]> git.proxmox.com Git - mirror_qemu.git/blob - vl.c
slirp: Avoid zombie processes after fork_exec
[mirror_qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
31
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
34
35 #ifndef _WIN32
36 #include <libgen.h>
37 #include <pwd.h>
38 #include <sys/times.h>
39 #include <sys/wait.h>
40 #include <termios.h>
41 #include <sys/mman.h>
42 #include <sys/ioctl.h>
43 #include <sys/resource.h>
44 #include <sys/socket.h>
45 #include <netinet/in.h>
46 #include <net/if.h>
47 #if defined(__NetBSD__)
48 #include <net/if_tap.h>
49 #endif
50 #ifdef __linux__
51 #include <linux/if_tun.h>
52 #endif
53 #include <arpa/inet.h>
54 #include <dirent.h>
55 #include <netdb.h>
56 #include <sys/select.h>
57 #ifdef HOST_BSD
58 #include <sys/stat.h>
59 #if defined(__FreeBSD__) || defined(__DragonFly__)
60 #include <libutil.h>
61 #else
62 #include <util.h>
63 #endif
64 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
65 #include <freebsd/stdlib.h>
66 #else
67 #ifdef __linux__
68 #include <pty.h>
69 #include <malloc.h>
70 #include <linux/rtc.h>
71
72 /* For the benefit of older linux systems which don't supply it,
73 we use a local copy of hpet.h. */
74 /* #include <linux/hpet.h> */
75 #include "hpet.h"
76
77 #include <linux/ppdev.h>
78 #include <linux/parport.h>
79 #endif
80 #ifdef __sun__
81 #include <sys/stat.h>
82 #include <sys/ethernet.h>
83 #include <sys/sockio.h>
84 #include <netinet/arp.h>
85 #include <netinet/in.h>
86 #include <netinet/in_systm.h>
87 #include <netinet/ip.h>
88 #include <netinet/ip_icmp.h> // must come after ip.h
89 #include <netinet/udp.h>
90 #include <netinet/tcp.h>
91 #include <net/if.h>
92 #include <syslog.h>
93 #include <stropts.h>
94 #endif
95 #endif
96 #endif
97
98 #if defined(__OpenBSD__)
99 #include <util.h>
100 #endif
101
102 #if defined(CONFIG_VDE)
103 #include <libvdeplug.h>
104 #endif
105
106 #ifdef _WIN32
107 #include <windows.h>
108 #include <malloc.h>
109 #include <sys/timeb.h>
110 #include <mmsystem.h>
111 #define getopt_long_only getopt_long
112 #define memalign(align, size) malloc(size)
113 #endif
114
115 #ifdef CONFIG_SDL
116 #ifdef __APPLE__
117 #include <SDL/SDL.h>
118 int qemu_main(int argc, char **argv, char **envp);
119 int main(int argc, char **argv)
120 {
121 qemu_main(argc, argv, NULL);
122 }
123 #undef main
124 #define main qemu_main
125 #endif
126 #endif /* CONFIG_SDL */
127
128 #ifdef CONFIG_COCOA
129 #undef main
130 #define main qemu_main
131 #endif /* CONFIG_COCOA */
132
133 #include "hw/hw.h"
134 #include "hw/boards.h"
135 #include "hw/usb.h"
136 #include "hw/pcmcia.h"
137 #include "hw/pc.h"
138 #include "hw/audiodev.h"
139 #include "hw/isa.h"
140 #include "hw/baum.h"
141 #include "hw/bt.h"
142 #include "hw/watchdog.h"
143 #include "hw/smbios.h"
144 #include "hw/xen.h"
145 #include "bt-host.h"
146 #include "net.h"
147 #include "monitor.h"
148 #include "console.h"
149 #include "sysemu.h"
150 #include "gdbstub.h"
151 #include "qemu-timer.h"
152 #include "qemu-char.h"
153 #include "cache-utils.h"
154 #include "block.h"
155 #include "dma.h"
156 #include "audio/audio.h"
157 #include "migration.h"
158 #include "kvm.h"
159 #include "balloon.h"
160 #include "qemu-option.h"
161
162 #include "disas.h"
163
164 #include "exec-all.h"
165
166 #include "qemu_socket.h"
167
168 #if defined(CONFIG_SLIRP)
169 #include "libslirp.h"
170 #endif
171
172 //#define DEBUG_UNUSED_IOPORT
173 //#define DEBUG_IOPORT
174 //#define DEBUG_NET
175 //#define DEBUG_SLIRP
176
177
178 #ifdef DEBUG_IOPORT
179 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
180 #else
181 # define LOG_IOPORT(...) do { } while (0)
182 #endif
183
184 #define DEFAULT_RAM_SIZE 128
185
186 /* Max number of USB devices that can be specified on the commandline. */
187 #define MAX_USB_CMDLINE 8
188
189 /* Max number of bluetooth switches on the commandline. */
190 #define MAX_BT_CMDLINE 10
191
192 /* XXX: use a two level table to limit memory usage */
193 #define MAX_IOPORTS 65536
194
195 static const char *data_dir;
196 const char *bios_name = NULL;
197 static void *ioport_opaque[MAX_IOPORTS];
198 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
199 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
200 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
201 to store the VM snapshots */
202 DriveInfo drives_table[MAX_DRIVES+1];
203 int nb_drives;
204 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
205 static DisplayState *display_state;
206 DisplayType display_type = DT_DEFAULT;
207 const char* keyboard_layout = NULL;
208 int64_t ticks_per_sec;
209 ram_addr_t ram_size;
210 int nb_nics;
211 NICInfo nd_table[MAX_NICS];
212 int vm_running;
213 static int autostart;
214 static int rtc_utc = 1;
215 static int rtc_date_offset = -1; /* -1 means no change */
216 int cirrus_vga_enabled = 1;
217 int std_vga_enabled = 0;
218 int vmsvga_enabled = 0;
219 int xenfb_enabled = 0;
220 #ifdef TARGET_SPARC
221 int graphic_width = 1024;
222 int graphic_height = 768;
223 int graphic_depth = 8;
224 #else
225 int graphic_width = 800;
226 int graphic_height = 600;
227 int graphic_depth = 15;
228 #endif
229 static int full_screen = 0;
230 #ifdef CONFIG_SDL
231 static int no_frame = 0;
232 #endif
233 int no_quit = 0;
234 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
235 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
236 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
237 #ifdef TARGET_I386
238 int win2k_install_hack = 0;
239 int rtc_td_hack = 0;
240 #endif
241 int usb_enabled = 0;
242 int singlestep = 0;
243 int smp_cpus = 1;
244 const char *vnc_display;
245 int acpi_enabled = 1;
246 int no_hpet = 0;
247 int fd_bootchk = 1;
248 int no_reboot = 0;
249 int no_shutdown = 0;
250 int cursor_hide = 1;
251 int graphic_rotate = 0;
252 #ifndef _WIN32
253 int daemonize = 0;
254 #endif
255 WatchdogTimerModel *watchdog = NULL;
256 int watchdog_action = WDT_RESET;
257 const char *option_rom[MAX_OPTION_ROMS];
258 int nb_option_roms;
259 int semihosting_enabled = 0;
260 #ifdef TARGET_ARM
261 int old_param = 0;
262 #endif
263 const char *qemu_name;
264 int alt_grab = 0;
265 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
266 unsigned int nb_prom_envs = 0;
267 const char *prom_envs[MAX_PROM_ENVS];
268 #endif
269 int nb_drives_opt;
270 struct drive_opt drives_opt[MAX_DRIVES];
271
272 int nb_numa_nodes;
273 uint64_t node_mem[MAX_NODES];
274 uint64_t node_cpumask[MAX_NODES];
275
276 static CPUState *cur_cpu;
277 static CPUState *next_cpu;
278 static int timer_alarm_pending = 1;
279 /* Conversion factor from emulated instructions to virtual clock ticks. */
280 static int icount_time_shift;
281 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
282 #define MAX_ICOUNT_SHIFT 10
283 /* Compensate for varying guest execution speed. */
284 static int64_t qemu_icount_bias;
285 static QEMUTimer *icount_rt_timer;
286 static QEMUTimer *icount_vm_timer;
287 static QEMUTimer *nographic_timer;
288
289 uint8_t qemu_uuid[16];
290
291 /***********************************************************/
292 /* x86 ISA bus support */
293
294 target_phys_addr_t isa_mem_base = 0;
295 PicState2 *isa_pic;
296
297 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
298 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
299
300 static uint32_t ioport_read(int index, uint32_t address)
301 {
302 static IOPortReadFunc *default_func[3] = {
303 default_ioport_readb,
304 default_ioport_readw,
305 default_ioport_readl
306 };
307 IOPortReadFunc *func = ioport_read_table[index][address];
308 if (!func)
309 func = default_func[index];
310 return func(ioport_opaque[address], address);
311 }
312
313 static void ioport_write(int index, uint32_t address, uint32_t data)
314 {
315 static IOPortWriteFunc *default_func[3] = {
316 default_ioport_writeb,
317 default_ioport_writew,
318 default_ioport_writel
319 };
320 IOPortWriteFunc *func = ioport_write_table[index][address];
321 if (!func)
322 func = default_func[index];
323 func(ioport_opaque[address], address, data);
324 }
325
326 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
327 {
328 #ifdef DEBUG_UNUSED_IOPORT
329 fprintf(stderr, "unused inb: port=0x%04x\n", address);
330 #endif
331 return 0xff;
332 }
333
334 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
335 {
336 #ifdef DEBUG_UNUSED_IOPORT
337 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
338 #endif
339 }
340
341 /* default is to make two byte accesses */
342 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
343 {
344 uint32_t data;
345 data = ioport_read(0, address);
346 address = (address + 1) & (MAX_IOPORTS - 1);
347 data |= ioport_read(0, address) << 8;
348 return data;
349 }
350
351 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
352 {
353 ioport_write(0, address, data & 0xff);
354 address = (address + 1) & (MAX_IOPORTS - 1);
355 ioport_write(0, address, (data >> 8) & 0xff);
356 }
357
358 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
359 {
360 #ifdef DEBUG_UNUSED_IOPORT
361 fprintf(stderr, "unused inl: port=0x%04x\n", address);
362 #endif
363 return 0xffffffff;
364 }
365
366 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
367 {
368 #ifdef DEBUG_UNUSED_IOPORT
369 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
370 #endif
371 }
372
373 /* size is the word size in byte */
374 int register_ioport_read(int start, int length, int size,
375 IOPortReadFunc *func, void *opaque)
376 {
377 int i, bsize;
378
379 if (size == 1) {
380 bsize = 0;
381 } else if (size == 2) {
382 bsize = 1;
383 } else if (size == 4) {
384 bsize = 2;
385 } else {
386 hw_error("register_ioport_read: invalid size");
387 return -1;
388 }
389 for(i = start; i < start + length; i += size) {
390 ioport_read_table[bsize][i] = func;
391 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
392 hw_error("register_ioport_read: invalid opaque");
393 ioport_opaque[i] = opaque;
394 }
395 return 0;
396 }
397
398 /* size is the word size in byte */
399 int register_ioport_write(int start, int length, int size,
400 IOPortWriteFunc *func, void *opaque)
401 {
402 int i, bsize;
403
404 if (size == 1) {
405 bsize = 0;
406 } else if (size == 2) {
407 bsize = 1;
408 } else if (size == 4) {
409 bsize = 2;
410 } else {
411 hw_error("register_ioport_write: invalid size");
412 return -1;
413 }
414 for(i = start; i < start + length; i += size) {
415 ioport_write_table[bsize][i] = func;
416 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
417 hw_error("register_ioport_write: invalid opaque");
418 ioport_opaque[i] = opaque;
419 }
420 return 0;
421 }
422
423 void isa_unassign_ioport(int start, int length)
424 {
425 int i;
426
427 for(i = start; i < start + length; i++) {
428 ioport_read_table[0][i] = default_ioport_readb;
429 ioport_read_table[1][i] = default_ioport_readw;
430 ioport_read_table[2][i] = default_ioport_readl;
431
432 ioport_write_table[0][i] = default_ioport_writeb;
433 ioport_write_table[1][i] = default_ioport_writew;
434 ioport_write_table[2][i] = default_ioport_writel;
435
436 ioport_opaque[i] = NULL;
437 }
438 }
439
440 /***********************************************************/
441
442 void cpu_outb(CPUState *env, int addr, int val)
443 {
444 LOG_IOPORT("outb: %04x %02x\n", addr, val);
445 ioport_write(0, addr, val);
446 #ifdef CONFIG_KQEMU
447 if (env)
448 env->last_io_time = cpu_get_time_fast();
449 #endif
450 }
451
452 void cpu_outw(CPUState *env, int addr, int val)
453 {
454 LOG_IOPORT("outw: %04x %04x\n", addr, val);
455 ioport_write(1, addr, val);
456 #ifdef CONFIG_KQEMU
457 if (env)
458 env->last_io_time = cpu_get_time_fast();
459 #endif
460 }
461
462 void cpu_outl(CPUState *env, int addr, int val)
463 {
464 LOG_IOPORT("outl: %04x %08x\n", addr, val);
465 ioport_write(2, addr, val);
466 #ifdef CONFIG_KQEMU
467 if (env)
468 env->last_io_time = cpu_get_time_fast();
469 #endif
470 }
471
472 int cpu_inb(CPUState *env, int addr)
473 {
474 int val;
475 val = ioport_read(0, addr);
476 LOG_IOPORT("inb : %04x %02x\n", addr, val);
477 #ifdef CONFIG_KQEMU
478 if (env)
479 env->last_io_time = cpu_get_time_fast();
480 #endif
481 return val;
482 }
483
484 int cpu_inw(CPUState *env, int addr)
485 {
486 int val;
487 val = ioport_read(1, addr);
488 LOG_IOPORT("inw : %04x %04x\n", addr, val);
489 #ifdef CONFIG_KQEMU
490 if (env)
491 env->last_io_time = cpu_get_time_fast();
492 #endif
493 return val;
494 }
495
496 int cpu_inl(CPUState *env, int addr)
497 {
498 int val;
499 val = ioport_read(2, addr);
500 LOG_IOPORT("inl : %04x %08x\n", addr, val);
501 #ifdef CONFIG_KQEMU
502 if (env)
503 env->last_io_time = cpu_get_time_fast();
504 #endif
505 return val;
506 }
507
508 /***********************************************************/
509 void hw_error(const char *fmt, ...)
510 {
511 va_list ap;
512 CPUState *env;
513
514 va_start(ap, fmt);
515 fprintf(stderr, "qemu: hardware error: ");
516 vfprintf(stderr, fmt, ap);
517 fprintf(stderr, "\n");
518 for(env = first_cpu; env != NULL; env = env->next_cpu) {
519 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
520 #ifdef TARGET_I386
521 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
522 #else
523 cpu_dump_state(env, stderr, fprintf, 0);
524 #endif
525 }
526 va_end(ap);
527 abort();
528 }
529
530 /***************/
531 /* ballooning */
532
533 static QEMUBalloonEvent *qemu_balloon_event;
534 void *qemu_balloon_event_opaque;
535
536 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
537 {
538 qemu_balloon_event = func;
539 qemu_balloon_event_opaque = opaque;
540 }
541
542 void qemu_balloon(ram_addr_t target)
543 {
544 if (qemu_balloon_event)
545 qemu_balloon_event(qemu_balloon_event_opaque, target);
546 }
547
548 ram_addr_t qemu_balloon_status(void)
549 {
550 if (qemu_balloon_event)
551 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
552 return 0;
553 }
554
555 /***********************************************************/
556 /* keyboard/mouse */
557
558 static QEMUPutKBDEvent *qemu_put_kbd_event;
559 static void *qemu_put_kbd_event_opaque;
560 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
561 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
562
563 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
564 {
565 qemu_put_kbd_event_opaque = opaque;
566 qemu_put_kbd_event = func;
567 }
568
569 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
570 void *opaque, int absolute,
571 const char *name)
572 {
573 QEMUPutMouseEntry *s, *cursor;
574
575 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
576
577 s->qemu_put_mouse_event = func;
578 s->qemu_put_mouse_event_opaque = opaque;
579 s->qemu_put_mouse_event_absolute = absolute;
580 s->qemu_put_mouse_event_name = qemu_strdup(name);
581 s->next = NULL;
582
583 if (!qemu_put_mouse_event_head) {
584 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
585 return s;
586 }
587
588 cursor = qemu_put_mouse_event_head;
589 while (cursor->next != NULL)
590 cursor = cursor->next;
591
592 cursor->next = s;
593 qemu_put_mouse_event_current = s;
594
595 return s;
596 }
597
598 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
599 {
600 QEMUPutMouseEntry *prev = NULL, *cursor;
601
602 if (!qemu_put_mouse_event_head || entry == NULL)
603 return;
604
605 cursor = qemu_put_mouse_event_head;
606 while (cursor != NULL && cursor != entry) {
607 prev = cursor;
608 cursor = cursor->next;
609 }
610
611 if (cursor == NULL) // does not exist or list empty
612 return;
613 else if (prev == NULL) { // entry is head
614 qemu_put_mouse_event_head = cursor->next;
615 if (qemu_put_mouse_event_current == entry)
616 qemu_put_mouse_event_current = cursor->next;
617 qemu_free(entry->qemu_put_mouse_event_name);
618 qemu_free(entry);
619 return;
620 }
621
622 prev->next = entry->next;
623
624 if (qemu_put_mouse_event_current == entry)
625 qemu_put_mouse_event_current = prev;
626
627 qemu_free(entry->qemu_put_mouse_event_name);
628 qemu_free(entry);
629 }
630
631 void kbd_put_keycode(int keycode)
632 {
633 if (qemu_put_kbd_event) {
634 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
635 }
636 }
637
638 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
639 {
640 QEMUPutMouseEvent *mouse_event;
641 void *mouse_event_opaque;
642 int width;
643
644 if (!qemu_put_mouse_event_current) {
645 return;
646 }
647
648 mouse_event =
649 qemu_put_mouse_event_current->qemu_put_mouse_event;
650 mouse_event_opaque =
651 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
652
653 if (mouse_event) {
654 if (graphic_rotate) {
655 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
656 width = 0x7fff;
657 else
658 width = graphic_width - 1;
659 mouse_event(mouse_event_opaque,
660 width - dy, dx, dz, buttons_state);
661 } else
662 mouse_event(mouse_event_opaque,
663 dx, dy, dz, buttons_state);
664 }
665 }
666
667 int kbd_mouse_is_absolute(void)
668 {
669 if (!qemu_put_mouse_event_current)
670 return 0;
671
672 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
673 }
674
675 void do_info_mice(Monitor *mon)
676 {
677 QEMUPutMouseEntry *cursor;
678 int index = 0;
679
680 if (!qemu_put_mouse_event_head) {
681 monitor_printf(mon, "No mouse devices connected\n");
682 return;
683 }
684
685 monitor_printf(mon, "Mouse devices available:\n");
686 cursor = qemu_put_mouse_event_head;
687 while (cursor != NULL) {
688 monitor_printf(mon, "%c Mouse #%d: %s\n",
689 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
690 index, cursor->qemu_put_mouse_event_name);
691 index++;
692 cursor = cursor->next;
693 }
694 }
695
696 void do_mouse_set(Monitor *mon, int index)
697 {
698 QEMUPutMouseEntry *cursor;
699 int i = 0;
700
701 if (!qemu_put_mouse_event_head) {
702 monitor_printf(mon, "No mouse devices connected\n");
703 return;
704 }
705
706 cursor = qemu_put_mouse_event_head;
707 while (cursor != NULL && index != i) {
708 i++;
709 cursor = cursor->next;
710 }
711
712 if (cursor != NULL)
713 qemu_put_mouse_event_current = cursor;
714 else
715 monitor_printf(mon, "Mouse at given index not found\n");
716 }
717
718 /* compute with 96 bit intermediate result: (a*b)/c */
719 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
720 {
721 union {
722 uint64_t ll;
723 struct {
724 #ifdef WORDS_BIGENDIAN
725 uint32_t high, low;
726 #else
727 uint32_t low, high;
728 #endif
729 } l;
730 } u, res;
731 uint64_t rl, rh;
732
733 u.ll = a;
734 rl = (uint64_t)u.l.low * (uint64_t)b;
735 rh = (uint64_t)u.l.high * (uint64_t)b;
736 rh += (rl >> 32);
737 res.l.high = rh / c;
738 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
739 return res.ll;
740 }
741
742 /***********************************************************/
743 /* real time host monotonic timer */
744
745 #define QEMU_TIMER_BASE 1000000000LL
746
747 #ifdef WIN32
748
749 static int64_t clock_freq;
750
751 static void init_get_clock(void)
752 {
753 LARGE_INTEGER freq;
754 int ret;
755 ret = QueryPerformanceFrequency(&freq);
756 if (ret == 0) {
757 fprintf(stderr, "Could not calibrate ticks\n");
758 exit(1);
759 }
760 clock_freq = freq.QuadPart;
761 }
762
763 static int64_t get_clock(void)
764 {
765 LARGE_INTEGER ti;
766 QueryPerformanceCounter(&ti);
767 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
768 }
769
770 #else
771
772 static int use_rt_clock;
773
774 static void init_get_clock(void)
775 {
776 use_rt_clock = 0;
777 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
778 || defined(__DragonFly__)
779 {
780 struct timespec ts;
781 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
782 use_rt_clock = 1;
783 }
784 }
785 #endif
786 }
787
788 static int64_t get_clock(void)
789 {
790 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
791 || defined(__DragonFly__)
792 if (use_rt_clock) {
793 struct timespec ts;
794 clock_gettime(CLOCK_MONOTONIC, &ts);
795 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
796 } else
797 #endif
798 {
799 /* XXX: using gettimeofday leads to problems if the date
800 changes, so it should be avoided. */
801 struct timeval tv;
802 gettimeofday(&tv, NULL);
803 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
804 }
805 }
806 #endif
807
808 /* Return the virtual CPU time, based on the instruction counter. */
809 static int64_t cpu_get_icount(void)
810 {
811 int64_t icount;
812 CPUState *env = cpu_single_env;;
813 icount = qemu_icount;
814 if (env) {
815 if (!can_do_io(env))
816 fprintf(stderr, "Bad clock read\n");
817 icount -= (env->icount_decr.u16.low + env->icount_extra);
818 }
819 return qemu_icount_bias + (icount << icount_time_shift);
820 }
821
822 /***********************************************************/
823 /* guest cycle counter */
824
825 static int64_t cpu_ticks_prev;
826 static int64_t cpu_ticks_offset;
827 static int64_t cpu_clock_offset;
828 static int cpu_ticks_enabled;
829
830 /* return the host CPU cycle counter and handle stop/restart */
831 int64_t cpu_get_ticks(void)
832 {
833 if (use_icount) {
834 return cpu_get_icount();
835 }
836 if (!cpu_ticks_enabled) {
837 return cpu_ticks_offset;
838 } else {
839 int64_t ticks;
840 ticks = cpu_get_real_ticks();
841 if (cpu_ticks_prev > ticks) {
842 /* Note: non increasing ticks may happen if the host uses
843 software suspend */
844 cpu_ticks_offset += cpu_ticks_prev - ticks;
845 }
846 cpu_ticks_prev = ticks;
847 return ticks + cpu_ticks_offset;
848 }
849 }
850
851 /* return the host CPU monotonic timer and handle stop/restart */
852 static int64_t cpu_get_clock(void)
853 {
854 int64_t ti;
855 if (!cpu_ticks_enabled) {
856 return cpu_clock_offset;
857 } else {
858 ti = get_clock();
859 return ti + cpu_clock_offset;
860 }
861 }
862
863 /* enable cpu_get_ticks() */
864 void cpu_enable_ticks(void)
865 {
866 if (!cpu_ticks_enabled) {
867 cpu_ticks_offset -= cpu_get_real_ticks();
868 cpu_clock_offset -= get_clock();
869 cpu_ticks_enabled = 1;
870 }
871 }
872
873 /* disable cpu_get_ticks() : the clock is stopped. You must not call
874 cpu_get_ticks() after that. */
875 void cpu_disable_ticks(void)
876 {
877 if (cpu_ticks_enabled) {
878 cpu_ticks_offset = cpu_get_ticks();
879 cpu_clock_offset = cpu_get_clock();
880 cpu_ticks_enabled = 0;
881 }
882 }
883
884 /***********************************************************/
885 /* timers */
886
887 #define QEMU_TIMER_REALTIME 0
888 #define QEMU_TIMER_VIRTUAL 1
889
890 struct QEMUClock {
891 int type;
892 /* XXX: add frequency */
893 };
894
895 struct QEMUTimer {
896 QEMUClock *clock;
897 int64_t expire_time;
898 QEMUTimerCB *cb;
899 void *opaque;
900 struct QEMUTimer *next;
901 };
902
903 struct qemu_alarm_timer {
904 char const *name;
905 unsigned int flags;
906
907 int (*start)(struct qemu_alarm_timer *t);
908 void (*stop)(struct qemu_alarm_timer *t);
909 void (*rearm)(struct qemu_alarm_timer *t);
910 void *priv;
911 };
912
913 #define ALARM_FLAG_DYNTICKS 0x1
914 #define ALARM_FLAG_EXPIRED 0x2
915
916 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
917 {
918 return t && (t->flags & ALARM_FLAG_DYNTICKS);
919 }
920
921 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
922 {
923 if (!alarm_has_dynticks(t))
924 return;
925
926 t->rearm(t);
927 }
928
929 /* TODO: MIN_TIMER_REARM_US should be optimized */
930 #define MIN_TIMER_REARM_US 250
931
932 static struct qemu_alarm_timer *alarm_timer;
933
934 #ifdef _WIN32
935
936 struct qemu_alarm_win32 {
937 MMRESULT timerId;
938 unsigned int period;
939 } alarm_win32_data = {0, -1};
940
941 static int win32_start_timer(struct qemu_alarm_timer *t);
942 static void win32_stop_timer(struct qemu_alarm_timer *t);
943 static void win32_rearm_timer(struct qemu_alarm_timer *t);
944
945 #else
946
947 static int unix_start_timer(struct qemu_alarm_timer *t);
948 static void unix_stop_timer(struct qemu_alarm_timer *t);
949
950 #ifdef __linux__
951
952 static int dynticks_start_timer(struct qemu_alarm_timer *t);
953 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
954 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
955
956 static int hpet_start_timer(struct qemu_alarm_timer *t);
957 static void hpet_stop_timer(struct qemu_alarm_timer *t);
958
959 static int rtc_start_timer(struct qemu_alarm_timer *t);
960 static void rtc_stop_timer(struct qemu_alarm_timer *t);
961
962 #endif /* __linux__ */
963
964 #endif /* _WIN32 */
965
966 /* Correlation between real and virtual time is always going to be
967 fairly approximate, so ignore small variation.
968 When the guest is idle real and virtual time will be aligned in
969 the IO wait loop. */
970 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
971
972 static void icount_adjust(void)
973 {
974 int64_t cur_time;
975 int64_t cur_icount;
976 int64_t delta;
977 static int64_t last_delta;
978 /* If the VM is not running, then do nothing. */
979 if (!vm_running)
980 return;
981
982 cur_time = cpu_get_clock();
983 cur_icount = qemu_get_clock(vm_clock);
984 delta = cur_icount - cur_time;
985 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
986 if (delta > 0
987 && last_delta + ICOUNT_WOBBLE < delta * 2
988 && icount_time_shift > 0) {
989 /* The guest is getting too far ahead. Slow time down. */
990 icount_time_shift--;
991 }
992 if (delta < 0
993 && last_delta - ICOUNT_WOBBLE > delta * 2
994 && icount_time_shift < MAX_ICOUNT_SHIFT) {
995 /* The guest is getting too far behind. Speed time up. */
996 icount_time_shift++;
997 }
998 last_delta = delta;
999 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
1000 }
1001
1002 static void icount_adjust_rt(void * opaque)
1003 {
1004 qemu_mod_timer(icount_rt_timer,
1005 qemu_get_clock(rt_clock) + 1000);
1006 icount_adjust();
1007 }
1008
1009 static void icount_adjust_vm(void * opaque)
1010 {
1011 qemu_mod_timer(icount_vm_timer,
1012 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1013 icount_adjust();
1014 }
1015
1016 static void init_icount_adjust(void)
1017 {
1018 /* Have both realtime and virtual time triggers for speed adjustment.
1019 The realtime trigger catches emulated time passing too slowly,
1020 the virtual time trigger catches emulated time passing too fast.
1021 Realtime triggers occur even when idle, so use them less frequently
1022 than VM triggers. */
1023 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1024 qemu_mod_timer(icount_rt_timer,
1025 qemu_get_clock(rt_clock) + 1000);
1026 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1027 qemu_mod_timer(icount_vm_timer,
1028 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1029 }
1030
1031 static struct qemu_alarm_timer alarm_timers[] = {
1032 #ifndef _WIN32
1033 #ifdef __linux__
1034 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1035 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1036 /* HPET - if available - is preferred */
1037 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1038 /* ...otherwise try RTC */
1039 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1040 #endif
1041 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1042 #else
1043 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1044 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1045 {"win32", 0, win32_start_timer,
1046 win32_stop_timer, NULL, &alarm_win32_data},
1047 #endif
1048 {NULL, }
1049 };
1050
1051 static void show_available_alarms(void)
1052 {
1053 int i;
1054
1055 printf("Available alarm timers, in order of precedence:\n");
1056 for (i = 0; alarm_timers[i].name; i++)
1057 printf("%s\n", alarm_timers[i].name);
1058 }
1059
1060 static void configure_alarms(char const *opt)
1061 {
1062 int i;
1063 int cur = 0;
1064 int count = ARRAY_SIZE(alarm_timers) - 1;
1065 char *arg;
1066 char *name;
1067 struct qemu_alarm_timer tmp;
1068
1069 if (!strcmp(opt, "?")) {
1070 show_available_alarms();
1071 exit(0);
1072 }
1073
1074 arg = strdup(opt);
1075
1076 /* Reorder the array */
1077 name = strtok(arg, ",");
1078 while (name) {
1079 for (i = 0; i < count && alarm_timers[i].name; i++) {
1080 if (!strcmp(alarm_timers[i].name, name))
1081 break;
1082 }
1083
1084 if (i == count) {
1085 fprintf(stderr, "Unknown clock %s\n", name);
1086 goto next;
1087 }
1088
1089 if (i < cur)
1090 /* Ignore */
1091 goto next;
1092
1093 /* Swap */
1094 tmp = alarm_timers[i];
1095 alarm_timers[i] = alarm_timers[cur];
1096 alarm_timers[cur] = tmp;
1097
1098 cur++;
1099 next:
1100 name = strtok(NULL, ",");
1101 }
1102
1103 free(arg);
1104
1105 if (cur) {
1106 /* Disable remaining timers */
1107 for (i = cur; i < count; i++)
1108 alarm_timers[i].name = NULL;
1109 } else {
1110 show_available_alarms();
1111 exit(1);
1112 }
1113 }
1114
1115 QEMUClock *rt_clock;
1116 QEMUClock *vm_clock;
1117
1118 static QEMUTimer *active_timers[2];
1119
1120 static QEMUClock *qemu_new_clock(int type)
1121 {
1122 QEMUClock *clock;
1123 clock = qemu_mallocz(sizeof(QEMUClock));
1124 clock->type = type;
1125 return clock;
1126 }
1127
1128 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1129 {
1130 QEMUTimer *ts;
1131
1132 ts = qemu_mallocz(sizeof(QEMUTimer));
1133 ts->clock = clock;
1134 ts->cb = cb;
1135 ts->opaque = opaque;
1136 return ts;
1137 }
1138
1139 void qemu_free_timer(QEMUTimer *ts)
1140 {
1141 qemu_free(ts);
1142 }
1143
1144 /* stop a timer, but do not dealloc it */
1145 void qemu_del_timer(QEMUTimer *ts)
1146 {
1147 QEMUTimer **pt, *t;
1148
1149 /* NOTE: this code must be signal safe because
1150 qemu_timer_expired() can be called from a signal. */
1151 pt = &active_timers[ts->clock->type];
1152 for(;;) {
1153 t = *pt;
1154 if (!t)
1155 break;
1156 if (t == ts) {
1157 *pt = t->next;
1158 break;
1159 }
1160 pt = &t->next;
1161 }
1162 }
1163
1164 /* modify the current timer so that it will be fired when current_time
1165 >= expire_time. The corresponding callback will be called. */
1166 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1167 {
1168 QEMUTimer **pt, *t;
1169
1170 qemu_del_timer(ts);
1171
1172 /* add the timer in the sorted list */
1173 /* NOTE: this code must be signal safe because
1174 qemu_timer_expired() can be called from a signal. */
1175 pt = &active_timers[ts->clock->type];
1176 for(;;) {
1177 t = *pt;
1178 if (!t)
1179 break;
1180 if (t->expire_time > expire_time)
1181 break;
1182 pt = &t->next;
1183 }
1184 ts->expire_time = expire_time;
1185 ts->next = *pt;
1186 *pt = ts;
1187
1188 /* Rearm if necessary */
1189 if (pt == &active_timers[ts->clock->type]) {
1190 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1191 qemu_rearm_alarm_timer(alarm_timer);
1192 }
1193 /* Interrupt execution to force deadline recalculation. */
1194 if (use_icount)
1195 qemu_notify_event();
1196 }
1197 }
1198
1199 int qemu_timer_pending(QEMUTimer *ts)
1200 {
1201 QEMUTimer *t;
1202 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1203 if (t == ts)
1204 return 1;
1205 }
1206 return 0;
1207 }
1208
1209 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1210 {
1211 if (!timer_head)
1212 return 0;
1213 return (timer_head->expire_time <= current_time);
1214 }
1215
1216 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1217 {
1218 QEMUTimer *ts;
1219
1220 for(;;) {
1221 ts = *ptimer_head;
1222 if (!ts || ts->expire_time > current_time)
1223 break;
1224 /* remove timer from the list before calling the callback */
1225 *ptimer_head = ts->next;
1226 ts->next = NULL;
1227
1228 /* run the callback (the timer list can be modified) */
1229 ts->cb(ts->opaque);
1230 }
1231 }
1232
1233 int64_t qemu_get_clock(QEMUClock *clock)
1234 {
1235 switch(clock->type) {
1236 case QEMU_TIMER_REALTIME:
1237 return get_clock() / 1000000;
1238 default:
1239 case QEMU_TIMER_VIRTUAL:
1240 if (use_icount) {
1241 return cpu_get_icount();
1242 } else {
1243 return cpu_get_clock();
1244 }
1245 }
1246 }
1247
1248 static void init_timers(void)
1249 {
1250 init_get_clock();
1251 ticks_per_sec = QEMU_TIMER_BASE;
1252 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1253 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1254 }
1255
1256 /* save a timer */
1257 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1258 {
1259 uint64_t expire_time;
1260
1261 if (qemu_timer_pending(ts)) {
1262 expire_time = ts->expire_time;
1263 } else {
1264 expire_time = -1;
1265 }
1266 qemu_put_be64(f, expire_time);
1267 }
1268
1269 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1270 {
1271 uint64_t expire_time;
1272
1273 expire_time = qemu_get_be64(f);
1274 if (expire_time != -1) {
1275 qemu_mod_timer(ts, expire_time);
1276 } else {
1277 qemu_del_timer(ts);
1278 }
1279 }
1280
1281 static void timer_save(QEMUFile *f, void *opaque)
1282 {
1283 if (cpu_ticks_enabled) {
1284 hw_error("cannot save state if virtual timers are running");
1285 }
1286 qemu_put_be64(f, cpu_ticks_offset);
1287 qemu_put_be64(f, ticks_per_sec);
1288 qemu_put_be64(f, cpu_clock_offset);
1289 }
1290
1291 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1292 {
1293 if (version_id != 1 && version_id != 2)
1294 return -EINVAL;
1295 if (cpu_ticks_enabled) {
1296 return -EINVAL;
1297 }
1298 cpu_ticks_offset=qemu_get_be64(f);
1299 ticks_per_sec=qemu_get_be64(f);
1300 if (version_id == 2) {
1301 cpu_clock_offset=qemu_get_be64(f);
1302 }
1303 return 0;
1304 }
1305
1306 static void qemu_event_increment(void);
1307
1308 #ifdef _WIN32
1309 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1310 DWORD_PTR dwUser, DWORD_PTR dw1,
1311 DWORD_PTR dw2)
1312 #else
1313 static void host_alarm_handler(int host_signum)
1314 #endif
1315 {
1316 #if 0
1317 #define DISP_FREQ 1000
1318 {
1319 static int64_t delta_min = INT64_MAX;
1320 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1321 static int count;
1322 ti = qemu_get_clock(vm_clock);
1323 if (last_clock != 0) {
1324 delta = ti - last_clock;
1325 if (delta < delta_min)
1326 delta_min = delta;
1327 if (delta > delta_max)
1328 delta_max = delta;
1329 delta_cum += delta;
1330 if (++count == DISP_FREQ) {
1331 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1332 muldiv64(delta_min, 1000000, ticks_per_sec),
1333 muldiv64(delta_max, 1000000, ticks_per_sec),
1334 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1335 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1336 count = 0;
1337 delta_min = INT64_MAX;
1338 delta_max = 0;
1339 delta_cum = 0;
1340 }
1341 }
1342 last_clock = ti;
1343 }
1344 #endif
1345 if (alarm_has_dynticks(alarm_timer) ||
1346 (!use_icount &&
1347 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1348 qemu_get_clock(vm_clock))) ||
1349 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1350 qemu_get_clock(rt_clock))) {
1351 qemu_event_increment();
1352 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1353
1354 #ifndef CONFIG_IOTHREAD
1355 if (next_cpu) {
1356 /* stop the currently executing cpu because a timer occured */
1357 cpu_exit(next_cpu);
1358 #ifdef CONFIG_KQEMU
1359 if (next_cpu->kqemu_enabled) {
1360 kqemu_cpu_interrupt(next_cpu);
1361 }
1362 #endif
1363 }
1364 #endif
1365 timer_alarm_pending = 1;
1366 qemu_notify_event();
1367 }
1368 }
1369
1370 static int64_t qemu_next_deadline(void)
1371 {
1372 int64_t delta;
1373
1374 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1375 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1376 qemu_get_clock(vm_clock);
1377 } else {
1378 /* To avoid problems with overflow limit this to 2^32. */
1379 delta = INT32_MAX;
1380 }
1381
1382 if (delta < 0)
1383 delta = 0;
1384
1385 return delta;
1386 }
1387
1388 #if defined(__linux__) || defined(_WIN32)
1389 static uint64_t qemu_next_deadline_dyntick(void)
1390 {
1391 int64_t delta;
1392 int64_t rtdelta;
1393
1394 if (use_icount)
1395 delta = INT32_MAX;
1396 else
1397 delta = (qemu_next_deadline() + 999) / 1000;
1398
1399 if (active_timers[QEMU_TIMER_REALTIME]) {
1400 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1401 qemu_get_clock(rt_clock))*1000;
1402 if (rtdelta < delta)
1403 delta = rtdelta;
1404 }
1405
1406 if (delta < MIN_TIMER_REARM_US)
1407 delta = MIN_TIMER_REARM_US;
1408
1409 return delta;
1410 }
1411 #endif
1412
1413 #ifndef _WIN32
1414
1415 /* Sets a specific flag */
1416 static int fcntl_setfl(int fd, int flag)
1417 {
1418 int flags;
1419
1420 flags = fcntl(fd, F_GETFL);
1421 if (flags == -1)
1422 return -errno;
1423
1424 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1425 return -errno;
1426
1427 return 0;
1428 }
1429
1430 #if defined(__linux__)
1431
1432 #define RTC_FREQ 1024
1433
1434 static void enable_sigio_timer(int fd)
1435 {
1436 struct sigaction act;
1437
1438 /* timer signal */
1439 sigfillset(&act.sa_mask);
1440 act.sa_flags = 0;
1441 act.sa_handler = host_alarm_handler;
1442
1443 sigaction(SIGIO, &act, NULL);
1444 fcntl_setfl(fd, O_ASYNC);
1445 fcntl(fd, F_SETOWN, getpid());
1446 }
1447
1448 static int hpet_start_timer(struct qemu_alarm_timer *t)
1449 {
1450 struct hpet_info info;
1451 int r, fd;
1452
1453 fd = open("/dev/hpet", O_RDONLY);
1454 if (fd < 0)
1455 return -1;
1456
1457 /* Set frequency */
1458 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1459 if (r < 0) {
1460 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1461 "error, but for better emulation accuracy type:\n"
1462 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1463 goto fail;
1464 }
1465
1466 /* Check capabilities */
1467 r = ioctl(fd, HPET_INFO, &info);
1468 if (r < 0)
1469 goto fail;
1470
1471 /* Enable periodic mode */
1472 r = ioctl(fd, HPET_EPI, 0);
1473 if (info.hi_flags && (r < 0))
1474 goto fail;
1475
1476 /* Enable interrupt */
1477 r = ioctl(fd, HPET_IE_ON, 0);
1478 if (r < 0)
1479 goto fail;
1480
1481 enable_sigio_timer(fd);
1482 t->priv = (void *)(long)fd;
1483
1484 return 0;
1485 fail:
1486 close(fd);
1487 return -1;
1488 }
1489
1490 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1491 {
1492 int fd = (long)t->priv;
1493
1494 close(fd);
1495 }
1496
1497 static int rtc_start_timer(struct qemu_alarm_timer *t)
1498 {
1499 int rtc_fd;
1500 unsigned long current_rtc_freq = 0;
1501
1502 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1503 if (rtc_fd < 0)
1504 return -1;
1505 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1506 if (current_rtc_freq != RTC_FREQ &&
1507 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1508 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1509 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1510 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1511 goto fail;
1512 }
1513 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1514 fail:
1515 close(rtc_fd);
1516 return -1;
1517 }
1518
1519 enable_sigio_timer(rtc_fd);
1520
1521 t->priv = (void *)(long)rtc_fd;
1522
1523 return 0;
1524 }
1525
1526 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1527 {
1528 int rtc_fd = (long)t->priv;
1529
1530 close(rtc_fd);
1531 }
1532
1533 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1534 {
1535 struct sigevent ev;
1536 timer_t host_timer;
1537 struct sigaction act;
1538
1539 sigfillset(&act.sa_mask);
1540 act.sa_flags = 0;
1541 act.sa_handler = host_alarm_handler;
1542
1543 sigaction(SIGALRM, &act, NULL);
1544
1545 /*
1546 * Initialize ev struct to 0 to avoid valgrind complaining
1547 * about uninitialized data in timer_create call
1548 */
1549 memset(&ev, 0, sizeof(ev));
1550 ev.sigev_value.sival_int = 0;
1551 ev.sigev_notify = SIGEV_SIGNAL;
1552 ev.sigev_signo = SIGALRM;
1553
1554 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1555 perror("timer_create");
1556
1557 /* disable dynticks */
1558 fprintf(stderr, "Dynamic Ticks disabled\n");
1559
1560 return -1;
1561 }
1562
1563 t->priv = (void *)(long)host_timer;
1564
1565 return 0;
1566 }
1567
1568 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1569 {
1570 timer_t host_timer = (timer_t)(long)t->priv;
1571
1572 timer_delete(host_timer);
1573 }
1574
1575 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1576 {
1577 timer_t host_timer = (timer_t)(long)t->priv;
1578 struct itimerspec timeout;
1579 int64_t nearest_delta_us = INT64_MAX;
1580 int64_t current_us;
1581
1582 if (!active_timers[QEMU_TIMER_REALTIME] &&
1583 !active_timers[QEMU_TIMER_VIRTUAL])
1584 return;
1585
1586 nearest_delta_us = qemu_next_deadline_dyntick();
1587
1588 /* check whether a timer is already running */
1589 if (timer_gettime(host_timer, &timeout)) {
1590 perror("gettime");
1591 fprintf(stderr, "Internal timer error: aborting\n");
1592 exit(1);
1593 }
1594 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1595 if (current_us && current_us <= nearest_delta_us)
1596 return;
1597
1598 timeout.it_interval.tv_sec = 0;
1599 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1600 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1601 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1602 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1603 perror("settime");
1604 fprintf(stderr, "Internal timer error: aborting\n");
1605 exit(1);
1606 }
1607 }
1608
1609 #endif /* defined(__linux__) */
1610
1611 static int unix_start_timer(struct qemu_alarm_timer *t)
1612 {
1613 struct sigaction act;
1614 struct itimerval itv;
1615 int err;
1616
1617 /* timer signal */
1618 sigfillset(&act.sa_mask);
1619 act.sa_flags = 0;
1620 act.sa_handler = host_alarm_handler;
1621
1622 sigaction(SIGALRM, &act, NULL);
1623
1624 itv.it_interval.tv_sec = 0;
1625 /* for i386 kernel 2.6 to get 1 ms */
1626 itv.it_interval.tv_usec = 999;
1627 itv.it_value.tv_sec = 0;
1628 itv.it_value.tv_usec = 10 * 1000;
1629
1630 err = setitimer(ITIMER_REAL, &itv, NULL);
1631 if (err)
1632 return -1;
1633
1634 return 0;
1635 }
1636
1637 static void unix_stop_timer(struct qemu_alarm_timer *t)
1638 {
1639 struct itimerval itv;
1640
1641 memset(&itv, 0, sizeof(itv));
1642 setitimer(ITIMER_REAL, &itv, NULL);
1643 }
1644
1645 #endif /* !defined(_WIN32) */
1646
1647
1648 #ifdef _WIN32
1649
1650 static int win32_start_timer(struct qemu_alarm_timer *t)
1651 {
1652 TIMECAPS tc;
1653 struct qemu_alarm_win32 *data = t->priv;
1654 UINT flags;
1655
1656 memset(&tc, 0, sizeof(tc));
1657 timeGetDevCaps(&tc, sizeof(tc));
1658
1659 if (data->period < tc.wPeriodMin)
1660 data->period = tc.wPeriodMin;
1661
1662 timeBeginPeriod(data->period);
1663
1664 flags = TIME_CALLBACK_FUNCTION;
1665 if (alarm_has_dynticks(t))
1666 flags |= TIME_ONESHOT;
1667 else
1668 flags |= TIME_PERIODIC;
1669
1670 data->timerId = timeSetEvent(1, // interval (ms)
1671 data->period, // resolution
1672 host_alarm_handler, // function
1673 (DWORD)t, // parameter
1674 flags);
1675
1676 if (!data->timerId) {
1677 perror("Failed to initialize win32 alarm timer");
1678 timeEndPeriod(data->period);
1679 return -1;
1680 }
1681
1682 return 0;
1683 }
1684
1685 static void win32_stop_timer(struct qemu_alarm_timer *t)
1686 {
1687 struct qemu_alarm_win32 *data = t->priv;
1688
1689 timeKillEvent(data->timerId);
1690 timeEndPeriod(data->period);
1691 }
1692
1693 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1694 {
1695 struct qemu_alarm_win32 *data = t->priv;
1696 uint64_t nearest_delta_us;
1697
1698 if (!active_timers[QEMU_TIMER_REALTIME] &&
1699 !active_timers[QEMU_TIMER_VIRTUAL])
1700 return;
1701
1702 nearest_delta_us = qemu_next_deadline_dyntick();
1703 nearest_delta_us /= 1000;
1704
1705 timeKillEvent(data->timerId);
1706
1707 data->timerId = timeSetEvent(1,
1708 data->period,
1709 host_alarm_handler,
1710 (DWORD)t,
1711 TIME_ONESHOT | TIME_PERIODIC);
1712
1713 if (!data->timerId) {
1714 perror("Failed to re-arm win32 alarm timer");
1715
1716 timeEndPeriod(data->period);
1717 exit(1);
1718 }
1719 }
1720
1721 #endif /* _WIN32 */
1722
1723 static int init_timer_alarm(void)
1724 {
1725 struct qemu_alarm_timer *t = NULL;
1726 int i, err = -1;
1727
1728 for (i = 0; alarm_timers[i].name; i++) {
1729 t = &alarm_timers[i];
1730
1731 err = t->start(t);
1732 if (!err)
1733 break;
1734 }
1735
1736 if (err) {
1737 err = -ENOENT;
1738 goto fail;
1739 }
1740
1741 alarm_timer = t;
1742
1743 return 0;
1744
1745 fail:
1746 return err;
1747 }
1748
1749 static void quit_timers(void)
1750 {
1751 alarm_timer->stop(alarm_timer);
1752 alarm_timer = NULL;
1753 }
1754
1755 /***********************************************************/
1756 /* host time/date access */
1757 void qemu_get_timedate(struct tm *tm, int offset)
1758 {
1759 time_t ti;
1760 struct tm *ret;
1761
1762 time(&ti);
1763 ti += offset;
1764 if (rtc_date_offset == -1) {
1765 if (rtc_utc)
1766 ret = gmtime(&ti);
1767 else
1768 ret = localtime(&ti);
1769 } else {
1770 ti -= rtc_date_offset;
1771 ret = gmtime(&ti);
1772 }
1773
1774 memcpy(tm, ret, sizeof(struct tm));
1775 }
1776
1777 int qemu_timedate_diff(struct tm *tm)
1778 {
1779 time_t seconds;
1780
1781 if (rtc_date_offset == -1)
1782 if (rtc_utc)
1783 seconds = mktimegm(tm);
1784 else
1785 seconds = mktime(tm);
1786 else
1787 seconds = mktimegm(tm) + rtc_date_offset;
1788
1789 return seconds - time(NULL);
1790 }
1791
1792 #ifdef _WIN32
1793 static void socket_cleanup(void)
1794 {
1795 WSACleanup();
1796 }
1797
1798 static int socket_init(void)
1799 {
1800 WSADATA Data;
1801 int ret, err;
1802
1803 ret = WSAStartup(MAKEWORD(2,2), &Data);
1804 if (ret != 0) {
1805 err = WSAGetLastError();
1806 fprintf(stderr, "WSAStartup: %d\n", err);
1807 return -1;
1808 }
1809 atexit(socket_cleanup);
1810 return 0;
1811 }
1812 #endif
1813
1814 int get_param_value(char *buf, int buf_size,
1815 const char *tag, const char *str)
1816 {
1817 const char *p;
1818 char option[128];
1819
1820 p = str;
1821 for(;;) {
1822 p = get_opt_name(option, sizeof(option), p, '=');
1823 if (*p != '=')
1824 break;
1825 p++;
1826 if (!strcmp(tag, option)) {
1827 (void)get_opt_value(buf, buf_size, p);
1828 return strlen(buf);
1829 } else {
1830 p = get_opt_value(NULL, 0, p);
1831 }
1832 if (*p != ',')
1833 break;
1834 p++;
1835 }
1836 return 0;
1837 }
1838
1839 int check_params(const char * const *params, const char *str)
1840 {
1841 int name_buf_size = 1;
1842 const char *p;
1843 char *name_buf;
1844 int i, len;
1845 int ret = 0;
1846
1847 for (i = 0; params[i] != NULL; i++) {
1848 len = strlen(params[i]) + 1;
1849 if (len > name_buf_size) {
1850 name_buf_size = len;
1851 }
1852 }
1853 name_buf = qemu_malloc(name_buf_size);
1854
1855 p = str;
1856 while (*p != '\0') {
1857 p = get_opt_name(name_buf, name_buf_size, p, '=');
1858 if (*p != '=') {
1859 ret = -1;
1860 break;
1861 }
1862 p++;
1863 for(i = 0; params[i] != NULL; i++)
1864 if (!strcmp(params[i], name_buf))
1865 break;
1866 if (params[i] == NULL) {
1867 ret = -1;
1868 break;
1869 }
1870 p = get_opt_value(NULL, 0, p);
1871 if (*p != ',')
1872 break;
1873 p++;
1874 }
1875
1876 qemu_free(name_buf);
1877 return ret;
1878 }
1879
1880 /***********************************************************/
1881 /* Bluetooth support */
1882 static int nb_hcis;
1883 static int cur_hci;
1884 static struct HCIInfo *hci_table[MAX_NICS];
1885
1886 static struct bt_vlan_s {
1887 struct bt_scatternet_s net;
1888 int id;
1889 struct bt_vlan_s *next;
1890 } *first_bt_vlan;
1891
1892 /* find or alloc a new bluetooth "VLAN" */
1893 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1894 {
1895 struct bt_vlan_s **pvlan, *vlan;
1896 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1897 if (vlan->id == id)
1898 return &vlan->net;
1899 }
1900 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1901 vlan->id = id;
1902 pvlan = &first_bt_vlan;
1903 while (*pvlan != NULL)
1904 pvlan = &(*pvlan)->next;
1905 *pvlan = vlan;
1906 return &vlan->net;
1907 }
1908
1909 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1910 {
1911 }
1912
1913 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1914 {
1915 return -ENOTSUP;
1916 }
1917
1918 static struct HCIInfo null_hci = {
1919 .cmd_send = null_hci_send,
1920 .sco_send = null_hci_send,
1921 .acl_send = null_hci_send,
1922 .bdaddr_set = null_hci_addr_set,
1923 };
1924
1925 struct HCIInfo *qemu_next_hci(void)
1926 {
1927 if (cur_hci == nb_hcis)
1928 return &null_hci;
1929
1930 return hci_table[cur_hci++];
1931 }
1932
1933 static struct HCIInfo *hci_init(const char *str)
1934 {
1935 char *endp;
1936 struct bt_scatternet_s *vlan = 0;
1937
1938 if (!strcmp(str, "null"))
1939 /* null */
1940 return &null_hci;
1941 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1942 /* host[:hciN] */
1943 return bt_host_hci(str[4] ? str + 5 : "hci0");
1944 else if (!strncmp(str, "hci", 3)) {
1945 /* hci[,vlan=n] */
1946 if (str[3]) {
1947 if (!strncmp(str + 3, ",vlan=", 6)) {
1948 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1949 if (*endp)
1950 vlan = 0;
1951 }
1952 } else
1953 vlan = qemu_find_bt_vlan(0);
1954 if (vlan)
1955 return bt_new_hci(vlan);
1956 }
1957
1958 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1959
1960 return 0;
1961 }
1962
1963 static int bt_hci_parse(const char *str)
1964 {
1965 struct HCIInfo *hci;
1966 bdaddr_t bdaddr;
1967
1968 if (nb_hcis >= MAX_NICS) {
1969 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1970 return -1;
1971 }
1972
1973 hci = hci_init(str);
1974 if (!hci)
1975 return -1;
1976
1977 bdaddr.b[0] = 0x52;
1978 bdaddr.b[1] = 0x54;
1979 bdaddr.b[2] = 0x00;
1980 bdaddr.b[3] = 0x12;
1981 bdaddr.b[4] = 0x34;
1982 bdaddr.b[5] = 0x56 + nb_hcis;
1983 hci->bdaddr_set(hci, bdaddr.b);
1984
1985 hci_table[nb_hcis++] = hci;
1986
1987 return 0;
1988 }
1989
1990 static void bt_vhci_add(int vlan_id)
1991 {
1992 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1993
1994 if (!vlan->slave)
1995 fprintf(stderr, "qemu: warning: adding a VHCI to "
1996 "an empty scatternet %i\n", vlan_id);
1997
1998 bt_vhci_init(bt_new_hci(vlan));
1999 }
2000
2001 static struct bt_device_s *bt_device_add(const char *opt)
2002 {
2003 struct bt_scatternet_s *vlan;
2004 int vlan_id = 0;
2005 char *endp = strstr(opt, ",vlan=");
2006 int len = (endp ? endp - opt : strlen(opt)) + 1;
2007 char devname[10];
2008
2009 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2010
2011 if (endp) {
2012 vlan_id = strtol(endp + 6, &endp, 0);
2013 if (*endp) {
2014 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2015 return 0;
2016 }
2017 }
2018
2019 vlan = qemu_find_bt_vlan(vlan_id);
2020
2021 if (!vlan->slave)
2022 fprintf(stderr, "qemu: warning: adding a slave device to "
2023 "an empty scatternet %i\n", vlan_id);
2024
2025 if (!strcmp(devname, "keyboard"))
2026 return bt_keyboard_init(vlan);
2027
2028 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2029 return 0;
2030 }
2031
2032 static int bt_parse(const char *opt)
2033 {
2034 const char *endp, *p;
2035 int vlan;
2036
2037 if (strstart(opt, "hci", &endp)) {
2038 if (!*endp || *endp == ',') {
2039 if (*endp)
2040 if (!strstart(endp, ",vlan=", 0))
2041 opt = endp + 1;
2042
2043 return bt_hci_parse(opt);
2044 }
2045 } else if (strstart(opt, "vhci", &endp)) {
2046 if (!*endp || *endp == ',') {
2047 if (*endp) {
2048 if (strstart(endp, ",vlan=", &p)) {
2049 vlan = strtol(p, (char **) &endp, 0);
2050 if (*endp) {
2051 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2052 return 1;
2053 }
2054 } else {
2055 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2056 return 1;
2057 }
2058 } else
2059 vlan = 0;
2060
2061 bt_vhci_add(vlan);
2062 return 0;
2063 }
2064 } else if (strstart(opt, "device:", &endp))
2065 return !bt_device_add(endp);
2066
2067 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2068 return 1;
2069 }
2070
2071 /***********************************************************/
2072 /* QEMU Block devices */
2073
2074 #define HD_ALIAS "index=%d,media=disk"
2075 #define CDROM_ALIAS "index=2,media=cdrom"
2076 #define FD_ALIAS "index=%d,if=floppy"
2077 #define PFLASH_ALIAS "if=pflash"
2078 #define MTD_ALIAS "if=mtd"
2079 #define SD_ALIAS "index=0,if=sd"
2080
2081 static int drive_opt_get_free_idx(void)
2082 {
2083 int index;
2084
2085 for (index = 0; index < MAX_DRIVES; index++)
2086 if (!drives_opt[index].used) {
2087 drives_opt[index].used = 1;
2088 return index;
2089 }
2090
2091 return -1;
2092 }
2093
2094 static int drive_get_free_idx(void)
2095 {
2096 int index;
2097
2098 for (index = 0; index < MAX_DRIVES; index++)
2099 if (!drives_table[index].used) {
2100 drives_table[index].used = 1;
2101 return index;
2102 }
2103
2104 return -1;
2105 }
2106
2107 int drive_add(const char *file, const char *fmt, ...)
2108 {
2109 va_list ap;
2110 int index = drive_opt_get_free_idx();
2111
2112 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2113 fprintf(stderr, "qemu: too many drives\n");
2114 return -1;
2115 }
2116
2117 drives_opt[index].file = file;
2118 va_start(ap, fmt);
2119 vsnprintf(drives_opt[index].opt,
2120 sizeof(drives_opt[0].opt), fmt, ap);
2121 va_end(ap);
2122
2123 nb_drives_opt++;
2124 return index;
2125 }
2126
2127 void drive_remove(int index)
2128 {
2129 drives_opt[index].used = 0;
2130 nb_drives_opt--;
2131 }
2132
2133 int drive_get_index(BlockInterfaceType type, int bus, int unit)
2134 {
2135 int index;
2136
2137 /* seek interface, bus and unit */
2138
2139 for (index = 0; index < MAX_DRIVES; index++)
2140 if (drives_table[index].type == type &&
2141 drives_table[index].bus == bus &&
2142 drives_table[index].unit == unit &&
2143 drives_table[index].used)
2144 return index;
2145
2146 return -1;
2147 }
2148
2149 int drive_get_max_bus(BlockInterfaceType type)
2150 {
2151 int max_bus;
2152 int index;
2153
2154 max_bus = -1;
2155 for (index = 0; index < nb_drives; index++) {
2156 if(drives_table[index].type == type &&
2157 drives_table[index].bus > max_bus)
2158 max_bus = drives_table[index].bus;
2159 }
2160 return max_bus;
2161 }
2162
2163 const char *drive_get_serial(BlockDriverState *bdrv)
2164 {
2165 int index;
2166
2167 for (index = 0; index < nb_drives; index++)
2168 if (drives_table[index].bdrv == bdrv)
2169 return drives_table[index].serial;
2170
2171 return "\0";
2172 }
2173
2174 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2175 {
2176 int index;
2177
2178 for (index = 0; index < nb_drives; index++)
2179 if (drives_table[index].bdrv == bdrv)
2180 return drives_table[index].onerror;
2181
2182 return BLOCK_ERR_STOP_ENOSPC;
2183 }
2184
2185 static void bdrv_format_print(void *opaque, const char *name)
2186 {
2187 fprintf(stderr, " %s", name);
2188 }
2189
2190 void drive_uninit(BlockDriverState *bdrv)
2191 {
2192 int i;
2193
2194 for (i = 0; i < MAX_DRIVES; i++)
2195 if (drives_table[i].bdrv == bdrv) {
2196 drives_table[i].bdrv = NULL;
2197 drives_table[i].used = 0;
2198 drive_remove(drives_table[i].drive_opt_idx);
2199 nb_drives--;
2200 break;
2201 }
2202 }
2203
2204 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2205 {
2206 char buf[128];
2207 char file[1024];
2208 char devname[128];
2209 char serial[21];
2210 const char *mediastr = "";
2211 BlockInterfaceType type;
2212 enum { MEDIA_DISK, MEDIA_CDROM } media;
2213 int bus_id, unit_id;
2214 int cyls, heads, secs, translation;
2215 BlockDriverState *bdrv;
2216 BlockDriver *drv = NULL;
2217 QEMUMachine *machine = opaque;
2218 int max_devs;
2219 int index;
2220 int cache;
2221 int bdrv_flags, onerror;
2222 int drives_table_idx;
2223 char *str = arg->opt;
2224 static const char * const params[] = { "bus", "unit", "if", "index",
2225 "cyls", "heads", "secs", "trans",
2226 "media", "snapshot", "file",
2227 "cache", "format", "serial", "werror",
2228 NULL };
2229
2230 if (check_params(params, str) < 0) {
2231 fprintf(stderr, "qemu: unknown parameter in '%s'\n", str);
2232 return -1;
2233 }
2234
2235 file[0] = 0;
2236 cyls = heads = secs = 0;
2237 bus_id = 0;
2238 unit_id = -1;
2239 translation = BIOS_ATA_TRANSLATION_AUTO;
2240 index = -1;
2241 cache = 3;
2242
2243 if (machine->use_scsi) {
2244 type = IF_SCSI;
2245 max_devs = MAX_SCSI_DEVS;
2246 pstrcpy(devname, sizeof(devname), "scsi");
2247 } else {
2248 type = IF_IDE;
2249 max_devs = MAX_IDE_DEVS;
2250 pstrcpy(devname, sizeof(devname), "ide");
2251 }
2252 media = MEDIA_DISK;
2253
2254 /* extract parameters */
2255
2256 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2257 bus_id = strtol(buf, NULL, 0);
2258 if (bus_id < 0) {
2259 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2260 return -1;
2261 }
2262 }
2263
2264 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2265 unit_id = strtol(buf, NULL, 0);
2266 if (unit_id < 0) {
2267 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2268 return -1;
2269 }
2270 }
2271
2272 if (get_param_value(buf, sizeof(buf), "if", str)) {
2273 pstrcpy(devname, sizeof(devname), buf);
2274 if (!strcmp(buf, "ide")) {
2275 type = IF_IDE;
2276 max_devs = MAX_IDE_DEVS;
2277 } else if (!strcmp(buf, "scsi")) {
2278 type = IF_SCSI;
2279 max_devs = MAX_SCSI_DEVS;
2280 } else if (!strcmp(buf, "floppy")) {
2281 type = IF_FLOPPY;
2282 max_devs = 0;
2283 } else if (!strcmp(buf, "pflash")) {
2284 type = IF_PFLASH;
2285 max_devs = 0;
2286 } else if (!strcmp(buf, "mtd")) {
2287 type = IF_MTD;
2288 max_devs = 0;
2289 } else if (!strcmp(buf, "sd")) {
2290 type = IF_SD;
2291 max_devs = 0;
2292 } else if (!strcmp(buf, "virtio")) {
2293 type = IF_VIRTIO;
2294 max_devs = 0;
2295 } else if (!strcmp(buf, "xen")) {
2296 type = IF_XEN;
2297 max_devs = 0;
2298 } else {
2299 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2300 return -1;
2301 }
2302 }
2303
2304 if (get_param_value(buf, sizeof(buf), "index", str)) {
2305 index = strtol(buf, NULL, 0);
2306 if (index < 0) {
2307 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2308 return -1;
2309 }
2310 }
2311
2312 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2313 cyls = strtol(buf, NULL, 0);
2314 }
2315
2316 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2317 heads = strtol(buf, NULL, 0);
2318 }
2319
2320 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2321 secs = strtol(buf, NULL, 0);
2322 }
2323
2324 if (cyls || heads || secs) {
2325 if (cyls < 1 || cyls > 16383) {
2326 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2327 return -1;
2328 }
2329 if (heads < 1 || heads > 16) {
2330 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2331 return -1;
2332 }
2333 if (secs < 1 || secs > 63) {
2334 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2335 return -1;
2336 }
2337 }
2338
2339 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2340 if (!cyls) {
2341 fprintf(stderr,
2342 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2343 str);
2344 return -1;
2345 }
2346 if (!strcmp(buf, "none"))
2347 translation = BIOS_ATA_TRANSLATION_NONE;
2348 else if (!strcmp(buf, "lba"))
2349 translation = BIOS_ATA_TRANSLATION_LBA;
2350 else if (!strcmp(buf, "auto"))
2351 translation = BIOS_ATA_TRANSLATION_AUTO;
2352 else {
2353 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2354 return -1;
2355 }
2356 }
2357
2358 if (get_param_value(buf, sizeof(buf), "media", str)) {
2359 if (!strcmp(buf, "disk")) {
2360 media = MEDIA_DISK;
2361 } else if (!strcmp(buf, "cdrom")) {
2362 if (cyls || secs || heads) {
2363 fprintf(stderr,
2364 "qemu: '%s' invalid physical CHS format\n", str);
2365 return -1;
2366 }
2367 media = MEDIA_CDROM;
2368 } else {
2369 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2370 return -1;
2371 }
2372 }
2373
2374 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2375 if (!strcmp(buf, "on"))
2376 snapshot = 1;
2377 else if (!strcmp(buf, "off"))
2378 snapshot = 0;
2379 else {
2380 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2381 return -1;
2382 }
2383 }
2384
2385 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2386 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2387 cache = 0;
2388 else if (!strcmp(buf, "writethrough"))
2389 cache = 1;
2390 else if (!strcmp(buf, "writeback"))
2391 cache = 2;
2392 else {
2393 fprintf(stderr, "qemu: invalid cache option\n");
2394 return -1;
2395 }
2396 }
2397
2398 if (get_param_value(buf, sizeof(buf), "format", str)) {
2399 if (strcmp(buf, "?") == 0) {
2400 fprintf(stderr, "qemu: Supported formats:");
2401 bdrv_iterate_format(bdrv_format_print, NULL);
2402 fprintf(stderr, "\n");
2403 return -1;
2404 }
2405 drv = bdrv_find_format(buf);
2406 if (!drv) {
2407 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2408 return -1;
2409 }
2410 }
2411
2412 if (arg->file == NULL)
2413 get_param_value(file, sizeof(file), "file", str);
2414 else
2415 pstrcpy(file, sizeof(file), arg->file);
2416
2417 if (!get_param_value(serial, sizeof(serial), "serial", str))
2418 memset(serial, 0, sizeof(serial));
2419
2420 onerror = BLOCK_ERR_STOP_ENOSPC;
2421 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2422 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2423 fprintf(stderr, "werror is no supported by this format\n");
2424 return -1;
2425 }
2426 if (!strcmp(buf, "ignore"))
2427 onerror = BLOCK_ERR_IGNORE;
2428 else if (!strcmp(buf, "enospc"))
2429 onerror = BLOCK_ERR_STOP_ENOSPC;
2430 else if (!strcmp(buf, "stop"))
2431 onerror = BLOCK_ERR_STOP_ANY;
2432 else if (!strcmp(buf, "report"))
2433 onerror = BLOCK_ERR_REPORT;
2434 else {
2435 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2436 return -1;
2437 }
2438 }
2439
2440 /* compute bus and unit according index */
2441
2442 if (index != -1) {
2443 if (bus_id != 0 || unit_id != -1) {
2444 fprintf(stderr,
2445 "qemu: '%s' index cannot be used with bus and unit\n", str);
2446 return -1;
2447 }
2448 if (max_devs == 0)
2449 {
2450 unit_id = index;
2451 bus_id = 0;
2452 } else {
2453 unit_id = index % max_devs;
2454 bus_id = index / max_devs;
2455 }
2456 }
2457
2458 /* if user doesn't specify a unit_id,
2459 * try to find the first free
2460 */
2461
2462 if (unit_id == -1) {
2463 unit_id = 0;
2464 while (drive_get_index(type, bus_id, unit_id) != -1) {
2465 unit_id++;
2466 if (max_devs && unit_id >= max_devs) {
2467 unit_id -= max_devs;
2468 bus_id++;
2469 }
2470 }
2471 }
2472
2473 /* check unit id */
2474
2475 if (max_devs && unit_id >= max_devs) {
2476 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2477 str, unit_id, max_devs - 1);
2478 return -1;
2479 }
2480
2481 /*
2482 * ignore multiple definitions
2483 */
2484
2485 if (drive_get_index(type, bus_id, unit_id) != -1)
2486 return -2;
2487
2488 /* init */
2489
2490 if (type == IF_IDE || type == IF_SCSI)
2491 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2492 if (max_devs)
2493 snprintf(buf, sizeof(buf), "%s%i%s%i",
2494 devname, bus_id, mediastr, unit_id);
2495 else
2496 snprintf(buf, sizeof(buf), "%s%s%i",
2497 devname, mediastr, unit_id);
2498 bdrv = bdrv_new(buf);
2499 drives_table_idx = drive_get_free_idx();
2500 drives_table[drives_table_idx].bdrv = bdrv;
2501 drives_table[drives_table_idx].type = type;
2502 drives_table[drives_table_idx].bus = bus_id;
2503 drives_table[drives_table_idx].unit = unit_id;
2504 drives_table[drives_table_idx].onerror = onerror;
2505 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2506 strncpy(drives_table[drives_table_idx].serial, serial, sizeof(serial));
2507 nb_drives++;
2508
2509 switch(type) {
2510 case IF_IDE:
2511 case IF_SCSI:
2512 case IF_XEN:
2513 switch(media) {
2514 case MEDIA_DISK:
2515 if (cyls != 0) {
2516 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2517 bdrv_set_translation_hint(bdrv, translation);
2518 }
2519 break;
2520 case MEDIA_CDROM:
2521 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2522 break;
2523 }
2524 break;
2525 case IF_SD:
2526 /* FIXME: This isn't really a floppy, but it's a reasonable
2527 approximation. */
2528 case IF_FLOPPY:
2529 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2530 break;
2531 case IF_PFLASH:
2532 case IF_MTD:
2533 case IF_VIRTIO:
2534 break;
2535 case IF_COUNT:
2536 abort();
2537 }
2538 if (!file[0])
2539 return -2;
2540 bdrv_flags = 0;
2541 if (snapshot) {
2542 bdrv_flags |= BDRV_O_SNAPSHOT;
2543 cache = 2; /* always use write-back with snapshot */
2544 }
2545 if (cache == 0) /* no caching */
2546 bdrv_flags |= BDRV_O_NOCACHE;
2547 else if (cache == 2) /* write-back */
2548 bdrv_flags |= BDRV_O_CACHE_WB;
2549 else if (cache == 3) /* not specified */
2550 bdrv_flags |= BDRV_O_CACHE_DEF;
2551 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2552 fprintf(stderr, "qemu: could not open disk image %s\n",
2553 file);
2554 return -1;
2555 }
2556 if (bdrv_key_required(bdrv))
2557 autostart = 0;
2558 return drives_table_idx;
2559 }
2560
2561 static void numa_add(const char *optarg)
2562 {
2563 char option[128];
2564 char *endptr;
2565 unsigned long long value, endvalue;
2566 int nodenr;
2567
2568 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2569 if (!strcmp(option, "node")) {
2570 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2571 nodenr = nb_numa_nodes;
2572 } else {
2573 nodenr = strtoull(option, NULL, 10);
2574 }
2575
2576 if (get_param_value(option, 128, "mem", optarg) == 0) {
2577 node_mem[nodenr] = 0;
2578 } else {
2579 value = strtoull(option, &endptr, 0);
2580 switch (*endptr) {
2581 case 0: case 'M': case 'm':
2582 value <<= 20;
2583 break;
2584 case 'G': case 'g':
2585 value <<= 30;
2586 break;
2587 }
2588 node_mem[nodenr] = value;
2589 }
2590 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2591 node_cpumask[nodenr] = 0;
2592 } else {
2593 value = strtoull(option, &endptr, 10);
2594 if (value >= 64) {
2595 value = 63;
2596 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2597 } else {
2598 if (*endptr == '-') {
2599 endvalue = strtoull(endptr+1, &endptr, 10);
2600 if (endvalue >= 63) {
2601 endvalue = 62;
2602 fprintf(stderr,
2603 "only 63 CPUs in NUMA mode supported.\n");
2604 }
2605 value = (1 << (endvalue + 1)) - (1 << value);
2606 } else {
2607 value = 1 << value;
2608 }
2609 }
2610 node_cpumask[nodenr] = value;
2611 }
2612 nb_numa_nodes++;
2613 }
2614 return;
2615 }
2616
2617 /***********************************************************/
2618 /* USB devices */
2619
2620 static USBPort *used_usb_ports;
2621 static USBPort *free_usb_ports;
2622
2623 /* ??? Maybe change this to register a hub to keep track of the topology. */
2624 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2625 usb_attachfn attach)
2626 {
2627 port->opaque = opaque;
2628 port->index = index;
2629 port->attach = attach;
2630 port->next = free_usb_ports;
2631 free_usb_ports = port;
2632 }
2633
2634 int usb_device_add_dev(USBDevice *dev)
2635 {
2636 USBPort *port;
2637
2638 /* Find a USB port to add the device to. */
2639 port = free_usb_ports;
2640 if (!port->next) {
2641 USBDevice *hub;
2642
2643 /* Create a new hub and chain it on. */
2644 free_usb_ports = NULL;
2645 port->next = used_usb_ports;
2646 used_usb_ports = port;
2647
2648 hub = usb_hub_init(VM_USB_HUB_SIZE);
2649 usb_attach(port, hub);
2650 port = free_usb_ports;
2651 }
2652
2653 free_usb_ports = port->next;
2654 port->next = used_usb_ports;
2655 used_usb_ports = port;
2656 usb_attach(port, dev);
2657 return 0;
2658 }
2659
2660 static void usb_msd_password_cb(void *opaque, int err)
2661 {
2662 USBDevice *dev = opaque;
2663
2664 if (!err)
2665 usb_device_add_dev(dev);
2666 else
2667 dev->handle_destroy(dev);
2668 }
2669
2670 static int usb_device_add(const char *devname, int is_hotplug)
2671 {
2672 const char *p;
2673 USBDevice *dev;
2674
2675 if (!free_usb_ports)
2676 return -1;
2677
2678 if (strstart(devname, "host:", &p)) {
2679 dev = usb_host_device_open(p);
2680 } else if (!strcmp(devname, "mouse")) {
2681 dev = usb_mouse_init();
2682 } else if (!strcmp(devname, "tablet")) {
2683 dev = usb_tablet_init();
2684 } else if (!strcmp(devname, "keyboard")) {
2685 dev = usb_keyboard_init();
2686 } else if (strstart(devname, "disk:", &p)) {
2687 BlockDriverState *bs;
2688
2689 dev = usb_msd_init(p);
2690 if (!dev)
2691 return -1;
2692 bs = usb_msd_get_bdrv(dev);
2693 if (bdrv_key_required(bs)) {
2694 autostart = 0;
2695 if (is_hotplug) {
2696 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2697 dev);
2698 return 0;
2699 }
2700 }
2701 } else if (!strcmp(devname, "wacom-tablet")) {
2702 dev = usb_wacom_init();
2703 } else if (strstart(devname, "serial:", &p)) {
2704 dev = usb_serial_init(p);
2705 #ifdef CONFIG_BRLAPI
2706 } else if (!strcmp(devname, "braille")) {
2707 dev = usb_baum_init();
2708 #endif
2709 } else if (strstart(devname, "net:", &p)) {
2710 int nic = nb_nics;
2711
2712 if (net_client_init("nic", p) < 0)
2713 return -1;
2714 nd_table[nic].model = "usb";
2715 dev = usb_net_init(&nd_table[nic]);
2716 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2717 dev = usb_bt_init(devname[2] ? hci_init(p) :
2718 bt_new_hci(qemu_find_bt_vlan(0)));
2719 } else {
2720 return -1;
2721 }
2722 if (!dev)
2723 return -1;
2724
2725 return usb_device_add_dev(dev);
2726 }
2727
2728 int usb_device_del_addr(int bus_num, int addr)
2729 {
2730 USBPort *port;
2731 USBPort **lastp;
2732 USBDevice *dev;
2733
2734 if (!used_usb_ports)
2735 return -1;
2736
2737 if (bus_num != 0)
2738 return -1;
2739
2740 lastp = &used_usb_ports;
2741 port = used_usb_ports;
2742 while (port && port->dev->addr != addr) {
2743 lastp = &port->next;
2744 port = port->next;
2745 }
2746
2747 if (!port)
2748 return -1;
2749
2750 dev = port->dev;
2751 *lastp = port->next;
2752 usb_attach(port, NULL);
2753 dev->handle_destroy(dev);
2754 port->next = free_usb_ports;
2755 free_usb_ports = port;
2756 return 0;
2757 }
2758
2759 static int usb_device_del(const char *devname)
2760 {
2761 int bus_num, addr;
2762 const char *p;
2763
2764 if (strstart(devname, "host:", &p))
2765 return usb_host_device_close(p);
2766
2767 if (!used_usb_ports)
2768 return -1;
2769
2770 p = strchr(devname, '.');
2771 if (!p)
2772 return -1;
2773 bus_num = strtoul(devname, NULL, 0);
2774 addr = strtoul(p + 1, NULL, 0);
2775
2776 return usb_device_del_addr(bus_num, addr);
2777 }
2778
2779 void do_usb_add(Monitor *mon, const char *devname)
2780 {
2781 usb_device_add(devname, 1);
2782 }
2783
2784 void do_usb_del(Monitor *mon, const char *devname)
2785 {
2786 usb_device_del(devname);
2787 }
2788
2789 void usb_info(Monitor *mon)
2790 {
2791 USBDevice *dev;
2792 USBPort *port;
2793 const char *speed_str;
2794
2795 if (!usb_enabled) {
2796 monitor_printf(mon, "USB support not enabled\n");
2797 return;
2798 }
2799
2800 for (port = used_usb_ports; port; port = port->next) {
2801 dev = port->dev;
2802 if (!dev)
2803 continue;
2804 switch(dev->speed) {
2805 case USB_SPEED_LOW:
2806 speed_str = "1.5";
2807 break;
2808 case USB_SPEED_FULL:
2809 speed_str = "12";
2810 break;
2811 case USB_SPEED_HIGH:
2812 speed_str = "480";
2813 break;
2814 default:
2815 speed_str = "?";
2816 break;
2817 }
2818 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2819 0, dev->addr, speed_str, dev->devname);
2820 }
2821 }
2822
2823 /***********************************************************/
2824 /* PCMCIA/Cardbus */
2825
2826 static struct pcmcia_socket_entry_s {
2827 PCMCIASocket *socket;
2828 struct pcmcia_socket_entry_s *next;
2829 } *pcmcia_sockets = 0;
2830
2831 void pcmcia_socket_register(PCMCIASocket *socket)
2832 {
2833 struct pcmcia_socket_entry_s *entry;
2834
2835 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2836 entry->socket = socket;
2837 entry->next = pcmcia_sockets;
2838 pcmcia_sockets = entry;
2839 }
2840
2841 void pcmcia_socket_unregister(PCMCIASocket *socket)
2842 {
2843 struct pcmcia_socket_entry_s *entry, **ptr;
2844
2845 ptr = &pcmcia_sockets;
2846 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2847 if (entry->socket == socket) {
2848 *ptr = entry->next;
2849 qemu_free(entry);
2850 }
2851 }
2852
2853 void pcmcia_info(Monitor *mon)
2854 {
2855 struct pcmcia_socket_entry_s *iter;
2856
2857 if (!pcmcia_sockets)
2858 monitor_printf(mon, "No PCMCIA sockets\n");
2859
2860 for (iter = pcmcia_sockets; iter; iter = iter->next)
2861 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2862 iter->socket->attached ? iter->socket->card_string :
2863 "Empty");
2864 }
2865
2866 /***********************************************************/
2867 /* register display */
2868
2869 struct DisplayAllocator default_allocator = {
2870 defaultallocator_create_displaysurface,
2871 defaultallocator_resize_displaysurface,
2872 defaultallocator_free_displaysurface
2873 };
2874
2875 void register_displaystate(DisplayState *ds)
2876 {
2877 DisplayState **s;
2878 s = &display_state;
2879 while (*s != NULL)
2880 s = &(*s)->next;
2881 ds->next = NULL;
2882 *s = ds;
2883 }
2884
2885 DisplayState *get_displaystate(void)
2886 {
2887 return display_state;
2888 }
2889
2890 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2891 {
2892 if(ds->allocator == &default_allocator) ds->allocator = da;
2893 return ds->allocator;
2894 }
2895
2896 /* dumb display */
2897
2898 static void dumb_display_init(void)
2899 {
2900 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2901 ds->allocator = &default_allocator;
2902 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2903 register_displaystate(ds);
2904 }
2905
2906 /***********************************************************/
2907 /* I/O handling */
2908
2909 typedef struct IOHandlerRecord {
2910 int fd;
2911 IOCanRWHandler *fd_read_poll;
2912 IOHandler *fd_read;
2913 IOHandler *fd_write;
2914 int deleted;
2915 void *opaque;
2916 /* temporary data */
2917 struct pollfd *ufd;
2918 struct IOHandlerRecord *next;
2919 } IOHandlerRecord;
2920
2921 static IOHandlerRecord *first_io_handler;
2922
2923 /* XXX: fd_read_poll should be suppressed, but an API change is
2924 necessary in the character devices to suppress fd_can_read(). */
2925 int qemu_set_fd_handler2(int fd,
2926 IOCanRWHandler *fd_read_poll,
2927 IOHandler *fd_read,
2928 IOHandler *fd_write,
2929 void *opaque)
2930 {
2931 IOHandlerRecord **pioh, *ioh;
2932
2933 if (!fd_read && !fd_write) {
2934 pioh = &first_io_handler;
2935 for(;;) {
2936 ioh = *pioh;
2937 if (ioh == NULL)
2938 break;
2939 if (ioh->fd == fd) {
2940 ioh->deleted = 1;
2941 break;
2942 }
2943 pioh = &ioh->next;
2944 }
2945 } else {
2946 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2947 if (ioh->fd == fd)
2948 goto found;
2949 }
2950 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2951 ioh->next = first_io_handler;
2952 first_io_handler = ioh;
2953 found:
2954 ioh->fd = fd;
2955 ioh->fd_read_poll = fd_read_poll;
2956 ioh->fd_read = fd_read;
2957 ioh->fd_write = fd_write;
2958 ioh->opaque = opaque;
2959 ioh->deleted = 0;
2960 }
2961 return 0;
2962 }
2963
2964 int qemu_set_fd_handler(int fd,
2965 IOHandler *fd_read,
2966 IOHandler *fd_write,
2967 void *opaque)
2968 {
2969 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2970 }
2971
2972 #ifdef _WIN32
2973 /***********************************************************/
2974 /* Polling handling */
2975
2976 typedef struct PollingEntry {
2977 PollingFunc *func;
2978 void *opaque;
2979 struct PollingEntry *next;
2980 } PollingEntry;
2981
2982 static PollingEntry *first_polling_entry;
2983
2984 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2985 {
2986 PollingEntry **ppe, *pe;
2987 pe = qemu_mallocz(sizeof(PollingEntry));
2988 pe->func = func;
2989 pe->opaque = opaque;
2990 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2991 *ppe = pe;
2992 return 0;
2993 }
2994
2995 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2996 {
2997 PollingEntry **ppe, *pe;
2998 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2999 pe = *ppe;
3000 if (pe->func == func && pe->opaque == opaque) {
3001 *ppe = pe->next;
3002 qemu_free(pe);
3003 break;
3004 }
3005 }
3006 }
3007
3008 /***********************************************************/
3009 /* Wait objects support */
3010 typedef struct WaitObjects {
3011 int num;
3012 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
3013 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
3014 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
3015 } WaitObjects;
3016
3017 static WaitObjects wait_objects = {0};
3018
3019 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3020 {
3021 WaitObjects *w = &wait_objects;
3022
3023 if (w->num >= MAXIMUM_WAIT_OBJECTS)
3024 return -1;
3025 w->events[w->num] = handle;
3026 w->func[w->num] = func;
3027 w->opaque[w->num] = opaque;
3028 w->num++;
3029 return 0;
3030 }
3031
3032 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3033 {
3034 int i, found;
3035 WaitObjects *w = &wait_objects;
3036
3037 found = 0;
3038 for (i = 0; i < w->num; i++) {
3039 if (w->events[i] == handle)
3040 found = 1;
3041 if (found) {
3042 w->events[i] = w->events[i + 1];
3043 w->func[i] = w->func[i + 1];
3044 w->opaque[i] = w->opaque[i + 1];
3045 }
3046 }
3047 if (found)
3048 w->num--;
3049 }
3050 #endif
3051
3052 /***********************************************************/
3053 /* ram save/restore */
3054
3055 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3056 {
3057 int v;
3058
3059 v = qemu_get_byte(f);
3060 switch(v) {
3061 case 0:
3062 if (qemu_get_buffer(f, buf, len) != len)
3063 return -EIO;
3064 break;
3065 case 1:
3066 v = qemu_get_byte(f);
3067 memset(buf, v, len);
3068 break;
3069 default:
3070 return -EINVAL;
3071 }
3072
3073 if (qemu_file_has_error(f))
3074 return -EIO;
3075
3076 return 0;
3077 }
3078
3079 static int ram_load_v1(QEMUFile *f, void *opaque)
3080 {
3081 int ret;
3082 ram_addr_t i;
3083
3084 if (qemu_get_be32(f) != last_ram_offset)
3085 return -EINVAL;
3086 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
3087 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
3088 if (ret)
3089 return ret;
3090 }
3091 return 0;
3092 }
3093
3094 #define BDRV_HASH_BLOCK_SIZE 1024
3095 #define IOBUF_SIZE 4096
3096 #define RAM_CBLOCK_MAGIC 0xfabe
3097
3098 typedef struct RamDecompressState {
3099 z_stream zstream;
3100 QEMUFile *f;
3101 uint8_t buf[IOBUF_SIZE];
3102 } RamDecompressState;
3103
3104 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3105 {
3106 int ret;
3107 memset(s, 0, sizeof(*s));
3108 s->f = f;
3109 ret = inflateInit(&s->zstream);
3110 if (ret != Z_OK)
3111 return -1;
3112 return 0;
3113 }
3114
3115 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3116 {
3117 int ret, clen;
3118
3119 s->zstream.avail_out = len;
3120 s->zstream.next_out = buf;
3121 while (s->zstream.avail_out > 0) {
3122 if (s->zstream.avail_in == 0) {
3123 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3124 return -1;
3125 clen = qemu_get_be16(s->f);
3126 if (clen > IOBUF_SIZE)
3127 return -1;
3128 qemu_get_buffer(s->f, s->buf, clen);
3129 s->zstream.avail_in = clen;
3130 s->zstream.next_in = s->buf;
3131 }
3132 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3133 if (ret != Z_OK && ret != Z_STREAM_END) {
3134 return -1;
3135 }
3136 }
3137 return 0;
3138 }
3139
3140 static void ram_decompress_close(RamDecompressState *s)
3141 {
3142 inflateEnd(&s->zstream);
3143 }
3144
3145 #define RAM_SAVE_FLAG_FULL 0x01
3146 #define RAM_SAVE_FLAG_COMPRESS 0x02
3147 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3148 #define RAM_SAVE_FLAG_PAGE 0x08
3149 #define RAM_SAVE_FLAG_EOS 0x10
3150
3151 static int is_dup_page(uint8_t *page, uint8_t ch)
3152 {
3153 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3154 uint32_t *array = (uint32_t *)page;
3155 int i;
3156
3157 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3158 if (array[i] != val)
3159 return 0;
3160 }
3161
3162 return 1;
3163 }
3164
3165 static int ram_save_block(QEMUFile *f)
3166 {
3167 static ram_addr_t current_addr = 0;
3168 ram_addr_t saved_addr = current_addr;
3169 ram_addr_t addr = 0;
3170 int found = 0;
3171
3172 while (addr < last_ram_offset) {
3173 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3174 uint8_t *p;
3175
3176 cpu_physical_memory_reset_dirty(current_addr,
3177 current_addr + TARGET_PAGE_SIZE,
3178 MIGRATION_DIRTY_FLAG);
3179
3180 p = qemu_get_ram_ptr(current_addr);
3181
3182 if (is_dup_page(p, *p)) {
3183 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3184 qemu_put_byte(f, *p);
3185 } else {
3186 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3187 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3188 }
3189
3190 found = 1;
3191 break;
3192 }
3193 addr += TARGET_PAGE_SIZE;
3194 current_addr = (saved_addr + addr) % last_ram_offset;
3195 }
3196
3197 return found;
3198 }
3199
3200 static ram_addr_t ram_save_threshold = 10;
3201 static uint64_t bytes_transferred = 0;
3202
3203 static ram_addr_t ram_save_remaining(void)
3204 {
3205 ram_addr_t addr;
3206 ram_addr_t count = 0;
3207
3208 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3209 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3210 count++;
3211 }
3212
3213 return count;
3214 }
3215
3216 uint64_t ram_bytes_remaining(void)
3217 {
3218 return ram_save_remaining() * TARGET_PAGE_SIZE;
3219 }
3220
3221 uint64_t ram_bytes_transferred(void)
3222 {
3223 return bytes_transferred;
3224 }
3225
3226 uint64_t ram_bytes_total(void)
3227 {
3228 return last_ram_offset;
3229 }
3230
3231 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3232 {
3233 ram_addr_t addr;
3234
3235 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
3236 qemu_file_set_error(f);
3237 return 0;
3238 }
3239
3240 if (stage == 1) {
3241 /* Make sure all dirty bits are set */
3242 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3243 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3244 cpu_physical_memory_set_dirty(addr);
3245 }
3246
3247 /* Enable dirty memory tracking */
3248 cpu_physical_memory_set_dirty_tracking(1);
3249
3250 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3251 }
3252
3253 while (!qemu_file_rate_limit(f)) {
3254 int ret;
3255
3256 ret = ram_save_block(f);
3257 bytes_transferred += ret * TARGET_PAGE_SIZE;
3258 if (ret == 0) /* no more blocks */
3259 break;
3260 }
3261
3262 /* try transferring iterative blocks of memory */
3263
3264 if (stage == 3) {
3265
3266 /* flush all remaining blocks regardless of rate limiting */
3267 while (ram_save_block(f) != 0) {
3268 bytes_transferred += TARGET_PAGE_SIZE;
3269 }
3270 cpu_physical_memory_set_dirty_tracking(0);
3271 }
3272
3273 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3274
3275 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3276 }
3277
3278 static int ram_load_dead(QEMUFile *f, void *opaque)
3279 {
3280 RamDecompressState s1, *s = &s1;
3281 uint8_t buf[10];
3282 ram_addr_t i;
3283
3284 if (ram_decompress_open(s, f) < 0)
3285 return -EINVAL;
3286 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3287 if (ram_decompress_buf(s, buf, 1) < 0) {
3288 fprintf(stderr, "Error while reading ram block header\n");
3289 goto error;
3290 }
3291 if (buf[0] == 0) {
3292 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3293 BDRV_HASH_BLOCK_SIZE) < 0) {
3294 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3295 goto error;
3296 }
3297 } else {
3298 error:
3299 printf("Error block header\n");
3300 return -EINVAL;
3301 }
3302 }
3303 ram_decompress_close(s);
3304
3305 return 0;
3306 }
3307
3308 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3309 {
3310 ram_addr_t addr;
3311 int flags;
3312
3313 if (version_id == 1)
3314 return ram_load_v1(f, opaque);
3315
3316 if (version_id == 2) {
3317 if (qemu_get_be32(f) != last_ram_offset)
3318 return -EINVAL;
3319 return ram_load_dead(f, opaque);
3320 }
3321
3322 if (version_id != 3)
3323 return -EINVAL;
3324
3325 do {
3326 addr = qemu_get_be64(f);
3327
3328 flags = addr & ~TARGET_PAGE_MASK;
3329 addr &= TARGET_PAGE_MASK;
3330
3331 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3332 if (addr != last_ram_offset)
3333 return -EINVAL;
3334 }
3335
3336 if (flags & RAM_SAVE_FLAG_FULL) {
3337 if (ram_load_dead(f, opaque) < 0)
3338 return -EINVAL;
3339 }
3340
3341 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3342 uint8_t ch = qemu_get_byte(f);
3343 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3344 } else if (flags & RAM_SAVE_FLAG_PAGE)
3345 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3346 } while (!(flags & RAM_SAVE_FLAG_EOS));
3347
3348 return 0;
3349 }
3350
3351 void qemu_service_io(void)
3352 {
3353 qemu_notify_event();
3354 }
3355
3356 /***********************************************************/
3357 /* bottom halves (can be seen as timers which expire ASAP) */
3358
3359 struct QEMUBH {
3360 QEMUBHFunc *cb;
3361 void *opaque;
3362 int scheduled;
3363 int idle;
3364 int deleted;
3365 QEMUBH *next;
3366 };
3367
3368 static QEMUBH *first_bh = NULL;
3369
3370 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3371 {
3372 QEMUBH *bh;
3373 bh = qemu_mallocz(sizeof(QEMUBH));
3374 bh->cb = cb;
3375 bh->opaque = opaque;
3376 bh->next = first_bh;
3377 first_bh = bh;
3378 return bh;
3379 }
3380
3381 int qemu_bh_poll(void)
3382 {
3383 QEMUBH *bh, **bhp;
3384 int ret;
3385
3386 ret = 0;
3387 for (bh = first_bh; bh; bh = bh->next) {
3388 if (!bh->deleted && bh->scheduled) {
3389 bh->scheduled = 0;
3390 if (!bh->idle)
3391 ret = 1;
3392 bh->idle = 0;
3393 bh->cb(bh->opaque);
3394 }
3395 }
3396
3397 /* remove deleted bhs */
3398 bhp = &first_bh;
3399 while (*bhp) {
3400 bh = *bhp;
3401 if (bh->deleted) {
3402 *bhp = bh->next;
3403 qemu_free(bh);
3404 } else
3405 bhp = &bh->next;
3406 }
3407
3408 return ret;
3409 }
3410
3411 void qemu_bh_schedule_idle(QEMUBH *bh)
3412 {
3413 if (bh->scheduled)
3414 return;
3415 bh->scheduled = 1;
3416 bh->idle = 1;
3417 }
3418
3419 void qemu_bh_schedule(QEMUBH *bh)
3420 {
3421 if (bh->scheduled)
3422 return;
3423 bh->scheduled = 1;
3424 bh->idle = 0;
3425 /* stop the currently executing CPU to execute the BH ASAP */
3426 qemu_notify_event();
3427 }
3428
3429 void qemu_bh_cancel(QEMUBH *bh)
3430 {
3431 bh->scheduled = 0;
3432 }
3433
3434 void qemu_bh_delete(QEMUBH *bh)
3435 {
3436 bh->scheduled = 0;
3437 bh->deleted = 1;
3438 }
3439
3440 static void qemu_bh_update_timeout(int *timeout)
3441 {
3442 QEMUBH *bh;
3443
3444 for (bh = first_bh; bh; bh = bh->next) {
3445 if (!bh->deleted && bh->scheduled) {
3446 if (bh->idle) {
3447 /* idle bottom halves will be polled at least
3448 * every 10ms */
3449 *timeout = MIN(10, *timeout);
3450 } else {
3451 /* non-idle bottom halves will be executed
3452 * immediately */
3453 *timeout = 0;
3454 break;
3455 }
3456 }
3457 }
3458 }
3459
3460 /***********************************************************/
3461 /* machine registration */
3462
3463 static QEMUMachine *first_machine = NULL;
3464 QEMUMachine *current_machine = NULL;
3465
3466 int qemu_register_machine(QEMUMachine *m)
3467 {
3468 QEMUMachine **pm;
3469 pm = &first_machine;
3470 while (*pm != NULL)
3471 pm = &(*pm)->next;
3472 m->next = NULL;
3473 *pm = m;
3474 return 0;
3475 }
3476
3477 static QEMUMachine *find_machine(const char *name)
3478 {
3479 QEMUMachine *m;
3480
3481 for(m = first_machine; m != NULL; m = m->next) {
3482 if (!strcmp(m->name, name))
3483 return m;
3484 }
3485 return NULL;
3486 }
3487
3488 static QEMUMachine *find_default_machine(void)
3489 {
3490 QEMUMachine *m;
3491
3492 for(m = first_machine; m != NULL; m = m->next) {
3493 if (m->is_default) {
3494 return m;
3495 }
3496 }
3497 return NULL;
3498 }
3499
3500 /***********************************************************/
3501 /* main execution loop */
3502
3503 static void gui_update(void *opaque)
3504 {
3505 uint64_t interval = GUI_REFRESH_INTERVAL;
3506 DisplayState *ds = opaque;
3507 DisplayChangeListener *dcl = ds->listeners;
3508
3509 dpy_refresh(ds);
3510
3511 while (dcl != NULL) {
3512 if (dcl->gui_timer_interval &&
3513 dcl->gui_timer_interval < interval)
3514 interval = dcl->gui_timer_interval;
3515 dcl = dcl->next;
3516 }
3517 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3518 }
3519
3520 static void nographic_update(void *opaque)
3521 {
3522 uint64_t interval = GUI_REFRESH_INTERVAL;
3523
3524 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3525 }
3526
3527 struct vm_change_state_entry {
3528 VMChangeStateHandler *cb;
3529 void *opaque;
3530 LIST_ENTRY (vm_change_state_entry) entries;
3531 };
3532
3533 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3534
3535 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3536 void *opaque)
3537 {
3538 VMChangeStateEntry *e;
3539
3540 e = qemu_mallocz(sizeof (*e));
3541
3542 e->cb = cb;
3543 e->opaque = opaque;
3544 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3545 return e;
3546 }
3547
3548 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3549 {
3550 LIST_REMOVE (e, entries);
3551 qemu_free (e);
3552 }
3553
3554 static void vm_state_notify(int running, int reason)
3555 {
3556 VMChangeStateEntry *e;
3557
3558 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3559 e->cb(e->opaque, running, reason);
3560 }
3561 }
3562
3563 static void resume_all_vcpus(void);
3564 static void pause_all_vcpus(void);
3565
3566 void vm_start(void)
3567 {
3568 if (!vm_running) {
3569 cpu_enable_ticks();
3570 vm_running = 1;
3571 vm_state_notify(1, 0);
3572 qemu_rearm_alarm_timer(alarm_timer);
3573 resume_all_vcpus();
3574 }
3575 }
3576
3577 /* reset/shutdown handler */
3578
3579 typedef struct QEMUResetEntry {
3580 QEMUResetHandler *func;
3581 void *opaque;
3582 int order;
3583 struct QEMUResetEntry *next;
3584 } QEMUResetEntry;
3585
3586 static QEMUResetEntry *first_reset_entry;
3587 static int reset_requested;
3588 static int shutdown_requested;
3589 static int powerdown_requested;
3590 static int debug_requested;
3591 static int vmstop_requested;
3592
3593 int qemu_shutdown_requested(void)
3594 {
3595 int r = shutdown_requested;
3596 shutdown_requested = 0;
3597 return r;
3598 }
3599
3600 int qemu_reset_requested(void)
3601 {
3602 int r = reset_requested;
3603 reset_requested = 0;
3604 return r;
3605 }
3606
3607 int qemu_powerdown_requested(void)
3608 {
3609 int r = powerdown_requested;
3610 powerdown_requested = 0;
3611 return r;
3612 }
3613
3614 static int qemu_debug_requested(void)
3615 {
3616 int r = debug_requested;
3617 debug_requested = 0;
3618 return r;
3619 }
3620
3621 static int qemu_vmstop_requested(void)
3622 {
3623 int r = vmstop_requested;
3624 vmstop_requested = 0;
3625 return r;
3626 }
3627
3628 static void do_vm_stop(int reason)
3629 {
3630 if (vm_running) {
3631 cpu_disable_ticks();
3632 vm_running = 0;
3633 pause_all_vcpus();
3634 vm_state_notify(0, reason);
3635 }
3636 }
3637
3638 void qemu_register_reset(QEMUResetHandler *func, int order, void *opaque)
3639 {
3640 QEMUResetEntry **pre, *re;
3641
3642 pre = &first_reset_entry;
3643 while (*pre != NULL && (*pre)->order >= order) {
3644 pre = &(*pre)->next;
3645 }
3646 re = qemu_mallocz(sizeof(QEMUResetEntry));
3647 re->func = func;
3648 re->opaque = opaque;
3649 re->order = order;
3650 re->next = NULL;
3651 *pre = re;
3652 }
3653
3654 void qemu_system_reset(void)
3655 {
3656 QEMUResetEntry *re;
3657
3658 /* reset all devices */
3659 for(re = first_reset_entry; re != NULL; re = re->next) {
3660 re->func(re->opaque);
3661 }
3662 }
3663
3664 void qemu_system_reset_request(void)
3665 {
3666 if (no_reboot) {
3667 shutdown_requested = 1;
3668 } else {
3669 reset_requested = 1;
3670 }
3671 qemu_notify_event();
3672 }
3673
3674 void qemu_system_shutdown_request(void)
3675 {
3676 shutdown_requested = 1;
3677 qemu_notify_event();
3678 }
3679
3680 void qemu_system_powerdown_request(void)
3681 {
3682 powerdown_requested = 1;
3683 qemu_notify_event();
3684 }
3685
3686 #ifdef CONFIG_IOTHREAD
3687 static void qemu_system_vmstop_request(int reason)
3688 {
3689 vmstop_requested = reason;
3690 qemu_notify_event();
3691 }
3692 #endif
3693
3694 #ifndef _WIN32
3695 static int io_thread_fd = -1;
3696
3697 static void qemu_event_increment(void)
3698 {
3699 static const char byte = 0;
3700
3701 if (io_thread_fd == -1)
3702 return;
3703
3704 write(io_thread_fd, &byte, sizeof(byte));
3705 }
3706
3707 static void qemu_event_read(void *opaque)
3708 {
3709 int fd = (unsigned long)opaque;
3710 ssize_t len;
3711
3712 /* Drain the notify pipe */
3713 do {
3714 char buffer[512];
3715 len = read(fd, buffer, sizeof(buffer));
3716 } while ((len == -1 && errno == EINTR) || len > 0);
3717 }
3718
3719 static int qemu_event_init(void)
3720 {
3721 int err;
3722 int fds[2];
3723
3724 err = pipe(fds);
3725 if (err == -1)
3726 return -errno;
3727
3728 err = fcntl_setfl(fds[0], O_NONBLOCK);
3729 if (err < 0)
3730 goto fail;
3731
3732 err = fcntl_setfl(fds[1], O_NONBLOCK);
3733 if (err < 0)
3734 goto fail;
3735
3736 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3737 (void *)(unsigned long)fds[0]);
3738
3739 io_thread_fd = fds[1];
3740 return 0;
3741
3742 fail:
3743 close(fds[0]);
3744 close(fds[1]);
3745 return err;
3746 }
3747 #else
3748 HANDLE qemu_event_handle;
3749
3750 static void dummy_event_handler(void *opaque)
3751 {
3752 }
3753
3754 static int qemu_event_init(void)
3755 {
3756 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3757 if (!qemu_event_handle) {
3758 perror("Failed CreateEvent");
3759 return -1;
3760 }
3761 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3762 return 0;
3763 }
3764
3765 static void qemu_event_increment(void)
3766 {
3767 SetEvent(qemu_event_handle);
3768 }
3769 #endif
3770
3771 static int cpu_can_run(CPUState *env)
3772 {
3773 if (env->stop)
3774 return 0;
3775 if (env->stopped)
3776 return 0;
3777 return 1;
3778 }
3779
3780 #ifndef CONFIG_IOTHREAD
3781 static int qemu_init_main_loop(void)
3782 {
3783 return qemu_event_init();
3784 }
3785
3786 void qemu_init_vcpu(void *_env)
3787 {
3788 CPUState *env = _env;
3789
3790 if (kvm_enabled())
3791 kvm_init_vcpu(env);
3792 return;
3793 }
3794
3795 int qemu_cpu_self(void *env)
3796 {
3797 return 1;
3798 }
3799
3800 static void resume_all_vcpus(void)
3801 {
3802 }
3803
3804 static void pause_all_vcpus(void)
3805 {
3806 }
3807
3808 void qemu_cpu_kick(void *env)
3809 {
3810 return;
3811 }
3812
3813 void qemu_notify_event(void)
3814 {
3815 CPUState *env = cpu_single_env;
3816
3817 if (env) {
3818 cpu_exit(env);
3819 #ifdef USE_KQEMU
3820 if (env->kqemu_enabled)
3821 kqemu_cpu_interrupt(env);
3822 #endif
3823 }
3824 }
3825
3826 #define qemu_mutex_lock_iothread() do { } while (0)
3827 #define qemu_mutex_unlock_iothread() do { } while (0)
3828
3829 void vm_stop(int reason)
3830 {
3831 do_vm_stop(reason);
3832 }
3833
3834 #else /* CONFIG_IOTHREAD */
3835
3836 #include "qemu-thread.h"
3837
3838 QemuMutex qemu_global_mutex;
3839 static QemuMutex qemu_fair_mutex;
3840
3841 static QemuThread io_thread;
3842
3843 static QemuThread *tcg_cpu_thread;
3844 static QemuCond *tcg_halt_cond;
3845
3846 static int qemu_system_ready;
3847 /* cpu creation */
3848 static QemuCond qemu_cpu_cond;
3849 /* system init */
3850 static QemuCond qemu_system_cond;
3851 static QemuCond qemu_pause_cond;
3852
3853 static void block_io_signals(void);
3854 static void unblock_io_signals(void);
3855 static int tcg_has_work(void);
3856
3857 static int qemu_init_main_loop(void)
3858 {
3859 int ret;
3860
3861 ret = qemu_event_init();
3862 if (ret)
3863 return ret;
3864
3865 qemu_cond_init(&qemu_pause_cond);
3866 qemu_mutex_init(&qemu_fair_mutex);
3867 qemu_mutex_init(&qemu_global_mutex);
3868 qemu_mutex_lock(&qemu_global_mutex);
3869
3870 unblock_io_signals();
3871 qemu_thread_self(&io_thread);
3872
3873 return 0;
3874 }
3875
3876 static void qemu_wait_io_event(CPUState *env)
3877 {
3878 while (!tcg_has_work())
3879 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3880
3881 qemu_mutex_unlock(&qemu_global_mutex);
3882
3883 /*
3884 * Users of qemu_global_mutex can be starved, having no chance
3885 * to acquire it since this path will get to it first.
3886 * So use another lock to provide fairness.
3887 */
3888 qemu_mutex_lock(&qemu_fair_mutex);
3889 qemu_mutex_unlock(&qemu_fair_mutex);
3890
3891 qemu_mutex_lock(&qemu_global_mutex);
3892 if (env->stop) {
3893 env->stop = 0;
3894 env->stopped = 1;
3895 qemu_cond_signal(&qemu_pause_cond);
3896 }
3897 }
3898
3899 static int qemu_cpu_exec(CPUState *env);
3900
3901 static void *kvm_cpu_thread_fn(void *arg)
3902 {
3903 CPUState *env = arg;
3904
3905 block_io_signals();
3906 qemu_thread_self(env->thread);
3907
3908 /* signal CPU creation */
3909 qemu_mutex_lock(&qemu_global_mutex);
3910 env->created = 1;
3911 qemu_cond_signal(&qemu_cpu_cond);
3912
3913 /* and wait for machine initialization */
3914 while (!qemu_system_ready)
3915 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3916
3917 while (1) {
3918 if (cpu_can_run(env))
3919 qemu_cpu_exec(env);
3920 qemu_wait_io_event(env);
3921 }
3922
3923 return NULL;
3924 }
3925
3926 static void tcg_cpu_exec(void);
3927
3928 static void *tcg_cpu_thread_fn(void *arg)
3929 {
3930 CPUState *env = arg;
3931
3932 block_io_signals();
3933 qemu_thread_self(env->thread);
3934
3935 /* signal CPU creation */
3936 qemu_mutex_lock(&qemu_global_mutex);
3937 for (env = first_cpu; env != NULL; env = env->next_cpu)
3938 env->created = 1;
3939 qemu_cond_signal(&qemu_cpu_cond);
3940
3941 /* and wait for machine initialization */
3942 while (!qemu_system_ready)
3943 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3944
3945 while (1) {
3946 tcg_cpu_exec();
3947 qemu_wait_io_event(cur_cpu);
3948 }
3949
3950 return NULL;
3951 }
3952
3953 void qemu_cpu_kick(void *_env)
3954 {
3955 CPUState *env = _env;
3956 qemu_cond_broadcast(env->halt_cond);
3957 if (kvm_enabled())
3958 qemu_thread_signal(env->thread, SIGUSR1);
3959 }
3960
3961 int qemu_cpu_self(void *env)
3962 {
3963 return (cpu_single_env != NULL);
3964 }
3965
3966 static void cpu_signal(int sig)
3967 {
3968 if (cpu_single_env)
3969 cpu_exit(cpu_single_env);
3970 }
3971
3972 static void block_io_signals(void)
3973 {
3974 sigset_t set;
3975 struct sigaction sigact;
3976
3977 sigemptyset(&set);
3978 sigaddset(&set, SIGUSR2);
3979 sigaddset(&set, SIGIO);
3980 sigaddset(&set, SIGALRM);
3981 pthread_sigmask(SIG_BLOCK, &set, NULL);
3982
3983 sigemptyset(&set);
3984 sigaddset(&set, SIGUSR1);
3985 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3986
3987 memset(&sigact, 0, sizeof(sigact));
3988 sigact.sa_handler = cpu_signal;
3989 sigaction(SIGUSR1, &sigact, NULL);
3990 }
3991
3992 static void unblock_io_signals(void)
3993 {
3994 sigset_t set;
3995
3996 sigemptyset(&set);
3997 sigaddset(&set, SIGUSR2);
3998 sigaddset(&set, SIGIO);
3999 sigaddset(&set, SIGALRM);
4000 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
4001
4002 sigemptyset(&set);
4003 sigaddset(&set, SIGUSR1);
4004 pthread_sigmask(SIG_BLOCK, &set, NULL);
4005 }
4006
4007 static void qemu_signal_lock(unsigned int msecs)
4008 {
4009 qemu_mutex_lock(&qemu_fair_mutex);
4010
4011 while (qemu_mutex_trylock(&qemu_global_mutex)) {
4012 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
4013 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
4014 break;
4015 }
4016 qemu_mutex_unlock(&qemu_fair_mutex);
4017 }
4018
4019 static void qemu_mutex_lock_iothread(void)
4020 {
4021 if (kvm_enabled()) {
4022 qemu_mutex_lock(&qemu_fair_mutex);
4023 qemu_mutex_lock(&qemu_global_mutex);
4024 qemu_mutex_unlock(&qemu_fair_mutex);
4025 } else
4026 qemu_signal_lock(100);
4027 }
4028
4029 static void qemu_mutex_unlock_iothread(void)
4030 {
4031 qemu_mutex_unlock(&qemu_global_mutex);
4032 }
4033
4034 static int all_vcpus_paused(void)
4035 {
4036 CPUState *penv = first_cpu;
4037
4038 while (penv) {
4039 if (!penv->stopped)
4040 return 0;
4041 penv = (CPUState *)penv->next_cpu;
4042 }
4043
4044 return 1;
4045 }
4046
4047 static void pause_all_vcpus(void)
4048 {
4049 CPUState *penv = first_cpu;
4050
4051 while (penv) {
4052 penv->stop = 1;
4053 qemu_thread_signal(penv->thread, SIGUSR1);
4054 qemu_cpu_kick(penv);
4055 penv = (CPUState *)penv->next_cpu;
4056 }
4057
4058 while (!all_vcpus_paused()) {
4059 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
4060 penv = first_cpu;
4061 while (penv) {
4062 qemu_thread_signal(penv->thread, SIGUSR1);
4063 penv = (CPUState *)penv->next_cpu;
4064 }
4065 }
4066 }
4067
4068 static void resume_all_vcpus(void)
4069 {
4070 CPUState *penv = first_cpu;
4071
4072 while (penv) {
4073 penv->stop = 0;
4074 penv->stopped = 0;
4075 qemu_thread_signal(penv->thread, SIGUSR1);
4076 qemu_cpu_kick(penv);
4077 penv = (CPUState *)penv->next_cpu;
4078 }
4079 }
4080
4081 static void tcg_init_vcpu(void *_env)
4082 {
4083 CPUState *env = _env;
4084 /* share a single thread for all cpus with TCG */
4085 if (!tcg_cpu_thread) {
4086 env->thread = qemu_mallocz(sizeof(QemuThread));
4087 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4088 qemu_cond_init(env->halt_cond);
4089 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
4090 while (env->created == 0)
4091 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4092 tcg_cpu_thread = env->thread;
4093 tcg_halt_cond = env->halt_cond;
4094 } else {
4095 env->thread = tcg_cpu_thread;
4096 env->halt_cond = tcg_halt_cond;
4097 }
4098 }
4099
4100 static void kvm_start_vcpu(CPUState *env)
4101 {
4102 kvm_init_vcpu(env);
4103 env->thread = qemu_mallocz(sizeof(QemuThread));
4104 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4105 qemu_cond_init(env->halt_cond);
4106 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
4107 while (env->created == 0)
4108 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4109 }
4110
4111 void qemu_init_vcpu(void *_env)
4112 {
4113 CPUState *env = _env;
4114
4115 if (kvm_enabled())
4116 kvm_start_vcpu(env);
4117 else
4118 tcg_init_vcpu(env);
4119 }
4120
4121 void qemu_notify_event(void)
4122 {
4123 qemu_event_increment();
4124 }
4125
4126 void vm_stop(int reason)
4127 {
4128 QemuThread me;
4129 qemu_thread_self(&me);
4130
4131 if (!qemu_thread_equal(&me, &io_thread)) {
4132 qemu_system_vmstop_request(reason);
4133 /*
4134 * FIXME: should not return to device code in case
4135 * vm_stop() has been requested.
4136 */
4137 if (cpu_single_env) {
4138 cpu_exit(cpu_single_env);
4139 cpu_single_env->stop = 1;
4140 }
4141 return;
4142 }
4143 do_vm_stop(reason);
4144 }
4145
4146 #endif
4147
4148
4149 #ifdef _WIN32
4150 static void host_main_loop_wait(int *timeout)
4151 {
4152 int ret, ret2, i;
4153 PollingEntry *pe;
4154
4155
4156 /* XXX: need to suppress polling by better using win32 events */
4157 ret = 0;
4158 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
4159 ret |= pe->func(pe->opaque);
4160 }
4161 if (ret == 0) {
4162 int err;
4163 WaitObjects *w = &wait_objects;
4164
4165 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
4166 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
4167 if (w->func[ret - WAIT_OBJECT_0])
4168 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
4169
4170 /* Check for additional signaled events */
4171 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
4172
4173 /* Check if event is signaled */
4174 ret2 = WaitForSingleObject(w->events[i], 0);
4175 if(ret2 == WAIT_OBJECT_0) {
4176 if (w->func[i])
4177 w->func[i](w->opaque[i]);
4178 } else if (ret2 == WAIT_TIMEOUT) {
4179 } else {
4180 err = GetLastError();
4181 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
4182 }
4183 }
4184 } else if (ret == WAIT_TIMEOUT) {
4185 } else {
4186 err = GetLastError();
4187 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
4188 }
4189 }
4190
4191 *timeout = 0;
4192 }
4193 #else
4194 static void host_main_loop_wait(int *timeout)
4195 {
4196 }
4197 #endif
4198
4199 void main_loop_wait(int timeout)
4200 {
4201 IOHandlerRecord *ioh;
4202 fd_set rfds, wfds, xfds;
4203 int ret, nfds;
4204 struct timeval tv;
4205
4206 qemu_bh_update_timeout(&timeout);
4207
4208 host_main_loop_wait(&timeout);
4209
4210 /* poll any events */
4211 /* XXX: separate device handlers from system ones */
4212 nfds = -1;
4213 FD_ZERO(&rfds);
4214 FD_ZERO(&wfds);
4215 FD_ZERO(&xfds);
4216 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4217 if (ioh->deleted)
4218 continue;
4219 if (ioh->fd_read &&
4220 (!ioh->fd_read_poll ||
4221 ioh->fd_read_poll(ioh->opaque) != 0)) {
4222 FD_SET(ioh->fd, &rfds);
4223 if (ioh->fd > nfds)
4224 nfds = ioh->fd;
4225 }
4226 if (ioh->fd_write) {
4227 FD_SET(ioh->fd, &wfds);
4228 if (ioh->fd > nfds)
4229 nfds = ioh->fd;
4230 }
4231 }
4232
4233 tv.tv_sec = timeout / 1000;
4234 tv.tv_usec = (timeout % 1000) * 1000;
4235
4236 #if defined(CONFIG_SLIRP)
4237 if (slirp_is_inited()) {
4238 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4239 }
4240 #endif
4241 qemu_mutex_unlock_iothread();
4242 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4243 qemu_mutex_lock_iothread();
4244 if (ret > 0) {
4245 IOHandlerRecord **pioh;
4246
4247 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4248 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4249 ioh->fd_read(ioh->opaque);
4250 }
4251 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4252 ioh->fd_write(ioh->opaque);
4253 }
4254 }
4255
4256 /* remove deleted IO handlers */
4257 pioh = &first_io_handler;
4258 while (*pioh) {
4259 ioh = *pioh;
4260 if (ioh->deleted) {
4261 *pioh = ioh->next;
4262 qemu_free(ioh);
4263 } else
4264 pioh = &ioh->next;
4265 }
4266 }
4267 #if defined(CONFIG_SLIRP)
4268 if (slirp_is_inited()) {
4269 if (ret < 0) {
4270 FD_ZERO(&rfds);
4271 FD_ZERO(&wfds);
4272 FD_ZERO(&xfds);
4273 }
4274 slirp_select_poll(&rfds, &wfds, &xfds);
4275 }
4276 #endif
4277
4278 /* rearm timer, if not periodic */
4279 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4280 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4281 qemu_rearm_alarm_timer(alarm_timer);
4282 }
4283
4284 /* vm time timers */
4285 if (vm_running) {
4286 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4287 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4288 qemu_get_clock(vm_clock));
4289 }
4290
4291 /* real time timers */
4292 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4293 qemu_get_clock(rt_clock));
4294
4295 /* Check bottom-halves last in case any of the earlier events triggered
4296 them. */
4297 qemu_bh_poll();
4298
4299 }
4300
4301 static int qemu_cpu_exec(CPUState *env)
4302 {
4303 int ret;
4304 #ifdef CONFIG_PROFILER
4305 int64_t ti;
4306 #endif
4307
4308 #ifdef CONFIG_PROFILER
4309 ti = profile_getclock();
4310 #endif
4311 if (use_icount) {
4312 int64_t count;
4313 int decr;
4314 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4315 env->icount_decr.u16.low = 0;
4316 env->icount_extra = 0;
4317 count = qemu_next_deadline();
4318 count = (count + (1 << icount_time_shift) - 1)
4319 >> icount_time_shift;
4320 qemu_icount += count;
4321 decr = (count > 0xffff) ? 0xffff : count;
4322 count -= decr;
4323 env->icount_decr.u16.low = decr;
4324 env->icount_extra = count;
4325 }
4326 ret = cpu_exec(env);
4327 #ifdef CONFIG_PROFILER
4328 qemu_time += profile_getclock() - ti;
4329 #endif
4330 if (use_icount) {
4331 /* Fold pending instructions back into the
4332 instruction counter, and clear the interrupt flag. */
4333 qemu_icount -= (env->icount_decr.u16.low
4334 + env->icount_extra);
4335 env->icount_decr.u32 = 0;
4336 env->icount_extra = 0;
4337 }
4338 return ret;
4339 }
4340
4341 static void tcg_cpu_exec(void)
4342 {
4343 int ret = 0;
4344
4345 if (next_cpu == NULL)
4346 next_cpu = first_cpu;
4347 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4348 CPUState *env = cur_cpu = next_cpu;
4349
4350 if (!vm_running)
4351 break;
4352 if (timer_alarm_pending) {
4353 timer_alarm_pending = 0;
4354 break;
4355 }
4356 if (cpu_can_run(env))
4357 ret = qemu_cpu_exec(env);
4358 if (ret == EXCP_DEBUG) {
4359 gdb_set_stop_cpu(env);
4360 debug_requested = 1;
4361 break;
4362 }
4363 }
4364 }
4365
4366 static int cpu_has_work(CPUState *env)
4367 {
4368 if (env->stop)
4369 return 1;
4370 if (env->stopped)
4371 return 0;
4372 if (!env->halted)
4373 return 1;
4374 if (qemu_cpu_has_work(env))
4375 return 1;
4376 return 0;
4377 }
4378
4379 static int tcg_has_work(void)
4380 {
4381 CPUState *env;
4382
4383 for (env = first_cpu; env != NULL; env = env->next_cpu)
4384 if (cpu_has_work(env))
4385 return 1;
4386 return 0;
4387 }
4388
4389 static int qemu_calculate_timeout(void)
4390 {
4391 int timeout;
4392
4393 if (!vm_running)
4394 timeout = 5000;
4395 else if (tcg_has_work())
4396 timeout = 0;
4397 else if (!use_icount)
4398 timeout = 5000;
4399 else {
4400 /* XXX: use timeout computed from timers */
4401 int64_t add;
4402 int64_t delta;
4403 /* Advance virtual time to the next event. */
4404 if (use_icount == 1) {
4405 /* When not using an adaptive execution frequency
4406 we tend to get badly out of sync with real time,
4407 so just delay for a reasonable amount of time. */
4408 delta = 0;
4409 } else {
4410 delta = cpu_get_icount() - cpu_get_clock();
4411 }
4412 if (delta > 0) {
4413 /* If virtual time is ahead of real time then just
4414 wait for IO. */
4415 timeout = (delta / 1000000) + 1;
4416 } else {
4417 /* Wait for either IO to occur or the next
4418 timer event. */
4419 add = qemu_next_deadline();
4420 /* We advance the timer before checking for IO.
4421 Limit the amount we advance so that early IO
4422 activity won't get the guest too far ahead. */
4423 if (add > 10000000)
4424 add = 10000000;
4425 delta += add;
4426 add = (add + (1 << icount_time_shift) - 1)
4427 >> icount_time_shift;
4428 qemu_icount += add;
4429 timeout = delta / 1000000;
4430 if (timeout < 0)
4431 timeout = 0;
4432 }
4433 }
4434
4435 return timeout;
4436 }
4437
4438 static int vm_can_run(void)
4439 {
4440 if (powerdown_requested)
4441 return 0;
4442 if (reset_requested)
4443 return 0;
4444 if (shutdown_requested)
4445 return 0;
4446 if (debug_requested)
4447 return 0;
4448 return 1;
4449 }
4450
4451 static void main_loop(void)
4452 {
4453 int r;
4454
4455 #ifdef CONFIG_IOTHREAD
4456 qemu_system_ready = 1;
4457 qemu_cond_broadcast(&qemu_system_cond);
4458 #endif
4459
4460 for (;;) {
4461 do {
4462 #ifdef CONFIG_PROFILER
4463 int64_t ti;
4464 #endif
4465 #ifndef CONFIG_IOTHREAD
4466 tcg_cpu_exec();
4467 #endif
4468 #ifdef CONFIG_PROFILER
4469 ti = profile_getclock();
4470 #endif
4471 #ifdef CONFIG_IOTHREAD
4472 main_loop_wait(1000);
4473 #else
4474 main_loop_wait(qemu_calculate_timeout());
4475 #endif
4476 #ifdef CONFIG_PROFILER
4477 dev_time += profile_getclock() - ti;
4478 #endif
4479 } while (vm_can_run());
4480
4481 if (qemu_debug_requested())
4482 vm_stop(EXCP_DEBUG);
4483 if (qemu_shutdown_requested()) {
4484 if (no_shutdown) {
4485 vm_stop(0);
4486 no_shutdown = 0;
4487 } else
4488 break;
4489 }
4490 if (qemu_reset_requested()) {
4491 pause_all_vcpus();
4492 qemu_system_reset();
4493 resume_all_vcpus();
4494 }
4495 if (qemu_powerdown_requested())
4496 qemu_system_powerdown();
4497 if ((r = qemu_vmstop_requested()))
4498 vm_stop(r);
4499 }
4500 pause_all_vcpus();
4501 }
4502
4503 static void version(void)
4504 {
4505 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4506 }
4507
4508 static void help(int exitcode)
4509 {
4510 version();
4511 printf("usage: %s [options] [disk_image]\n"
4512 "\n"
4513 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4514 "\n"
4515 #define DEF(option, opt_arg, opt_enum, opt_help) \
4516 opt_help
4517 #define DEFHEADING(text) stringify(text) "\n"
4518 #include "qemu-options.h"
4519 #undef DEF
4520 #undef DEFHEADING
4521 #undef GEN_DOCS
4522 "\n"
4523 "During emulation, the following keys are useful:\n"
4524 "ctrl-alt-f toggle full screen\n"
4525 "ctrl-alt-n switch to virtual console 'n'\n"
4526 "ctrl-alt toggle mouse and keyboard grab\n"
4527 "\n"
4528 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4529 ,
4530 "qemu",
4531 DEFAULT_RAM_SIZE,
4532 #ifndef _WIN32
4533 DEFAULT_NETWORK_SCRIPT,
4534 DEFAULT_NETWORK_DOWN_SCRIPT,
4535 #endif
4536 DEFAULT_GDBSTUB_PORT,
4537 "/tmp/qemu.log");
4538 exit(exitcode);
4539 }
4540
4541 #define HAS_ARG 0x0001
4542
4543 enum {
4544 #define DEF(option, opt_arg, opt_enum, opt_help) \
4545 opt_enum,
4546 #define DEFHEADING(text)
4547 #include "qemu-options.h"
4548 #undef DEF
4549 #undef DEFHEADING
4550 #undef GEN_DOCS
4551 };
4552
4553 typedef struct QEMUOption {
4554 const char *name;
4555 int flags;
4556 int index;
4557 } QEMUOption;
4558
4559 static const QEMUOption qemu_options[] = {
4560 { "h", 0, QEMU_OPTION_h },
4561 #define DEF(option, opt_arg, opt_enum, opt_help) \
4562 { option, opt_arg, opt_enum },
4563 #define DEFHEADING(text)
4564 #include "qemu-options.h"
4565 #undef DEF
4566 #undef DEFHEADING
4567 #undef GEN_DOCS
4568 { NULL },
4569 };
4570
4571 #ifdef HAS_AUDIO
4572 struct soundhw soundhw[] = {
4573 #ifdef HAS_AUDIO_CHOICE
4574 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4575 {
4576 "pcspk",
4577 "PC speaker",
4578 0,
4579 1,
4580 { .init_isa = pcspk_audio_init }
4581 },
4582 #endif
4583
4584 #ifdef CONFIG_SB16
4585 {
4586 "sb16",
4587 "Creative Sound Blaster 16",
4588 0,
4589 1,
4590 { .init_isa = SB16_init }
4591 },
4592 #endif
4593
4594 #ifdef CONFIG_CS4231A
4595 {
4596 "cs4231a",
4597 "CS4231A",
4598 0,
4599 1,
4600 { .init_isa = cs4231a_init }
4601 },
4602 #endif
4603
4604 #ifdef CONFIG_ADLIB
4605 {
4606 "adlib",
4607 #ifdef HAS_YMF262
4608 "Yamaha YMF262 (OPL3)",
4609 #else
4610 "Yamaha YM3812 (OPL2)",
4611 #endif
4612 0,
4613 1,
4614 { .init_isa = Adlib_init }
4615 },
4616 #endif
4617
4618 #ifdef CONFIG_GUS
4619 {
4620 "gus",
4621 "Gravis Ultrasound GF1",
4622 0,
4623 1,
4624 { .init_isa = GUS_init }
4625 },
4626 #endif
4627
4628 #ifdef CONFIG_AC97
4629 {
4630 "ac97",
4631 "Intel 82801AA AC97 Audio",
4632 0,
4633 0,
4634 { .init_pci = ac97_init }
4635 },
4636 #endif
4637
4638 #ifdef CONFIG_ES1370
4639 {
4640 "es1370",
4641 "ENSONIQ AudioPCI ES1370",
4642 0,
4643 0,
4644 { .init_pci = es1370_init }
4645 },
4646 #endif
4647
4648 #endif /* HAS_AUDIO_CHOICE */
4649
4650 { NULL, NULL, 0, 0, { NULL } }
4651 };
4652
4653 static void select_soundhw (const char *optarg)
4654 {
4655 struct soundhw *c;
4656
4657 if (*optarg == '?') {
4658 show_valid_cards:
4659
4660 printf ("Valid sound card names (comma separated):\n");
4661 for (c = soundhw; c->name; ++c) {
4662 printf ("%-11s %s\n", c->name, c->descr);
4663 }
4664 printf ("\n-soundhw all will enable all of the above\n");
4665 exit (*optarg != '?');
4666 }
4667 else {
4668 size_t l;
4669 const char *p;
4670 char *e;
4671 int bad_card = 0;
4672
4673 if (!strcmp (optarg, "all")) {
4674 for (c = soundhw; c->name; ++c) {
4675 c->enabled = 1;
4676 }
4677 return;
4678 }
4679
4680 p = optarg;
4681 while (*p) {
4682 e = strchr (p, ',');
4683 l = !e ? strlen (p) : (size_t) (e - p);
4684
4685 for (c = soundhw; c->name; ++c) {
4686 if (!strncmp (c->name, p, l)) {
4687 c->enabled = 1;
4688 break;
4689 }
4690 }
4691
4692 if (!c->name) {
4693 if (l > 80) {
4694 fprintf (stderr,
4695 "Unknown sound card name (too big to show)\n");
4696 }
4697 else {
4698 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4699 (int) l, p);
4700 }
4701 bad_card = 1;
4702 }
4703 p += l + (e != NULL);
4704 }
4705
4706 if (bad_card)
4707 goto show_valid_cards;
4708 }
4709 }
4710 #endif
4711
4712 static void select_vgahw (const char *p)
4713 {
4714 const char *opts;
4715
4716 cirrus_vga_enabled = 0;
4717 std_vga_enabled = 0;
4718 vmsvga_enabled = 0;
4719 xenfb_enabled = 0;
4720 if (strstart(p, "std", &opts)) {
4721 std_vga_enabled = 1;
4722 } else if (strstart(p, "cirrus", &opts)) {
4723 cirrus_vga_enabled = 1;
4724 } else if (strstart(p, "vmware", &opts)) {
4725 vmsvga_enabled = 1;
4726 } else if (strstart(p, "xenfb", &opts)) {
4727 xenfb_enabled = 1;
4728 } else if (!strstart(p, "none", &opts)) {
4729 invalid_vga:
4730 fprintf(stderr, "Unknown vga type: %s\n", p);
4731 exit(1);
4732 }
4733 while (*opts) {
4734 const char *nextopt;
4735
4736 if (strstart(opts, ",retrace=", &nextopt)) {
4737 opts = nextopt;
4738 if (strstart(opts, "dumb", &nextopt))
4739 vga_retrace_method = VGA_RETRACE_DUMB;
4740 else if (strstart(opts, "precise", &nextopt))
4741 vga_retrace_method = VGA_RETRACE_PRECISE;
4742 else goto invalid_vga;
4743 } else goto invalid_vga;
4744 opts = nextopt;
4745 }
4746 }
4747
4748 #ifdef _WIN32
4749 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4750 {
4751 exit(STATUS_CONTROL_C_EXIT);
4752 return TRUE;
4753 }
4754 #endif
4755
4756 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4757 {
4758 int ret;
4759
4760 if(strlen(str) != 36)
4761 return -1;
4762
4763 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4764 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4765 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4766
4767 if(ret != 16)
4768 return -1;
4769
4770 #ifdef TARGET_I386
4771 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4772 #endif
4773
4774 return 0;
4775 }
4776
4777 #define MAX_NET_CLIENTS 32
4778
4779 #ifndef _WIN32
4780
4781 static void termsig_handler(int signal)
4782 {
4783 qemu_system_shutdown_request();
4784 }
4785
4786 static void sigchld_handler(int signal)
4787 {
4788 waitpid(-1, NULL, WNOHANG);
4789 }
4790
4791 static void sighandler_setup(void)
4792 {
4793 struct sigaction act;
4794
4795 memset(&act, 0, sizeof(act));
4796 act.sa_handler = termsig_handler;
4797 sigaction(SIGINT, &act, NULL);
4798 sigaction(SIGHUP, &act, NULL);
4799 sigaction(SIGTERM, &act, NULL);
4800
4801 act.sa_handler = sigchld_handler;
4802 act.sa_flags = SA_NOCLDSTOP;
4803 sigaction(SIGCHLD, &act, NULL);
4804 }
4805
4806 #endif
4807
4808 #ifdef _WIN32
4809 /* Look for support files in the same directory as the executable. */
4810 static char *find_datadir(const char *argv0)
4811 {
4812 char *p;
4813 char buf[MAX_PATH];
4814 DWORD len;
4815
4816 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4817 if (len == 0) {
4818 return len;
4819 }
4820
4821 buf[len] = 0;
4822 p = buf + len - 1;
4823 while (p != buf && *p != '\\')
4824 p--;
4825 *p = 0;
4826 if (access(buf, R_OK) == 0) {
4827 return qemu_strdup(buf);
4828 }
4829 return NULL;
4830 }
4831 #else /* !_WIN32 */
4832
4833 /* Find a likely location for support files using the location of the binary.
4834 For installed binaries this will be "$bindir/../share/qemu". When
4835 running from the build tree this will be "$bindir/../pc-bios". */
4836 #define SHARE_SUFFIX "/share/qemu"
4837 #define BUILD_SUFFIX "/pc-bios"
4838 static char *find_datadir(const char *argv0)
4839 {
4840 char *dir;
4841 char *p = NULL;
4842 char *res;
4843 #ifdef PATH_MAX
4844 char buf[PATH_MAX];
4845 #endif
4846
4847 #if defined(__linux__)
4848 {
4849 int len;
4850 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4851 if (len > 0) {
4852 buf[len] = 0;
4853 p = buf;
4854 }
4855 }
4856 #elif defined(__FreeBSD__)
4857 {
4858 int len;
4859 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4860 if (len > 0) {
4861 buf[len] = 0;
4862 p = buf;
4863 }
4864 }
4865 #endif
4866 /* If we don't have any way of figuring out the actual executable
4867 location then try argv[0]. */
4868 if (!p) {
4869 #ifdef PATH_MAX
4870 p = buf;
4871 #endif
4872 p = realpath(argv0, p);
4873 if (!p) {
4874 return NULL;
4875 }
4876 }
4877 dir = dirname(p);
4878 dir = dirname(dir);
4879
4880 res = qemu_mallocz(strlen(dir) +
4881 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1);
4882 sprintf(res, "%s%s", dir, SHARE_SUFFIX);
4883 if (access(res, R_OK)) {
4884 sprintf(res, "%s%s", dir, BUILD_SUFFIX);
4885 if (access(res, R_OK)) {
4886 qemu_free(res);
4887 res = NULL;
4888 }
4889 }
4890 #ifndef PATH_MAX
4891 free(p);
4892 #endif
4893 return res;
4894 }
4895 #undef SHARE_SUFFIX
4896 #undef BUILD_SUFFIX
4897 #endif
4898
4899 char *qemu_find_file(int type, const char *name)
4900 {
4901 int len;
4902 const char *subdir;
4903 char *buf;
4904
4905 /* If name contains path separators then try it as a straight path. */
4906 if ((strchr(name, '/') || strchr(name, '\\'))
4907 && access(name, R_OK) == 0) {
4908 return strdup(name);
4909 }
4910 switch (type) {
4911 case QEMU_FILE_TYPE_BIOS:
4912 subdir = "";
4913 break;
4914 case QEMU_FILE_TYPE_KEYMAP:
4915 subdir = "keymaps/";
4916 break;
4917 default:
4918 abort();
4919 }
4920 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4921 buf = qemu_mallocz(len);
4922 sprintf(buf, "%s/%s%s", data_dir, subdir, name);
4923 if (access(buf, R_OK)) {
4924 qemu_free(buf);
4925 return NULL;
4926 }
4927 return buf;
4928 }
4929
4930 int main(int argc, char **argv, char **envp)
4931 {
4932 const char *gdbstub_dev = NULL;
4933 uint32_t boot_devices_bitmap = 0;
4934 int i;
4935 int snapshot, linux_boot, net_boot;
4936 const char *initrd_filename;
4937 const char *kernel_filename, *kernel_cmdline;
4938 const char *boot_devices = "";
4939 DisplayState *ds;
4940 DisplayChangeListener *dcl;
4941 int cyls, heads, secs, translation;
4942 const char *net_clients[MAX_NET_CLIENTS];
4943 int nb_net_clients;
4944 const char *bt_opts[MAX_BT_CMDLINE];
4945 int nb_bt_opts;
4946 int hda_index;
4947 int optind;
4948 const char *r, *optarg;
4949 CharDriverState *monitor_hd = NULL;
4950 const char *monitor_device;
4951 const char *serial_devices[MAX_SERIAL_PORTS];
4952 int serial_device_index;
4953 const char *parallel_devices[MAX_PARALLEL_PORTS];
4954 int parallel_device_index;
4955 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4956 int virtio_console_index;
4957 const char *loadvm = NULL;
4958 QEMUMachine *machine;
4959 const char *cpu_model;
4960 const char *usb_devices[MAX_USB_CMDLINE];
4961 int usb_devices_index;
4962 #ifndef _WIN32
4963 int fds[2];
4964 #endif
4965 int tb_size;
4966 const char *pid_file = NULL;
4967 const char *incoming = NULL;
4968 #ifndef _WIN32
4969 int fd = 0;
4970 struct passwd *pwd = NULL;
4971 const char *chroot_dir = NULL;
4972 const char *run_as = NULL;
4973 #endif
4974 CPUState *env;
4975 int show_vnc_port = 0;
4976
4977 qemu_cache_utils_init(envp);
4978
4979 LIST_INIT (&vm_change_state_head);
4980 #ifndef _WIN32
4981 {
4982 struct sigaction act;
4983 sigfillset(&act.sa_mask);
4984 act.sa_flags = 0;
4985 act.sa_handler = SIG_IGN;
4986 sigaction(SIGPIPE, &act, NULL);
4987 }
4988 #else
4989 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4990 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4991 QEMU to run on a single CPU */
4992 {
4993 HANDLE h;
4994 DWORD mask, smask;
4995 int i;
4996 h = GetCurrentProcess();
4997 if (GetProcessAffinityMask(h, &mask, &smask)) {
4998 for(i = 0; i < 32; i++) {
4999 if (mask & (1 << i))
5000 break;
5001 }
5002 if (i != 32) {
5003 mask = 1 << i;
5004 SetProcessAffinityMask(h, mask);
5005 }
5006 }
5007 }
5008 #endif
5009
5010 module_call_init(MODULE_INIT_MACHINE);
5011 machine = find_default_machine();
5012 cpu_model = NULL;
5013 initrd_filename = NULL;
5014 ram_size = 0;
5015 snapshot = 0;
5016 kernel_filename = NULL;
5017 kernel_cmdline = "";
5018 cyls = heads = secs = 0;
5019 translation = BIOS_ATA_TRANSLATION_AUTO;
5020 monitor_device = "vc:80Cx24C";
5021
5022 serial_devices[0] = "vc:80Cx24C";
5023 for(i = 1; i < MAX_SERIAL_PORTS; i++)
5024 serial_devices[i] = NULL;
5025 serial_device_index = 0;
5026
5027 parallel_devices[0] = "vc:80Cx24C";
5028 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
5029 parallel_devices[i] = NULL;
5030 parallel_device_index = 0;
5031
5032 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
5033 virtio_consoles[i] = NULL;
5034 virtio_console_index = 0;
5035
5036 for (i = 0; i < MAX_NODES; i++) {
5037 node_mem[i] = 0;
5038 node_cpumask[i] = 0;
5039 }
5040
5041 usb_devices_index = 0;
5042
5043 nb_net_clients = 0;
5044 nb_bt_opts = 0;
5045 nb_drives = 0;
5046 nb_drives_opt = 0;
5047 nb_numa_nodes = 0;
5048 hda_index = -1;
5049
5050 nb_nics = 0;
5051
5052 tb_size = 0;
5053 autostart= 1;
5054
5055 register_watchdogs();
5056
5057 optind = 1;
5058 for(;;) {
5059 if (optind >= argc)
5060 break;
5061 r = argv[optind];
5062 if (r[0] != '-') {
5063 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
5064 } else {
5065 const QEMUOption *popt;
5066
5067 optind++;
5068 /* Treat --foo the same as -foo. */
5069 if (r[1] == '-')
5070 r++;
5071 popt = qemu_options;
5072 for(;;) {
5073 if (!popt->name) {
5074 fprintf(stderr, "%s: invalid option -- '%s'\n",
5075 argv[0], r);
5076 exit(1);
5077 }
5078 if (!strcmp(popt->name, r + 1))
5079 break;
5080 popt++;
5081 }
5082 if (popt->flags & HAS_ARG) {
5083 if (optind >= argc) {
5084 fprintf(stderr, "%s: option '%s' requires an argument\n",
5085 argv[0], r);
5086 exit(1);
5087 }
5088 optarg = argv[optind++];
5089 } else {
5090 optarg = NULL;
5091 }
5092
5093 switch(popt->index) {
5094 case QEMU_OPTION_M:
5095 machine = find_machine(optarg);
5096 if (!machine) {
5097 QEMUMachine *m;
5098 printf("Supported machines are:\n");
5099 for(m = first_machine; m != NULL; m = m->next) {
5100 printf("%-10s %s%s\n",
5101 m->name, m->desc,
5102 m->is_default ? " (default)" : "");
5103 }
5104 exit(*optarg != '?');
5105 }
5106 break;
5107 case QEMU_OPTION_cpu:
5108 /* hw initialization will check this */
5109 if (*optarg == '?') {
5110 /* XXX: implement xxx_cpu_list for targets that still miss it */
5111 #if defined(cpu_list)
5112 cpu_list(stdout, &fprintf);
5113 #endif
5114 exit(0);
5115 } else {
5116 cpu_model = optarg;
5117 }
5118 break;
5119 case QEMU_OPTION_initrd:
5120 initrd_filename = optarg;
5121 break;
5122 case QEMU_OPTION_hda:
5123 if (cyls == 0)
5124 hda_index = drive_add(optarg, HD_ALIAS, 0);
5125 else
5126 hda_index = drive_add(optarg, HD_ALIAS
5127 ",cyls=%d,heads=%d,secs=%d%s",
5128 0, cyls, heads, secs,
5129 translation == BIOS_ATA_TRANSLATION_LBA ?
5130 ",trans=lba" :
5131 translation == BIOS_ATA_TRANSLATION_NONE ?
5132 ",trans=none" : "");
5133 break;
5134 case QEMU_OPTION_hdb:
5135 case QEMU_OPTION_hdc:
5136 case QEMU_OPTION_hdd:
5137 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
5138 break;
5139 case QEMU_OPTION_drive:
5140 drive_add(NULL, "%s", optarg);
5141 break;
5142 case QEMU_OPTION_mtdblock:
5143 drive_add(optarg, MTD_ALIAS);
5144 break;
5145 case QEMU_OPTION_sd:
5146 drive_add(optarg, SD_ALIAS);
5147 break;
5148 case QEMU_OPTION_pflash:
5149 drive_add(optarg, PFLASH_ALIAS);
5150 break;
5151 case QEMU_OPTION_snapshot:
5152 snapshot = 1;
5153 break;
5154 case QEMU_OPTION_hdachs:
5155 {
5156 const char *p;
5157 p = optarg;
5158 cyls = strtol(p, (char **)&p, 0);
5159 if (cyls < 1 || cyls > 16383)
5160 goto chs_fail;
5161 if (*p != ',')
5162 goto chs_fail;
5163 p++;
5164 heads = strtol(p, (char **)&p, 0);
5165 if (heads < 1 || heads > 16)
5166 goto chs_fail;
5167 if (*p != ',')
5168 goto chs_fail;
5169 p++;
5170 secs = strtol(p, (char **)&p, 0);
5171 if (secs < 1 || secs > 63)
5172 goto chs_fail;
5173 if (*p == ',') {
5174 p++;
5175 if (!strcmp(p, "none"))
5176 translation = BIOS_ATA_TRANSLATION_NONE;
5177 else if (!strcmp(p, "lba"))
5178 translation = BIOS_ATA_TRANSLATION_LBA;
5179 else if (!strcmp(p, "auto"))
5180 translation = BIOS_ATA_TRANSLATION_AUTO;
5181 else
5182 goto chs_fail;
5183 } else if (*p != '\0') {
5184 chs_fail:
5185 fprintf(stderr, "qemu: invalid physical CHS format\n");
5186 exit(1);
5187 }
5188 if (hda_index != -1)
5189 snprintf(drives_opt[hda_index].opt,
5190 sizeof(drives_opt[hda_index].opt),
5191 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
5192 0, cyls, heads, secs,
5193 translation == BIOS_ATA_TRANSLATION_LBA ?
5194 ",trans=lba" :
5195 translation == BIOS_ATA_TRANSLATION_NONE ?
5196 ",trans=none" : "");
5197 }
5198 break;
5199 case QEMU_OPTION_numa:
5200 if (nb_numa_nodes >= MAX_NODES) {
5201 fprintf(stderr, "qemu: too many NUMA nodes\n");
5202 exit(1);
5203 }
5204 numa_add(optarg);
5205 break;
5206 case QEMU_OPTION_nographic:
5207 display_type = DT_NOGRAPHIC;
5208 break;
5209 #ifdef CONFIG_CURSES
5210 case QEMU_OPTION_curses:
5211 display_type = DT_CURSES;
5212 break;
5213 #endif
5214 case QEMU_OPTION_portrait:
5215 graphic_rotate = 1;
5216 break;
5217 case QEMU_OPTION_kernel:
5218 kernel_filename = optarg;
5219 break;
5220 case QEMU_OPTION_append:
5221 kernel_cmdline = optarg;
5222 break;
5223 case QEMU_OPTION_cdrom:
5224 drive_add(optarg, CDROM_ALIAS);
5225 break;
5226 case QEMU_OPTION_boot:
5227 boot_devices = optarg;
5228 /* We just do some generic consistency checks */
5229 {
5230 /* Could easily be extended to 64 devices if needed */
5231 const char *p;
5232
5233 boot_devices_bitmap = 0;
5234 for (p = boot_devices; *p != '\0'; p++) {
5235 /* Allowed boot devices are:
5236 * a b : floppy disk drives
5237 * c ... f : IDE disk drives
5238 * g ... m : machine implementation dependant drives
5239 * n ... p : network devices
5240 * It's up to each machine implementation to check
5241 * if the given boot devices match the actual hardware
5242 * implementation and firmware features.
5243 */
5244 if (*p < 'a' || *p > 'q') {
5245 fprintf(stderr, "Invalid boot device '%c'\n", *p);
5246 exit(1);
5247 }
5248 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
5249 fprintf(stderr,
5250 "Boot device '%c' was given twice\n",*p);
5251 exit(1);
5252 }
5253 boot_devices_bitmap |= 1 << (*p - 'a');
5254 }
5255 }
5256 break;
5257 case QEMU_OPTION_fda:
5258 case QEMU_OPTION_fdb:
5259 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5260 break;
5261 #ifdef TARGET_I386
5262 case QEMU_OPTION_no_fd_bootchk:
5263 fd_bootchk = 0;
5264 break;
5265 #endif
5266 case QEMU_OPTION_net:
5267 if (nb_net_clients >= MAX_NET_CLIENTS) {
5268 fprintf(stderr, "qemu: too many network clients\n");
5269 exit(1);
5270 }
5271 net_clients[nb_net_clients] = optarg;
5272 nb_net_clients++;
5273 break;
5274 #ifdef CONFIG_SLIRP
5275 case QEMU_OPTION_tftp:
5276 tftp_prefix = optarg;
5277 break;
5278 case QEMU_OPTION_bootp:
5279 bootp_filename = optarg;
5280 break;
5281 #ifndef _WIN32
5282 case QEMU_OPTION_smb:
5283 net_slirp_smb(optarg);
5284 break;
5285 #endif
5286 case QEMU_OPTION_redir:
5287 net_slirp_redir(NULL, optarg, NULL);
5288 break;
5289 #endif
5290 case QEMU_OPTION_bt:
5291 if (nb_bt_opts >= MAX_BT_CMDLINE) {
5292 fprintf(stderr, "qemu: too many bluetooth options\n");
5293 exit(1);
5294 }
5295 bt_opts[nb_bt_opts++] = optarg;
5296 break;
5297 #ifdef HAS_AUDIO
5298 case QEMU_OPTION_audio_help:
5299 AUD_help ();
5300 exit (0);
5301 break;
5302 case QEMU_OPTION_soundhw:
5303 select_soundhw (optarg);
5304 break;
5305 #endif
5306 case QEMU_OPTION_h:
5307 help(0);
5308 break;
5309 case QEMU_OPTION_version:
5310 version();
5311 exit(0);
5312 break;
5313 case QEMU_OPTION_m: {
5314 uint64_t value;
5315 char *ptr;
5316
5317 value = strtoul(optarg, &ptr, 10);
5318 switch (*ptr) {
5319 case 0: case 'M': case 'm':
5320 value <<= 20;
5321 break;
5322 case 'G': case 'g':
5323 value <<= 30;
5324 break;
5325 default:
5326 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5327 exit(1);
5328 }
5329
5330 /* On 32-bit hosts, QEMU is limited by virtual address space */
5331 if (value > (2047 << 20)
5332 #ifndef CONFIG_KQEMU
5333 && HOST_LONG_BITS == 32
5334 #endif
5335 ) {
5336 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5337 exit(1);
5338 }
5339 if (value != (uint64_t)(ram_addr_t)value) {
5340 fprintf(stderr, "qemu: ram size too large\n");
5341 exit(1);
5342 }
5343 ram_size = value;
5344 break;
5345 }
5346 case QEMU_OPTION_d:
5347 {
5348 int mask;
5349 const CPULogItem *item;
5350
5351 mask = cpu_str_to_log_mask(optarg);
5352 if (!mask) {
5353 printf("Log items (comma separated):\n");
5354 for(item = cpu_log_items; item->mask != 0; item++) {
5355 printf("%-10s %s\n", item->name, item->help);
5356 }
5357 exit(1);
5358 }
5359 cpu_set_log(mask);
5360 }
5361 break;
5362 case QEMU_OPTION_s:
5363 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5364 break;
5365 case QEMU_OPTION_gdb:
5366 gdbstub_dev = optarg;
5367 break;
5368 case QEMU_OPTION_L:
5369 data_dir = optarg;
5370 break;
5371 case QEMU_OPTION_bios:
5372 bios_name = optarg;
5373 break;
5374 case QEMU_OPTION_singlestep:
5375 singlestep = 1;
5376 break;
5377 case QEMU_OPTION_S:
5378 autostart = 0;
5379 break;
5380 #ifndef _WIN32
5381 case QEMU_OPTION_k:
5382 keyboard_layout = optarg;
5383 break;
5384 #endif
5385 case QEMU_OPTION_localtime:
5386 rtc_utc = 0;
5387 break;
5388 case QEMU_OPTION_vga:
5389 select_vgahw (optarg);
5390 break;
5391 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5392 case QEMU_OPTION_g:
5393 {
5394 const char *p;
5395 int w, h, depth;
5396 p = optarg;
5397 w = strtol(p, (char **)&p, 10);
5398 if (w <= 0) {
5399 graphic_error:
5400 fprintf(stderr, "qemu: invalid resolution or depth\n");
5401 exit(1);
5402 }
5403 if (*p != 'x')
5404 goto graphic_error;
5405 p++;
5406 h = strtol(p, (char **)&p, 10);
5407 if (h <= 0)
5408 goto graphic_error;
5409 if (*p == 'x') {
5410 p++;
5411 depth = strtol(p, (char **)&p, 10);
5412 if (depth != 8 && depth != 15 && depth != 16 &&
5413 depth != 24 && depth != 32)
5414 goto graphic_error;
5415 } else if (*p == '\0') {
5416 depth = graphic_depth;
5417 } else {
5418 goto graphic_error;
5419 }
5420
5421 graphic_width = w;
5422 graphic_height = h;
5423 graphic_depth = depth;
5424 }
5425 break;
5426 #endif
5427 case QEMU_OPTION_echr:
5428 {
5429 char *r;
5430 term_escape_char = strtol(optarg, &r, 0);
5431 if (r == optarg)
5432 printf("Bad argument to echr\n");
5433 break;
5434 }
5435 case QEMU_OPTION_monitor:
5436 monitor_device = optarg;
5437 break;
5438 case QEMU_OPTION_serial:
5439 if (serial_device_index >= MAX_SERIAL_PORTS) {
5440 fprintf(stderr, "qemu: too many serial ports\n");
5441 exit(1);
5442 }
5443 serial_devices[serial_device_index] = optarg;
5444 serial_device_index++;
5445 break;
5446 case QEMU_OPTION_watchdog:
5447 i = select_watchdog(optarg);
5448 if (i > 0)
5449 exit (i == 1 ? 1 : 0);
5450 break;
5451 case QEMU_OPTION_watchdog_action:
5452 if (select_watchdog_action(optarg) == -1) {
5453 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5454 exit(1);
5455 }
5456 break;
5457 case QEMU_OPTION_virtiocon:
5458 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5459 fprintf(stderr, "qemu: too many virtio consoles\n");
5460 exit(1);
5461 }
5462 virtio_consoles[virtio_console_index] = optarg;
5463 virtio_console_index++;
5464 break;
5465 case QEMU_OPTION_parallel:
5466 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5467 fprintf(stderr, "qemu: too many parallel ports\n");
5468 exit(1);
5469 }
5470 parallel_devices[parallel_device_index] = optarg;
5471 parallel_device_index++;
5472 break;
5473 case QEMU_OPTION_loadvm:
5474 loadvm = optarg;
5475 break;
5476 case QEMU_OPTION_full_screen:
5477 full_screen = 1;
5478 break;
5479 #ifdef CONFIG_SDL
5480 case QEMU_OPTION_no_frame:
5481 no_frame = 1;
5482 break;
5483 case QEMU_OPTION_alt_grab:
5484 alt_grab = 1;
5485 break;
5486 case QEMU_OPTION_no_quit:
5487 no_quit = 1;
5488 break;
5489 case QEMU_OPTION_sdl:
5490 display_type = DT_SDL;
5491 break;
5492 #endif
5493 case QEMU_OPTION_pidfile:
5494 pid_file = optarg;
5495 break;
5496 #ifdef TARGET_I386
5497 case QEMU_OPTION_win2k_hack:
5498 win2k_install_hack = 1;
5499 break;
5500 case QEMU_OPTION_rtc_td_hack:
5501 rtc_td_hack = 1;
5502 break;
5503 case QEMU_OPTION_acpitable:
5504 if(acpi_table_add(optarg) < 0) {
5505 fprintf(stderr, "Wrong acpi table provided\n");
5506 exit(1);
5507 }
5508 break;
5509 case QEMU_OPTION_smbios:
5510 if(smbios_entry_add(optarg) < 0) {
5511 fprintf(stderr, "Wrong smbios provided\n");
5512 exit(1);
5513 }
5514 break;
5515 #endif
5516 #ifdef CONFIG_KQEMU
5517 case QEMU_OPTION_no_kqemu:
5518 kqemu_allowed = 0;
5519 break;
5520 case QEMU_OPTION_kernel_kqemu:
5521 kqemu_allowed = 2;
5522 break;
5523 #endif
5524 #ifdef CONFIG_KVM
5525 case QEMU_OPTION_enable_kvm:
5526 kvm_allowed = 1;
5527 #ifdef CONFIG_KQEMU
5528 kqemu_allowed = 0;
5529 #endif
5530 break;
5531 #endif
5532 case QEMU_OPTION_usb:
5533 usb_enabled = 1;
5534 break;
5535 case QEMU_OPTION_usbdevice:
5536 usb_enabled = 1;
5537 if (usb_devices_index >= MAX_USB_CMDLINE) {
5538 fprintf(stderr, "Too many USB devices\n");
5539 exit(1);
5540 }
5541 usb_devices[usb_devices_index] = optarg;
5542 usb_devices_index++;
5543 break;
5544 case QEMU_OPTION_smp:
5545 smp_cpus = atoi(optarg);
5546 if (smp_cpus < 1) {
5547 fprintf(stderr, "Invalid number of CPUs\n");
5548 exit(1);
5549 }
5550 break;
5551 case QEMU_OPTION_vnc:
5552 display_type = DT_VNC;
5553 vnc_display = optarg;
5554 break;
5555 #ifdef TARGET_I386
5556 case QEMU_OPTION_no_acpi:
5557 acpi_enabled = 0;
5558 break;
5559 case QEMU_OPTION_no_hpet:
5560 no_hpet = 1;
5561 break;
5562 #endif
5563 case QEMU_OPTION_no_reboot:
5564 no_reboot = 1;
5565 break;
5566 case QEMU_OPTION_no_shutdown:
5567 no_shutdown = 1;
5568 break;
5569 case QEMU_OPTION_show_cursor:
5570 cursor_hide = 0;
5571 break;
5572 case QEMU_OPTION_uuid:
5573 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5574 fprintf(stderr, "Fail to parse UUID string."
5575 " Wrong format.\n");
5576 exit(1);
5577 }
5578 break;
5579 #ifndef _WIN32
5580 case QEMU_OPTION_daemonize:
5581 daemonize = 1;
5582 break;
5583 #endif
5584 case QEMU_OPTION_option_rom:
5585 if (nb_option_roms >= MAX_OPTION_ROMS) {
5586 fprintf(stderr, "Too many option ROMs\n");
5587 exit(1);
5588 }
5589 option_rom[nb_option_roms] = optarg;
5590 nb_option_roms++;
5591 break;
5592 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5593 case QEMU_OPTION_semihosting:
5594 semihosting_enabled = 1;
5595 break;
5596 #endif
5597 case QEMU_OPTION_name:
5598 qemu_name = optarg;
5599 break;
5600 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5601 case QEMU_OPTION_prom_env:
5602 if (nb_prom_envs >= MAX_PROM_ENVS) {
5603 fprintf(stderr, "Too many prom variables\n");
5604 exit(1);
5605 }
5606 prom_envs[nb_prom_envs] = optarg;
5607 nb_prom_envs++;
5608 break;
5609 #endif
5610 #ifdef TARGET_ARM
5611 case QEMU_OPTION_old_param:
5612 old_param = 1;
5613 break;
5614 #endif
5615 case QEMU_OPTION_clock:
5616 configure_alarms(optarg);
5617 break;
5618 case QEMU_OPTION_startdate:
5619 {
5620 struct tm tm;
5621 time_t rtc_start_date;
5622 if (!strcmp(optarg, "now")) {
5623 rtc_date_offset = -1;
5624 } else {
5625 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5626 &tm.tm_year,
5627 &tm.tm_mon,
5628 &tm.tm_mday,
5629 &tm.tm_hour,
5630 &tm.tm_min,
5631 &tm.tm_sec) == 6) {
5632 /* OK */
5633 } else if (sscanf(optarg, "%d-%d-%d",
5634 &tm.tm_year,
5635 &tm.tm_mon,
5636 &tm.tm_mday) == 3) {
5637 tm.tm_hour = 0;
5638 tm.tm_min = 0;
5639 tm.tm_sec = 0;
5640 } else {
5641 goto date_fail;
5642 }
5643 tm.tm_year -= 1900;
5644 tm.tm_mon--;
5645 rtc_start_date = mktimegm(&tm);
5646 if (rtc_start_date == -1) {
5647 date_fail:
5648 fprintf(stderr, "Invalid date format. Valid format are:\n"
5649 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5650 exit(1);
5651 }
5652 rtc_date_offset = time(NULL) - rtc_start_date;
5653 }
5654 }
5655 break;
5656 case QEMU_OPTION_tb_size:
5657 tb_size = strtol(optarg, NULL, 0);
5658 if (tb_size < 0)
5659 tb_size = 0;
5660 break;
5661 case QEMU_OPTION_icount:
5662 use_icount = 1;
5663 if (strcmp(optarg, "auto") == 0) {
5664 icount_time_shift = -1;
5665 } else {
5666 icount_time_shift = strtol(optarg, NULL, 0);
5667 }
5668 break;
5669 case QEMU_OPTION_incoming:
5670 incoming = optarg;
5671 break;
5672 #ifndef _WIN32
5673 case QEMU_OPTION_chroot:
5674 chroot_dir = optarg;
5675 break;
5676 case QEMU_OPTION_runas:
5677 run_as = optarg;
5678 break;
5679 #endif
5680 #ifdef CONFIG_XEN
5681 case QEMU_OPTION_xen_domid:
5682 xen_domid = atoi(optarg);
5683 break;
5684 case QEMU_OPTION_xen_create:
5685 xen_mode = XEN_CREATE;
5686 break;
5687 case QEMU_OPTION_xen_attach:
5688 xen_mode = XEN_ATTACH;
5689 break;
5690 #endif
5691 }
5692 }
5693 }
5694
5695 /* If no data_dir is specified then try to find it relative to the
5696 executable path. */
5697 if (!data_dir) {
5698 data_dir = find_datadir(argv[0]);
5699 }
5700 /* If all else fails use the install patch specified when building. */
5701 if (!data_dir) {
5702 data_dir = CONFIG_QEMU_SHAREDIR;
5703 }
5704
5705 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5706 if (kvm_allowed && kqemu_allowed) {
5707 fprintf(stderr,
5708 "You can not enable both KVM and kqemu at the same time\n");
5709 exit(1);
5710 }
5711 #endif
5712
5713 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5714 if (smp_cpus > machine->max_cpus) {
5715 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5716 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5717 machine->max_cpus);
5718 exit(1);
5719 }
5720
5721 if (display_type == DT_NOGRAPHIC) {
5722 if (serial_device_index == 0)
5723 serial_devices[0] = "stdio";
5724 if (parallel_device_index == 0)
5725 parallel_devices[0] = "null";
5726 if (strncmp(monitor_device, "vc", 2) == 0)
5727 monitor_device = "stdio";
5728 }
5729
5730 #ifndef _WIN32
5731 if (daemonize) {
5732 pid_t pid;
5733
5734 if (pipe(fds) == -1)
5735 exit(1);
5736
5737 pid = fork();
5738 if (pid > 0) {
5739 uint8_t status;
5740 ssize_t len;
5741
5742 close(fds[1]);
5743
5744 again:
5745 len = read(fds[0], &status, 1);
5746 if (len == -1 && (errno == EINTR))
5747 goto again;
5748
5749 if (len != 1)
5750 exit(1);
5751 else if (status == 1) {
5752 fprintf(stderr, "Could not acquire pidfile\n");
5753 exit(1);
5754 } else
5755 exit(0);
5756 } else if (pid < 0)
5757 exit(1);
5758
5759 setsid();
5760
5761 pid = fork();
5762 if (pid > 0)
5763 exit(0);
5764 else if (pid < 0)
5765 exit(1);
5766
5767 umask(027);
5768
5769 signal(SIGTSTP, SIG_IGN);
5770 signal(SIGTTOU, SIG_IGN);
5771 signal(SIGTTIN, SIG_IGN);
5772 }
5773
5774 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5775 if (daemonize) {
5776 uint8_t status = 1;
5777 write(fds[1], &status, 1);
5778 } else
5779 fprintf(stderr, "Could not acquire pid file\n");
5780 exit(1);
5781 }
5782 #endif
5783
5784 #ifdef CONFIG_KQEMU
5785 if (smp_cpus > 1)
5786 kqemu_allowed = 0;
5787 #endif
5788 if (qemu_init_main_loop()) {
5789 fprintf(stderr, "qemu_init_main_loop failed\n");
5790 exit(1);
5791 }
5792 linux_boot = (kernel_filename != NULL);
5793 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5794
5795 if (!linux_boot && *kernel_cmdline != '\0') {
5796 fprintf(stderr, "-append only allowed with -kernel option\n");
5797 exit(1);
5798 }
5799
5800 if (!linux_boot && initrd_filename != NULL) {
5801 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5802 exit(1);
5803 }
5804
5805 /* boot to floppy or the default cd if no hard disk defined yet */
5806 if (!boot_devices[0]) {
5807 boot_devices = "cad";
5808 }
5809 setvbuf(stdout, NULL, _IOLBF, 0);
5810
5811 init_timers();
5812 if (init_timer_alarm() < 0) {
5813 fprintf(stderr, "could not initialize alarm timer\n");
5814 exit(1);
5815 }
5816 if (use_icount && icount_time_shift < 0) {
5817 use_icount = 2;
5818 /* 125MIPS seems a reasonable initial guess at the guest speed.
5819 It will be corrected fairly quickly anyway. */
5820 icount_time_shift = 3;
5821 init_icount_adjust();
5822 }
5823
5824 #ifdef _WIN32
5825 socket_init();
5826 #endif
5827
5828 /* init network clients */
5829 if (nb_net_clients == 0) {
5830 /* if no clients, we use a default config */
5831 net_clients[nb_net_clients++] = "nic";
5832 #ifdef CONFIG_SLIRP
5833 net_clients[nb_net_clients++] = "user";
5834 #endif
5835 }
5836
5837 for(i = 0;i < nb_net_clients; i++) {
5838 if (net_client_parse(net_clients[i]) < 0)
5839 exit(1);
5840 }
5841 net_client_check();
5842
5843 #ifdef TARGET_I386
5844 /* XXX: this should be moved in the PC machine instantiation code */
5845 if (net_boot != 0) {
5846 int netroms = 0;
5847 for (i = 0; i < nb_nics && i < 4; i++) {
5848 const char *model = nd_table[i].model;
5849 char buf[1024];
5850 char *filename;
5851 if (net_boot & (1 << i)) {
5852 if (model == NULL)
5853 model = "ne2k_pci";
5854 snprintf(buf, sizeof(buf), "pxe-%s.bin", model);
5855 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, buf);
5856 if (filename && get_image_size(filename) > 0) {
5857 if (nb_option_roms >= MAX_OPTION_ROMS) {
5858 fprintf(stderr, "Too many option ROMs\n");
5859 exit(1);
5860 }
5861 option_rom[nb_option_roms] = qemu_strdup(buf);
5862 nb_option_roms++;
5863 netroms++;
5864 }
5865 if (filename) {
5866 qemu_free(filename);
5867 }
5868 }
5869 }
5870 if (netroms == 0) {
5871 fprintf(stderr, "No valid PXE rom found for network device\n");
5872 exit(1);
5873 }
5874 }
5875 #endif
5876
5877 /* init the bluetooth world */
5878 for (i = 0; i < nb_bt_opts; i++)
5879 if (bt_parse(bt_opts[i]))
5880 exit(1);
5881
5882 /* init the memory */
5883 if (ram_size == 0)
5884 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5885
5886 #ifdef CONFIG_KQEMU
5887 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5888 guest ram allocation. It needs to go away. */
5889 if (kqemu_allowed) {
5890 kqemu_phys_ram_size = ram_size + 8 * 1024 * 1024 + 4 * 1024 * 1024;
5891 kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
5892 if (!kqemu_phys_ram_base) {
5893 fprintf(stderr, "Could not allocate physical memory\n");
5894 exit(1);
5895 }
5896 }
5897 #endif
5898
5899 /* init the dynamic translator */
5900 cpu_exec_init_all(tb_size * 1024 * 1024);
5901
5902 bdrv_init();
5903
5904 /* we always create the cdrom drive, even if no disk is there */
5905
5906 if (nb_drives_opt < MAX_DRIVES)
5907 drive_add(NULL, CDROM_ALIAS);
5908
5909 /* we always create at least one floppy */
5910
5911 if (nb_drives_opt < MAX_DRIVES)
5912 drive_add(NULL, FD_ALIAS, 0);
5913
5914 /* we always create one sd slot, even if no card is in it */
5915
5916 if (nb_drives_opt < MAX_DRIVES)
5917 drive_add(NULL, SD_ALIAS);
5918
5919 /* open the virtual block devices */
5920
5921 for(i = 0; i < nb_drives_opt; i++)
5922 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5923 exit(1);
5924
5925 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5926 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5927
5928 #ifndef _WIN32
5929 /* must be after terminal init, SDL library changes signal handlers */
5930 sighandler_setup();
5931 #endif
5932
5933 /* Maintain compatibility with multiple stdio monitors */
5934 if (!strcmp(monitor_device,"stdio")) {
5935 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5936 const char *devname = serial_devices[i];
5937 if (devname && !strcmp(devname,"mon:stdio")) {
5938 monitor_device = NULL;
5939 break;
5940 } else if (devname && !strcmp(devname,"stdio")) {
5941 monitor_device = NULL;
5942 serial_devices[i] = "mon:stdio";
5943 break;
5944 }
5945 }
5946 }
5947
5948 if (nb_numa_nodes > 0) {
5949 int i;
5950
5951 if (nb_numa_nodes > smp_cpus) {
5952 nb_numa_nodes = smp_cpus;
5953 }
5954
5955 /* If no memory size if given for any node, assume the default case
5956 * and distribute the available memory equally across all nodes
5957 */
5958 for (i = 0; i < nb_numa_nodes; i++) {
5959 if (node_mem[i] != 0)
5960 break;
5961 }
5962 if (i == nb_numa_nodes) {
5963 uint64_t usedmem = 0;
5964
5965 /* On Linux, the each node's border has to be 8MB aligned,
5966 * the final node gets the rest.
5967 */
5968 for (i = 0; i < nb_numa_nodes - 1; i++) {
5969 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5970 usedmem += node_mem[i];
5971 }
5972 node_mem[i] = ram_size - usedmem;
5973 }
5974
5975 for (i = 0; i < nb_numa_nodes; i++) {
5976 if (node_cpumask[i] != 0)
5977 break;
5978 }
5979 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5980 * must cope with this anyway, because there are BIOSes out there in
5981 * real machines which also use this scheme.
5982 */
5983 if (i == nb_numa_nodes) {
5984 for (i = 0; i < smp_cpus; i++) {
5985 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5986 }
5987 }
5988 }
5989
5990 if (kvm_enabled()) {
5991 int ret;
5992
5993 ret = kvm_init(smp_cpus);
5994 if (ret < 0) {
5995 fprintf(stderr, "failed to initialize KVM\n");
5996 exit(1);
5997 }
5998 }
5999
6000 if (monitor_device) {
6001 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
6002 if (!monitor_hd) {
6003 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
6004 exit(1);
6005 }
6006 }
6007
6008 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6009 const char *devname = serial_devices[i];
6010 if (devname && strcmp(devname, "none")) {
6011 char label[32];
6012 snprintf(label, sizeof(label), "serial%d", i);
6013 serial_hds[i] = qemu_chr_open(label, devname, NULL);
6014 if (!serial_hds[i]) {
6015 fprintf(stderr, "qemu: could not open serial device '%s'\n",
6016 devname);
6017 exit(1);
6018 }
6019 }
6020 }
6021
6022 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6023 const char *devname = parallel_devices[i];
6024 if (devname && strcmp(devname, "none")) {
6025 char label[32];
6026 snprintf(label, sizeof(label), "parallel%d", i);
6027 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
6028 if (!parallel_hds[i]) {
6029 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
6030 devname);
6031 exit(1);
6032 }
6033 }
6034 }
6035
6036 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6037 const char *devname = virtio_consoles[i];
6038 if (devname && strcmp(devname, "none")) {
6039 char label[32];
6040 snprintf(label, sizeof(label), "virtcon%d", i);
6041 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
6042 if (!virtcon_hds[i]) {
6043 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
6044 devname);
6045 exit(1);
6046 }
6047 }
6048 }
6049
6050 module_call_init(MODULE_INIT_DEVICE);
6051
6052 machine->init(ram_size, boot_devices,
6053 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
6054
6055
6056 for (env = first_cpu; env != NULL; env = env->next_cpu) {
6057 for (i = 0; i < nb_numa_nodes; i++) {
6058 if (node_cpumask[i] & (1 << env->cpu_index)) {
6059 env->numa_node = i;
6060 }
6061 }
6062 }
6063
6064 current_machine = machine;
6065
6066 /* Set KVM's vcpu state to qemu's initial CPUState. */
6067 if (kvm_enabled()) {
6068 int ret;
6069
6070 ret = kvm_sync_vcpus();
6071 if (ret < 0) {
6072 fprintf(stderr, "failed to initialize vcpus\n");
6073 exit(1);
6074 }
6075 }
6076
6077 /* init USB devices */
6078 if (usb_enabled) {
6079 for(i = 0; i < usb_devices_index; i++) {
6080 if (usb_device_add(usb_devices[i], 0) < 0) {
6081 fprintf(stderr, "Warning: could not add USB device %s\n",
6082 usb_devices[i]);
6083 }
6084 }
6085 }
6086
6087 if (!display_state)
6088 dumb_display_init();
6089 /* just use the first displaystate for the moment */
6090 ds = display_state;
6091
6092 if (display_type == DT_DEFAULT) {
6093 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
6094 display_type = DT_SDL;
6095 #else
6096 display_type = DT_VNC;
6097 vnc_display = "localhost:0,to=99";
6098 show_vnc_port = 1;
6099 #endif
6100 }
6101
6102
6103 switch (display_type) {
6104 case DT_NOGRAPHIC:
6105 break;
6106 #if defined(CONFIG_CURSES)
6107 case DT_CURSES:
6108 curses_display_init(ds, full_screen);
6109 break;
6110 #endif
6111 #if defined(CONFIG_SDL)
6112 case DT_SDL:
6113 sdl_display_init(ds, full_screen, no_frame);
6114 break;
6115 #elif defined(CONFIG_COCOA)
6116 case DT_SDL:
6117 cocoa_display_init(ds, full_screen);
6118 break;
6119 #endif
6120 case DT_VNC:
6121 vnc_display_init(ds);
6122 if (vnc_display_open(ds, vnc_display) < 0)
6123 exit(1);
6124
6125 if (show_vnc_port) {
6126 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
6127 }
6128 break;
6129 default:
6130 break;
6131 }
6132 dpy_resize(ds);
6133
6134 dcl = ds->listeners;
6135 while (dcl != NULL) {
6136 if (dcl->dpy_refresh != NULL) {
6137 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
6138 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
6139 }
6140 dcl = dcl->next;
6141 }
6142
6143 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
6144 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
6145 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
6146 }
6147
6148 text_consoles_set_display(display_state);
6149 qemu_chr_initial_reset();
6150
6151 if (monitor_device && monitor_hd)
6152 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
6153
6154 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6155 const char *devname = serial_devices[i];
6156 if (devname && strcmp(devname, "none")) {
6157 char label[32];
6158 snprintf(label, sizeof(label), "serial%d", i);
6159 if (strstart(devname, "vc", 0))
6160 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
6161 }
6162 }
6163
6164 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6165 const char *devname = parallel_devices[i];
6166 if (devname && strcmp(devname, "none")) {
6167 char label[32];
6168 snprintf(label, sizeof(label), "parallel%d", i);
6169 if (strstart(devname, "vc", 0))
6170 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
6171 }
6172 }
6173
6174 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6175 const char *devname = virtio_consoles[i];
6176 if (virtcon_hds[i] && devname) {
6177 char label[32];
6178 snprintf(label, sizeof(label), "virtcon%d", i);
6179 if (strstart(devname, "vc", 0))
6180 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
6181 }
6182 }
6183
6184 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6185 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6186 gdbstub_dev);
6187 exit(1);
6188 }
6189
6190 if (loadvm)
6191 do_loadvm(cur_mon, loadvm);
6192
6193 if (incoming) {
6194 autostart = 0; /* fixme how to deal with -daemonize */
6195 qemu_start_incoming_migration(incoming);
6196 }
6197
6198 if (autostart)
6199 vm_start();
6200
6201 #ifndef _WIN32
6202 if (daemonize) {
6203 uint8_t status = 0;
6204 ssize_t len;
6205
6206 again1:
6207 len = write(fds[1], &status, 1);
6208 if (len == -1 && (errno == EINTR))
6209 goto again1;
6210
6211 if (len != 1)
6212 exit(1);
6213
6214 chdir("/");
6215 TFR(fd = open("/dev/null", O_RDWR));
6216 if (fd == -1)
6217 exit(1);
6218 }
6219
6220 if (run_as) {
6221 pwd = getpwnam(run_as);
6222 if (!pwd) {
6223 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6224 exit(1);
6225 }
6226 }
6227
6228 if (chroot_dir) {
6229 if (chroot(chroot_dir) < 0) {
6230 fprintf(stderr, "chroot failed\n");
6231 exit(1);
6232 }
6233 chdir("/");
6234 }
6235
6236 if (run_as) {
6237 if (setgid(pwd->pw_gid) < 0) {
6238 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6239 exit(1);
6240 }
6241 if (setuid(pwd->pw_uid) < 0) {
6242 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6243 exit(1);
6244 }
6245 if (setuid(0) != -1) {
6246 fprintf(stderr, "Dropping privileges failed\n");
6247 exit(1);
6248 }
6249 }
6250
6251 if (daemonize) {
6252 dup2(fd, 0);
6253 dup2(fd, 1);
6254 dup2(fd, 2);
6255
6256 close(fd);
6257 }
6258 #endif
6259
6260 main_loop();
6261 quit_timers();
6262 net_cleanup();
6263
6264 return 0;
6265 }