]> git.proxmox.com Git - mirror_qemu.git/blob - vl.c
Move boot_set callback backend
[mirror_qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
31
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
34
35 #ifndef _WIN32
36 #include <libgen.h>
37 #include <pwd.h>
38 #include <sys/times.h>
39 #include <sys/wait.h>
40 #include <termios.h>
41 #include <sys/mman.h>
42 #include <sys/ioctl.h>
43 #include <sys/resource.h>
44 #include <sys/socket.h>
45 #include <netinet/in.h>
46 #include <net/if.h>
47 #if defined(__NetBSD__)
48 #include <net/if_tap.h>
49 #endif
50 #ifdef __linux__
51 #include <linux/if_tun.h>
52 #endif
53 #include <arpa/inet.h>
54 #include <dirent.h>
55 #include <netdb.h>
56 #include <sys/select.h>
57 #ifdef HOST_BSD
58 #include <sys/stat.h>
59 #if defined(__FreeBSD__) || defined(__DragonFly__)
60 #include <libutil.h>
61 #else
62 #include <util.h>
63 #endif
64 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
65 #include <freebsd/stdlib.h>
66 #else
67 #ifdef __linux__
68 #include <pty.h>
69 #include <malloc.h>
70 #include <linux/rtc.h>
71 #include <sys/prctl.h>
72
73 /* For the benefit of older linux systems which don't supply it,
74 we use a local copy of hpet.h. */
75 /* #include <linux/hpet.h> */
76 #include "hpet.h"
77
78 #include <linux/ppdev.h>
79 #include <linux/parport.h>
80 #endif
81 #ifdef __sun__
82 #include <sys/stat.h>
83 #include <sys/ethernet.h>
84 #include <sys/sockio.h>
85 #include <netinet/arp.h>
86 #include <netinet/in.h>
87 #include <netinet/in_systm.h>
88 #include <netinet/ip.h>
89 #include <netinet/ip_icmp.h> // must come after ip.h
90 #include <netinet/udp.h>
91 #include <netinet/tcp.h>
92 #include <net/if.h>
93 #include <syslog.h>
94 #include <stropts.h>
95 #endif
96 #endif
97 #endif
98
99 #if defined(__OpenBSD__)
100 #include <util.h>
101 #endif
102
103 #if defined(CONFIG_VDE)
104 #include <libvdeplug.h>
105 #endif
106
107 #ifdef _WIN32
108 #include <windows.h>
109 #include <malloc.h>
110 #include <sys/timeb.h>
111 #include <mmsystem.h>
112 #define getopt_long_only getopt_long
113 #define memalign(align, size) malloc(size)
114 #endif
115
116 #ifdef CONFIG_SDL
117 #if defined(__APPLE__) || defined(main)
118 #include <SDL.h>
119 int qemu_main(int argc, char **argv, char **envp);
120 int main(int argc, char **argv)
121 {
122 return qemu_main(argc, argv, NULL);
123 }
124 #undef main
125 #define main qemu_main
126 #endif
127 #endif /* CONFIG_SDL */
128
129 #ifdef CONFIG_COCOA
130 #undef main
131 #define main qemu_main
132 #endif /* CONFIG_COCOA */
133
134 #include "hw/hw.h"
135 #include "hw/boards.h"
136 #include "hw/usb.h"
137 #include "hw/pcmcia.h"
138 #include "hw/pc.h"
139 #include "hw/audiodev.h"
140 #include "hw/isa.h"
141 #include "hw/baum.h"
142 #include "hw/bt.h"
143 #include "hw/watchdog.h"
144 #include "hw/smbios.h"
145 #include "hw/xen.h"
146 #include "bt-host.h"
147 #include "net.h"
148 #include "monitor.h"
149 #include "console.h"
150 #include "sysemu.h"
151 #include "gdbstub.h"
152 #include "qemu-timer.h"
153 #include "qemu-char.h"
154 #include "cache-utils.h"
155 #include "block.h"
156 #include "dma.h"
157 #include "audio/audio.h"
158 #include "migration.h"
159 #include "kvm.h"
160 #include "balloon.h"
161 #include "qemu-option.h"
162
163 #include "disas.h"
164
165 #include "exec-all.h"
166
167 #include "qemu_socket.h"
168
169 #include "slirp/libslirp.h"
170
171 //#define DEBUG_NET
172 //#define DEBUG_SLIRP
173
174 #define DEFAULT_RAM_SIZE 128
175
176 /* Max number of USB devices that can be specified on the commandline. */
177 #define MAX_USB_CMDLINE 8
178
179 /* Max number of bluetooth switches on the commandline. */
180 #define MAX_BT_CMDLINE 10
181
182 static const char *data_dir;
183 const char *bios_name = NULL;
184 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
185 to store the VM snapshots */
186 DriveInfo drives_table[MAX_DRIVES+1];
187 int nb_drives;
188 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
189 static DisplayState *display_state;
190 DisplayType display_type = DT_DEFAULT;
191 const char* keyboard_layout = NULL;
192 int64_t ticks_per_sec;
193 ram_addr_t ram_size;
194 int nb_nics;
195 NICInfo nd_table[MAX_NICS];
196 int vm_running;
197 static int autostart;
198 static int rtc_utc = 1;
199 static int rtc_date_offset = -1; /* -1 means no change */
200 int cirrus_vga_enabled = 1;
201 int std_vga_enabled = 0;
202 int vmsvga_enabled = 0;
203 int xenfb_enabled = 0;
204 #ifdef TARGET_SPARC
205 int graphic_width = 1024;
206 int graphic_height = 768;
207 int graphic_depth = 8;
208 #else
209 int graphic_width = 800;
210 int graphic_height = 600;
211 int graphic_depth = 15;
212 #endif
213 static int full_screen = 0;
214 #ifdef CONFIG_SDL
215 static int no_frame = 0;
216 #endif
217 int no_quit = 0;
218 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
219 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
220 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
221 #ifdef TARGET_I386
222 int win2k_install_hack = 0;
223 int rtc_td_hack = 0;
224 #endif
225 int usb_enabled = 0;
226 int singlestep = 0;
227 int smp_cpus = 1;
228 const char *vnc_display;
229 int acpi_enabled = 1;
230 int no_hpet = 0;
231 int virtio_balloon = 1;
232 const char *virtio_balloon_devaddr;
233 int fd_bootchk = 1;
234 int no_reboot = 0;
235 int no_shutdown = 0;
236 int cursor_hide = 1;
237 int graphic_rotate = 0;
238 #ifndef _WIN32
239 int daemonize = 0;
240 #endif
241 WatchdogTimerModel *watchdog = NULL;
242 int watchdog_action = WDT_RESET;
243 const char *option_rom[MAX_OPTION_ROMS];
244 int nb_option_roms;
245 int semihosting_enabled = 0;
246 #ifdef TARGET_ARM
247 int old_param = 0;
248 #endif
249 const char *qemu_name;
250 int alt_grab = 0;
251 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
252 unsigned int nb_prom_envs = 0;
253 const char *prom_envs[MAX_PROM_ENVS];
254 #endif
255 int nb_drives_opt;
256 struct drive_opt drives_opt[MAX_DRIVES];
257
258 int nb_numa_nodes;
259 uint64_t node_mem[MAX_NODES];
260 uint64_t node_cpumask[MAX_NODES];
261
262 static CPUState *cur_cpu;
263 static CPUState *next_cpu;
264 static int timer_alarm_pending = 1;
265 /* Conversion factor from emulated instructions to virtual clock ticks. */
266 static int icount_time_shift;
267 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
268 #define MAX_ICOUNT_SHIFT 10
269 /* Compensate for varying guest execution speed. */
270 static int64_t qemu_icount_bias;
271 static QEMUTimer *icount_rt_timer;
272 static QEMUTimer *icount_vm_timer;
273 static QEMUTimer *nographic_timer;
274
275 uint8_t qemu_uuid[16];
276
277 static QEMUBootSetHandler *boot_set_handler;
278 static void *boot_set_opaque;
279
280 /***********************************************************/
281 /* x86 ISA bus support */
282
283 target_phys_addr_t isa_mem_base = 0;
284 PicState2 *isa_pic;
285
286 /***********************************************************/
287 void hw_error(const char *fmt, ...)
288 {
289 va_list ap;
290 CPUState *env;
291
292 va_start(ap, fmt);
293 fprintf(stderr, "qemu: hardware error: ");
294 vfprintf(stderr, fmt, ap);
295 fprintf(stderr, "\n");
296 for(env = first_cpu; env != NULL; env = env->next_cpu) {
297 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
298 #ifdef TARGET_I386
299 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
300 #else
301 cpu_dump_state(env, stderr, fprintf, 0);
302 #endif
303 }
304 va_end(ap);
305 abort();
306 }
307
308 static void set_proc_name(const char *s)
309 {
310 #ifdef __linux__
311 char name[16];
312 if (!s)
313 return;
314 name[sizeof(name) - 1] = 0;
315 strncpy(name, s, sizeof(name));
316 /* Could rewrite argv[0] too, but that's a bit more complicated.
317 This simple way is enough for `top'. */
318 prctl(PR_SET_NAME, name);
319 #endif
320 }
321
322 /***************/
323 /* ballooning */
324
325 static QEMUBalloonEvent *qemu_balloon_event;
326 void *qemu_balloon_event_opaque;
327
328 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
329 {
330 qemu_balloon_event = func;
331 qemu_balloon_event_opaque = opaque;
332 }
333
334 void qemu_balloon(ram_addr_t target)
335 {
336 if (qemu_balloon_event)
337 qemu_balloon_event(qemu_balloon_event_opaque, target);
338 }
339
340 ram_addr_t qemu_balloon_status(void)
341 {
342 if (qemu_balloon_event)
343 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
344 return 0;
345 }
346
347 /***********************************************************/
348 /* keyboard/mouse */
349
350 static QEMUPutKBDEvent *qemu_put_kbd_event;
351 static void *qemu_put_kbd_event_opaque;
352 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
353 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
354
355 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
356 {
357 qemu_put_kbd_event_opaque = opaque;
358 qemu_put_kbd_event = func;
359 }
360
361 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
362 void *opaque, int absolute,
363 const char *name)
364 {
365 QEMUPutMouseEntry *s, *cursor;
366
367 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
368
369 s->qemu_put_mouse_event = func;
370 s->qemu_put_mouse_event_opaque = opaque;
371 s->qemu_put_mouse_event_absolute = absolute;
372 s->qemu_put_mouse_event_name = qemu_strdup(name);
373 s->next = NULL;
374
375 if (!qemu_put_mouse_event_head) {
376 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
377 return s;
378 }
379
380 cursor = qemu_put_mouse_event_head;
381 while (cursor->next != NULL)
382 cursor = cursor->next;
383
384 cursor->next = s;
385 qemu_put_mouse_event_current = s;
386
387 return s;
388 }
389
390 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
391 {
392 QEMUPutMouseEntry *prev = NULL, *cursor;
393
394 if (!qemu_put_mouse_event_head || entry == NULL)
395 return;
396
397 cursor = qemu_put_mouse_event_head;
398 while (cursor != NULL && cursor != entry) {
399 prev = cursor;
400 cursor = cursor->next;
401 }
402
403 if (cursor == NULL) // does not exist or list empty
404 return;
405 else if (prev == NULL) { // entry is head
406 qemu_put_mouse_event_head = cursor->next;
407 if (qemu_put_mouse_event_current == entry)
408 qemu_put_mouse_event_current = cursor->next;
409 qemu_free(entry->qemu_put_mouse_event_name);
410 qemu_free(entry);
411 return;
412 }
413
414 prev->next = entry->next;
415
416 if (qemu_put_mouse_event_current == entry)
417 qemu_put_mouse_event_current = prev;
418
419 qemu_free(entry->qemu_put_mouse_event_name);
420 qemu_free(entry);
421 }
422
423 void kbd_put_keycode(int keycode)
424 {
425 if (qemu_put_kbd_event) {
426 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
427 }
428 }
429
430 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
431 {
432 QEMUPutMouseEvent *mouse_event;
433 void *mouse_event_opaque;
434 int width;
435
436 if (!qemu_put_mouse_event_current) {
437 return;
438 }
439
440 mouse_event =
441 qemu_put_mouse_event_current->qemu_put_mouse_event;
442 mouse_event_opaque =
443 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
444
445 if (mouse_event) {
446 if (graphic_rotate) {
447 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
448 width = 0x7fff;
449 else
450 width = graphic_width - 1;
451 mouse_event(mouse_event_opaque,
452 width - dy, dx, dz, buttons_state);
453 } else
454 mouse_event(mouse_event_opaque,
455 dx, dy, dz, buttons_state);
456 }
457 }
458
459 int kbd_mouse_is_absolute(void)
460 {
461 if (!qemu_put_mouse_event_current)
462 return 0;
463
464 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
465 }
466
467 void do_info_mice(Monitor *mon)
468 {
469 QEMUPutMouseEntry *cursor;
470 int index = 0;
471
472 if (!qemu_put_mouse_event_head) {
473 monitor_printf(mon, "No mouse devices connected\n");
474 return;
475 }
476
477 monitor_printf(mon, "Mouse devices available:\n");
478 cursor = qemu_put_mouse_event_head;
479 while (cursor != NULL) {
480 monitor_printf(mon, "%c Mouse #%d: %s\n",
481 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
482 index, cursor->qemu_put_mouse_event_name);
483 index++;
484 cursor = cursor->next;
485 }
486 }
487
488 void do_mouse_set(Monitor *mon, int index)
489 {
490 QEMUPutMouseEntry *cursor;
491 int i = 0;
492
493 if (!qemu_put_mouse_event_head) {
494 monitor_printf(mon, "No mouse devices connected\n");
495 return;
496 }
497
498 cursor = qemu_put_mouse_event_head;
499 while (cursor != NULL && index != i) {
500 i++;
501 cursor = cursor->next;
502 }
503
504 if (cursor != NULL)
505 qemu_put_mouse_event_current = cursor;
506 else
507 monitor_printf(mon, "Mouse at given index not found\n");
508 }
509
510 /* compute with 96 bit intermediate result: (a*b)/c */
511 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
512 {
513 union {
514 uint64_t ll;
515 struct {
516 #ifdef WORDS_BIGENDIAN
517 uint32_t high, low;
518 #else
519 uint32_t low, high;
520 #endif
521 } l;
522 } u, res;
523 uint64_t rl, rh;
524
525 u.ll = a;
526 rl = (uint64_t)u.l.low * (uint64_t)b;
527 rh = (uint64_t)u.l.high * (uint64_t)b;
528 rh += (rl >> 32);
529 res.l.high = rh / c;
530 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
531 return res.ll;
532 }
533
534 /***********************************************************/
535 /* real time host monotonic timer */
536
537 #define QEMU_TIMER_BASE 1000000000LL
538
539 #ifdef WIN32
540
541 static int64_t clock_freq;
542
543 static void init_get_clock(void)
544 {
545 LARGE_INTEGER freq;
546 int ret;
547 ret = QueryPerformanceFrequency(&freq);
548 if (ret == 0) {
549 fprintf(stderr, "Could not calibrate ticks\n");
550 exit(1);
551 }
552 clock_freq = freq.QuadPart;
553 }
554
555 static int64_t get_clock(void)
556 {
557 LARGE_INTEGER ti;
558 QueryPerformanceCounter(&ti);
559 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
560 }
561
562 #else
563
564 static int use_rt_clock;
565
566 static void init_get_clock(void)
567 {
568 use_rt_clock = 0;
569 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
570 || defined(__DragonFly__)
571 {
572 struct timespec ts;
573 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
574 use_rt_clock = 1;
575 }
576 }
577 #endif
578 }
579
580 static int64_t get_clock(void)
581 {
582 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
583 || defined(__DragonFly__)
584 if (use_rt_clock) {
585 struct timespec ts;
586 clock_gettime(CLOCK_MONOTONIC, &ts);
587 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
588 } else
589 #endif
590 {
591 /* XXX: using gettimeofday leads to problems if the date
592 changes, so it should be avoided. */
593 struct timeval tv;
594 gettimeofday(&tv, NULL);
595 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
596 }
597 }
598 #endif
599
600 /* Return the virtual CPU time, based on the instruction counter. */
601 static int64_t cpu_get_icount(void)
602 {
603 int64_t icount;
604 CPUState *env = cpu_single_env;;
605 icount = qemu_icount;
606 if (env) {
607 if (!can_do_io(env))
608 fprintf(stderr, "Bad clock read\n");
609 icount -= (env->icount_decr.u16.low + env->icount_extra);
610 }
611 return qemu_icount_bias + (icount << icount_time_shift);
612 }
613
614 /***********************************************************/
615 /* guest cycle counter */
616
617 static int64_t cpu_ticks_prev;
618 static int64_t cpu_ticks_offset;
619 static int64_t cpu_clock_offset;
620 static int cpu_ticks_enabled;
621
622 /* return the host CPU cycle counter and handle stop/restart */
623 int64_t cpu_get_ticks(void)
624 {
625 if (use_icount) {
626 return cpu_get_icount();
627 }
628 if (!cpu_ticks_enabled) {
629 return cpu_ticks_offset;
630 } else {
631 int64_t ticks;
632 ticks = cpu_get_real_ticks();
633 if (cpu_ticks_prev > ticks) {
634 /* Note: non increasing ticks may happen if the host uses
635 software suspend */
636 cpu_ticks_offset += cpu_ticks_prev - ticks;
637 }
638 cpu_ticks_prev = ticks;
639 return ticks + cpu_ticks_offset;
640 }
641 }
642
643 /* return the host CPU monotonic timer and handle stop/restart */
644 static int64_t cpu_get_clock(void)
645 {
646 int64_t ti;
647 if (!cpu_ticks_enabled) {
648 return cpu_clock_offset;
649 } else {
650 ti = get_clock();
651 return ti + cpu_clock_offset;
652 }
653 }
654
655 /* enable cpu_get_ticks() */
656 void cpu_enable_ticks(void)
657 {
658 if (!cpu_ticks_enabled) {
659 cpu_ticks_offset -= cpu_get_real_ticks();
660 cpu_clock_offset -= get_clock();
661 cpu_ticks_enabled = 1;
662 }
663 }
664
665 /* disable cpu_get_ticks() : the clock is stopped. You must not call
666 cpu_get_ticks() after that. */
667 void cpu_disable_ticks(void)
668 {
669 if (cpu_ticks_enabled) {
670 cpu_ticks_offset = cpu_get_ticks();
671 cpu_clock_offset = cpu_get_clock();
672 cpu_ticks_enabled = 0;
673 }
674 }
675
676 /***********************************************************/
677 /* timers */
678
679 #define QEMU_TIMER_REALTIME 0
680 #define QEMU_TIMER_VIRTUAL 1
681
682 struct QEMUClock {
683 int type;
684 /* XXX: add frequency */
685 };
686
687 struct QEMUTimer {
688 QEMUClock *clock;
689 int64_t expire_time;
690 QEMUTimerCB *cb;
691 void *opaque;
692 struct QEMUTimer *next;
693 };
694
695 struct qemu_alarm_timer {
696 char const *name;
697 unsigned int flags;
698
699 int (*start)(struct qemu_alarm_timer *t);
700 void (*stop)(struct qemu_alarm_timer *t);
701 void (*rearm)(struct qemu_alarm_timer *t);
702 void *priv;
703 };
704
705 #define ALARM_FLAG_DYNTICKS 0x1
706 #define ALARM_FLAG_EXPIRED 0x2
707
708 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
709 {
710 return t && (t->flags & ALARM_FLAG_DYNTICKS);
711 }
712
713 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
714 {
715 if (!alarm_has_dynticks(t))
716 return;
717
718 t->rearm(t);
719 }
720
721 /* TODO: MIN_TIMER_REARM_US should be optimized */
722 #define MIN_TIMER_REARM_US 250
723
724 static struct qemu_alarm_timer *alarm_timer;
725
726 #ifdef _WIN32
727
728 struct qemu_alarm_win32 {
729 MMRESULT timerId;
730 unsigned int period;
731 } alarm_win32_data = {0, -1};
732
733 static int win32_start_timer(struct qemu_alarm_timer *t);
734 static void win32_stop_timer(struct qemu_alarm_timer *t);
735 static void win32_rearm_timer(struct qemu_alarm_timer *t);
736
737 #else
738
739 static int unix_start_timer(struct qemu_alarm_timer *t);
740 static void unix_stop_timer(struct qemu_alarm_timer *t);
741
742 #ifdef __linux__
743
744 static int dynticks_start_timer(struct qemu_alarm_timer *t);
745 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
746 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
747
748 static int hpet_start_timer(struct qemu_alarm_timer *t);
749 static void hpet_stop_timer(struct qemu_alarm_timer *t);
750
751 static int rtc_start_timer(struct qemu_alarm_timer *t);
752 static void rtc_stop_timer(struct qemu_alarm_timer *t);
753
754 #endif /* __linux__ */
755
756 #endif /* _WIN32 */
757
758 /* Correlation between real and virtual time is always going to be
759 fairly approximate, so ignore small variation.
760 When the guest is idle real and virtual time will be aligned in
761 the IO wait loop. */
762 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
763
764 static void icount_adjust(void)
765 {
766 int64_t cur_time;
767 int64_t cur_icount;
768 int64_t delta;
769 static int64_t last_delta;
770 /* If the VM is not running, then do nothing. */
771 if (!vm_running)
772 return;
773
774 cur_time = cpu_get_clock();
775 cur_icount = qemu_get_clock(vm_clock);
776 delta = cur_icount - cur_time;
777 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
778 if (delta > 0
779 && last_delta + ICOUNT_WOBBLE < delta * 2
780 && icount_time_shift > 0) {
781 /* The guest is getting too far ahead. Slow time down. */
782 icount_time_shift--;
783 }
784 if (delta < 0
785 && last_delta - ICOUNT_WOBBLE > delta * 2
786 && icount_time_shift < MAX_ICOUNT_SHIFT) {
787 /* The guest is getting too far behind. Speed time up. */
788 icount_time_shift++;
789 }
790 last_delta = delta;
791 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
792 }
793
794 static void icount_adjust_rt(void * opaque)
795 {
796 qemu_mod_timer(icount_rt_timer,
797 qemu_get_clock(rt_clock) + 1000);
798 icount_adjust();
799 }
800
801 static void icount_adjust_vm(void * opaque)
802 {
803 qemu_mod_timer(icount_vm_timer,
804 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
805 icount_adjust();
806 }
807
808 static void init_icount_adjust(void)
809 {
810 /* Have both realtime and virtual time triggers for speed adjustment.
811 The realtime trigger catches emulated time passing too slowly,
812 the virtual time trigger catches emulated time passing too fast.
813 Realtime triggers occur even when idle, so use them less frequently
814 than VM triggers. */
815 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
816 qemu_mod_timer(icount_rt_timer,
817 qemu_get_clock(rt_clock) + 1000);
818 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
819 qemu_mod_timer(icount_vm_timer,
820 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
821 }
822
823 static struct qemu_alarm_timer alarm_timers[] = {
824 #ifndef _WIN32
825 #ifdef __linux__
826 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
827 dynticks_stop_timer, dynticks_rearm_timer, NULL},
828 /* HPET - if available - is preferred */
829 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
830 /* ...otherwise try RTC */
831 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
832 #endif
833 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
834 #else
835 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
836 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
837 {"win32", 0, win32_start_timer,
838 win32_stop_timer, NULL, &alarm_win32_data},
839 #endif
840 {NULL, }
841 };
842
843 static void show_available_alarms(void)
844 {
845 int i;
846
847 printf("Available alarm timers, in order of precedence:\n");
848 for (i = 0; alarm_timers[i].name; i++)
849 printf("%s\n", alarm_timers[i].name);
850 }
851
852 static void configure_alarms(char const *opt)
853 {
854 int i;
855 int cur = 0;
856 int count = ARRAY_SIZE(alarm_timers) - 1;
857 char *arg;
858 char *name;
859 struct qemu_alarm_timer tmp;
860
861 if (!strcmp(opt, "?")) {
862 show_available_alarms();
863 exit(0);
864 }
865
866 arg = strdup(opt);
867
868 /* Reorder the array */
869 name = strtok(arg, ",");
870 while (name) {
871 for (i = 0; i < count && alarm_timers[i].name; i++) {
872 if (!strcmp(alarm_timers[i].name, name))
873 break;
874 }
875
876 if (i == count) {
877 fprintf(stderr, "Unknown clock %s\n", name);
878 goto next;
879 }
880
881 if (i < cur)
882 /* Ignore */
883 goto next;
884
885 /* Swap */
886 tmp = alarm_timers[i];
887 alarm_timers[i] = alarm_timers[cur];
888 alarm_timers[cur] = tmp;
889
890 cur++;
891 next:
892 name = strtok(NULL, ",");
893 }
894
895 free(arg);
896
897 if (cur) {
898 /* Disable remaining timers */
899 for (i = cur; i < count; i++)
900 alarm_timers[i].name = NULL;
901 } else {
902 show_available_alarms();
903 exit(1);
904 }
905 }
906
907 QEMUClock *rt_clock;
908 QEMUClock *vm_clock;
909
910 static QEMUTimer *active_timers[2];
911
912 static QEMUClock *qemu_new_clock(int type)
913 {
914 QEMUClock *clock;
915 clock = qemu_mallocz(sizeof(QEMUClock));
916 clock->type = type;
917 return clock;
918 }
919
920 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
921 {
922 QEMUTimer *ts;
923
924 ts = qemu_mallocz(sizeof(QEMUTimer));
925 ts->clock = clock;
926 ts->cb = cb;
927 ts->opaque = opaque;
928 return ts;
929 }
930
931 void qemu_free_timer(QEMUTimer *ts)
932 {
933 qemu_free(ts);
934 }
935
936 /* stop a timer, but do not dealloc it */
937 void qemu_del_timer(QEMUTimer *ts)
938 {
939 QEMUTimer **pt, *t;
940
941 /* NOTE: this code must be signal safe because
942 qemu_timer_expired() can be called from a signal. */
943 pt = &active_timers[ts->clock->type];
944 for(;;) {
945 t = *pt;
946 if (!t)
947 break;
948 if (t == ts) {
949 *pt = t->next;
950 break;
951 }
952 pt = &t->next;
953 }
954 }
955
956 /* modify the current timer so that it will be fired when current_time
957 >= expire_time. The corresponding callback will be called. */
958 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
959 {
960 QEMUTimer **pt, *t;
961
962 qemu_del_timer(ts);
963
964 /* add the timer in the sorted list */
965 /* NOTE: this code must be signal safe because
966 qemu_timer_expired() can be called from a signal. */
967 pt = &active_timers[ts->clock->type];
968 for(;;) {
969 t = *pt;
970 if (!t)
971 break;
972 if (t->expire_time > expire_time)
973 break;
974 pt = &t->next;
975 }
976 ts->expire_time = expire_time;
977 ts->next = *pt;
978 *pt = ts;
979
980 /* Rearm if necessary */
981 if (pt == &active_timers[ts->clock->type]) {
982 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
983 qemu_rearm_alarm_timer(alarm_timer);
984 }
985 /* Interrupt execution to force deadline recalculation. */
986 if (use_icount)
987 qemu_notify_event();
988 }
989 }
990
991 int qemu_timer_pending(QEMUTimer *ts)
992 {
993 QEMUTimer *t;
994 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
995 if (t == ts)
996 return 1;
997 }
998 return 0;
999 }
1000
1001 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1002 {
1003 if (!timer_head)
1004 return 0;
1005 return (timer_head->expire_time <= current_time);
1006 }
1007
1008 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1009 {
1010 QEMUTimer *ts;
1011
1012 for(;;) {
1013 ts = *ptimer_head;
1014 if (!ts || ts->expire_time > current_time)
1015 break;
1016 /* remove timer from the list before calling the callback */
1017 *ptimer_head = ts->next;
1018 ts->next = NULL;
1019
1020 /* run the callback (the timer list can be modified) */
1021 ts->cb(ts->opaque);
1022 }
1023 }
1024
1025 int64_t qemu_get_clock(QEMUClock *clock)
1026 {
1027 switch(clock->type) {
1028 case QEMU_TIMER_REALTIME:
1029 return get_clock() / 1000000;
1030 default:
1031 case QEMU_TIMER_VIRTUAL:
1032 if (use_icount) {
1033 return cpu_get_icount();
1034 } else {
1035 return cpu_get_clock();
1036 }
1037 }
1038 }
1039
1040 static void init_timers(void)
1041 {
1042 init_get_clock();
1043 ticks_per_sec = QEMU_TIMER_BASE;
1044 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1045 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1046 }
1047
1048 /* save a timer */
1049 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1050 {
1051 uint64_t expire_time;
1052
1053 if (qemu_timer_pending(ts)) {
1054 expire_time = ts->expire_time;
1055 } else {
1056 expire_time = -1;
1057 }
1058 qemu_put_be64(f, expire_time);
1059 }
1060
1061 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1062 {
1063 uint64_t expire_time;
1064
1065 expire_time = qemu_get_be64(f);
1066 if (expire_time != -1) {
1067 qemu_mod_timer(ts, expire_time);
1068 } else {
1069 qemu_del_timer(ts);
1070 }
1071 }
1072
1073 static void timer_save(QEMUFile *f, void *opaque)
1074 {
1075 if (cpu_ticks_enabled) {
1076 hw_error("cannot save state if virtual timers are running");
1077 }
1078 qemu_put_be64(f, cpu_ticks_offset);
1079 qemu_put_be64(f, ticks_per_sec);
1080 qemu_put_be64(f, cpu_clock_offset);
1081 }
1082
1083 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1084 {
1085 if (version_id != 1 && version_id != 2)
1086 return -EINVAL;
1087 if (cpu_ticks_enabled) {
1088 return -EINVAL;
1089 }
1090 cpu_ticks_offset=qemu_get_be64(f);
1091 ticks_per_sec=qemu_get_be64(f);
1092 if (version_id == 2) {
1093 cpu_clock_offset=qemu_get_be64(f);
1094 }
1095 return 0;
1096 }
1097
1098 static void qemu_event_increment(void);
1099
1100 #ifdef _WIN32
1101 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1102 DWORD_PTR dwUser, DWORD_PTR dw1,
1103 DWORD_PTR dw2)
1104 #else
1105 static void host_alarm_handler(int host_signum)
1106 #endif
1107 {
1108 #if 0
1109 #define DISP_FREQ 1000
1110 {
1111 static int64_t delta_min = INT64_MAX;
1112 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1113 static int count;
1114 ti = qemu_get_clock(vm_clock);
1115 if (last_clock != 0) {
1116 delta = ti - last_clock;
1117 if (delta < delta_min)
1118 delta_min = delta;
1119 if (delta > delta_max)
1120 delta_max = delta;
1121 delta_cum += delta;
1122 if (++count == DISP_FREQ) {
1123 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1124 muldiv64(delta_min, 1000000, ticks_per_sec),
1125 muldiv64(delta_max, 1000000, ticks_per_sec),
1126 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1127 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1128 count = 0;
1129 delta_min = INT64_MAX;
1130 delta_max = 0;
1131 delta_cum = 0;
1132 }
1133 }
1134 last_clock = ti;
1135 }
1136 #endif
1137 if (alarm_has_dynticks(alarm_timer) ||
1138 (!use_icount &&
1139 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1140 qemu_get_clock(vm_clock))) ||
1141 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1142 qemu_get_clock(rt_clock))) {
1143 qemu_event_increment();
1144 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1145
1146 #ifndef CONFIG_IOTHREAD
1147 if (next_cpu) {
1148 /* stop the currently executing cpu because a timer occured */
1149 cpu_exit(next_cpu);
1150 #ifdef CONFIG_KQEMU
1151 if (next_cpu->kqemu_enabled) {
1152 kqemu_cpu_interrupt(next_cpu);
1153 }
1154 #endif
1155 }
1156 #endif
1157 timer_alarm_pending = 1;
1158 qemu_notify_event();
1159 }
1160 }
1161
1162 static int64_t qemu_next_deadline(void)
1163 {
1164 int64_t delta;
1165
1166 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1167 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1168 qemu_get_clock(vm_clock);
1169 } else {
1170 /* To avoid problems with overflow limit this to 2^32. */
1171 delta = INT32_MAX;
1172 }
1173
1174 if (delta < 0)
1175 delta = 0;
1176
1177 return delta;
1178 }
1179
1180 #if defined(__linux__) || defined(_WIN32)
1181 static uint64_t qemu_next_deadline_dyntick(void)
1182 {
1183 int64_t delta;
1184 int64_t rtdelta;
1185
1186 if (use_icount)
1187 delta = INT32_MAX;
1188 else
1189 delta = (qemu_next_deadline() + 999) / 1000;
1190
1191 if (active_timers[QEMU_TIMER_REALTIME]) {
1192 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1193 qemu_get_clock(rt_clock))*1000;
1194 if (rtdelta < delta)
1195 delta = rtdelta;
1196 }
1197
1198 if (delta < MIN_TIMER_REARM_US)
1199 delta = MIN_TIMER_REARM_US;
1200
1201 return delta;
1202 }
1203 #endif
1204
1205 #ifndef _WIN32
1206
1207 /* Sets a specific flag */
1208 static int fcntl_setfl(int fd, int flag)
1209 {
1210 int flags;
1211
1212 flags = fcntl(fd, F_GETFL);
1213 if (flags == -1)
1214 return -errno;
1215
1216 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1217 return -errno;
1218
1219 return 0;
1220 }
1221
1222 #if defined(__linux__)
1223
1224 #define RTC_FREQ 1024
1225
1226 static void enable_sigio_timer(int fd)
1227 {
1228 struct sigaction act;
1229
1230 /* timer signal */
1231 sigfillset(&act.sa_mask);
1232 act.sa_flags = 0;
1233 act.sa_handler = host_alarm_handler;
1234
1235 sigaction(SIGIO, &act, NULL);
1236 fcntl_setfl(fd, O_ASYNC);
1237 fcntl(fd, F_SETOWN, getpid());
1238 }
1239
1240 static int hpet_start_timer(struct qemu_alarm_timer *t)
1241 {
1242 struct hpet_info info;
1243 int r, fd;
1244
1245 fd = open("/dev/hpet", O_RDONLY);
1246 if (fd < 0)
1247 return -1;
1248
1249 /* Set frequency */
1250 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1251 if (r < 0) {
1252 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1253 "error, but for better emulation accuracy type:\n"
1254 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1255 goto fail;
1256 }
1257
1258 /* Check capabilities */
1259 r = ioctl(fd, HPET_INFO, &info);
1260 if (r < 0)
1261 goto fail;
1262
1263 /* Enable periodic mode */
1264 r = ioctl(fd, HPET_EPI, 0);
1265 if (info.hi_flags && (r < 0))
1266 goto fail;
1267
1268 /* Enable interrupt */
1269 r = ioctl(fd, HPET_IE_ON, 0);
1270 if (r < 0)
1271 goto fail;
1272
1273 enable_sigio_timer(fd);
1274 t->priv = (void *)(long)fd;
1275
1276 return 0;
1277 fail:
1278 close(fd);
1279 return -1;
1280 }
1281
1282 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1283 {
1284 int fd = (long)t->priv;
1285
1286 close(fd);
1287 }
1288
1289 static int rtc_start_timer(struct qemu_alarm_timer *t)
1290 {
1291 int rtc_fd;
1292 unsigned long current_rtc_freq = 0;
1293
1294 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1295 if (rtc_fd < 0)
1296 return -1;
1297 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1298 if (current_rtc_freq != RTC_FREQ &&
1299 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1300 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1301 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1302 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1303 goto fail;
1304 }
1305 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1306 fail:
1307 close(rtc_fd);
1308 return -1;
1309 }
1310
1311 enable_sigio_timer(rtc_fd);
1312
1313 t->priv = (void *)(long)rtc_fd;
1314
1315 return 0;
1316 }
1317
1318 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1319 {
1320 int rtc_fd = (long)t->priv;
1321
1322 close(rtc_fd);
1323 }
1324
1325 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1326 {
1327 struct sigevent ev;
1328 timer_t host_timer;
1329 struct sigaction act;
1330
1331 sigfillset(&act.sa_mask);
1332 act.sa_flags = 0;
1333 act.sa_handler = host_alarm_handler;
1334
1335 sigaction(SIGALRM, &act, NULL);
1336
1337 /*
1338 * Initialize ev struct to 0 to avoid valgrind complaining
1339 * about uninitialized data in timer_create call
1340 */
1341 memset(&ev, 0, sizeof(ev));
1342 ev.sigev_value.sival_int = 0;
1343 ev.sigev_notify = SIGEV_SIGNAL;
1344 ev.sigev_signo = SIGALRM;
1345
1346 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1347 perror("timer_create");
1348
1349 /* disable dynticks */
1350 fprintf(stderr, "Dynamic Ticks disabled\n");
1351
1352 return -1;
1353 }
1354
1355 t->priv = (void *)(long)host_timer;
1356
1357 return 0;
1358 }
1359
1360 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1361 {
1362 timer_t host_timer = (timer_t)(long)t->priv;
1363
1364 timer_delete(host_timer);
1365 }
1366
1367 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1368 {
1369 timer_t host_timer = (timer_t)(long)t->priv;
1370 struct itimerspec timeout;
1371 int64_t nearest_delta_us = INT64_MAX;
1372 int64_t current_us;
1373
1374 if (!active_timers[QEMU_TIMER_REALTIME] &&
1375 !active_timers[QEMU_TIMER_VIRTUAL])
1376 return;
1377
1378 nearest_delta_us = qemu_next_deadline_dyntick();
1379
1380 /* check whether a timer is already running */
1381 if (timer_gettime(host_timer, &timeout)) {
1382 perror("gettime");
1383 fprintf(stderr, "Internal timer error: aborting\n");
1384 exit(1);
1385 }
1386 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1387 if (current_us && current_us <= nearest_delta_us)
1388 return;
1389
1390 timeout.it_interval.tv_sec = 0;
1391 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1392 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1393 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1394 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1395 perror("settime");
1396 fprintf(stderr, "Internal timer error: aborting\n");
1397 exit(1);
1398 }
1399 }
1400
1401 #endif /* defined(__linux__) */
1402
1403 static int unix_start_timer(struct qemu_alarm_timer *t)
1404 {
1405 struct sigaction act;
1406 struct itimerval itv;
1407 int err;
1408
1409 /* timer signal */
1410 sigfillset(&act.sa_mask);
1411 act.sa_flags = 0;
1412 act.sa_handler = host_alarm_handler;
1413
1414 sigaction(SIGALRM, &act, NULL);
1415
1416 itv.it_interval.tv_sec = 0;
1417 /* for i386 kernel 2.6 to get 1 ms */
1418 itv.it_interval.tv_usec = 999;
1419 itv.it_value.tv_sec = 0;
1420 itv.it_value.tv_usec = 10 * 1000;
1421
1422 err = setitimer(ITIMER_REAL, &itv, NULL);
1423 if (err)
1424 return -1;
1425
1426 return 0;
1427 }
1428
1429 static void unix_stop_timer(struct qemu_alarm_timer *t)
1430 {
1431 struct itimerval itv;
1432
1433 memset(&itv, 0, sizeof(itv));
1434 setitimer(ITIMER_REAL, &itv, NULL);
1435 }
1436
1437 #endif /* !defined(_WIN32) */
1438
1439
1440 #ifdef _WIN32
1441
1442 static int win32_start_timer(struct qemu_alarm_timer *t)
1443 {
1444 TIMECAPS tc;
1445 struct qemu_alarm_win32 *data = t->priv;
1446 UINT flags;
1447
1448 memset(&tc, 0, sizeof(tc));
1449 timeGetDevCaps(&tc, sizeof(tc));
1450
1451 if (data->period < tc.wPeriodMin)
1452 data->period = tc.wPeriodMin;
1453
1454 timeBeginPeriod(data->period);
1455
1456 flags = TIME_CALLBACK_FUNCTION;
1457 if (alarm_has_dynticks(t))
1458 flags |= TIME_ONESHOT;
1459 else
1460 flags |= TIME_PERIODIC;
1461
1462 data->timerId = timeSetEvent(1, // interval (ms)
1463 data->period, // resolution
1464 host_alarm_handler, // function
1465 (DWORD)t, // parameter
1466 flags);
1467
1468 if (!data->timerId) {
1469 perror("Failed to initialize win32 alarm timer");
1470 timeEndPeriod(data->period);
1471 return -1;
1472 }
1473
1474 return 0;
1475 }
1476
1477 static void win32_stop_timer(struct qemu_alarm_timer *t)
1478 {
1479 struct qemu_alarm_win32 *data = t->priv;
1480
1481 timeKillEvent(data->timerId);
1482 timeEndPeriod(data->period);
1483 }
1484
1485 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1486 {
1487 struct qemu_alarm_win32 *data = t->priv;
1488 uint64_t nearest_delta_us;
1489
1490 if (!active_timers[QEMU_TIMER_REALTIME] &&
1491 !active_timers[QEMU_TIMER_VIRTUAL])
1492 return;
1493
1494 nearest_delta_us = qemu_next_deadline_dyntick();
1495 nearest_delta_us /= 1000;
1496
1497 timeKillEvent(data->timerId);
1498
1499 data->timerId = timeSetEvent(1,
1500 data->period,
1501 host_alarm_handler,
1502 (DWORD)t,
1503 TIME_ONESHOT | TIME_PERIODIC);
1504
1505 if (!data->timerId) {
1506 perror("Failed to re-arm win32 alarm timer");
1507
1508 timeEndPeriod(data->period);
1509 exit(1);
1510 }
1511 }
1512
1513 #endif /* _WIN32 */
1514
1515 static int init_timer_alarm(void)
1516 {
1517 struct qemu_alarm_timer *t = NULL;
1518 int i, err = -1;
1519
1520 for (i = 0; alarm_timers[i].name; i++) {
1521 t = &alarm_timers[i];
1522
1523 err = t->start(t);
1524 if (!err)
1525 break;
1526 }
1527
1528 if (err) {
1529 err = -ENOENT;
1530 goto fail;
1531 }
1532
1533 alarm_timer = t;
1534
1535 return 0;
1536
1537 fail:
1538 return err;
1539 }
1540
1541 static void quit_timers(void)
1542 {
1543 alarm_timer->stop(alarm_timer);
1544 alarm_timer = NULL;
1545 }
1546
1547 /***********************************************************/
1548 /* host time/date access */
1549 void qemu_get_timedate(struct tm *tm, int offset)
1550 {
1551 time_t ti;
1552 struct tm *ret;
1553
1554 time(&ti);
1555 ti += offset;
1556 if (rtc_date_offset == -1) {
1557 if (rtc_utc)
1558 ret = gmtime(&ti);
1559 else
1560 ret = localtime(&ti);
1561 } else {
1562 ti -= rtc_date_offset;
1563 ret = gmtime(&ti);
1564 }
1565
1566 memcpy(tm, ret, sizeof(struct tm));
1567 }
1568
1569 int qemu_timedate_diff(struct tm *tm)
1570 {
1571 time_t seconds;
1572
1573 if (rtc_date_offset == -1)
1574 if (rtc_utc)
1575 seconds = mktimegm(tm);
1576 else
1577 seconds = mktime(tm);
1578 else
1579 seconds = mktimegm(tm) + rtc_date_offset;
1580
1581 return seconds - time(NULL);
1582 }
1583
1584 #ifdef _WIN32
1585 static void socket_cleanup(void)
1586 {
1587 WSACleanup();
1588 }
1589
1590 static int socket_init(void)
1591 {
1592 WSADATA Data;
1593 int ret, err;
1594
1595 ret = WSAStartup(MAKEWORD(2,2), &Data);
1596 if (ret != 0) {
1597 err = WSAGetLastError();
1598 fprintf(stderr, "WSAStartup: %d\n", err);
1599 return -1;
1600 }
1601 atexit(socket_cleanup);
1602 return 0;
1603 }
1604 #endif
1605
1606 int get_next_param_value(char *buf, int buf_size,
1607 const char *tag, const char **pstr)
1608 {
1609 const char *p;
1610 char option[128];
1611
1612 p = *pstr;
1613 for(;;) {
1614 p = get_opt_name(option, sizeof(option), p, '=');
1615 if (*p != '=')
1616 break;
1617 p++;
1618 if (!strcmp(tag, option)) {
1619 *pstr = get_opt_value(buf, buf_size, p);
1620 if (**pstr == ',') {
1621 (*pstr)++;
1622 }
1623 return strlen(buf);
1624 } else {
1625 p = get_opt_value(NULL, 0, p);
1626 }
1627 if (*p != ',')
1628 break;
1629 p++;
1630 }
1631 return 0;
1632 }
1633
1634 int get_param_value(char *buf, int buf_size,
1635 const char *tag, const char *str)
1636 {
1637 return get_next_param_value(buf, buf_size, tag, &str);
1638 }
1639
1640 int check_params(char *buf, int buf_size,
1641 const char * const *params, const char *str)
1642 {
1643 const char *p;
1644 int i;
1645
1646 p = str;
1647 while (*p != '\0') {
1648 p = get_opt_name(buf, buf_size, p, '=');
1649 if (*p != '=') {
1650 return -1;
1651 }
1652 p++;
1653 for (i = 0; params[i] != NULL; i++) {
1654 if (!strcmp(params[i], buf)) {
1655 break;
1656 }
1657 }
1658 if (params[i] == NULL) {
1659 return -1;
1660 }
1661 p = get_opt_value(NULL, 0, p);
1662 if (*p != ',') {
1663 break;
1664 }
1665 p++;
1666 }
1667 return 0;
1668 }
1669
1670 /***********************************************************/
1671 /* Bluetooth support */
1672 static int nb_hcis;
1673 static int cur_hci;
1674 static struct HCIInfo *hci_table[MAX_NICS];
1675
1676 static struct bt_vlan_s {
1677 struct bt_scatternet_s net;
1678 int id;
1679 struct bt_vlan_s *next;
1680 } *first_bt_vlan;
1681
1682 /* find or alloc a new bluetooth "VLAN" */
1683 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1684 {
1685 struct bt_vlan_s **pvlan, *vlan;
1686 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1687 if (vlan->id == id)
1688 return &vlan->net;
1689 }
1690 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1691 vlan->id = id;
1692 pvlan = &first_bt_vlan;
1693 while (*pvlan != NULL)
1694 pvlan = &(*pvlan)->next;
1695 *pvlan = vlan;
1696 return &vlan->net;
1697 }
1698
1699 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1700 {
1701 }
1702
1703 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1704 {
1705 return -ENOTSUP;
1706 }
1707
1708 static struct HCIInfo null_hci = {
1709 .cmd_send = null_hci_send,
1710 .sco_send = null_hci_send,
1711 .acl_send = null_hci_send,
1712 .bdaddr_set = null_hci_addr_set,
1713 };
1714
1715 struct HCIInfo *qemu_next_hci(void)
1716 {
1717 if (cur_hci == nb_hcis)
1718 return &null_hci;
1719
1720 return hci_table[cur_hci++];
1721 }
1722
1723 static struct HCIInfo *hci_init(const char *str)
1724 {
1725 char *endp;
1726 struct bt_scatternet_s *vlan = 0;
1727
1728 if (!strcmp(str, "null"))
1729 /* null */
1730 return &null_hci;
1731 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1732 /* host[:hciN] */
1733 return bt_host_hci(str[4] ? str + 5 : "hci0");
1734 else if (!strncmp(str, "hci", 3)) {
1735 /* hci[,vlan=n] */
1736 if (str[3]) {
1737 if (!strncmp(str + 3, ",vlan=", 6)) {
1738 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1739 if (*endp)
1740 vlan = 0;
1741 }
1742 } else
1743 vlan = qemu_find_bt_vlan(0);
1744 if (vlan)
1745 return bt_new_hci(vlan);
1746 }
1747
1748 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1749
1750 return 0;
1751 }
1752
1753 static int bt_hci_parse(const char *str)
1754 {
1755 struct HCIInfo *hci;
1756 bdaddr_t bdaddr;
1757
1758 if (nb_hcis >= MAX_NICS) {
1759 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1760 return -1;
1761 }
1762
1763 hci = hci_init(str);
1764 if (!hci)
1765 return -1;
1766
1767 bdaddr.b[0] = 0x52;
1768 bdaddr.b[1] = 0x54;
1769 bdaddr.b[2] = 0x00;
1770 bdaddr.b[3] = 0x12;
1771 bdaddr.b[4] = 0x34;
1772 bdaddr.b[5] = 0x56 + nb_hcis;
1773 hci->bdaddr_set(hci, bdaddr.b);
1774
1775 hci_table[nb_hcis++] = hci;
1776
1777 return 0;
1778 }
1779
1780 static void bt_vhci_add(int vlan_id)
1781 {
1782 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1783
1784 if (!vlan->slave)
1785 fprintf(stderr, "qemu: warning: adding a VHCI to "
1786 "an empty scatternet %i\n", vlan_id);
1787
1788 bt_vhci_init(bt_new_hci(vlan));
1789 }
1790
1791 static struct bt_device_s *bt_device_add(const char *opt)
1792 {
1793 struct bt_scatternet_s *vlan;
1794 int vlan_id = 0;
1795 char *endp = strstr(opt, ",vlan=");
1796 int len = (endp ? endp - opt : strlen(opt)) + 1;
1797 char devname[10];
1798
1799 pstrcpy(devname, MIN(sizeof(devname), len), opt);
1800
1801 if (endp) {
1802 vlan_id = strtol(endp + 6, &endp, 0);
1803 if (*endp) {
1804 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
1805 return 0;
1806 }
1807 }
1808
1809 vlan = qemu_find_bt_vlan(vlan_id);
1810
1811 if (!vlan->slave)
1812 fprintf(stderr, "qemu: warning: adding a slave device to "
1813 "an empty scatternet %i\n", vlan_id);
1814
1815 if (!strcmp(devname, "keyboard"))
1816 return bt_keyboard_init(vlan);
1817
1818 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
1819 return 0;
1820 }
1821
1822 static int bt_parse(const char *opt)
1823 {
1824 const char *endp, *p;
1825 int vlan;
1826
1827 if (strstart(opt, "hci", &endp)) {
1828 if (!*endp || *endp == ',') {
1829 if (*endp)
1830 if (!strstart(endp, ",vlan=", 0))
1831 opt = endp + 1;
1832
1833 return bt_hci_parse(opt);
1834 }
1835 } else if (strstart(opt, "vhci", &endp)) {
1836 if (!*endp || *endp == ',') {
1837 if (*endp) {
1838 if (strstart(endp, ",vlan=", &p)) {
1839 vlan = strtol(p, (char **) &endp, 0);
1840 if (*endp) {
1841 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
1842 return 1;
1843 }
1844 } else {
1845 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
1846 return 1;
1847 }
1848 } else
1849 vlan = 0;
1850
1851 bt_vhci_add(vlan);
1852 return 0;
1853 }
1854 } else if (strstart(opt, "device:", &endp))
1855 return !bt_device_add(endp);
1856
1857 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
1858 return 1;
1859 }
1860
1861 /***********************************************************/
1862 /* QEMU Block devices */
1863
1864 #define HD_ALIAS "index=%d,media=disk"
1865 #define CDROM_ALIAS "index=2,media=cdrom"
1866 #define FD_ALIAS "index=%d,if=floppy"
1867 #define PFLASH_ALIAS "if=pflash"
1868 #define MTD_ALIAS "if=mtd"
1869 #define SD_ALIAS "index=0,if=sd"
1870
1871 static int drive_opt_get_free_idx(void)
1872 {
1873 int index;
1874
1875 for (index = 0; index < MAX_DRIVES; index++)
1876 if (!drives_opt[index].used) {
1877 drives_opt[index].used = 1;
1878 return index;
1879 }
1880
1881 return -1;
1882 }
1883
1884 static int drive_get_free_idx(void)
1885 {
1886 int index;
1887
1888 for (index = 0; index < MAX_DRIVES; index++)
1889 if (!drives_table[index].used) {
1890 drives_table[index].used = 1;
1891 return index;
1892 }
1893
1894 return -1;
1895 }
1896
1897 int drive_add(const char *file, const char *fmt, ...)
1898 {
1899 va_list ap;
1900 int index = drive_opt_get_free_idx();
1901
1902 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
1903 fprintf(stderr, "qemu: too many drives\n");
1904 return -1;
1905 }
1906
1907 drives_opt[index].file = file;
1908 va_start(ap, fmt);
1909 vsnprintf(drives_opt[index].opt,
1910 sizeof(drives_opt[0].opt), fmt, ap);
1911 va_end(ap);
1912
1913 nb_drives_opt++;
1914 return index;
1915 }
1916
1917 void drive_remove(int index)
1918 {
1919 drives_opt[index].used = 0;
1920 nb_drives_opt--;
1921 }
1922
1923 int drive_get_index(BlockInterfaceType type, int bus, int unit)
1924 {
1925 int index;
1926
1927 /* seek interface, bus and unit */
1928
1929 for (index = 0; index < MAX_DRIVES; index++)
1930 if (drives_table[index].type == type &&
1931 drives_table[index].bus == bus &&
1932 drives_table[index].unit == unit &&
1933 drives_table[index].used)
1934 return index;
1935
1936 return -1;
1937 }
1938
1939 int drive_get_max_bus(BlockInterfaceType type)
1940 {
1941 int max_bus;
1942 int index;
1943
1944 max_bus = -1;
1945 for (index = 0; index < nb_drives; index++) {
1946 if(drives_table[index].type == type &&
1947 drives_table[index].bus > max_bus)
1948 max_bus = drives_table[index].bus;
1949 }
1950 return max_bus;
1951 }
1952
1953 const char *drive_get_serial(BlockDriverState *bdrv)
1954 {
1955 int index;
1956
1957 for (index = 0; index < nb_drives; index++)
1958 if (drives_table[index].bdrv == bdrv)
1959 return drives_table[index].serial;
1960
1961 return "\0";
1962 }
1963
1964 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
1965 {
1966 int index;
1967
1968 for (index = 0; index < nb_drives; index++)
1969 if (drives_table[index].bdrv == bdrv)
1970 return drives_table[index].onerror;
1971
1972 return BLOCK_ERR_STOP_ENOSPC;
1973 }
1974
1975 static void bdrv_format_print(void *opaque, const char *name)
1976 {
1977 fprintf(stderr, " %s", name);
1978 }
1979
1980 void drive_uninit(BlockDriverState *bdrv)
1981 {
1982 int i;
1983
1984 for (i = 0; i < MAX_DRIVES; i++)
1985 if (drives_table[i].bdrv == bdrv) {
1986 drives_table[i].bdrv = NULL;
1987 drives_table[i].used = 0;
1988 drive_remove(drives_table[i].drive_opt_idx);
1989 nb_drives--;
1990 break;
1991 }
1992 }
1993
1994 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
1995 {
1996 char buf[128];
1997 char file[1024];
1998 char devname[128];
1999 char serial[21];
2000 const char *mediastr = "";
2001 BlockInterfaceType type;
2002 enum { MEDIA_DISK, MEDIA_CDROM } media;
2003 int bus_id, unit_id;
2004 int cyls, heads, secs, translation;
2005 BlockDriverState *bdrv;
2006 BlockDriver *drv = NULL;
2007 QEMUMachine *machine = opaque;
2008 int max_devs;
2009 int index;
2010 int cache;
2011 int bdrv_flags, onerror;
2012 const char *devaddr;
2013 int drives_table_idx;
2014 char *str = arg->opt;
2015 static const char * const params[] = { "bus", "unit", "if", "index",
2016 "cyls", "heads", "secs", "trans",
2017 "media", "snapshot", "file",
2018 "cache", "format", "serial",
2019 "werror", "addr",
2020 NULL };
2021
2022 if (check_params(buf, sizeof(buf), params, str) < 0) {
2023 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2024 buf, str);
2025 return -1;
2026 }
2027
2028 file[0] = 0;
2029 cyls = heads = secs = 0;
2030 bus_id = 0;
2031 unit_id = -1;
2032 translation = BIOS_ATA_TRANSLATION_AUTO;
2033 index = -1;
2034 cache = 1;
2035
2036 if (machine->use_scsi) {
2037 type = IF_SCSI;
2038 max_devs = MAX_SCSI_DEVS;
2039 pstrcpy(devname, sizeof(devname), "scsi");
2040 } else {
2041 type = IF_IDE;
2042 max_devs = MAX_IDE_DEVS;
2043 pstrcpy(devname, sizeof(devname), "ide");
2044 }
2045 media = MEDIA_DISK;
2046
2047 /* extract parameters */
2048
2049 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2050 bus_id = strtol(buf, NULL, 0);
2051 if (bus_id < 0) {
2052 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2053 return -1;
2054 }
2055 }
2056
2057 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2058 unit_id = strtol(buf, NULL, 0);
2059 if (unit_id < 0) {
2060 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2061 return -1;
2062 }
2063 }
2064
2065 if (get_param_value(buf, sizeof(buf), "if", str)) {
2066 pstrcpy(devname, sizeof(devname), buf);
2067 if (!strcmp(buf, "ide")) {
2068 type = IF_IDE;
2069 max_devs = MAX_IDE_DEVS;
2070 } else if (!strcmp(buf, "scsi")) {
2071 type = IF_SCSI;
2072 max_devs = MAX_SCSI_DEVS;
2073 } else if (!strcmp(buf, "floppy")) {
2074 type = IF_FLOPPY;
2075 max_devs = 0;
2076 } else if (!strcmp(buf, "pflash")) {
2077 type = IF_PFLASH;
2078 max_devs = 0;
2079 } else if (!strcmp(buf, "mtd")) {
2080 type = IF_MTD;
2081 max_devs = 0;
2082 } else if (!strcmp(buf, "sd")) {
2083 type = IF_SD;
2084 max_devs = 0;
2085 } else if (!strcmp(buf, "virtio")) {
2086 type = IF_VIRTIO;
2087 max_devs = 0;
2088 } else if (!strcmp(buf, "xen")) {
2089 type = IF_XEN;
2090 max_devs = 0;
2091 } else {
2092 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2093 return -1;
2094 }
2095 }
2096
2097 if (get_param_value(buf, sizeof(buf), "index", str)) {
2098 index = strtol(buf, NULL, 0);
2099 if (index < 0) {
2100 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2101 return -1;
2102 }
2103 }
2104
2105 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2106 cyls = strtol(buf, NULL, 0);
2107 }
2108
2109 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2110 heads = strtol(buf, NULL, 0);
2111 }
2112
2113 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2114 secs = strtol(buf, NULL, 0);
2115 }
2116
2117 if (cyls || heads || secs) {
2118 if (cyls < 1 || cyls > 16383) {
2119 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2120 return -1;
2121 }
2122 if (heads < 1 || heads > 16) {
2123 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2124 return -1;
2125 }
2126 if (secs < 1 || secs > 63) {
2127 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2128 return -1;
2129 }
2130 }
2131
2132 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2133 if (!cyls) {
2134 fprintf(stderr,
2135 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2136 str);
2137 return -1;
2138 }
2139 if (!strcmp(buf, "none"))
2140 translation = BIOS_ATA_TRANSLATION_NONE;
2141 else if (!strcmp(buf, "lba"))
2142 translation = BIOS_ATA_TRANSLATION_LBA;
2143 else if (!strcmp(buf, "auto"))
2144 translation = BIOS_ATA_TRANSLATION_AUTO;
2145 else {
2146 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2147 return -1;
2148 }
2149 }
2150
2151 if (get_param_value(buf, sizeof(buf), "media", str)) {
2152 if (!strcmp(buf, "disk")) {
2153 media = MEDIA_DISK;
2154 } else if (!strcmp(buf, "cdrom")) {
2155 if (cyls || secs || heads) {
2156 fprintf(stderr,
2157 "qemu: '%s' invalid physical CHS format\n", str);
2158 return -1;
2159 }
2160 media = MEDIA_CDROM;
2161 } else {
2162 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2163 return -1;
2164 }
2165 }
2166
2167 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2168 if (!strcmp(buf, "on"))
2169 snapshot = 1;
2170 else if (!strcmp(buf, "off"))
2171 snapshot = 0;
2172 else {
2173 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2174 return -1;
2175 }
2176 }
2177
2178 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2179 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2180 cache = 0;
2181 else if (!strcmp(buf, "writethrough"))
2182 cache = 1;
2183 else if (!strcmp(buf, "writeback"))
2184 cache = 2;
2185 else {
2186 fprintf(stderr, "qemu: invalid cache option\n");
2187 return -1;
2188 }
2189 }
2190
2191 if (get_param_value(buf, sizeof(buf), "format", str)) {
2192 if (strcmp(buf, "?") == 0) {
2193 fprintf(stderr, "qemu: Supported formats:");
2194 bdrv_iterate_format(bdrv_format_print, NULL);
2195 fprintf(stderr, "\n");
2196 return -1;
2197 }
2198 drv = bdrv_find_format(buf);
2199 if (!drv) {
2200 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2201 return -1;
2202 }
2203 }
2204
2205 if (arg->file == NULL)
2206 get_param_value(file, sizeof(file), "file", str);
2207 else
2208 pstrcpy(file, sizeof(file), arg->file);
2209
2210 if (!get_param_value(serial, sizeof(serial), "serial", str))
2211 memset(serial, 0, sizeof(serial));
2212
2213 onerror = BLOCK_ERR_STOP_ENOSPC;
2214 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2215 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2216 fprintf(stderr, "werror is no supported by this format\n");
2217 return -1;
2218 }
2219 if (!strcmp(buf, "ignore"))
2220 onerror = BLOCK_ERR_IGNORE;
2221 else if (!strcmp(buf, "enospc"))
2222 onerror = BLOCK_ERR_STOP_ENOSPC;
2223 else if (!strcmp(buf, "stop"))
2224 onerror = BLOCK_ERR_STOP_ANY;
2225 else if (!strcmp(buf, "report"))
2226 onerror = BLOCK_ERR_REPORT;
2227 else {
2228 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2229 return -1;
2230 }
2231 }
2232
2233 devaddr = NULL;
2234 if (get_param_value(buf, sizeof(buf), "addr", str)) {
2235 if (type != IF_VIRTIO) {
2236 fprintf(stderr, "addr is not supported by in '%s'\n", str);
2237 return -1;
2238 }
2239 devaddr = strdup(buf);
2240 }
2241
2242 /* compute bus and unit according index */
2243
2244 if (index != -1) {
2245 if (bus_id != 0 || unit_id != -1) {
2246 fprintf(stderr,
2247 "qemu: '%s' index cannot be used with bus and unit\n", str);
2248 return -1;
2249 }
2250 if (max_devs == 0)
2251 {
2252 unit_id = index;
2253 bus_id = 0;
2254 } else {
2255 unit_id = index % max_devs;
2256 bus_id = index / max_devs;
2257 }
2258 }
2259
2260 /* if user doesn't specify a unit_id,
2261 * try to find the first free
2262 */
2263
2264 if (unit_id == -1) {
2265 unit_id = 0;
2266 while (drive_get_index(type, bus_id, unit_id) != -1) {
2267 unit_id++;
2268 if (max_devs && unit_id >= max_devs) {
2269 unit_id -= max_devs;
2270 bus_id++;
2271 }
2272 }
2273 }
2274
2275 /* check unit id */
2276
2277 if (max_devs && unit_id >= max_devs) {
2278 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2279 str, unit_id, max_devs - 1);
2280 return -1;
2281 }
2282
2283 /*
2284 * ignore multiple definitions
2285 */
2286
2287 if (drive_get_index(type, bus_id, unit_id) != -1)
2288 return -2;
2289
2290 /* init */
2291
2292 if (type == IF_IDE || type == IF_SCSI)
2293 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2294 if (max_devs)
2295 snprintf(buf, sizeof(buf), "%s%i%s%i",
2296 devname, bus_id, mediastr, unit_id);
2297 else
2298 snprintf(buf, sizeof(buf), "%s%s%i",
2299 devname, mediastr, unit_id);
2300 bdrv = bdrv_new(buf);
2301 drives_table_idx = drive_get_free_idx();
2302 drives_table[drives_table_idx].bdrv = bdrv;
2303 drives_table[drives_table_idx].devaddr = devaddr;
2304 drives_table[drives_table_idx].type = type;
2305 drives_table[drives_table_idx].bus = bus_id;
2306 drives_table[drives_table_idx].unit = unit_id;
2307 drives_table[drives_table_idx].onerror = onerror;
2308 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2309 strncpy(drives_table[drives_table_idx].serial, serial, sizeof(serial));
2310 nb_drives++;
2311
2312 switch(type) {
2313 case IF_IDE:
2314 case IF_SCSI:
2315 case IF_XEN:
2316 switch(media) {
2317 case MEDIA_DISK:
2318 if (cyls != 0) {
2319 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2320 bdrv_set_translation_hint(bdrv, translation);
2321 }
2322 break;
2323 case MEDIA_CDROM:
2324 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2325 break;
2326 }
2327 break;
2328 case IF_SD:
2329 /* FIXME: This isn't really a floppy, but it's a reasonable
2330 approximation. */
2331 case IF_FLOPPY:
2332 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2333 break;
2334 case IF_PFLASH:
2335 case IF_MTD:
2336 case IF_VIRTIO:
2337 break;
2338 case IF_COUNT:
2339 abort();
2340 }
2341 if (!file[0])
2342 return -2;
2343 bdrv_flags = 0;
2344 if (snapshot) {
2345 bdrv_flags |= BDRV_O_SNAPSHOT;
2346 cache = 2; /* always use write-back with snapshot */
2347 }
2348 if (cache == 0) /* no caching */
2349 bdrv_flags |= BDRV_O_NOCACHE;
2350 else if (cache == 2) /* write-back */
2351 bdrv_flags |= BDRV_O_CACHE_WB;
2352 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2353 fprintf(stderr, "qemu: could not open disk image %s\n",
2354 file);
2355 return -1;
2356 }
2357 if (bdrv_key_required(bdrv))
2358 autostart = 0;
2359 return drives_table_idx;
2360 }
2361
2362 void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque)
2363 {
2364 boot_set_handler = func;
2365 boot_set_opaque = opaque;
2366 }
2367
2368 int qemu_boot_set(const char *boot_devices)
2369 {
2370 if (!boot_set_handler) {
2371 return -EINVAL;
2372 }
2373 return boot_set_handler(boot_set_opaque, boot_devices);
2374 }
2375
2376 static int parse_bootdevices(char *devices)
2377 {
2378 /* We just do some generic consistency checks */
2379 const char *p;
2380 int bitmap = 0;
2381
2382 for (p = devices; *p != '\0'; p++) {
2383 /* Allowed boot devices are:
2384 * a-b: floppy disk drives
2385 * c-f: IDE disk drives
2386 * g-m: machine implementation dependant drives
2387 * n-p: network devices
2388 * It's up to each machine implementation to check if the given boot
2389 * devices match the actual hardware implementation and firmware
2390 * features.
2391 */
2392 if (*p < 'a' || *p > 'p') {
2393 fprintf(stderr, "Invalid boot device '%c'\n", *p);
2394 exit(1);
2395 }
2396 if (bitmap & (1 << (*p - 'a'))) {
2397 fprintf(stderr, "Boot device '%c' was given twice\n", *p);
2398 exit(1);
2399 }
2400 bitmap |= 1 << (*p - 'a');
2401 }
2402 return bitmap;
2403 }
2404
2405 static void numa_add(const char *optarg)
2406 {
2407 char option[128];
2408 char *endptr;
2409 unsigned long long value, endvalue;
2410 int nodenr;
2411
2412 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2413 if (!strcmp(option, "node")) {
2414 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2415 nodenr = nb_numa_nodes;
2416 } else {
2417 nodenr = strtoull(option, NULL, 10);
2418 }
2419
2420 if (get_param_value(option, 128, "mem", optarg) == 0) {
2421 node_mem[nodenr] = 0;
2422 } else {
2423 value = strtoull(option, &endptr, 0);
2424 switch (*endptr) {
2425 case 0: case 'M': case 'm':
2426 value <<= 20;
2427 break;
2428 case 'G': case 'g':
2429 value <<= 30;
2430 break;
2431 }
2432 node_mem[nodenr] = value;
2433 }
2434 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2435 node_cpumask[nodenr] = 0;
2436 } else {
2437 value = strtoull(option, &endptr, 10);
2438 if (value >= 64) {
2439 value = 63;
2440 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2441 } else {
2442 if (*endptr == '-') {
2443 endvalue = strtoull(endptr+1, &endptr, 10);
2444 if (endvalue >= 63) {
2445 endvalue = 62;
2446 fprintf(stderr,
2447 "only 63 CPUs in NUMA mode supported.\n");
2448 }
2449 value = (1 << (endvalue + 1)) - (1 << value);
2450 } else {
2451 value = 1 << value;
2452 }
2453 }
2454 node_cpumask[nodenr] = value;
2455 }
2456 nb_numa_nodes++;
2457 }
2458 return;
2459 }
2460
2461 /***********************************************************/
2462 /* USB devices */
2463
2464 static USBPort *used_usb_ports;
2465 static USBPort *free_usb_ports;
2466
2467 /* ??? Maybe change this to register a hub to keep track of the topology. */
2468 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2469 usb_attachfn attach)
2470 {
2471 port->opaque = opaque;
2472 port->index = index;
2473 port->attach = attach;
2474 port->next = free_usb_ports;
2475 free_usb_ports = port;
2476 }
2477
2478 int usb_device_add_dev(USBDevice *dev)
2479 {
2480 USBPort *port;
2481
2482 /* Find a USB port to add the device to. */
2483 port = free_usb_ports;
2484 if (!port->next) {
2485 USBDevice *hub;
2486
2487 /* Create a new hub and chain it on. */
2488 free_usb_ports = NULL;
2489 port->next = used_usb_ports;
2490 used_usb_ports = port;
2491
2492 hub = usb_hub_init(VM_USB_HUB_SIZE);
2493 usb_attach(port, hub);
2494 port = free_usb_ports;
2495 }
2496
2497 free_usb_ports = port->next;
2498 port->next = used_usb_ports;
2499 used_usb_ports = port;
2500 usb_attach(port, dev);
2501 return 0;
2502 }
2503
2504 static void usb_msd_password_cb(void *opaque, int err)
2505 {
2506 USBDevice *dev = opaque;
2507
2508 if (!err)
2509 usb_device_add_dev(dev);
2510 else
2511 dev->handle_destroy(dev);
2512 }
2513
2514 static int usb_device_add(const char *devname, int is_hotplug)
2515 {
2516 const char *p;
2517 USBDevice *dev;
2518
2519 if (!free_usb_ports)
2520 return -1;
2521
2522 if (strstart(devname, "host:", &p)) {
2523 dev = usb_host_device_open(p);
2524 } else if (!strcmp(devname, "mouse")) {
2525 dev = usb_mouse_init();
2526 } else if (!strcmp(devname, "tablet")) {
2527 dev = usb_tablet_init();
2528 } else if (!strcmp(devname, "keyboard")) {
2529 dev = usb_keyboard_init();
2530 } else if (strstart(devname, "disk:", &p)) {
2531 BlockDriverState *bs;
2532
2533 dev = usb_msd_init(p);
2534 if (!dev)
2535 return -1;
2536 bs = usb_msd_get_bdrv(dev);
2537 if (bdrv_key_required(bs)) {
2538 autostart = 0;
2539 if (is_hotplug) {
2540 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2541 dev);
2542 return 0;
2543 }
2544 }
2545 } else if (!strcmp(devname, "wacom-tablet")) {
2546 dev = usb_wacom_init();
2547 } else if (strstart(devname, "serial:", &p)) {
2548 dev = usb_serial_init(p);
2549 #ifdef CONFIG_BRLAPI
2550 } else if (!strcmp(devname, "braille")) {
2551 dev = usb_baum_init();
2552 #endif
2553 } else if (strstart(devname, "net:", &p)) {
2554 int nic = nb_nics;
2555
2556 if (net_client_init(NULL, "nic", p) < 0)
2557 return -1;
2558 nd_table[nic].model = "usb";
2559 dev = usb_net_init(&nd_table[nic]);
2560 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2561 dev = usb_bt_init(devname[2] ? hci_init(p) :
2562 bt_new_hci(qemu_find_bt_vlan(0)));
2563 } else {
2564 return -1;
2565 }
2566 if (!dev)
2567 return -1;
2568
2569 return usb_device_add_dev(dev);
2570 }
2571
2572 int usb_device_del_addr(int bus_num, int addr)
2573 {
2574 USBPort *port;
2575 USBPort **lastp;
2576 USBDevice *dev;
2577
2578 if (!used_usb_ports)
2579 return -1;
2580
2581 if (bus_num != 0)
2582 return -1;
2583
2584 lastp = &used_usb_ports;
2585 port = used_usb_ports;
2586 while (port && port->dev->addr != addr) {
2587 lastp = &port->next;
2588 port = port->next;
2589 }
2590
2591 if (!port)
2592 return -1;
2593
2594 dev = port->dev;
2595 *lastp = port->next;
2596 usb_attach(port, NULL);
2597 dev->handle_destroy(dev);
2598 port->next = free_usb_ports;
2599 free_usb_ports = port;
2600 return 0;
2601 }
2602
2603 static int usb_device_del(const char *devname)
2604 {
2605 int bus_num, addr;
2606 const char *p;
2607
2608 if (strstart(devname, "host:", &p))
2609 return usb_host_device_close(p);
2610
2611 if (!used_usb_ports)
2612 return -1;
2613
2614 p = strchr(devname, '.');
2615 if (!p)
2616 return -1;
2617 bus_num = strtoul(devname, NULL, 0);
2618 addr = strtoul(p + 1, NULL, 0);
2619
2620 return usb_device_del_addr(bus_num, addr);
2621 }
2622
2623 void do_usb_add(Monitor *mon, const char *devname)
2624 {
2625 usb_device_add(devname, 1);
2626 }
2627
2628 void do_usb_del(Monitor *mon, const char *devname)
2629 {
2630 usb_device_del(devname);
2631 }
2632
2633 void usb_info(Monitor *mon)
2634 {
2635 USBDevice *dev;
2636 USBPort *port;
2637 const char *speed_str;
2638
2639 if (!usb_enabled) {
2640 monitor_printf(mon, "USB support not enabled\n");
2641 return;
2642 }
2643
2644 for (port = used_usb_ports; port; port = port->next) {
2645 dev = port->dev;
2646 if (!dev)
2647 continue;
2648 switch(dev->speed) {
2649 case USB_SPEED_LOW:
2650 speed_str = "1.5";
2651 break;
2652 case USB_SPEED_FULL:
2653 speed_str = "12";
2654 break;
2655 case USB_SPEED_HIGH:
2656 speed_str = "480";
2657 break;
2658 default:
2659 speed_str = "?";
2660 break;
2661 }
2662 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2663 0, dev->addr, speed_str, dev->devname);
2664 }
2665 }
2666
2667 /***********************************************************/
2668 /* PCMCIA/Cardbus */
2669
2670 static struct pcmcia_socket_entry_s {
2671 PCMCIASocket *socket;
2672 struct pcmcia_socket_entry_s *next;
2673 } *pcmcia_sockets = 0;
2674
2675 void pcmcia_socket_register(PCMCIASocket *socket)
2676 {
2677 struct pcmcia_socket_entry_s *entry;
2678
2679 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2680 entry->socket = socket;
2681 entry->next = pcmcia_sockets;
2682 pcmcia_sockets = entry;
2683 }
2684
2685 void pcmcia_socket_unregister(PCMCIASocket *socket)
2686 {
2687 struct pcmcia_socket_entry_s *entry, **ptr;
2688
2689 ptr = &pcmcia_sockets;
2690 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2691 if (entry->socket == socket) {
2692 *ptr = entry->next;
2693 qemu_free(entry);
2694 }
2695 }
2696
2697 void pcmcia_info(Monitor *mon)
2698 {
2699 struct pcmcia_socket_entry_s *iter;
2700
2701 if (!pcmcia_sockets)
2702 monitor_printf(mon, "No PCMCIA sockets\n");
2703
2704 for (iter = pcmcia_sockets; iter; iter = iter->next)
2705 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2706 iter->socket->attached ? iter->socket->card_string :
2707 "Empty");
2708 }
2709
2710 /***********************************************************/
2711 /* register display */
2712
2713 struct DisplayAllocator default_allocator = {
2714 defaultallocator_create_displaysurface,
2715 defaultallocator_resize_displaysurface,
2716 defaultallocator_free_displaysurface
2717 };
2718
2719 void register_displaystate(DisplayState *ds)
2720 {
2721 DisplayState **s;
2722 s = &display_state;
2723 while (*s != NULL)
2724 s = &(*s)->next;
2725 ds->next = NULL;
2726 *s = ds;
2727 }
2728
2729 DisplayState *get_displaystate(void)
2730 {
2731 return display_state;
2732 }
2733
2734 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2735 {
2736 if(ds->allocator == &default_allocator) ds->allocator = da;
2737 return ds->allocator;
2738 }
2739
2740 /* dumb display */
2741
2742 static void dumb_display_init(void)
2743 {
2744 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2745 ds->allocator = &default_allocator;
2746 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2747 register_displaystate(ds);
2748 }
2749
2750 /***********************************************************/
2751 /* I/O handling */
2752
2753 typedef struct IOHandlerRecord {
2754 int fd;
2755 IOCanRWHandler *fd_read_poll;
2756 IOHandler *fd_read;
2757 IOHandler *fd_write;
2758 int deleted;
2759 void *opaque;
2760 /* temporary data */
2761 struct pollfd *ufd;
2762 struct IOHandlerRecord *next;
2763 } IOHandlerRecord;
2764
2765 static IOHandlerRecord *first_io_handler;
2766
2767 /* XXX: fd_read_poll should be suppressed, but an API change is
2768 necessary in the character devices to suppress fd_can_read(). */
2769 int qemu_set_fd_handler2(int fd,
2770 IOCanRWHandler *fd_read_poll,
2771 IOHandler *fd_read,
2772 IOHandler *fd_write,
2773 void *opaque)
2774 {
2775 IOHandlerRecord **pioh, *ioh;
2776
2777 if (!fd_read && !fd_write) {
2778 pioh = &first_io_handler;
2779 for(;;) {
2780 ioh = *pioh;
2781 if (ioh == NULL)
2782 break;
2783 if (ioh->fd == fd) {
2784 ioh->deleted = 1;
2785 break;
2786 }
2787 pioh = &ioh->next;
2788 }
2789 } else {
2790 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2791 if (ioh->fd == fd)
2792 goto found;
2793 }
2794 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2795 ioh->next = first_io_handler;
2796 first_io_handler = ioh;
2797 found:
2798 ioh->fd = fd;
2799 ioh->fd_read_poll = fd_read_poll;
2800 ioh->fd_read = fd_read;
2801 ioh->fd_write = fd_write;
2802 ioh->opaque = opaque;
2803 ioh->deleted = 0;
2804 }
2805 return 0;
2806 }
2807
2808 int qemu_set_fd_handler(int fd,
2809 IOHandler *fd_read,
2810 IOHandler *fd_write,
2811 void *opaque)
2812 {
2813 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2814 }
2815
2816 #ifdef _WIN32
2817 /***********************************************************/
2818 /* Polling handling */
2819
2820 typedef struct PollingEntry {
2821 PollingFunc *func;
2822 void *opaque;
2823 struct PollingEntry *next;
2824 } PollingEntry;
2825
2826 static PollingEntry *first_polling_entry;
2827
2828 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2829 {
2830 PollingEntry **ppe, *pe;
2831 pe = qemu_mallocz(sizeof(PollingEntry));
2832 pe->func = func;
2833 pe->opaque = opaque;
2834 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2835 *ppe = pe;
2836 return 0;
2837 }
2838
2839 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2840 {
2841 PollingEntry **ppe, *pe;
2842 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2843 pe = *ppe;
2844 if (pe->func == func && pe->opaque == opaque) {
2845 *ppe = pe->next;
2846 qemu_free(pe);
2847 break;
2848 }
2849 }
2850 }
2851
2852 /***********************************************************/
2853 /* Wait objects support */
2854 typedef struct WaitObjects {
2855 int num;
2856 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2857 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2858 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2859 } WaitObjects;
2860
2861 static WaitObjects wait_objects = {0};
2862
2863 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2864 {
2865 WaitObjects *w = &wait_objects;
2866
2867 if (w->num >= MAXIMUM_WAIT_OBJECTS)
2868 return -1;
2869 w->events[w->num] = handle;
2870 w->func[w->num] = func;
2871 w->opaque[w->num] = opaque;
2872 w->num++;
2873 return 0;
2874 }
2875
2876 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2877 {
2878 int i, found;
2879 WaitObjects *w = &wait_objects;
2880
2881 found = 0;
2882 for (i = 0; i < w->num; i++) {
2883 if (w->events[i] == handle)
2884 found = 1;
2885 if (found) {
2886 w->events[i] = w->events[i + 1];
2887 w->func[i] = w->func[i + 1];
2888 w->opaque[i] = w->opaque[i + 1];
2889 }
2890 }
2891 if (found)
2892 w->num--;
2893 }
2894 #endif
2895
2896 /***********************************************************/
2897 /* ram save/restore */
2898
2899 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
2900 {
2901 int v;
2902
2903 v = qemu_get_byte(f);
2904 switch(v) {
2905 case 0:
2906 if (qemu_get_buffer(f, buf, len) != len)
2907 return -EIO;
2908 break;
2909 case 1:
2910 v = qemu_get_byte(f);
2911 memset(buf, v, len);
2912 break;
2913 default:
2914 return -EINVAL;
2915 }
2916
2917 if (qemu_file_has_error(f))
2918 return -EIO;
2919
2920 return 0;
2921 }
2922
2923 static int ram_load_v1(QEMUFile *f, void *opaque)
2924 {
2925 int ret;
2926 ram_addr_t i;
2927
2928 if (qemu_get_be32(f) != last_ram_offset)
2929 return -EINVAL;
2930 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
2931 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
2932 if (ret)
2933 return ret;
2934 }
2935 return 0;
2936 }
2937
2938 #define BDRV_HASH_BLOCK_SIZE 1024
2939 #define IOBUF_SIZE 4096
2940 #define RAM_CBLOCK_MAGIC 0xfabe
2941
2942 typedef struct RamDecompressState {
2943 z_stream zstream;
2944 QEMUFile *f;
2945 uint8_t buf[IOBUF_SIZE];
2946 } RamDecompressState;
2947
2948 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
2949 {
2950 int ret;
2951 memset(s, 0, sizeof(*s));
2952 s->f = f;
2953 ret = inflateInit(&s->zstream);
2954 if (ret != Z_OK)
2955 return -1;
2956 return 0;
2957 }
2958
2959 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
2960 {
2961 int ret, clen;
2962
2963 s->zstream.avail_out = len;
2964 s->zstream.next_out = buf;
2965 while (s->zstream.avail_out > 0) {
2966 if (s->zstream.avail_in == 0) {
2967 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
2968 return -1;
2969 clen = qemu_get_be16(s->f);
2970 if (clen > IOBUF_SIZE)
2971 return -1;
2972 qemu_get_buffer(s->f, s->buf, clen);
2973 s->zstream.avail_in = clen;
2974 s->zstream.next_in = s->buf;
2975 }
2976 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
2977 if (ret != Z_OK && ret != Z_STREAM_END) {
2978 return -1;
2979 }
2980 }
2981 return 0;
2982 }
2983
2984 static void ram_decompress_close(RamDecompressState *s)
2985 {
2986 inflateEnd(&s->zstream);
2987 }
2988
2989 #define RAM_SAVE_FLAG_FULL 0x01
2990 #define RAM_SAVE_FLAG_COMPRESS 0x02
2991 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
2992 #define RAM_SAVE_FLAG_PAGE 0x08
2993 #define RAM_SAVE_FLAG_EOS 0x10
2994
2995 static int is_dup_page(uint8_t *page, uint8_t ch)
2996 {
2997 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
2998 uint32_t *array = (uint32_t *)page;
2999 int i;
3000
3001 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3002 if (array[i] != val)
3003 return 0;
3004 }
3005
3006 return 1;
3007 }
3008
3009 static int ram_save_block(QEMUFile *f)
3010 {
3011 static ram_addr_t current_addr = 0;
3012 ram_addr_t saved_addr = current_addr;
3013 ram_addr_t addr = 0;
3014 int found = 0;
3015
3016 while (addr < last_ram_offset) {
3017 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3018 uint8_t *p;
3019
3020 cpu_physical_memory_reset_dirty(current_addr,
3021 current_addr + TARGET_PAGE_SIZE,
3022 MIGRATION_DIRTY_FLAG);
3023
3024 p = qemu_get_ram_ptr(current_addr);
3025
3026 if (is_dup_page(p, *p)) {
3027 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3028 qemu_put_byte(f, *p);
3029 } else {
3030 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3031 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3032 }
3033
3034 found = 1;
3035 break;
3036 }
3037 addr += TARGET_PAGE_SIZE;
3038 current_addr = (saved_addr + addr) % last_ram_offset;
3039 }
3040
3041 return found;
3042 }
3043
3044 static uint64_t bytes_transferred = 0;
3045
3046 static ram_addr_t ram_save_remaining(void)
3047 {
3048 ram_addr_t addr;
3049 ram_addr_t count = 0;
3050
3051 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3052 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3053 count++;
3054 }
3055
3056 return count;
3057 }
3058
3059 uint64_t ram_bytes_remaining(void)
3060 {
3061 return ram_save_remaining() * TARGET_PAGE_SIZE;
3062 }
3063
3064 uint64_t ram_bytes_transferred(void)
3065 {
3066 return bytes_transferred;
3067 }
3068
3069 uint64_t ram_bytes_total(void)
3070 {
3071 return last_ram_offset;
3072 }
3073
3074 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3075 {
3076 ram_addr_t addr;
3077 uint64_t bytes_transferred_last;
3078 double bwidth = 0;
3079 uint64_t expected_time = 0;
3080
3081 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
3082 qemu_file_set_error(f);
3083 return 0;
3084 }
3085
3086 if (stage == 1) {
3087 /* Make sure all dirty bits are set */
3088 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3089 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3090 cpu_physical_memory_set_dirty(addr);
3091 }
3092
3093 /* Enable dirty memory tracking */
3094 cpu_physical_memory_set_dirty_tracking(1);
3095
3096 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3097 }
3098
3099 bytes_transferred_last = bytes_transferred;
3100 bwidth = get_clock();
3101
3102 while (!qemu_file_rate_limit(f)) {
3103 int ret;
3104
3105 ret = ram_save_block(f);
3106 bytes_transferred += ret * TARGET_PAGE_SIZE;
3107 if (ret == 0) /* no more blocks */
3108 break;
3109 }
3110
3111 bwidth = get_clock() - bwidth;
3112 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
3113
3114 /* if we haven't transferred anything this round, force expected_time to a
3115 * a very high value, but without crashing */
3116 if (bwidth == 0)
3117 bwidth = 0.000001;
3118
3119 /* try transferring iterative blocks of memory */
3120
3121 if (stage == 3) {
3122
3123 /* flush all remaining blocks regardless of rate limiting */
3124 while (ram_save_block(f) != 0) {
3125 bytes_transferred += TARGET_PAGE_SIZE;
3126 }
3127 cpu_physical_memory_set_dirty_tracking(0);
3128 }
3129
3130 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3131
3132 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
3133
3134 return (stage == 2) && (expected_time <= migrate_max_downtime());
3135 }
3136
3137 static int ram_load_dead(QEMUFile *f, void *opaque)
3138 {
3139 RamDecompressState s1, *s = &s1;
3140 uint8_t buf[10];
3141 ram_addr_t i;
3142
3143 if (ram_decompress_open(s, f) < 0)
3144 return -EINVAL;
3145 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3146 if (ram_decompress_buf(s, buf, 1) < 0) {
3147 fprintf(stderr, "Error while reading ram block header\n");
3148 goto error;
3149 }
3150 if (buf[0] == 0) {
3151 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3152 BDRV_HASH_BLOCK_SIZE) < 0) {
3153 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3154 goto error;
3155 }
3156 } else {
3157 error:
3158 printf("Error block header\n");
3159 return -EINVAL;
3160 }
3161 }
3162 ram_decompress_close(s);
3163
3164 return 0;
3165 }
3166
3167 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3168 {
3169 ram_addr_t addr;
3170 int flags;
3171
3172 if (version_id == 1)
3173 return ram_load_v1(f, opaque);
3174
3175 if (version_id == 2) {
3176 if (qemu_get_be32(f) != last_ram_offset)
3177 return -EINVAL;
3178 return ram_load_dead(f, opaque);
3179 }
3180
3181 if (version_id != 3)
3182 return -EINVAL;
3183
3184 do {
3185 addr = qemu_get_be64(f);
3186
3187 flags = addr & ~TARGET_PAGE_MASK;
3188 addr &= TARGET_PAGE_MASK;
3189
3190 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3191 if (addr != last_ram_offset)
3192 return -EINVAL;
3193 }
3194
3195 if (flags & RAM_SAVE_FLAG_FULL) {
3196 if (ram_load_dead(f, opaque) < 0)
3197 return -EINVAL;
3198 }
3199
3200 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3201 uint8_t ch = qemu_get_byte(f);
3202 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3203 #ifndef _WIN32
3204 if (ch == 0 &&
3205 (!kvm_enabled() || kvm_has_sync_mmu())) {
3206 madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED);
3207 }
3208 #endif
3209 } else if (flags & RAM_SAVE_FLAG_PAGE)
3210 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3211 } while (!(flags & RAM_SAVE_FLAG_EOS));
3212
3213 return 0;
3214 }
3215
3216 void qemu_service_io(void)
3217 {
3218 qemu_notify_event();
3219 }
3220
3221 /***********************************************************/
3222 /* bottom halves (can be seen as timers which expire ASAP) */
3223
3224 struct QEMUBH {
3225 QEMUBHFunc *cb;
3226 void *opaque;
3227 int scheduled;
3228 int idle;
3229 int deleted;
3230 QEMUBH *next;
3231 };
3232
3233 static QEMUBH *first_bh = NULL;
3234
3235 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3236 {
3237 QEMUBH *bh;
3238 bh = qemu_mallocz(sizeof(QEMUBH));
3239 bh->cb = cb;
3240 bh->opaque = opaque;
3241 bh->next = first_bh;
3242 first_bh = bh;
3243 return bh;
3244 }
3245
3246 int qemu_bh_poll(void)
3247 {
3248 QEMUBH *bh, **bhp;
3249 int ret;
3250
3251 ret = 0;
3252 for (bh = first_bh; bh; bh = bh->next) {
3253 if (!bh->deleted && bh->scheduled) {
3254 bh->scheduled = 0;
3255 if (!bh->idle)
3256 ret = 1;
3257 bh->idle = 0;
3258 bh->cb(bh->opaque);
3259 }
3260 }
3261
3262 /* remove deleted bhs */
3263 bhp = &first_bh;
3264 while (*bhp) {
3265 bh = *bhp;
3266 if (bh->deleted) {
3267 *bhp = bh->next;
3268 qemu_free(bh);
3269 } else
3270 bhp = &bh->next;
3271 }
3272
3273 return ret;
3274 }
3275
3276 void qemu_bh_schedule_idle(QEMUBH *bh)
3277 {
3278 if (bh->scheduled)
3279 return;
3280 bh->scheduled = 1;
3281 bh->idle = 1;
3282 }
3283
3284 void qemu_bh_schedule(QEMUBH *bh)
3285 {
3286 if (bh->scheduled)
3287 return;
3288 bh->scheduled = 1;
3289 bh->idle = 0;
3290 /* stop the currently executing CPU to execute the BH ASAP */
3291 qemu_notify_event();
3292 }
3293
3294 void qemu_bh_cancel(QEMUBH *bh)
3295 {
3296 bh->scheduled = 0;
3297 }
3298
3299 void qemu_bh_delete(QEMUBH *bh)
3300 {
3301 bh->scheduled = 0;
3302 bh->deleted = 1;
3303 }
3304
3305 static void qemu_bh_update_timeout(int *timeout)
3306 {
3307 QEMUBH *bh;
3308
3309 for (bh = first_bh; bh; bh = bh->next) {
3310 if (!bh->deleted && bh->scheduled) {
3311 if (bh->idle) {
3312 /* idle bottom halves will be polled at least
3313 * every 10ms */
3314 *timeout = MIN(10, *timeout);
3315 } else {
3316 /* non-idle bottom halves will be executed
3317 * immediately */
3318 *timeout = 0;
3319 break;
3320 }
3321 }
3322 }
3323 }
3324
3325 /***********************************************************/
3326 /* machine registration */
3327
3328 static QEMUMachine *first_machine = NULL;
3329 QEMUMachine *current_machine = NULL;
3330
3331 int qemu_register_machine(QEMUMachine *m)
3332 {
3333 QEMUMachine **pm;
3334 pm = &first_machine;
3335 while (*pm != NULL)
3336 pm = &(*pm)->next;
3337 m->next = NULL;
3338 *pm = m;
3339 return 0;
3340 }
3341
3342 static QEMUMachine *find_machine(const char *name)
3343 {
3344 QEMUMachine *m;
3345
3346 for(m = first_machine; m != NULL; m = m->next) {
3347 if (!strcmp(m->name, name))
3348 return m;
3349 }
3350 return NULL;
3351 }
3352
3353 static QEMUMachine *find_default_machine(void)
3354 {
3355 QEMUMachine *m;
3356
3357 for(m = first_machine; m != NULL; m = m->next) {
3358 if (m->is_default) {
3359 return m;
3360 }
3361 }
3362 return NULL;
3363 }
3364
3365 /***********************************************************/
3366 /* main execution loop */
3367
3368 static void gui_update(void *opaque)
3369 {
3370 uint64_t interval = GUI_REFRESH_INTERVAL;
3371 DisplayState *ds = opaque;
3372 DisplayChangeListener *dcl = ds->listeners;
3373
3374 dpy_refresh(ds);
3375
3376 while (dcl != NULL) {
3377 if (dcl->gui_timer_interval &&
3378 dcl->gui_timer_interval < interval)
3379 interval = dcl->gui_timer_interval;
3380 dcl = dcl->next;
3381 }
3382 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3383 }
3384
3385 static void nographic_update(void *opaque)
3386 {
3387 uint64_t interval = GUI_REFRESH_INTERVAL;
3388
3389 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3390 }
3391
3392 struct vm_change_state_entry {
3393 VMChangeStateHandler *cb;
3394 void *opaque;
3395 LIST_ENTRY (vm_change_state_entry) entries;
3396 };
3397
3398 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3399
3400 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3401 void *opaque)
3402 {
3403 VMChangeStateEntry *e;
3404
3405 e = qemu_mallocz(sizeof (*e));
3406
3407 e->cb = cb;
3408 e->opaque = opaque;
3409 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3410 return e;
3411 }
3412
3413 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3414 {
3415 LIST_REMOVE (e, entries);
3416 qemu_free (e);
3417 }
3418
3419 static void vm_state_notify(int running, int reason)
3420 {
3421 VMChangeStateEntry *e;
3422
3423 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3424 e->cb(e->opaque, running, reason);
3425 }
3426 }
3427
3428 static void resume_all_vcpus(void);
3429 static void pause_all_vcpus(void);
3430
3431 void vm_start(void)
3432 {
3433 if (!vm_running) {
3434 cpu_enable_ticks();
3435 vm_running = 1;
3436 vm_state_notify(1, 0);
3437 qemu_rearm_alarm_timer(alarm_timer);
3438 resume_all_vcpus();
3439 }
3440 }
3441
3442 /* reset/shutdown handler */
3443
3444 typedef struct QEMUResetEntry {
3445 QEMUResetHandler *func;
3446 void *opaque;
3447 struct QEMUResetEntry *next;
3448 } QEMUResetEntry;
3449
3450 static QEMUResetEntry *first_reset_entry;
3451 static int reset_requested;
3452 static int shutdown_requested;
3453 static int powerdown_requested;
3454 static int debug_requested;
3455 static int vmstop_requested;
3456
3457 int qemu_shutdown_requested(void)
3458 {
3459 int r = shutdown_requested;
3460 shutdown_requested = 0;
3461 return r;
3462 }
3463
3464 int qemu_reset_requested(void)
3465 {
3466 int r = reset_requested;
3467 reset_requested = 0;
3468 return r;
3469 }
3470
3471 int qemu_powerdown_requested(void)
3472 {
3473 int r = powerdown_requested;
3474 powerdown_requested = 0;
3475 return r;
3476 }
3477
3478 static int qemu_debug_requested(void)
3479 {
3480 int r = debug_requested;
3481 debug_requested = 0;
3482 return r;
3483 }
3484
3485 static int qemu_vmstop_requested(void)
3486 {
3487 int r = vmstop_requested;
3488 vmstop_requested = 0;
3489 return r;
3490 }
3491
3492 static void do_vm_stop(int reason)
3493 {
3494 if (vm_running) {
3495 cpu_disable_ticks();
3496 vm_running = 0;
3497 pause_all_vcpus();
3498 vm_state_notify(0, reason);
3499 }
3500 }
3501
3502 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3503 {
3504 QEMUResetEntry **pre, *re;
3505
3506 pre = &first_reset_entry;
3507 while (*pre != NULL)
3508 pre = &(*pre)->next;
3509 re = qemu_mallocz(sizeof(QEMUResetEntry));
3510 re->func = func;
3511 re->opaque = opaque;
3512 re->next = NULL;
3513 *pre = re;
3514 }
3515
3516 void qemu_system_reset(void)
3517 {
3518 QEMUResetEntry *re;
3519
3520 /* reset all devices */
3521 for(re = first_reset_entry; re != NULL; re = re->next) {
3522 re->func(re->opaque);
3523 }
3524 }
3525
3526 void qemu_system_reset_request(void)
3527 {
3528 if (no_reboot) {
3529 shutdown_requested = 1;
3530 } else {
3531 reset_requested = 1;
3532 }
3533 qemu_notify_event();
3534 }
3535
3536 void qemu_system_shutdown_request(void)
3537 {
3538 shutdown_requested = 1;
3539 qemu_notify_event();
3540 }
3541
3542 void qemu_system_powerdown_request(void)
3543 {
3544 powerdown_requested = 1;
3545 qemu_notify_event();
3546 }
3547
3548 #ifdef CONFIG_IOTHREAD
3549 static void qemu_system_vmstop_request(int reason)
3550 {
3551 vmstop_requested = reason;
3552 qemu_notify_event();
3553 }
3554 #endif
3555
3556 #ifndef _WIN32
3557 static int io_thread_fd = -1;
3558
3559 static void qemu_event_increment(void)
3560 {
3561 static const char byte = 0;
3562
3563 if (io_thread_fd == -1)
3564 return;
3565
3566 write(io_thread_fd, &byte, sizeof(byte));
3567 }
3568
3569 static void qemu_event_read(void *opaque)
3570 {
3571 int fd = (unsigned long)opaque;
3572 ssize_t len;
3573
3574 /* Drain the notify pipe */
3575 do {
3576 char buffer[512];
3577 len = read(fd, buffer, sizeof(buffer));
3578 } while ((len == -1 && errno == EINTR) || len > 0);
3579 }
3580
3581 static int qemu_event_init(void)
3582 {
3583 int err;
3584 int fds[2];
3585
3586 err = pipe(fds);
3587 if (err == -1)
3588 return -errno;
3589
3590 err = fcntl_setfl(fds[0], O_NONBLOCK);
3591 if (err < 0)
3592 goto fail;
3593
3594 err = fcntl_setfl(fds[1], O_NONBLOCK);
3595 if (err < 0)
3596 goto fail;
3597
3598 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3599 (void *)(unsigned long)fds[0]);
3600
3601 io_thread_fd = fds[1];
3602 return 0;
3603
3604 fail:
3605 close(fds[0]);
3606 close(fds[1]);
3607 return err;
3608 }
3609 #else
3610 HANDLE qemu_event_handle;
3611
3612 static void dummy_event_handler(void *opaque)
3613 {
3614 }
3615
3616 static int qemu_event_init(void)
3617 {
3618 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3619 if (!qemu_event_handle) {
3620 perror("Failed CreateEvent");
3621 return -1;
3622 }
3623 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3624 return 0;
3625 }
3626
3627 static void qemu_event_increment(void)
3628 {
3629 SetEvent(qemu_event_handle);
3630 }
3631 #endif
3632
3633 static int cpu_can_run(CPUState *env)
3634 {
3635 if (env->stop)
3636 return 0;
3637 if (env->stopped)
3638 return 0;
3639 return 1;
3640 }
3641
3642 #ifndef CONFIG_IOTHREAD
3643 static int qemu_init_main_loop(void)
3644 {
3645 return qemu_event_init();
3646 }
3647
3648 void qemu_init_vcpu(void *_env)
3649 {
3650 CPUState *env = _env;
3651
3652 if (kvm_enabled())
3653 kvm_init_vcpu(env);
3654 return;
3655 }
3656
3657 int qemu_cpu_self(void *env)
3658 {
3659 return 1;
3660 }
3661
3662 static void resume_all_vcpus(void)
3663 {
3664 }
3665
3666 static void pause_all_vcpus(void)
3667 {
3668 }
3669
3670 void qemu_cpu_kick(void *env)
3671 {
3672 return;
3673 }
3674
3675 void qemu_notify_event(void)
3676 {
3677 CPUState *env = cpu_single_env;
3678
3679 if (env) {
3680 cpu_exit(env);
3681 #ifdef USE_KQEMU
3682 if (env->kqemu_enabled)
3683 kqemu_cpu_interrupt(env);
3684 #endif
3685 }
3686 }
3687
3688 #define qemu_mutex_lock_iothread() do { } while (0)
3689 #define qemu_mutex_unlock_iothread() do { } while (0)
3690
3691 void vm_stop(int reason)
3692 {
3693 do_vm_stop(reason);
3694 }
3695
3696 #else /* CONFIG_IOTHREAD */
3697
3698 #include "qemu-thread.h"
3699
3700 QemuMutex qemu_global_mutex;
3701 static QemuMutex qemu_fair_mutex;
3702
3703 static QemuThread io_thread;
3704
3705 static QemuThread *tcg_cpu_thread;
3706 static QemuCond *tcg_halt_cond;
3707
3708 static int qemu_system_ready;
3709 /* cpu creation */
3710 static QemuCond qemu_cpu_cond;
3711 /* system init */
3712 static QemuCond qemu_system_cond;
3713 static QemuCond qemu_pause_cond;
3714
3715 static void block_io_signals(void);
3716 static void unblock_io_signals(void);
3717 static int tcg_has_work(void);
3718
3719 static int qemu_init_main_loop(void)
3720 {
3721 int ret;
3722
3723 ret = qemu_event_init();
3724 if (ret)
3725 return ret;
3726
3727 qemu_cond_init(&qemu_pause_cond);
3728 qemu_mutex_init(&qemu_fair_mutex);
3729 qemu_mutex_init(&qemu_global_mutex);
3730 qemu_mutex_lock(&qemu_global_mutex);
3731
3732 unblock_io_signals();
3733 qemu_thread_self(&io_thread);
3734
3735 return 0;
3736 }
3737
3738 static void qemu_wait_io_event(CPUState *env)
3739 {
3740 while (!tcg_has_work())
3741 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3742
3743 qemu_mutex_unlock(&qemu_global_mutex);
3744
3745 /*
3746 * Users of qemu_global_mutex can be starved, having no chance
3747 * to acquire it since this path will get to it first.
3748 * So use another lock to provide fairness.
3749 */
3750 qemu_mutex_lock(&qemu_fair_mutex);
3751 qemu_mutex_unlock(&qemu_fair_mutex);
3752
3753 qemu_mutex_lock(&qemu_global_mutex);
3754 if (env->stop) {
3755 env->stop = 0;
3756 env->stopped = 1;
3757 qemu_cond_signal(&qemu_pause_cond);
3758 }
3759 }
3760
3761 static int qemu_cpu_exec(CPUState *env);
3762
3763 static void *kvm_cpu_thread_fn(void *arg)
3764 {
3765 CPUState *env = arg;
3766
3767 block_io_signals();
3768 qemu_thread_self(env->thread);
3769
3770 /* signal CPU creation */
3771 qemu_mutex_lock(&qemu_global_mutex);
3772 env->created = 1;
3773 qemu_cond_signal(&qemu_cpu_cond);
3774
3775 /* and wait for machine initialization */
3776 while (!qemu_system_ready)
3777 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3778
3779 while (1) {
3780 if (cpu_can_run(env))
3781 qemu_cpu_exec(env);
3782 qemu_wait_io_event(env);
3783 }
3784
3785 return NULL;
3786 }
3787
3788 static void tcg_cpu_exec(void);
3789
3790 static void *tcg_cpu_thread_fn(void *arg)
3791 {
3792 CPUState *env = arg;
3793
3794 block_io_signals();
3795 qemu_thread_self(env->thread);
3796
3797 /* signal CPU creation */
3798 qemu_mutex_lock(&qemu_global_mutex);
3799 for (env = first_cpu; env != NULL; env = env->next_cpu)
3800 env->created = 1;
3801 qemu_cond_signal(&qemu_cpu_cond);
3802
3803 /* and wait for machine initialization */
3804 while (!qemu_system_ready)
3805 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3806
3807 while (1) {
3808 tcg_cpu_exec();
3809 qemu_wait_io_event(cur_cpu);
3810 }
3811
3812 return NULL;
3813 }
3814
3815 void qemu_cpu_kick(void *_env)
3816 {
3817 CPUState *env = _env;
3818 qemu_cond_broadcast(env->halt_cond);
3819 if (kvm_enabled())
3820 qemu_thread_signal(env->thread, SIGUSR1);
3821 }
3822
3823 int qemu_cpu_self(void *env)
3824 {
3825 return (cpu_single_env != NULL);
3826 }
3827
3828 static void cpu_signal(int sig)
3829 {
3830 if (cpu_single_env)
3831 cpu_exit(cpu_single_env);
3832 }
3833
3834 static void block_io_signals(void)
3835 {
3836 sigset_t set;
3837 struct sigaction sigact;
3838
3839 sigemptyset(&set);
3840 sigaddset(&set, SIGUSR2);
3841 sigaddset(&set, SIGIO);
3842 sigaddset(&set, SIGALRM);
3843 pthread_sigmask(SIG_BLOCK, &set, NULL);
3844
3845 sigemptyset(&set);
3846 sigaddset(&set, SIGUSR1);
3847 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3848
3849 memset(&sigact, 0, sizeof(sigact));
3850 sigact.sa_handler = cpu_signal;
3851 sigaction(SIGUSR1, &sigact, NULL);
3852 }
3853
3854 static void unblock_io_signals(void)
3855 {
3856 sigset_t set;
3857
3858 sigemptyset(&set);
3859 sigaddset(&set, SIGUSR2);
3860 sigaddset(&set, SIGIO);
3861 sigaddset(&set, SIGALRM);
3862 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3863
3864 sigemptyset(&set);
3865 sigaddset(&set, SIGUSR1);
3866 pthread_sigmask(SIG_BLOCK, &set, NULL);
3867 }
3868
3869 static void qemu_signal_lock(unsigned int msecs)
3870 {
3871 qemu_mutex_lock(&qemu_fair_mutex);
3872
3873 while (qemu_mutex_trylock(&qemu_global_mutex)) {
3874 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
3875 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
3876 break;
3877 }
3878 qemu_mutex_unlock(&qemu_fair_mutex);
3879 }
3880
3881 static void qemu_mutex_lock_iothread(void)
3882 {
3883 if (kvm_enabled()) {
3884 qemu_mutex_lock(&qemu_fair_mutex);
3885 qemu_mutex_lock(&qemu_global_mutex);
3886 qemu_mutex_unlock(&qemu_fair_mutex);
3887 } else
3888 qemu_signal_lock(100);
3889 }
3890
3891 static void qemu_mutex_unlock_iothread(void)
3892 {
3893 qemu_mutex_unlock(&qemu_global_mutex);
3894 }
3895
3896 static int all_vcpus_paused(void)
3897 {
3898 CPUState *penv = first_cpu;
3899
3900 while (penv) {
3901 if (!penv->stopped)
3902 return 0;
3903 penv = (CPUState *)penv->next_cpu;
3904 }
3905
3906 return 1;
3907 }
3908
3909 static void pause_all_vcpus(void)
3910 {
3911 CPUState *penv = first_cpu;
3912
3913 while (penv) {
3914 penv->stop = 1;
3915 qemu_thread_signal(penv->thread, SIGUSR1);
3916 qemu_cpu_kick(penv);
3917 penv = (CPUState *)penv->next_cpu;
3918 }
3919
3920 while (!all_vcpus_paused()) {
3921 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
3922 penv = first_cpu;
3923 while (penv) {
3924 qemu_thread_signal(penv->thread, SIGUSR1);
3925 penv = (CPUState *)penv->next_cpu;
3926 }
3927 }
3928 }
3929
3930 static void resume_all_vcpus(void)
3931 {
3932 CPUState *penv = first_cpu;
3933
3934 while (penv) {
3935 penv->stop = 0;
3936 penv->stopped = 0;
3937 qemu_thread_signal(penv->thread, SIGUSR1);
3938 qemu_cpu_kick(penv);
3939 penv = (CPUState *)penv->next_cpu;
3940 }
3941 }
3942
3943 static void tcg_init_vcpu(void *_env)
3944 {
3945 CPUState *env = _env;
3946 /* share a single thread for all cpus with TCG */
3947 if (!tcg_cpu_thread) {
3948 env->thread = qemu_mallocz(sizeof(QemuThread));
3949 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3950 qemu_cond_init(env->halt_cond);
3951 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
3952 while (env->created == 0)
3953 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3954 tcg_cpu_thread = env->thread;
3955 tcg_halt_cond = env->halt_cond;
3956 } else {
3957 env->thread = tcg_cpu_thread;
3958 env->halt_cond = tcg_halt_cond;
3959 }
3960 }
3961
3962 static void kvm_start_vcpu(CPUState *env)
3963 {
3964 kvm_init_vcpu(env);
3965 env->thread = qemu_mallocz(sizeof(QemuThread));
3966 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3967 qemu_cond_init(env->halt_cond);
3968 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
3969 while (env->created == 0)
3970 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3971 }
3972
3973 void qemu_init_vcpu(void *_env)
3974 {
3975 CPUState *env = _env;
3976
3977 if (kvm_enabled())
3978 kvm_start_vcpu(env);
3979 else
3980 tcg_init_vcpu(env);
3981 }
3982
3983 void qemu_notify_event(void)
3984 {
3985 qemu_event_increment();
3986 }
3987
3988 void vm_stop(int reason)
3989 {
3990 QemuThread me;
3991 qemu_thread_self(&me);
3992
3993 if (!qemu_thread_equal(&me, &io_thread)) {
3994 qemu_system_vmstop_request(reason);
3995 /*
3996 * FIXME: should not return to device code in case
3997 * vm_stop() has been requested.
3998 */
3999 if (cpu_single_env) {
4000 cpu_exit(cpu_single_env);
4001 cpu_single_env->stop = 1;
4002 }
4003 return;
4004 }
4005 do_vm_stop(reason);
4006 }
4007
4008 #endif
4009
4010
4011 #ifdef _WIN32
4012 static void host_main_loop_wait(int *timeout)
4013 {
4014 int ret, ret2, i;
4015 PollingEntry *pe;
4016
4017
4018 /* XXX: need to suppress polling by better using win32 events */
4019 ret = 0;
4020 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
4021 ret |= pe->func(pe->opaque);
4022 }
4023 if (ret == 0) {
4024 int err;
4025 WaitObjects *w = &wait_objects;
4026
4027 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
4028 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
4029 if (w->func[ret - WAIT_OBJECT_0])
4030 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
4031
4032 /* Check for additional signaled events */
4033 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
4034
4035 /* Check if event is signaled */
4036 ret2 = WaitForSingleObject(w->events[i], 0);
4037 if(ret2 == WAIT_OBJECT_0) {
4038 if (w->func[i])
4039 w->func[i](w->opaque[i]);
4040 } else if (ret2 == WAIT_TIMEOUT) {
4041 } else {
4042 err = GetLastError();
4043 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
4044 }
4045 }
4046 } else if (ret == WAIT_TIMEOUT) {
4047 } else {
4048 err = GetLastError();
4049 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
4050 }
4051 }
4052
4053 *timeout = 0;
4054 }
4055 #else
4056 static void host_main_loop_wait(int *timeout)
4057 {
4058 }
4059 #endif
4060
4061 void main_loop_wait(int timeout)
4062 {
4063 IOHandlerRecord *ioh;
4064 fd_set rfds, wfds, xfds;
4065 int ret, nfds;
4066 struct timeval tv;
4067
4068 qemu_bh_update_timeout(&timeout);
4069
4070 host_main_loop_wait(&timeout);
4071
4072 /* poll any events */
4073 /* XXX: separate device handlers from system ones */
4074 nfds = -1;
4075 FD_ZERO(&rfds);
4076 FD_ZERO(&wfds);
4077 FD_ZERO(&xfds);
4078 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4079 if (ioh->deleted)
4080 continue;
4081 if (ioh->fd_read &&
4082 (!ioh->fd_read_poll ||
4083 ioh->fd_read_poll(ioh->opaque) != 0)) {
4084 FD_SET(ioh->fd, &rfds);
4085 if (ioh->fd > nfds)
4086 nfds = ioh->fd;
4087 }
4088 if (ioh->fd_write) {
4089 FD_SET(ioh->fd, &wfds);
4090 if (ioh->fd > nfds)
4091 nfds = ioh->fd;
4092 }
4093 }
4094
4095 tv.tv_sec = timeout / 1000;
4096 tv.tv_usec = (timeout % 1000) * 1000;
4097
4098 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4099
4100 qemu_mutex_unlock_iothread();
4101 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4102 qemu_mutex_lock_iothread();
4103 if (ret > 0) {
4104 IOHandlerRecord **pioh;
4105
4106 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4107 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4108 ioh->fd_read(ioh->opaque);
4109 }
4110 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4111 ioh->fd_write(ioh->opaque);
4112 }
4113 }
4114
4115 /* remove deleted IO handlers */
4116 pioh = &first_io_handler;
4117 while (*pioh) {
4118 ioh = *pioh;
4119 if (ioh->deleted) {
4120 *pioh = ioh->next;
4121 qemu_free(ioh);
4122 } else
4123 pioh = &ioh->next;
4124 }
4125 }
4126
4127 slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
4128
4129 /* rearm timer, if not periodic */
4130 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4131 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4132 qemu_rearm_alarm_timer(alarm_timer);
4133 }
4134
4135 /* vm time timers */
4136 if (vm_running) {
4137 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4138 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4139 qemu_get_clock(vm_clock));
4140 }
4141
4142 /* real time timers */
4143 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4144 qemu_get_clock(rt_clock));
4145
4146 /* Check bottom-halves last in case any of the earlier events triggered
4147 them. */
4148 qemu_bh_poll();
4149
4150 }
4151
4152 static int qemu_cpu_exec(CPUState *env)
4153 {
4154 int ret;
4155 #ifdef CONFIG_PROFILER
4156 int64_t ti;
4157 #endif
4158
4159 #ifdef CONFIG_PROFILER
4160 ti = profile_getclock();
4161 #endif
4162 if (use_icount) {
4163 int64_t count;
4164 int decr;
4165 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4166 env->icount_decr.u16.low = 0;
4167 env->icount_extra = 0;
4168 count = qemu_next_deadline();
4169 count = (count + (1 << icount_time_shift) - 1)
4170 >> icount_time_shift;
4171 qemu_icount += count;
4172 decr = (count > 0xffff) ? 0xffff : count;
4173 count -= decr;
4174 env->icount_decr.u16.low = decr;
4175 env->icount_extra = count;
4176 }
4177 ret = cpu_exec(env);
4178 #ifdef CONFIG_PROFILER
4179 qemu_time += profile_getclock() - ti;
4180 #endif
4181 if (use_icount) {
4182 /* Fold pending instructions back into the
4183 instruction counter, and clear the interrupt flag. */
4184 qemu_icount -= (env->icount_decr.u16.low
4185 + env->icount_extra);
4186 env->icount_decr.u32 = 0;
4187 env->icount_extra = 0;
4188 }
4189 return ret;
4190 }
4191
4192 static void tcg_cpu_exec(void)
4193 {
4194 int ret = 0;
4195
4196 if (next_cpu == NULL)
4197 next_cpu = first_cpu;
4198 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4199 CPUState *env = cur_cpu = next_cpu;
4200
4201 if (!vm_running)
4202 break;
4203 if (timer_alarm_pending) {
4204 timer_alarm_pending = 0;
4205 break;
4206 }
4207 if (cpu_can_run(env))
4208 ret = qemu_cpu_exec(env);
4209 if (ret == EXCP_DEBUG) {
4210 gdb_set_stop_cpu(env);
4211 debug_requested = 1;
4212 break;
4213 }
4214 }
4215 }
4216
4217 static int cpu_has_work(CPUState *env)
4218 {
4219 if (env->stop)
4220 return 1;
4221 if (env->stopped)
4222 return 0;
4223 if (!env->halted)
4224 return 1;
4225 if (qemu_cpu_has_work(env))
4226 return 1;
4227 return 0;
4228 }
4229
4230 static int tcg_has_work(void)
4231 {
4232 CPUState *env;
4233
4234 for (env = first_cpu; env != NULL; env = env->next_cpu)
4235 if (cpu_has_work(env))
4236 return 1;
4237 return 0;
4238 }
4239
4240 static int qemu_calculate_timeout(void)
4241 {
4242 #ifndef CONFIG_IOTHREAD
4243 int timeout;
4244
4245 if (!vm_running)
4246 timeout = 5000;
4247 else if (tcg_has_work())
4248 timeout = 0;
4249 else if (!use_icount)
4250 timeout = 5000;
4251 else {
4252 /* XXX: use timeout computed from timers */
4253 int64_t add;
4254 int64_t delta;
4255 /* Advance virtual time to the next event. */
4256 if (use_icount == 1) {
4257 /* When not using an adaptive execution frequency
4258 we tend to get badly out of sync with real time,
4259 so just delay for a reasonable amount of time. */
4260 delta = 0;
4261 } else {
4262 delta = cpu_get_icount() - cpu_get_clock();
4263 }
4264 if (delta > 0) {
4265 /* If virtual time is ahead of real time then just
4266 wait for IO. */
4267 timeout = (delta / 1000000) + 1;
4268 } else {
4269 /* Wait for either IO to occur or the next
4270 timer event. */
4271 add = qemu_next_deadline();
4272 /* We advance the timer before checking for IO.
4273 Limit the amount we advance so that early IO
4274 activity won't get the guest too far ahead. */
4275 if (add > 10000000)
4276 add = 10000000;
4277 delta += add;
4278 add = (add + (1 << icount_time_shift) - 1)
4279 >> icount_time_shift;
4280 qemu_icount += add;
4281 timeout = delta / 1000000;
4282 if (timeout < 0)
4283 timeout = 0;
4284 }
4285 }
4286
4287 return timeout;
4288 #else /* CONFIG_IOTHREAD */
4289 return 1000;
4290 #endif
4291 }
4292
4293 static int vm_can_run(void)
4294 {
4295 if (powerdown_requested)
4296 return 0;
4297 if (reset_requested)
4298 return 0;
4299 if (shutdown_requested)
4300 return 0;
4301 if (debug_requested)
4302 return 0;
4303 return 1;
4304 }
4305
4306 static void main_loop(void)
4307 {
4308 int r;
4309
4310 #ifdef CONFIG_IOTHREAD
4311 qemu_system_ready = 1;
4312 qemu_cond_broadcast(&qemu_system_cond);
4313 #endif
4314
4315 for (;;) {
4316 do {
4317 #ifdef CONFIG_PROFILER
4318 int64_t ti;
4319 #endif
4320 #ifndef CONFIG_IOTHREAD
4321 tcg_cpu_exec();
4322 #endif
4323 #ifdef CONFIG_PROFILER
4324 ti = profile_getclock();
4325 #endif
4326 main_loop_wait(qemu_calculate_timeout());
4327 #ifdef CONFIG_PROFILER
4328 dev_time += profile_getclock() - ti;
4329 #endif
4330 } while (vm_can_run());
4331
4332 if (qemu_debug_requested())
4333 vm_stop(EXCP_DEBUG);
4334 if (qemu_shutdown_requested()) {
4335 if (no_shutdown) {
4336 vm_stop(0);
4337 no_shutdown = 0;
4338 } else
4339 break;
4340 }
4341 if (qemu_reset_requested()) {
4342 pause_all_vcpus();
4343 qemu_system_reset();
4344 resume_all_vcpus();
4345 }
4346 if (qemu_powerdown_requested())
4347 qemu_system_powerdown();
4348 if ((r = qemu_vmstop_requested()))
4349 vm_stop(r);
4350 }
4351 pause_all_vcpus();
4352 }
4353
4354 static void version(void)
4355 {
4356 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4357 }
4358
4359 static void help(int exitcode)
4360 {
4361 version();
4362 printf("usage: %s [options] [disk_image]\n"
4363 "\n"
4364 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4365 "\n"
4366 #define DEF(option, opt_arg, opt_enum, opt_help) \
4367 opt_help
4368 #define DEFHEADING(text) stringify(text) "\n"
4369 #include "qemu-options.h"
4370 #undef DEF
4371 #undef DEFHEADING
4372 #undef GEN_DOCS
4373 "\n"
4374 "During emulation, the following keys are useful:\n"
4375 "ctrl-alt-f toggle full screen\n"
4376 "ctrl-alt-n switch to virtual console 'n'\n"
4377 "ctrl-alt toggle mouse and keyboard grab\n"
4378 "\n"
4379 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4380 ,
4381 "qemu",
4382 DEFAULT_RAM_SIZE,
4383 #ifndef _WIN32
4384 DEFAULT_NETWORK_SCRIPT,
4385 DEFAULT_NETWORK_DOWN_SCRIPT,
4386 #endif
4387 DEFAULT_GDBSTUB_PORT,
4388 "/tmp/qemu.log");
4389 exit(exitcode);
4390 }
4391
4392 #define HAS_ARG 0x0001
4393
4394 enum {
4395 #define DEF(option, opt_arg, opt_enum, opt_help) \
4396 opt_enum,
4397 #define DEFHEADING(text)
4398 #include "qemu-options.h"
4399 #undef DEF
4400 #undef DEFHEADING
4401 #undef GEN_DOCS
4402 };
4403
4404 typedef struct QEMUOption {
4405 const char *name;
4406 int flags;
4407 int index;
4408 } QEMUOption;
4409
4410 static const QEMUOption qemu_options[] = {
4411 { "h", 0, QEMU_OPTION_h },
4412 #define DEF(option, opt_arg, opt_enum, opt_help) \
4413 { option, opt_arg, opt_enum },
4414 #define DEFHEADING(text)
4415 #include "qemu-options.h"
4416 #undef DEF
4417 #undef DEFHEADING
4418 #undef GEN_DOCS
4419 { NULL },
4420 };
4421
4422 #ifdef HAS_AUDIO
4423 struct soundhw soundhw[] = {
4424 #ifdef HAS_AUDIO_CHOICE
4425 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4426 {
4427 "pcspk",
4428 "PC speaker",
4429 0,
4430 1,
4431 { .init_isa = pcspk_audio_init }
4432 },
4433 #endif
4434
4435 #ifdef CONFIG_SB16
4436 {
4437 "sb16",
4438 "Creative Sound Blaster 16",
4439 0,
4440 1,
4441 { .init_isa = SB16_init }
4442 },
4443 #endif
4444
4445 #ifdef CONFIG_CS4231A
4446 {
4447 "cs4231a",
4448 "CS4231A",
4449 0,
4450 1,
4451 { .init_isa = cs4231a_init }
4452 },
4453 #endif
4454
4455 #ifdef CONFIG_ADLIB
4456 {
4457 "adlib",
4458 #ifdef HAS_YMF262
4459 "Yamaha YMF262 (OPL3)",
4460 #else
4461 "Yamaha YM3812 (OPL2)",
4462 #endif
4463 0,
4464 1,
4465 { .init_isa = Adlib_init }
4466 },
4467 #endif
4468
4469 #ifdef CONFIG_GUS
4470 {
4471 "gus",
4472 "Gravis Ultrasound GF1",
4473 0,
4474 1,
4475 { .init_isa = GUS_init }
4476 },
4477 #endif
4478
4479 #ifdef CONFIG_AC97
4480 {
4481 "ac97",
4482 "Intel 82801AA AC97 Audio",
4483 0,
4484 0,
4485 { .init_pci = ac97_init }
4486 },
4487 #endif
4488
4489 #ifdef CONFIG_ES1370
4490 {
4491 "es1370",
4492 "ENSONIQ AudioPCI ES1370",
4493 0,
4494 0,
4495 { .init_pci = es1370_init }
4496 },
4497 #endif
4498
4499 #endif /* HAS_AUDIO_CHOICE */
4500
4501 { NULL, NULL, 0, 0, { NULL } }
4502 };
4503
4504 static void select_soundhw (const char *optarg)
4505 {
4506 struct soundhw *c;
4507
4508 if (*optarg == '?') {
4509 show_valid_cards:
4510
4511 printf ("Valid sound card names (comma separated):\n");
4512 for (c = soundhw; c->name; ++c) {
4513 printf ("%-11s %s\n", c->name, c->descr);
4514 }
4515 printf ("\n-soundhw all will enable all of the above\n");
4516 exit (*optarg != '?');
4517 }
4518 else {
4519 size_t l;
4520 const char *p;
4521 char *e;
4522 int bad_card = 0;
4523
4524 if (!strcmp (optarg, "all")) {
4525 for (c = soundhw; c->name; ++c) {
4526 c->enabled = 1;
4527 }
4528 return;
4529 }
4530
4531 p = optarg;
4532 while (*p) {
4533 e = strchr (p, ',');
4534 l = !e ? strlen (p) : (size_t) (e - p);
4535
4536 for (c = soundhw; c->name; ++c) {
4537 if (!strncmp (c->name, p, l)) {
4538 c->enabled = 1;
4539 break;
4540 }
4541 }
4542
4543 if (!c->name) {
4544 if (l > 80) {
4545 fprintf (stderr,
4546 "Unknown sound card name (too big to show)\n");
4547 }
4548 else {
4549 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4550 (int) l, p);
4551 }
4552 bad_card = 1;
4553 }
4554 p += l + (e != NULL);
4555 }
4556
4557 if (bad_card)
4558 goto show_valid_cards;
4559 }
4560 }
4561 #endif
4562
4563 static void select_vgahw (const char *p)
4564 {
4565 const char *opts;
4566
4567 cirrus_vga_enabled = 0;
4568 std_vga_enabled = 0;
4569 vmsvga_enabled = 0;
4570 xenfb_enabled = 0;
4571 if (strstart(p, "std", &opts)) {
4572 std_vga_enabled = 1;
4573 } else if (strstart(p, "cirrus", &opts)) {
4574 cirrus_vga_enabled = 1;
4575 } else if (strstart(p, "vmware", &opts)) {
4576 vmsvga_enabled = 1;
4577 } else if (strstart(p, "xenfb", &opts)) {
4578 xenfb_enabled = 1;
4579 } else if (!strstart(p, "none", &opts)) {
4580 invalid_vga:
4581 fprintf(stderr, "Unknown vga type: %s\n", p);
4582 exit(1);
4583 }
4584 while (*opts) {
4585 const char *nextopt;
4586
4587 if (strstart(opts, ",retrace=", &nextopt)) {
4588 opts = nextopt;
4589 if (strstart(opts, "dumb", &nextopt))
4590 vga_retrace_method = VGA_RETRACE_DUMB;
4591 else if (strstart(opts, "precise", &nextopt))
4592 vga_retrace_method = VGA_RETRACE_PRECISE;
4593 else goto invalid_vga;
4594 } else goto invalid_vga;
4595 opts = nextopt;
4596 }
4597 }
4598
4599 #ifdef TARGET_I386
4600 static int balloon_parse(const char *arg)
4601 {
4602 char buf[128];
4603 const char *p;
4604
4605 if (!strcmp(arg, "none")) {
4606 virtio_balloon = 0;
4607 } else if (!strncmp(arg, "virtio", 6)) {
4608 virtio_balloon = 1;
4609 if (arg[6] == ',') {
4610 p = arg + 7;
4611 if (get_param_value(buf, sizeof(buf), "addr", p)) {
4612 virtio_balloon_devaddr = strdup(buf);
4613 }
4614 }
4615 } else {
4616 return -1;
4617 }
4618 return 0;
4619 }
4620 #endif
4621
4622 #ifdef _WIN32
4623 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4624 {
4625 exit(STATUS_CONTROL_C_EXIT);
4626 return TRUE;
4627 }
4628 #endif
4629
4630 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4631 {
4632 int ret;
4633
4634 if(strlen(str) != 36)
4635 return -1;
4636
4637 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4638 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4639 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4640
4641 if(ret != 16)
4642 return -1;
4643
4644 #ifdef TARGET_I386
4645 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4646 #endif
4647
4648 return 0;
4649 }
4650
4651 #define MAX_NET_CLIENTS 32
4652
4653 #ifndef _WIN32
4654
4655 static void termsig_handler(int signal)
4656 {
4657 qemu_system_shutdown_request();
4658 }
4659
4660 static void sigchld_handler(int signal)
4661 {
4662 waitpid(-1, NULL, WNOHANG);
4663 }
4664
4665 static void sighandler_setup(void)
4666 {
4667 struct sigaction act;
4668
4669 memset(&act, 0, sizeof(act));
4670 act.sa_handler = termsig_handler;
4671 sigaction(SIGINT, &act, NULL);
4672 sigaction(SIGHUP, &act, NULL);
4673 sigaction(SIGTERM, &act, NULL);
4674
4675 act.sa_handler = sigchld_handler;
4676 act.sa_flags = SA_NOCLDSTOP;
4677 sigaction(SIGCHLD, &act, NULL);
4678 }
4679
4680 #endif
4681
4682 #ifdef _WIN32
4683 /* Look for support files in the same directory as the executable. */
4684 static char *find_datadir(const char *argv0)
4685 {
4686 char *p;
4687 char buf[MAX_PATH];
4688 DWORD len;
4689
4690 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4691 if (len == 0) {
4692 return NULL;
4693 }
4694
4695 buf[len] = 0;
4696 p = buf + len - 1;
4697 while (p != buf && *p != '\\')
4698 p--;
4699 *p = 0;
4700 if (access(buf, R_OK) == 0) {
4701 return qemu_strdup(buf);
4702 }
4703 return NULL;
4704 }
4705 #else /* !_WIN32 */
4706
4707 /* Find a likely location for support files using the location of the binary.
4708 For installed binaries this will be "$bindir/../share/qemu". When
4709 running from the build tree this will be "$bindir/../pc-bios". */
4710 #define SHARE_SUFFIX "/share/qemu"
4711 #define BUILD_SUFFIX "/pc-bios"
4712 static char *find_datadir(const char *argv0)
4713 {
4714 char *dir;
4715 char *p = NULL;
4716 char *res;
4717 #ifdef PATH_MAX
4718 char buf[PATH_MAX];
4719 #endif
4720 size_t max_len;
4721
4722 #if defined(__linux__)
4723 {
4724 int len;
4725 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4726 if (len > 0) {
4727 buf[len] = 0;
4728 p = buf;
4729 }
4730 }
4731 #elif defined(__FreeBSD__)
4732 {
4733 int len;
4734 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4735 if (len > 0) {
4736 buf[len] = 0;
4737 p = buf;
4738 }
4739 }
4740 #endif
4741 /* If we don't have any way of figuring out the actual executable
4742 location then try argv[0]. */
4743 if (!p) {
4744 #ifdef PATH_MAX
4745 p = buf;
4746 #endif
4747 p = realpath(argv0, p);
4748 if (!p) {
4749 return NULL;
4750 }
4751 }
4752 dir = dirname(p);
4753 dir = dirname(dir);
4754
4755 max_len = strlen(dir) +
4756 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4757 res = qemu_mallocz(max_len);
4758 snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4759 if (access(res, R_OK)) {
4760 snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4761 if (access(res, R_OK)) {
4762 qemu_free(res);
4763 res = NULL;
4764 }
4765 }
4766 #ifndef PATH_MAX
4767 free(p);
4768 #endif
4769 return res;
4770 }
4771 #undef SHARE_SUFFIX
4772 #undef BUILD_SUFFIX
4773 #endif
4774
4775 char *qemu_find_file(int type, const char *name)
4776 {
4777 int len;
4778 const char *subdir;
4779 char *buf;
4780
4781 /* If name contains path separators then try it as a straight path. */
4782 if ((strchr(name, '/') || strchr(name, '\\'))
4783 && access(name, R_OK) == 0) {
4784 return strdup(name);
4785 }
4786 switch (type) {
4787 case QEMU_FILE_TYPE_BIOS:
4788 subdir = "";
4789 break;
4790 case QEMU_FILE_TYPE_KEYMAP:
4791 subdir = "keymaps/";
4792 break;
4793 default:
4794 abort();
4795 }
4796 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4797 buf = qemu_mallocz(len);
4798 snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4799 if (access(buf, R_OK)) {
4800 qemu_free(buf);
4801 return NULL;
4802 }
4803 return buf;
4804 }
4805
4806 int main(int argc, char **argv, char **envp)
4807 {
4808 const char *gdbstub_dev = NULL;
4809 uint32_t boot_devices_bitmap = 0;
4810 int i;
4811 int snapshot, linux_boot, net_boot;
4812 const char *initrd_filename;
4813 const char *kernel_filename, *kernel_cmdline;
4814 char boot_devices[33] = "cad"; /* default to HD->floppy->CD-ROM */
4815 DisplayState *ds;
4816 DisplayChangeListener *dcl;
4817 int cyls, heads, secs, translation;
4818 const char *net_clients[MAX_NET_CLIENTS];
4819 int nb_net_clients;
4820 const char *bt_opts[MAX_BT_CMDLINE];
4821 int nb_bt_opts;
4822 int hda_index;
4823 int optind;
4824 const char *r, *optarg;
4825 CharDriverState *monitor_hd = NULL;
4826 const char *monitor_device;
4827 const char *serial_devices[MAX_SERIAL_PORTS];
4828 int serial_device_index;
4829 const char *parallel_devices[MAX_PARALLEL_PORTS];
4830 int parallel_device_index;
4831 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4832 int virtio_console_index;
4833 const char *loadvm = NULL;
4834 QEMUMachine *machine;
4835 const char *cpu_model;
4836 const char *usb_devices[MAX_USB_CMDLINE];
4837 int usb_devices_index;
4838 #ifndef _WIN32
4839 int fds[2];
4840 #endif
4841 int tb_size;
4842 const char *pid_file = NULL;
4843 const char *incoming = NULL;
4844 #ifndef _WIN32
4845 int fd = 0;
4846 struct passwd *pwd = NULL;
4847 const char *chroot_dir = NULL;
4848 const char *run_as = NULL;
4849 #endif
4850 CPUState *env;
4851 int show_vnc_port = 0;
4852
4853 qemu_cache_utils_init(envp);
4854
4855 LIST_INIT (&vm_change_state_head);
4856 #ifndef _WIN32
4857 {
4858 struct sigaction act;
4859 sigfillset(&act.sa_mask);
4860 act.sa_flags = 0;
4861 act.sa_handler = SIG_IGN;
4862 sigaction(SIGPIPE, &act, NULL);
4863 }
4864 #else
4865 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4866 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4867 QEMU to run on a single CPU */
4868 {
4869 HANDLE h;
4870 DWORD mask, smask;
4871 int i;
4872 h = GetCurrentProcess();
4873 if (GetProcessAffinityMask(h, &mask, &smask)) {
4874 for(i = 0; i < 32; i++) {
4875 if (mask & (1 << i))
4876 break;
4877 }
4878 if (i != 32) {
4879 mask = 1 << i;
4880 SetProcessAffinityMask(h, mask);
4881 }
4882 }
4883 }
4884 #endif
4885
4886 module_call_init(MODULE_INIT_MACHINE);
4887 machine = find_default_machine();
4888 cpu_model = NULL;
4889 initrd_filename = NULL;
4890 ram_size = 0;
4891 snapshot = 0;
4892 kernel_filename = NULL;
4893 kernel_cmdline = "";
4894 cyls = heads = secs = 0;
4895 translation = BIOS_ATA_TRANSLATION_AUTO;
4896 monitor_device = "vc:80Cx24C";
4897
4898 serial_devices[0] = "vc:80Cx24C";
4899 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4900 serial_devices[i] = NULL;
4901 serial_device_index = 0;
4902
4903 parallel_devices[0] = "vc:80Cx24C";
4904 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4905 parallel_devices[i] = NULL;
4906 parallel_device_index = 0;
4907
4908 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4909 virtio_consoles[i] = NULL;
4910 virtio_console_index = 0;
4911
4912 for (i = 0; i < MAX_NODES; i++) {
4913 node_mem[i] = 0;
4914 node_cpumask[i] = 0;
4915 }
4916
4917 usb_devices_index = 0;
4918
4919 nb_net_clients = 0;
4920 nb_bt_opts = 0;
4921 nb_drives = 0;
4922 nb_drives_opt = 0;
4923 nb_numa_nodes = 0;
4924 hda_index = -1;
4925
4926 nb_nics = 0;
4927
4928 tb_size = 0;
4929 autostart= 1;
4930
4931 register_watchdogs();
4932
4933 optind = 1;
4934 for(;;) {
4935 if (optind >= argc)
4936 break;
4937 r = argv[optind];
4938 if (r[0] != '-') {
4939 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4940 } else {
4941 const QEMUOption *popt;
4942
4943 optind++;
4944 /* Treat --foo the same as -foo. */
4945 if (r[1] == '-')
4946 r++;
4947 popt = qemu_options;
4948 for(;;) {
4949 if (!popt->name) {
4950 fprintf(stderr, "%s: invalid option -- '%s'\n",
4951 argv[0], r);
4952 exit(1);
4953 }
4954 if (!strcmp(popt->name, r + 1))
4955 break;
4956 popt++;
4957 }
4958 if (popt->flags & HAS_ARG) {
4959 if (optind >= argc) {
4960 fprintf(stderr, "%s: option '%s' requires an argument\n",
4961 argv[0], r);
4962 exit(1);
4963 }
4964 optarg = argv[optind++];
4965 } else {
4966 optarg = NULL;
4967 }
4968
4969 switch(popt->index) {
4970 case QEMU_OPTION_M:
4971 machine = find_machine(optarg);
4972 if (!machine) {
4973 QEMUMachine *m;
4974 printf("Supported machines are:\n");
4975 for(m = first_machine; m != NULL; m = m->next) {
4976 printf("%-10s %s%s\n",
4977 m->name, m->desc,
4978 m->is_default ? " (default)" : "");
4979 }
4980 exit(*optarg != '?');
4981 }
4982 break;
4983 case QEMU_OPTION_cpu:
4984 /* hw initialization will check this */
4985 if (*optarg == '?') {
4986 /* XXX: implement xxx_cpu_list for targets that still miss it */
4987 #if defined(cpu_list)
4988 cpu_list(stdout, &fprintf);
4989 #endif
4990 exit(0);
4991 } else {
4992 cpu_model = optarg;
4993 }
4994 break;
4995 case QEMU_OPTION_initrd:
4996 initrd_filename = optarg;
4997 break;
4998 case QEMU_OPTION_hda:
4999 if (cyls == 0)
5000 hda_index = drive_add(optarg, HD_ALIAS, 0);
5001 else
5002 hda_index = drive_add(optarg, HD_ALIAS
5003 ",cyls=%d,heads=%d,secs=%d%s",
5004 0, cyls, heads, secs,
5005 translation == BIOS_ATA_TRANSLATION_LBA ?
5006 ",trans=lba" :
5007 translation == BIOS_ATA_TRANSLATION_NONE ?
5008 ",trans=none" : "");
5009 break;
5010 case QEMU_OPTION_hdb:
5011 case QEMU_OPTION_hdc:
5012 case QEMU_OPTION_hdd:
5013 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
5014 break;
5015 case QEMU_OPTION_drive:
5016 drive_add(NULL, "%s", optarg);
5017 break;
5018 case QEMU_OPTION_mtdblock:
5019 drive_add(optarg, MTD_ALIAS);
5020 break;
5021 case QEMU_OPTION_sd:
5022 drive_add(optarg, SD_ALIAS);
5023 break;
5024 case QEMU_OPTION_pflash:
5025 drive_add(optarg, PFLASH_ALIAS);
5026 break;
5027 case QEMU_OPTION_snapshot:
5028 snapshot = 1;
5029 break;
5030 case QEMU_OPTION_hdachs:
5031 {
5032 const char *p;
5033 p = optarg;
5034 cyls = strtol(p, (char **)&p, 0);
5035 if (cyls < 1 || cyls > 16383)
5036 goto chs_fail;
5037 if (*p != ',')
5038 goto chs_fail;
5039 p++;
5040 heads = strtol(p, (char **)&p, 0);
5041 if (heads < 1 || heads > 16)
5042 goto chs_fail;
5043 if (*p != ',')
5044 goto chs_fail;
5045 p++;
5046 secs = strtol(p, (char **)&p, 0);
5047 if (secs < 1 || secs > 63)
5048 goto chs_fail;
5049 if (*p == ',') {
5050 p++;
5051 if (!strcmp(p, "none"))
5052 translation = BIOS_ATA_TRANSLATION_NONE;
5053 else if (!strcmp(p, "lba"))
5054 translation = BIOS_ATA_TRANSLATION_LBA;
5055 else if (!strcmp(p, "auto"))
5056 translation = BIOS_ATA_TRANSLATION_AUTO;
5057 else
5058 goto chs_fail;
5059 } else if (*p != '\0') {
5060 chs_fail:
5061 fprintf(stderr, "qemu: invalid physical CHS format\n");
5062 exit(1);
5063 }
5064 if (hda_index != -1)
5065 snprintf(drives_opt[hda_index].opt,
5066 sizeof(drives_opt[hda_index].opt),
5067 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
5068 0, cyls, heads, secs,
5069 translation == BIOS_ATA_TRANSLATION_LBA ?
5070 ",trans=lba" :
5071 translation == BIOS_ATA_TRANSLATION_NONE ?
5072 ",trans=none" : "");
5073 }
5074 break;
5075 case QEMU_OPTION_numa:
5076 if (nb_numa_nodes >= MAX_NODES) {
5077 fprintf(stderr, "qemu: too many NUMA nodes\n");
5078 exit(1);
5079 }
5080 numa_add(optarg);
5081 break;
5082 case QEMU_OPTION_nographic:
5083 display_type = DT_NOGRAPHIC;
5084 break;
5085 #ifdef CONFIG_CURSES
5086 case QEMU_OPTION_curses:
5087 display_type = DT_CURSES;
5088 break;
5089 #endif
5090 case QEMU_OPTION_portrait:
5091 graphic_rotate = 1;
5092 break;
5093 case QEMU_OPTION_kernel:
5094 kernel_filename = optarg;
5095 break;
5096 case QEMU_OPTION_append:
5097 kernel_cmdline = optarg;
5098 break;
5099 case QEMU_OPTION_cdrom:
5100 drive_add(optarg, CDROM_ALIAS);
5101 break;
5102 case QEMU_OPTION_boot:
5103 {
5104 static const char * const params[] = {
5105 "order", NULL
5106 };
5107 char buf[sizeof(boot_devices)];
5108 int legacy = 0;
5109
5110 if (!strchr(optarg, '=')) {
5111 legacy = 1;
5112 pstrcpy(buf, sizeof(buf), optarg);
5113 } else if (check_params(buf, sizeof(buf), params, optarg) < 0) {
5114 fprintf(stderr,
5115 "qemu: unknown boot parameter '%s' in '%s'\n",
5116 buf, optarg);
5117 exit(1);
5118 }
5119
5120 if (legacy ||
5121 get_param_value(buf, sizeof(buf), "order", optarg)) {
5122 boot_devices_bitmap = parse_bootdevices(buf);
5123 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5124 }
5125 }
5126 break;
5127 case QEMU_OPTION_fda:
5128 case QEMU_OPTION_fdb:
5129 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5130 break;
5131 #ifdef TARGET_I386
5132 case QEMU_OPTION_no_fd_bootchk:
5133 fd_bootchk = 0;
5134 break;
5135 #endif
5136 case QEMU_OPTION_net:
5137 if (nb_net_clients >= MAX_NET_CLIENTS) {
5138 fprintf(stderr, "qemu: too many network clients\n");
5139 exit(1);
5140 }
5141 net_clients[nb_net_clients] = optarg;
5142 nb_net_clients++;
5143 break;
5144 #ifdef CONFIG_SLIRP
5145 case QEMU_OPTION_tftp:
5146 legacy_tftp_prefix = optarg;
5147 break;
5148 case QEMU_OPTION_bootp:
5149 legacy_bootp_filename = optarg;
5150 break;
5151 #ifndef _WIN32
5152 case QEMU_OPTION_smb:
5153 net_slirp_smb(optarg);
5154 break;
5155 #endif
5156 case QEMU_OPTION_redir:
5157 net_slirp_redir(optarg);
5158 break;
5159 #endif
5160 case QEMU_OPTION_bt:
5161 if (nb_bt_opts >= MAX_BT_CMDLINE) {
5162 fprintf(stderr, "qemu: too many bluetooth options\n");
5163 exit(1);
5164 }
5165 bt_opts[nb_bt_opts++] = optarg;
5166 break;
5167 #ifdef HAS_AUDIO
5168 case QEMU_OPTION_audio_help:
5169 AUD_help ();
5170 exit (0);
5171 break;
5172 case QEMU_OPTION_soundhw:
5173 select_soundhw (optarg);
5174 break;
5175 #endif
5176 case QEMU_OPTION_h:
5177 help(0);
5178 break;
5179 case QEMU_OPTION_version:
5180 version();
5181 exit(0);
5182 break;
5183 case QEMU_OPTION_m: {
5184 uint64_t value;
5185 char *ptr;
5186
5187 value = strtoul(optarg, &ptr, 10);
5188 switch (*ptr) {
5189 case 0: case 'M': case 'm':
5190 value <<= 20;
5191 break;
5192 case 'G': case 'g':
5193 value <<= 30;
5194 break;
5195 default:
5196 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5197 exit(1);
5198 }
5199
5200 /* On 32-bit hosts, QEMU is limited by virtual address space */
5201 if (value > (2047 << 20)
5202 #ifndef CONFIG_KQEMU
5203 && HOST_LONG_BITS == 32
5204 #endif
5205 ) {
5206 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5207 exit(1);
5208 }
5209 if (value != (uint64_t)(ram_addr_t)value) {
5210 fprintf(stderr, "qemu: ram size too large\n");
5211 exit(1);
5212 }
5213 ram_size = value;
5214 break;
5215 }
5216 case QEMU_OPTION_d:
5217 {
5218 int mask;
5219 const CPULogItem *item;
5220
5221 mask = cpu_str_to_log_mask(optarg);
5222 if (!mask) {
5223 printf("Log items (comma separated):\n");
5224 for(item = cpu_log_items; item->mask != 0; item++) {
5225 printf("%-10s %s\n", item->name, item->help);
5226 }
5227 exit(1);
5228 }
5229 cpu_set_log(mask);
5230 }
5231 break;
5232 case QEMU_OPTION_s:
5233 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5234 break;
5235 case QEMU_OPTION_gdb:
5236 gdbstub_dev = optarg;
5237 break;
5238 case QEMU_OPTION_L:
5239 data_dir = optarg;
5240 break;
5241 case QEMU_OPTION_bios:
5242 bios_name = optarg;
5243 break;
5244 case QEMU_OPTION_singlestep:
5245 singlestep = 1;
5246 break;
5247 case QEMU_OPTION_S:
5248 autostart = 0;
5249 break;
5250 #ifndef _WIN32
5251 case QEMU_OPTION_k:
5252 keyboard_layout = optarg;
5253 break;
5254 #endif
5255 case QEMU_OPTION_localtime:
5256 rtc_utc = 0;
5257 break;
5258 case QEMU_OPTION_vga:
5259 select_vgahw (optarg);
5260 break;
5261 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5262 case QEMU_OPTION_g:
5263 {
5264 const char *p;
5265 int w, h, depth;
5266 p = optarg;
5267 w = strtol(p, (char **)&p, 10);
5268 if (w <= 0) {
5269 graphic_error:
5270 fprintf(stderr, "qemu: invalid resolution or depth\n");
5271 exit(1);
5272 }
5273 if (*p != 'x')
5274 goto graphic_error;
5275 p++;
5276 h = strtol(p, (char **)&p, 10);
5277 if (h <= 0)
5278 goto graphic_error;
5279 if (*p == 'x') {
5280 p++;
5281 depth = strtol(p, (char **)&p, 10);
5282 if (depth != 8 && depth != 15 && depth != 16 &&
5283 depth != 24 && depth != 32)
5284 goto graphic_error;
5285 } else if (*p == '\0') {
5286 depth = graphic_depth;
5287 } else {
5288 goto graphic_error;
5289 }
5290
5291 graphic_width = w;
5292 graphic_height = h;
5293 graphic_depth = depth;
5294 }
5295 break;
5296 #endif
5297 case QEMU_OPTION_echr:
5298 {
5299 char *r;
5300 term_escape_char = strtol(optarg, &r, 0);
5301 if (r == optarg)
5302 printf("Bad argument to echr\n");
5303 break;
5304 }
5305 case QEMU_OPTION_monitor:
5306 monitor_device = optarg;
5307 break;
5308 case QEMU_OPTION_serial:
5309 if (serial_device_index >= MAX_SERIAL_PORTS) {
5310 fprintf(stderr, "qemu: too many serial ports\n");
5311 exit(1);
5312 }
5313 serial_devices[serial_device_index] = optarg;
5314 serial_device_index++;
5315 break;
5316 case QEMU_OPTION_watchdog:
5317 i = select_watchdog(optarg);
5318 if (i > 0)
5319 exit (i == 1 ? 1 : 0);
5320 break;
5321 case QEMU_OPTION_watchdog_action:
5322 if (select_watchdog_action(optarg) == -1) {
5323 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5324 exit(1);
5325 }
5326 break;
5327 case QEMU_OPTION_virtiocon:
5328 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5329 fprintf(stderr, "qemu: too many virtio consoles\n");
5330 exit(1);
5331 }
5332 virtio_consoles[virtio_console_index] = optarg;
5333 virtio_console_index++;
5334 break;
5335 case QEMU_OPTION_parallel:
5336 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5337 fprintf(stderr, "qemu: too many parallel ports\n");
5338 exit(1);
5339 }
5340 parallel_devices[parallel_device_index] = optarg;
5341 parallel_device_index++;
5342 break;
5343 case QEMU_OPTION_loadvm:
5344 loadvm = optarg;
5345 break;
5346 case QEMU_OPTION_full_screen:
5347 full_screen = 1;
5348 break;
5349 #ifdef CONFIG_SDL
5350 case QEMU_OPTION_no_frame:
5351 no_frame = 1;
5352 break;
5353 case QEMU_OPTION_alt_grab:
5354 alt_grab = 1;
5355 break;
5356 case QEMU_OPTION_no_quit:
5357 no_quit = 1;
5358 break;
5359 case QEMU_OPTION_sdl:
5360 display_type = DT_SDL;
5361 break;
5362 #endif
5363 case QEMU_OPTION_pidfile:
5364 pid_file = optarg;
5365 break;
5366 #ifdef TARGET_I386
5367 case QEMU_OPTION_win2k_hack:
5368 win2k_install_hack = 1;
5369 break;
5370 case QEMU_OPTION_rtc_td_hack:
5371 rtc_td_hack = 1;
5372 break;
5373 case QEMU_OPTION_acpitable:
5374 if(acpi_table_add(optarg) < 0) {
5375 fprintf(stderr, "Wrong acpi table provided\n");
5376 exit(1);
5377 }
5378 break;
5379 case QEMU_OPTION_smbios:
5380 if(smbios_entry_add(optarg) < 0) {
5381 fprintf(stderr, "Wrong smbios provided\n");
5382 exit(1);
5383 }
5384 break;
5385 #endif
5386 #ifdef CONFIG_KQEMU
5387 case QEMU_OPTION_enable_kqemu:
5388 kqemu_allowed = 1;
5389 break;
5390 case QEMU_OPTION_kernel_kqemu:
5391 kqemu_allowed = 2;
5392 break;
5393 #endif
5394 #ifdef CONFIG_KVM
5395 case QEMU_OPTION_enable_kvm:
5396 kvm_allowed = 1;
5397 #ifdef CONFIG_KQEMU
5398 kqemu_allowed = 0;
5399 #endif
5400 break;
5401 #endif
5402 case QEMU_OPTION_usb:
5403 usb_enabled = 1;
5404 break;
5405 case QEMU_OPTION_usbdevice:
5406 usb_enabled = 1;
5407 if (usb_devices_index >= MAX_USB_CMDLINE) {
5408 fprintf(stderr, "Too many USB devices\n");
5409 exit(1);
5410 }
5411 usb_devices[usb_devices_index] = optarg;
5412 usb_devices_index++;
5413 break;
5414 case QEMU_OPTION_smp:
5415 smp_cpus = atoi(optarg);
5416 if (smp_cpus < 1) {
5417 fprintf(stderr, "Invalid number of CPUs\n");
5418 exit(1);
5419 }
5420 break;
5421 case QEMU_OPTION_vnc:
5422 display_type = DT_VNC;
5423 vnc_display = optarg;
5424 break;
5425 #ifdef TARGET_I386
5426 case QEMU_OPTION_no_acpi:
5427 acpi_enabled = 0;
5428 break;
5429 case QEMU_OPTION_no_hpet:
5430 no_hpet = 1;
5431 break;
5432 case QEMU_OPTION_balloon:
5433 if (balloon_parse(optarg) < 0) {
5434 fprintf(stderr, "Unknown -balloon argument %s\n", optarg);
5435 exit(1);
5436 }
5437 break;
5438 #endif
5439 case QEMU_OPTION_no_reboot:
5440 no_reboot = 1;
5441 break;
5442 case QEMU_OPTION_no_shutdown:
5443 no_shutdown = 1;
5444 break;
5445 case QEMU_OPTION_show_cursor:
5446 cursor_hide = 0;
5447 break;
5448 case QEMU_OPTION_uuid:
5449 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5450 fprintf(stderr, "Fail to parse UUID string."
5451 " Wrong format.\n");
5452 exit(1);
5453 }
5454 break;
5455 #ifndef _WIN32
5456 case QEMU_OPTION_daemonize:
5457 daemonize = 1;
5458 break;
5459 #endif
5460 case QEMU_OPTION_option_rom:
5461 if (nb_option_roms >= MAX_OPTION_ROMS) {
5462 fprintf(stderr, "Too many option ROMs\n");
5463 exit(1);
5464 }
5465 option_rom[nb_option_roms] = optarg;
5466 nb_option_roms++;
5467 break;
5468 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5469 case QEMU_OPTION_semihosting:
5470 semihosting_enabled = 1;
5471 break;
5472 #endif
5473 case QEMU_OPTION_name:
5474 qemu_name = qemu_strdup(optarg);
5475 {
5476 char *p = strchr(qemu_name, ',');
5477 if (p != NULL) {
5478 *p++ = 0;
5479 if (strncmp(p, "process=", 8)) {
5480 fprintf(stderr, "Unknown subargument %s to -name", p);
5481 exit(1);
5482 }
5483 p += 8;
5484 set_proc_name(p);
5485 }
5486 }
5487 break;
5488 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5489 case QEMU_OPTION_prom_env:
5490 if (nb_prom_envs >= MAX_PROM_ENVS) {
5491 fprintf(stderr, "Too many prom variables\n");
5492 exit(1);
5493 }
5494 prom_envs[nb_prom_envs] = optarg;
5495 nb_prom_envs++;
5496 break;
5497 #endif
5498 #ifdef TARGET_ARM
5499 case QEMU_OPTION_old_param:
5500 old_param = 1;
5501 break;
5502 #endif
5503 case QEMU_OPTION_clock:
5504 configure_alarms(optarg);
5505 break;
5506 case QEMU_OPTION_startdate:
5507 {
5508 struct tm tm;
5509 time_t rtc_start_date;
5510 if (!strcmp(optarg, "now")) {
5511 rtc_date_offset = -1;
5512 } else {
5513 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5514 &tm.tm_year,
5515 &tm.tm_mon,
5516 &tm.tm_mday,
5517 &tm.tm_hour,
5518 &tm.tm_min,
5519 &tm.tm_sec) == 6) {
5520 /* OK */
5521 } else if (sscanf(optarg, "%d-%d-%d",
5522 &tm.tm_year,
5523 &tm.tm_mon,
5524 &tm.tm_mday) == 3) {
5525 tm.tm_hour = 0;
5526 tm.tm_min = 0;
5527 tm.tm_sec = 0;
5528 } else {
5529 goto date_fail;
5530 }
5531 tm.tm_year -= 1900;
5532 tm.tm_mon--;
5533 rtc_start_date = mktimegm(&tm);
5534 if (rtc_start_date == -1) {
5535 date_fail:
5536 fprintf(stderr, "Invalid date format. Valid format are:\n"
5537 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5538 exit(1);
5539 }
5540 rtc_date_offset = time(NULL) - rtc_start_date;
5541 }
5542 }
5543 break;
5544 case QEMU_OPTION_tb_size:
5545 tb_size = strtol(optarg, NULL, 0);
5546 if (tb_size < 0)
5547 tb_size = 0;
5548 break;
5549 case QEMU_OPTION_icount:
5550 use_icount = 1;
5551 if (strcmp(optarg, "auto") == 0) {
5552 icount_time_shift = -1;
5553 } else {
5554 icount_time_shift = strtol(optarg, NULL, 0);
5555 }
5556 break;
5557 case QEMU_OPTION_incoming:
5558 incoming = optarg;
5559 break;
5560 #ifndef _WIN32
5561 case QEMU_OPTION_chroot:
5562 chroot_dir = optarg;
5563 break;
5564 case QEMU_OPTION_runas:
5565 run_as = optarg;
5566 break;
5567 #endif
5568 #ifdef CONFIG_XEN
5569 case QEMU_OPTION_xen_domid:
5570 xen_domid = atoi(optarg);
5571 break;
5572 case QEMU_OPTION_xen_create:
5573 xen_mode = XEN_CREATE;
5574 break;
5575 case QEMU_OPTION_xen_attach:
5576 xen_mode = XEN_ATTACH;
5577 break;
5578 #endif
5579 }
5580 }
5581 }
5582
5583 /* If no data_dir is specified then try to find it relative to the
5584 executable path. */
5585 if (!data_dir) {
5586 data_dir = find_datadir(argv[0]);
5587 }
5588 /* If all else fails use the install patch specified when building. */
5589 if (!data_dir) {
5590 data_dir = CONFIG_QEMU_SHAREDIR;
5591 }
5592
5593 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5594 if (kvm_allowed && kqemu_allowed) {
5595 fprintf(stderr,
5596 "You can not enable both KVM and kqemu at the same time\n");
5597 exit(1);
5598 }
5599 #endif
5600
5601 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5602 if (smp_cpus > machine->max_cpus) {
5603 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5604 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5605 machine->max_cpus);
5606 exit(1);
5607 }
5608
5609 if (display_type == DT_NOGRAPHIC) {
5610 if (serial_device_index == 0)
5611 serial_devices[0] = "stdio";
5612 if (parallel_device_index == 0)
5613 parallel_devices[0] = "null";
5614 if (strncmp(monitor_device, "vc", 2) == 0)
5615 monitor_device = "stdio";
5616 }
5617
5618 #ifndef _WIN32
5619 if (daemonize) {
5620 pid_t pid;
5621
5622 if (pipe(fds) == -1)
5623 exit(1);
5624
5625 pid = fork();
5626 if (pid > 0) {
5627 uint8_t status;
5628 ssize_t len;
5629
5630 close(fds[1]);
5631
5632 again:
5633 len = read(fds[0], &status, 1);
5634 if (len == -1 && (errno == EINTR))
5635 goto again;
5636
5637 if (len != 1)
5638 exit(1);
5639 else if (status == 1) {
5640 fprintf(stderr, "Could not acquire pidfile\n");
5641 exit(1);
5642 } else
5643 exit(0);
5644 } else if (pid < 0)
5645 exit(1);
5646
5647 setsid();
5648
5649 pid = fork();
5650 if (pid > 0)
5651 exit(0);
5652 else if (pid < 0)
5653 exit(1);
5654
5655 umask(027);
5656
5657 signal(SIGTSTP, SIG_IGN);
5658 signal(SIGTTOU, SIG_IGN);
5659 signal(SIGTTIN, SIG_IGN);
5660 }
5661
5662 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5663 if (daemonize) {
5664 uint8_t status = 1;
5665 write(fds[1], &status, 1);
5666 } else
5667 fprintf(stderr, "Could not acquire pid file\n");
5668 exit(1);
5669 }
5670 #endif
5671
5672 #ifdef CONFIG_KQEMU
5673 if (smp_cpus > 1)
5674 kqemu_allowed = 0;
5675 #endif
5676 if (qemu_init_main_loop()) {
5677 fprintf(stderr, "qemu_init_main_loop failed\n");
5678 exit(1);
5679 }
5680 linux_boot = (kernel_filename != NULL);
5681
5682 if (!linux_boot && *kernel_cmdline != '\0') {
5683 fprintf(stderr, "-append only allowed with -kernel option\n");
5684 exit(1);
5685 }
5686
5687 if (!linux_boot && initrd_filename != NULL) {
5688 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5689 exit(1);
5690 }
5691
5692 setvbuf(stdout, NULL, _IOLBF, 0);
5693
5694 init_timers();
5695 if (init_timer_alarm() < 0) {
5696 fprintf(stderr, "could not initialize alarm timer\n");
5697 exit(1);
5698 }
5699 if (use_icount && icount_time_shift < 0) {
5700 use_icount = 2;
5701 /* 125MIPS seems a reasonable initial guess at the guest speed.
5702 It will be corrected fairly quickly anyway. */
5703 icount_time_shift = 3;
5704 init_icount_adjust();
5705 }
5706
5707 #ifdef _WIN32
5708 socket_init();
5709 #endif
5710
5711 /* init network clients */
5712 if (nb_net_clients == 0) {
5713 /* if no clients, we use a default config */
5714 net_clients[nb_net_clients++] = "nic";
5715 #ifdef CONFIG_SLIRP
5716 net_clients[nb_net_clients++] = "user";
5717 #endif
5718 }
5719
5720 for(i = 0;i < nb_net_clients; i++) {
5721 if (net_client_parse(net_clients[i]) < 0)
5722 exit(1);
5723 }
5724
5725 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5726 net_set_boot_mask(net_boot);
5727
5728 net_client_check();
5729
5730 /* init the bluetooth world */
5731 for (i = 0; i < nb_bt_opts; i++)
5732 if (bt_parse(bt_opts[i]))
5733 exit(1);
5734
5735 /* init the memory */
5736 if (ram_size == 0)
5737 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5738
5739 #ifdef CONFIG_KQEMU
5740 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5741 guest ram allocation. It needs to go away. */
5742 if (kqemu_allowed) {
5743 kqemu_phys_ram_size = ram_size + 8 * 1024 * 1024 + 4 * 1024 * 1024;
5744 kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
5745 if (!kqemu_phys_ram_base) {
5746 fprintf(stderr, "Could not allocate physical memory\n");
5747 exit(1);
5748 }
5749 }
5750 #endif
5751
5752 /* init the dynamic translator */
5753 cpu_exec_init_all(tb_size * 1024 * 1024);
5754
5755 bdrv_init();
5756
5757 /* we always create the cdrom drive, even if no disk is there */
5758
5759 if (nb_drives_opt < MAX_DRIVES)
5760 drive_add(NULL, CDROM_ALIAS);
5761
5762 /* we always create at least one floppy */
5763
5764 if (nb_drives_opt < MAX_DRIVES)
5765 drive_add(NULL, FD_ALIAS, 0);
5766
5767 /* we always create one sd slot, even if no card is in it */
5768
5769 if (nb_drives_opt < MAX_DRIVES)
5770 drive_add(NULL, SD_ALIAS);
5771
5772 /* open the virtual block devices */
5773
5774 for(i = 0; i < nb_drives_opt; i++)
5775 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5776 exit(1);
5777
5778 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5779 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5780
5781 #ifndef _WIN32
5782 /* must be after terminal init, SDL library changes signal handlers */
5783 sighandler_setup();
5784 #endif
5785
5786 /* Maintain compatibility with multiple stdio monitors */
5787 if (!strcmp(monitor_device,"stdio")) {
5788 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5789 const char *devname = serial_devices[i];
5790 if (devname && !strcmp(devname,"mon:stdio")) {
5791 monitor_device = NULL;
5792 break;
5793 } else if (devname && !strcmp(devname,"stdio")) {
5794 monitor_device = NULL;
5795 serial_devices[i] = "mon:stdio";
5796 break;
5797 }
5798 }
5799 }
5800
5801 if (nb_numa_nodes > 0) {
5802 int i;
5803
5804 if (nb_numa_nodes > smp_cpus) {
5805 nb_numa_nodes = smp_cpus;
5806 }
5807
5808 /* If no memory size if given for any node, assume the default case
5809 * and distribute the available memory equally across all nodes
5810 */
5811 for (i = 0; i < nb_numa_nodes; i++) {
5812 if (node_mem[i] != 0)
5813 break;
5814 }
5815 if (i == nb_numa_nodes) {
5816 uint64_t usedmem = 0;
5817
5818 /* On Linux, the each node's border has to be 8MB aligned,
5819 * the final node gets the rest.
5820 */
5821 for (i = 0; i < nb_numa_nodes - 1; i++) {
5822 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5823 usedmem += node_mem[i];
5824 }
5825 node_mem[i] = ram_size - usedmem;
5826 }
5827
5828 for (i = 0; i < nb_numa_nodes; i++) {
5829 if (node_cpumask[i] != 0)
5830 break;
5831 }
5832 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5833 * must cope with this anyway, because there are BIOSes out there in
5834 * real machines which also use this scheme.
5835 */
5836 if (i == nb_numa_nodes) {
5837 for (i = 0; i < smp_cpus; i++) {
5838 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5839 }
5840 }
5841 }
5842
5843 if (kvm_enabled()) {
5844 int ret;
5845
5846 ret = kvm_init(smp_cpus);
5847 if (ret < 0) {
5848 fprintf(stderr, "failed to initialize KVM\n");
5849 exit(1);
5850 }
5851 }
5852
5853 if (monitor_device) {
5854 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5855 if (!monitor_hd) {
5856 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5857 exit(1);
5858 }
5859 }
5860
5861 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5862 const char *devname = serial_devices[i];
5863 if (devname && strcmp(devname, "none")) {
5864 char label[32];
5865 snprintf(label, sizeof(label), "serial%d", i);
5866 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5867 if (!serial_hds[i]) {
5868 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5869 devname);
5870 exit(1);
5871 }
5872 }
5873 }
5874
5875 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5876 const char *devname = parallel_devices[i];
5877 if (devname && strcmp(devname, "none")) {
5878 char label[32];
5879 snprintf(label, sizeof(label), "parallel%d", i);
5880 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5881 if (!parallel_hds[i]) {
5882 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5883 devname);
5884 exit(1);
5885 }
5886 }
5887 }
5888
5889 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5890 const char *devname = virtio_consoles[i];
5891 if (devname && strcmp(devname, "none")) {
5892 char label[32];
5893 snprintf(label, sizeof(label), "virtcon%d", i);
5894 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5895 if (!virtcon_hds[i]) {
5896 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5897 devname);
5898 exit(1);
5899 }
5900 }
5901 }
5902
5903 module_call_init(MODULE_INIT_DEVICE);
5904
5905 machine->init(ram_size, boot_devices,
5906 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5907
5908
5909 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5910 for (i = 0; i < nb_numa_nodes; i++) {
5911 if (node_cpumask[i] & (1 << env->cpu_index)) {
5912 env->numa_node = i;
5913 }
5914 }
5915 }
5916
5917 current_machine = machine;
5918
5919 /* init USB devices */
5920 if (usb_enabled) {
5921 for(i = 0; i < usb_devices_index; i++) {
5922 if (usb_device_add(usb_devices[i], 0) < 0) {
5923 fprintf(stderr, "Warning: could not add USB device %s\n",
5924 usb_devices[i]);
5925 }
5926 }
5927 }
5928
5929 if (!display_state)
5930 dumb_display_init();
5931 /* just use the first displaystate for the moment */
5932 ds = display_state;
5933
5934 if (display_type == DT_DEFAULT) {
5935 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5936 display_type = DT_SDL;
5937 #else
5938 display_type = DT_VNC;
5939 vnc_display = "localhost:0,to=99";
5940 show_vnc_port = 1;
5941 #endif
5942 }
5943
5944
5945 switch (display_type) {
5946 case DT_NOGRAPHIC:
5947 break;
5948 #if defined(CONFIG_CURSES)
5949 case DT_CURSES:
5950 curses_display_init(ds, full_screen);
5951 break;
5952 #endif
5953 #if defined(CONFIG_SDL)
5954 case DT_SDL:
5955 sdl_display_init(ds, full_screen, no_frame);
5956 break;
5957 #elif defined(CONFIG_COCOA)
5958 case DT_SDL:
5959 cocoa_display_init(ds, full_screen);
5960 break;
5961 #endif
5962 case DT_VNC:
5963 vnc_display_init(ds);
5964 if (vnc_display_open(ds, vnc_display) < 0)
5965 exit(1);
5966
5967 if (show_vnc_port) {
5968 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
5969 }
5970 break;
5971 default:
5972 break;
5973 }
5974 dpy_resize(ds);
5975
5976 dcl = ds->listeners;
5977 while (dcl != NULL) {
5978 if (dcl->dpy_refresh != NULL) {
5979 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5980 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5981 }
5982 dcl = dcl->next;
5983 }
5984
5985 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
5986 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5987 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5988 }
5989
5990 text_consoles_set_display(display_state);
5991 qemu_chr_initial_reset();
5992
5993 if (monitor_device && monitor_hd)
5994 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
5995
5996 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5997 const char *devname = serial_devices[i];
5998 if (devname && strcmp(devname, "none")) {
5999 if (strstart(devname, "vc", 0))
6000 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
6001 }
6002 }
6003
6004 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6005 const char *devname = parallel_devices[i];
6006 if (devname && strcmp(devname, "none")) {
6007 if (strstart(devname, "vc", 0))
6008 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
6009 }
6010 }
6011
6012 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6013 const char *devname = virtio_consoles[i];
6014 if (virtcon_hds[i] && devname) {
6015 if (strstart(devname, "vc", 0))
6016 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
6017 }
6018 }
6019
6020 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6021 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6022 gdbstub_dev);
6023 exit(1);
6024 }
6025
6026 if (loadvm)
6027 do_loadvm(cur_mon, loadvm);
6028
6029 if (incoming) {
6030 autostart = 0; /* fixme how to deal with -daemonize */
6031 qemu_start_incoming_migration(incoming);
6032 }
6033
6034 if (autostart)
6035 vm_start();
6036
6037 #ifndef _WIN32
6038 if (daemonize) {
6039 uint8_t status = 0;
6040 ssize_t len;
6041
6042 again1:
6043 len = write(fds[1], &status, 1);
6044 if (len == -1 && (errno == EINTR))
6045 goto again1;
6046
6047 if (len != 1)
6048 exit(1);
6049
6050 chdir("/");
6051 TFR(fd = open("/dev/null", O_RDWR));
6052 if (fd == -1)
6053 exit(1);
6054 }
6055
6056 if (run_as) {
6057 pwd = getpwnam(run_as);
6058 if (!pwd) {
6059 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6060 exit(1);
6061 }
6062 }
6063
6064 if (chroot_dir) {
6065 if (chroot(chroot_dir) < 0) {
6066 fprintf(stderr, "chroot failed\n");
6067 exit(1);
6068 }
6069 chdir("/");
6070 }
6071
6072 if (run_as) {
6073 if (setgid(pwd->pw_gid) < 0) {
6074 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6075 exit(1);
6076 }
6077 if (setuid(pwd->pw_uid) < 0) {
6078 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6079 exit(1);
6080 }
6081 if (setuid(0) != -1) {
6082 fprintf(stderr, "Dropping privileges failed\n");
6083 exit(1);
6084 }
6085 }
6086
6087 if (daemonize) {
6088 dup2(fd, 0);
6089 dup2(fd, 1);
6090 dup2(fd, 2);
6091
6092 close(fd);
6093 }
6094 #endif
6095
6096 main_loop();
6097 quit_timers();
6098 net_cleanup();
6099
6100 return 0;
6101 }