
3696 pvc = &vlan->first_client;
3697 while (*pvc != NULL)
3698 pvc = &(*pvc)->next;
3699 *pvc = vc;
3700 return vc;
3701 }
3702
3703 int qemu_can_send_packet(VLANClientState *vc1)
3704 {
3705 VLANState *vlan = vc1->vlan;
3706 VLANClientState *vc;
3707
3708 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3709 if (vc != vc1) {
3710 if (vc->fd_can_read && vc->fd_can_read(vc->opaque))
3711 return 1;
3712 }
3713 }
3714 return 0;
3715 }
3716
3717 void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
3718 {
3719 VLANState *vlan = vc1->vlan;
3720 VLANClientState *vc;
3721
3722 #if 0
3723 printf("vlan %d send:\n", vlan->id);
3724 hex_dump(stdout, buf, size);
3725 #endif
3726 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3727 if (vc != vc1) {
3728 vc->fd_read(vc->opaque, buf, size);
3729 }
3730 }
3731 }
3732
3733 #if defined(CONFIG_SLIRP)
3734
3735 /* slirp network adapter */
3736
3737 static int slirp_inited;
3738 static VLANClientState *slirp_vc;
3739
3740 int slirp_can_output(void)
3741 {
3742 return !slirp_vc || qemu_can_send_packet(slirp_vc);
3743 }
3744
3745 void slirp_output(const uint8_t *pkt, int pkt_len)
3746 {
3747 #if 0
3748 printf("slirp output:\n");
3749 hex_dump(stdout, pkt, pkt_len);
3750 #endif
3751 if (!slirp_vc)
3752 return;
3753 qemu_send_packet(slirp_vc, pkt, pkt_len);
3754 }
3755
3756 static void slirp_receive(void *opaque, const uint8_t *buf, int size)
3757 {
3758 #if 0
3759 printf("slirp input:\n");
3760 hex_dump(stdout, buf, size);
3761 #endif
3762 slirp_input(buf, size);
3763 }
3764
3765 static int net_slirp_init(VLANState *vlan)
3766 {
3767 if (!slirp_inited) {
3768 slirp_inited = 1;
3769 slirp_init();
3770 }
3771 slirp_vc = qemu_new_vlan_client(vlan,
3772 slirp_receive, NULL, NULL);
3773 snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
3774 return 0;
3775 }
3776
3777 static void net_slirp_redir(const char *redir_str)
3778 {
3779 int is_udp;
3780 char buf[256], *r;
3781 const char *p;
3782 struct in_addr guest_addr;
3783 int host_port, guest_port;
3784
3785 if (!slirp_inited) {
3786 slirp_inited = 1;
3787 slirp_init();
3788 }
3789
3790 p = redir_str;
3791 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3792 goto fail;
3793 if (!strcmp(buf, "tcp")) {
3794 is_udp = 0;
3795 } else if (!strcmp(buf, "udp")) {
3796 is_udp = 1;
3797 } else {
3798 goto fail;
3799 }
3800
3801 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3802 goto fail;
3803 host_port = strtol(buf, &r, 0);
3804 if (r == buf)
3805 goto fail;
3806
3807 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3808 goto fail;
3809 if (buf[0] == '\0') {
3810 pstrcpy(buf, sizeof(buf), "10.0.2.15");
3811 }
3812 if (!inet_aton(buf, &guest_addr))
3813 goto fail;
3814
3815 guest_port = strtol(p, &r, 0);
3816 if (r == p)
3817 goto fail;
3818
3819 if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
3820 fprintf(stderr, "qemu: could not set up redirection\n");
3821 exit(1);
3822 }
3823 return;
3824 fail:
3825 fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
3826 exit(1);
3827 }
3828
3829 #ifndef _WIN32
3830
3831 char smb_dir[1024];
3832
3833 static void erase_dir(char *dir_name)
3834 {
3835 DIR *d;
3836 struct dirent *de;
3837 char filename[1024];
3838
3839 /* erase all the files in the directory */
3840 if ((d = opendir(dir_name)) != 0) {
3841 for(;;) {
3842 de = readdir(d);
3843 if (!de)
3844 break;
3845 if (strcmp(de->d_name, ".") != 0 &&
3846 strcmp(de->d_name, "..") != 0) {
3847 snprintf(filename, sizeof(filename), "%s/%s",
3848 smb_dir, de->d_name);
3849 if (unlink(filename) != 0) /* is it a directory? */
3850 erase_dir(filename);
3851 }
3852 }
3853 closedir(d);
3854 rmdir(dir_name);
3855 }
3856 }
3857
3858 /* automatic user mode samba server configuration */
3859 static void smb_exit(void)
3860 {
3861 erase_dir(smb_dir);
3862 }
3863
3864 /* automatic user mode samba server configuration */
3865 static void net_slirp_smb(const char *exported_dir)
3866 {
3867 char smb_conf[1024];
3868 char smb_cmdline[1024];
3869 FILE *f;
3870
3871 if (!slirp_inited) {
3872 slirp_inited = 1;
3873 slirp_init();
3874 }
3875
3876 /* XXX: better tmp dir construction */
3877 snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
3878 if (mkdir(smb_dir, 0700) < 0) {
3879 fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
3880 exit(1);
3881 }
3882 snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
3883
3884 f = fopen(smb_conf, "w");
3885 if (!f) {
3886 fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
3887 exit(1);
3888 }
3889 fprintf(f,
3890 "[global]\n"
3891 "private dir=%s\n"
3892 "smb ports=0\n"
3893 "socket address=127.0.0.1\n"
3894 "pid directory=%s\n"
3895 "lock directory=%s\n"
3896 "log file=%s/log.smbd\n"
3897 "smb passwd file=%s/smbpasswd\n"
3898 "security = share\n"
3899 "[qemu]\n"
3900 "path=%s\n"
3901 "read only=no\n"
3902 "guest ok=yes\n",
3903 smb_dir,
3904 smb_dir,
3905 smb_dir,
3906 smb_dir,
3907 smb_dir,
3908 exported_dir
3909 );
3910 fclose(f);
3911 atexit(smb_exit);
3912
3913 snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
3914 SMBD_COMMAND, smb_conf);
3915
3916 slirp_add_exec(0, smb_cmdline, 4, 139);
3917 }
3918
3919 #endif /* !defined(_WIN32) */
3920 void do_info_slirp(void)
3921 {
3922 slirp_stats();
3923 }
3924
3925 #endif /* CONFIG_SLIRP */
3926
3927 #if !defined(_WIN32)
3928
3929 typedef struct TAPState {
3930 VLANClientState *vc;
3931 int fd;
3932 char down_script[1024];
3933 } TAPState;
3934
3935 static void tap_receive(void *opaque, const uint8_t *buf, int size)
3936 {
3937 TAPState *s = opaque;
3938 int ret;
3939 for(;;) {
3940 ret = write(s->fd, buf, size);
3941 if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
3942 } else {
3943 break;
3944 }
3945 }
3946 }
3947
3948 static void tap_send(void *opaque)
3949 {
3950 TAPState *s = opaque;
3951 uint8_t buf[4096];
3952 int size;
3953
3954 #ifdef __sun__
3955 struct strbuf sbuf;
3956 int f = 0;
3957 sbuf.maxlen = sizeof(buf);
3958 sbuf.buf = buf;
3959 size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
3960 #else
3961 size = read(s->fd, buf, sizeof(buf));
3962 #endif
3963 if (size > 0) {
3964 qemu_send_packet(s->vc, buf, size);
3965 }
3966 }
3967
3968 /* fd support */
3969
3970 static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
3971 {
3972 TAPState *s;
3973
3974 s = qemu_mallocz(sizeof(TAPState));
3975 if (!s)
3976 return NULL;
3977 s->fd = fd;
3978 s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
3979 qemu_set_fd_handler(s->fd, tap_send, NULL, s);
3980 snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
3981 return s;
3982 }
3983
3984 #if defined (_BSD) || defined (__FreeBSD_kernel__)
3985 static int tap_open(char *ifname, int ifname_size)
3986 {
3987 int fd;
3988 char *dev;
3989 struct stat s;
3990
3991 TFR(fd = open("/dev/tap", O_RDWR));
3992 if (fd < 0) {
3993 fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
3994 return -1;
3995 }
3996
3997 fstat(fd, &s);
3998 dev = devname(s.st_rdev, S_IFCHR);
3999 pstrcpy(ifname, ifname_size, dev);
4000
4001 fcntl(fd, F_SETFL, O_NONBLOCK);
4002 return fd;
4003 }
4004 #elif defined(__sun__)
4005 #define TUNNEWPPA (('T'<<16) | 0x0001)
4006 /*
4007 * Allocate TAP device, returns opened fd.
4008 * Stores dev name in the first arg(must be large enough).
4009 */
4010 int tap_alloc(char *dev)
4011 {
4012 int tap_fd, if_fd, ppa = -1;
4013 static int ip_fd = 0;
4014 char *ptr;
4015
4016 static int arp_fd = 0;
4017 int ip_muxid, arp_muxid;
4018 struct strioctl strioc_if, strioc_ppa;
4019 int link_type = I_PLINK;;
4020 struct lifreq ifr;
4021 char actual_name[32] = "";
4022
4023 memset(&ifr, 0x0, sizeof(ifr));
4024
4025 if( *dev ){
4026 ptr = dev;
4027 while( *ptr && !isdigit((int)*ptr) ) ptr++;
4028 ppa = atoi(ptr);
4029 }
4030
4031 /* Check if IP device was opened */
4032 if( ip_fd )
4033 close(ip_fd);
4034
4035 TFR(ip_fd = open("/dev/udp", O_RDWR, 0));
4036 if (ip_fd < 0) {
4037 syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
4038 return -1;
4039 }
4040
4041 TFR(tap_fd = open("/dev/tap", O_RDWR, 0));
4042 if (tap_fd < 0) {
4043 syslog(LOG_ERR, "Can't open /dev/tap");
4044 return -1;
4045 }
4046
4047 /* Assign a new PPA and get its unit number. */
4048 strioc_ppa.ic_cmd = TUNNEWPPA;
4049 strioc_ppa.ic_timout = 0;
4050 strioc_ppa.ic_len = sizeof(ppa);
4051 strioc_ppa.ic_dp = (char *)&ppa;
4052 if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
4053 syslog (LOG_ERR, "Can't assign new interface");
4054
4055 TFR(if_fd = open("/dev/tap", O_RDWR, 0));
4056 if (if_fd < 0) {
4057 syslog(LOG_ERR, "Can't open /dev/tap (2)");
4058 return -1;
4059 }
4060 if(ioctl(if_fd, I_PUSH, "ip") < 0){
4061 syslog(LOG_ERR, "Can't push IP module");
4062 return -1;
4063 }
4064
4065 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
4066 syslog(LOG_ERR, "Can't get flags\n");
4067
4068 snprintf (actual_name, 32, "tap%d", ppa);
4069 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
4070
4071 ifr.lifr_ppa = ppa;
4072 /* Assign ppa according to the unit number returned by tun device */
4073
4074 if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
4075 syslog (LOG_ERR, "Can't set PPA %d", ppa);
4076 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
4077 syslog (LOG_ERR, "Can't get flags\n");
4078 /* Push arp module to if_fd */
4079 if (ioctl (if_fd, I_PUSH, "arp") < 0)
4080 syslog (LOG_ERR, "Can't push ARP module (2)");
4081
4082 /* Push arp module to ip_fd */
4083 if (ioctl (ip_fd, I_POP, NULL) < 0)
4084 syslog (LOG_ERR, "I_POP failed\n");
4085 if (ioctl (ip_fd, I_PUSH, "arp") < 0)
4086 syslog (LOG_ERR, "Can't push ARP module (3)\n");
4087 /* Open arp_fd */
4088 TFR(arp_fd = open ("/dev/tap", O_RDWR, 0));
4089 if (arp_fd < 0)
4090 syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
4091
4092 /* Set ifname to arp */
4093 strioc_if.ic_cmd = SIOCSLIFNAME;
4094 strioc_if.ic_timout = 0;
4095 strioc_if.ic_len = sizeof(ifr);
4096 strioc_if.ic_dp = (char *)&ifr;
4097 if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
4098 syslog (LOG_ERR, "Can't set ifname to arp\n");
4099 }
4100
4101 if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
4102 syslog(LOG_ERR, "Can't link TAP device to IP");
4103 return -1;
4104 }
4105
4106 if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
4107 syslog (LOG_ERR, "Can't link TAP device to ARP");
4108
4109 close (if_fd);
4110
4111 memset(&ifr, 0x0, sizeof(ifr));
4112 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
4113 ifr.lifr_ip_muxid = ip_muxid;
4114 ifr.lifr_arp_muxid = arp_muxid;
4115
4116 if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
4117 {
4118 ioctl (ip_fd, I_PUNLINK , arp_muxid);
4119 ioctl (ip_fd, I_PUNLINK, ip_muxid);
4120 syslog (LOG_ERR, "Can't set multiplexor id");
4121 }
4122
4123 sprintf(dev, "tap%d", ppa);
4124 return tap_fd;
4125 }
4126
4127 static int tap_open(char *ifname, int ifname_size)
4128 {
4129 char dev[10]="";
4130 int fd;
4131 if( (fd = tap_alloc(dev)) < 0 ){
4132 fprintf(stderr, "Cannot allocate TAP device\n");
4133 return -1;
4134 }
4135 pstrcpy(ifname, ifname_size, dev);
4136 fcntl(fd, F_SETFL, O_NONBLOCK);
4137 return fd;
4138 }
4139 #else
4140 static int tap_open(char *ifname, int ifname_size)
4141 {
4142 struct ifreq ifr;
4143 int fd, ret;
4144
4145 TFR(fd = open("/dev/net/tun", O_RDWR));
4146 if (fd < 0) {
4147 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
4148 return -1;
4149 }
4150 memset(&ifr, 0, sizeof(ifr));
4151 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
4152 if (ifname[0] != '\0')
4153 pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
4154 else
4155 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
4156 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
4157 if (ret != 0) {
4158 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
4159 close(fd);
4160 return -1;
4161 }
4162 pstrcpy(ifname, ifname_size, ifr.ifr_name);
4163 fcntl(fd, F_SETFL, O_NONBLOCK);
4164 return fd;
4165 }
4166 #endif
4167
4168 static int launch_script(const char *setup_script, const char *ifname, int fd)
4169 {
4170 int pid, status;
4171 char *args[3];
4172 char **parg;
4173
4174 /* try to launch network script */
4175 pid = fork();
4176 if (pid >= 0) {
4177 if (pid == 0) {
4178 int open_max = sysconf (_SC_OPEN_MAX), i;
4179 for (i = 0; i < open_max; i++)
4180 if (i != STDIN_FILENO &&
4181 i != STDOUT_FILENO &&
4182 i != STDERR_FILENO &&
4183 i != fd)
4184 close(i);
4185
4186 parg = args;
4187 *parg++ = (char *)setup_script;
4188 *parg++ = (char *)ifname;
4189 *parg++ = NULL;
4190 execv(setup_script, args);
4191 _exit(1);
4192 }
4193 while (waitpid(pid, &status, 0) != pid);
4194 if (!WIFEXITED(status) ||
4195 WEXITSTATUS(status) != 0) {
4196 fprintf(stderr, "%s: could not launch network script\n",
4197 setup_script);
4198 return -1;
4199 }
4200 }
4201 return 0;
4202 }
4203
4204 static int net_tap_init(VLANState *vlan, const char *ifname1,
4205 const char *setup_script, const char *down_script)
4206 {
4207 TAPState *s;
4208 int fd;
4209 char ifname[128];
4210
4211 if (ifname1 != NULL)
4212 pstrcpy(ifname, sizeof(ifname), ifname1);
4213 else
4214 ifname[0] = '\0';
4215 TFR(fd = tap_open(ifname, sizeof(ifname)));
4216 if (fd < 0)
4217 return -1;
4218
4219 if (!setup_script || !strcmp(setup_script, "no"))
4220 setup_script = "";
4221 if (setup_script[0] != '\0') {
4222 if (launch_script(setup_script, ifname, fd))
4223 return -1;
4224 }
4225 s = net_tap_fd_init(vlan, fd);
4226 if (!s)
4227 return -1;
4228 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4229 "tap: ifname=%s setup_script=%s", ifname, setup_script);
4230 if (down_script && strcmp(down_script, "no"))
4231 snprintf(s->down_script, sizeof(s->down_script), "%s", down_script);
4232 return 0;
4233 }
4234
4235 #endif /* !_WIN32 */
4236
4237 /* network connection */
4238 typedef struct NetSocketState {
4239 VLANClientState *vc;
4240 int fd;
4241 int state; /* 0 = getting length, 1 = getting data */
4242 int index;
4243 int packet_len;
4244 uint8_t buf[4096];
4245 struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
4246 } NetSocketState;
4247
4248 typedef struct NetSocketListenState {
4249 VLANState *vlan;
4250 int fd;
4251 } NetSocketListenState;
4252
4253 /* XXX: we consider we can send the whole packet without blocking */
4254 static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
4255 {
4256 NetSocketState *s = opaque;
4257 uint32_t len;
4258 len = htonl(size);
4259
4260 send_all(s->fd, (const uint8_t *)&len, sizeof(len));
4261 send_all(s->fd, buf, size);
4262 }
4263
4264 static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
4265 {
4266 NetSocketState *s = opaque;
4267 sendto(s->fd, buf, size, 0,
4268 (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
4269 }
4270
4271 static void net_socket_send(void *opaque)
4272 {
4273 NetSocketState *s = opaque;
4274 int l, size, err;
4275 uint8_t buf1[4096];
4276 const uint8_t *buf;
4277
4278 size = recv(s->fd, buf1, sizeof(buf1), 0);
4279 if (size < 0) {
4280 err = socket_error();
4281 if (err != EWOULDBLOCK)
4282 goto eoc;
4283 } else if (size == 0) {
4284 /* end of connection */
4285 eoc:
4286 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4287 closesocket(s->fd);
4288 return;
4289 }
4290 buf = buf1;
4291 while (size > 0) {
4292 /* reassemble a packet from the network */
4293 switch(s->state) {
4294 case 0:
4295 l = 4 - s->index;
4296 if (l > size)
4297 l = size;
4298 memcpy(s->buf + s->index, buf, l);
4299 buf += l;
4300 size -= l;
4301 s->index += l;
4302 if (s->index == 4) {
4303 /* got length */
4304 s->packet_len = ntohl(*(uint32_t *)s->buf);
4305 s->index = 0;
4306 s->state = 1;
4307 }
4308 break;
4309 case 1:
4310 l = s->packet_len - s->index;
4311 if (l > size)
4312 l = size;
4313 memcpy(s->buf + s->index, buf, l);
4314 s->index += l;
4315 buf += l;
4316 size -= l;
4317 if (s->index >= s->packet_len) {
4318 qemu_send_packet(s->vc, s->buf, s->packet_len);
4319 s->index = 0;
4320 s->state = 0;
4321 }
4322 break;
4323 }
4324 }
4325 }
4326
4327 static void net_socket_send_dgram(void *opaque)
4328 {
4329 NetSocketState *s = opaque;
4330 int size;
4331
4332 size = recv(s->fd, s->buf, sizeof(s->buf), 0);
4333 if (size < 0)
4334 return;
4335 if (size == 0) {
4336 /* end of connection */
4337 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4338 return;
4339 }
4340 qemu_send_packet(s->vc, s->buf, size);
4341 }
4342
4343 static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
4344 {
4345 struct ip_mreq imr;
4346 int fd;
4347 int val, ret;
4348 if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
4349 fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
4350 inet_ntoa(mcastaddr->sin_addr),
4351 (int)ntohl(mcastaddr->sin_addr.s_addr));
4352 return -1;
4353
4354 }
4355 fd = socket(PF_INET, SOCK_DGRAM, 0);
4356 if (fd < 0) {
4357 perror("socket(PF_INET, SOCK_DGRAM)");
4358 return -1;
4359 }
4360
4361 val = 1;
4362 ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
4363 (const char *)&val, sizeof(val));
4364 if (ret < 0) {
4365 perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
4366 goto fail;
4367 }
4368
4369 ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
4370 if (ret < 0) {
4371 perror("bind");
4372 goto fail;
4373 }
4374
4375 /* Add host to multicast group */
4376 imr.imr_multiaddr = mcastaddr->sin_addr;
4377 imr.imr_interface.s_addr = htonl(INADDR_ANY);
4378
4379 ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
4380 (const char *)&imr, sizeof(struct ip_mreq));
4381 if (ret < 0) {
4382 perror("setsockopt(IP_ADD_MEMBERSHIP)");
4383 goto fail;
4384 }
4385
4386 /* Force mcast msgs to loopback (eg. several QEMUs in same host */
4387 val = 1;
4388 ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
4389 (const char *)&val, sizeof(val));
4390 if (ret < 0) {
4391 perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
4392 goto fail;
4393 }
4394
4395 socket_set_nonblock(fd);
4396 return fd;
4397 fail:
4398 if (fd >= 0)
4399 closesocket(fd);
4400 return -1;
4401 }
4402
4403 static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
4404 int is_connected)
4405 {
4406 struct sockaddr_in saddr;
4407 int newfd;
4408 socklen_t saddr_len;
4409 NetSocketState *s;
4410
4411 /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
4412 * Because this may be "shared" socket from a "master" process, datagrams would be recv()
4413 * by ONLY ONE process: we must "clone" this dgram socket --jjo
4414 */
4415
4416 if (is_connected) {
4417 if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
4418 /* must be bound */
4419 if (saddr.sin_addr.s_addr==0) {
4420 fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
4421 fd);
4422 return NULL;
4423 }
4424 /* clone dgram socket */
4425 newfd = net_socket_mcast_create(&saddr);
4426 if (newfd < 0) {
4427 /* error already reported by net_socket_mcast_create() */
4428 close(fd);
4429 return NULL;
4430 }
4431 /* clone newfd to fd, close newfd */
4432 dup2(newfd, fd);
4433 close(newfd);
4434
4435 } else {
4436 fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
4437 fd, strerror(errno));
4438 return NULL;
4439 }
4440 }
4441
4442 s = qemu_mallocz(sizeof(NetSocketState));
4443 if (!s)
4444 return NULL;
4445 s->fd = fd;
4446
4447 s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
4448 qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
4449
4450 /* mcast: save bound address as dst */
4451 if (is_connected) s->dgram_dst=saddr;
4452
4453 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4454 "socket: fd=%d (%s mcast=%s:%d)",
4455 fd, is_connected? "cloned" : "",
4456 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4457 return s;
4458 }
4459
4460 static void net_socket_connect(void *opaque)
4461 {
4462 NetSocketState *s = opaque;
4463 qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
4464 }
4465
4466 static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
4467 int is_connected)
4468 {
4469 NetSocketState *s;
4470 s = qemu_mallocz(sizeof(NetSocketState));
4471 if (!s)
4472 return NULL;
4473 s->fd = fd;
4474 s->vc = qemu_new_vlan_client(vlan,
4475 net_socket_receive, NULL, s);
4476 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4477 "socket: fd=%d", fd);
4478 if (is_connected) {
4479 net_socket_connect(s);
4480 } else {
4481 qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
4482 }
4483 return s;
4484 }
4485
4486 static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
4487 int is_connected)
4488 {
4489 int so_type=-1, optlen=sizeof(so_type);
4490
4491 if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type,
4492 (socklen_t *)&optlen)< 0) {
4493 fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
4494 return NULL;
4495 }
4496 switch(so_type) {
4497 case SOCK_DGRAM:
4498 return net_socket_fd_init_dgram(vlan, fd, is_connected);
4499 case SOCK_STREAM:
4500 return net_socket_fd_init_stream(vlan, fd, is_connected);
4501 default:
4502 /* who knows ... this could be a eg. a pty, do warn and continue as stream */
4503 fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
4504 return net_socket_fd_init_stream(vlan, fd, is_connected);
4505 }
4506 return NULL;
4507 }
4508
4509 static void net_socket_accept(void *opaque)
4510 {
4511 NetSocketListenState *s = opaque;
4512 NetSocketState *s1;
4513 struct sockaddr_in saddr;
4514 socklen_t len;
4515 int fd;
4516
4517 for(;;) {
4518 len = sizeof(saddr);
4519 fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
4520 if (fd < 0 && errno != EINTR) {
4521 return;
4522 } else if (fd >= 0) {
4523 break;
4524 }
4525 }
4526 s1 = net_socket_fd_init(s->vlan, fd, 1);
4527 if (!s1) {
4528 closesocket(fd);
4529 } else {
4530 snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
4531 "socket: connection from %s:%d",
4532 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4533 }
4534 }
4535
4536 static int net_socket_listen_init(VLANState *vlan, const char *host_str)
4537 {
4538 NetSocketListenState *s;
4539 int fd, val, ret;
4540 struct sockaddr_in saddr;
4541
4542 if (parse_host_port(&saddr, host_str) < 0)
4543 return -1;
4544
4545 s = qemu_mallocz(sizeof(NetSocketListenState));
4546 if (!s)
4547 return -1;
4548
4549 fd = socket(PF_INET, SOCK_STREAM, 0);
4550 if (fd < 0) {
4551 perror("socket");
4552 return -1;
4553 }
4554 socket_set_nonblock(fd);
4555
4556 /* allow fast reuse */
4557 val = 1;
4558 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
4559
4560 ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4561 if (ret < 0) {
4562 perror("bind");
4563 return -1;
4564 }
4565 ret = listen(fd, 0);
4566 if (ret < 0) {
4567 perror("listen");
4568 return -1;
4569 }
4570 s->vlan = vlan;
4571 s->fd = fd;
4572 qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
4573 return 0;
4574 }
4575
4576 static int net_socket_connect_init(VLANState *vlan, const char *host_str)
4577 {
4578 NetSocketState *s;
4579 int fd, connected, ret, err;
4580 struct sockaddr_in saddr;
4581
4582 if (parse_host_port(&saddr, host_str) < 0)
4583 return -1;
4584
4585 fd = socket(PF_INET, SOCK_STREAM, 0);
4586 if (fd < 0) {
4587 perror("socket");
4588 return -1;
4589 }
4590 socket_set_nonblock(fd);
4591
4592 connected = 0;
4593 for(;;) {
4594 ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4595 if (ret < 0) {
4596 err = socket_error();
4597 if (err == EINTR || err == EWOULDBLOCK) {
4598 } else if (err == EINPROGRESS) {
4599 break;
4600 #ifdef _WIN32
4601 } else if (err == WSAEALREADY) {
4602 break;
4603 #endif
4604 } else {
4605 perror("connect");
4606 closesocket(fd);
4607 return -1;
4608 }
4609 } else {
4610 connected = 1;
4611 break;
4612 }
4613 }
4614 s = net_socket_fd_init(vlan, fd, connected);
4615 if (!s)
4616 return -1;
4617 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4618 "socket: connect to %s:%d",
4619 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4620 return 0;
4621 }
4622
4623 static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
4624 {
4625 NetSocketState *s;
4626 int fd;
4627 struct sockaddr_in saddr;
4628
4629 if (parse_host_port(&saddr, host_str) < 0)
4630 return -1;
4631
4632
4633 fd = net_socket_mcast_create(&saddr);
4634 if (fd < 0)
4635 return -1;
4636
4637 s = net_socket_fd_init(vlan, fd, 0);
4638 if (!s)
4639 return -1;
4640
4641 s->dgram_dst = saddr;
4642
4643 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4644 "socket: mcast=%s:%d",
4645 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4646 return 0;
4647
4648 }
4649
4650 static const char *get_opt_name(char *buf, int buf_size, const char *p)
4651 {
4652 char *q;
4653
4654 q = buf;
4655 while (*p != '\0' && *p != '=') {
4656 if (q && (q - buf) < buf_size - 1)
4657 *q++ = *p;
4658 p++;
4659 }
4660 if (q)
4661 *q = '\0';
4662
4663 return p;
4664 }
4665
4666 static const char *get_opt_value(char *buf, int buf_size, const char *p)
4667 {
4668 char *q;
4669
4670 q = buf;
4671 while (*p != '\0') {
4672 if (*p == ',') {
4673 if (*(p + 1) != ',')
4674 break;
4675 p++;
4676 }
4677 if (q && (q - buf) < buf_size - 1)
4678 *q++ = *p;
4679 p++;
4680 }
4681 if (q)
4682 *q = '\0';
4683
4684 return p;
4685 }
4686
4687 static int get_param_value(char *buf, int buf_size,
4688 const char *tag, const char *str)
4689 {
4690 const char *p;
4691 char option[128];
4692
4693 p = str;
4694 for(;;) {
4695 p = get_opt_name(option, sizeof(option), p);
4696 if (*p != '=')
4697 break;
4698 p++;
4699 if (!strcmp(tag, option)) {
4700 (void)get_opt_value(buf, buf_size, p);
4701 return strlen(buf);
4702 } else {
4703 p = get_opt_value(NULL, 0, p);
4704 }
4705 if (*p != ',')
4706 break;
4707 p++;
4708 }
4709 return 0;
4710 }
4711
4712 static int check_params(char *buf, int buf_size,
4713 char **params, const char *str)
4714 {
4715 const char *p;
4716 int i;
4717
4718 p = str;
4719 for(;;) {
4720 p = get_opt_name(buf, buf_size, p);
4721 if (*p != '=')
4722 return -1;
4723 p++;
4724 for(i = 0; params[i] != NULL; i++)
4725 if (!strcmp(params[i], buf))
4726 break;
4727 if (params[i] == NULL)
4728 return -1;
4729 p = get_opt_value(NULL, 0, p);
4730 if (*p != ',')
4731 break;
4732 p++;
4733 }
4734 return 0;
4735 }
4736
4737
4738 static int net_client_init(const char *str)
4739 {
4740 const char *p;
4741 char *q;
4742 char device[64];
4743 char buf[1024];
4744 int vlan_id, ret;
4745 VLANState *vlan;
4746
4747 p = str;
4748 q = device;
4749 while (*p != '\0' && *p != ',') {
4750 if ((q - device) < sizeof(device) - 1)
4751 *q++ = *p;
4752 p++;
4753 }
4754 *q = '\0';
4755 if (*p == ',')
4756 p++;
4757 vlan_id = 0;
4758 if (get_param_value(buf, sizeof(buf), "vlan", p)) {
4759 vlan_id = strtol(buf, NULL, 0);
4760 }
4761 vlan = qemu_find_vlan(vlan_id);
4762 if (!vlan) {
4763 fprintf(stderr, "Could not create vlan %d\n", vlan_id);
4764 return -1;
4765 }
4766 if (!strcmp(device, "nic")) {
4767 NICInfo *nd;
4768 uint8_t *macaddr;
4769
4770 if (nb_nics >= MAX_NICS) {
4771 fprintf(stderr, "Too Many NICs\n");
4772 return -1;
4773 }
4774 nd = &nd_table[nb_nics];
4775 macaddr = nd->macaddr;
4776 macaddr[0] = 0x52;
4777 macaddr[1] = 0x54;
4778 macaddr[2] = 0x00;
4779 macaddr[3] = 0x12;
4780 macaddr[4] = 0x34;
4781 macaddr[5] = 0x56 + nb_nics;
4782
4783 if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
4784 if (parse_macaddr(macaddr, buf) < 0) {
4785 fprintf(stderr, "invalid syntax for ethernet address\n");
4786 return -1;
4787 }
4788 }
4789 if (get_param_value(buf, sizeof(buf), "model", p)) {
4790 nd->model = strdup(buf);
4791 }
4792 nd->vlan = vlan;
4793 nb_nics++;
4794 vlan->nb_guest_devs++;
4795 ret = 0;
4796 } else
4797 if (!strcmp(device, "none")) {
4798 /* does nothing. It is needed to signal that no network cards
4799 are wanted */
4800 ret = 0;
4801 } else
4802 #ifdef CONFIG_SLIRP
4803 if (!strcmp(device, "user")) {
4804 if (get_param_value(buf, sizeof(buf), "hostname", p)) {
4805 pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
4806 }
4807 vlan->nb_host_devs++;
4808 ret = net_slirp_init(vlan);
4809 } else
4810 #endif
4811 #ifdef _WIN32
4812 if (!strcmp(device, "tap")) {
4813 char ifname[64];
4814 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4815 fprintf(stderr, "tap: no interface name\n");
4816 return -1;
4817 }
4818 vlan->nb_host_devs++;
4819 ret = tap_win32_init(vlan, ifname);
4820 } else
4821 #else
4822 if (!strcmp(device, "tap")) {
4823 char ifname[64];
4824 char setup_script[1024], down_script[1024];
4825 int fd;
4826 vlan->nb_host_devs++;
4827 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4828 fd = strtol(buf, NULL, 0);
4829 fcntl(fd, F_SETFL, O_NONBLOCK);
4830 ret = -1;
4831 if (net_tap_fd_init(vlan, fd))
4832 ret = 0;
4833 } else {
4834 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4835 ifname[0] = '\0';
4836 }
4837 if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
4838 pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
4839 }
4840 if (get_param_value(down_script, sizeof(down_script), "downscript", p) == 0) {
4841 pstrcpy(down_script, sizeof(down_script), DEFAULT_NETWORK_DOWN_SCRIPT);
4842 }
4843 ret = net_tap_init(vlan, ifname, setup_script, down_script);
4844 }
4845 } else
4846 #endif
4847 if (!strcmp(device, "socket")) {
4848 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4849 int fd;
4850 fd = strtol(buf, NULL, 0);
4851 ret = -1;
4852 if (net_socket_fd_init(vlan, fd, 1))
4853 ret = 0;
4854 } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
4855 ret = net_socket_listen_init(vlan, buf);
4856 } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
4857 ret = net_socket_connect_init(vlan, buf);
4858 } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
4859 ret = net_socket_mcast_init(vlan, buf);
4860 } else {
4861 fprintf(stderr, "Unknown socket options: %s\n", p);
4862 return -1;
4863 }
4864 vlan->nb_host_devs++;
4865 } else
4866 {
4867 fprintf(stderr, "Unknown network device: %s\n", device);
4868 return -1;
4869 }
4870 if (ret < 0) {
4871 fprintf(stderr, "Could not initialize device '%s'\n", device);
4872 }
4873
4874 return ret;
4875 }
4876
4877 void do_info_network(void)
4878 {
4879 VLANState *vlan;
4880 VLANClientState *vc;
4881
4882 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4883 term_printf("VLAN %d devices:\n", vlan->id);
4884 for(vc = vlan->first_client; vc != NULL; vc = vc->next)
4885 term_printf(" %s\n", vc->info_str);
4886 }
4887 }
4888
4889 #define HD_ALIAS "index=%d,media=disk"
4890 #ifdef TARGET_PPC
4891 #define CDROM_ALIAS "index=1,media=cdrom"
4892 #else
4893 #define CDROM_ALIAS "index=2,media=cdrom"
4894 #endif
4895 #define FD_ALIAS "index=%d,if=floppy"
4896 #define PFLASH_ALIAS "if=pflash"
4897 #define MTD_ALIAS "if=mtd"
4898 #define SD_ALIAS "index=0,if=sd"
4899
4900 static int drive_add(const char *file, const char *fmt, ...)
4901 {
4902 va_list ap;
4903
4904 if (nb_drives_opt >= MAX_DRIVES) {
4905 fprintf(stderr, "qemu: too many drives\n");
4906 exit(1);
4907 }
4908
4909 drives_opt[nb_drives_opt].file = file;
4910 va_start(ap, fmt);
4911 vsnprintf(drives_opt[nb_drives_opt].opt,
4912 sizeof(drives_opt[0].opt), fmt, ap);
4913 va_end(ap);
4914
4915 return nb_drives_opt++;
4916 }
4917
4918 int drive_get_index(BlockInterfaceType type, int bus, int unit)
4919 {
4920 int index;
4921
4922 /* seek interface, bus and unit */
4923
4924 for (index = 0; index < nb_drives; index++)
4925 if (drives_table[index].type == type &&
4926 drives_table[index].bus == bus &&
4927 drives_table[index].unit == unit)
4928 return index;
4929
4930 return -1;
4931 }
4932
4933 int drive_get_max_bus(BlockInterfaceType type)
4934 {
4935 int max_bus;
4936 int index;
4937
4938 max_bus = -1;
4939 for (index = 0; index < nb_drives; index++) {
4940 if(drives_table[index].type == type &&
4941 drives_table[index].bus > max_bus)
4942 max_bus = drives_table[index].bus;
4943 }
4944 return max_bus;
4945 }
4946
4947 static int drive_init(struct drive_opt *arg, int snapshot,
4948 QEMUMachine *machine)
4949 {
4950 char buf[128];
4951 char file[1024];
4952 char devname[128];
4953 const char *mediastr = "";
4954 BlockInterfaceType type;
4955 enum { MEDIA_DISK, MEDIA_CDROM } media;
4956 int bus_id, unit_id;
4957 int cyls, heads, secs, translation;
4958 BlockDriverState *bdrv;
4959 int max_devs;
4960 int index;
4961 int cache;
4962 int bdrv_flags;
4963 char *str = arg->opt;
4964 char *params[] = { "bus", "unit", "if", "index", "cyls", "heads",
4965 "secs", "trans", "media", "snapshot", "file",
4966 "cache", NULL };
4967
4968 if (check_params(buf, sizeof(buf), params, str) < 0) {
4969 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
4970 buf, str);
4971 return -1;
4972 }
4973
4974 file[0] = 0;
4975 cyls = heads = secs = 0;
4976 bus_id = 0;
4977 unit_id = -1;
4978 translation = BIOS_ATA_TRANSLATION_AUTO;
4979 index = -1;
4980 cache = 1;
4981
4982 if (!strcmp(machine->name, "realview") ||
4983 !strcmp(machine->name, "SS-5") ||
4984 !strcmp(machine->name, "SS-10") ||
4985 !strcmp(machine->name, "SS-600MP") ||
4986 !strcmp(machine->name, "versatilepb") ||
4987 !strcmp(machine->name, "versatileab")) {
4988 type = IF_SCSI;
4989 max_devs = MAX_SCSI_DEVS;
4990 strcpy(devname, "scsi");
4991 } else {
4992 type = IF_IDE;
4993 max_devs = MAX_IDE_DEVS;
4994 strcpy(devname, "ide");
4995 }
4996 media = MEDIA_DISK;
4997
4998 /* extract parameters */
4999
5000 if (get_param_value(buf, sizeof(buf), "bus", str)) {
5001 bus_id = strtol(buf, NULL, 0);
5002 if (bus_id < 0) {
5003 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
5004 return -1;
5005 }
5006 }
5007
5008 if (get_param_value(buf, sizeof(buf), "unit", str)) {
5009 unit_id = strtol(buf, NULL, 0);
5010 if (unit_id < 0) {
5011 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
5012 return -1;
5013 }
5014 }
5015
5016 if (get_param_value(buf, sizeof(buf), "if", str)) {
5017 strncpy(devname, buf, sizeof(devname));
5018 if (!strcmp(buf, "ide")) {
5019 type = IF_IDE;
5020 max_devs = MAX_IDE_DEVS;
5021 } else if (!strcmp(buf, "scsi")) {
5022 type = IF_SCSI;
5023 max_devs = MAX_SCSI_DEVS;
5024 } else if (!strcmp(buf, "floppy")) {
5025 type = IF_FLOPPY;
5026 max_devs = 0;
5027 } else if (!strcmp(buf, "pflash")) {
5028 type = IF_PFLASH;
5029 max_devs = 0;
5030 } else if (!strcmp(buf, "mtd")) {
5031 type = IF_MTD;
5032 max_devs = 0;
5033 } else if (!strcmp(buf, "sd")) {
5034 type = IF_SD;
5035 max_devs = 0;
5036 } else {
5037 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
5038 return -1;
5039 }
5040 }
5041
5042 if (get_param_value(buf, sizeof(buf), "index", str)) {
5043 index = strtol(buf, NULL, 0);
5044 if (index < 0) {
5045 fprintf(stderr, "qemu: '%s' invalid index\n", str);
5046 return -1;
5047 }
5048 }
5049
5050 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
5051 cyls = strtol(buf, NULL, 0);
5052 }
5053
5054 if (get_param_value(buf, sizeof(buf), "heads", str)) {
5055 heads = strtol(buf, NULL, 0);
5056 }
5057
5058 if (get_param_value(buf, sizeof(buf), "secs", str)) {
5059 secs = strtol(buf, NULL, 0);
5060 }
5061
5062 if (cyls || heads || secs) {
5063 if (cyls < 1 || cyls > 16383) {
5064 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
5065 return -1;
5066 }
5067 if (heads < 1 || heads > 16) {
5068 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
5069 return -1;
5070 }
5071 if (secs < 1 || secs > 63) {
5072 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
5073 return -1;
5074 }
5075 }
5076
5077 if (get_param_value(buf, sizeof(buf), "trans", str)) {
5078 if (!cyls) {
5079 fprintf(stderr,
5080 "qemu: '%s' trans must be used with cyls,heads and secs\n",
5081 str);
5082 return -1;
5083 }
5084 if (!strcmp(buf, "none"))
5085 translation = BIOS_ATA_TRANSLATION_NONE;
5086 else if (!strcmp(buf, "lba"))
5087 translation = BIOS_ATA_TRANSLATION_LBA;
5088 else if (!strcmp(buf, "auto"))
5089 translation = BIOS_ATA_TRANSLATION_AUTO;
5090 else {
5091 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
5092 return -1;
5093 }
5094 }
5095
5096 if (get_param_value(buf, sizeof(buf), "media", str)) {
5097 if (!strcmp(buf, "disk")) {
5098 media = MEDIA_DISK;
5099 } else if (!strcmp(buf, "cdrom")) {
5100 if (cyls || secs || heads) {
5101 fprintf(stderr,
5102 "qemu: '%s' invalid physical CHS format\n", str);
5103 return -1;
5104 }
5105 media = MEDIA_CDROM;
5106 } else {
5107 fprintf(stderr, "qemu: '%s' invalid media\n", str);
5108 return -1;
5109 }
5110 }
5111
5112 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
5113 if (!strcmp(buf, "on"))
5114 snapshot = 1;
5115 else if (!strcmp(buf, "off"))
5116 snapshot = 0;
5117 else {
5118 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
5119 return -1;
5120 }
5121 }
5122
5123 if (get_param_value(buf, sizeof(buf), "cache", str)) {
5124 if (!strcmp(buf, "off"))
5125 cache = 0;
5126 else if (!strcmp(buf, "on"))
5127 cache = 1;
5128 else {
5129 fprintf(stderr, "qemu: invalid cache option\n");
5130 return -1;
5131 }
5132 }
5133
5134 if (arg->file == NULL)
5135 get_param_value(file, sizeof(file), "file", str);
5136 else
5137 pstrcpy(file, sizeof(file), arg->file);
5138
5139 /* compute bus and unit according index */
5140
5141 if (index != -1) {
5142 if (bus_id != 0 || unit_id != -1) {
5143 fprintf(stderr,
5144 "qemu: '%s' index cannot be used with bus and unit\n", str);
5145 return -1;
5146 }
5147 if (max_devs == 0)
5148 {
5149 unit_id = index;
5150 bus_id = 0;
5151 } else {
5152 unit_id = index % max_devs;
5153 bus_id = index / max_devs;
5154 }
5155 }
5156
5157 /* if user doesn't specify a unit_id,
5158 * try to find the first free
5159 */
5160
5161 if (unit_id == -1) {
5162 unit_id = 0;
5163 while (drive_get_index(type, bus_id, unit_id) != -1) {
5164 unit_id++;
5165 if (max_devs && unit_id >= max_devs) {
5166 unit_id -= max_devs;
5167 bus_id++;
5168 }
5169 }
5170 }
5171
5172 /* check unit id */
5173
5174 if (max_devs && unit_id >= max_devs) {
5175 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
5176 str, unit_id, max_devs - 1);
5177 return -1;
5178 }
5179
5180 /*
5181 * ignore multiple definitions
5182 */
5183
5184 if (drive_get_index(type, bus_id, unit_id) != -1)
5185 return 0;
5186
5187 /* init */
5188
5189 if (type == IF_IDE || type == IF_SCSI)
5190 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
5191 if (max_devs)
5192 snprintf(buf, sizeof(buf), "%s%i%s%i",
5193 devname, bus_id, mediastr, unit_id);
5194 else
5195 snprintf(buf, sizeof(buf), "%s%s%i",
5196 devname, mediastr, unit_id);
5197 bdrv = bdrv_new(buf);
5198 drives_table[nb_drives].bdrv = bdrv;
5199 drives_table[nb_drives].type = type;
5200 drives_table[nb_drives].bus = bus_id;
5201 drives_table[nb_drives].unit = unit_id;
5202 nb_drives++;
5203
5204 switch(type) {
5205 case IF_IDE:
5206 case IF_SCSI:
5207 switch(media) {
5208 case MEDIA_DISK:
5209 if (cyls != 0) {
5210 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
5211 bdrv_set_translation_hint(bdrv, translation);
5212 }
5213 break;
5214 case MEDIA_CDROM:
5215 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
5216 break;
5217 }
5218 break;
5219 case IF_SD:
5220 /* FIXME: This isn't really a floppy, but it's a reasonable
5221 approximation. */
5222 case IF_FLOPPY:
5223 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
5224 break;
5225 case IF_PFLASH:
5226 case IF_MTD:
5227 break;
5228 }
5229 if (!file[0])
5230 return 0;
5231 bdrv_flags = 0;
5232 if (snapshot)
5233 bdrv_flags |= BDRV_O_SNAPSHOT;
5234 if (!cache)
5235 bdrv_flags |= BDRV_O_DIRECT;
5236 if (bdrv_open(bdrv, file, bdrv_flags) < 0 || qemu_key_check(bdrv, file)) {
5237 fprintf(stderr, "qemu: could not open disk image %s\n",
5238 file);
5239 return -1;
5240 }
5241 return 0;
5242 }
5243
5244 /***********************************************************/
5245 /* USB devices */
5246
5247 static USBPort *used_usb_ports;
5248 static USBPort *free_usb_ports;
5249
5250 /* ??? Maybe change this to register a hub to keep track of the topology. */
5251 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
5252 usb_attachfn attach)
5253 {
5254 port->opaque = opaque;
5255 port->index = index;
5256 port->attach = attach;
5257 port->next = free_usb_ports;
5258 free_usb_ports = port;
5259 }
5260
5261 static int usb_device_add(const char *devname)
5262 {
5263 const char *p;
5264 USBDevice *dev;
5265 USBPort *port;
5266
5267 if (!free_usb_ports)
5268 return -1;
5269
5270 if (strstart(devname, "host:", &p)) {
5271 dev = usb_host_device_open(p);
5272 } else if (!strcmp(devname, "mouse")) {
5273 dev = usb_mouse_init();
5274 } else if (!strcmp(devname, "tablet")) {
5275 dev = usb_tablet_init();
5276 } else if (!strcmp(devname, "keyboard")) {
5277 dev = usb_keyboard_init();
5278 } else if (strstart(devname, "disk:", &p)) {
5279 dev = usb_msd_init(p);
5280 } else if (!strcmp(devname, "wacom-tablet")) {
5281 dev = usb_wacom_init();
5282 } else if (strstart(devname, "serial:", &p)) {
5283 dev = usb_serial_init(p);
5284 } else {
5285 return -1;
5286 }
5287 if (!dev)
5288 return -1;
5289
5290 /* Find a USB port to add the device to. */
5291 port = free_usb_ports;
5292 if (!port->next) {
5293 USBDevice *hub;
5294
5295 /* Create a new hub and chain it on. */
5296 free_usb_ports = NULL;
5297 port->next = used_usb_ports;
5298 used_usb_ports = port;
5299
5300 hub = usb_hub_init(VM_USB_HUB_SIZE);
5301 usb_attach(port, hub);
5302 port = free_usb_ports;
5303 }
5304
5305 free_usb_ports = port->next;
5306 port->next = used_usb_ports;
5307 used_usb_ports = port;
5308 usb_attach(port, dev);
5309 return 0;
5310 }
5311
5312 static int usb_device_del(const char *devname)
5313 {
5314 USBPort *port;
5315 USBPort **lastp;
5316 USBDevice *dev;
5317 int bus_num, addr;
5318 const char *p;
5319
5320 if (!used_usb_ports)
5321 return -1;
5322
5323 p = strchr(devname, '.');
5324 if (!p)
5325 return -1;
5326 bus_num = strtoul(devname, NULL, 0);
5327 addr = strtoul(p + 1, NULL, 0);
5328 if (bus_num != 0)
5329 return -1;
5330
5331 lastp = &used_usb_ports;
5332 port = used_usb_ports;
5333 while (port && port->dev->addr != addr) {
5334 lastp = &port->next;
5335 port = port->next;
5336 }
5337
5338 if (!port)
5339 return -1;
5340
5341 dev = port->dev;
5342 *lastp = port->next;
5343 usb_attach(port, NULL);
5344 dev->handle_destroy(dev);
5345 port->next = free_usb_ports;
5346 free_usb_ports = port;
5347 return 0;
5348 }
5349
5350 void do_usb_add(const char *devname)
5351 {
5352 int ret;
5353 ret = usb_device_add(devname);
5354 if (ret < 0)
5355 term_printf("Could not add USB device '%s'\n", devname);
5356 }
5357
5358 void do_usb_del(const char *devname)
5359 {
5360 int ret;
5361 ret = usb_device_del(devname);
5362 if (ret < 0)
5363 term_printf("Could not remove USB device '%s'\n", devname);
5364 }
5365
5366 void usb_info(void)
5367 {
5368 USBDevice *dev;
5369 USBPort *port;
5370 const char *speed_str;
5371
5372 if (!usb_enabled) {
5373 term_printf("USB support not enabled\n");
5374 return;
5375 }
5376
5377 for (port = used_usb_ports; port; port = port->next) {
5378 dev = port->dev;
5379 if (!dev)
5380 continue;
5381 switch(dev->speed) {
5382 case USB_SPEED_LOW:
5383 speed_str = "1.5";
5384 break;
5385 case USB_SPEED_FULL:
5386 speed_str = "12";
5387 break;
5388 case USB_SPEED_HIGH:
5389 speed_str = "480";
5390 break;
5391 default:
5392 speed_str = "?";
5393 break;
5394 }
5395 term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n",
5396 0, dev->addr, speed_str, dev->devname);
5397 }
5398 }
5399
5400 /***********************************************************/
5401 /* PCMCIA/Cardbus */
5402
5403 static struct pcmcia_socket_entry_s {
5404 struct pcmcia_socket_s *socket;
5405 struct pcmcia_socket_entry_s *next;
5406 } *pcmcia_sockets = 0;
5407
5408 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
5409 {
5410 struct pcmcia_socket_entry_s *entry;
5411
5412 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
5413 entry->socket = socket;
5414 entry->next = pcmcia_sockets;
5415 pcmcia_sockets = entry;
5416 }
5417
5418 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
5419 {
5420 struct pcmcia_socket_entry_s *entry, **ptr;
5421
5422 ptr = &pcmcia_sockets;
5423 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
5424 if (entry->socket == socket) {
5425 *ptr = entry->next;
5426 qemu_free(entry);
5427 }
5428 }
5429
5430 void pcmcia_info(void)
5431 {
5432 struct pcmcia_socket_entry_s *iter;
5433 if (!pcmcia_sockets)
5434 term_printf("No PCMCIA sockets\n");
5435
5436 for (iter = pcmcia_sockets; iter; iter = iter->next)
5437 term_printf("%s: %s\n", iter->socket->slot_string,
5438 iter->socket->attached ? iter->socket->card_string :
5439 "Empty");
5440 }
5441
5442 /***********************************************************/
5443 /* dumb display */
5444
5445 static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
5446 {
5447 }
5448
5449 static void dumb_resize(DisplayState *ds, int w, int h)
5450 {
5451 }
5452
5453 static void dumb_refresh(DisplayState *ds)
5454 {
5455 #if defined(CONFIG_SDL)
5456 vga_hw_update();
5457 #endif
5458 }
5459
5460 static void dumb_display_init(DisplayState *ds)
5461 {
5462 ds->data = NULL;
5463 ds->linesize = 0;
5464 ds->depth = 0;
5465 ds->dpy_update = dumb_update;
5466 ds->dpy_resize = dumb_resize;
5467 ds->dpy_refresh = dumb_refresh;
5468 }
5469
5470 /***********************************************************/
5471 /* I/O handling */
5472
5473 #define MAX_IO_HANDLERS 64
5474
5475 typedef struct IOHandlerRecord {
5476 int fd;
5477 IOCanRWHandler *fd_read_poll;
5478 IOHandler *fd_read;
5479 IOHandler *fd_write;
5480 int deleted;
5481 void *opaque;
5482 /* temporary data */
5483 struct pollfd *ufd;
5484 struct IOHandlerRecord *next;
5485 } IOHandlerRecord;
5486
5487 static IOHandlerRecord *first_io_handler;
5488
5489 /* XXX: fd_read_poll should be suppressed, but an API change is
5490 necessary in the character devices to suppress fd_can_read(). */
5491 int qemu_set_fd_handler2(int fd,
5492 IOCanRWHandler *fd_read_poll,
5493 IOHandler *fd_read,
5494 IOHandler *fd_write,
5495 void *opaque)
5496 {
5497 IOHandlerRecord **pioh, *ioh;
5498
5499 if (!fd_read && !fd_write) {
5500 pioh = &first_io_handler;
5501 for(;;) {
5502 ioh = *pioh;
5503 if (ioh == NULL)
5504 break;
5505 if (ioh->fd == fd) {
5506 ioh->deleted = 1;
5507 break;
5508 }
5509 pioh = &ioh->next;
5510 }
5511 } else {
5512 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
5513 if (ioh->fd == fd)
5514 goto found;
5515 }
5516 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
5517 if (!ioh)
5518 return -1;
5519 ioh->next = first_io_handler;
5520 first_io_handler = ioh;
5521 found:
5522 ioh->fd = fd;
5523 ioh->fd_read_poll = fd_read_poll;
5524 ioh->fd_read = fd_read;
5525 ioh->fd_write = fd_write;
5526 ioh->opaque = opaque;
5527 ioh->deleted = 0;
5528 }
5529 return 0;
5530 }
5531
5532 int qemu_set_fd_handler(int fd,
5533 IOHandler *fd_read,
5534 IOHandler *fd_write,
5535 void *opaque)
5536 {
5537 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
5538 }
5539
5540 /***********************************************************/
5541 /* Polling handling */
5542
5543 typedef struct PollingEntry {
5544 PollingFunc *func;
5545 void *opaque;
5546 struct PollingEntry *next;
5547 } PollingEntry;
5548
5549 static PollingEntry *first_polling_entry;
5550
5551 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
5552 {
5553 PollingEntry **ppe, *pe;
5554 pe = qemu_mallocz(sizeof(PollingEntry));
5555 if (!pe)
5556 return -1;
5557 pe->func = func;
5558 pe->opaque = opaque;
5559 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
5560 *ppe = pe;
5561 return 0;
5562 }
5563
5564 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
5565 {
5566 PollingEntry **ppe, *pe;
5567 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
5568 pe = *ppe;
5569 if (pe->func == func && pe->opaque == opaque) {
5570 *ppe = pe->next;
5571 qemu_free(pe);
5572 break;
5573 }
5574 }
5575 }
5576
5577 #ifdef _WIN32
5578 /***********************************************************/
5579 /* Wait objects support */
5580 typedef struct WaitObjects {
5581 int num;
5582 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
5583 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
5584 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
5585 } WaitObjects;
5586
5587 static WaitObjects wait_objects = {0};
5588
5589 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5590 {
5591 WaitObjects *w = &wait_objects;
5592
5593 if (w->num >= MAXIMUM_WAIT_OBJECTS)
5594 return -1;
5595 w->events[w->num] = handle;
5596 w->func[w->num] = func;
5597 w->opaque[w->num] = opaque;
5598 w->num++;
5599 return 0;
5600 }
5601
5602 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5603 {
5604 int i, found;
5605 WaitObjects *w = &wait_objects;
5606
5607 found = 0;
5608 for (i = 0; i < w->num; i++) {
5609 if (w->events[i] == handle)
5610 found = 1;
5611 if (found) {
5612 w->events[i] = w->events[i + 1];
5613 w->func[i] = w->func[i + 1];
5614 w->opaque[i] = w->opaque[i + 1];
5615 }
5616 }
5617 if (found)
5618 w->num--;
5619 }
5620 #endif
5621
5622 /***********************************************************/
5623 /* savevm/loadvm support */
5624
5625 #define IO_BUF_SIZE 32768
5626
5627 struct QEMUFile {
5628 FILE *outfile;
5629 BlockDriverState *bs;
5630 int is_file;
5631 int is_writable;
5632 int64_t base_offset;
5633 int64_t buf_offset; /* start of buffer when writing, end of buffer
5634 when reading */
5635 int buf_index;
5636 int buf_size; /* 0 when writing */
5637 uint8_t buf[IO_BUF_SIZE];
5638 };
5639
5640 QEMUFile *qemu_fopen(const char *filename, const char *mode)
5641 {
5642 QEMUFile *f;
5643
5644 f = qemu_mallocz(sizeof(QEMUFile));
5645 if (!f)
5646 return NULL;
5647 if (!strcmp(mode, "wb")) {
5648 f->is_writable = 1;
5649 } else if (!strcmp(mode, "rb")) {
5650 f->is_writable = 0;
5651 } else {
5652 goto fail;
5653 }
5654 f->outfile = fopen(filename, mode);
5655 if (!f->outfile)
5656 goto fail;
5657 f->is_file = 1;
5658 return f;
5659 fail:
5660 if (f->outfile)
5661 fclose(f->outfile);
5662 qemu_free(f);
5663 return NULL;
5664 }
5665
5666 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
5667 {
5668 QEMUFile *f;
5669
5670 f = qemu_mallocz(sizeof(QEMUFile));
5671 if (!f)
5672 return NULL;
5673 f->is_file = 0;
5674 f->bs = bs;
5675 f->is_writable = is_writable;
5676 f->base_offset = offset;
5677 return f;
5678 }
5679
5680 void qemu_fflush(QEMUFile *f)
5681 {
5682 if (!f->is_writable)
5683 return;
5684 if (f->buf_index > 0) {
5685 if (f->is_file) {
5686 fseek(f->outfile, f->buf_offset, SEEK_SET);
5687 fwrite(f->buf, 1, f->buf_index, f->outfile);
5688 } else {
5689 bdrv_pwrite(f->bs, f->base_offset + f->buf_offset,
5690 f->buf, f->buf_index);
5691 }
5692 f->buf_offset += f->buf_index;
5693 f->buf_index = 0;
5694 }
5695 }
5696
5697 static void qemu_fill_buffer(QEMUFile *f)
5698 {
5699 int len;
5700
5701 if (f->is_writable)
5702 return;
5703 if (f->is_file) {
5704 fseek(f->outfile, f->buf_offset, SEEK_SET);
5705 len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
5706 if (len < 0)
5707 len = 0;
5708 } else {
5709 len = bdrv_pread(f->bs, f->base_offset + f->buf_offset,
5710 f->buf, IO_BUF_SIZE);
5711 if (len < 0)
5712 len = 0;
5713 }
5714 f->buf_index = 0;
5715 f->buf_size = len;
5716 f->buf_offset += len;
5717 }
5718
5719 void qemu_fclose(QEMUFile *f)
5720 {
5721 if (f->is_writable)
5722 qemu_fflush(f);
5723 if (f->is_file) {
5724 fclose(f->outfile);
5725 }
5726 qemu_free(f);
5727 }
5728
5729 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
5730 {
5731 int l;
5732 while (size > 0) {
5733 l = IO_BUF_SIZE - f->buf_index;
5734 if (l > size)
5735 l = size;
5736 memcpy(f->buf + f->buf_index, buf, l);
5737 f->buf_index += l;
5738 buf += l;
5739 size -= l;
5740 if (f->buf_index >= IO_BUF_SIZE)
5741 qemu_fflush(f);
5742 }
5743 }
5744
5745 void qemu_put_byte(QEMUFile *f, int v)
5746 {
5747 f->buf[f->buf_index++] = v;
5748 if (f->buf_index >= IO_BUF_SIZE)
5749 qemu_fflush(f);
5750 }
5751
5752 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
5753 {
5754 int size, l;
5755
5756 size = size1;
5757 while (size > 0) {
5758 l = f->buf_size - f->buf_index;
5759 if (l == 0) {
5760 qemu_fill_buffer(f);
5761 l = f->buf_size - f->buf_index;
5762 if (l == 0)
5763 break;
5764 }
5765 if (l > size)
5766 l = size;
5767 memcpy(buf, f->buf + f->buf_index, l);
5768 f->buf_index += l;
5769 buf += l;
5770 size -= l;
5771 }
5772 return size1 - size;
5773 }
5774
5775 int qemu_get_byte(QEMUFile *f)
5776 {
5777 if (f->buf_index >= f->buf_size) {
5778 qemu_fill_buffer(f);
5779 if (f->buf_index >= f->buf_size)
5780 return 0;
5781 }
5782 return f->buf[f->buf_index++];
5783 }
5784
5785 int64_t qemu_ftell(QEMUFile *f)
5786 {
5787 return f->buf_offset - f->buf_size + f->buf_index;
5788 }
5789
5790 int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
5791 {
5792 if (whence == SEEK_SET) {
5793 /* nothing to do */
5794 } else if (whence == SEEK_CUR) {
5795 pos += qemu_ftell(f);
5796 } else {
5797 /* SEEK_END not supported */
5798 return -1;
5799 }
5800 if (f->is_writable) {
5801 qemu_fflush(f);
5802 f->buf_offset = pos;
5803 } else {
5804 f->buf_offset = pos;
5805 f->buf_index = 0;
5806 f->buf_size = 0;
5807 }
5808 return pos;
5809 }
5810
5811 void qemu_put_be16(QEMUFile *f, unsigned int v)
5812 {
5813 qemu_put_byte(f, v >> 8);
5814 qemu_put_byte(f, v);
5815 }
5816
5817 void qemu_put_be32(QEMUFile *f, unsigned int v)
5818 {
5819 qemu_put_byte(f, v >> 24);
5820 qemu_put_byte(f, v >> 16);
5821 qemu_put_byte(f, v >> 8);
5822 qemu_put_byte(f, v);
5823 }
5824
5825 void qemu_put_be64(QEMUFile *f, uint64_t v)
5826 {
5827 qemu_put_be32(f, v >> 32);
5828 qemu_put_be32(f, v);
5829 }
5830
5831 unsigned int qemu_get_be16(QEMUFile *f)
5832 {
5833 unsigned int v;
5834 v = qemu_get_byte(f) << 8;
5835 v |= qemu_get_byte(f);
5836 return v;
5837 }
5838
5839 unsigned int qemu_get_be32(QEMUFile *f)
5840 {
5841 unsigned int v;
5842 v = qemu_get_byte(f) << 24;
5843 v |= qemu_get_byte(f) << 16;
5844 v |= qemu_get_byte(f) << 8;
5845 v |= qemu_get_byte(f);
5846 return v;
5847 }
5848
5849 uint64_t qemu_get_be64(QEMUFile *f)
5850 {
5851 uint64_t v;
5852 v = (uint64_t)qemu_get_be32(f) << 32;
5853 v |= qemu_get_be32(f);
5854 return v;
5855 }
5856
5857 typedef struct SaveStateEntry {
5858 char idstr[256];
5859 int instance_id;
5860 int version_id;
5861 SaveStateHandler *save_state;
5862 LoadStateHandler *load_state;
5863 void *opaque;
5864 struct SaveStateEntry *next;
5865 } SaveStateEntry;
5866
5867 static SaveStateEntry *first_se;
5868
5869 int register_savevm(const char *idstr,
5870 int instance_id,
5871 int version_id,
5872 SaveStateHandler *save_state,
5873 LoadStateHandler *load_state,
5874 void *opaque)
5875 {
5876 SaveStateEntry *se, **pse;
5877
5878 se = qemu_malloc(sizeof(SaveStateEntry));
5879 if (!se)
5880 return -1;
5881 pstrcpy(se->idstr, sizeof(se->idstr), idstr);
5882 se->instance_id = instance_id;
5883 se->version_id = version_id;
5884 se->save_state = save_state;
5885 se->load_state = load_state;
5886 se->opaque = opaque;
5887 se->next = NULL;
5888
5889 /* add at the end of list */
5890 pse = &first_se;
5891 while (*pse != NULL)
5892 pse = &(*pse)->next;
5893 *pse = se;
5894 return 0;
5895 }
5896
5897 #define QEMU_VM_FILE_MAGIC 0x5145564d
5898 #define QEMU_VM_FILE_VERSION 0x00000002
5899
5900 static int qemu_savevm_state(QEMUFile *f)
5901 {
5902 SaveStateEntry *se;
5903 int len, ret;
5904 int64_t cur_pos, len_pos, total_len_pos;
5905
5906 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
5907 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
5908 total_len_pos = qemu_ftell(f);
5909 qemu_put_be64(f, 0); /* total size */
5910
5911 for(se = first_se; se != NULL; se = se->next) {
5912 /* ID string */
5913 len = strlen(se->idstr);
5914 qemu_put_byte(f, len);
5915 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
5916
5917 qemu_put_be32(f, se->instance_id);
5918 qemu_put_be32(f, se->version_id);
5919
5920 /* record size: filled later */
5921 len_pos = qemu_ftell(f);
5922 qemu_put_be32(f, 0);
5923 se->save_state(f, se->opaque);
5924
5925 /* fill record size */
5926 cur_pos = qemu_ftell(f);
5927 len = cur_pos - len_pos - 4;
5928 qemu_fseek(f, len_pos, SEEK_SET);
5929 qemu_put_be32(f, len);
5930 qemu_fseek(f, cur_pos, SEEK_SET);
5931 }
5932 cur_pos = qemu_ftell(f);
5933 qemu_fseek(f, total_len_pos, SEEK_SET);
5934 qemu_put_be64(f, cur_pos - total_len_pos - 8);
5935 qemu_fseek(f, cur_pos, SEEK_SET);
5936
5937 ret = 0;
5938 return ret;
5939 }
5940
5941 static SaveStateEntry *find_se(const char *idstr, int instance_id)
5942 {
5943 SaveStateEntry *se;
5944
5945 for(se = first_se; se != NULL; se = se->next) {
5946 if (!strcmp(se->idstr, idstr) &&
5947 instance_id == se->instance_id)
5948 return se;
5949 }
5950 return NULL;
5951 }
5952
5953 static int qemu_loadvm_state(QEMUFile *f)
5954 {
5955 SaveStateEntry *se;
5956 int len, ret, instance_id, record_len, version_id;
5957 int64_t total_len, end_pos, cur_pos;
5958 unsigned int v;
5959 char idstr[256];
5960
5961 v = qemu_get_be32(f);
5962 if (v != QEMU_VM_FILE_MAGIC)
5963 goto fail;
5964 v = qemu_get_be32(f);
5965 if (v != QEMU_VM_FILE_VERSION) {
5966 fail:
5967 ret = -1;
5968 goto the_end;
5969 }
5970 total_len = qemu_get_be64(f);
5971 end_pos = total_len + qemu_ftell(f);
5972 for(;;) {
5973 if (qemu_ftell(f) >= end_pos)
5974 break;
5975 len = qemu_get_byte(f);
5976 qemu_get_buffer(f, (uint8_t *)idstr, len);
5977 idstr[len] = '\0';
5978 instance_id = qemu_get_be32(f);
5979 version_id = qemu_get_be32(f);
5980 record_len = qemu_get_be32(f);
5981 #if 0
5982 printf("idstr=%s instance=0x%x version=%d len=%d\n",
5983 idstr, instance_id, version_id, record_len);
5984 #endif
5985 cur_pos = qemu_ftell(f);
5986 se = find_se(idstr, instance_id);
5987 if (!se) {
5988 fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
5989 instance_id, idstr);
5990 } else {
5991 ret = se->load_state(f, se->opaque, version_id);
5992 if (ret < 0) {
5993 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
5994 instance_id, idstr);
5995 }
5996 }
5997 /* always seek to exact end of record */
5998 qemu_fseek(f, cur_pos + record_len, SEEK_SET);
5999 }
6000 ret = 0;
6001 the_end:
6002 return ret;
6003 }
6004
6005 /* device can contain snapshots */
6006 static int bdrv_can_snapshot(BlockDriverState *bs)
6007 {
6008 return (bs &&
6009 !bdrv_is_removable(bs) &&
6010 !bdrv_is_read_only(bs));
6011 }
6012
6013 /* device must be snapshots in order to have a reliable snapshot */
6014 static int bdrv_has_snapshot(BlockDriverState *bs)
6015 {
6016 return (bs &&
6017 !bdrv_is_removable(bs) &&
6018 !bdrv_is_read_only(bs));
6019 }
6020
6021 static BlockDriverState *get_bs_snapshots(void)
6022 {
6023 BlockDriverState *bs;
6024 int i;
6025
6026 if (bs_snapshots)
6027 return bs_snapshots;
6028 for(i = 0; i <= nb_drives; i++) {
6029 bs = drives_table[i].bdrv;
6030 if (bdrv_can_snapshot(bs))
6031 goto ok;
6032 }
6033 return NULL;
6034 ok:
6035 bs_snapshots = bs;
6036 return bs;
6037 }
6038
6039 static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
6040 const char *name)
6041 {
6042 QEMUSnapshotInfo *sn_tab, *sn;
6043 int nb_sns, i, ret;
6044
6045 ret = -ENOENT;
6046 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
6047 if (nb_sns < 0)
6048 return ret;
6049 for(i = 0; i < nb_sns; i++) {
6050 sn = &sn_tab[i];
6051 if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
6052 *sn_info = *sn;
6053 ret = 0;
6054 break;
6055 }
6056 }
6057 qemu_free(sn_tab);
6058 return ret;
6059 }
6060
6061 void do_savevm(const char *name)
6062 {
6063 BlockDriverState *bs, *bs1;
6064 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
6065 int must_delete, ret, i;
6066 BlockDriverInfo bdi1, *bdi = &bdi1;
6067 QEMUFile *f;
6068 int saved_vm_running;
6069 #ifdef _WIN32
6070 struct _timeb tb;
6071 #else
6072 struct timeval tv;
6073 #endif
6074
6075 bs = get_bs_snapshots();
6076 if (!bs) {
6077 term_printf("No block device can accept snapshots\n");
6078 return;
6079 }
6080
6081 /* ??? Should this occur after vm_stop? */
6082 qemu_aio_flush();
6083
6084 saved_vm_running = vm_running;
6085 vm_stop(0);
6086
6087 must_delete = 0;
6088 if (name) {
6089 ret = bdrv_snapshot_find(bs, old_sn, name);
6090 if (ret >= 0) {
6091 must_delete = 1;
6092 }
6093 }
6094 memset(sn, 0, sizeof(*sn));
6095 if (must_delete) {
6096 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
6097 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
6098 } else {
6099 if (name)
6100 pstrcpy(sn->name, sizeof(sn->name), name);
6101 }
6102
6103 /* fill auxiliary fields */
6104 #ifdef _WIN32
6105 _ftime(&tb);
6106 sn->date_sec = tb.time;
6107 sn->date_nsec = tb.millitm * 1000000;
6108 #else
6109 gettimeofday(&tv, NULL);
6110 sn->date_sec = tv.tv_sec;
6111 sn->date_nsec = tv.tv_usec * 1000;
6112 #endif
6113 sn->vm_clock_nsec = qemu_get_clock(vm_clock);
6114
6115 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
6116 term_printf("Device %s does not support VM state snapshots\n",
6117 bdrv_get_device_name(bs));
6118 goto the_end;
6119 }
6120
6121 /* save the VM state */
6122 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
6123 if (!f) {
6124 term_printf("Could not open VM state file\n");
6125 goto the_end;
6126 }
6127 ret = qemu_savevm_state(f);
6128 sn->vm_state_size = qemu_ftell(f);
6129 qemu_fclose(f);
6130 if (ret < 0) {
6131 term_printf("Error %d while writing VM\n", ret);
6132 goto the_end;
6133 }
6134
6135 /* create the snapshots */
6136
6137 for(i = 0; i < nb_drives; i++) {
6138 bs1 = drives_table[i].bdrv;
6139 if (bdrv_has_snapshot(bs1)) {
6140 if (must_delete) {
6141 ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
6142 if (ret < 0) {
6143 term_printf("Error while deleting snapshot on '%s'\n",
6144 bdrv_get_device_name(bs1));
6145 }
6146 }
6147 ret = bdrv_snapshot_create(bs1, sn);
6148 if (ret < 0) {
6149 term_printf("Error while creating snapshot on '%s'\n",
6150 bdrv_get_device_name(bs1));
6151 }
6152 }
6153 }
6154
6155 the_end:
6156 if (saved_vm_running)
6157 vm_start();
6158 }
6159
6160 void do_loadvm(const char *name)
6161 {
6162 BlockDriverState *bs, *bs1;
6163 BlockDriverInfo bdi1, *bdi = &bdi1;
6164 QEMUFile *f;
6165 int i, ret;
6166 int saved_vm_running;
6167
6168 bs = get_bs_snapshots();
6169 if (!bs) {
6170 term_printf("No block device supports snapshots\n");
6171 return;
6172 }
6173
6174 /* Flush all IO requests so they don't interfere with the new state. */
6175 qemu_aio_flush();
6176
6177 saved_vm_running = vm_running;
6178 vm_stop(0);
6179
6180 for(i = 0; i <= nb_drives; i++) {
6181 bs1 = drives_table[i].bdrv;
6182 if (bdrv_has_snapshot(bs1)) {
6183 ret = bdrv_snapshot_goto(bs1, name);
6184 if (ret < 0) {
6185 if (bs != bs1)
6186 term_printf("Warning: ");
6187 switch(ret) {
6188 case -ENOTSUP:
6189 term_printf("Snapshots not supported on device '%s'\n",
6190 bdrv_get_device_name(bs1));
6191 break;
6192 case -ENOENT:
6193 term_printf("Could not find snapshot '%s' on device '%s'\n",
6194 name, bdrv_get_device_name(bs1));
6195 break;
6196 default:
6197 term_printf("Error %d while activating snapshot on '%s'\n",
6198 ret, bdrv_get_device_name(bs1));
6199 break;
6200 }
6201 /* fatal on snapshot block device */
6202 if (bs == bs1)
6203 goto the_end;
6204 }
6205 }
6206 }
6207
6208 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
6209 term_printf("Device %s does not support VM state snapshots\n",
6210 bdrv_get_device_name(bs));
6211 return;
6212 }
6213
6214 /* restore the VM state */
6215 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
6216 if (!f) {
6217 term_printf("Could not open VM state file\n");
6218 goto the_end;
6219 }
6220 ret = qemu_loadvm_state(f);
6221 qemu_fclose(f);
6222 if (ret < 0) {
6223 term_printf("Error %d while loading VM state\n", ret);
6224 }
6225 the_end:
6226 if (saved_vm_running)
6227 vm_start();
6228 }
6229
6230 void do_delvm(const char *name)
6231 {
6232 BlockDriverState *bs, *bs1;
6233 int i, ret;
6234
6235 bs = get_bs_snapshots();
6236 if (!bs) {
6237 term_printf("No block device supports snapshots\n");
6238 return;
6239 }
6240
6241 for(i = 0; i <= nb_drives; i++) {
6242 bs1 = drives_table[i].bdrv;
6243 if (bdrv_has_snapshot(bs1)) {
6244 ret = bdrv_snapshot_delete(bs1, name);
6245 if (ret < 0) {
6246 if (ret == -ENOTSUP)
6247 term_printf("Snapshots not supported on device '%s'\n",
6248 bdrv_get_device_name(bs1));
6249 else
6250 term_printf("Error %d while deleting snapshot on '%s'\n",
6251 ret, bdrv_get_device_name(bs1));
6252 }
6253 }
6254 }
6255 }
6256
6257 void do_info_snapshots(void)
6258 {
6259 BlockDriverState *bs, *bs1;
6260 QEMUSnapshotInfo *sn_tab, *sn;
6261 int nb_sns, i;
6262 char buf[256];
6263
6264 bs = get_bs_snapshots();
6265 if (!bs) {
6266 term_printf("No available block device supports snapshots\n");
6267 return;
6268 }
6269 term_printf("Snapshot devices:");
6270 for(i = 0; i <= nb_drives; i++) {
6271 bs1 = drives_table[i].bdrv;
6272 if (bdrv_has_snapshot(bs1)) {
6273 if (bs == bs1)
6274 term_printf(" %s", bdrv_get_device_name(bs1));
6275 }
6276 }
6277 term_printf("\n");
6278
6279 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
6280 if (nb_sns < 0) {
6281 term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
6282 return;
6283 }
6284 term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
6285 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
6286 for(i = 0; i < nb_sns; i++) {
6287 sn = &sn_tab[i];
6288 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
6289 }
6290 qemu_free(sn_tab);
6291 }
6292
6293 /***********************************************************/
6294 /* cpu save/restore */
6295
6296 #if defined(TARGET_I386)
6297
6298 static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
6299 {
6300 qemu_put_be32(f, dt->selector);
6301 qemu_put_betl(f, dt->base);
6302 qemu_put_be32(f, dt->limit);
6303 qemu_put_be32(f, dt->flags);
6304 }
6305
6306 static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
6307 {
6308 dt->selector = qemu_get_be32(f);
6309 dt->base = qemu_get_betl(f);
6310 dt->limit = qemu_get_be32(f);
6311 dt->flags = qemu_get_be32(f);
6312 }
6313
6314 void cpu_save(QEMUFile *f, void *opaque)
6315 {
6316 CPUState *env = opaque;
6317 uint16_t fptag, fpus, fpuc, fpregs_format;
6318 uint32_t hflags;
6319 int i;
6320
6321 for(i = 0; i < CPU_NB_REGS; i++)
6322 qemu_put_betls(f, &env->regs[i]);
6323 qemu_put_betls(f, &env->eip);
6324 qemu_put_betls(f, &env->eflags);
6325 hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
6326 qemu_put_be32s(f, &hflags);
6327
6328 /* FPU */
6329 fpuc = env->fpuc;
6330 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
6331 fptag = 0;
6332 for(i = 0; i < 8; i++) {
6333 fptag |= ((!env->fptags[i]) << i);
6334 }
6335
6336 qemu_put_be16s(f, &fpuc);
6337 qemu_put_be16s(f, &fpus);
6338 qemu_put_be16s(f, &fptag);
6339
6340 #ifdef USE_X86LDOUBLE
6341 fpregs_format = 0;
6342 #else
6343 fpregs_format = 1;
6344 #endif
6345 qemu_put_be16s(f, &fpregs_format);
6346
6347 for(i = 0; i < 8; i++) {
6348 #ifdef USE_X86LDOUBLE
6349 {
6350 uint64_t mant;
6351 uint16_t exp;
6352 /* we save the real CPU data (in case of MMX usage only 'mant'
6353 contains the MMX register */
6354 cpu_get_fp80(&mant, &exp, env->fpregs[i].d);
6355 qemu_put_be64(f, mant);
6356 qemu_put_be16(f, exp);
6357 }
6358 #else
6359 /* if we use doubles for float emulation, we save the doubles to
6360 avoid losing information in case of MMX usage. It can give
6361 problems if the image is restored on a CPU where long
6362 doubles are used instead. */
6363 qemu_put_be64(f, env->fpregs[i].mmx.MMX_Q(0));
6364 #endif
6365 }
6366
6367 for(i = 0; i < 6; i++)
6368 cpu_put_seg(f, &env->segs[i]);
6369 cpu_put_seg(f, &env->ldt);
6370 cpu_put_seg(f, &env->tr);
6371 cpu_put_seg(f, &env->gdt);
6372 cpu_put_seg(f, &env->idt);
6373
6374 qemu_put_be32s(f, &env->sysenter_cs);
6375 qemu_put_be32s(f, &env->sysenter_esp);
6376 qemu_put_be32s(f, &env->sysenter_eip);
6377
6378 qemu_put_betls(f, &env->cr[0]);
6379 qemu_put_betls(f, &env->cr[2]);
6380 qemu_put_betls(f, &env->cr[3]);
6381 qemu_put_betls(f, &env->cr[4]);
6382
6383 for(i = 0; i < 8; i++)
6384 qemu_put_betls(f, &env->dr[i]);
6385
6386 /* MMU */
6387 qemu_put_be32s(f, &env->a20_mask);
6388
6389 /* XMM */
6390 qemu_put_be32s(f, &env->mxcsr);
6391 for(i = 0; i < CPU_NB_REGS; i++) {
6392 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(0));
6393 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(1));
6394 }
6395
6396 #ifdef TARGET_X86_64
6397 qemu_put_be64s(f, &env->efer);
6398 qemu_put_be64s(f, &env->star);
6399 qemu_put_be64s(f, &env->lstar);
6400 qemu_put_be64s(f, &env->cstar);
6401 qemu_put_be64s(f, &env->fmask);
6402 qemu_put_be64s(f, &env->kernelgsbase);
6403 #endif
6404 qemu_put_be32s(f, &env->smbase);
6405 }
6406
6407 #ifdef USE_X86LDOUBLE
6408 /* XXX: add that in a FPU generic layer */
6409 union x86_longdouble {
6410 uint64_t mant;
6411 uint16_t exp;
6412 };
6413
6414 #define MANTD1(fp) (fp & ((1LL << 52) - 1))
6415 #define EXPBIAS1 1023
6416 #define EXPD1(fp) ((fp >> 52) & 0x7FF)
6417 #define SIGND1(fp) ((fp >> 32) & 0x80000000)
6418
6419 static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
6420 {
6421 int e;
6422 /* mantissa */
6423 p->mant = (MANTD1(temp) << 11) | (1LL << 63);
6424 /* exponent + sign */
6425 e = EXPD1(temp) - EXPBIAS1 + 16383;
6426 e |= SIGND1(temp) >> 16;
6427 p->exp = e;
6428 }
6429 #endif
6430
6431 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6432 {
6433 CPUState *env = opaque;
6434 int i, guess_mmx;
6435 uint32_t hflags;
6436 uint16_t fpus, fpuc, fptag, fpregs_format;
6437
6438 if (version_id != 3 && version_id != 4)
6439 return -EINVAL;
6440 for(i = 0; i < CPU_NB_REGS; i++)
6441 qemu_get_betls(f, &env->regs[i]);
6442 qemu_get_betls(f, &env->eip);
6443 qemu_get_betls(f, &env->eflags);
6444 qemu_get_be32s(f, &hflags);
6445
6446 qemu_get_be16s(f, &fpuc);
6447 qemu_get_be16s(f, &fpus);
6448 qemu_get_be16s(f, &fptag);
6449 qemu_get_be16s(f, &fpregs_format);
6450
6451 /* NOTE: we cannot always restore the FPU state if the image come
6452 from a host with a different 'USE_X86LDOUBLE' define. We guess
6453 if we are in an MMX state to restore correctly in that case. */
6454 guess_mmx = ((fptag == 0xff) && (fpus & 0x3800) == 0);
6455 for(i = 0; i < 8; i++) {
6456 uint64_t mant;
6457 uint16_t exp;
6458
6459 switch(fpregs_format) {
6460 case 0:
6461 mant = qemu_get_be64(f);
6462 exp = qemu_get_be16(f);
6463 #ifdef USE_X86LDOUBLE
6464 env->fpregs[i].d = cpu_set_fp80(mant, exp);
6465 #else
6466 /* difficult case */
6467 if (guess_mmx)
6468 env->fpregs[i].mmx.MMX_Q(0) = mant;
6469 else
6470 env->fpregs[i].d = cpu_set_fp80(mant, exp);
6471 #endif
6472 break;
6473 case 1:
6474 mant = qemu_get_be64(f);
6475 #ifdef USE_X86LDOUBLE
6476 {
6477 union x86_longdouble *p;
6478 /* difficult case */
6479 p = (void *)&env->fpregs[i];
6480 if (guess_mmx) {
6481 p->mant = mant;
6482 p->exp = 0xffff;
6483 } else {
6484 fp64_to_fp80(p, mant);
6485 }
6486 }
6487 #else
6488 env->fpregs[i].mmx.MMX_Q(0) = mant;
6489 #endif
6490 break;
6491 default:
6492 return -EINVAL;
6493 }
6494 }
6495
6496 env->fpuc = fpuc;
6497 /* XXX: restore FPU round state */
6498 env->fpstt = (fpus >> 11) & 7;
6499 env->fpus = fpus & ~0x3800;
6500 fptag ^= 0xff;
6501 for(i = 0; i < 8; i++) {
6502 env->fptags[i] = (fptag >> i) & 1;
6503 }
6504
6505 for(i = 0; i < 6; i++)
6506 cpu_get_seg(f, &env->segs[i]);
6507 cpu_get_seg(f, &env->ldt);
6508 cpu_get_seg(f, &env->tr);
6509 cpu_get_seg(f, &env->gdt);
6510 cpu_get_seg(f, &env->idt);
6511
6512 qemu_get_be32s(f, &env->sysenter_cs);
6513 qemu_get_be32s(f, &env->sysenter_esp);
6514 qemu_get_be32s(f, &env->sysenter_eip);
6515
6516 qemu_get_betls(f, &env->cr[0]);
6517 qemu_get_betls(f, &env->cr[2]);
6518 qemu_get_betls(f, &env->cr[3]);
6519 qemu_get_betls(f, &env->cr[4]);
6520
6521 for(i = 0; i < 8; i++)
6522 qemu_get_betls(f, &env->dr[i]);
6523
6524 /* MMU */
6525 qemu_get_be32s(f, &env->a20_mask);
6526
6527 qemu_get_be32s(f, &env->mxcsr);
6528 for(i = 0; i < CPU_NB_REGS; i++) {
6529 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(0));
6530 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(1));
6531 }
6532
6533 #ifdef TARGET_X86_64
6534 qemu_get_be64s(f, &env->efer);
6535 qemu_get_be64s(f, &env->star);
6536 qemu_get_be64s(f, &env->lstar);
6537 qemu_get_be64s(f, &env->cstar);
6538 qemu_get_be64s(f, &env->fmask);
6539 qemu_get_be64s(f, &env->kernelgsbase);
6540 #endif
6541 if (version_id >= 4)
6542 qemu_get_be32s(f, &env->smbase);
6543
6544 /* XXX: compute hflags from scratch, except for CPL and IIF */
6545 env->hflags = hflags;
6546 tlb_flush(env, 1);
6547 return 0;
6548 }
6549
6550 #elif defined(TARGET_PPC)
6551 void cpu_save(QEMUFile *f, void *opaque)
6552 {
6553 }
6554
6555 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6556 {
6557 return 0;
6558 }
6559
6560 #elif defined(TARGET_MIPS)
6561 void cpu_save(QEMUFile *f, void *opaque)
6562 {
6563 }
6564
6565 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6566 {
6567 return 0;
6568 }
6569
6570 #elif defined(TARGET_SPARC)
6571 void cpu_save(QEMUFile *f, void *opaque)
6572 {
6573 CPUState *env = opaque;
6574 int i;
6575 uint32_t tmp;
6576
6577 for(i = 0; i < 8; i++)
6578 qemu_put_betls(f, &env->gregs[i]);
6579 for(i = 0; i < NWINDOWS * 16; i++)
6580 qemu_put_betls(f, &env->regbase[i]);
6581
6582 /* FPU */
6583 for(i = 0; i < TARGET_FPREGS; i++) {
6584 union {
6585 float32 f;
6586 uint32_t i;
6587 } u;
6588 u.f = env->fpr[i];
6589 qemu_put_be32(f, u.i);
6590 }
6591
6592 qemu_put_betls(f, &env->pc);
6593 qemu_put_betls(f, &env->npc);
6594 qemu_put_betls(f, &env->y);
6595 tmp = GET_PSR(env);
6596 qemu_put_be32(f, tmp);
6597 qemu_put_betls(f, &env->fsr);
6598 qemu_put_betls(f, &env->tbr);
6599 #ifndef TARGET_SPARC64
6600 qemu_put_be32s(f, &env->wim);
6601 /* MMU */
6602 for(i = 0; i < 16; i++)
6603 qemu_put_be32s(f, &env->mmuregs[i]);
6604 #endif
6605 }
6606
6607 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6608 {
6609 CPUState *env = opaque;
6610 int i;
6611 uint32_t tmp;
6612
6613 for(i = 0; i < 8; i++)
6614 qemu_get_betls(f, &env->gregs[i]);
6615 for(i = 0; i < NWINDOWS * 16; i++)
6616 qemu_get_betls(f, &env->regbase[i]);
6617
6618 /* FPU */
6619 for(i = 0; i < TARGET_FPREGS; i++) {
6620 union {
6621 float32 f;
6622 uint32_t i;
6623 } u;
6624 u.i = qemu_get_be32(f);
6625 env->fpr[i] = u.f;
6626 }
6627
6628 qemu_get_betls(f, &env->pc);
6629 qemu_get_betls(f, &env->npc);
6630 qemu_get_betls(f, &env->y);
6631 tmp = qemu_get_be32(f);
6632 env->cwp = 0; /* needed to ensure that the wrapping registers are
6633 correctly updated */
6634 PUT_PSR(env, tmp);
6635 qemu_get_betls(f, &env->fsr);
6636 qemu_get_betls(f, &env->tbr);
6637 #ifndef TARGET_SPARC64
6638 qemu_get_be32s(f, &env->wim);
6639 /* MMU */
6640 for(i = 0; i < 16; i++)
6641 qemu_get_be32s(f, &env->mmuregs[i]);
6642 #endif
6643 tlb_flush(env, 1);
6644 return 0;
6645 }
6646
6647 #elif defined(TARGET_ARM)
6648
6649 void cpu_save(QEMUFile *f, void *opaque)
6650 {
6651 int i;
6652 CPUARMState *env = (CPUARMState *)opaque;
6653
6654 for (i = 0; i < 16; i++) {
6655 qemu_put_be32(f, env->regs[i]);
6656 }
6657 qemu_put_be32(f, cpsr_read(env));
6658 qemu_put_be32(f, env->spsr);
6659 for (i = 0; i < 6; i++) {
6660 qemu_put_be32(f, env->banked_spsr[i]);
6661 qemu_put_be32(f, env->banked_r13[i]);
6662 qemu_put_be32(f, env->banked_r14[i]);
6663 }
6664 for (i = 0; i < 5; i++) {
6665 qemu_put_be32(f, env->usr_regs[i]);
6666 qemu_put_be32(f, env->fiq_regs[i]);
6667 }
6668 qemu_put_be32(f, env->cp15.c0_cpuid);
6669 qemu_put_be32(f, env->cp15.c0_cachetype);
6670 qemu_put_be32(f, env->cp15.c1_sys);
6671 qemu_put_be32(f, env->cp15.c1_coproc);
6672 qemu_put_be32(f, env->cp15.c1_xscaleauxcr);
6673 qemu_put_be32(f, env->cp15.c2_base0);
6674 qemu_put_be32(f, env->cp15.c2_base1);
6675 qemu_put_be32(f, env->cp15.c2_mask);
6676 qemu_put_be32(f, env->cp15.c2_data);
6677 qemu_put_be32(f, env->cp15.c2_insn);
6678 qemu_put_be32(f, env->cp15.c3);
6679 qemu_put_be32(f, env->cp15.c5_insn);
6680 qemu_put_be32(f, env->cp15.c5_data);
6681 for (i = 0; i < 8; i++) {
6682 qemu_put_be32(f, env->cp15.c6_region[i]);
6683 }
6684 qemu_put_be32(f, env->cp15.c6_insn);
6685 qemu_put_be32(f, env->cp15.c6_data);
6686 qemu_put_be32(f, env->cp15.c9_insn);
6687 qemu_put_be32(f, env->cp15.c9_data);
6688 qemu_put_be32(f, env->cp15.c13_fcse);
6689 qemu_put_be32(f, env->cp15.c13_context);
6690 qemu_put_be32(f, env->cp15.c13_tls1);
6691 qemu_put_be32(f, env->cp15.c13_tls2);
6692 qemu_put_be32(f, env->cp15.c13_tls3);
6693 qemu_put_be32(f, env->cp15.c15_cpar);
6694
6695 qemu_put_be32(f, env->features);
6696
6697 if (arm_feature(env, ARM_FEATURE_VFP)) {
6698 for (i = 0; i < 16; i++) {
6699 CPU_DoubleU u;
6700 u.d = env->vfp.regs[i];
6701 qemu_put_be32(f, u.l.upper);
6702 qemu_put_be32(f, u.l.lower);
6703 }
6704 for (i = 0; i < 16; i++) {
6705 qemu_put_be32(f, env->vfp.xregs[i]);
6706 }
6707
6708 /* TODO: Should use proper FPSCR access functions. */
6709 qemu_put_be32(f, env->vfp.vec_len);
6710 qemu_put_be32(f, env->vfp.vec_stride);
6711
6712 if (arm_feature(env, ARM_FEATURE_VFP3)) {
6713 for (i = 16; i < 32; i++) {
6714 CPU_DoubleU u;
6715 u.d = env->vfp.regs[i];
6716 qemu_put_be32(f, u.l.upper);
6717 qemu_put_be32(f, u.l.lower);
6718 }
6719 }
6720 }
6721
6722 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6723 for (i = 0; i < 16; i++) {
6724 qemu_put_be64(f, env->iwmmxt.regs[i]);
6725 }
6726 for (i = 0; i < 16; i++) {
6727 qemu_put_be32(f, env->iwmmxt.cregs[i]);
6728 }
6729 }
6730
6731 if (arm_feature(env, ARM_FEATURE_M)) {
6732 qemu_put_be32(f, env->v7m.other_sp);
6733 qemu_put_be32(f, env->v7m.vecbase);
6734 qemu_put_be32(f, env->v7m.basepri);
6735 qemu_put_be32(f, env->v7m.control);
6736 qemu_put_be32(f, env->v7m.current_sp);
6737 qemu_put_be32(f, env->v7m.exception);
6738 }
6739 }
6740
6741 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6742 {
6743 CPUARMState *env = (CPUARMState *)opaque;
6744 int i;
6745
6746 if (version_id != ARM_CPU_SAVE_VERSION)
6747 return -EINVAL;
6748
6749 for (i = 0; i < 16; i++) {
6750 env->regs[i] = qemu_get_be32(f);
6751 }
6752 cpsr_write(env, qemu_get_be32(f), 0xffffffff);
6753 env->spsr = qemu_get_be32(f);
6754 for (i = 0; i < 6; i++) {
6755 env->banked_spsr[i] = qemu_get_be32(f);
6756 env->banked_r13[i] = qemu_get_be32(f);
6757 env->banked_r14[i] = qemu_get_be32(f);
6758 }
6759 for (i = 0; i < 5; i++) {
6760 env->usr_regs[i] = qemu_get_be32(f);
6761 env->fiq_regs[i] = qemu_get_be32(f);
6762 }
6763 env->cp15.c0_cpuid = qemu_get_be32(f);
6764 env->cp15.c0_cachetype = qemu_get_be32(f);
6765 env->cp15.c1_sys = qemu_get_be32(f);
6766 env->cp15.c1_coproc = qemu_get_be32(f);
6767 env->cp15.c1_xscaleauxcr = qemu_get_be32(f);
6768 env->cp15.c2_base0 = qemu_get_be32(f);
6769 env->cp15.c2_base1 = qemu_get_be32(f);
6770 env->cp15.c2_mask = qemu_get_be32(f);
6771 env->cp15.c2_data = qemu_get_be32(f);
6772 env->cp15.c2_insn = qemu_get_be32(f);
6773 env->cp15.c3 = qemu_get_be32(f);
6774 env->cp15.c5_insn = qemu_get_be32(f);
6775 env->cp15.c5_data = qemu_get_be32(f);
6776 for (i = 0; i < 8; i++) {
6777 env->cp15.c6_region[i] = qemu_get_be32(f);
6778 }
6779 env->cp15.c6_insn = qemu_get_be32(f);
6780 env->cp15.c6_data = qemu_get_be32(f);
6781 env->cp15.c9_insn = qemu_get_be32(f);
6782 env->cp15.c9_data = qemu_get_be32(f);
6783 env->cp15.c13_fcse = qemu_get_be32(f);
6784 env->cp15.c13_context = qemu_get_be32(f);
6785 env->cp15.c13_tls1 = qemu_get_be32(f);
6786 env->cp15.c13_tls2 = qemu_get_be32(f);
6787 env->cp15.c13_tls3 = qemu_get_be32(f);
6788 env->cp15.c15_cpar = qemu_get_be32(f);
6789
6790 env->features = qemu_get_be32(f);
6791
6792 if (arm_feature(env, ARM_FEATURE_VFP)) {
6793 for (i = 0; i < 16; i++) {
6794 CPU_DoubleU u;
6795 u.l.upper = qemu_get_be32(f);
6796 u.l.lower = qemu_get_be32(f);
6797 env->vfp.regs[i] = u.d;
6798 }
6799 for (i = 0; i < 16; i++) {
6800 env->vfp.xregs[i] = qemu_get_be32(f);
6801 }
6802
6803 /* TODO: Should use proper FPSCR access functions. */
6804 env->vfp.vec_len = qemu_get_be32(f);
6805 env->vfp.vec_stride = qemu_get_be32(f);
6806
6807 if (arm_feature(env, ARM_FEATURE_VFP3)) {
6808 for (i = 0; i < 16; i++) {
6809 CPU_DoubleU u;
6810 u.l.upper = qemu_get_be32(f);
6811 u.l.lower = qemu_get_be32(f);
6812 env->vfp.regs[i] = u.d;
6813 }
6814 }
6815 }
6816
6817 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6818 for (i = 0; i < 16; i++) {
6819 env->iwmmxt.regs[i] = qemu_get_be64(f);
6820 }
6821 for (i = 0; i < 16; i++) {
6822 env->iwmmxt.cregs[i] = qemu_get_be32(f);
6823 }
6824 }
6825
6826 if (arm_feature(env, ARM_FEATURE_M)) {
6827 env->v7m.other_sp = qemu_get_be32(f);
6828 env->v7m.vecbase = qemu_get_be32(f);
6829 env->v7m.basepri = qemu_get_be32(f);
6830 env->v7m.control = qemu_get_be32(f);
6831 env->v7m.current_sp = qemu_get_be32(f);
6832 env->v7m.exception = qemu_get_be32(f);
6833 }
6834
6835 return 0;
6836 }
6837
6838 #else
6839
6840 //#warning No CPU save/restore functions
6841
6842 #endif
6843
6844 /***********************************************************/
6845 /* ram save/restore */
6846
6847 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
6848 {
6849 int v;
6850
6851 v = qemu_get_byte(f);
6852 switch(v) {
6853 case 0:
6854 if (qemu_get_buffer(f, buf, len) != len)
6855 return -EIO;
6856 break;
6857 case 1:
6858 v = qemu_get_byte(f);
6859 memset(buf, v, len);
6860 break;
6861 default:
6862 return -EINVAL;
6863 }
6864 return 0;
6865 }
6866
6867 static int ram_load_v1(QEMUFile *f, void *opaque)
6868 {
6869 int i, ret;
6870
6871 if (qemu_get_be32(f) != phys_ram_size)
6872 return -EINVAL;
6873 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
6874 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
6875 if (ret)
6876 return ret;
6877 }
6878 return 0;
6879 }
6880
6881 #define BDRV_HASH_BLOCK_SIZE 1024
6882 #define IOBUF_SIZE 4096
6883 #define RAM_CBLOCK_MAGIC 0xfabe
6884
6885 typedef struct RamCompressState {
6886 z_stream zstream;
6887 QEMUFile *f;
6888 uint8_t buf[IOBUF_SIZE];
6889 } RamCompressState;
6890
6891 static int ram_compress_open(RamCompressState *s, QEMUFile *f)
6892 {
6893 int ret;
6894 memset(s, 0, sizeof(*s));
6895 s->f = f;
6896 ret = deflateInit2(&s->zstream, 1,
6897 Z_DEFLATED, 15,
6898 9, Z_DEFAULT_STRATEGY);
6899 if (ret != Z_OK)
6900 return -1;
6901 s->zstream.avail_out = IOBUF_SIZE;
6902 s->zstream.next_out = s->buf;
6903 return 0;
6904 }
6905
6906 static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
6907 {
6908 qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
6909 qemu_put_be16(s->f, len);
6910 qemu_put_buffer(s->f, buf, len);
6911 }
6912
6913 static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
6914 {
6915 int ret;
6916
6917 s->zstream.avail_in = len;
6918 s->zstream.next_in = (uint8_t *)buf;
6919 while (s->zstream.avail_in > 0) {
6920 ret = deflate(&s->zstream, Z_NO_FLUSH);
6921 if (ret != Z_OK)
6922 return -1;
6923 if (s->zstream.avail_out == 0) {
6924 ram_put_cblock(s, s->buf, IOBUF_SIZE);
6925 s->zstream.avail_out = IOBUF_SIZE;
6926 s->zstream.next_out = s->buf;
6927 }
6928 }
6929 return 0;
6930 }
6931
6932 static void ram_compress_close(RamCompressState *s)
6933 {
6934 int len, ret;
6935
6936 /* compress last bytes */
6937 for(;;) {
6938 ret = deflate(&s->zstream, Z_FINISH);
6939 if (ret == Z_OK || ret == Z_STREAM_END) {
6940 len = IOBUF_SIZE - s->zstream.avail_out;
6941 if (len > 0) {
6942 ram_put_cblock(s, s->buf, len);
6943 }
6944 s->zstream.avail_out = IOBUF_SIZE;
6945 s->zstream.next_out = s->buf;
6946 if (ret == Z_STREAM_END)
6947 break;
6948 } else {
6949 goto fail;
6950 }
6951 }
6952 fail:
6953 deflateEnd(&s->zstream);
6954 }
6955
6956 typedef struct RamDecompressState {
6957 z_stream zstream;
6958 QEMUFile *f;
6959 uint8_t buf[IOBUF_SIZE];
6960 } RamDecompressState;
6961
6962 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
6963 {
6964 int ret;
6965 memset(s, 0, sizeof(*s));
6966 s->f = f;
6967 ret = inflateInit(&s->zstream);
6968 if (ret != Z_OK)
6969 return -1;
6970 return 0;
6971 }
6972
6973 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
6974 {
6975 int ret, clen;
6976
6977 s->zstream.avail_out = len;
6978 s->zstream.next_out = buf;
6979 while (s->zstream.avail_out > 0) {
6980 if (s->zstream.avail_in == 0) {
6981 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
6982 return -1;
6983 clen = qemu_get_be16(s->f);
6984 if (clen > IOBUF_SIZE)
6985 return -1;
6986 qemu_get_buffer(s->f, s->buf, clen);
6987 s->zstream.avail_in = clen;
6988 s->zstream.next_in = s->buf;
6989 }
6990 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
6991 if (ret != Z_OK && ret != Z_STREAM_END) {
6992 return -1;
6993 }
6994 }
6995 return 0;
6996 }
6997
6998 static void ram_decompress_close(RamDecompressState *s)
6999 {
7000 inflateEnd(&s->zstream);
7001 }
7002
7003 static void ram_save(QEMUFile *f, void *opaque)
7004 {
7005 int i;
7006 RamCompressState s1, *s = &s1;
7007 uint8_t buf[10];
7008
7009 qemu_put_be32(f, phys_ram_size);
7010 if (ram_compress_open(s, f) < 0)
7011 return;
7012 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
7013 #if 0
7014 if (tight_savevm_enabled) {
7015 int64_t sector_num;
7016 int j;
7017
7018 /* find if the memory block is available on a virtual
7019 block device */
7020 sector_num = -1;
7021 for(j = 0; j < nb_drives; j++) {
7022 sector_num = bdrv_hash_find(drives_table[j].bdrv,
7023 phys_ram_base + i,
7024 BDRV_HASH_BLOCK_SIZE);
7025 if (sector_num >= 0)
7026 break;
7027 }
7028 if (j == nb_drives)
7029 goto normal_compress;
7030 buf[0] = 1;
7031 buf[1] = j;
7032 cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
7033 ram_compress_buf(s, buf, 10);
7034 } else
7035 #endif
7036 {
7037 // normal_compress:
7038 buf[0] = 0;
7039 ram_compress_buf(s, buf, 1);
7040 ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
7041 }
7042 }
7043 ram_compress_close(s);
7044 }
7045
7046 static int ram_load(QEMUFile *f, void *opaque, int version_id)
7047 {
7048 RamDecompressState s1, *s = &s1;
7049 uint8_t buf[10];
7050 int i;
7051
7052 if (version_id == 1)
7053 return ram_load_v1(f, opaque);
7054 if (version_id != 2)
7055 return -EINVAL;
7056 if (qemu_get_be32(f) != phys_ram_size)
7057 return -EINVAL;
7058 if (ram_decompress_open(s, f) < 0)
7059 return -EINVAL;
7060 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
7061 if (ram_decompress_buf(s, buf, 1) < 0) {
7062 fprintf(stderr, "Error while reading ram block header\n");
7063 goto error;
7064 }
7065 if (buf[0] == 0) {
7066 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
7067 fprintf(stderr, "Error while reading ram block address=0x%08x", i);
7068 goto error;
7069 }
7070 } else
7071 #if 0
7072 if (buf[0] == 1) {
7073 int bs_index;
7074 int64_t sector_num;
7075
7076 ram_decompress_buf(s, buf + 1, 9);
7077 bs_index = buf[1];
7078 sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
7079 if (bs_index >= nb_drives) {
7080 fprintf(stderr, "Invalid block device index %d\n", bs_index);
7081 goto error;
7082 }
7083 if (bdrv_read(drives_table[bs_index].bdrv, sector_num,
7084 phys_ram_base + i,
7085 BDRV_HASH_BLOCK_SIZE / 512) < 0) {
7086 fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
7087 bs_index, sector_num);
7088 goto error;
7089 }
7090 } else
7091 #endif
7092 {
7093 error:
7094 printf("Error block header\n");
7095 return -EINVAL;
7096 }
7097 }
7098 ram_decompress_close(s);
7099 return 0;
7100 }
7101
7102 /***********************************************************/
7103 /* bottom halves (can be seen as timers which expire ASAP) */
7104
7105 struct QEMUBH {
7106 QEMUBHFunc *cb;
7107 void *opaque;
7108 int scheduled;
7109 QEMUBH *next;
7110 };
7111
7112 static QEMUBH *first_bh = NULL;
7113
7114 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
7115 {
7116 QEMUBH *bh;
7117 bh = qemu_mallocz(sizeof(QEMUBH));
7118 if (!bh)
7119 return NULL;
7120 bh->cb = cb;
7121 bh->opaque = opaque;
7122 return bh;
7123 }
7124
7125 int qemu_bh_poll(void)
7126 {
7127 QEMUBH *bh, **pbh;
7128 int ret;
7129
7130 ret = 0;
7131 for(;;) {
7132 pbh = &first_bh;
7133 bh = *pbh;
7134 if (!bh)
7135 break;
7136 ret = 1;
7137 *pbh = bh->next;
7138 bh->scheduled = 0;
7139 bh->cb(bh->opaque);
7140 }
7141 return ret;
7142 }
7143
7144 void qemu_bh_schedule(QEMUBH *bh)
7145 {
7146 CPUState *env = cpu_single_env;
7147 if (bh->scheduled)
7148 return;
7149 bh->scheduled = 1;
7150 bh->next = first_bh;
7151 first_bh = bh;
7152
7153 /* stop the currently executing CPU to execute the BH ASAP */
7154 if (env) {
7155 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
7156 }
7157 }
7158
7159 void qemu_bh_cancel(QEMUBH *bh)
7160 {
7161 QEMUBH **pbh;
7162 if (bh->scheduled) {
7163 pbh = &first_bh;
7164 while (*pbh != bh)
7165 pbh = &(*pbh)->next;
7166 *pbh = bh->next;
7167 bh->scheduled = 0;
7168 }
7169 }
7170
7171 void qemu_bh_delete(QEMUBH *bh)
7172 {
7173 qemu_bh_cancel(bh);
7174 qemu_free(bh);
7175 }
7176
7177 /***********************************************************/
7178 /* machine registration */
7179
7180 QEMUMachine *first_machine = NULL;
7181
7182 int qemu_register_machine(QEMUMachine *m)
7183 {
7184 QEMUMachine **pm;
7185 pm = &first_machine;
7186 while (*pm != NULL)
7187 pm = &(*pm)->next;
7188 m->next = NULL;
7189 *pm = m;
7190 return 0;
7191 }
7192
7193 static QEMUMachine *find_machine(const char *name)
7194 {
7195 QEMUMachine *m;
7196
7197 for(m = first_machine; m != NULL; m = m->next) {
7198 if (!strcmp(m->name, name))
7199 return m;
7200 }
7201 return NULL;
7202 }
7203
7204 /***********************************************************/
7205 /* main execution loop */
7206
7207 static void gui_update(void *opaque)
7208 {
7209 DisplayState *ds = opaque;
7210 ds->dpy_refresh(ds);
7211 qemu_mod_timer(ds->gui_timer,
7212 (ds->gui_timer_interval ?
7213 ds->gui_timer_interval :
7214 GUI_REFRESH_INTERVAL)
7215 + qemu_get_clock(rt_clock));
7216 }
7217
7218 struct vm_change_state_entry {
7219 VMChangeStateHandler *cb;
7220 void *opaque;
7221 LIST_ENTRY (vm_change_state_entry) entries;
7222 };
7223
7224 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
7225
7226 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
7227 void *opaque)
7228 {
7229 VMChangeStateEntry *e;
7230
7231 e = qemu_mallocz(sizeof (*e));
7232 if (!e)
7233 return NULL;
7234
7235 e->cb = cb;
7236 e->opaque = opaque;
7237 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
7238 return e;
7239 }
7240
7241 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
7242 {
7243 LIST_REMOVE (e, entries);
7244 qemu_free (e);
7245 }
7246
7247 static void vm_state_notify(int running)
7248 {
7249 VMChangeStateEntry *e;
7250
7251 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
7252 e->cb(e->opaque, running);
7253 }
7254 }
7255
7256 /* XXX: support several handlers */
7257 static VMStopHandler *vm_stop_cb;
7258 static void *vm_stop_opaque;
7259
7260 int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
7261 {
7262 vm_stop_cb = cb;
7263 vm_stop_opaque = opaque;
7264 return 0;
7265 }
7266
7267 void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
7268 {
7269 vm_stop_cb = NULL;
7270 }
7271
7272 void vm_start(void)
7273 {
7274 if (!vm_running) {
7275 cpu_enable_ticks();
7276 vm_running = 1;
7277 vm_state_notify(1);
7278 qemu_rearm_alarm_timer(alarm_timer);
7279 }
7280 }
7281
7282 void vm_stop(int reason)
7283 {
7284 if (vm_running) {
7285 cpu_disable_ticks();
7286 vm_running = 0;
7287 if (reason != 0) {
7288 if (vm_stop_cb) {
7289 vm_stop_cb(vm_stop_opaque, reason);
7290 }
7291 }
7292 vm_state_notify(0);
7293 }
7294 }
7295
7296 /* reset/shutdown handler */
7297
7298 typedef struct QEMUResetEntry {
7299 QEMUResetHandler *func;
7300 void *opaque;
7301 struct QEMUResetEntry *next;
7302 } QEMUResetEntry;
7303
7304 static QEMUResetEntry *first_reset_entry;
7305 static int reset_requested;
7306 static int shutdown_requested;
7307 static int powerdown_requested;
7308
7309 int qemu_shutdown_requested(void)
7310 {
7311 int r = shutdown_requested;
7312 shutdown_requested = 0;
7313 return r;
7314 }
7315
7316 int qemu_reset_requested(void)
7317 {
7318 int r = reset_requested;
7319 reset_requested = 0;
7320 return r;
7321 }
7322
7323 int qemu_powerdown_requested(void)
7324 {
7325 int r = powerdown_requested;
7326 powerdown_requested = 0;
7327 return r;
7328 }
7329
7330 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
7331 {
7332 QEMUResetEntry **pre, *re;
7333
7334 pre = &first_reset_entry;
7335 while (*pre != NULL)
7336 pre = &(*pre)->next;
7337 re = qemu_mallocz(sizeof(QEMUResetEntry));
7338 re->func = func;
7339 re->opaque = opaque;
7340 re->next = NULL;
7341 *pre = re;
7342 }
7343
7344 void qemu_system_reset(void)
7345 {
7346 QEMUResetEntry *re;
7347
7348 /* reset all devices */
7349 for(re = first_reset_entry; re != NULL; re = re->next) {
7350 re->func(re->opaque);
7351 }
7352 }
7353
7354 void qemu_system_reset_request(void)
7355 {
7356 if (no_reboot) {
7357 shutdown_requested = 1;
7358 } else {
7359 reset_requested = 1;
7360 }
7361 if (cpu_single_env)
7362 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7363 }
7364
7365 void qemu_system_shutdown_request(void)
7366 {
7367 shutdown_requested = 1;
7368 if (cpu_single_env)
7369 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7370 }
7371
7372 void qemu_system_powerdown_request(void)
7373 {
7374 powerdown_requested = 1;
7375 if (cpu_single_env)
7376 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7377 }
7378
7379 void main_loop_wait(int timeout)
7380 {
7381 IOHandlerRecord *ioh;
7382 fd_set rfds, wfds, xfds;
7383 int ret, nfds;
7384 #ifdef _WIN32
7385 int ret2, i;
7386 #endif
7387 struct timeval tv;
7388 PollingEntry *pe;
7389
7390
7391 /* XXX: need to suppress polling by better using win32 events */
7392 ret = 0;
7393 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
7394 ret |= pe->func(pe->opaque);
7395 }
7396 #ifdef _WIN32
7397 if (ret == 0) {
7398 int err;
7399 WaitObjects *w = &wait_objects;
7400
7401 ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
7402 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
7403 if (w->func[ret - WAIT_OBJECT_0])
7404 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
7405
7406 /* Check for additional signaled events */
7407 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
7408
7409 /* Check if event is signaled */
7410 ret2 = WaitForSingleObject(w->events[i], 0);
7411 if(ret2 == WAIT_OBJECT_0) {
7412 if (w->func[i])
7413 w->func[i](w->opaque[i]);
7414 } else if (ret2 == WAIT_TIMEOUT) {
7415 } else {
7416 err = GetLastError();
7417 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
7418 }
7419 }
7420 } else if (ret == WAIT_TIMEOUT) {
7421 } else {
7422 err = GetLastError();
7423 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
7424 }
7425 }
7426 #endif
7427 /* poll any events */
7428 /* XXX: separate device handlers from system ones */
7429 nfds = -1;
7430 FD_ZERO(&rfds);
7431 FD_ZERO(&wfds);
7432 FD_ZERO(&xfds);
7433 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
7434 if (ioh->deleted)
7435 continue;
7436 if (ioh->fd_read &&
7437 (!ioh->fd_read_poll ||
7438 ioh->fd_read_poll(ioh->opaque) != 0)) {
7439 FD_SET(ioh->fd, &rfds);
7440 if (ioh->fd > nfds)
7441 nfds = ioh->fd;
7442 }
7443 if (ioh->fd_write) {
7444 FD_SET(ioh->fd, &wfds);
7445 if (ioh->fd > nfds)
7446 nfds = ioh->fd;
7447 }
7448 }
7449
7450 tv.tv_sec = 0;
7451 #ifdef _WIN32
7452 tv.tv_usec = 0;
7453 #else
7454 tv.tv_usec = timeout * 1000;
7455 #endif
7456 #if defined(CONFIG_SLIRP)
7457 if (slirp_inited) {
7458 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
7459 }
7460 #endif
7461 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
7462 if (ret > 0) {
7463 IOHandlerRecord **pioh;
7464
7465 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
7466 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
7467 ioh->fd_read(ioh->opaque);
7468 }
7469 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
7470 ioh->fd_write(ioh->opaque);
7471 }
7472 }
7473
7474 /* remove deleted IO handlers */
7475 pioh = &first_io_handler;
7476 while (*pioh) {
7477 ioh = *pioh;
7478 if (ioh->deleted) {
7479 *pioh = ioh->next;
7480 qemu_free(ioh);
7481 } else
7482 pioh = &ioh->next;
7483 }
7484 }
7485 #if defined(CONFIG_SLIRP)
7486 if (slirp_inited) {
7487 if (ret < 0) {
7488 FD_ZERO(&rfds);
7489 FD_ZERO(&wfds);
7490 FD_ZERO(&xfds);
7491 }
7492 slirp_select_poll(&rfds, &wfds, &xfds);
7493 }
7494 #endif
7495 qemu_aio_poll();
7496
7497 if (vm_running) {
7498 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
7499 qemu_get_clock(vm_clock));
7500 /* run dma transfers, if any */
7501 DMA_run();
7502 }
7503
7504 /* real time timers */
7505 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
7506 qemu_get_clock(rt_clock));
7507
7508 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
7509 alarm_timer->flags &= ~(ALARM_FLAG_EXPIRED);
7510 qemu_rearm_alarm_timer(alarm_timer);
7511 }
7512
7513 /* Check bottom-halves last in case any of the earlier events triggered
7514 them. */
7515 qemu_bh_poll();
7516
7517 }
7518
7519 static int main_loop(void)
7520 {
7521 int ret, timeout;
7522 #ifdef CONFIG_PROFILER
7523 int64_t ti;
7524 #endif
7525 CPUState *env;
7526
7527 cur_cpu = first_cpu;
7528 next_cpu = cur_cpu->next_cpu ?: first_cpu;
7529 for(;;) {
7530 if (vm_running) {
7531
7532 for(;;) {
7533 /* get next cpu */
7534 env = next_cpu;
7535 #ifdef CONFIG_PROFILER
7536 ti = profile_getclock();
7537 #endif
7538 ret = cpu_exec(env);
7539 #ifdef CONFIG_PROFILER
7540 qemu_time += profile_getclock() - ti;
7541 #endif
7542 next_cpu = env->next_cpu ?: first_cpu;
7543 if (event_pending && likely(ret != EXCP_DEBUG)) {
7544 ret = EXCP_INTERRUPT;
7545 event_pending = 0;
7546 break;
7547 }
7548 if (ret == EXCP_HLT) {
7549 /* Give the next CPU a chance to run. */
7550 cur_cpu = env;
7551 continue;
7552 }
7553 if (ret != EXCP_HALTED)
7554 break;
7555 /* all CPUs are halted ? */
7556 if (env == cur_cpu)
7557 break;
7558 }
7559 cur_cpu = env;
7560
7561 if (shutdown_requested) {
7562 ret = EXCP_INTERRUPT;
7563 break;
7564 }
7565 if (reset_requested) {
7566 reset_requested = 0;
7567 qemu_system_reset();
7568 ret = EXCP_INTERRUPT;
7569 }
7570 if (powerdown_requested) {
7571 powerdown_requested = 0;
7572 qemu_system_powerdown();
7573 ret = EXCP_INTERRUPT;
7574 }
7575 if (unlikely(ret == EXCP_DEBUG)) {
7576 vm_stop(EXCP_DEBUG);
7577 }
7578 /* If all cpus are halted then wait until the next IRQ */
7579 /* XXX: use timeout computed from timers */
7580 if (ret == EXCP_HALTED)
7581 timeout = 10;
7582 else
7583 timeout = 0;
7584 } else {
7585 timeout = 10;
7586 }
7587 #ifdef CONFIG_PROFILER
7588 ti = profile_getclock();
7589 #endif
7590 main_loop_wait(timeout);
7591 #ifdef CONFIG_PROFILER
7592 dev_time += profile_getclock() - ti;
7593 #endif
7594 }
7595 cpu_disable_ticks();
7596 return ret;
7597 }
7598
7599 static void help(int exitcode)
7600 {
7601 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
7602 "usage: %s [options] [disk_image]\n"
7603 "\n"
7604 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
7605 "\n"
7606 "Standard options:\n"
7607 "-M machine select emulated machine (-M ? for list)\n"
7608 "-cpu cpu select CPU (-cpu ? for list)\n"
7609 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
7610 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
7611 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
7612 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
7613 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][index=i]\n"
7614 " [,cyls=c,heads=h,secs=s[,trans=t]][snapshot=on|off]"
7615 " [,cache=on|off]\n"
7616 " use 'file' as a drive image\n"
7617 "-mtdblock file use 'file' as on-board Flash memory image\n"
7618 "-sd file use 'file' as SecureDigital card image\n"
7619 "-pflash file use 'file' as a parallel flash image\n"
7620 "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
7621 "-snapshot write to temporary files instead of disk image files\n"
7622 #ifdef CONFIG_SDL
7623 "-no-frame open SDL window without a frame and window decorations\n"
7624 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
7625 "-no-quit disable SDL window close capability\n"
7626 #endif
7627 #ifdef TARGET_I386
7628 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
7629 #endif
7630 "-m megs set virtual RAM size to megs MB [default=%d]\n"
7631 "-smp n set the number of CPUs to 'n' [default=1]\n"
7632 "-nographic disable graphical output and redirect serial I/Os to console\n"
7633 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n"
7634 #ifndef _WIN32
7635 "-k language use keyboard layout (for example \"fr\" for French)\n"
7636 #endif
7637 #ifdef HAS_AUDIO
7638 "-audio-help print list of audio drivers and their options\n"
7639 "-soundhw c1,... enable audio support\n"
7640 " and only specified sound cards (comma separated list)\n"
7641 " use -soundhw ? to get the list of supported cards\n"
7642 " use -soundhw all to enable all of them\n"
7643 #endif
7644 "-localtime set the real time clock to local time [default=utc]\n"
7645 "-full-screen start in full screen\n"
7646 #ifdef TARGET_I386
7647 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
7648 #endif
7649 "-usb enable the USB driver (will be the default soon)\n"
7650 "-usbdevice name add the host or guest USB device 'name'\n"
7651 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
7652 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
7653 #endif
7654 "-name string set the name of the guest\n"
7655 "\n"
7656 "Network options:\n"
7657 "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
7658 " create a new Network Interface Card and connect it to VLAN 'n'\n"
7659 #ifdef CONFIG_SLIRP
7660 "-net user[,vlan=n][,hostname=host]\n"
7661 " connect the user mode network stack to VLAN 'n' and send\n"
7662 " hostname 'host' to DHCP clients\n"
7663 #endif
7664 #ifdef _WIN32
7665 "-net tap[,vlan=n],ifname=name\n"
7666 " connect the host TAP network interface to VLAN 'n'\n"
7667 #else
7668 "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
7669 " connect the host TAP network interface to VLAN 'n' and use the\n"
7670 " network scripts 'file' (default=%s)\n"
7671 " and 'dfile' (default=%s);\n"
7672 " use '[down]script=no' to disable script execution;\n"
7673 " use 'fd=h' to connect to an already opened TAP interface\n"
7674 #endif
7675 "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
7676 " connect the vlan 'n' to another VLAN using a socket connection\n"
7677 "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
7678 " connect the vlan 'n' to multicast maddr and port\n"
7679 "-net none use it alone to have zero network devices; if no -net option\n"
7680 " is provided, the default is '-net nic -net user'\n"
7681 "\n"
7682 #ifdef CONFIG_SLIRP
7683 "-tftp dir allow tftp access to files in dir [-net user]\n"
7684 "-bootp file advertise file in BOOTP replies\n"
7685 #ifndef _WIN32
7686 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
7687 #endif
7688 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
7689 " redirect TCP or UDP connections from host to guest [-net user]\n"
7690 #endif
7691 "\n"
7692 "Linux boot specific:\n"
7693 "-kernel bzImage use 'bzImage' as kernel image\n"
7694 "-append cmdline use 'cmdline' as kernel command line\n"
7695 "-initrd file use 'file' as initial ram disk\n"
7696 "\n"
7697 "Debug/Expert options:\n"
7698 "-monitor dev redirect the monitor to char device 'dev'\n"
7699 "-serial dev redirect the serial port to char device 'dev'\n"
7700 "-parallel dev redirect the parallel port to char device 'dev'\n"
7701 "-pidfile file Write PID to 'file'\n"
7702 "-S freeze CPU at startup (use 'c' to start execution)\n"
7703 "-s wait gdb connection to port\n"
7704 "-p port set gdb connection port [default=%s]\n"
7705 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
7706 "-hdachs c,h,s[,t] force hard disk 0 physical geometry and the optional BIOS\n"
7707 " translation (t=none or lba) (usually qemu can guess them)\n"
7708 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
7709 #ifdef USE_KQEMU
7710 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
7711 "-no-kqemu disable KQEMU kernel module usage\n"
7712 #endif
7713 #ifdef TARGET_I386
7714 "-std-vga simulate a standard VGA card with VESA Bochs Extensions\n"
7715 " (default is CL-GD5446 PCI VGA)\n"
7716 "-no-acpi disable ACPI\n"
7717 #endif
7718 #ifdef CONFIG_CURSES
7719 "-curses use a curses/ncurses interface instead of SDL\n"
7720 #endif
7721 "-no-reboot exit instead of rebooting\n"
7722 "-loadvm file start right away with a saved state (loadvm in monitor)\n"
7723 "-vnc display start a VNC server on display\n"
7724 #ifndef _WIN32
7725 "-daemonize daemonize QEMU after initializing\n"
7726 #endif
7727 "-option-rom rom load a file, rom, into the option ROM space\n"
7728 #ifdef TARGET_SPARC
7729 "-prom-env variable=value set OpenBIOS nvram variables\n"
7730 #endif
7731 "-clock force the use of the given methods for timer alarm.\n"
7732 " To see what timers are available use -clock ?\n"
7733 "-startdate select initial date of the clock\n"
7734 "\n"
7735 "During emulation, the following keys are useful:\n"
7736 "ctrl-alt-f toggle full screen\n"
7737 "ctrl-alt-n switch to virtual console 'n'\n"
7738 "ctrl-alt toggle mouse and keyboard grab\n"
7739 "\n"
7740 "When using -nographic, press 'ctrl-a h' to get some help.\n"
7741 ,
7742 "qemu",
7743 DEFAULT_RAM_SIZE,
7744 #ifndef _WIN32
7745 DEFAULT_NETWORK_SCRIPT,
7746 DEFAULT_NETWORK_DOWN_SCRIPT,
7747 #endif
7748 DEFAULT_GDBSTUB_PORT,
7749 "/tmp/qemu.log");
7750 exit(exitcode);
7751 }
7752
7753 #define HAS_ARG 0x0001
7754
7755 enum {
7756 QEMU_OPTION_h,
7757
7758 QEMU_OPTION_M,
7759 QEMU_OPTION_cpu,
7760 QEMU_OPTION_fda,
7761 QEMU_OPTION_fdb,
7762 QEMU_OPTION_hda,
7763 QEMU_OPTION_hdb,
7764 QEMU_OPTION_hdc,
7765 QEMU_OPTION_hdd,
7766 QEMU_OPTION_drive,
7767 QEMU_OPTION_cdrom,
7768 QEMU_OPTION_mtdblock,
7769 QEMU_OPTION_sd,
7770 QEMU_OPTION_pflash,
7771 QEMU_OPTION_boot,
7772 QEMU_OPTION_snapshot,
7773 #ifdef TARGET_I386
7774 QEMU_OPTION_no_fd_bootchk,
7775 #endif
7776 QEMU_OPTION_m,
7777 QEMU_OPTION_nographic,
7778 QEMU_OPTION_portrait,
7779 #ifdef HAS_AUDIO
7780 QEMU_OPTION_audio_help,
7781 QEMU_OPTION_soundhw,
7782 #endif
7783
7784 QEMU_OPTION_net,
7785 QEMU_OPTION_tftp,
7786 QEMU_OPTION_bootp,
7787 QEMU_OPTION_smb,
7788 QEMU_OPTION_redir,
7789
7790 QEMU_OPTION_kernel,
7791 QEMU_OPTION_append,
7792 QEMU_OPTION_initrd,
7793
7794 QEMU_OPTION_S,
7795 QEMU_OPTION_s,
7796 QEMU_OPTION_p,
7797 QEMU_OPTION_d,
7798 QEMU_OPTION_hdachs,
7799 QEMU_OPTION_L,
7800 QEMU_OPTION_bios,
7801 QEMU_OPTION_no_code_copy,
7802 QEMU_OPTION_k,
7803 QEMU_OPTION_localtime,
7804 QEMU_OPTION_cirrusvga,
7805 QEMU_OPTION_vmsvga,
7806 QEMU_OPTION_g,
7807 QEMU_OPTION_std_vga,
7808 QEMU_OPTION_echr,
7809 QEMU_OPTION_monitor,
7810 QEMU_OPTION_serial,
7811 QEMU_OPTION_parallel,
7812 QEMU_OPTION_loadvm,
7813 QEMU_OPTION_full_screen,
7814 QEMU_OPTION_no_frame,
7815 QEMU_OPTION_alt_grab,
7816 QEMU_OPTION_no_quit,
7817 QEMU_OPTION_pidfile,
7818 QEMU_OPTION_no_kqemu,
7819 QEMU_OPTION_kernel_kqemu,
7820 QEMU_OPTION_win2k_hack,
7821 QEMU_OPTION_usb,
7822 QEMU_OPTION_usbdevice,
7823 QEMU_OPTION_smp,
7824 QEMU_OPTION_vnc,
7825 QEMU_OPTION_no_acpi,
7826 QEMU_OPTION_curses,
7827 QEMU_OPTION_no_reboot,
7828 QEMU_OPTION_show_cursor,
7829 QEMU_OPTION_daemonize,
7830 QEMU_OPTION_option_rom,
7831 QEMU_OPTION_semihosting,
7832 QEMU_OPTION_name,
7833 QEMU_OPTION_prom_env,
7834 QEMU_OPTION_old_param,
7835 QEMU_OPTION_clock,
7836 QEMU_OPTION_startdate,
7837 };
7838
7839 typedef struct QEMUOption {
7840 const char *name;
7841 int flags;
7842 int index;
7843 } QEMUOption;
7844
7845 const QEMUOption qemu_options[] = {
7846 { "h", 0, QEMU_OPTION_h },
7847 { "help", 0, QEMU_OPTION_h },
7848
7849 { "M", HAS_ARG, QEMU_OPTION_M },
7850 { "cpu", HAS_ARG, QEMU_OPTION_cpu },
7851 { "fda", HAS_ARG, QEMU_OPTION_fda },
7852 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
7853 { "hda", HAS_ARG, QEMU_OPTION_hda },
7854 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
7855 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
7856 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
7857 { "drive", HAS_ARG, QEMU_OPTION_drive },
7858 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
7859 { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
7860 { "sd", HAS_ARG, QEMU_OPTION_sd },
7861 { "pflash", HAS_ARG, QEMU_OPTION_pflash },
7862 { "boot", HAS_ARG, QEMU_OPTION_boot },
7863 { "snapshot", 0, QEMU_OPTION_snapshot },
7864 #ifdef TARGET_I386
7865 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
7866 #endif
7867 { "m", HAS_ARG, QEMU_OPTION_m },
7868 { "nographic", 0, QEMU_OPTION_nographic },
7869 { "portrait", 0, QEMU_OPTION_portrait },
7870 { "k", HAS_ARG, QEMU_OPTION_k },
7871 #ifdef HAS_AUDIO
7872 { "audio-help", 0, QEMU_OPTION_audio_help },
7873 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
7874 #endif
7875
7876 { "net", HAS_ARG, QEMU_OPTION_net},
7877 #ifdef CONFIG_SLIRP
7878 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
7879 { "bootp", HAS_ARG, QEMU_OPTION_bootp },
7880 #ifndef _WIN32
7881 { "smb", HAS_ARG, QEMU_OPTION_smb },
7882 #endif
7883 { "redir", HAS_ARG, QEMU_OPTION_redir },
7884 #endif
7885
7886 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
7887 { "append", HAS_ARG, QEMU_OPTION_append },
7888 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
7889
7890 { "S", 0, QEMU_OPTION_S },
7891 { "s", 0, QEMU_OPTION_s },
7892 { "p", HAS_ARG, QEMU_OPTION_p },
7893 { "d", HAS_ARG, QEMU_OPTION_d },
7894 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
7895 { "L", HAS_ARG, QEMU_OPTION_L },
7896 { "bios", HAS_ARG, QEMU_OPTION_bios },
7897 { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
7898 #ifdef USE_KQEMU
7899 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
7900 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
7901 #endif
7902 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
7903 { "g", 1, QEMU_OPTION_g },
7904 #endif
7905 { "localtime", 0, QEMU_OPTION_localtime },
7906 { "std-vga", 0, QEMU_OPTION_std_vga },
7907 { "echr", HAS_ARG, QEMU_OPTION_echr },
7908 { "monitor", HAS_ARG, QEMU_OPTION_monitor },
7909 { "serial", HAS_ARG, QEMU_OPTION_serial },
7910 { "parallel", HAS_ARG, QEMU_OPTION_parallel },
7911 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
7912 { "full-screen", 0, QEMU_OPTION_full_screen },
7913 #ifdef CONFIG_SDL
7914 { "no-frame", 0, QEMU_OPTION_no_frame },
7915 { "alt-grab", 0, QEMU_OPTION_alt_grab },
7916 { "no-quit", 0, QEMU_OPTION_no_quit },
7917 #endif
7918 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
7919 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
7920 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
7921 { "smp", HAS_ARG, QEMU_OPTION_smp },
7922 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
7923 #ifdef CONFIG_CURSES
7924 { "curses", 0, QEMU_OPTION_curses },
7925 #endif
7926
7927 /* temporary options */
7928 { "usb", 0, QEMU_OPTION_usb },
7929 { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
7930 { "vmwarevga", 0, QEMU_OPTION_vmsvga },
7931 { "no-acpi", 0, QEMU_OPTION_no_acpi },
7932 { "no-reboot", 0, QEMU_OPTION_no_reboot },
7933 { "show-cursor", 0, QEMU_OPTION_show_cursor },
7934 { "daemonize", 0, QEMU_OPTION_daemonize },
7935 { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
7936 #if defined(TARGET_ARM) || defined(TARGET_M68K)
7937 { "semihosting", 0, QEMU_OPTION_semihosting },
7938 #endif
7939 { "name", HAS_ARG, QEMU_OPTION_name },
7940 #if defined(TARGET_SPARC)
7941 { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
7942 #endif
7943 #if defined(TARGET_ARM)
7944 { "old-param", 0, QEMU_OPTION_old_param },
7945 #endif
7946 { "clock", HAS_ARG, QEMU_OPTION_clock },
7947 { "startdate", HAS_ARG, QEMU_OPTION_startdate },
7948 { NULL },
7949 };
7950
7951 /* password input */
7952
7953 int qemu_key_check(BlockDriverState *bs, const char *name)
7954 {
7955 char password[256];
7956 int i;
7957
7958 if (!bdrv_is_encrypted(bs))
7959 return 0;
7960
7961 term_printf("%s is encrypted.\n", name);
7962 for(i = 0; i < 3; i++) {
7963 monitor_readline("Password: ", 1, password, sizeof(password));
7964 if (bdrv_set_key(bs, password) == 0)
7965 return 0;
7966 term_printf("invalid password\n");
7967 }
7968 return -EPERM;
7969 }
7970
7971 static BlockDriverState *get_bdrv(int index)
7972 {
7973 if (index > nb_drives)
7974 return NULL;
7975 return drives_table[index].bdrv;
7976 }
7977
7978 static void read_passwords(void)
7979 {
7980 BlockDriverState *bs;
7981 int i;
7982
7983 for(i = 0; i < 6; i++) {
7984 bs = get_bdrv(i);
7985 if (bs)
7986 qemu_key_check(bs, bdrv_get_device_name(bs));
7987 }
7988 }
7989
7990 /* XXX: currently we cannot use simultaneously different CPUs */
7991 static void register_machines(void)
7992 {
7993 #if defined(TARGET_I386)
7994 qemu_register_machine(&pc_machine);
7995 qemu_register_machine(&isapc_machine);
7996 #elif defined(TARGET_PPC)
7997 qemu_register_machine(&heathrow_machine);
7998 qemu_register_machine(&core99_machine);
7999 qemu_register_machine(&prep_machine);
8000 qemu_register_machine(&ref405ep_machine);
8001 qemu_register_machine(&taihu_machine);
8002 #elif defined(TARGET_MIPS)
8003 qemu_register_machine(&mips_machine);
8004 qemu_register_machine(&mips_magnum_machine);
8005 qemu_register_machine(&mips_malta_machine);
8006 qemu_register_machine(&mips_pica61_machine);
8007 qemu_register_machine(&mips_mipssim_machine);
8008 #elif defined(TARGET_SPARC)
8009 #ifdef TARGET_SPARC64
8010 qemu_register_machine(&sun4u_machine);
8011 #else
8012 qemu_register_machine(&ss5_machine);
8013 qemu_register_machine(&ss10_machine);
8014 qemu_register_machine(&ss600mp_machine);
8015 qemu_register_machine(&ss20_machine);
8016 qemu_register_machine(&ss2_machine);
8017 qemu_register_machine(&voyager_machine);
8018 qemu_register_machine(&ss_lx_machine);
8019 qemu_register_machine(&ss4_machine);
8020 qemu_register_machine(&scls_machine);
8021 qemu_register_machine(&sbook_machine);
8022 qemu_register_machine(&ss1000_machine);
8023 qemu_register_machine(&ss2000_machine);
8024 #endif
8025 #elif defined(TARGET_ARM)
8026 qemu_register_machine(&integratorcp_machine);
8027 qemu_register_machine(&versatilepb_machine);
8028 qemu_register_machine(&versatileab_machine);
8029 qemu_register_machine(&realview_machine);
8030 qemu_register_machine(&akitapda_machine);
8031 qemu_register_machine(&spitzpda_machine);
8032 qemu_register_machine(&borzoipda_machine);
8033 qemu_register_machine(&terrierpda_machine);
8034 qemu_register_machine(&palmte_machine);
8035 qemu_register_machine(&lm3s811evb_machine);
8036 qemu_register_machine(&lm3s6965evb_machine);
8037 qemu_register_machine(&connex_machine);
8038 qemu_register_machine(&verdex_machine);
8039 qemu_register_machine(&mainstone2_machine);
8040 #elif defined(TARGET_SH4)
8041 qemu_register_machine(&shix_machine);
8042 qemu_register_machine(&r2d_machine);
8043 #elif defined(TARGET_ALPHA)
8044 /* XXX: TODO */
8045 #elif defined(TARGET_M68K)
8046 qemu_register_machine(&mcf5208evb_machine);
8047 qemu_register_machine(&an5206_machine);
8048 qemu_register_machine(&dummy_m68k_machine);
8049 #elif defined(TARGET_CRIS)
8050 qemu_register_machine(&bareetraxfs_machine);
8051 #else
8052 #error unsupported CPU
8053 #endif
8054 }
8055
8056 #ifdef HAS_AUDIO
8057 struct soundhw soundhw[] = {
8058 #ifdef HAS_AUDIO_CHOICE
8059 #if defined(TARGET_I386) || defined(TARGET_MIPS)
8060 {
8061 "pcspk",
8062 "PC speaker",
8063 0,
8064 1,
8065 { .init_isa = pcspk_audio_init }
8066 },
8067 #endif
8068 {
8069 "sb16",
8070 "Creative Sound Blaster 16",
8071 0,
8072 1,
8073 { .init_isa = SB16_init }
8074 },
8075
8076 #ifdef CONFIG_ADLIB
8077 {
8078 "adlib",
8079 #ifdef HAS_YMF262
8080 "Yamaha YMF262 (OPL3)",
8081 #else
8082 "Yamaha YM3812 (OPL2)",
8083 #endif
8084 0,
8085 1,
8086 { .init_isa = Adlib_init }
8087 },
8088 #endif
8089
8090 #ifdef CONFIG_GUS
8091 {
8092 "gus",
8093 "Gravis Ultrasound GF1",
8094 0,
8095 1,
8096 { .init_isa = GUS_init }
8097 },
8098 #endif
8099
8100 #ifdef CONFIG_AC97
8101 {
8102 "ac97",
8103 "Intel 82801AA AC97 Audio",
8104 0,
8105 0,
8106 { .init_pci = ac97_init }
8107 },
8108 #endif
8109
8110 {
8111 "es1370",
8112 "ENSONIQ AudioPCI ES1370",
8113 0,
8114 0,
8115 { .init_pci = es1370_init }
8116 },
8117 #endif
8118
8119 { NULL, NULL, 0, 0, { NULL } }
8120 };
8121
8122 static void select_soundhw (const char *optarg)
8123 {
8124 struct soundhw *c;
8125
8126 if (*optarg == '?') {
8127 show_valid_cards:
8128
8129 printf ("Valid sound card names (comma separated):\n");
8130 for (c = soundhw; c->name; ++c) {
8131 printf ("%-11s %s\n", c->name, c->descr);
8132 }
8133 printf ("\n-soundhw all will enable all of the above\n");
8134 exit (*optarg != '?');
8135 }
8136 else {
8137 size_t l;
8138 const char *p;
8139 char *e;
8140 int bad_card = 0;
8141
8142 if (!strcmp (optarg, "all")) {
8143 for (c = soundhw; c->name; ++c) {
8144 c->enabled = 1;
8145 }
8146 return;
8147 }
8148
8149 p = optarg;
8150 while (*p) {
8151 e = strchr (p, ',');
8152 l = !e ? strlen (p) : (size_t) (e - p);
8153
8154 for (c = soundhw; c->name; ++c) {
8155 if (!strncmp (c->name, p, l)) {
8156 c->enabled = 1;
8157 break;
8158 }
8159 }
8160
8161 if (!c->name) {
8162 if (l > 80) {
8163 fprintf (stderr,
8164 "Unknown sound card name (too big to show)\n");
8165 }
8166 else {
8167 fprintf (stderr, "Unknown sound card name `%.*s'\n",
8168 (int) l, p);
8169 }
8170 bad_card = 1;
8171 }
8172 p += l + (e != NULL);
8173 }
8174
8175 if (bad_card)
8176 goto show_valid_cards;
8177 }
8178 }
8179 #endif
8180
8181 #ifdef _WIN32
8182 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
8183 {
8184 exit(STATUS_CONTROL_C_EXIT);
8185 return TRUE;
8186 }
8187 #endif
8188
8189 #define MAX_NET_CLIENTS 32
8190
8191 int main(int argc, char **argv)
8192 {
8193 #ifdef CONFIG_GDBSTUB
8194 int use_gdbstub;
8195 const char *gdbstub_port;
8196 #endif
8197 uint32_t boot_devices_bitmap = 0;
8198 int i;
8199 int snapshot, linux_boot, net_boot;
8200 const char *initrd_filename;
8201 const char *kernel_filename, *kernel_cmdline;
8202 const char *boot_devices = "";
8203 DisplayState *ds = &display_state;
8204 int cyls, heads, secs, translation;
8205 const char *net_clients[MAX_NET_CLIENTS];
8206 int nb_net_clients;
8207 int hda_index;
8208 int optind;
8209 const char *r, *optarg;
8210 CharDriverState *monitor_hd;
8211 const char *monitor_device;
8212 const char *serial_devices[MAX_SERIAL_PORTS];
8213 int serial_device_index;
8214 const char *parallel_devices[MAX_PARALLEL_PORTS];
8215 int parallel_device_index;
8216 const char *loadvm = NULL;
8217 QEMUMachine *machine;
8218 const char *cpu_model;
8219 const char *usb_devices[MAX_USB_CMDLINE];
8220 int usb_devices_index;
8221 int fds[2];
8222 const char *pid_file = NULL;
8223 VLANState *vlan;
8224
8225 LIST_INIT (&vm_change_state_head);
8226 #ifndef _WIN32
8227 {
8228 struct sigaction act;
8229 sigfillset(&act.sa_mask);
8230 act.sa_flags = 0;
8231 act.sa_handler = SIG_IGN;
8232 sigaction(SIGPIPE, &act, NULL);
8233 }
8234 #else
8235 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
8236 /* Note: cpu_interrupt() is currently not SMP safe, so we force
8237 QEMU to run on a single CPU */
8238 {
8239 HANDLE h;
8240 DWORD mask, smask;
8241 int i;
8242 h = GetCurrentProcess();
8243 if (GetProcessAffinityMask(h, &mask, &smask)) {
8244 for(i = 0; i < 32; i++) {
8245 if (mask & (1 << i))
8246 break;
8247 }
8248 if (i != 32) {
8249 mask = 1 << i;
8250 SetProcessAffinityMask(h, mask);
8251 }
8252 }
8253 }
8254 #endif
8255
8256 register_machines();
8257 machine = first_machine;
8258 cpu_model = NULL;
8259 initrd_filename = NULL;
8260 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
8261 vga_ram_size = VGA_RAM_SIZE;
8262 #ifdef CONFIG_GDBSTUB
8263 use_gdbstub = 0;
8264 gdbstub_port = DEFAULT_GDBSTUB_PORT;
8265 #endif
8266 snapshot = 0;
8267 nographic = 0;
8268 curses = 0;
8269 kernel_filename = NULL;
8270 kernel_cmdline = "";
8271 cyls = heads = secs = 0;
8272 translation = BIOS_ATA_TRANSLATION_AUTO;
8273 monitor_device = "vc";
8274
8275 serial_devices[0] = "vc";
8276 for(i = 1; i < MAX_SERIAL_PORTS; i++)
8277 serial_devices[i] = NULL;
8278 serial_device_index = 0;
8279
8280 parallel_devices[0] = "vc";
8281 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
8282 parallel_devices[i] = NULL;
8283 parallel_device_index = 0;
8284
8285 usb_devices_index = 0;
8286
8287 nb_net_clients = 0;
8288 nb_drives = 0;
8289 nb_drives_opt = 0;
8290 hda_index = -1;
8291
8292 nb_nics = 0;
8293 /* default mac address of the first network interface */
8294
8295 optind = 1;
8296 for(;;) {
8297 if (optind >= argc)
8298 break;
8299 r = argv[optind];
8300 if (r[0] != '-') {
8301 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
8302 } else {
8303 const QEMUOption *popt;
8304
8305 optind++;
8306 /* Treat --foo the same as -foo. */
8307 if (r[1] == '-')
8308 r++;
8309 popt = qemu_options;
8310 for(;;) {
8311 if (!popt->name) {
8312 fprintf(stderr, "%s: invalid option -- '%s'\n",
8313 argv[0], r);
8314 exit(1);
8315 }
8316 if (!strcmp(popt->name, r + 1))
8317 break;
8318 popt++;
8319 }
8320 if (popt->flags & HAS_ARG) {
8321 if (optind >= argc) {
8322 fprintf(stderr, "%s: option '%s' requires an argument\n",
8323 argv[0], r);
8324 exit(1);
8325 }
8326 optarg = argv[optind++];
8327 } else {
8328 optarg = NULL;
8329 }
8330
8331 switch(popt->index) {
8332 case QEMU_OPTION_M:
8333 machine = find_machine(optarg);
8334 if (!machine) {
8335 QEMUMachine *m;
8336 printf("Supported machines are:\n");
8337 for(m = first_machine; m != NULL; m = m->next) {
8338 printf("%-10s %s%s\n",
8339 m->name, m->desc,
8340 m == first_machine ? " (default)" : "");
8341 }
8342 exit(*optarg != '?');
8343 }
8344 break;
8345 case QEMU_OPTION_cpu:
8346 /* hw initialization will check this */
8347 if (*optarg == '?') {
8348 /* XXX: implement xxx_cpu_list for targets that still miss it */
8349 #if defined(cpu_list)
8350 cpu_list(stdout, &fprintf);
8351 #endif
8352 exit(0);
8353 } else {
8354 cpu_model = optarg;
8355 }
8356 break;
8357 case QEMU_OPTION_initrd:
8358 initrd_filename = optarg;
8359 break;
8360 case QEMU_OPTION_hda:
8361 if (cyls == 0)
8362 hda_index = drive_add(optarg, HD_ALIAS, 0);
8363 else
8364 hda_index = drive_add(optarg, HD_ALIAS
8365 ",cyls=%d,heads=%d,secs=%d%s",
8366 0, cyls, heads, secs,
8367 translation == BIOS_ATA_TRANSLATION_LBA ?
8368 ",trans=lba" :
8369 translation == BIOS_ATA_TRANSLATION_NONE ?
8370 ",trans=none" : "");
8371 break;
8372 case QEMU_OPTION_hdb:
8373 case QEMU_OPTION_hdc:
8374 case QEMU_OPTION_hdd:
8375 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
8376 break;
8377 case QEMU_OPTION_drive:
8378 drive_add(NULL, "%s", optarg);
8379 break;
8380 case QEMU_OPTION_mtdblock:
8381 drive_add(optarg, MTD_ALIAS);
8382 break;
8383 case QEMU_OPTION_sd:
8384 drive_add(optarg, SD_ALIAS);
8385 break;
8386 case QEMU_OPTION_pflash:
8387 drive_add(optarg, PFLASH_ALIAS);
8388 break;
8389 case QEMU_OPTION_snapshot:
8390 snapshot = 1;
8391 break;
8392 case QEMU_OPTION_hdachs:
8393 {
8394 const char *p;
8395 p = optarg;
8396 cyls = strtol(p, (char **)&p, 0);
8397 if (cyls < 1 || cyls > 16383)
8398 goto chs_fail;
8399 if (*p != ',')
8400 goto chs_fail;
8401 p++;
8402 heads = strtol(p, (char **)&p, 0);
8403 if (heads < 1 || heads > 16)
8404 goto chs_fail;
8405 if (*p != ',')
8406 goto chs_fail;
8407 p++;
8408 secs = strtol(p, (char **)&p, 0);
8409 if (secs < 1 || secs > 63)
8410 goto chs_fail;
8411 if (*p == ',') {
8412 p++;
8413 if (!strcmp(p, "none"))
8414 translation = BIOS_ATA_TRANSLATION_NONE;
8415 else if (!strcmp(p, "lba"))
8416 translation = BIOS_ATA_TRANSLATION_LBA;
8417 else if (!strcmp(p, "auto"))
8418 translation = BIOS_ATA_TRANSLATION_AUTO;
8419 else
8420 goto chs_fail;
8421 } else if (*p != '\0') {
8422 chs_fail:
8423 fprintf(stderr, "qemu: invalid physical CHS format\n");
8424 exit(1);
8425 }
8426 if (hda_index != -1)
8427 snprintf(drives_opt[hda_index].opt,
8428 sizeof(drives_opt[hda_index].opt),
8429 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
8430 0, cyls, heads, secs,
8431 translation == BIOS_ATA_TRANSLATION_LBA ?
8432 ",trans=lba" :
8433 translation == BIOS_ATA_TRANSLATION_NONE ?
8434 ",trans=none" : "");
8435 }
8436 break;
8437 case QEMU_OPTION_nographic:
8438 serial_devices[0] = "stdio";
8439 parallel_devices[0] = "null";
8440 monitor_device = "stdio";
8441 nographic = 1;
8442 break;
8443 #ifdef CONFIG_CURSES
8444 case QEMU_OPTION_curses:
8445 curses = 1;
8446 break;
8447 #endif
8448 case QEMU_OPTION_portrait:
8449 graphic_rotate = 1;
8450 break;
8451 case QEMU_OPTION_kernel:
8452 kernel_filename = optarg;
8453 break;
8454 case QEMU_OPTION_append:
8455 kernel_cmdline = optarg;
8456 break;
8457 case QEMU_OPTION_cdrom:
8458 drive_add(optarg, CDROM_ALIAS);
8459 break;
8460 case QEMU_OPTION_boot:
8461 boot_devices = optarg;
8462 /* We just do some generic consistency checks */
8463 {
8464 /* Could easily be extended to 64 devices if needed */
8465 const char *p;
8466
8467 boot_devices_bitmap = 0;
8468 for (p = boot_devices; *p != '\0'; p++) {
8469 /* Allowed boot devices are:
8470 * a b : floppy disk drives
8471 * c ... f : IDE disk drives
8472 * g ... m : machine implementation dependant drives
8473 * n ... p : network devices
8474 * It's up to each machine implementation to check
8475 * if the given boot devices match the actual hardware
8476 * implementation and firmware features.
8477 */
8478 if (*p < 'a' || *p > 'q') {
8479 fprintf(stderr, "Invalid boot device '%c'\n", *p);
8480 exit(1);
8481 }
8482 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
8483 fprintf(stderr,
8484 "Boot device '%c' was given twice\n",*p);
8485 exit(1);
8486 }
8487 boot_devices_bitmap |= 1 << (*p - 'a');
8488 }
8489 }
8490 break;
8491 case QEMU_OPTION_fda:
8492 case QEMU_OPTION_fdb:
8493 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
8494 break;
8495 #ifdef TARGET_I386
8496 case QEMU_OPTION_no_fd_bootchk:
8497 fd_bootchk = 0;
8498 break;
8499 #endif
8500 case QEMU_OPTION_no_code_copy:
8501 code_copy_enabled = 0;
8502 break;
8503 case QEMU_OPTION_net:
8504 if (nb_net_clients >= MAX_NET_CLIENTS) {
8505 fprintf(stderr, "qemu: too many network clients\n");
8506 exit(1);
8507 }
8508 net_clients[nb_net_clients] = optarg;
8509 nb_net_clients++;
8510 break;
8511 #ifdef CONFIG_SLIRP
8512 case QEMU_OPTION_tftp:
8513 tftp_prefix = optarg;
8514 break;
8515 case QEMU_OPTION_bootp:
8516 bootp_filename = optarg;
8517 break;
8518 #ifndef _WIN32
8519 case QEMU_OPTION_smb:
8520 net_slirp_smb(optarg);
8521 break;
8522 #endif
8523 case QEMU_OPTION_redir:
8524 net_slirp_redir(optarg);
8525 break;
8526 #endif
8527 #ifdef HAS_AUDIO
8528 case QEMU_OPTION_audio_help:
8529 AUD_help ();
8530 exit (0);
8531 break;
8532 case QEMU_OPTION_soundhw:
8533 select_soundhw (optarg);
8534 break;
8535 #endif
8536 case QEMU_OPTION_h:
8537 help(0);
8538 break;
8539 case QEMU_OPTION_m:
8540 ram_size = atoi(optarg) * 1024 * 1024;
8541 if (ram_size <= 0)
8542 help(1);
8543 if (ram_size > PHYS_RAM_MAX_SIZE) {
8544 fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
8545 PHYS_RAM_MAX_SIZE / (1024 * 1024));
8546 exit(1);
8547 }
8548 break;
8549 case QEMU_OPTION_d:
8550 {
8551 int mask;
8552 CPULogItem *item;
8553
8554 mask = cpu_str_to_log_mask(optarg);
8555 if (!mask) {
8556 printf("Log items (comma separated):\n");
8557 for(item = cpu_log_items; item->mask != 0; item++) {
8558 printf("%-10s %s\n", item->name, item->help);
8559 }
8560 exit(1);
8561 }
8562 cpu_set_log(mask);
8563 }
8564 break;
8565 #ifdef CONFIG_GDBSTUB
8566 case QEMU_OPTION_s:
8567 use_gdbstub = 1;
8568 break;
8569 case QEMU_OPTION_p:
8570 gdbstub_port = optarg;
8571 break;
8572 #endif
8573 case QEMU_OPTION_L:
8574 bios_dir = optarg;
8575 break;
8576 case QEMU_OPTION_bios:
8577 bios_name = optarg;
8578 break;
8579 case QEMU_OPTION_S:
8580 autostart = 0;
8581 break;
8582 case QEMU_OPTION_k:
8583 keyboard_layout = optarg;
8584 break;
8585 case QEMU_OPTION_localtime:
8586 rtc_utc = 0;
8587 break;
8588 case QEMU_OPTION_cirrusvga:
8589 cirrus_vga_enabled = 1;
8590 vmsvga_enabled = 0;
8591 break;
8592 case QEMU_OPTION_vmsvga:
8593 cirrus_vga_enabled = 0;
8594 vmsvga_enabled = 1;
8595 break;
8596 case QEMU_OPTION_std_vga:
8597 cirrus_vga_enabled = 0;
8598 vmsvga_enabled = 0;
8599 break;
8600 case QEMU_OPTION_g:
8601 {
8602 const char *p;
8603 int w, h, depth;
8604 p = optarg;
8605 w = strtol(p, (char **)&p, 10);
8606 if (w <= 0) {
8607 graphic_error:
8608 fprintf(stderr, "qemu: invalid resolution or depth\n");
8609 exit(1);
8610 }
8611 if (*p != 'x')
8612 goto graphic_error;
8613 p++;
8614 h = strtol(p, (char **)&p, 10);
8615 if (h <= 0)
8616 goto graphic_error;
8617 if (*p == 'x') {
8618 p++;
8619 depth = strtol(p, (char **)&p, 10);
8620 if (depth != 8 && depth != 15 && depth != 16 &&
8621 depth != 24 && depth != 32)
8622 goto graphic_error;
8623 } else if (*p == '\0') {
8624 depth = graphic_depth;
8625 } else {
8626 goto graphic_error;
8627 }
8628
8629 graphic_width = w;
8630 graphic_height = h;
8631 graphic_depth = depth;
8632 }
8633 break;
8634 case QEMU_OPTION_echr:
8635 {
8636 char *r;
8637 term_escape_char = strtol(optarg, &r, 0);
8638 if (r == optarg)
8639 printf("Bad argument to echr\n");
8640 break;
8641 }
8642 case QEMU_OPTION_monitor:
8643 monitor_device = optarg;
8644 break;
8645 case QEMU_OPTION_serial:
8646 if (serial_device_index >= MAX_SERIAL_PORTS) {
8647 fprintf(stderr, "qemu: too many serial ports\n");
8648 exit(1);
8649 }
8650 serial_devices[serial_device_index] = optarg;
8651 serial_device_index++;
8652 break;
8653 case QEMU_OPTION_parallel:
8654 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
8655 fprintf(stderr, "qemu: too many parallel ports\n");
8656 exit(1);
8657 }
8658 parallel_devices[parallel_device_index] = optarg;
8659 parallel_device_index++;
8660 break;
8661 case QEMU_OPTION_loadvm:
8662 loadvm = optarg;
8663 break;
8664 case QEMU_OPTION_full_screen:
8665 full_screen = 1;
8666 break;
8667 #ifdef CONFIG_SDL
8668 case QEMU_OPTION_no_frame:
8669 no_frame = 1;
8670 break;
8671 case QEMU_OPTION_alt_grab:
8672 alt_grab = 1;
8673 break;
8674 case QEMU_OPTION_no_quit:
8675 no_quit = 1;
8676 break;
8677 #endif
8678 case QEMU_OPTION_pidfile:
8679 pid_file = optarg;
8680 break;
8681 #ifdef TARGET_I386
8682 case QEMU_OPTION_win2k_hack:
8683 win2k_install_hack = 1;
8684 break;
8685 #endif
8686 #ifdef USE_KQEMU
8687 case QEMU_OPTION_no_kqemu:
8688 kqemu_allowed = 0;
8689 break;
8690 case QEMU_OPTION_kernel_kqemu:
8691 kqemu_allowed = 2;
8692 break;
8693 #endif
8694 case QEMU_OPTION_usb:
8695 usb_enabled = 1;
8696 break;
8697 case QEMU_OPTION_usbdevice:
8698 usb_enabled = 1;
8699 if (usb_devices_index >= MAX_USB_CMDLINE) {
8700 fprintf(stderr, "Too many USB devices\n");
8701 exit(1);
8702 }
8703 usb_devices[usb_devices_index] = optarg;
8704 usb_devices_index++;
8705 break;
8706 case QEMU_OPTION_smp:
8707 smp_cpus = atoi(optarg);
8708 if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
8709 fprintf(stderr, "Invalid number of CPUs\n");
8710 exit(1);
8711 }
8712 break;
8713 case QEMU_OPTION_vnc:
8714 vnc_display = optarg;
8715 break;
8716 case QEMU_OPTION_no_acpi:
8717 acpi_enabled = 0;
8718 break;
8719 case QEMU_OPTION_no_reboot:
8720 no_reboot = 1;
8721 break;
8722 case QEMU_OPTION_show_cursor:
8723 cursor_hide = 0;
8724 break;
8725 case QEMU_OPTION_daemonize:
8726 daemonize = 1;
8727 break;
8728 case QEMU_OPTION_option_rom:
8729 if (nb_option_roms >= MAX_OPTION_ROMS) {
8730 fprintf(stderr, "Too many option ROMs\n");
8731 exit(1);
8732 }
8733 option_rom[nb_option_roms] = optarg;
8734 nb_option_roms++;
8735 break;
8736 case QEMU_OPTION_semihosting:
8737 semihosting_enabled = 1;
8738 break;
8739 case QEMU_OPTION_name:
8740 qemu_name = optarg;
8741 break;
8742 #ifdef TARGET_SPARC
8743 case QEMU_OPTION_prom_env:
8744 if (nb_prom_envs >= MAX_PROM_ENVS) {
8745 fprintf(stderr, "Too many prom variables\n");
8746 exit(1);
8747 }
8748 prom_envs[nb_prom_envs] = optarg;
8749 nb_prom_envs++;
8750 break;
8751 #endif
8752 #ifdef TARGET_ARM
8753 case QEMU_OPTION_old_param:
8754 old_param = 1;
8755 break;
8756 #endif
8757 case QEMU_OPTION_clock:
8758 configure_alarms(optarg);
8759 break;
8760 case QEMU_OPTION_startdate:
8761 {
8762 struct tm tm;
8763 time_t rtc_start_date;
8764 if (!strcmp(optarg, "now")) {
8765 rtc_date_offset = -1;
8766 } else {
8767 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
8768 &tm.tm_year,
8769 &tm.tm_mon,
8770 &tm.tm_mday,
8771 &tm.tm_hour,
8772 &tm.tm_min,
8773 &tm.tm_sec) == 6) {
8774 /* OK */
8775 } else if (sscanf(optarg, "%d-%d-%d",
8776 &tm.tm_year,
8777 &tm.tm_mon,
8778 &tm.tm_mday) == 3) {
8779 tm.tm_hour = 0;
8780 tm.tm_min = 0;
8781 tm.tm_sec = 0;
8782 } else {
8783 goto date_fail;
8784 }
8785 tm.tm_year -= 1900;
8786 tm.tm_mon--;
8787 rtc_start_date = mktimegm(&tm);
8788 if (rtc_start_date == -1) {
8789 date_fail:
8790 fprintf(stderr, "Invalid date format. Valid format are:\n"
8791 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
8792 exit(1);
8793 }
8794 rtc_date_offset = time(NULL) - rtc_start_date;
8795 }
8796 }
8797 break;
8798 }
8799 }
8800 }
8801
8802 #ifndef _WIN32
8803 if (daemonize && !nographic && vnc_display == NULL) {
8804 fprintf(stderr, "Can only daemonize if using -nographic or -vnc\n");
8805 daemonize = 0;
8806 }
8807
8808 if (daemonize) {
8809 pid_t pid;
8810
8811 if (pipe(fds) == -1)
8812 exit(1);
8813
8814 pid = fork();
8815 if (pid > 0) {
8816 uint8_t status;
8817 ssize_t len;
8818
8819 close(fds[1]);
8820
8821 again:
8822 len = read(fds[0], &status, 1);
8823 if (len == -1 && (errno == EINTR))
8824 goto again;
8825
8826 if (len != 1)
8827 exit(1);
8828 else if (status == 1) {
8829 fprintf(stderr, "Could not acquire pidfile\n");
8830 exit(1);
8831 } else
8832 exit(0);
8833 } else if (pid < 0)
8834 exit(1);
8835
8836 setsid();
8837
8838 pid = fork();
8839 if (pid > 0)
8840 exit(0);
8841 else if (pid < 0)
8842 exit(1);
8843
8844 umask(027);
8845 chdir("/");
8846
8847 signal(SIGTSTP, SIG_IGN);
8848 signal(SIGTTOU, SIG_IGN);
8849 signal(SIGTTIN, SIG_IGN);
8850 }
8851 #endif
8852
8853 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
8854 if (daemonize) {
8855 uint8_t status = 1;
8856 write(fds[1], &status, 1);
8857 } else
8858 fprintf(stderr, "Could not acquire pid file\n");
8859 exit(1);
8860 }
8861
8862 #ifdef USE_KQEMU
8863 if (smp_cpus > 1)
8864 kqemu_allowed = 0;
8865 #endif
8866 linux_boot = (kernel_filename != NULL);
8867 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
8868
8869 /* XXX: this should not be: some embedded targets just have flash */
8870 if (!linux_boot && net_boot == 0 &&
8871 nb_drives_opt == 0)
8872 help(1);
8873
8874 /* boot to floppy or the default cd if no hard disk defined yet */
8875 if (!boot_devices[0]) {
8876 boot_devices = "cad";
8877 }
8878 setvbuf(stdout, NULL, _IOLBF, 0);
8879
8880 init_timers();
8881 init_timer_alarm();
8882 qemu_aio_init();
8883
8884 #ifdef _WIN32
8885 socket_init();
8886 #endif
8887
8888 /* init network clients */
8889 if (nb_net_clients == 0) {
8890 /* if no clients, we use a default config */
8891 net_clients[0] = "nic";
8892 net_clients[1] = "user";
8893 nb_net_clients = 2;
8894 }
8895
8896 for(i = 0;i < nb_net_clients; i++) {
8897 if (net_client_init(net_clients[i]) < 0)
8898 exit(1);
8899 }
8900 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
8901 if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
8902 continue;
8903 if (vlan->nb_guest_devs == 0) {
8904 fprintf(stderr, "Invalid vlan (%d) with no nics\n", vlan->id);
8905 exit(1);
8906 }
8907 if (vlan->nb_host_devs == 0)
8908 fprintf(stderr,
8909 "Warning: vlan %d is not connected to host network\n",
8910 vlan->id);
8911 }
8912
8913 #ifdef TARGET_I386
8914 /* XXX: this should be moved in the PC machine instantiation code */
8915 if (net_boot != 0) {
8916 int netroms = 0;
8917 for (i = 0; i < nb_nics && i < 4; i++) {
8918 const char *model = nd_table[i].model;
8919 char buf[1024];
8920 if (net_boot & (1 << i)) {
8921 if (model == NULL)
8922 model = "ne2k_pci";
8923 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
8924 if (get_image_size(buf) > 0) {
8925 if (nb_option_roms >= MAX_OPTION_ROMS) {
8926 fprintf(stderr, "Too many option ROMs\n");
8927 exit(1);
8928 }
8929 option_rom[nb_option_roms] = strdup(buf);
8930 nb_option_roms++;
8931 netroms++;
8932 }
8933 }
8934 }
8935 if (netroms == 0) {
8936 fprintf(stderr, "No valid PXE rom found for network device\n");
8937 exit(1);
8938 }
8939 }
8940 #endif
8941
8942 /* init the memory */
8943 phys_ram_size = ram_size + vga_ram_size + MAX_BIOS_SIZE;
8944
8945 phys_ram_base = qemu_vmalloc(phys_ram_size);
8946 if (!phys_ram_base) {
8947 fprintf(stderr, "Could not allocate physical memory\n");
8948 exit(1);
8949 }
8950
8951 bdrv_init();
8952
8953 /* we always create the cdrom drive, even if no disk is there */
8954
8955 if (nb_drives_opt < MAX_DRIVES)
8956 drive_add(NULL, CDROM_ALIAS);
8957
8958 /* we always create at least one floppy */
8959
8960 if (nb_drives_opt < MAX_DRIVES)
8961 drive_add(NULL, FD_ALIAS, 0);
8962
8963 /* we always create one sd slot, even if no card is in it */
8964
8965 if (nb_drives_opt < MAX_DRIVES)
8966 drive_add(NULL, SD_ALIAS);
8967
8968 /* open the virtual block devices */
8969
8970 for(i = 0; i < nb_drives_opt; i++)
8971 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
8972 exit(1);
8973
8974 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
8975 register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
8976
8977 init_ioports();
8978
8979 /* terminal init */
8980 memset(&display_state, 0, sizeof(display_state));
8981 if (nographic) {
8982 if (curses) {
8983 fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
8984 exit(1);
8985 }
8986 /* nearly nothing to do */
8987 dumb_display_init(ds);
8988 } else if (vnc_display != NULL) {
8989 vnc_display_init(ds);
8990 if (vnc_display_open(ds, vnc_display) < 0)
8991 exit(1);
8992 } else
8993 #if defined(CONFIG_CURSES)
8994 if (curses) {
8995 curses_display_init(ds, full_screen);
8996 } else
8997 #endif
8998 {
8999 #if defined(CONFIG_SDL)
9000 sdl_display_init(ds, full_screen, no_frame);
9001 #elif defined(CONFIG_COCOA)
9002 cocoa_display_init(ds, full_screen);
9003 #else
9004 dumb_display_init(ds);
9005 #endif
9006 }
9007
9008 /* Maintain compatibility with multiple stdio monitors */
9009 if (!strcmp(monitor_device,"stdio")) {
9010 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
9011 const char *devname = serial_devices[i];
9012 if (devname && !strcmp(devname,"mon:stdio")) {
9013 monitor_device = NULL;
9014 break;
9015 } else if (devname && !strcmp(devname,"stdio")) {
9016 monitor_device = NULL;
9017 serial_devices[i] = "mon:stdio";
9018 break;
9019 }
9020 }
9021 }
9022 if (monitor_device) {
9023 monitor_hd = qemu_chr_open(monitor_device);
9024 if (!monitor_hd) {
9025 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
9026 exit(1);
9027 }
9028 monitor_init(monitor_hd, !nographic);
9029 }
9030
9031 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
9032 const char *devname = serial_devices[i];
9033 if (devname && strcmp(devname, "none")) {
9034 serial_hds[i] = qemu_chr_open(devname);
9035 if (!serial_hds[i]) {
9036 fprintf(stderr, "qemu: could not open serial device '%s'\n",
9037 devname);
9038 exit(1);
9039 }
9040 if (strstart(devname, "vc", 0))
9041 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
9042 }
9043 }
9044
9045 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
9046 const char *devname = parallel_devices[i];
9047 if (devname && strcmp(devname, "none")) {
9048 parallel_hds[i] = qemu_chr_open(devname);
9049 if (!parallel_hds[i]) {
9050 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
9051 devname);
9052 exit(1);
9053 }
9054 if (strstart(devname, "vc", 0))
9055 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
9056 }
9057 }
9058
9059 machine->init(ram_size, vga_ram_size, boot_devices, ds,
9060 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
9061
9062 /* init USB devices */
9063 if (usb_enabled) {
9064 for(i = 0; i < usb_devices_index; i++) {
9065 if (usb_device_add(usb_devices[i]) < 0) {
9066 fprintf(stderr, "Warning: could not add USB device %s\n",
9067 usb_devices[i]);
9068 }
9069 }
9070 }
9071
9072 if (display_state.dpy_refresh) {
9073 display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
9074 qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
9075 }
9076
9077 #ifdef CONFIG_GDBSTUB
9078 if (use_gdbstub) {
9079 /* XXX: use standard host:port notation and modify options
9080 accordingly. */
9081 if (gdbserver_start(gdbstub_port) < 0) {
9082 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
9083 gdbstub_port);
9084 exit(1);
9085 }
9086 }
9087 #endif
9088
9089 if (loadvm)
9090 do_loadvm(loadvm);
9091
9092 {
9093 /* XXX: simplify init */
9094 read_passwords();
9095 if (autostart) {
9096 vm_start();
9097 }
9098 }
9099
9100 if (daemonize) {
9101 uint8_t status = 0;
9102 ssize_t len;
9103 int fd;
9104
9105 again1:
9106 len = write(fds[1], &status, 1);
9107 if (len == -1 && (errno == EINTR))
9108 goto again1;
9109
9110 if (len != 1)
9111 exit(1);
9112
9113 TFR(fd = open("/dev/null", O_RDWR));
9114 if (fd == -1)
9115 exit(1);
9116
9117 dup2(fd, 0);
9118 dup2(fd, 1);
9119 dup2(fd, 2);
9120
9121 close(fd);
9122 }
9123
9124 main_loop();
9125 quit_timers();
9126
9127 #if !defined(_WIN32)
9128 /* close network clients */
9129 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
9130 VLANClientState *vc;
9131
9132 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
9133 if (vc->fd_read == tap_receive) {
9134 char ifname[64];
9135 TAPState *s = vc->opaque;
9136
9137 if (sscanf(vc->info_str, "tap: ifname=%63s ", ifname) == 1 &&
9138 s->down_script[0])
9139 launch_script(s->down_script, ifname, s->fd);
9140 }
9141 }
9142 }
9143 #endif
9144 return 0;
9145 }