]> git.proxmox.com Git - mirror_qemu.git/blob - vl.c
Introduce reset notifier order
[mirror_qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
31
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
34
35 #ifndef _WIN32
36 #include <pwd.h>
37 #include <sys/times.h>
38 #include <sys/wait.h>
39 #include <termios.h>
40 #include <sys/mman.h>
41 #include <sys/ioctl.h>
42 #include <sys/resource.h>
43 #include <sys/socket.h>
44 #include <netinet/in.h>
45 #include <net/if.h>
46 #if defined(__NetBSD__)
47 #include <net/if_tap.h>
48 #endif
49 #ifdef __linux__
50 #include <linux/if_tun.h>
51 #endif
52 #include <arpa/inet.h>
53 #include <dirent.h>
54 #include <netdb.h>
55 #include <sys/select.h>
56 #ifdef HOST_BSD
57 #include <sys/stat.h>
58 #if defined(__FreeBSD__) || defined(__DragonFly__)
59 #include <libutil.h>
60 #else
61 #include <util.h>
62 #endif
63 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
64 #include <freebsd/stdlib.h>
65 #else
66 #ifdef __linux__
67 #include <pty.h>
68 #include <malloc.h>
69 #include <linux/rtc.h>
70
71 /* For the benefit of older linux systems which don't supply it,
72 we use a local copy of hpet.h. */
73 /* #include <linux/hpet.h> */
74 #include "hpet.h"
75
76 #include <linux/ppdev.h>
77 #include <linux/parport.h>
78 #endif
79 #ifdef __sun__
80 #include <sys/stat.h>
81 #include <sys/ethernet.h>
82 #include <sys/sockio.h>
83 #include <netinet/arp.h>
84 #include <netinet/in.h>
85 #include <netinet/in_systm.h>
86 #include <netinet/ip.h>
87 #include <netinet/ip_icmp.h> // must come after ip.h
88 #include <netinet/udp.h>
89 #include <netinet/tcp.h>
90 #include <net/if.h>
91 #include <syslog.h>
92 #include <stropts.h>
93 #endif
94 #endif
95 #endif
96
97 #if defined(__OpenBSD__)
98 #include <util.h>
99 #endif
100
101 #if defined(CONFIG_VDE)
102 #include <libvdeplug.h>
103 #endif
104
105 #ifdef _WIN32
106 #include <windows.h>
107 #include <malloc.h>
108 #include <sys/timeb.h>
109 #include <mmsystem.h>
110 #define getopt_long_only getopt_long
111 #define memalign(align, size) malloc(size)
112 #endif
113
114 #ifdef CONFIG_SDL
115 #ifdef __APPLE__
116 #include <SDL/SDL.h>
117 int qemu_main(int argc, char **argv, char **envp);
118 int main(int argc, char **argv)
119 {
120 qemu_main(argc, argv, NULL);
121 }
122 #undef main
123 #define main qemu_main
124 #endif
125 #endif /* CONFIG_SDL */
126
127 #ifdef CONFIG_COCOA
128 #undef main
129 #define main qemu_main
130 #endif /* CONFIG_COCOA */
131
132 #include "hw/hw.h"
133 #include "hw/boards.h"
134 #include "hw/usb.h"
135 #include "hw/pcmcia.h"
136 #include "hw/pc.h"
137 #include "hw/audiodev.h"
138 #include "hw/isa.h"
139 #include "hw/baum.h"
140 #include "hw/bt.h"
141 #include "hw/watchdog.h"
142 #include "hw/smbios.h"
143 #include "hw/xen.h"
144 #include "bt-host.h"
145 #include "net.h"
146 #include "monitor.h"
147 #include "console.h"
148 #include "sysemu.h"
149 #include "gdbstub.h"
150 #include "qemu-timer.h"
151 #include "qemu-char.h"
152 #include "cache-utils.h"
153 #include "block.h"
154 #include "dma.h"
155 #include "audio/audio.h"
156 #include "migration.h"
157 #include "kvm.h"
158 #include "balloon.h"
159 #include "qemu-option.h"
160
161 #include "disas.h"
162
163 #include "exec-all.h"
164
165 #include "qemu_socket.h"
166
167 #if defined(CONFIG_SLIRP)
168 #include "libslirp.h"
169 #endif
170
171 //#define DEBUG_UNUSED_IOPORT
172 //#define DEBUG_IOPORT
173 //#define DEBUG_NET
174 //#define DEBUG_SLIRP
175
176
177 #ifdef DEBUG_IOPORT
178 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
179 #else
180 # define LOG_IOPORT(...) do { } while (0)
181 #endif
182
183 #define DEFAULT_RAM_SIZE 128
184
185 /* Max number of USB devices that can be specified on the commandline. */
186 #define MAX_USB_CMDLINE 8
187
188 /* Max number of bluetooth switches on the commandline. */
189 #define MAX_BT_CMDLINE 10
190
191 /* XXX: use a two level table to limit memory usage */
192 #define MAX_IOPORTS 65536
193
194 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
195 const char *bios_name = NULL;
196 static void *ioport_opaque[MAX_IOPORTS];
197 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
198 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
199 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
200 to store the VM snapshots */
201 DriveInfo drives_table[MAX_DRIVES+1];
202 int nb_drives;
203 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
204 static DisplayState *display_state;
205 DisplayType display_type = DT_DEFAULT;
206 const char* keyboard_layout = NULL;
207 int64_t ticks_per_sec;
208 ram_addr_t ram_size;
209 int nb_nics;
210 NICInfo nd_table[MAX_NICS];
211 int vm_running;
212 static int autostart;
213 static int rtc_utc = 1;
214 static int rtc_date_offset = -1; /* -1 means no change */
215 int cirrus_vga_enabled = 1;
216 int std_vga_enabled = 0;
217 int vmsvga_enabled = 0;
218 int xenfb_enabled = 0;
219 #ifdef TARGET_SPARC
220 int graphic_width = 1024;
221 int graphic_height = 768;
222 int graphic_depth = 8;
223 #else
224 int graphic_width = 800;
225 int graphic_height = 600;
226 int graphic_depth = 15;
227 #endif
228 static int full_screen = 0;
229 #ifdef CONFIG_SDL
230 static int no_frame = 0;
231 #endif
232 int no_quit = 0;
233 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
234 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
235 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
236 #ifdef TARGET_I386
237 int win2k_install_hack = 0;
238 int rtc_td_hack = 0;
239 #endif
240 int usb_enabled = 0;
241 int singlestep = 0;
242 int smp_cpus = 1;
243 const char *vnc_display;
244 int acpi_enabled = 1;
245 int no_hpet = 0;
246 int fd_bootchk = 1;
247 int no_reboot = 0;
248 int no_shutdown = 0;
249 int cursor_hide = 1;
250 int graphic_rotate = 0;
251 #ifndef _WIN32
252 int daemonize = 0;
253 #endif
254 WatchdogTimerModel *watchdog = NULL;
255 int watchdog_action = WDT_RESET;
256 const char *option_rom[MAX_OPTION_ROMS];
257 int nb_option_roms;
258 int semihosting_enabled = 0;
259 #ifdef TARGET_ARM
260 int old_param = 0;
261 #endif
262 const char *qemu_name;
263 int alt_grab = 0;
264 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
265 unsigned int nb_prom_envs = 0;
266 const char *prom_envs[MAX_PROM_ENVS];
267 #endif
268 int nb_drives_opt;
269 struct drive_opt drives_opt[MAX_DRIVES];
270
271 int nb_numa_nodes;
272 uint64_t node_mem[MAX_NODES];
273 uint64_t node_cpumask[MAX_NODES];
274
275 static CPUState *cur_cpu;
276 static CPUState *next_cpu;
277 static int timer_alarm_pending = 1;
278 /* Conversion factor from emulated instructions to virtual clock ticks. */
279 static int icount_time_shift;
280 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
281 #define MAX_ICOUNT_SHIFT 10
282 /* Compensate for varying guest execution speed. */
283 static int64_t qemu_icount_bias;
284 static QEMUTimer *icount_rt_timer;
285 static QEMUTimer *icount_vm_timer;
286 static QEMUTimer *nographic_timer;
287
288 uint8_t qemu_uuid[16];
289
290 /***********************************************************/
291 /* x86 ISA bus support */
292
293 target_phys_addr_t isa_mem_base = 0;
294 PicState2 *isa_pic;
295
296 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
297 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
298
299 static uint32_t ioport_read(int index, uint32_t address)
300 {
301 static IOPortReadFunc *default_func[3] = {
302 default_ioport_readb,
303 default_ioport_readw,
304 default_ioport_readl
305 };
306 IOPortReadFunc *func = ioport_read_table[index][address];
307 if (!func)
308 func = default_func[index];
309 return func(ioport_opaque[address], address);
310 }
311
312 static void ioport_write(int index, uint32_t address, uint32_t data)
313 {
314 static IOPortWriteFunc *default_func[3] = {
315 default_ioport_writeb,
316 default_ioport_writew,
317 default_ioport_writel
318 };
319 IOPortWriteFunc *func = ioport_write_table[index][address];
320 if (!func)
321 func = default_func[index];
322 func(ioport_opaque[address], address, data);
323 }
324
325 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
326 {
327 #ifdef DEBUG_UNUSED_IOPORT
328 fprintf(stderr, "unused inb: port=0x%04x\n", address);
329 #endif
330 return 0xff;
331 }
332
333 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
334 {
335 #ifdef DEBUG_UNUSED_IOPORT
336 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
337 #endif
338 }
339
340 /* default is to make two byte accesses */
341 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
342 {
343 uint32_t data;
344 data = ioport_read(0, address);
345 address = (address + 1) & (MAX_IOPORTS - 1);
346 data |= ioport_read(0, address) << 8;
347 return data;
348 }
349
350 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
351 {
352 ioport_write(0, address, data & 0xff);
353 address = (address + 1) & (MAX_IOPORTS - 1);
354 ioport_write(0, address, (data >> 8) & 0xff);
355 }
356
357 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
358 {
359 #ifdef DEBUG_UNUSED_IOPORT
360 fprintf(stderr, "unused inl: port=0x%04x\n", address);
361 #endif
362 return 0xffffffff;
363 }
364
365 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
366 {
367 #ifdef DEBUG_UNUSED_IOPORT
368 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
369 #endif
370 }
371
372 /* size is the word size in byte */
373 int register_ioport_read(int start, int length, int size,
374 IOPortReadFunc *func, void *opaque)
375 {
376 int i, bsize;
377
378 if (size == 1) {
379 bsize = 0;
380 } else if (size == 2) {
381 bsize = 1;
382 } else if (size == 4) {
383 bsize = 2;
384 } else {
385 hw_error("register_ioport_read: invalid size");
386 return -1;
387 }
388 for(i = start; i < start + length; i += size) {
389 ioport_read_table[bsize][i] = func;
390 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
391 hw_error("register_ioport_read: invalid opaque");
392 ioport_opaque[i] = opaque;
393 }
394 return 0;
395 }
396
397 /* size is the word size in byte */
398 int register_ioport_write(int start, int length, int size,
399 IOPortWriteFunc *func, void *opaque)
400 {
401 int i, bsize;
402
403 if (size == 1) {
404 bsize = 0;
405 } else if (size == 2) {
406 bsize = 1;
407 } else if (size == 4) {
408 bsize = 2;
409 } else {
410 hw_error("register_ioport_write: invalid size");
411 return -1;
412 }
413 for(i = start; i < start + length; i += size) {
414 ioport_write_table[bsize][i] = func;
415 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
416 hw_error("register_ioport_write: invalid opaque");
417 ioport_opaque[i] = opaque;
418 }
419 return 0;
420 }
421
422 void isa_unassign_ioport(int start, int length)
423 {
424 int i;
425
426 for(i = start; i < start + length; i++) {
427 ioport_read_table[0][i] = default_ioport_readb;
428 ioport_read_table[1][i] = default_ioport_readw;
429 ioport_read_table[2][i] = default_ioport_readl;
430
431 ioport_write_table[0][i] = default_ioport_writeb;
432 ioport_write_table[1][i] = default_ioport_writew;
433 ioport_write_table[2][i] = default_ioport_writel;
434
435 ioport_opaque[i] = NULL;
436 }
437 }
438
439 /***********************************************************/
440
441 void cpu_outb(CPUState *env, int addr, int val)
442 {
443 LOG_IOPORT("outb: %04x %02x\n", addr, val);
444 ioport_write(0, addr, val);
445 #ifdef CONFIG_KQEMU
446 if (env)
447 env->last_io_time = cpu_get_time_fast();
448 #endif
449 }
450
451 void cpu_outw(CPUState *env, int addr, int val)
452 {
453 LOG_IOPORT("outw: %04x %04x\n", addr, val);
454 ioport_write(1, addr, val);
455 #ifdef CONFIG_KQEMU
456 if (env)
457 env->last_io_time = cpu_get_time_fast();
458 #endif
459 }
460
461 void cpu_outl(CPUState *env, int addr, int val)
462 {
463 LOG_IOPORT("outl: %04x %08x\n", addr, val);
464 ioport_write(2, addr, val);
465 #ifdef CONFIG_KQEMU
466 if (env)
467 env->last_io_time = cpu_get_time_fast();
468 #endif
469 }
470
471 int cpu_inb(CPUState *env, int addr)
472 {
473 int val;
474 val = ioport_read(0, addr);
475 LOG_IOPORT("inb : %04x %02x\n", addr, val);
476 #ifdef CONFIG_KQEMU
477 if (env)
478 env->last_io_time = cpu_get_time_fast();
479 #endif
480 return val;
481 }
482
483 int cpu_inw(CPUState *env, int addr)
484 {
485 int val;
486 val = ioport_read(1, addr);
487 LOG_IOPORT("inw : %04x %04x\n", addr, val);
488 #ifdef CONFIG_KQEMU
489 if (env)
490 env->last_io_time = cpu_get_time_fast();
491 #endif
492 return val;
493 }
494
495 int cpu_inl(CPUState *env, int addr)
496 {
497 int val;
498 val = ioport_read(2, addr);
499 LOG_IOPORT("inl : %04x %08x\n", addr, val);
500 #ifdef CONFIG_KQEMU
501 if (env)
502 env->last_io_time = cpu_get_time_fast();
503 #endif
504 return val;
505 }
506
507 /***********************************************************/
508 void hw_error(const char *fmt, ...)
509 {
510 va_list ap;
511 CPUState *env;
512
513 va_start(ap, fmt);
514 fprintf(stderr, "qemu: hardware error: ");
515 vfprintf(stderr, fmt, ap);
516 fprintf(stderr, "\n");
517 for(env = first_cpu; env != NULL; env = env->next_cpu) {
518 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
519 #ifdef TARGET_I386
520 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
521 #else
522 cpu_dump_state(env, stderr, fprintf, 0);
523 #endif
524 }
525 va_end(ap);
526 abort();
527 }
528
529 /***************/
530 /* ballooning */
531
532 static QEMUBalloonEvent *qemu_balloon_event;
533 void *qemu_balloon_event_opaque;
534
535 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
536 {
537 qemu_balloon_event = func;
538 qemu_balloon_event_opaque = opaque;
539 }
540
541 void qemu_balloon(ram_addr_t target)
542 {
543 if (qemu_balloon_event)
544 qemu_balloon_event(qemu_balloon_event_opaque, target);
545 }
546
547 ram_addr_t qemu_balloon_status(void)
548 {
549 if (qemu_balloon_event)
550 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
551 return 0;
552 }
553
554 /***********************************************************/
555 /* keyboard/mouse */
556
557 static QEMUPutKBDEvent *qemu_put_kbd_event;
558 static void *qemu_put_kbd_event_opaque;
559 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
560 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
561
562 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
563 {
564 qemu_put_kbd_event_opaque = opaque;
565 qemu_put_kbd_event = func;
566 }
567
568 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
569 void *opaque, int absolute,
570 const char *name)
571 {
572 QEMUPutMouseEntry *s, *cursor;
573
574 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
575
576 s->qemu_put_mouse_event = func;
577 s->qemu_put_mouse_event_opaque = opaque;
578 s->qemu_put_mouse_event_absolute = absolute;
579 s->qemu_put_mouse_event_name = qemu_strdup(name);
580 s->next = NULL;
581
582 if (!qemu_put_mouse_event_head) {
583 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
584 return s;
585 }
586
587 cursor = qemu_put_mouse_event_head;
588 while (cursor->next != NULL)
589 cursor = cursor->next;
590
591 cursor->next = s;
592 qemu_put_mouse_event_current = s;
593
594 return s;
595 }
596
597 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
598 {
599 QEMUPutMouseEntry *prev = NULL, *cursor;
600
601 if (!qemu_put_mouse_event_head || entry == NULL)
602 return;
603
604 cursor = qemu_put_mouse_event_head;
605 while (cursor != NULL && cursor != entry) {
606 prev = cursor;
607 cursor = cursor->next;
608 }
609
610 if (cursor == NULL) // does not exist or list empty
611 return;
612 else if (prev == NULL) { // entry is head
613 qemu_put_mouse_event_head = cursor->next;
614 if (qemu_put_mouse_event_current == entry)
615 qemu_put_mouse_event_current = cursor->next;
616 qemu_free(entry->qemu_put_mouse_event_name);
617 qemu_free(entry);
618 return;
619 }
620
621 prev->next = entry->next;
622
623 if (qemu_put_mouse_event_current == entry)
624 qemu_put_mouse_event_current = prev;
625
626 qemu_free(entry->qemu_put_mouse_event_name);
627 qemu_free(entry);
628 }
629
630 void kbd_put_keycode(int keycode)
631 {
632 if (qemu_put_kbd_event) {
633 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
634 }
635 }
636
637 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
638 {
639 QEMUPutMouseEvent *mouse_event;
640 void *mouse_event_opaque;
641 int width;
642
643 if (!qemu_put_mouse_event_current) {
644 return;
645 }
646
647 mouse_event =
648 qemu_put_mouse_event_current->qemu_put_mouse_event;
649 mouse_event_opaque =
650 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
651
652 if (mouse_event) {
653 if (graphic_rotate) {
654 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
655 width = 0x7fff;
656 else
657 width = graphic_width - 1;
658 mouse_event(mouse_event_opaque,
659 width - dy, dx, dz, buttons_state);
660 } else
661 mouse_event(mouse_event_opaque,
662 dx, dy, dz, buttons_state);
663 }
664 }
665
666 int kbd_mouse_is_absolute(void)
667 {
668 if (!qemu_put_mouse_event_current)
669 return 0;
670
671 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
672 }
673
674 void do_info_mice(Monitor *mon)
675 {
676 QEMUPutMouseEntry *cursor;
677 int index = 0;
678
679 if (!qemu_put_mouse_event_head) {
680 monitor_printf(mon, "No mouse devices connected\n");
681 return;
682 }
683
684 monitor_printf(mon, "Mouse devices available:\n");
685 cursor = qemu_put_mouse_event_head;
686 while (cursor != NULL) {
687 monitor_printf(mon, "%c Mouse #%d: %s\n",
688 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
689 index, cursor->qemu_put_mouse_event_name);
690 index++;
691 cursor = cursor->next;
692 }
693 }
694
695 void do_mouse_set(Monitor *mon, int index)
696 {
697 QEMUPutMouseEntry *cursor;
698 int i = 0;
699
700 if (!qemu_put_mouse_event_head) {
701 monitor_printf(mon, "No mouse devices connected\n");
702 return;
703 }
704
705 cursor = qemu_put_mouse_event_head;
706 while (cursor != NULL && index != i) {
707 i++;
708 cursor = cursor->next;
709 }
710
711 if (cursor != NULL)
712 qemu_put_mouse_event_current = cursor;
713 else
714 monitor_printf(mon, "Mouse at given index not found\n");
715 }
716
717 /* compute with 96 bit intermediate result: (a*b)/c */
718 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
719 {
720 union {
721 uint64_t ll;
722 struct {
723 #ifdef WORDS_BIGENDIAN
724 uint32_t high, low;
725 #else
726 uint32_t low, high;
727 #endif
728 } l;
729 } u, res;
730 uint64_t rl, rh;
731
732 u.ll = a;
733 rl = (uint64_t)u.l.low * (uint64_t)b;
734 rh = (uint64_t)u.l.high * (uint64_t)b;
735 rh += (rl >> 32);
736 res.l.high = rh / c;
737 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
738 return res.ll;
739 }
740
741 /***********************************************************/
742 /* real time host monotonic timer */
743
744 #define QEMU_TIMER_BASE 1000000000LL
745
746 #ifdef WIN32
747
748 static int64_t clock_freq;
749
750 static void init_get_clock(void)
751 {
752 LARGE_INTEGER freq;
753 int ret;
754 ret = QueryPerformanceFrequency(&freq);
755 if (ret == 0) {
756 fprintf(stderr, "Could not calibrate ticks\n");
757 exit(1);
758 }
759 clock_freq = freq.QuadPart;
760 }
761
762 static int64_t get_clock(void)
763 {
764 LARGE_INTEGER ti;
765 QueryPerformanceCounter(&ti);
766 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
767 }
768
769 #else
770
771 static int use_rt_clock;
772
773 static void init_get_clock(void)
774 {
775 use_rt_clock = 0;
776 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
777 || defined(__DragonFly__)
778 {
779 struct timespec ts;
780 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
781 use_rt_clock = 1;
782 }
783 }
784 #endif
785 }
786
787 static int64_t get_clock(void)
788 {
789 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
790 || defined(__DragonFly__)
791 if (use_rt_clock) {
792 struct timespec ts;
793 clock_gettime(CLOCK_MONOTONIC, &ts);
794 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
795 } else
796 #endif
797 {
798 /* XXX: using gettimeofday leads to problems if the date
799 changes, so it should be avoided. */
800 struct timeval tv;
801 gettimeofday(&tv, NULL);
802 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
803 }
804 }
805 #endif
806
807 /* Return the virtual CPU time, based on the instruction counter. */
808 static int64_t cpu_get_icount(void)
809 {
810 int64_t icount;
811 CPUState *env = cpu_single_env;;
812 icount = qemu_icount;
813 if (env) {
814 if (!can_do_io(env))
815 fprintf(stderr, "Bad clock read\n");
816 icount -= (env->icount_decr.u16.low + env->icount_extra);
817 }
818 return qemu_icount_bias + (icount << icount_time_shift);
819 }
820
821 /***********************************************************/
822 /* guest cycle counter */
823
824 static int64_t cpu_ticks_prev;
825 static int64_t cpu_ticks_offset;
826 static int64_t cpu_clock_offset;
827 static int cpu_ticks_enabled;
828
829 /* return the host CPU cycle counter and handle stop/restart */
830 int64_t cpu_get_ticks(void)
831 {
832 if (use_icount) {
833 return cpu_get_icount();
834 }
835 if (!cpu_ticks_enabled) {
836 return cpu_ticks_offset;
837 } else {
838 int64_t ticks;
839 ticks = cpu_get_real_ticks();
840 if (cpu_ticks_prev > ticks) {
841 /* Note: non increasing ticks may happen if the host uses
842 software suspend */
843 cpu_ticks_offset += cpu_ticks_prev - ticks;
844 }
845 cpu_ticks_prev = ticks;
846 return ticks + cpu_ticks_offset;
847 }
848 }
849
850 /* return the host CPU monotonic timer and handle stop/restart */
851 static int64_t cpu_get_clock(void)
852 {
853 int64_t ti;
854 if (!cpu_ticks_enabled) {
855 return cpu_clock_offset;
856 } else {
857 ti = get_clock();
858 return ti + cpu_clock_offset;
859 }
860 }
861
862 /* enable cpu_get_ticks() */
863 void cpu_enable_ticks(void)
864 {
865 if (!cpu_ticks_enabled) {
866 cpu_ticks_offset -= cpu_get_real_ticks();
867 cpu_clock_offset -= get_clock();
868 cpu_ticks_enabled = 1;
869 }
870 }
871
872 /* disable cpu_get_ticks() : the clock is stopped. You must not call
873 cpu_get_ticks() after that. */
874 void cpu_disable_ticks(void)
875 {
876 if (cpu_ticks_enabled) {
877 cpu_ticks_offset = cpu_get_ticks();
878 cpu_clock_offset = cpu_get_clock();
879 cpu_ticks_enabled = 0;
880 }
881 }
882
883 /***********************************************************/
884 /* timers */
885
886 #define QEMU_TIMER_REALTIME 0
887 #define QEMU_TIMER_VIRTUAL 1
888
889 struct QEMUClock {
890 int type;
891 /* XXX: add frequency */
892 };
893
894 struct QEMUTimer {
895 QEMUClock *clock;
896 int64_t expire_time;
897 QEMUTimerCB *cb;
898 void *opaque;
899 struct QEMUTimer *next;
900 };
901
902 struct qemu_alarm_timer {
903 char const *name;
904 unsigned int flags;
905
906 int (*start)(struct qemu_alarm_timer *t);
907 void (*stop)(struct qemu_alarm_timer *t);
908 void (*rearm)(struct qemu_alarm_timer *t);
909 void *priv;
910 };
911
912 #define ALARM_FLAG_DYNTICKS 0x1
913 #define ALARM_FLAG_EXPIRED 0x2
914
915 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
916 {
917 return t && (t->flags & ALARM_FLAG_DYNTICKS);
918 }
919
920 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
921 {
922 if (!alarm_has_dynticks(t))
923 return;
924
925 t->rearm(t);
926 }
927
928 /* TODO: MIN_TIMER_REARM_US should be optimized */
929 #define MIN_TIMER_REARM_US 250
930
931 static struct qemu_alarm_timer *alarm_timer;
932
933 #ifdef _WIN32
934
935 struct qemu_alarm_win32 {
936 MMRESULT timerId;
937 unsigned int period;
938 } alarm_win32_data = {0, -1};
939
940 static int win32_start_timer(struct qemu_alarm_timer *t);
941 static void win32_stop_timer(struct qemu_alarm_timer *t);
942 static void win32_rearm_timer(struct qemu_alarm_timer *t);
943
944 #else
945
946 static int unix_start_timer(struct qemu_alarm_timer *t);
947 static void unix_stop_timer(struct qemu_alarm_timer *t);
948
949 #ifdef __linux__
950
951 static int dynticks_start_timer(struct qemu_alarm_timer *t);
952 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
953 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
954
955 static int hpet_start_timer(struct qemu_alarm_timer *t);
956 static void hpet_stop_timer(struct qemu_alarm_timer *t);
957
958 static int rtc_start_timer(struct qemu_alarm_timer *t);
959 static void rtc_stop_timer(struct qemu_alarm_timer *t);
960
961 #endif /* __linux__ */
962
963 #endif /* _WIN32 */
964
965 /* Correlation between real and virtual time is always going to be
966 fairly approximate, so ignore small variation.
967 When the guest is idle real and virtual time will be aligned in
968 the IO wait loop. */
969 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
970
971 static void icount_adjust(void)
972 {
973 int64_t cur_time;
974 int64_t cur_icount;
975 int64_t delta;
976 static int64_t last_delta;
977 /* If the VM is not running, then do nothing. */
978 if (!vm_running)
979 return;
980
981 cur_time = cpu_get_clock();
982 cur_icount = qemu_get_clock(vm_clock);
983 delta = cur_icount - cur_time;
984 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
985 if (delta > 0
986 && last_delta + ICOUNT_WOBBLE < delta * 2
987 && icount_time_shift > 0) {
988 /* The guest is getting too far ahead. Slow time down. */
989 icount_time_shift--;
990 }
991 if (delta < 0
992 && last_delta - ICOUNT_WOBBLE > delta * 2
993 && icount_time_shift < MAX_ICOUNT_SHIFT) {
994 /* The guest is getting too far behind. Speed time up. */
995 icount_time_shift++;
996 }
997 last_delta = delta;
998 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
999 }
1000
1001 static void icount_adjust_rt(void * opaque)
1002 {
1003 qemu_mod_timer(icount_rt_timer,
1004 qemu_get_clock(rt_clock) + 1000);
1005 icount_adjust();
1006 }
1007
1008 static void icount_adjust_vm(void * opaque)
1009 {
1010 qemu_mod_timer(icount_vm_timer,
1011 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1012 icount_adjust();
1013 }
1014
1015 static void init_icount_adjust(void)
1016 {
1017 /* Have both realtime and virtual time triggers for speed adjustment.
1018 The realtime trigger catches emulated time passing too slowly,
1019 the virtual time trigger catches emulated time passing too fast.
1020 Realtime triggers occur even when idle, so use them less frequently
1021 than VM triggers. */
1022 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1023 qemu_mod_timer(icount_rt_timer,
1024 qemu_get_clock(rt_clock) + 1000);
1025 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1026 qemu_mod_timer(icount_vm_timer,
1027 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1028 }
1029
1030 static struct qemu_alarm_timer alarm_timers[] = {
1031 #ifndef _WIN32
1032 #ifdef __linux__
1033 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1034 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1035 /* HPET - if available - is preferred */
1036 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1037 /* ...otherwise try RTC */
1038 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1039 #endif
1040 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1041 #else
1042 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1043 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1044 {"win32", 0, win32_start_timer,
1045 win32_stop_timer, NULL, &alarm_win32_data},
1046 #endif
1047 {NULL, }
1048 };
1049
1050 static void show_available_alarms(void)
1051 {
1052 int i;
1053
1054 printf("Available alarm timers, in order of precedence:\n");
1055 for (i = 0; alarm_timers[i].name; i++)
1056 printf("%s\n", alarm_timers[i].name);
1057 }
1058
1059 static void configure_alarms(char const *opt)
1060 {
1061 int i;
1062 int cur = 0;
1063 int count = ARRAY_SIZE(alarm_timers) - 1;
1064 char *arg;
1065 char *name;
1066 struct qemu_alarm_timer tmp;
1067
1068 if (!strcmp(opt, "?")) {
1069 show_available_alarms();
1070 exit(0);
1071 }
1072
1073 arg = strdup(opt);
1074
1075 /* Reorder the array */
1076 name = strtok(arg, ",");
1077 while (name) {
1078 for (i = 0; i < count && alarm_timers[i].name; i++) {
1079 if (!strcmp(alarm_timers[i].name, name))
1080 break;
1081 }
1082
1083 if (i == count) {
1084 fprintf(stderr, "Unknown clock %s\n", name);
1085 goto next;
1086 }
1087
1088 if (i < cur)
1089 /* Ignore */
1090 goto next;
1091
1092 /* Swap */
1093 tmp = alarm_timers[i];
1094 alarm_timers[i] = alarm_timers[cur];
1095 alarm_timers[cur] = tmp;
1096
1097 cur++;
1098 next:
1099 name = strtok(NULL, ",");
1100 }
1101
1102 free(arg);
1103
1104 if (cur) {
1105 /* Disable remaining timers */
1106 for (i = cur; i < count; i++)
1107 alarm_timers[i].name = NULL;
1108 } else {
1109 show_available_alarms();
1110 exit(1);
1111 }
1112 }
1113
1114 QEMUClock *rt_clock;
1115 QEMUClock *vm_clock;
1116
1117 static QEMUTimer *active_timers[2];
1118
1119 static QEMUClock *qemu_new_clock(int type)
1120 {
1121 QEMUClock *clock;
1122 clock = qemu_mallocz(sizeof(QEMUClock));
1123 clock->type = type;
1124 return clock;
1125 }
1126
1127 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1128 {
1129 QEMUTimer *ts;
1130
1131 ts = qemu_mallocz(sizeof(QEMUTimer));
1132 ts->clock = clock;
1133 ts->cb = cb;
1134 ts->opaque = opaque;
1135 return ts;
1136 }
1137
1138 void qemu_free_timer(QEMUTimer *ts)
1139 {
1140 qemu_free(ts);
1141 }
1142
1143 /* stop a timer, but do not dealloc it */
1144 void qemu_del_timer(QEMUTimer *ts)
1145 {
1146 QEMUTimer **pt, *t;
1147
1148 /* NOTE: this code must be signal safe because
1149 qemu_timer_expired() can be called from a signal. */
1150 pt = &active_timers[ts->clock->type];
1151 for(;;) {
1152 t = *pt;
1153 if (!t)
1154 break;
1155 if (t == ts) {
1156 *pt = t->next;
1157 break;
1158 }
1159 pt = &t->next;
1160 }
1161 }
1162
1163 /* modify the current timer so that it will be fired when current_time
1164 >= expire_time. The corresponding callback will be called. */
1165 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1166 {
1167 QEMUTimer **pt, *t;
1168
1169 qemu_del_timer(ts);
1170
1171 /* add the timer in the sorted list */
1172 /* NOTE: this code must be signal safe because
1173 qemu_timer_expired() can be called from a signal. */
1174 pt = &active_timers[ts->clock->type];
1175 for(;;) {
1176 t = *pt;
1177 if (!t)
1178 break;
1179 if (t->expire_time > expire_time)
1180 break;
1181 pt = &t->next;
1182 }
1183 ts->expire_time = expire_time;
1184 ts->next = *pt;
1185 *pt = ts;
1186
1187 /* Rearm if necessary */
1188 if (pt == &active_timers[ts->clock->type]) {
1189 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1190 qemu_rearm_alarm_timer(alarm_timer);
1191 }
1192 /* Interrupt execution to force deadline recalculation. */
1193 if (use_icount)
1194 qemu_notify_event();
1195 }
1196 }
1197
1198 int qemu_timer_pending(QEMUTimer *ts)
1199 {
1200 QEMUTimer *t;
1201 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1202 if (t == ts)
1203 return 1;
1204 }
1205 return 0;
1206 }
1207
1208 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1209 {
1210 if (!timer_head)
1211 return 0;
1212 return (timer_head->expire_time <= current_time);
1213 }
1214
1215 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1216 {
1217 QEMUTimer *ts;
1218
1219 for(;;) {
1220 ts = *ptimer_head;
1221 if (!ts || ts->expire_time > current_time)
1222 break;
1223 /* remove timer from the list before calling the callback */
1224 *ptimer_head = ts->next;
1225 ts->next = NULL;
1226
1227 /* run the callback (the timer list can be modified) */
1228 ts->cb(ts->opaque);
1229 }
1230 }
1231
1232 int64_t qemu_get_clock(QEMUClock *clock)
1233 {
1234 switch(clock->type) {
1235 case QEMU_TIMER_REALTIME:
1236 return get_clock() / 1000000;
1237 default:
1238 case QEMU_TIMER_VIRTUAL:
1239 if (use_icount) {
1240 return cpu_get_icount();
1241 } else {
1242 return cpu_get_clock();
1243 }
1244 }
1245 }
1246
1247 static void init_timers(void)
1248 {
1249 init_get_clock();
1250 ticks_per_sec = QEMU_TIMER_BASE;
1251 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1252 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1253 }
1254
1255 /* save a timer */
1256 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1257 {
1258 uint64_t expire_time;
1259
1260 if (qemu_timer_pending(ts)) {
1261 expire_time = ts->expire_time;
1262 } else {
1263 expire_time = -1;
1264 }
1265 qemu_put_be64(f, expire_time);
1266 }
1267
1268 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1269 {
1270 uint64_t expire_time;
1271
1272 expire_time = qemu_get_be64(f);
1273 if (expire_time != -1) {
1274 qemu_mod_timer(ts, expire_time);
1275 } else {
1276 qemu_del_timer(ts);
1277 }
1278 }
1279
1280 static void timer_save(QEMUFile *f, void *opaque)
1281 {
1282 if (cpu_ticks_enabled) {
1283 hw_error("cannot save state if virtual timers are running");
1284 }
1285 qemu_put_be64(f, cpu_ticks_offset);
1286 qemu_put_be64(f, ticks_per_sec);
1287 qemu_put_be64(f, cpu_clock_offset);
1288 }
1289
1290 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1291 {
1292 if (version_id != 1 && version_id != 2)
1293 return -EINVAL;
1294 if (cpu_ticks_enabled) {
1295 return -EINVAL;
1296 }
1297 cpu_ticks_offset=qemu_get_be64(f);
1298 ticks_per_sec=qemu_get_be64(f);
1299 if (version_id == 2) {
1300 cpu_clock_offset=qemu_get_be64(f);
1301 }
1302 return 0;
1303 }
1304
1305 static void qemu_event_increment(void);
1306
1307 #ifdef _WIN32
1308 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1309 DWORD_PTR dwUser, DWORD_PTR dw1,
1310 DWORD_PTR dw2)
1311 #else
1312 static void host_alarm_handler(int host_signum)
1313 #endif
1314 {
1315 #if 0
1316 #define DISP_FREQ 1000
1317 {
1318 static int64_t delta_min = INT64_MAX;
1319 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1320 static int count;
1321 ti = qemu_get_clock(vm_clock);
1322 if (last_clock != 0) {
1323 delta = ti - last_clock;
1324 if (delta < delta_min)
1325 delta_min = delta;
1326 if (delta > delta_max)
1327 delta_max = delta;
1328 delta_cum += delta;
1329 if (++count == DISP_FREQ) {
1330 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1331 muldiv64(delta_min, 1000000, ticks_per_sec),
1332 muldiv64(delta_max, 1000000, ticks_per_sec),
1333 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1334 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1335 count = 0;
1336 delta_min = INT64_MAX;
1337 delta_max = 0;
1338 delta_cum = 0;
1339 }
1340 }
1341 last_clock = ti;
1342 }
1343 #endif
1344 if (alarm_has_dynticks(alarm_timer) ||
1345 (!use_icount &&
1346 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1347 qemu_get_clock(vm_clock))) ||
1348 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1349 qemu_get_clock(rt_clock))) {
1350 qemu_event_increment();
1351 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1352
1353 #ifndef CONFIG_IOTHREAD
1354 if (next_cpu) {
1355 /* stop the currently executing cpu because a timer occured */
1356 cpu_exit(next_cpu);
1357 #ifdef CONFIG_KQEMU
1358 if (next_cpu->kqemu_enabled) {
1359 kqemu_cpu_interrupt(next_cpu);
1360 }
1361 #endif
1362 }
1363 #endif
1364 timer_alarm_pending = 1;
1365 qemu_notify_event();
1366 }
1367 }
1368
1369 static int64_t qemu_next_deadline(void)
1370 {
1371 int64_t delta;
1372
1373 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1374 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1375 qemu_get_clock(vm_clock);
1376 } else {
1377 /* To avoid problems with overflow limit this to 2^32. */
1378 delta = INT32_MAX;
1379 }
1380
1381 if (delta < 0)
1382 delta = 0;
1383
1384 return delta;
1385 }
1386
1387 #if defined(__linux__) || defined(_WIN32)
1388 static uint64_t qemu_next_deadline_dyntick(void)
1389 {
1390 int64_t delta;
1391 int64_t rtdelta;
1392
1393 if (use_icount)
1394 delta = INT32_MAX;
1395 else
1396 delta = (qemu_next_deadline() + 999) / 1000;
1397
1398 if (active_timers[QEMU_TIMER_REALTIME]) {
1399 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1400 qemu_get_clock(rt_clock))*1000;
1401 if (rtdelta < delta)
1402 delta = rtdelta;
1403 }
1404
1405 if (delta < MIN_TIMER_REARM_US)
1406 delta = MIN_TIMER_REARM_US;
1407
1408 return delta;
1409 }
1410 #endif
1411
1412 #ifndef _WIN32
1413
1414 /* Sets a specific flag */
1415 static int fcntl_setfl(int fd, int flag)
1416 {
1417 int flags;
1418
1419 flags = fcntl(fd, F_GETFL);
1420 if (flags == -1)
1421 return -errno;
1422
1423 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1424 return -errno;
1425
1426 return 0;
1427 }
1428
1429 #if defined(__linux__)
1430
1431 #define RTC_FREQ 1024
1432
1433 static void enable_sigio_timer(int fd)
1434 {
1435 struct sigaction act;
1436
1437 /* timer signal */
1438 sigfillset(&act.sa_mask);
1439 act.sa_flags = 0;
1440 act.sa_handler = host_alarm_handler;
1441
1442 sigaction(SIGIO, &act, NULL);
1443 fcntl_setfl(fd, O_ASYNC);
1444 fcntl(fd, F_SETOWN, getpid());
1445 }
1446
1447 static int hpet_start_timer(struct qemu_alarm_timer *t)
1448 {
1449 struct hpet_info info;
1450 int r, fd;
1451
1452 fd = open("/dev/hpet", O_RDONLY);
1453 if (fd < 0)
1454 return -1;
1455
1456 /* Set frequency */
1457 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1458 if (r < 0) {
1459 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1460 "error, but for better emulation accuracy type:\n"
1461 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1462 goto fail;
1463 }
1464
1465 /* Check capabilities */
1466 r = ioctl(fd, HPET_INFO, &info);
1467 if (r < 0)
1468 goto fail;
1469
1470 /* Enable periodic mode */
1471 r = ioctl(fd, HPET_EPI, 0);
1472 if (info.hi_flags && (r < 0))
1473 goto fail;
1474
1475 /* Enable interrupt */
1476 r = ioctl(fd, HPET_IE_ON, 0);
1477 if (r < 0)
1478 goto fail;
1479
1480 enable_sigio_timer(fd);
1481 t->priv = (void *)(long)fd;
1482
1483 return 0;
1484 fail:
1485 close(fd);
1486 return -1;
1487 }
1488
1489 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1490 {
1491 int fd = (long)t->priv;
1492
1493 close(fd);
1494 }
1495
1496 static int rtc_start_timer(struct qemu_alarm_timer *t)
1497 {
1498 int rtc_fd;
1499 unsigned long current_rtc_freq = 0;
1500
1501 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1502 if (rtc_fd < 0)
1503 return -1;
1504 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1505 if (current_rtc_freq != RTC_FREQ &&
1506 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1507 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1508 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1509 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1510 goto fail;
1511 }
1512 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1513 fail:
1514 close(rtc_fd);
1515 return -1;
1516 }
1517
1518 enable_sigio_timer(rtc_fd);
1519
1520 t->priv = (void *)(long)rtc_fd;
1521
1522 return 0;
1523 }
1524
1525 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1526 {
1527 int rtc_fd = (long)t->priv;
1528
1529 close(rtc_fd);
1530 }
1531
1532 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1533 {
1534 struct sigevent ev;
1535 timer_t host_timer;
1536 struct sigaction act;
1537
1538 sigfillset(&act.sa_mask);
1539 act.sa_flags = 0;
1540 act.sa_handler = host_alarm_handler;
1541
1542 sigaction(SIGALRM, &act, NULL);
1543
1544 /*
1545 * Initialize ev struct to 0 to avoid valgrind complaining
1546 * about uninitialized data in timer_create call
1547 */
1548 memset(&ev, 0, sizeof(ev));
1549 ev.sigev_value.sival_int = 0;
1550 ev.sigev_notify = SIGEV_SIGNAL;
1551 ev.sigev_signo = SIGALRM;
1552
1553 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1554 perror("timer_create");
1555
1556 /* disable dynticks */
1557 fprintf(stderr, "Dynamic Ticks disabled\n");
1558
1559 return -1;
1560 }
1561
1562 t->priv = (void *)(long)host_timer;
1563
1564 return 0;
1565 }
1566
1567 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1568 {
1569 timer_t host_timer = (timer_t)(long)t->priv;
1570
1571 timer_delete(host_timer);
1572 }
1573
1574 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1575 {
1576 timer_t host_timer = (timer_t)(long)t->priv;
1577 struct itimerspec timeout;
1578 int64_t nearest_delta_us = INT64_MAX;
1579 int64_t current_us;
1580
1581 if (!active_timers[QEMU_TIMER_REALTIME] &&
1582 !active_timers[QEMU_TIMER_VIRTUAL])
1583 return;
1584
1585 nearest_delta_us = qemu_next_deadline_dyntick();
1586
1587 /* check whether a timer is already running */
1588 if (timer_gettime(host_timer, &timeout)) {
1589 perror("gettime");
1590 fprintf(stderr, "Internal timer error: aborting\n");
1591 exit(1);
1592 }
1593 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1594 if (current_us && current_us <= nearest_delta_us)
1595 return;
1596
1597 timeout.it_interval.tv_sec = 0;
1598 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1599 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1600 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1601 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1602 perror("settime");
1603 fprintf(stderr, "Internal timer error: aborting\n");
1604 exit(1);
1605 }
1606 }
1607
1608 #endif /* defined(__linux__) */
1609
1610 static int unix_start_timer(struct qemu_alarm_timer *t)
1611 {
1612 struct sigaction act;
1613 struct itimerval itv;
1614 int err;
1615
1616 /* timer signal */
1617 sigfillset(&act.sa_mask);
1618 act.sa_flags = 0;
1619 act.sa_handler = host_alarm_handler;
1620
1621 sigaction(SIGALRM, &act, NULL);
1622
1623 itv.it_interval.tv_sec = 0;
1624 /* for i386 kernel 2.6 to get 1 ms */
1625 itv.it_interval.tv_usec = 999;
1626 itv.it_value.tv_sec = 0;
1627 itv.it_value.tv_usec = 10 * 1000;
1628
1629 err = setitimer(ITIMER_REAL, &itv, NULL);
1630 if (err)
1631 return -1;
1632
1633 return 0;
1634 }
1635
1636 static void unix_stop_timer(struct qemu_alarm_timer *t)
1637 {
1638 struct itimerval itv;
1639
1640 memset(&itv, 0, sizeof(itv));
1641 setitimer(ITIMER_REAL, &itv, NULL);
1642 }
1643
1644 #endif /* !defined(_WIN32) */
1645
1646
1647 #ifdef _WIN32
1648
1649 static int win32_start_timer(struct qemu_alarm_timer *t)
1650 {
1651 TIMECAPS tc;
1652 struct qemu_alarm_win32 *data = t->priv;
1653 UINT flags;
1654
1655 memset(&tc, 0, sizeof(tc));
1656 timeGetDevCaps(&tc, sizeof(tc));
1657
1658 if (data->period < tc.wPeriodMin)
1659 data->period = tc.wPeriodMin;
1660
1661 timeBeginPeriod(data->period);
1662
1663 flags = TIME_CALLBACK_FUNCTION;
1664 if (alarm_has_dynticks(t))
1665 flags |= TIME_ONESHOT;
1666 else
1667 flags |= TIME_PERIODIC;
1668
1669 data->timerId = timeSetEvent(1, // interval (ms)
1670 data->period, // resolution
1671 host_alarm_handler, // function
1672 (DWORD)t, // parameter
1673 flags);
1674
1675 if (!data->timerId) {
1676 perror("Failed to initialize win32 alarm timer");
1677 timeEndPeriod(data->period);
1678 return -1;
1679 }
1680
1681 return 0;
1682 }
1683
1684 static void win32_stop_timer(struct qemu_alarm_timer *t)
1685 {
1686 struct qemu_alarm_win32 *data = t->priv;
1687
1688 timeKillEvent(data->timerId);
1689 timeEndPeriod(data->period);
1690 }
1691
1692 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1693 {
1694 struct qemu_alarm_win32 *data = t->priv;
1695 uint64_t nearest_delta_us;
1696
1697 if (!active_timers[QEMU_TIMER_REALTIME] &&
1698 !active_timers[QEMU_TIMER_VIRTUAL])
1699 return;
1700
1701 nearest_delta_us = qemu_next_deadline_dyntick();
1702 nearest_delta_us /= 1000;
1703
1704 timeKillEvent(data->timerId);
1705
1706 data->timerId = timeSetEvent(1,
1707 data->period,
1708 host_alarm_handler,
1709 (DWORD)t,
1710 TIME_ONESHOT | TIME_PERIODIC);
1711
1712 if (!data->timerId) {
1713 perror("Failed to re-arm win32 alarm timer");
1714
1715 timeEndPeriod(data->period);
1716 exit(1);
1717 }
1718 }
1719
1720 #endif /* _WIN32 */
1721
1722 static int init_timer_alarm(void)
1723 {
1724 struct qemu_alarm_timer *t = NULL;
1725 int i, err = -1;
1726
1727 for (i = 0; alarm_timers[i].name; i++) {
1728 t = &alarm_timers[i];
1729
1730 err = t->start(t);
1731 if (!err)
1732 break;
1733 }
1734
1735 if (err) {
1736 err = -ENOENT;
1737 goto fail;
1738 }
1739
1740 alarm_timer = t;
1741
1742 return 0;
1743
1744 fail:
1745 return err;
1746 }
1747
1748 static void quit_timers(void)
1749 {
1750 alarm_timer->stop(alarm_timer);
1751 alarm_timer = NULL;
1752 }
1753
1754 /***********************************************************/
1755 /* host time/date access */
1756 void qemu_get_timedate(struct tm *tm, int offset)
1757 {
1758 time_t ti;
1759 struct tm *ret;
1760
1761 time(&ti);
1762 ti += offset;
1763 if (rtc_date_offset == -1) {
1764 if (rtc_utc)
1765 ret = gmtime(&ti);
1766 else
1767 ret = localtime(&ti);
1768 } else {
1769 ti -= rtc_date_offset;
1770 ret = gmtime(&ti);
1771 }
1772
1773 memcpy(tm, ret, sizeof(struct tm));
1774 }
1775
1776 int qemu_timedate_diff(struct tm *tm)
1777 {
1778 time_t seconds;
1779
1780 if (rtc_date_offset == -1)
1781 if (rtc_utc)
1782 seconds = mktimegm(tm);
1783 else
1784 seconds = mktime(tm);
1785 else
1786 seconds = mktimegm(tm) + rtc_date_offset;
1787
1788 return seconds - time(NULL);
1789 }
1790
1791 #ifdef _WIN32
1792 static void socket_cleanup(void)
1793 {
1794 WSACleanup();
1795 }
1796
1797 static int socket_init(void)
1798 {
1799 WSADATA Data;
1800 int ret, err;
1801
1802 ret = WSAStartup(MAKEWORD(2,2), &Data);
1803 if (ret != 0) {
1804 err = WSAGetLastError();
1805 fprintf(stderr, "WSAStartup: %d\n", err);
1806 return -1;
1807 }
1808 atexit(socket_cleanup);
1809 return 0;
1810 }
1811 #endif
1812
1813 int get_param_value(char *buf, int buf_size,
1814 const char *tag, const char *str)
1815 {
1816 const char *p;
1817 char option[128];
1818
1819 p = str;
1820 for(;;) {
1821 p = get_opt_name(option, sizeof(option), p, '=');
1822 if (*p != '=')
1823 break;
1824 p++;
1825 if (!strcmp(tag, option)) {
1826 (void)get_opt_value(buf, buf_size, p);
1827 return strlen(buf);
1828 } else {
1829 p = get_opt_value(NULL, 0, p);
1830 }
1831 if (*p != ',')
1832 break;
1833 p++;
1834 }
1835 return 0;
1836 }
1837
1838 int check_params(const char * const *params, const char *str)
1839 {
1840 int name_buf_size = 1;
1841 const char *p;
1842 char *name_buf;
1843 int i, len;
1844 int ret = 0;
1845
1846 for (i = 0; params[i] != NULL; i++) {
1847 len = strlen(params[i]) + 1;
1848 if (len > name_buf_size) {
1849 name_buf_size = len;
1850 }
1851 }
1852 name_buf = qemu_malloc(name_buf_size);
1853
1854 p = str;
1855 while (*p != '\0') {
1856 p = get_opt_name(name_buf, name_buf_size, p, '=');
1857 if (*p != '=') {
1858 ret = -1;
1859 break;
1860 }
1861 p++;
1862 for(i = 0; params[i] != NULL; i++)
1863 if (!strcmp(params[i], name_buf))
1864 break;
1865 if (params[i] == NULL) {
1866 ret = -1;
1867 break;
1868 }
1869 p = get_opt_value(NULL, 0, p);
1870 if (*p != ',')
1871 break;
1872 p++;
1873 }
1874
1875 qemu_free(name_buf);
1876 return ret;
1877 }
1878
1879 /***********************************************************/
1880 /* Bluetooth support */
1881 static int nb_hcis;
1882 static int cur_hci;
1883 static struct HCIInfo *hci_table[MAX_NICS];
1884
1885 static struct bt_vlan_s {
1886 struct bt_scatternet_s net;
1887 int id;
1888 struct bt_vlan_s *next;
1889 } *first_bt_vlan;
1890
1891 /* find or alloc a new bluetooth "VLAN" */
1892 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1893 {
1894 struct bt_vlan_s **pvlan, *vlan;
1895 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1896 if (vlan->id == id)
1897 return &vlan->net;
1898 }
1899 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1900 vlan->id = id;
1901 pvlan = &first_bt_vlan;
1902 while (*pvlan != NULL)
1903 pvlan = &(*pvlan)->next;
1904 *pvlan = vlan;
1905 return &vlan->net;
1906 }
1907
1908 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1909 {
1910 }
1911
1912 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1913 {
1914 return -ENOTSUP;
1915 }
1916
1917 static struct HCIInfo null_hci = {
1918 .cmd_send = null_hci_send,
1919 .sco_send = null_hci_send,
1920 .acl_send = null_hci_send,
1921 .bdaddr_set = null_hci_addr_set,
1922 };
1923
1924 struct HCIInfo *qemu_next_hci(void)
1925 {
1926 if (cur_hci == nb_hcis)
1927 return &null_hci;
1928
1929 return hci_table[cur_hci++];
1930 }
1931
1932 static struct HCIInfo *hci_init(const char *str)
1933 {
1934 char *endp;
1935 struct bt_scatternet_s *vlan = 0;
1936
1937 if (!strcmp(str, "null"))
1938 /* null */
1939 return &null_hci;
1940 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1941 /* host[:hciN] */
1942 return bt_host_hci(str[4] ? str + 5 : "hci0");
1943 else if (!strncmp(str, "hci", 3)) {
1944 /* hci[,vlan=n] */
1945 if (str[3]) {
1946 if (!strncmp(str + 3, ",vlan=", 6)) {
1947 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1948 if (*endp)
1949 vlan = 0;
1950 }
1951 } else
1952 vlan = qemu_find_bt_vlan(0);
1953 if (vlan)
1954 return bt_new_hci(vlan);
1955 }
1956
1957 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1958
1959 return 0;
1960 }
1961
1962 static int bt_hci_parse(const char *str)
1963 {
1964 struct HCIInfo *hci;
1965 bdaddr_t bdaddr;
1966
1967 if (nb_hcis >= MAX_NICS) {
1968 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1969 return -1;
1970 }
1971
1972 hci = hci_init(str);
1973 if (!hci)
1974 return -1;
1975
1976 bdaddr.b[0] = 0x52;
1977 bdaddr.b[1] = 0x54;
1978 bdaddr.b[2] = 0x00;
1979 bdaddr.b[3] = 0x12;
1980 bdaddr.b[4] = 0x34;
1981 bdaddr.b[5] = 0x56 + nb_hcis;
1982 hci->bdaddr_set(hci, bdaddr.b);
1983
1984 hci_table[nb_hcis++] = hci;
1985
1986 return 0;
1987 }
1988
1989 static void bt_vhci_add(int vlan_id)
1990 {
1991 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1992
1993 if (!vlan->slave)
1994 fprintf(stderr, "qemu: warning: adding a VHCI to "
1995 "an empty scatternet %i\n", vlan_id);
1996
1997 bt_vhci_init(bt_new_hci(vlan));
1998 }
1999
2000 static struct bt_device_s *bt_device_add(const char *opt)
2001 {
2002 struct bt_scatternet_s *vlan;
2003 int vlan_id = 0;
2004 char *endp = strstr(opt, ",vlan=");
2005 int len = (endp ? endp - opt : strlen(opt)) + 1;
2006 char devname[10];
2007
2008 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2009
2010 if (endp) {
2011 vlan_id = strtol(endp + 6, &endp, 0);
2012 if (*endp) {
2013 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2014 return 0;
2015 }
2016 }
2017
2018 vlan = qemu_find_bt_vlan(vlan_id);
2019
2020 if (!vlan->slave)
2021 fprintf(stderr, "qemu: warning: adding a slave device to "
2022 "an empty scatternet %i\n", vlan_id);
2023
2024 if (!strcmp(devname, "keyboard"))
2025 return bt_keyboard_init(vlan);
2026
2027 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2028 return 0;
2029 }
2030
2031 static int bt_parse(const char *opt)
2032 {
2033 const char *endp, *p;
2034 int vlan;
2035
2036 if (strstart(opt, "hci", &endp)) {
2037 if (!*endp || *endp == ',') {
2038 if (*endp)
2039 if (!strstart(endp, ",vlan=", 0))
2040 opt = endp + 1;
2041
2042 return bt_hci_parse(opt);
2043 }
2044 } else if (strstart(opt, "vhci", &endp)) {
2045 if (!*endp || *endp == ',') {
2046 if (*endp) {
2047 if (strstart(endp, ",vlan=", &p)) {
2048 vlan = strtol(p, (char **) &endp, 0);
2049 if (*endp) {
2050 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2051 return 1;
2052 }
2053 } else {
2054 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2055 return 1;
2056 }
2057 } else
2058 vlan = 0;
2059
2060 bt_vhci_add(vlan);
2061 return 0;
2062 }
2063 } else if (strstart(opt, "device:", &endp))
2064 return !bt_device_add(endp);
2065
2066 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2067 return 1;
2068 }
2069
2070 /***********************************************************/
2071 /* QEMU Block devices */
2072
2073 #define HD_ALIAS "index=%d,media=disk"
2074 #define CDROM_ALIAS "index=2,media=cdrom"
2075 #define FD_ALIAS "index=%d,if=floppy"
2076 #define PFLASH_ALIAS "if=pflash"
2077 #define MTD_ALIAS "if=mtd"
2078 #define SD_ALIAS "index=0,if=sd"
2079
2080 static int drive_opt_get_free_idx(void)
2081 {
2082 int index;
2083
2084 for (index = 0; index < MAX_DRIVES; index++)
2085 if (!drives_opt[index].used) {
2086 drives_opt[index].used = 1;
2087 return index;
2088 }
2089
2090 return -1;
2091 }
2092
2093 static int drive_get_free_idx(void)
2094 {
2095 int index;
2096
2097 for (index = 0; index < MAX_DRIVES; index++)
2098 if (!drives_table[index].used) {
2099 drives_table[index].used = 1;
2100 return index;
2101 }
2102
2103 return -1;
2104 }
2105
2106 int drive_add(const char *file, const char *fmt, ...)
2107 {
2108 va_list ap;
2109 int index = drive_opt_get_free_idx();
2110
2111 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2112 fprintf(stderr, "qemu: too many drives\n");
2113 return -1;
2114 }
2115
2116 drives_opt[index].file = file;
2117 va_start(ap, fmt);
2118 vsnprintf(drives_opt[index].opt,
2119 sizeof(drives_opt[0].opt), fmt, ap);
2120 va_end(ap);
2121
2122 nb_drives_opt++;
2123 return index;
2124 }
2125
2126 void drive_remove(int index)
2127 {
2128 drives_opt[index].used = 0;
2129 nb_drives_opt--;
2130 }
2131
2132 int drive_get_index(BlockInterfaceType type, int bus, int unit)
2133 {
2134 int index;
2135
2136 /* seek interface, bus and unit */
2137
2138 for (index = 0; index < MAX_DRIVES; index++)
2139 if (drives_table[index].type == type &&
2140 drives_table[index].bus == bus &&
2141 drives_table[index].unit == unit &&
2142 drives_table[index].used)
2143 return index;
2144
2145 return -1;
2146 }
2147
2148 int drive_get_max_bus(BlockInterfaceType type)
2149 {
2150 int max_bus;
2151 int index;
2152
2153 max_bus = -1;
2154 for (index = 0; index < nb_drives; index++) {
2155 if(drives_table[index].type == type &&
2156 drives_table[index].bus > max_bus)
2157 max_bus = drives_table[index].bus;
2158 }
2159 return max_bus;
2160 }
2161
2162 const char *drive_get_serial(BlockDriverState *bdrv)
2163 {
2164 int index;
2165
2166 for (index = 0; index < nb_drives; index++)
2167 if (drives_table[index].bdrv == bdrv)
2168 return drives_table[index].serial;
2169
2170 return "\0";
2171 }
2172
2173 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2174 {
2175 int index;
2176
2177 for (index = 0; index < nb_drives; index++)
2178 if (drives_table[index].bdrv == bdrv)
2179 return drives_table[index].onerror;
2180
2181 return BLOCK_ERR_STOP_ENOSPC;
2182 }
2183
2184 static void bdrv_format_print(void *opaque, const char *name)
2185 {
2186 fprintf(stderr, " %s", name);
2187 }
2188
2189 void drive_uninit(BlockDriverState *bdrv)
2190 {
2191 int i;
2192
2193 for (i = 0; i < MAX_DRIVES; i++)
2194 if (drives_table[i].bdrv == bdrv) {
2195 drives_table[i].bdrv = NULL;
2196 drives_table[i].used = 0;
2197 drive_remove(drives_table[i].drive_opt_idx);
2198 nb_drives--;
2199 break;
2200 }
2201 }
2202
2203 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2204 {
2205 char buf[128];
2206 char file[1024];
2207 char devname[128];
2208 char serial[21];
2209 const char *mediastr = "";
2210 BlockInterfaceType type;
2211 enum { MEDIA_DISK, MEDIA_CDROM } media;
2212 int bus_id, unit_id;
2213 int cyls, heads, secs, translation;
2214 BlockDriverState *bdrv;
2215 BlockDriver *drv = NULL;
2216 QEMUMachine *machine = opaque;
2217 int max_devs;
2218 int index;
2219 int cache;
2220 int bdrv_flags, onerror;
2221 int drives_table_idx;
2222 char *str = arg->opt;
2223 static const char * const params[] = { "bus", "unit", "if", "index",
2224 "cyls", "heads", "secs", "trans",
2225 "media", "snapshot", "file",
2226 "cache", "format", "serial", "werror",
2227 NULL };
2228
2229 if (check_params(params, str) < 0) {
2230 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2231 buf, str);
2232 return -1;
2233 }
2234
2235 file[0] = 0;
2236 cyls = heads = secs = 0;
2237 bus_id = 0;
2238 unit_id = -1;
2239 translation = BIOS_ATA_TRANSLATION_AUTO;
2240 index = -1;
2241 cache = 3;
2242
2243 if (machine->use_scsi) {
2244 type = IF_SCSI;
2245 max_devs = MAX_SCSI_DEVS;
2246 pstrcpy(devname, sizeof(devname), "scsi");
2247 } else {
2248 type = IF_IDE;
2249 max_devs = MAX_IDE_DEVS;
2250 pstrcpy(devname, sizeof(devname), "ide");
2251 }
2252 media = MEDIA_DISK;
2253
2254 /* extract parameters */
2255
2256 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2257 bus_id = strtol(buf, NULL, 0);
2258 if (bus_id < 0) {
2259 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2260 return -1;
2261 }
2262 }
2263
2264 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2265 unit_id = strtol(buf, NULL, 0);
2266 if (unit_id < 0) {
2267 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2268 return -1;
2269 }
2270 }
2271
2272 if (get_param_value(buf, sizeof(buf), "if", str)) {
2273 pstrcpy(devname, sizeof(devname), buf);
2274 if (!strcmp(buf, "ide")) {
2275 type = IF_IDE;
2276 max_devs = MAX_IDE_DEVS;
2277 } else if (!strcmp(buf, "scsi")) {
2278 type = IF_SCSI;
2279 max_devs = MAX_SCSI_DEVS;
2280 } else if (!strcmp(buf, "floppy")) {
2281 type = IF_FLOPPY;
2282 max_devs = 0;
2283 } else if (!strcmp(buf, "pflash")) {
2284 type = IF_PFLASH;
2285 max_devs = 0;
2286 } else if (!strcmp(buf, "mtd")) {
2287 type = IF_MTD;
2288 max_devs = 0;
2289 } else if (!strcmp(buf, "sd")) {
2290 type = IF_SD;
2291 max_devs = 0;
2292 } else if (!strcmp(buf, "virtio")) {
2293 type = IF_VIRTIO;
2294 max_devs = 0;
2295 } else if (!strcmp(buf, "xen")) {
2296 type = IF_XEN;
2297 max_devs = 0;
2298 } else {
2299 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2300 return -1;
2301 }
2302 }
2303
2304 if (get_param_value(buf, sizeof(buf), "index", str)) {
2305 index = strtol(buf, NULL, 0);
2306 if (index < 0) {
2307 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2308 return -1;
2309 }
2310 }
2311
2312 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2313 cyls = strtol(buf, NULL, 0);
2314 }
2315
2316 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2317 heads = strtol(buf, NULL, 0);
2318 }
2319
2320 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2321 secs = strtol(buf, NULL, 0);
2322 }
2323
2324 if (cyls || heads || secs) {
2325 if (cyls < 1 || cyls > 16383) {
2326 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2327 return -1;
2328 }
2329 if (heads < 1 || heads > 16) {
2330 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2331 return -1;
2332 }
2333 if (secs < 1 || secs > 63) {
2334 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2335 return -1;
2336 }
2337 }
2338
2339 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2340 if (!cyls) {
2341 fprintf(stderr,
2342 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2343 str);
2344 return -1;
2345 }
2346 if (!strcmp(buf, "none"))
2347 translation = BIOS_ATA_TRANSLATION_NONE;
2348 else if (!strcmp(buf, "lba"))
2349 translation = BIOS_ATA_TRANSLATION_LBA;
2350 else if (!strcmp(buf, "auto"))
2351 translation = BIOS_ATA_TRANSLATION_AUTO;
2352 else {
2353 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2354 return -1;
2355 }
2356 }
2357
2358 if (get_param_value(buf, sizeof(buf), "media", str)) {
2359 if (!strcmp(buf, "disk")) {
2360 media = MEDIA_DISK;
2361 } else if (!strcmp(buf, "cdrom")) {
2362 if (cyls || secs || heads) {
2363 fprintf(stderr,
2364 "qemu: '%s' invalid physical CHS format\n", str);
2365 return -1;
2366 }
2367 media = MEDIA_CDROM;
2368 } else {
2369 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2370 return -1;
2371 }
2372 }
2373
2374 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2375 if (!strcmp(buf, "on"))
2376 snapshot = 1;
2377 else if (!strcmp(buf, "off"))
2378 snapshot = 0;
2379 else {
2380 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2381 return -1;
2382 }
2383 }
2384
2385 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2386 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2387 cache = 0;
2388 else if (!strcmp(buf, "writethrough"))
2389 cache = 1;
2390 else if (!strcmp(buf, "writeback"))
2391 cache = 2;
2392 else {
2393 fprintf(stderr, "qemu: invalid cache option\n");
2394 return -1;
2395 }
2396 }
2397
2398 if (get_param_value(buf, sizeof(buf), "format", str)) {
2399 if (strcmp(buf, "?") == 0) {
2400 fprintf(stderr, "qemu: Supported formats:");
2401 bdrv_iterate_format(bdrv_format_print, NULL);
2402 fprintf(stderr, "\n");
2403 return -1;
2404 }
2405 drv = bdrv_find_format(buf);
2406 if (!drv) {
2407 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2408 return -1;
2409 }
2410 }
2411
2412 if (arg->file == NULL)
2413 get_param_value(file, sizeof(file), "file", str);
2414 else
2415 pstrcpy(file, sizeof(file), arg->file);
2416
2417 if (!get_param_value(serial, sizeof(serial), "serial", str))
2418 memset(serial, 0, sizeof(serial));
2419
2420 onerror = BLOCK_ERR_STOP_ENOSPC;
2421 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2422 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2423 fprintf(stderr, "werror is no supported by this format\n");
2424 return -1;
2425 }
2426 if (!strcmp(buf, "ignore"))
2427 onerror = BLOCK_ERR_IGNORE;
2428 else if (!strcmp(buf, "enospc"))
2429 onerror = BLOCK_ERR_STOP_ENOSPC;
2430 else if (!strcmp(buf, "stop"))
2431 onerror = BLOCK_ERR_STOP_ANY;
2432 else if (!strcmp(buf, "report"))
2433 onerror = BLOCK_ERR_REPORT;
2434 else {
2435 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2436 return -1;
2437 }
2438 }
2439
2440 /* compute bus and unit according index */
2441
2442 if (index != -1) {
2443 if (bus_id != 0 || unit_id != -1) {
2444 fprintf(stderr,
2445 "qemu: '%s' index cannot be used with bus and unit\n", str);
2446 return -1;
2447 }
2448 if (max_devs == 0)
2449 {
2450 unit_id = index;
2451 bus_id = 0;
2452 } else {
2453 unit_id = index % max_devs;
2454 bus_id = index / max_devs;
2455 }
2456 }
2457
2458 /* if user doesn't specify a unit_id,
2459 * try to find the first free
2460 */
2461
2462 if (unit_id == -1) {
2463 unit_id = 0;
2464 while (drive_get_index(type, bus_id, unit_id) != -1) {
2465 unit_id++;
2466 if (max_devs && unit_id >= max_devs) {
2467 unit_id -= max_devs;
2468 bus_id++;
2469 }
2470 }
2471 }
2472
2473 /* check unit id */
2474
2475 if (max_devs && unit_id >= max_devs) {
2476 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2477 str, unit_id, max_devs - 1);
2478 return -1;
2479 }
2480
2481 /*
2482 * ignore multiple definitions
2483 */
2484
2485 if (drive_get_index(type, bus_id, unit_id) != -1)
2486 return -2;
2487
2488 /* init */
2489
2490 if (type == IF_IDE || type == IF_SCSI)
2491 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2492 if (max_devs)
2493 snprintf(buf, sizeof(buf), "%s%i%s%i",
2494 devname, bus_id, mediastr, unit_id);
2495 else
2496 snprintf(buf, sizeof(buf), "%s%s%i",
2497 devname, mediastr, unit_id);
2498 bdrv = bdrv_new(buf);
2499 drives_table_idx = drive_get_free_idx();
2500 drives_table[drives_table_idx].bdrv = bdrv;
2501 drives_table[drives_table_idx].type = type;
2502 drives_table[drives_table_idx].bus = bus_id;
2503 drives_table[drives_table_idx].unit = unit_id;
2504 drives_table[drives_table_idx].onerror = onerror;
2505 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2506 strncpy(drives_table[drives_table_idx].serial, serial, sizeof(serial));
2507 nb_drives++;
2508
2509 switch(type) {
2510 case IF_IDE:
2511 case IF_SCSI:
2512 case IF_XEN:
2513 switch(media) {
2514 case MEDIA_DISK:
2515 if (cyls != 0) {
2516 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2517 bdrv_set_translation_hint(bdrv, translation);
2518 }
2519 break;
2520 case MEDIA_CDROM:
2521 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2522 break;
2523 }
2524 break;
2525 case IF_SD:
2526 /* FIXME: This isn't really a floppy, but it's a reasonable
2527 approximation. */
2528 case IF_FLOPPY:
2529 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2530 break;
2531 case IF_PFLASH:
2532 case IF_MTD:
2533 case IF_VIRTIO:
2534 break;
2535 case IF_COUNT:
2536 abort();
2537 }
2538 if (!file[0])
2539 return -2;
2540 bdrv_flags = 0;
2541 if (snapshot) {
2542 bdrv_flags |= BDRV_O_SNAPSHOT;
2543 cache = 2; /* always use write-back with snapshot */
2544 }
2545 if (cache == 0) /* no caching */
2546 bdrv_flags |= BDRV_O_NOCACHE;
2547 else if (cache == 2) /* write-back */
2548 bdrv_flags |= BDRV_O_CACHE_WB;
2549 else if (cache == 3) /* not specified */
2550 bdrv_flags |= BDRV_O_CACHE_DEF;
2551 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2552 fprintf(stderr, "qemu: could not open disk image %s\n",
2553 file);
2554 return -1;
2555 }
2556 if (bdrv_key_required(bdrv))
2557 autostart = 0;
2558 return drives_table_idx;
2559 }
2560
2561 static void numa_add(const char *optarg)
2562 {
2563 char option[128];
2564 char *endptr;
2565 unsigned long long value, endvalue;
2566 int nodenr;
2567
2568 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2569 if (!strcmp(option, "node")) {
2570 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2571 nodenr = nb_numa_nodes;
2572 } else {
2573 nodenr = strtoull(option, NULL, 10);
2574 }
2575
2576 if (get_param_value(option, 128, "mem", optarg) == 0) {
2577 node_mem[nodenr] = 0;
2578 } else {
2579 value = strtoull(option, &endptr, 0);
2580 switch (*endptr) {
2581 case 0: case 'M': case 'm':
2582 value <<= 20;
2583 break;
2584 case 'G': case 'g':
2585 value <<= 30;
2586 break;
2587 }
2588 node_mem[nodenr] = value;
2589 }
2590 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2591 node_cpumask[nodenr] = 0;
2592 } else {
2593 value = strtoull(option, &endptr, 10);
2594 if (value >= 64) {
2595 value = 63;
2596 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2597 } else {
2598 if (*endptr == '-') {
2599 endvalue = strtoull(endptr+1, &endptr, 10);
2600 if (endvalue >= 63) {
2601 endvalue = 62;
2602 fprintf(stderr,
2603 "only 63 CPUs in NUMA mode supported.\n");
2604 }
2605 value = (1 << (endvalue + 1)) - (1 << value);
2606 } else {
2607 value = 1 << value;
2608 }
2609 }
2610 node_cpumask[nodenr] = value;
2611 }
2612 nb_numa_nodes++;
2613 }
2614 return;
2615 }
2616
2617 /***********************************************************/
2618 /* USB devices */
2619
2620 static USBPort *used_usb_ports;
2621 static USBPort *free_usb_ports;
2622
2623 /* ??? Maybe change this to register a hub to keep track of the topology. */
2624 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2625 usb_attachfn attach)
2626 {
2627 port->opaque = opaque;
2628 port->index = index;
2629 port->attach = attach;
2630 port->next = free_usb_ports;
2631 free_usb_ports = port;
2632 }
2633
2634 int usb_device_add_dev(USBDevice *dev)
2635 {
2636 USBPort *port;
2637
2638 /* Find a USB port to add the device to. */
2639 port = free_usb_ports;
2640 if (!port->next) {
2641 USBDevice *hub;
2642
2643 /* Create a new hub and chain it on. */
2644 free_usb_ports = NULL;
2645 port->next = used_usb_ports;
2646 used_usb_ports = port;
2647
2648 hub = usb_hub_init(VM_USB_HUB_SIZE);
2649 usb_attach(port, hub);
2650 port = free_usb_ports;
2651 }
2652
2653 free_usb_ports = port->next;
2654 port->next = used_usb_ports;
2655 used_usb_ports = port;
2656 usb_attach(port, dev);
2657 return 0;
2658 }
2659
2660 static void usb_msd_password_cb(void *opaque, int err)
2661 {
2662 USBDevice *dev = opaque;
2663
2664 if (!err)
2665 usb_device_add_dev(dev);
2666 else
2667 dev->handle_destroy(dev);
2668 }
2669
2670 static int usb_device_add(const char *devname, int is_hotplug)
2671 {
2672 const char *p;
2673 USBDevice *dev;
2674
2675 if (!free_usb_ports)
2676 return -1;
2677
2678 if (strstart(devname, "host:", &p)) {
2679 dev = usb_host_device_open(p);
2680 } else if (!strcmp(devname, "mouse")) {
2681 dev = usb_mouse_init();
2682 } else if (!strcmp(devname, "tablet")) {
2683 dev = usb_tablet_init();
2684 } else if (!strcmp(devname, "keyboard")) {
2685 dev = usb_keyboard_init();
2686 } else if (strstart(devname, "disk:", &p)) {
2687 BlockDriverState *bs;
2688
2689 dev = usb_msd_init(p);
2690 if (!dev)
2691 return -1;
2692 bs = usb_msd_get_bdrv(dev);
2693 if (bdrv_key_required(bs)) {
2694 autostart = 0;
2695 if (is_hotplug) {
2696 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2697 dev);
2698 return 0;
2699 }
2700 }
2701 } else if (!strcmp(devname, "wacom-tablet")) {
2702 dev = usb_wacom_init();
2703 } else if (strstart(devname, "serial:", &p)) {
2704 dev = usb_serial_init(p);
2705 #ifdef CONFIG_BRLAPI
2706 } else if (!strcmp(devname, "braille")) {
2707 dev = usb_baum_init();
2708 #endif
2709 } else if (strstart(devname, "net:", &p)) {
2710 int nic = nb_nics;
2711
2712 if (net_client_init("nic", p) < 0)
2713 return -1;
2714 nd_table[nic].model = "usb";
2715 dev = usb_net_init(&nd_table[nic]);
2716 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2717 dev = usb_bt_init(devname[2] ? hci_init(p) :
2718 bt_new_hci(qemu_find_bt_vlan(0)));
2719 } else {
2720 return -1;
2721 }
2722 if (!dev)
2723 return -1;
2724
2725 return usb_device_add_dev(dev);
2726 }
2727
2728 int usb_device_del_addr(int bus_num, int addr)
2729 {
2730 USBPort *port;
2731 USBPort **lastp;
2732 USBDevice *dev;
2733
2734 if (!used_usb_ports)
2735 return -1;
2736
2737 if (bus_num != 0)
2738 return -1;
2739
2740 lastp = &used_usb_ports;
2741 port = used_usb_ports;
2742 while (port && port->dev->addr != addr) {
2743 lastp = &port->next;
2744 port = port->next;
2745 }
2746
2747 if (!port)
2748 return -1;
2749
2750 dev = port->dev;
2751 *lastp = port->next;
2752 usb_attach(port, NULL);
2753 dev->handle_destroy(dev);
2754 port->next = free_usb_ports;
2755 free_usb_ports = port;
2756 return 0;
2757 }
2758
2759 static int usb_device_del(const char *devname)
2760 {
2761 int bus_num, addr;
2762 const char *p;
2763
2764 if (strstart(devname, "host:", &p))
2765 return usb_host_device_close(p);
2766
2767 if (!used_usb_ports)
2768 return -1;
2769
2770 p = strchr(devname, '.');
2771 if (!p)
2772 return -1;
2773 bus_num = strtoul(devname, NULL, 0);
2774 addr = strtoul(p + 1, NULL, 0);
2775
2776 return usb_device_del_addr(bus_num, addr);
2777 }
2778
2779 void do_usb_add(Monitor *mon, const char *devname)
2780 {
2781 usb_device_add(devname, 1);
2782 }
2783
2784 void do_usb_del(Monitor *mon, const char *devname)
2785 {
2786 usb_device_del(devname);
2787 }
2788
2789 void usb_info(Monitor *mon)
2790 {
2791 USBDevice *dev;
2792 USBPort *port;
2793 const char *speed_str;
2794
2795 if (!usb_enabled) {
2796 monitor_printf(mon, "USB support not enabled\n");
2797 return;
2798 }
2799
2800 for (port = used_usb_ports; port; port = port->next) {
2801 dev = port->dev;
2802 if (!dev)
2803 continue;
2804 switch(dev->speed) {
2805 case USB_SPEED_LOW:
2806 speed_str = "1.5";
2807 break;
2808 case USB_SPEED_FULL:
2809 speed_str = "12";
2810 break;
2811 case USB_SPEED_HIGH:
2812 speed_str = "480";
2813 break;
2814 default:
2815 speed_str = "?";
2816 break;
2817 }
2818 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2819 0, dev->addr, speed_str, dev->devname);
2820 }
2821 }
2822
2823 /***********************************************************/
2824 /* PCMCIA/Cardbus */
2825
2826 static struct pcmcia_socket_entry_s {
2827 PCMCIASocket *socket;
2828 struct pcmcia_socket_entry_s *next;
2829 } *pcmcia_sockets = 0;
2830
2831 void pcmcia_socket_register(PCMCIASocket *socket)
2832 {
2833 struct pcmcia_socket_entry_s *entry;
2834
2835 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2836 entry->socket = socket;
2837 entry->next = pcmcia_sockets;
2838 pcmcia_sockets = entry;
2839 }
2840
2841 void pcmcia_socket_unregister(PCMCIASocket *socket)
2842 {
2843 struct pcmcia_socket_entry_s *entry, **ptr;
2844
2845 ptr = &pcmcia_sockets;
2846 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2847 if (entry->socket == socket) {
2848 *ptr = entry->next;
2849 qemu_free(entry);
2850 }
2851 }
2852
2853 void pcmcia_info(Monitor *mon)
2854 {
2855 struct pcmcia_socket_entry_s *iter;
2856
2857 if (!pcmcia_sockets)
2858 monitor_printf(mon, "No PCMCIA sockets\n");
2859
2860 for (iter = pcmcia_sockets; iter; iter = iter->next)
2861 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2862 iter->socket->attached ? iter->socket->card_string :
2863 "Empty");
2864 }
2865
2866 /***********************************************************/
2867 /* register display */
2868
2869 struct DisplayAllocator default_allocator = {
2870 defaultallocator_create_displaysurface,
2871 defaultallocator_resize_displaysurface,
2872 defaultallocator_free_displaysurface
2873 };
2874
2875 void register_displaystate(DisplayState *ds)
2876 {
2877 DisplayState **s;
2878 s = &display_state;
2879 while (*s != NULL)
2880 s = &(*s)->next;
2881 ds->next = NULL;
2882 *s = ds;
2883 }
2884
2885 DisplayState *get_displaystate(void)
2886 {
2887 return display_state;
2888 }
2889
2890 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2891 {
2892 if(ds->allocator == &default_allocator) ds->allocator = da;
2893 return ds->allocator;
2894 }
2895
2896 /* dumb display */
2897
2898 static void dumb_display_init(void)
2899 {
2900 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2901 ds->allocator = &default_allocator;
2902 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2903 register_displaystate(ds);
2904 }
2905
2906 /***********************************************************/
2907 /* I/O handling */
2908
2909 typedef struct IOHandlerRecord {
2910 int fd;
2911 IOCanRWHandler *fd_read_poll;
2912 IOHandler *fd_read;
2913 IOHandler *fd_write;
2914 int deleted;
2915 void *opaque;
2916 /* temporary data */
2917 struct pollfd *ufd;
2918 struct IOHandlerRecord *next;
2919 } IOHandlerRecord;
2920
2921 static IOHandlerRecord *first_io_handler;
2922
2923 /* XXX: fd_read_poll should be suppressed, but an API change is
2924 necessary in the character devices to suppress fd_can_read(). */
2925 int qemu_set_fd_handler2(int fd,
2926 IOCanRWHandler *fd_read_poll,
2927 IOHandler *fd_read,
2928 IOHandler *fd_write,
2929 void *opaque)
2930 {
2931 IOHandlerRecord **pioh, *ioh;
2932
2933 if (!fd_read && !fd_write) {
2934 pioh = &first_io_handler;
2935 for(;;) {
2936 ioh = *pioh;
2937 if (ioh == NULL)
2938 break;
2939 if (ioh->fd == fd) {
2940 ioh->deleted = 1;
2941 break;
2942 }
2943 pioh = &ioh->next;
2944 }
2945 } else {
2946 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2947 if (ioh->fd == fd)
2948 goto found;
2949 }
2950 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2951 ioh->next = first_io_handler;
2952 first_io_handler = ioh;
2953 found:
2954 ioh->fd = fd;
2955 ioh->fd_read_poll = fd_read_poll;
2956 ioh->fd_read = fd_read;
2957 ioh->fd_write = fd_write;
2958 ioh->opaque = opaque;
2959 ioh->deleted = 0;
2960 }
2961 return 0;
2962 }
2963
2964 int qemu_set_fd_handler(int fd,
2965 IOHandler *fd_read,
2966 IOHandler *fd_write,
2967 void *opaque)
2968 {
2969 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2970 }
2971
2972 #ifdef _WIN32
2973 /***********************************************************/
2974 /* Polling handling */
2975
2976 typedef struct PollingEntry {
2977 PollingFunc *func;
2978 void *opaque;
2979 struct PollingEntry *next;
2980 } PollingEntry;
2981
2982 static PollingEntry *first_polling_entry;
2983
2984 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2985 {
2986 PollingEntry **ppe, *pe;
2987 pe = qemu_mallocz(sizeof(PollingEntry));
2988 pe->func = func;
2989 pe->opaque = opaque;
2990 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2991 *ppe = pe;
2992 return 0;
2993 }
2994
2995 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2996 {
2997 PollingEntry **ppe, *pe;
2998 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2999 pe = *ppe;
3000 if (pe->func == func && pe->opaque == opaque) {
3001 *ppe = pe->next;
3002 qemu_free(pe);
3003 break;
3004 }
3005 }
3006 }
3007
3008 /***********************************************************/
3009 /* Wait objects support */
3010 typedef struct WaitObjects {
3011 int num;
3012 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
3013 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
3014 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
3015 } WaitObjects;
3016
3017 static WaitObjects wait_objects = {0};
3018
3019 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3020 {
3021 WaitObjects *w = &wait_objects;
3022
3023 if (w->num >= MAXIMUM_WAIT_OBJECTS)
3024 return -1;
3025 w->events[w->num] = handle;
3026 w->func[w->num] = func;
3027 w->opaque[w->num] = opaque;
3028 w->num++;
3029 return 0;
3030 }
3031
3032 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3033 {
3034 int i, found;
3035 WaitObjects *w = &wait_objects;
3036
3037 found = 0;
3038 for (i = 0; i < w->num; i++) {
3039 if (w->events[i] == handle)
3040 found = 1;
3041 if (found) {
3042 w->events[i] = w->events[i + 1];
3043 w->func[i] = w->func[i + 1];
3044 w->opaque[i] = w->opaque[i + 1];
3045 }
3046 }
3047 if (found)
3048 w->num--;
3049 }
3050 #endif
3051
3052 /***********************************************************/
3053 /* ram save/restore */
3054
3055 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3056 {
3057 int v;
3058
3059 v = qemu_get_byte(f);
3060 switch(v) {
3061 case 0:
3062 if (qemu_get_buffer(f, buf, len) != len)
3063 return -EIO;
3064 break;
3065 case 1:
3066 v = qemu_get_byte(f);
3067 memset(buf, v, len);
3068 break;
3069 default:
3070 return -EINVAL;
3071 }
3072
3073 if (qemu_file_has_error(f))
3074 return -EIO;
3075
3076 return 0;
3077 }
3078
3079 static int ram_load_v1(QEMUFile *f, void *opaque)
3080 {
3081 int ret;
3082 ram_addr_t i;
3083
3084 if (qemu_get_be32(f) != last_ram_offset)
3085 return -EINVAL;
3086 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
3087 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
3088 if (ret)
3089 return ret;
3090 }
3091 return 0;
3092 }
3093
3094 #define BDRV_HASH_BLOCK_SIZE 1024
3095 #define IOBUF_SIZE 4096
3096 #define RAM_CBLOCK_MAGIC 0xfabe
3097
3098 typedef struct RamDecompressState {
3099 z_stream zstream;
3100 QEMUFile *f;
3101 uint8_t buf[IOBUF_SIZE];
3102 } RamDecompressState;
3103
3104 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3105 {
3106 int ret;
3107 memset(s, 0, sizeof(*s));
3108 s->f = f;
3109 ret = inflateInit(&s->zstream);
3110 if (ret != Z_OK)
3111 return -1;
3112 return 0;
3113 }
3114
3115 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3116 {
3117 int ret, clen;
3118
3119 s->zstream.avail_out = len;
3120 s->zstream.next_out = buf;
3121 while (s->zstream.avail_out > 0) {
3122 if (s->zstream.avail_in == 0) {
3123 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3124 return -1;
3125 clen = qemu_get_be16(s->f);
3126 if (clen > IOBUF_SIZE)
3127 return -1;
3128 qemu_get_buffer(s->f, s->buf, clen);
3129 s->zstream.avail_in = clen;
3130 s->zstream.next_in = s->buf;
3131 }
3132 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3133 if (ret != Z_OK && ret != Z_STREAM_END) {
3134 return -1;
3135 }
3136 }
3137 return 0;
3138 }
3139
3140 static void ram_decompress_close(RamDecompressState *s)
3141 {
3142 inflateEnd(&s->zstream);
3143 }
3144
3145 #define RAM_SAVE_FLAG_FULL 0x01
3146 #define RAM_SAVE_FLAG_COMPRESS 0x02
3147 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3148 #define RAM_SAVE_FLAG_PAGE 0x08
3149 #define RAM_SAVE_FLAG_EOS 0x10
3150
3151 static int is_dup_page(uint8_t *page, uint8_t ch)
3152 {
3153 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3154 uint32_t *array = (uint32_t *)page;
3155 int i;
3156
3157 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3158 if (array[i] != val)
3159 return 0;
3160 }
3161
3162 return 1;
3163 }
3164
3165 static int ram_save_block(QEMUFile *f)
3166 {
3167 static ram_addr_t current_addr = 0;
3168 ram_addr_t saved_addr = current_addr;
3169 ram_addr_t addr = 0;
3170 int found = 0;
3171
3172 while (addr < last_ram_offset) {
3173 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3174 uint8_t *p;
3175
3176 cpu_physical_memory_reset_dirty(current_addr,
3177 current_addr + TARGET_PAGE_SIZE,
3178 MIGRATION_DIRTY_FLAG);
3179
3180 p = qemu_get_ram_ptr(current_addr);
3181
3182 if (is_dup_page(p, *p)) {
3183 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3184 qemu_put_byte(f, *p);
3185 } else {
3186 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3187 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3188 }
3189
3190 found = 1;
3191 break;
3192 }
3193 addr += TARGET_PAGE_SIZE;
3194 current_addr = (saved_addr + addr) % last_ram_offset;
3195 }
3196
3197 return found;
3198 }
3199
3200 static ram_addr_t ram_save_threshold = 10;
3201 static uint64_t bytes_transferred = 0;
3202
3203 static ram_addr_t ram_save_remaining(void)
3204 {
3205 ram_addr_t addr;
3206 ram_addr_t count = 0;
3207
3208 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3209 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3210 count++;
3211 }
3212
3213 return count;
3214 }
3215
3216 uint64_t ram_bytes_remaining(void)
3217 {
3218 return ram_save_remaining() * TARGET_PAGE_SIZE;
3219 }
3220
3221 uint64_t ram_bytes_transferred(void)
3222 {
3223 return bytes_transferred;
3224 }
3225
3226 uint64_t ram_bytes_total(void)
3227 {
3228 return last_ram_offset;
3229 }
3230
3231 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3232 {
3233 ram_addr_t addr;
3234
3235 if (cpu_physical_sync_dirty_bitmap(0, last_ram_offset) != 0) {
3236 qemu_file_set_error(f);
3237 return 0;
3238 }
3239
3240 if (stage == 1) {
3241 /* Make sure all dirty bits are set */
3242 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3243 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3244 cpu_physical_memory_set_dirty(addr);
3245 }
3246
3247 /* Enable dirty memory tracking */
3248 cpu_physical_memory_set_dirty_tracking(1);
3249
3250 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3251 }
3252
3253 while (!qemu_file_rate_limit(f)) {
3254 int ret;
3255
3256 ret = ram_save_block(f);
3257 bytes_transferred += ret * TARGET_PAGE_SIZE;
3258 if (ret == 0) /* no more blocks */
3259 break;
3260 }
3261
3262 /* try transferring iterative blocks of memory */
3263
3264 if (stage == 3) {
3265
3266 /* flush all remaining blocks regardless of rate limiting */
3267 while (ram_save_block(f) != 0) {
3268 bytes_transferred += TARGET_PAGE_SIZE;
3269 }
3270 cpu_physical_memory_set_dirty_tracking(0);
3271 }
3272
3273 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3274
3275 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3276 }
3277
3278 static int ram_load_dead(QEMUFile *f, void *opaque)
3279 {
3280 RamDecompressState s1, *s = &s1;
3281 uint8_t buf[10];
3282 ram_addr_t i;
3283
3284 if (ram_decompress_open(s, f) < 0)
3285 return -EINVAL;
3286 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3287 if (ram_decompress_buf(s, buf, 1) < 0) {
3288 fprintf(stderr, "Error while reading ram block header\n");
3289 goto error;
3290 }
3291 if (buf[0] == 0) {
3292 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3293 BDRV_HASH_BLOCK_SIZE) < 0) {
3294 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3295 goto error;
3296 }
3297 } else {
3298 error:
3299 printf("Error block header\n");
3300 return -EINVAL;
3301 }
3302 }
3303 ram_decompress_close(s);
3304
3305 return 0;
3306 }
3307
3308 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3309 {
3310 ram_addr_t addr;
3311 int flags;
3312
3313 if (version_id == 1)
3314 return ram_load_v1(f, opaque);
3315
3316 if (version_id == 2) {
3317 if (qemu_get_be32(f) != last_ram_offset)
3318 return -EINVAL;
3319 return ram_load_dead(f, opaque);
3320 }
3321
3322 if (version_id != 3)
3323 return -EINVAL;
3324
3325 do {
3326 addr = qemu_get_be64(f);
3327
3328 flags = addr & ~TARGET_PAGE_MASK;
3329 addr &= TARGET_PAGE_MASK;
3330
3331 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3332 if (addr != last_ram_offset)
3333 return -EINVAL;
3334 }
3335
3336 if (flags & RAM_SAVE_FLAG_FULL) {
3337 if (ram_load_dead(f, opaque) < 0)
3338 return -EINVAL;
3339 }
3340
3341 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3342 uint8_t ch = qemu_get_byte(f);
3343 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3344 } else if (flags & RAM_SAVE_FLAG_PAGE)
3345 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3346 } while (!(flags & RAM_SAVE_FLAG_EOS));
3347
3348 return 0;
3349 }
3350
3351 void qemu_service_io(void)
3352 {
3353 qemu_notify_event();
3354 }
3355
3356 /***********************************************************/
3357 /* bottom halves (can be seen as timers which expire ASAP) */
3358
3359 struct QEMUBH {
3360 QEMUBHFunc *cb;
3361 void *opaque;
3362 int scheduled;
3363 int idle;
3364 int deleted;
3365 QEMUBH *next;
3366 };
3367
3368 static QEMUBH *first_bh = NULL;
3369
3370 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3371 {
3372 QEMUBH *bh;
3373 bh = qemu_mallocz(sizeof(QEMUBH));
3374 bh->cb = cb;
3375 bh->opaque = opaque;
3376 bh->next = first_bh;
3377 first_bh = bh;
3378 return bh;
3379 }
3380
3381 int qemu_bh_poll(void)
3382 {
3383 QEMUBH *bh, **bhp;
3384 int ret;
3385
3386 ret = 0;
3387 for (bh = first_bh; bh; bh = bh->next) {
3388 if (!bh->deleted && bh->scheduled) {
3389 bh->scheduled = 0;
3390 if (!bh->idle)
3391 ret = 1;
3392 bh->idle = 0;
3393 bh->cb(bh->opaque);
3394 }
3395 }
3396
3397 /* remove deleted bhs */
3398 bhp = &first_bh;
3399 while (*bhp) {
3400 bh = *bhp;
3401 if (bh->deleted) {
3402 *bhp = bh->next;
3403 qemu_free(bh);
3404 } else
3405 bhp = &bh->next;
3406 }
3407
3408 return ret;
3409 }
3410
3411 void qemu_bh_schedule_idle(QEMUBH *bh)
3412 {
3413 if (bh->scheduled)
3414 return;
3415 bh->scheduled = 1;
3416 bh->idle = 1;
3417 }
3418
3419 void qemu_bh_schedule(QEMUBH *bh)
3420 {
3421 if (bh->scheduled)
3422 return;
3423 bh->scheduled = 1;
3424 bh->idle = 0;
3425 /* stop the currently executing CPU to execute the BH ASAP */
3426 qemu_notify_event();
3427 }
3428
3429 void qemu_bh_cancel(QEMUBH *bh)
3430 {
3431 bh->scheduled = 0;
3432 }
3433
3434 void qemu_bh_delete(QEMUBH *bh)
3435 {
3436 bh->scheduled = 0;
3437 bh->deleted = 1;
3438 }
3439
3440 static void qemu_bh_update_timeout(int *timeout)
3441 {
3442 QEMUBH *bh;
3443
3444 for (bh = first_bh; bh; bh = bh->next) {
3445 if (!bh->deleted && bh->scheduled) {
3446 if (bh->idle) {
3447 /* idle bottom halves will be polled at least
3448 * every 10ms */
3449 *timeout = MIN(10, *timeout);
3450 } else {
3451 /* non-idle bottom halves will be executed
3452 * immediately */
3453 *timeout = 0;
3454 break;
3455 }
3456 }
3457 }
3458 }
3459
3460 /***********************************************************/
3461 /* machine registration */
3462
3463 static QEMUMachine *first_machine = NULL;
3464 QEMUMachine *current_machine = NULL;
3465
3466 int qemu_register_machine(QEMUMachine *m)
3467 {
3468 QEMUMachine **pm;
3469 pm = &first_machine;
3470 while (*pm != NULL)
3471 pm = &(*pm)->next;
3472 m->next = NULL;
3473 *pm = m;
3474 return 0;
3475 }
3476
3477 static QEMUMachine *find_machine(const char *name)
3478 {
3479 QEMUMachine *m;
3480
3481 for(m = first_machine; m != NULL; m = m->next) {
3482 if (!strcmp(m->name, name))
3483 return m;
3484 }
3485 return NULL;
3486 }
3487
3488 static QEMUMachine *find_default_machine(void)
3489 {
3490 QEMUMachine *m;
3491
3492 for(m = first_machine; m != NULL; m = m->next) {
3493 if (m->is_default) {
3494 return m;
3495 }
3496 }
3497 return NULL;
3498 }
3499
3500 /***********************************************************/
3501 /* main execution loop */
3502
3503 static void gui_update(void *opaque)
3504 {
3505 uint64_t interval = GUI_REFRESH_INTERVAL;
3506 DisplayState *ds = opaque;
3507 DisplayChangeListener *dcl = ds->listeners;
3508
3509 dpy_refresh(ds);
3510
3511 while (dcl != NULL) {
3512 if (dcl->gui_timer_interval &&
3513 dcl->gui_timer_interval < interval)
3514 interval = dcl->gui_timer_interval;
3515 dcl = dcl->next;
3516 }
3517 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3518 }
3519
3520 static void nographic_update(void *opaque)
3521 {
3522 uint64_t interval = GUI_REFRESH_INTERVAL;
3523
3524 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3525 }
3526
3527 struct vm_change_state_entry {
3528 VMChangeStateHandler *cb;
3529 void *opaque;
3530 LIST_ENTRY (vm_change_state_entry) entries;
3531 };
3532
3533 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3534
3535 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3536 void *opaque)
3537 {
3538 VMChangeStateEntry *e;
3539
3540 e = qemu_mallocz(sizeof (*e));
3541
3542 e->cb = cb;
3543 e->opaque = opaque;
3544 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3545 return e;
3546 }
3547
3548 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3549 {
3550 LIST_REMOVE (e, entries);
3551 qemu_free (e);
3552 }
3553
3554 static void vm_state_notify(int running, int reason)
3555 {
3556 VMChangeStateEntry *e;
3557
3558 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3559 e->cb(e->opaque, running, reason);
3560 }
3561 }
3562
3563 static void resume_all_vcpus(void);
3564 static void pause_all_vcpus(void);
3565
3566 void vm_start(void)
3567 {
3568 if (!vm_running) {
3569 cpu_enable_ticks();
3570 vm_running = 1;
3571 vm_state_notify(1, 0);
3572 qemu_rearm_alarm_timer(alarm_timer);
3573 resume_all_vcpus();
3574 }
3575 }
3576
3577 /* reset/shutdown handler */
3578
3579 typedef struct QEMUResetEntry {
3580 QEMUResetHandler *func;
3581 void *opaque;
3582 int order;
3583 struct QEMUResetEntry *next;
3584 } QEMUResetEntry;
3585
3586 static QEMUResetEntry *first_reset_entry;
3587 static int reset_requested;
3588 static int shutdown_requested;
3589 static int powerdown_requested;
3590 static int debug_requested;
3591 static int vmstop_requested;
3592
3593 int qemu_shutdown_requested(void)
3594 {
3595 int r = shutdown_requested;
3596 shutdown_requested = 0;
3597 return r;
3598 }
3599
3600 int qemu_reset_requested(void)
3601 {
3602 int r = reset_requested;
3603 reset_requested = 0;
3604 return r;
3605 }
3606
3607 int qemu_powerdown_requested(void)
3608 {
3609 int r = powerdown_requested;
3610 powerdown_requested = 0;
3611 return r;
3612 }
3613
3614 static int qemu_debug_requested(void)
3615 {
3616 int r = debug_requested;
3617 debug_requested = 0;
3618 return r;
3619 }
3620
3621 static int qemu_vmstop_requested(void)
3622 {
3623 int r = vmstop_requested;
3624 vmstop_requested = 0;
3625 return r;
3626 }
3627
3628 static void do_vm_stop(int reason)
3629 {
3630 if (vm_running) {
3631 cpu_disable_ticks();
3632 vm_running = 0;
3633 pause_all_vcpus();
3634 vm_state_notify(0, reason);
3635 }
3636 }
3637
3638 void qemu_register_reset(QEMUResetHandler *func, int order, void *opaque)
3639 {
3640 QEMUResetEntry **pre, *re;
3641
3642 pre = &first_reset_entry;
3643 while (*pre != NULL && (*pre)->order >= order) {
3644 pre = &(*pre)->next;
3645 }
3646 re = qemu_mallocz(sizeof(QEMUResetEntry));
3647 re->func = func;
3648 re->opaque = opaque;
3649 re->order = order;
3650 re->next = NULL;
3651 *pre = re;
3652 }
3653
3654 void qemu_system_reset(void)
3655 {
3656 QEMUResetEntry *re;
3657
3658 /* reset all devices */
3659 for(re = first_reset_entry; re != NULL; re = re->next) {
3660 re->func(re->opaque);
3661 }
3662 if (kvm_enabled())
3663 kvm_sync_vcpus();
3664 }
3665
3666 void qemu_system_reset_request(void)
3667 {
3668 if (no_reboot) {
3669 shutdown_requested = 1;
3670 } else {
3671 reset_requested = 1;
3672 }
3673 qemu_notify_event();
3674 }
3675
3676 void qemu_system_shutdown_request(void)
3677 {
3678 shutdown_requested = 1;
3679 qemu_notify_event();
3680 }
3681
3682 void qemu_system_powerdown_request(void)
3683 {
3684 powerdown_requested = 1;
3685 qemu_notify_event();
3686 }
3687
3688 #ifdef CONFIG_IOTHREAD
3689 static void qemu_system_vmstop_request(int reason)
3690 {
3691 vmstop_requested = reason;
3692 qemu_notify_event();
3693 }
3694 #endif
3695
3696 #ifndef _WIN32
3697 static int io_thread_fd = -1;
3698
3699 static void qemu_event_increment(void)
3700 {
3701 static const char byte = 0;
3702
3703 if (io_thread_fd == -1)
3704 return;
3705
3706 write(io_thread_fd, &byte, sizeof(byte));
3707 }
3708
3709 static void qemu_event_read(void *opaque)
3710 {
3711 int fd = (unsigned long)opaque;
3712 ssize_t len;
3713
3714 /* Drain the notify pipe */
3715 do {
3716 char buffer[512];
3717 len = read(fd, buffer, sizeof(buffer));
3718 } while ((len == -1 && errno == EINTR) || len > 0);
3719 }
3720
3721 static int qemu_event_init(void)
3722 {
3723 int err;
3724 int fds[2];
3725
3726 err = pipe(fds);
3727 if (err == -1)
3728 return -errno;
3729
3730 err = fcntl_setfl(fds[0], O_NONBLOCK);
3731 if (err < 0)
3732 goto fail;
3733
3734 err = fcntl_setfl(fds[1], O_NONBLOCK);
3735 if (err < 0)
3736 goto fail;
3737
3738 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3739 (void *)(unsigned long)fds[0]);
3740
3741 io_thread_fd = fds[1];
3742 return 0;
3743
3744 fail:
3745 close(fds[0]);
3746 close(fds[1]);
3747 return err;
3748 }
3749 #else
3750 HANDLE qemu_event_handle;
3751
3752 static void dummy_event_handler(void *opaque)
3753 {
3754 }
3755
3756 static int qemu_event_init(void)
3757 {
3758 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3759 if (!qemu_event_handle) {
3760 perror("Failed CreateEvent");
3761 return -1;
3762 }
3763 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3764 return 0;
3765 }
3766
3767 static void qemu_event_increment(void)
3768 {
3769 SetEvent(qemu_event_handle);
3770 }
3771 #endif
3772
3773 static int cpu_can_run(CPUState *env)
3774 {
3775 if (env->stop)
3776 return 0;
3777 if (env->stopped)
3778 return 0;
3779 return 1;
3780 }
3781
3782 #ifndef CONFIG_IOTHREAD
3783 static int qemu_init_main_loop(void)
3784 {
3785 return qemu_event_init();
3786 }
3787
3788 void qemu_init_vcpu(void *_env)
3789 {
3790 CPUState *env = _env;
3791
3792 if (kvm_enabled())
3793 kvm_init_vcpu(env);
3794 return;
3795 }
3796
3797 int qemu_cpu_self(void *env)
3798 {
3799 return 1;
3800 }
3801
3802 static void resume_all_vcpus(void)
3803 {
3804 }
3805
3806 static void pause_all_vcpus(void)
3807 {
3808 }
3809
3810 void qemu_cpu_kick(void *env)
3811 {
3812 return;
3813 }
3814
3815 void qemu_notify_event(void)
3816 {
3817 CPUState *env = cpu_single_env;
3818
3819 if (env) {
3820 cpu_exit(env);
3821 #ifdef USE_KQEMU
3822 if (env->kqemu_enabled)
3823 kqemu_cpu_interrupt(env);
3824 #endif
3825 }
3826 }
3827
3828 #define qemu_mutex_lock_iothread() do { } while (0)
3829 #define qemu_mutex_unlock_iothread() do { } while (0)
3830
3831 void vm_stop(int reason)
3832 {
3833 do_vm_stop(reason);
3834 }
3835
3836 #else /* CONFIG_IOTHREAD */
3837
3838 #include "qemu-thread.h"
3839
3840 QemuMutex qemu_global_mutex;
3841 static QemuMutex qemu_fair_mutex;
3842
3843 static QemuThread io_thread;
3844
3845 static QemuThread *tcg_cpu_thread;
3846 static QemuCond *tcg_halt_cond;
3847
3848 static int qemu_system_ready;
3849 /* cpu creation */
3850 static QemuCond qemu_cpu_cond;
3851 /* system init */
3852 static QemuCond qemu_system_cond;
3853 static QemuCond qemu_pause_cond;
3854
3855 static void block_io_signals(void);
3856 static void unblock_io_signals(void);
3857 static int tcg_has_work(void);
3858
3859 static int qemu_init_main_loop(void)
3860 {
3861 int ret;
3862
3863 ret = qemu_event_init();
3864 if (ret)
3865 return ret;
3866
3867 qemu_cond_init(&qemu_pause_cond);
3868 qemu_mutex_init(&qemu_fair_mutex);
3869 qemu_mutex_init(&qemu_global_mutex);
3870 qemu_mutex_lock(&qemu_global_mutex);
3871
3872 unblock_io_signals();
3873 qemu_thread_self(&io_thread);
3874
3875 return 0;
3876 }
3877
3878 static void qemu_wait_io_event(CPUState *env)
3879 {
3880 while (!tcg_has_work())
3881 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3882
3883 qemu_mutex_unlock(&qemu_global_mutex);
3884
3885 /*
3886 * Users of qemu_global_mutex can be starved, having no chance
3887 * to acquire it since this path will get to it first.
3888 * So use another lock to provide fairness.
3889 */
3890 qemu_mutex_lock(&qemu_fair_mutex);
3891 qemu_mutex_unlock(&qemu_fair_mutex);
3892
3893 qemu_mutex_lock(&qemu_global_mutex);
3894 if (env->stop) {
3895 env->stop = 0;
3896 env->stopped = 1;
3897 qemu_cond_signal(&qemu_pause_cond);
3898 }
3899 }
3900
3901 static int qemu_cpu_exec(CPUState *env);
3902
3903 static void *kvm_cpu_thread_fn(void *arg)
3904 {
3905 CPUState *env = arg;
3906
3907 block_io_signals();
3908 qemu_thread_self(env->thread);
3909
3910 /* signal CPU creation */
3911 qemu_mutex_lock(&qemu_global_mutex);
3912 env->created = 1;
3913 qemu_cond_signal(&qemu_cpu_cond);
3914
3915 /* and wait for machine initialization */
3916 while (!qemu_system_ready)
3917 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3918
3919 while (1) {
3920 if (cpu_can_run(env))
3921 qemu_cpu_exec(env);
3922 qemu_wait_io_event(env);
3923 }
3924
3925 return NULL;
3926 }
3927
3928 static void tcg_cpu_exec(void);
3929
3930 static void *tcg_cpu_thread_fn(void *arg)
3931 {
3932 CPUState *env = arg;
3933
3934 block_io_signals();
3935 qemu_thread_self(env->thread);
3936
3937 /* signal CPU creation */
3938 qemu_mutex_lock(&qemu_global_mutex);
3939 for (env = first_cpu; env != NULL; env = env->next_cpu)
3940 env->created = 1;
3941 qemu_cond_signal(&qemu_cpu_cond);
3942
3943 /* and wait for machine initialization */
3944 while (!qemu_system_ready)
3945 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3946
3947 while (1) {
3948 tcg_cpu_exec();
3949 qemu_wait_io_event(cur_cpu);
3950 }
3951
3952 return NULL;
3953 }
3954
3955 void qemu_cpu_kick(void *_env)
3956 {
3957 CPUState *env = _env;
3958 qemu_cond_broadcast(env->halt_cond);
3959 if (kvm_enabled())
3960 qemu_thread_signal(env->thread, SIGUSR1);
3961 }
3962
3963 int qemu_cpu_self(void *env)
3964 {
3965 return (cpu_single_env != NULL);
3966 }
3967
3968 static void cpu_signal(int sig)
3969 {
3970 if (cpu_single_env)
3971 cpu_exit(cpu_single_env);
3972 }
3973
3974 static void block_io_signals(void)
3975 {
3976 sigset_t set;
3977 struct sigaction sigact;
3978
3979 sigemptyset(&set);
3980 sigaddset(&set, SIGUSR2);
3981 sigaddset(&set, SIGIO);
3982 sigaddset(&set, SIGALRM);
3983 pthread_sigmask(SIG_BLOCK, &set, NULL);
3984
3985 sigemptyset(&set);
3986 sigaddset(&set, SIGUSR1);
3987 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3988
3989 memset(&sigact, 0, sizeof(sigact));
3990 sigact.sa_handler = cpu_signal;
3991 sigaction(SIGUSR1, &sigact, NULL);
3992 }
3993
3994 static void unblock_io_signals(void)
3995 {
3996 sigset_t set;
3997
3998 sigemptyset(&set);
3999 sigaddset(&set, SIGUSR2);
4000 sigaddset(&set, SIGIO);
4001 sigaddset(&set, SIGALRM);
4002 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
4003
4004 sigemptyset(&set);
4005 sigaddset(&set, SIGUSR1);
4006 pthread_sigmask(SIG_BLOCK, &set, NULL);
4007 }
4008
4009 static void qemu_signal_lock(unsigned int msecs)
4010 {
4011 qemu_mutex_lock(&qemu_fair_mutex);
4012
4013 while (qemu_mutex_trylock(&qemu_global_mutex)) {
4014 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
4015 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
4016 break;
4017 }
4018 qemu_mutex_unlock(&qemu_fair_mutex);
4019 }
4020
4021 static void qemu_mutex_lock_iothread(void)
4022 {
4023 if (kvm_enabled()) {
4024 qemu_mutex_lock(&qemu_fair_mutex);
4025 qemu_mutex_lock(&qemu_global_mutex);
4026 qemu_mutex_unlock(&qemu_fair_mutex);
4027 } else
4028 qemu_signal_lock(100);
4029 }
4030
4031 static void qemu_mutex_unlock_iothread(void)
4032 {
4033 qemu_mutex_unlock(&qemu_global_mutex);
4034 }
4035
4036 static int all_vcpus_paused(void)
4037 {
4038 CPUState *penv = first_cpu;
4039
4040 while (penv) {
4041 if (!penv->stopped)
4042 return 0;
4043 penv = (CPUState *)penv->next_cpu;
4044 }
4045
4046 return 1;
4047 }
4048
4049 static void pause_all_vcpus(void)
4050 {
4051 CPUState *penv = first_cpu;
4052
4053 while (penv) {
4054 penv->stop = 1;
4055 qemu_thread_signal(penv->thread, SIGUSR1);
4056 qemu_cpu_kick(penv);
4057 penv = (CPUState *)penv->next_cpu;
4058 }
4059
4060 while (!all_vcpus_paused()) {
4061 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
4062 penv = first_cpu;
4063 while (penv) {
4064 qemu_thread_signal(penv->thread, SIGUSR1);
4065 penv = (CPUState *)penv->next_cpu;
4066 }
4067 }
4068 }
4069
4070 static void resume_all_vcpus(void)
4071 {
4072 CPUState *penv = first_cpu;
4073
4074 while (penv) {
4075 penv->stop = 0;
4076 penv->stopped = 0;
4077 qemu_thread_signal(penv->thread, SIGUSR1);
4078 qemu_cpu_kick(penv);
4079 penv = (CPUState *)penv->next_cpu;
4080 }
4081 }
4082
4083 static void tcg_init_vcpu(void *_env)
4084 {
4085 CPUState *env = _env;
4086 /* share a single thread for all cpus with TCG */
4087 if (!tcg_cpu_thread) {
4088 env->thread = qemu_mallocz(sizeof(QemuThread));
4089 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4090 qemu_cond_init(env->halt_cond);
4091 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
4092 while (env->created == 0)
4093 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4094 tcg_cpu_thread = env->thread;
4095 tcg_halt_cond = env->halt_cond;
4096 } else {
4097 env->thread = tcg_cpu_thread;
4098 env->halt_cond = tcg_halt_cond;
4099 }
4100 }
4101
4102 static void kvm_start_vcpu(CPUState *env)
4103 {
4104 kvm_init_vcpu(env);
4105 env->thread = qemu_mallocz(sizeof(QemuThread));
4106 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4107 qemu_cond_init(env->halt_cond);
4108 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
4109 while (env->created == 0)
4110 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4111 }
4112
4113 void qemu_init_vcpu(void *_env)
4114 {
4115 CPUState *env = _env;
4116
4117 if (kvm_enabled())
4118 kvm_start_vcpu(env);
4119 else
4120 tcg_init_vcpu(env);
4121 }
4122
4123 void qemu_notify_event(void)
4124 {
4125 qemu_event_increment();
4126 }
4127
4128 void vm_stop(int reason)
4129 {
4130 QemuThread me;
4131 qemu_thread_self(&me);
4132
4133 if (!qemu_thread_equal(&me, &io_thread)) {
4134 qemu_system_vmstop_request(reason);
4135 /*
4136 * FIXME: should not return to device code in case
4137 * vm_stop() has been requested.
4138 */
4139 if (cpu_single_env) {
4140 cpu_exit(cpu_single_env);
4141 cpu_single_env->stop = 1;
4142 }
4143 return;
4144 }
4145 do_vm_stop(reason);
4146 }
4147
4148 #endif
4149
4150
4151 #ifdef _WIN32
4152 static void host_main_loop_wait(int *timeout)
4153 {
4154 int ret, ret2, i;
4155 PollingEntry *pe;
4156
4157
4158 /* XXX: need to suppress polling by better using win32 events */
4159 ret = 0;
4160 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
4161 ret |= pe->func(pe->opaque);
4162 }
4163 if (ret == 0) {
4164 int err;
4165 WaitObjects *w = &wait_objects;
4166
4167 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
4168 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
4169 if (w->func[ret - WAIT_OBJECT_0])
4170 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
4171
4172 /* Check for additional signaled events */
4173 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
4174
4175 /* Check if event is signaled */
4176 ret2 = WaitForSingleObject(w->events[i], 0);
4177 if(ret2 == WAIT_OBJECT_0) {
4178 if (w->func[i])
4179 w->func[i](w->opaque[i]);
4180 } else if (ret2 == WAIT_TIMEOUT) {
4181 } else {
4182 err = GetLastError();
4183 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
4184 }
4185 }
4186 } else if (ret == WAIT_TIMEOUT) {
4187 } else {
4188 err = GetLastError();
4189 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
4190 }
4191 }
4192
4193 *timeout = 0;
4194 }
4195 #else
4196 static void host_main_loop_wait(int *timeout)
4197 {
4198 }
4199 #endif
4200
4201 void main_loop_wait(int timeout)
4202 {
4203 IOHandlerRecord *ioh;
4204 fd_set rfds, wfds, xfds;
4205 int ret, nfds;
4206 struct timeval tv;
4207
4208 qemu_bh_update_timeout(&timeout);
4209
4210 host_main_loop_wait(&timeout);
4211
4212 /* poll any events */
4213 /* XXX: separate device handlers from system ones */
4214 nfds = -1;
4215 FD_ZERO(&rfds);
4216 FD_ZERO(&wfds);
4217 FD_ZERO(&xfds);
4218 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4219 if (ioh->deleted)
4220 continue;
4221 if (ioh->fd_read &&
4222 (!ioh->fd_read_poll ||
4223 ioh->fd_read_poll(ioh->opaque) != 0)) {
4224 FD_SET(ioh->fd, &rfds);
4225 if (ioh->fd > nfds)
4226 nfds = ioh->fd;
4227 }
4228 if (ioh->fd_write) {
4229 FD_SET(ioh->fd, &wfds);
4230 if (ioh->fd > nfds)
4231 nfds = ioh->fd;
4232 }
4233 }
4234
4235 tv.tv_sec = timeout / 1000;
4236 tv.tv_usec = (timeout % 1000) * 1000;
4237
4238 #if defined(CONFIG_SLIRP)
4239 if (slirp_is_inited()) {
4240 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4241 }
4242 #endif
4243 qemu_mutex_unlock_iothread();
4244 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4245 qemu_mutex_lock_iothread();
4246 if (ret > 0) {
4247 IOHandlerRecord **pioh;
4248
4249 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4250 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4251 ioh->fd_read(ioh->opaque);
4252 }
4253 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4254 ioh->fd_write(ioh->opaque);
4255 }
4256 }
4257
4258 /* remove deleted IO handlers */
4259 pioh = &first_io_handler;
4260 while (*pioh) {
4261 ioh = *pioh;
4262 if (ioh->deleted) {
4263 *pioh = ioh->next;
4264 qemu_free(ioh);
4265 } else
4266 pioh = &ioh->next;
4267 }
4268 }
4269 #if defined(CONFIG_SLIRP)
4270 if (slirp_is_inited()) {
4271 if (ret < 0) {
4272 FD_ZERO(&rfds);
4273 FD_ZERO(&wfds);
4274 FD_ZERO(&xfds);
4275 }
4276 slirp_select_poll(&rfds, &wfds, &xfds);
4277 }
4278 #endif
4279
4280 /* rearm timer, if not periodic */
4281 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4282 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4283 qemu_rearm_alarm_timer(alarm_timer);
4284 }
4285
4286 /* vm time timers */
4287 if (vm_running) {
4288 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4289 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4290 qemu_get_clock(vm_clock));
4291 }
4292
4293 /* real time timers */
4294 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4295 qemu_get_clock(rt_clock));
4296
4297 /* Check bottom-halves last in case any of the earlier events triggered
4298 them. */
4299 qemu_bh_poll();
4300
4301 }
4302
4303 static int qemu_cpu_exec(CPUState *env)
4304 {
4305 int ret;
4306 #ifdef CONFIG_PROFILER
4307 int64_t ti;
4308 #endif
4309
4310 #ifdef CONFIG_PROFILER
4311 ti = profile_getclock();
4312 #endif
4313 if (use_icount) {
4314 int64_t count;
4315 int decr;
4316 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4317 env->icount_decr.u16.low = 0;
4318 env->icount_extra = 0;
4319 count = qemu_next_deadline();
4320 count = (count + (1 << icount_time_shift) - 1)
4321 >> icount_time_shift;
4322 qemu_icount += count;
4323 decr = (count > 0xffff) ? 0xffff : count;
4324 count -= decr;
4325 env->icount_decr.u16.low = decr;
4326 env->icount_extra = count;
4327 }
4328 ret = cpu_exec(env);
4329 #ifdef CONFIG_PROFILER
4330 qemu_time += profile_getclock() - ti;
4331 #endif
4332 if (use_icount) {
4333 /* Fold pending instructions back into the
4334 instruction counter, and clear the interrupt flag. */
4335 qemu_icount -= (env->icount_decr.u16.low
4336 + env->icount_extra);
4337 env->icount_decr.u32 = 0;
4338 env->icount_extra = 0;
4339 }
4340 return ret;
4341 }
4342
4343 static void tcg_cpu_exec(void)
4344 {
4345 int ret = 0;
4346
4347 if (next_cpu == NULL)
4348 next_cpu = first_cpu;
4349 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4350 CPUState *env = cur_cpu = next_cpu;
4351
4352 if (!vm_running)
4353 break;
4354 if (timer_alarm_pending) {
4355 timer_alarm_pending = 0;
4356 break;
4357 }
4358 if (cpu_can_run(env))
4359 ret = qemu_cpu_exec(env);
4360 if (ret == EXCP_DEBUG) {
4361 gdb_set_stop_cpu(env);
4362 debug_requested = 1;
4363 break;
4364 }
4365 }
4366 }
4367
4368 static int cpu_has_work(CPUState *env)
4369 {
4370 if (env->stop)
4371 return 1;
4372 if (env->stopped)
4373 return 0;
4374 if (!env->halted)
4375 return 1;
4376 if (qemu_cpu_has_work(env))
4377 return 1;
4378 return 0;
4379 }
4380
4381 static int tcg_has_work(void)
4382 {
4383 CPUState *env;
4384
4385 for (env = first_cpu; env != NULL; env = env->next_cpu)
4386 if (cpu_has_work(env))
4387 return 1;
4388 return 0;
4389 }
4390
4391 static int qemu_calculate_timeout(void)
4392 {
4393 int timeout;
4394
4395 if (!vm_running)
4396 timeout = 5000;
4397 else if (tcg_has_work())
4398 timeout = 0;
4399 else if (!use_icount)
4400 timeout = 5000;
4401 else {
4402 /* XXX: use timeout computed from timers */
4403 int64_t add;
4404 int64_t delta;
4405 /* Advance virtual time to the next event. */
4406 if (use_icount == 1) {
4407 /* When not using an adaptive execution frequency
4408 we tend to get badly out of sync with real time,
4409 so just delay for a reasonable amount of time. */
4410 delta = 0;
4411 } else {
4412 delta = cpu_get_icount() - cpu_get_clock();
4413 }
4414 if (delta > 0) {
4415 /* If virtual time is ahead of real time then just
4416 wait for IO. */
4417 timeout = (delta / 1000000) + 1;
4418 } else {
4419 /* Wait for either IO to occur or the next
4420 timer event. */
4421 add = qemu_next_deadline();
4422 /* We advance the timer before checking for IO.
4423 Limit the amount we advance so that early IO
4424 activity won't get the guest too far ahead. */
4425 if (add > 10000000)
4426 add = 10000000;
4427 delta += add;
4428 add = (add + (1 << icount_time_shift) - 1)
4429 >> icount_time_shift;
4430 qemu_icount += add;
4431 timeout = delta / 1000000;
4432 if (timeout < 0)
4433 timeout = 0;
4434 }
4435 }
4436
4437 return timeout;
4438 }
4439
4440 static int vm_can_run(void)
4441 {
4442 if (powerdown_requested)
4443 return 0;
4444 if (reset_requested)
4445 return 0;
4446 if (shutdown_requested)
4447 return 0;
4448 if (debug_requested)
4449 return 0;
4450 return 1;
4451 }
4452
4453 static void main_loop(void)
4454 {
4455 int r;
4456
4457 #ifdef CONFIG_IOTHREAD
4458 qemu_system_ready = 1;
4459 qemu_cond_broadcast(&qemu_system_cond);
4460 #endif
4461
4462 for (;;) {
4463 do {
4464 #ifdef CONFIG_PROFILER
4465 int64_t ti;
4466 #endif
4467 #ifndef CONFIG_IOTHREAD
4468 tcg_cpu_exec();
4469 #endif
4470 #ifdef CONFIG_PROFILER
4471 ti = profile_getclock();
4472 #endif
4473 #ifdef CONFIG_IOTHREAD
4474 main_loop_wait(1000);
4475 #else
4476 main_loop_wait(qemu_calculate_timeout());
4477 #endif
4478 #ifdef CONFIG_PROFILER
4479 dev_time += profile_getclock() - ti;
4480 #endif
4481 } while (vm_can_run());
4482
4483 if (qemu_debug_requested())
4484 vm_stop(EXCP_DEBUG);
4485 if (qemu_shutdown_requested()) {
4486 if (no_shutdown) {
4487 vm_stop(0);
4488 no_shutdown = 0;
4489 } else
4490 break;
4491 }
4492 if (qemu_reset_requested()) {
4493 pause_all_vcpus();
4494 qemu_system_reset();
4495 resume_all_vcpus();
4496 }
4497 if (qemu_powerdown_requested())
4498 qemu_system_powerdown();
4499 if ((r = qemu_vmstop_requested()))
4500 vm_stop(r);
4501 }
4502 pause_all_vcpus();
4503 }
4504
4505 static void version(void)
4506 {
4507 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4508 }
4509
4510 static void help(int exitcode)
4511 {
4512 version();
4513 printf("usage: %s [options] [disk_image]\n"
4514 "\n"
4515 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4516 "\n"
4517 #define DEF(option, opt_arg, opt_enum, opt_help) \
4518 opt_help
4519 #define DEFHEADING(text) stringify(text) "\n"
4520 #include "qemu-options.h"
4521 #undef DEF
4522 #undef DEFHEADING
4523 #undef GEN_DOCS
4524 "\n"
4525 "During emulation, the following keys are useful:\n"
4526 "ctrl-alt-f toggle full screen\n"
4527 "ctrl-alt-n switch to virtual console 'n'\n"
4528 "ctrl-alt toggle mouse and keyboard grab\n"
4529 "\n"
4530 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4531 ,
4532 "qemu",
4533 DEFAULT_RAM_SIZE,
4534 #ifndef _WIN32
4535 DEFAULT_NETWORK_SCRIPT,
4536 DEFAULT_NETWORK_DOWN_SCRIPT,
4537 #endif
4538 DEFAULT_GDBSTUB_PORT,
4539 "/tmp/qemu.log");
4540 exit(exitcode);
4541 }
4542
4543 #define HAS_ARG 0x0001
4544
4545 enum {
4546 #define DEF(option, opt_arg, opt_enum, opt_help) \
4547 opt_enum,
4548 #define DEFHEADING(text)
4549 #include "qemu-options.h"
4550 #undef DEF
4551 #undef DEFHEADING
4552 #undef GEN_DOCS
4553 };
4554
4555 typedef struct QEMUOption {
4556 const char *name;
4557 int flags;
4558 int index;
4559 } QEMUOption;
4560
4561 static const QEMUOption qemu_options[] = {
4562 { "h", 0, QEMU_OPTION_h },
4563 #define DEF(option, opt_arg, opt_enum, opt_help) \
4564 { option, opt_arg, opt_enum },
4565 #define DEFHEADING(text)
4566 #include "qemu-options.h"
4567 #undef DEF
4568 #undef DEFHEADING
4569 #undef GEN_DOCS
4570 { NULL },
4571 };
4572
4573 #ifdef HAS_AUDIO
4574 struct soundhw soundhw[] = {
4575 #ifdef HAS_AUDIO_CHOICE
4576 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4577 {
4578 "pcspk",
4579 "PC speaker",
4580 0,
4581 1,
4582 { .init_isa = pcspk_audio_init }
4583 },
4584 #endif
4585
4586 #ifdef CONFIG_SB16
4587 {
4588 "sb16",
4589 "Creative Sound Blaster 16",
4590 0,
4591 1,
4592 { .init_isa = SB16_init }
4593 },
4594 #endif
4595
4596 #ifdef CONFIG_CS4231A
4597 {
4598 "cs4231a",
4599 "CS4231A",
4600 0,
4601 1,
4602 { .init_isa = cs4231a_init }
4603 },
4604 #endif
4605
4606 #ifdef CONFIG_ADLIB
4607 {
4608 "adlib",
4609 #ifdef HAS_YMF262
4610 "Yamaha YMF262 (OPL3)",
4611 #else
4612 "Yamaha YM3812 (OPL2)",
4613 #endif
4614 0,
4615 1,
4616 { .init_isa = Adlib_init }
4617 },
4618 #endif
4619
4620 #ifdef CONFIG_GUS
4621 {
4622 "gus",
4623 "Gravis Ultrasound GF1",
4624 0,
4625 1,
4626 { .init_isa = GUS_init }
4627 },
4628 #endif
4629
4630 #ifdef CONFIG_AC97
4631 {
4632 "ac97",
4633 "Intel 82801AA AC97 Audio",
4634 0,
4635 0,
4636 { .init_pci = ac97_init }
4637 },
4638 #endif
4639
4640 #ifdef CONFIG_ES1370
4641 {
4642 "es1370",
4643 "ENSONIQ AudioPCI ES1370",
4644 0,
4645 0,
4646 { .init_pci = es1370_init }
4647 },
4648 #endif
4649
4650 #endif /* HAS_AUDIO_CHOICE */
4651
4652 { NULL, NULL, 0, 0, { NULL } }
4653 };
4654
4655 static void select_soundhw (const char *optarg)
4656 {
4657 struct soundhw *c;
4658
4659 if (*optarg == '?') {
4660 show_valid_cards:
4661
4662 printf ("Valid sound card names (comma separated):\n");
4663 for (c = soundhw; c->name; ++c) {
4664 printf ("%-11s %s\n", c->name, c->descr);
4665 }
4666 printf ("\n-soundhw all will enable all of the above\n");
4667 exit (*optarg != '?');
4668 }
4669 else {
4670 size_t l;
4671 const char *p;
4672 char *e;
4673 int bad_card = 0;
4674
4675 if (!strcmp (optarg, "all")) {
4676 for (c = soundhw; c->name; ++c) {
4677 c->enabled = 1;
4678 }
4679 return;
4680 }
4681
4682 p = optarg;
4683 while (*p) {
4684 e = strchr (p, ',');
4685 l = !e ? strlen (p) : (size_t) (e - p);
4686
4687 for (c = soundhw; c->name; ++c) {
4688 if (!strncmp (c->name, p, l)) {
4689 c->enabled = 1;
4690 break;
4691 }
4692 }
4693
4694 if (!c->name) {
4695 if (l > 80) {
4696 fprintf (stderr,
4697 "Unknown sound card name (too big to show)\n");
4698 }
4699 else {
4700 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4701 (int) l, p);
4702 }
4703 bad_card = 1;
4704 }
4705 p += l + (e != NULL);
4706 }
4707
4708 if (bad_card)
4709 goto show_valid_cards;
4710 }
4711 }
4712 #endif
4713
4714 static void select_vgahw (const char *p)
4715 {
4716 const char *opts;
4717
4718 cirrus_vga_enabled = 0;
4719 std_vga_enabled = 0;
4720 vmsvga_enabled = 0;
4721 xenfb_enabled = 0;
4722 if (strstart(p, "std", &opts)) {
4723 std_vga_enabled = 1;
4724 } else if (strstart(p, "cirrus", &opts)) {
4725 cirrus_vga_enabled = 1;
4726 } else if (strstart(p, "vmware", &opts)) {
4727 vmsvga_enabled = 1;
4728 } else if (strstart(p, "xenfb", &opts)) {
4729 xenfb_enabled = 1;
4730 } else if (!strstart(p, "none", &opts)) {
4731 invalid_vga:
4732 fprintf(stderr, "Unknown vga type: %s\n", p);
4733 exit(1);
4734 }
4735 while (*opts) {
4736 const char *nextopt;
4737
4738 if (strstart(opts, ",retrace=", &nextopt)) {
4739 opts = nextopt;
4740 if (strstart(opts, "dumb", &nextopt))
4741 vga_retrace_method = VGA_RETRACE_DUMB;
4742 else if (strstart(opts, "precise", &nextopt))
4743 vga_retrace_method = VGA_RETRACE_PRECISE;
4744 else goto invalid_vga;
4745 } else goto invalid_vga;
4746 opts = nextopt;
4747 }
4748 }
4749
4750 #ifdef _WIN32
4751 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4752 {
4753 exit(STATUS_CONTROL_C_EXIT);
4754 return TRUE;
4755 }
4756 #endif
4757
4758 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4759 {
4760 int ret;
4761
4762 if(strlen(str) != 36)
4763 return -1;
4764
4765 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4766 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4767 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4768
4769 if(ret != 16)
4770 return -1;
4771
4772 #ifdef TARGET_I386
4773 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4774 #endif
4775
4776 return 0;
4777 }
4778
4779 #define MAX_NET_CLIENTS 32
4780
4781 #ifndef _WIN32
4782
4783 static void termsig_handler(int signal)
4784 {
4785 qemu_system_shutdown_request();
4786 }
4787
4788 static void termsig_setup(void)
4789 {
4790 struct sigaction act;
4791
4792 memset(&act, 0, sizeof(act));
4793 act.sa_handler = termsig_handler;
4794 sigaction(SIGINT, &act, NULL);
4795 sigaction(SIGHUP, &act, NULL);
4796 sigaction(SIGTERM, &act, NULL);
4797 }
4798
4799 #endif
4800
4801 int main(int argc, char **argv, char **envp)
4802 {
4803 const char *gdbstub_dev = NULL;
4804 uint32_t boot_devices_bitmap = 0;
4805 int i;
4806 int snapshot, linux_boot, net_boot;
4807 const char *initrd_filename;
4808 const char *kernel_filename, *kernel_cmdline;
4809 const char *boot_devices = "";
4810 DisplayState *ds;
4811 DisplayChangeListener *dcl;
4812 int cyls, heads, secs, translation;
4813 const char *net_clients[MAX_NET_CLIENTS];
4814 int nb_net_clients;
4815 const char *bt_opts[MAX_BT_CMDLINE];
4816 int nb_bt_opts;
4817 int hda_index;
4818 int optind;
4819 const char *r, *optarg;
4820 CharDriverState *monitor_hd = NULL;
4821 const char *monitor_device;
4822 const char *serial_devices[MAX_SERIAL_PORTS];
4823 int serial_device_index;
4824 const char *parallel_devices[MAX_PARALLEL_PORTS];
4825 int parallel_device_index;
4826 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4827 int virtio_console_index;
4828 const char *loadvm = NULL;
4829 QEMUMachine *machine;
4830 const char *cpu_model;
4831 const char *usb_devices[MAX_USB_CMDLINE];
4832 int usb_devices_index;
4833 #ifndef _WIN32
4834 int fds[2];
4835 #endif
4836 int tb_size;
4837 const char *pid_file = NULL;
4838 const char *incoming = NULL;
4839 #ifndef _WIN32
4840 int fd = 0;
4841 struct passwd *pwd = NULL;
4842 const char *chroot_dir = NULL;
4843 const char *run_as = NULL;
4844 #endif
4845 CPUState *env;
4846 int show_vnc_port = 0;
4847
4848 qemu_cache_utils_init(envp);
4849
4850 LIST_INIT (&vm_change_state_head);
4851 #ifndef _WIN32
4852 {
4853 struct sigaction act;
4854 sigfillset(&act.sa_mask);
4855 act.sa_flags = 0;
4856 act.sa_handler = SIG_IGN;
4857 sigaction(SIGPIPE, &act, NULL);
4858 }
4859 #else
4860 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4861 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4862 QEMU to run on a single CPU */
4863 {
4864 HANDLE h;
4865 DWORD mask, smask;
4866 int i;
4867 h = GetCurrentProcess();
4868 if (GetProcessAffinityMask(h, &mask, &smask)) {
4869 for(i = 0; i < 32; i++) {
4870 if (mask & (1 << i))
4871 break;
4872 }
4873 if (i != 32) {
4874 mask = 1 << i;
4875 SetProcessAffinityMask(h, mask);
4876 }
4877 }
4878 }
4879 #endif
4880
4881 module_call_init(MODULE_INIT_MACHINE);
4882 machine = find_default_machine();
4883 cpu_model = NULL;
4884 initrd_filename = NULL;
4885 ram_size = 0;
4886 snapshot = 0;
4887 kernel_filename = NULL;
4888 kernel_cmdline = "";
4889 cyls = heads = secs = 0;
4890 translation = BIOS_ATA_TRANSLATION_AUTO;
4891 monitor_device = "vc:80Cx24C";
4892
4893 serial_devices[0] = "vc:80Cx24C";
4894 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4895 serial_devices[i] = NULL;
4896 serial_device_index = 0;
4897
4898 parallel_devices[0] = "vc:80Cx24C";
4899 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4900 parallel_devices[i] = NULL;
4901 parallel_device_index = 0;
4902
4903 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4904 virtio_consoles[i] = NULL;
4905 virtio_console_index = 0;
4906
4907 for (i = 0; i < MAX_NODES; i++) {
4908 node_mem[i] = 0;
4909 node_cpumask[i] = 0;
4910 }
4911
4912 usb_devices_index = 0;
4913
4914 nb_net_clients = 0;
4915 nb_bt_opts = 0;
4916 nb_drives = 0;
4917 nb_drives_opt = 0;
4918 nb_numa_nodes = 0;
4919 hda_index = -1;
4920
4921 nb_nics = 0;
4922
4923 tb_size = 0;
4924 autostart= 1;
4925
4926 register_watchdogs();
4927
4928 optind = 1;
4929 for(;;) {
4930 if (optind >= argc)
4931 break;
4932 r = argv[optind];
4933 if (r[0] != '-') {
4934 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4935 } else {
4936 const QEMUOption *popt;
4937
4938 optind++;
4939 /* Treat --foo the same as -foo. */
4940 if (r[1] == '-')
4941 r++;
4942 popt = qemu_options;
4943 for(;;) {
4944 if (!popt->name) {
4945 fprintf(stderr, "%s: invalid option -- '%s'\n",
4946 argv[0], r);
4947 exit(1);
4948 }
4949 if (!strcmp(popt->name, r + 1))
4950 break;
4951 popt++;
4952 }
4953 if (popt->flags & HAS_ARG) {
4954 if (optind >= argc) {
4955 fprintf(stderr, "%s: option '%s' requires an argument\n",
4956 argv[0], r);
4957 exit(1);
4958 }
4959 optarg = argv[optind++];
4960 } else {
4961 optarg = NULL;
4962 }
4963
4964 switch(popt->index) {
4965 case QEMU_OPTION_M:
4966 machine = find_machine(optarg);
4967 if (!machine) {
4968 QEMUMachine *m;
4969 printf("Supported machines are:\n");
4970 for(m = first_machine; m != NULL; m = m->next) {
4971 printf("%-10s %s%s\n",
4972 m->name, m->desc,
4973 m->is_default ? " (default)" : "");
4974 }
4975 exit(*optarg != '?');
4976 }
4977 break;
4978 case QEMU_OPTION_cpu:
4979 /* hw initialization will check this */
4980 if (*optarg == '?') {
4981 /* XXX: implement xxx_cpu_list for targets that still miss it */
4982 #if defined(cpu_list)
4983 cpu_list(stdout, &fprintf);
4984 #endif
4985 exit(0);
4986 } else {
4987 cpu_model = optarg;
4988 }
4989 break;
4990 case QEMU_OPTION_initrd:
4991 initrd_filename = optarg;
4992 break;
4993 case QEMU_OPTION_hda:
4994 if (cyls == 0)
4995 hda_index = drive_add(optarg, HD_ALIAS, 0);
4996 else
4997 hda_index = drive_add(optarg, HD_ALIAS
4998 ",cyls=%d,heads=%d,secs=%d%s",
4999 0, cyls, heads, secs,
5000 translation == BIOS_ATA_TRANSLATION_LBA ?
5001 ",trans=lba" :
5002 translation == BIOS_ATA_TRANSLATION_NONE ?
5003 ",trans=none" : "");
5004 break;
5005 case QEMU_OPTION_hdb:
5006 case QEMU_OPTION_hdc:
5007 case QEMU_OPTION_hdd:
5008 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
5009 break;
5010 case QEMU_OPTION_drive:
5011 drive_add(NULL, "%s", optarg);
5012 break;
5013 case QEMU_OPTION_mtdblock:
5014 drive_add(optarg, MTD_ALIAS);
5015 break;
5016 case QEMU_OPTION_sd:
5017 drive_add(optarg, SD_ALIAS);
5018 break;
5019 case QEMU_OPTION_pflash:
5020 drive_add(optarg, PFLASH_ALIAS);
5021 break;
5022 case QEMU_OPTION_snapshot:
5023 snapshot = 1;
5024 break;
5025 case QEMU_OPTION_hdachs:
5026 {
5027 const char *p;
5028 p = optarg;
5029 cyls = strtol(p, (char **)&p, 0);
5030 if (cyls < 1 || cyls > 16383)
5031 goto chs_fail;
5032 if (*p != ',')
5033 goto chs_fail;
5034 p++;
5035 heads = strtol(p, (char **)&p, 0);
5036 if (heads < 1 || heads > 16)
5037 goto chs_fail;
5038 if (*p != ',')
5039 goto chs_fail;
5040 p++;
5041 secs = strtol(p, (char **)&p, 0);
5042 if (secs < 1 || secs > 63)
5043 goto chs_fail;
5044 if (*p == ',') {
5045 p++;
5046 if (!strcmp(p, "none"))
5047 translation = BIOS_ATA_TRANSLATION_NONE;
5048 else if (!strcmp(p, "lba"))
5049 translation = BIOS_ATA_TRANSLATION_LBA;
5050 else if (!strcmp(p, "auto"))
5051 translation = BIOS_ATA_TRANSLATION_AUTO;
5052 else
5053 goto chs_fail;
5054 } else if (*p != '\0') {
5055 chs_fail:
5056 fprintf(stderr, "qemu: invalid physical CHS format\n");
5057 exit(1);
5058 }
5059 if (hda_index != -1)
5060 snprintf(drives_opt[hda_index].opt,
5061 sizeof(drives_opt[hda_index].opt),
5062 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
5063 0, cyls, heads, secs,
5064 translation == BIOS_ATA_TRANSLATION_LBA ?
5065 ",trans=lba" :
5066 translation == BIOS_ATA_TRANSLATION_NONE ?
5067 ",trans=none" : "");
5068 }
5069 break;
5070 case QEMU_OPTION_numa:
5071 if (nb_numa_nodes >= MAX_NODES) {
5072 fprintf(stderr, "qemu: too many NUMA nodes\n");
5073 exit(1);
5074 }
5075 numa_add(optarg);
5076 break;
5077 case QEMU_OPTION_nographic:
5078 display_type = DT_NOGRAPHIC;
5079 break;
5080 #ifdef CONFIG_CURSES
5081 case QEMU_OPTION_curses:
5082 display_type = DT_CURSES;
5083 break;
5084 #endif
5085 case QEMU_OPTION_portrait:
5086 graphic_rotate = 1;
5087 break;
5088 case QEMU_OPTION_kernel:
5089 kernel_filename = optarg;
5090 break;
5091 case QEMU_OPTION_append:
5092 kernel_cmdline = optarg;
5093 break;
5094 case QEMU_OPTION_cdrom:
5095 drive_add(optarg, CDROM_ALIAS);
5096 break;
5097 case QEMU_OPTION_boot:
5098 boot_devices = optarg;
5099 /* We just do some generic consistency checks */
5100 {
5101 /* Could easily be extended to 64 devices if needed */
5102 const char *p;
5103
5104 boot_devices_bitmap = 0;
5105 for (p = boot_devices; *p != '\0'; p++) {
5106 /* Allowed boot devices are:
5107 * a b : floppy disk drives
5108 * c ... f : IDE disk drives
5109 * g ... m : machine implementation dependant drives
5110 * n ... p : network devices
5111 * It's up to each machine implementation to check
5112 * if the given boot devices match the actual hardware
5113 * implementation and firmware features.
5114 */
5115 if (*p < 'a' || *p > 'q') {
5116 fprintf(stderr, "Invalid boot device '%c'\n", *p);
5117 exit(1);
5118 }
5119 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
5120 fprintf(stderr,
5121 "Boot device '%c' was given twice\n",*p);
5122 exit(1);
5123 }
5124 boot_devices_bitmap |= 1 << (*p - 'a');
5125 }
5126 }
5127 break;
5128 case QEMU_OPTION_fda:
5129 case QEMU_OPTION_fdb:
5130 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5131 break;
5132 #ifdef TARGET_I386
5133 case QEMU_OPTION_no_fd_bootchk:
5134 fd_bootchk = 0;
5135 break;
5136 #endif
5137 case QEMU_OPTION_net:
5138 if (nb_net_clients >= MAX_NET_CLIENTS) {
5139 fprintf(stderr, "qemu: too many network clients\n");
5140 exit(1);
5141 }
5142 net_clients[nb_net_clients] = optarg;
5143 nb_net_clients++;
5144 break;
5145 #ifdef CONFIG_SLIRP
5146 case QEMU_OPTION_tftp:
5147 tftp_prefix = optarg;
5148 break;
5149 case QEMU_OPTION_bootp:
5150 bootp_filename = optarg;
5151 break;
5152 #ifndef _WIN32
5153 case QEMU_OPTION_smb:
5154 net_slirp_smb(optarg);
5155 break;
5156 #endif
5157 case QEMU_OPTION_redir:
5158 net_slirp_redir(NULL, optarg);
5159 break;
5160 #endif
5161 case QEMU_OPTION_bt:
5162 if (nb_bt_opts >= MAX_BT_CMDLINE) {
5163 fprintf(stderr, "qemu: too many bluetooth options\n");
5164 exit(1);
5165 }
5166 bt_opts[nb_bt_opts++] = optarg;
5167 break;
5168 #ifdef HAS_AUDIO
5169 case QEMU_OPTION_audio_help:
5170 AUD_help ();
5171 exit (0);
5172 break;
5173 case QEMU_OPTION_soundhw:
5174 select_soundhw (optarg);
5175 break;
5176 #endif
5177 case QEMU_OPTION_h:
5178 help(0);
5179 break;
5180 case QEMU_OPTION_version:
5181 version();
5182 exit(0);
5183 break;
5184 case QEMU_OPTION_m: {
5185 uint64_t value;
5186 char *ptr;
5187
5188 value = strtoul(optarg, &ptr, 10);
5189 switch (*ptr) {
5190 case 0: case 'M': case 'm':
5191 value <<= 20;
5192 break;
5193 case 'G': case 'g':
5194 value <<= 30;
5195 break;
5196 default:
5197 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5198 exit(1);
5199 }
5200
5201 /* On 32-bit hosts, QEMU is limited by virtual address space */
5202 if (value > (2047 << 20)
5203 #ifndef CONFIG_KQEMU
5204 && HOST_LONG_BITS == 32
5205 #endif
5206 ) {
5207 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5208 exit(1);
5209 }
5210 if (value != (uint64_t)(ram_addr_t)value) {
5211 fprintf(stderr, "qemu: ram size too large\n");
5212 exit(1);
5213 }
5214 ram_size = value;
5215 break;
5216 }
5217 case QEMU_OPTION_d:
5218 {
5219 int mask;
5220 const CPULogItem *item;
5221
5222 mask = cpu_str_to_log_mask(optarg);
5223 if (!mask) {
5224 printf("Log items (comma separated):\n");
5225 for(item = cpu_log_items; item->mask != 0; item++) {
5226 printf("%-10s %s\n", item->name, item->help);
5227 }
5228 exit(1);
5229 }
5230 cpu_set_log(mask);
5231 }
5232 break;
5233 case QEMU_OPTION_s:
5234 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5235 break;
5236 case QEMU_OPTION_gdb:
5237 gdbstub_dev = optarg;
5238 break;
5239 case QEMU_OPTION_L:
5240 bios_dir = optarg;
5241 break;
5242 case QEMU_OPTION_bios:
5243 bios_name = optarg;
5244 break;
5245 case QEMU_OPTION_singlestep:
5246 singlestep = 1;
5247 break;
5248 case QEMU_OPTION_S:
5249 autostart = 0;
5250 break;
5251 #ifndef _WIN32
5252 case QEMU_OPTION_k:
5253 keyboard_layout = optarg;
5254 break;
5255 #endif
5256 case QEMU_OPTION_localtime:
5257 rtc_utc = 0;
5258 break;
5259 case QEMU_OPTION_vga:
5260 select_vgahw (optarg);
5261 break;
5262 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5263 case QEMU_OPTION_g:
5264 {
5265 const char *p;
5266 int w, h, depth;
5267 p = optarg;
5268 w = strtol(p, (char **)&p, 10);
5269 if (w <= 0) {
5270 graphic_error:
5271 fprintf(stderr, "qemu: invalid resolution or depth\n");
5272 exit(1);
5273 }
5274 if (*p != 'x')
5275 goto graphic_error;
5276 p++;
5277 h = strtol(p, (char **)&p, 10);
5278 if (h <= 0)
5279 goto graphic_error;
5280 if (*p == 'x') {
5281 p++;
5282 depth = strtol(p, (char **)&p, 10);
5283 if (depth != 8 && depth != 15 && depth != 16 &&
5284 depth != 24 && depth != 32)
5285 goto graphic_error;
5286 } else if (*p == '\0') {
5287 depth = graphic_depth;
5288 } else {
5289 goto graphic_error;
5290 }
5291
5292 graphic_width = w;
5293 graphic_height = h;
5294 graphic_depth = depth;
5295 }
5296 break;
5297 #endif
5298 case QEMU_OPTION_echr:
5299 {
5300 char *r;
5301 term_escape_char = strtol(optarg, &r, 0);
5302 if (r == optarg)
5303 printf("Bad argument to echr\n");
5304 break;
5305 }
5306 case QEMU_OPTION_monitor:
5307 monitor_device = optarg;
5308 break;
5309 case QEMU_OPTION_serial:
5310 if (serial_device_index >= MAX_SERIAL_PORTS) {
5311 fprintf(stderr, "qemu: too many serial ports\n");
5312 exit(1);
5313 }
5314 serial_devices[serial_device_index] = optarg;
5315 serial_device_index++;
5316 break;
5317 case QEMU_OPTION_watchdog:
5318 i = select_watchdog(optarg);
5319 if (i > 0)
5320 exit (i == 1 ? 1 : 0);
5321 break;
5322 case QEMU_OPTION_watchdog_action:
5323 if (select_watchdog_action(optarg) == -1) {
5324 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5325 exit(1);
5326 }
5327 break;
5328 case QEMU_OPTION_virtiocon:
5329 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5330 fprintf(stderr, "qemu: too many virtio consoles\n");
5331 exit(1);
5332 }
5333 virtio_consoles[virtio_console_index] = optarg;
5334 virtio_console_index++;
5335 break;
5336 case QEMU_OPTION_parallel:
5337 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5338 fprintf(stderr, "qemu: too many parallel ports\n");
5339 exit(1);
5340 }
5341 parallel_devices[parallel_device_index] = optarg;
5342 parallel_device_index++;
5343 break;
5344 case QEMU_OPTION_loadvm:
5345 loadvm = optarg;
5346 break;
5347 case QEMU_OPTION_full_screen:
5348 full_screen = 1;
5349 break;
5350 #ifdef CONFIG_SDL
5351 case QEMU_OPTION_no_frame:
5352 no_frame = 1;
5353 break;
5354 case QEMU_OPTION_alt_grab:
5355 alt_grab = 1;
5356 break;
5357 case QEMU_OPTION_no_quit:
5358 no_quit = 1;
5359 break;
5360 case QEMU_OPTION_sdl:
5361 display_type = DT_SDL;
5362 break;
5363 #endif
5364 case QEMU_OPTION_pidfile:
5365 pid_file = optarg;
5366 break;
5367 #ifdef TARGET_I386
5368 case QEMU_OPTION_win2k_hack:
5369 win2k_install_hack = 1;
5370 break;
5371 case QEMU_OPTION_rtc_td_hack:
5372 rtc_td_hack = 1;
5373 break;
5374 case QEMU_OPTION_acpitable:
5375 if(acpi_table_add(optarg) < 0) {
5376 fprintf(stderr, "Wrong acpi table provided\n");
5377 exit(1);
5378 }
5379 break;
5380 case QEMU_OPTION_smbios:
5381 if(smbios_entry_add(optarg) < 0) {
5382 fprintf(stderr, "Wrong smbios provided\n");
5383 exit(1);
5384 }
5385 break;
5386 #endif
5387 #ifdef CONFIG_KQEMU
5388 case QEMU_OPTION_no_kqemu:
5389 kqemu_allowed = 0;
5390 break;
5391 case QEMU_OPTION_kernel_kqemu:
5392 kqemu_allowed = 2;
5393 break;
5394 #endif
5395 #ifdef CONFIG_KVM
5396 case QEMU_OPTION_enable_kvm:
5397 kvm_allowed = 1;
5398 #ifdef CONFIG_KQEMU
5399 kqemu_allowed = 0;
5400 #endif
5401 break;
5402 #endif
5403 case QEMU_OPTION_usb:
5404 usb_enabled = 1;
5405 break;
5406 case QEMU_OPTION_usbdevice:
5407 usb_enabled = 1;
5408 if (usb_devices_index >= MAX_USB_CMDLINE) {
5409 fprintf(stderr, "Too many USB devices\n");
5410 exit(1);
5411 }
5412 usb_devices[usb_devices_index] = optarg;
5413 usb_devices_index++;
5414 break;
5415 case QEMU_OPTION_smp:
5416 smp_cpus = atoi(optarg);
5417 if (smp_cpus < 1) {
5418 fprintf(stderr, "Invalid number of CPUs\n");
5419 exit(1);
5420 }
5421 break;
5422 case QEMU_OPTION_vnc:
5423 display_type = DT_VNC;
5424 vnc_display = optarg;
5425 break;
5426 #ifdef TARGET_I386
5427 case QEMU_OPTION_no_acpi:
5428 acpi_enabled = 0;
5429 break;
5430 case QEMU_OPTION_no_hpet:
5431 no_hpet = 1;
5432 break;
5433 #endif
5434 case QEMU_OPTION_no_reboot:
5435 no_reboot = 1;
5436 break;
5437 case QEMU_OPTION_no_shutdown:
5438 no_shutdown = 1;
5439 break;
5440 case QEMU_OPTION_show_cursor:
5441 cursor_hide = 0;
5442 break;
5443 case QEMU_OPTION_uuid:
5444 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5445 fprintf(stderr, "Fail to parse UUID string."
5446 " Wrong format.\n");
5447 exit(1);
5448 }
5449 break;
5450 #ifndef _WIN32
5451 case QEMU_OPTION_daemonize:
5452 daemonize = 1;
5453 break;
5454 #endif
5455 case QEMU_OPTION_option_rom:
5456 if (nb_option_roms >= MAX_OPTION_ROMS) {
5457 fprintf(stderr, "Too many option ROMs\n");
5458 exit(1);
5459 }
5460 option_rom[nb_option_roms] = optarg;
5461 nb_option_roms++;
5462 break;
5463 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5464 case QEMU_OPTION_semihosting:
5465 semihosting_enabled = 1;
5466 break;
5467 #endif
5468 case QEMU_OPTION_name:
5469 qemu_name = optarg;
5470 break;
5471 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5472 case QEMU_OPTION_prom_env:
5473 if (nb_prom_envs >= MAX_PROM_ENVS) {
5474 fprintf(stderr, "Too many prom variables\n");
5475 exit(1);
5476 }
5477 prom_envs[nb_prom_envs] = optarg;
5478 nb_prom_envs++;
5479 break;
5480 #endif
5481 #ifdef TARGET_ARM
5482 case QEMU_OPTION_old_param:
5483 old_param = 1;
5484 break;
5485 #endif
5486 case QEMU_OPTION_clock:
5487 configure_alarms(optarg);
5488 break;
5489 case QEMU_OPTION_startdate:
5490 {
5491 struct tm tm;
5492 time_t rtc_start_date;
5493 if (!strcmp(optarg, "now")) {
5494 rtc_date_offset = -1;
5495 } else {
5496 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5497 &tm.tm_year,
5498 &tm.tm_mon,
5499 &tm.tm_mday,
5500 &tm.tm_hour,
5501 &tm.tm_min,
5502 &tm.tm_sec) == 6) {
5503 /* OK */
5504 } else if (sscanf(optarg, "%d-%d-%d",
5505 &tm.tm_year,
5506 &tm.tm_mon,
5507 &tm.tm_mday) == 3) {
5508 tm.tm_hour = 0;
5509 tm.tm_min = 0;
5510 tm.tm_sec = 0;
5511 } else {
5512 goto date_fail;
5513 }
5514 tm.tm_year -= 1900;
5515 tm.tm_mon--;
5516 rtc_start_date = mktimegm(&tm);
5517 if (rtc_start_date == -1) {
5518 date_fail:
5519 fprintf(stderr, "Invalid date format. Valid format are:\n"
5520 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5521 exit(1);
5522 }
5523 rtc_date_offset = time(NULL) - rtc_start_date;
5524 }
5525 }
5526 break;
5527 case QEMU_OPTION_tb_size:
5528 tb_size = strtol(optarg, NULL, 0);
5529 if (tb_size < 0)
5530 tb_size = 0;
5531 break;
5532 case QEMU_OPTION_icount:
5533 use_icount = 1;
5534 if (strcmp(optarg, "auto") == 0) {
5535 icount_time_shift = -1;
5536 } else {
5537 icount_time_shift = strtol(optarg, NULL, 0);
5538 }
5539 break;
5540 case QEMU_OPTION_incoming:
5541 incoming = optarg;
5542 break;
5543 #ifndef _WIN32
5544 case QEMU_OPTION_chroot:
5545 chroot_dir = optarg;
5546 break;
5547 case QEMU_OPTION_runas:
5548 run_as = optarg;
5549 break;
5550 #endif
5551 #ifdef CONFIG_XEN
5552 case QEMU_OPTION_xen_domid:
5553 xen_domid = atoi(optarg);
5554 break;
5555 case QEMU_OPTION_xen_create:
5556 xen_mode = XEN_CREATE;
5557 break;
5558 case QEMU_OPTION_xen_attach:
5559 xen_mode = XEN_ATTACH;
5560 break;
5561 #endif
5562 }
5563 }
5564 }
5565
5566 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5567 if (kvm_allowed && kqemu_allowed) {
5568 fprintf(stderr,
5569 "You can not enable both KVM and kqemu at the same time\n");
5570 exit(1);
5571 }
5572 #endif
5573
5574 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5575 if (smp_cpus > machine->max_cpus) {
5576 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5577 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5578 machine->max_cpus);
5579 exit(1);
5580 }
5581
5582 if (display_type == DT_NOGRAPHIC) {
5583 if (serial_device_index == 0)
5584 serial_devices[0] = "stdio";
5585 if (parallel_device_index == 0)
5586 parallel_devices[0] = "null";
5587 if (strncmp(monitor_device, "vc", 2) == 0)
5588 monitor_device = "stdio";
5589 }
5590
5591 #ifndef _WIN32
5592 if (daemonize) {
5593 pid_t pid;
5594
5595 if (pipe(fds) == -1)
5596 exit(1);
5597
5598 pid = fork();
5599 if (pid > 0) {
5600 uint8_t status;
5601 ssize_t len;
5602
5603 close(fds[1]);
5604
5605 again:
5606 len = read(fds[0], &status, 1);
5607 if (len == -1 && (errno == EINTR))
5608 goto again;
5609
5610 if (len != 1)
5611 exit(1);
5612 else if (status == 1) {
5613 fprintf(stderr, "Could not acquire pidfile\n");
5614 exit(1);
5615 } else
5616 exit(0);
5617 } else if (pid < 0)
5618 exit(1);
5619
5620 setsid();
5621
5622 pid = fork();
5623 if (pid > 0)
5624 exit(0);
5625 else if (pid < 0)
5626 exit(1);
5627
5628 umask(027);
5629
5630 signal(SIGTSTP, SIG_IGN);
5631 signal(SIGTTOU, SIG_IGN);
5632 signal(SIGTTIN, SIG_IGN);
5633 }
5634
5635 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5636 if (daemonize) {
5637 uint8_t status = 1;
5638 write(fds[1], &status, 1);
5639 } else
5640 fprintf(stderr, "Could not acquire pid file\n");
5641 exit(1);
5642 }
5643 #endif
5644
5645 #ifdef CONFIG_KQEMU
5646 if (smp_cpus > 1)
5647 kqemu_allowed = 0;
5648 #endif
5649 if (qemu_init_main_loop()) {
5650 fprintf(stderr, "qemu_init_main_loop failed\n");
5651 exit(1);
5652 }
5653 linux_boot = (kernel_filename != NULL);
5654 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5655
5656 if (!linux_boot && *kernel_cmdline != '\0') {
5657 fprintf(stderr, "-append only allowed with -kernel option\n");
5658 exit(1);
5659 }
5660
5661 if (!linux_boot && initrd_filename != NULL) {
5662 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5663 exit(1);
5664 }
5665
5666 /* boot to floppy or the default cd if no hard disk defined yet */
5667 if (!boot_devices[0]) {
5668 boot_devices = "cad";
5669 }
5670 setvbuf(stdout, NULL, _IOLBF, 0);
5671
5672 init_timers();
5673 if (init_timer_alarm() < 0) {
5674 fprintf(stderr, "could not initialize alarm timer\n");
5675 exit(1);
5676 }
5677 if (use_icount && icount_time_shift < 0) {
5678 use_icount = 2;
5679 /* 125MIPS seems a reasonable initial guess at the guest speed.
5680 It will be corrected fairly quickly anyway. */
5681 icount_time_shift = 3;
5682 init_icount_adjust();
5683 }
5684
5685 #ifdef _WIN32
5686 socket_init();
5687 #endif
5688
5689 /* init network clients */
5690 if (nb_net_clients == 0) {
5691 /* if no clients, we use a default config */
5692 net_clients[nb_net_clients++] = "nic";
5693 #ifdef CONFIG_SLIRP
5694 net_clients[nb_net_clients++] = "user";
5695 #endif
5696 }
5697
5698 for(i = 0;i < nb_net_clients; i++) {
5699 if (net_client_parse(net_clients[i]) < 0)
5700 exit(1);
5701 }
5702 net_client_check();
5703
5704 #ifdef TARGET_I386
5705 /* XXX: this should be moved in the PC machine instantiation code */
5706 if (net_boot != 0) {
5707 int netroms = 0;
5708 for (i = 0; i < nb_nics && i < 4; i++) {
5709 const char *model = nd_table[i].model;
5710 char buf[1024];
5711 if (net_boot & (1 << i)) {
5712 if (model == NULL)
5713 model = "ne2k_pci";
5714 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5715 if (get_image_size(buf) > 0) {
5716 if (nb_option_roms >= MAX_OPTION_ROMS) {
5717 fprintf(stderr, "Too many option ROMs\n");
5718 exit(1);
5719 }
5720 option_rom[nb_option_roms] = strdup(buf);
5721 nb_option_roms++;
5722 netroms++;
5723 }
5724 }
5725 }
5726 if (netroms == 0) {
5727 fprintf(stderr, "No valid PXE rom found for network device\n");
5728 exit(1);
5729 }
5730 }
5731 #endif
5732
5733 /* init the bluetooth world */
5734 for (i = 0; i < nb_bt_opts; i++)
5735 if (bt_parse(bt_opts[i]))
5736 exit(1);
5737
5738 /* init the memory */
5739 if (ram_size == 0)
5740 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5741
5742 #ifdef CONFIG_KQEMU
5743 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5744 guest ram allocation. It needs to go away. */
5745 if (kqemu_allowed) {
5746 kqemu_phys_ram_size = ram_size + 8 * 1024 * 1024 + 4 * 1024 * 1024;
5747 kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
5748 if (!kqemu_phys_ram_base) {
5749 fprintf(stderr, "Could not allocate physical memory\n");
5750 exit(1);
5751 }
5752 }
5753 #endif
5754
5755 /* init the dynamic translator */
5756 cpu_exec_init_all(tb_size * 1024 * 1024);
5757
5758 bdrv_init();
5759 dma_helper_init();
5760
5761 /* we always create the cdrom drive, even if no disk is there */
5762
5763 if (nb_drives_opt < MAX_DRIVES)
5764 drive_add(NULL, CDROM_ALIAS);
5765
5766 /* we always create at least one floppy */
5767
5768 if (nb_drives_opt < MAX_DRIVES)
5769 drive_add(NULL, FD_ALIAS, 0);
5770
5771 /* we always create one sd slot, even if no card is in it */
5772
5773 if (nb_drives_opt < MAX_DRIVES)
5774 drive_add(NULL, SD_ALIAS);
5775
5776 /* open the virtual block devices */
5777
5778 for(i = 0; i < nb_drives_opt; i++)
5779 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5780 exit(1);
5781
5782 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5783 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5784
5785 #ifndef _WIN32
5786 /* must be after terminal init, SDL library changes signal handlers */
5787 termsig_setup();
5788 #endif
5789
5790 /* Maintain compatibility with multiple stdio monitors */
5791 if (!strcmp(monitor_device,"stdio")) {
5792 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5793 const char *devname = serial_devices[i];
5794 if (devname && !strcmp(devname,"mon:stdio")) {
5795 monitor_device = NULL;
5796 break;
5797 } else if (devname && !strcmp(devname,"stdio")) {
5798 monitor_device = NULL;
5799 serial_devices[i] = "mon:stdio";
5800 break;
5801 }
5802 }
5803 }
5804
5805 if (nb_numa_nodes > 0) {
5806 int i;
5807
5808 if (nb_numa_nodes > smp_cpus) {
5809 nb_numa_nodes = smp_cpus;
5810 }
5811
5812 /* If no memory size if given for any node, assume the default case
5813 * and distribute the available memory equally across all nodes
5814 */
5815 for (i = 0; i < nb_numa_nodes; i++) {
5816 if (node_mem[i] != 0)
5817 break;
5818 }
5819 if (i == nb_numa_nodes) {
5820 uint64_t usedmem = 0;
5821
5822 /* On Linux, the each node's border has to be 8MB aligned,
5823 * the final node gets the rest.
5824 */
5825 for (i = 0; i < nb_numa_nodes - 1; i++) {
5826 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5827 usedmem += node_mem[i];
5828 }
5829 node_mem[i] = ram_size - usedmem;
5830 }
5831
5832 for (i = 0; i < nb_numa_nodes; i++) {
5833 if (node_cpumask[i] != 0)
5834 break;
5835 }
5836 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5837 * must cope with this anyway, because there are BIOSes out there in
5838 * real machines which also use this scheme.
5839 */
5840 if (i == nb_numa_nodes) {
5841 for (i = 0; i < smp_cpus; i++) {
5842 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5843 }
5844 }
5845 }
5846
5847 if (kvm_enabled()) {
5848 int ret;
5849
5850 ret = kvm_init(smp_cpus);
5851 if (ret < 0) {
5852 fprintf(stderr, "failed to initialize KVM\n");
5853 exit(1);
5854 }
5855 }
5856
5857 if (monitor_device) {
5858 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5859 if (!monitor_hd) {
5860 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5861 exit(1);
5862 }
5863 }
5864
5865 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5866 const char *devname = serial_devices[i];
5867 if (devname && strcmp(devname, "none")) {
5868 char label[32];
5869 snprintf(label, sizeof(label), "serial%d", i);
5870 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5871 if (!serial_hds[i]) {
5872 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5873 devname);
5874 exit(1);
5875 }
5876 }
5877 }
5878
5879 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5880 const char *devname = parallel_devices[i];
5881 if (devname && strcmp(devname, "none")) {
5882 char label[32];
5883 snprintf(label, sizeof(label), "parallel%d", i);
5884 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5885 if (!parallel_hds[i]) {
5886 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5887 devname);
5888 exit(1);
5889 }
5890 }
5891 }
5892
5893 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5894 const char *devname = virtio_consoles[i];
5895 if (devname && strcmp(devname, "none")) {
5896 char label[32];
5897 snprintf(label, sizeof(label), "virtcon%d", i);
5898 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5899 if (!virtcon_hds[i]) {
5900 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5901 devname);
5902 exit(1);
5903 }
5904 }
5905 }
5906
5907 module_call_init(MODULE_INIT_DEVICE);
5908
5909 machine->init(ram_size, boot_devices,
5910 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5911
5912
5913 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5914 for (i = 0; i < nb_numa_nodes; i++) {
5915 if (node_cpumask[i] & (1 << env->cpu_index)) {
5916 env->numa_node = i;
5917 }
5918 }
5919 }
5920
5921 current_machine = machine;
5922
5923 /* Set KVM's vcpu state to qemu's initial CPUState. */
5924 if (kvm_enabled()) {
5925 int ret;
5926
5927 ret = kvm_sync_vcpus();
5928 if (ret < 0) {
5929 fprintf(stderr, "failed to initialize vcpus\n");
5930 exit(1);
5931 }
5932 }
5933
5934 /* init USB devices */
5935 if (usb_enabled) {
5936 for(i = 0; i < usb_devices_index; i++) {
5937 if (usb_device_add(usb_devices[i], 0) < 0) {
5938 fprintf(stderr, "Warning: could not add USB device %s\n",
5939 usb_devices[i]);
5940 }
5941 }
5942 }
5943
5944 if (!display_state)
5945 dumb_display_init();
5946 /* just use the first displaystate for the moment */
5947 ds = display_state;
5948
5949 if (display_type == DT_DEFAULT) {
5950 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5951 display_type = DT_SDL;
5952 #else
5953 display_type = DT_VNC;
5954 vnc_display = "localhost:0,to=99";
5955 show_vnc_port = 1;
5956 #endif
5957 }
5958
5959
5960 switch (display_type) {
5961 case DT_NOGRAPHIC:
5962 break;
5963 #if defined(CONFIG_CURSES)
5964 case DT_CURSES:
5965 curses_display_init(ds, full_screen);
5966 break;
5967 #endif
5968 #if defined(CONFIG_SDL)
5969 case DT_SDL:
5970 sdl_display_init(ds, full_screen, no_frame);
5971 break;
5972 #elif defined(CONFIG_COCOA)
5973 case DT_SDL:
5974 cocoa_display_init(ds, full_screen);
5975 break;
5976 #endif
5977 case DT_VNC:
5978 vnc_display_init(ds);
5979 if (vnc_display_open(ds, vnc_display) < 0)
5980 exit(1);
5981
5982 if (show_vnc_port) {
5983 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
5984 }
5985 break;
5986 default:
5987 break;
5988 }
5989 dpy_resize(ds);
5990
5991 dcl = ds->listeners;
5992 while (dcl != NULL) {
5993 if (dcl->dpy_refresh != NULL) {
5994 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5995 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5996 }
5997 dcl = dcl->next;
5998 }
5999
6000 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
6001 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
6002 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
6003 }
6004
6005 text_consoles_set_display(display_state);
6006 qemu_chr_initial_reset();
6007
6008 if (monitor_device && monitor_hd)
6009 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
6010
6011 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6012 const char *devname = serial_devices[i];
6013 if (devname && strcmp(devname, "none")) {
6014 char label[32];
6015 snprintf(label, sizeof(label), "serial%d", i);
6016 if (strstart(devname, "vc", 0))
6017 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
6018 }
6019 }
6020
6021 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6022 const char *devname = parallel_devices[i];
6023 if (devname && strcmp(devname, "none")) {
6024 char label[32];
6025 snprintf(label, sizeof(label), "parallel%d", i);
6026 if (strstart(devname, "vc", 0))
6027 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
6028 }
6029 }
6030
6031 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6032 const char *devname = virtio_consoles[i];
6033 if (virtcon_hds[i] && devname) {
6034 char label[32];
6035 snprintf(label, sizeof(label), "virtcon%d", i);
6036 if (strstart(devname, "vc", 0))
6037 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
6038 }
6039 }
6040
6041 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6042 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6043 gdbstub_dev);
6044 exit(1);
6045 }
6046
6047 if (loadvm)
6048 do_loadvm(cur_mon, loadvm);
6049
6050 if (incoming) {
6051 autostart = 0; /* fixme how to deal with -daemonize */
6052 qemu_start_incoming_migration(incoming);
6053 }
6054
6055 if (autostart)
6056 vm_start();
6057
6058 #ifndef _WIN32
6059 if (daemonize) {
6060 uint8_t status = 0;
6061 ssize_t len;
6062
6063 again1:
6064 len = write(fds[1], &status, 1);
6065 if (len == -1 && (errno == EINTR))
6066 goto again1;
6067
6068 if (len != 1)
6069 exit(1);
6070
6071 chdir("/");
6072 TFR(fd = open("/dev/null", O_RDWR));
6073 if (fd == -1)
6074 exit(1);
6075 }
6076
6077 if (run_as) {
6078 pwd = getpwnam(run_as);
6079 if (!pwd) {
6080 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6081 exit(1);
6082 }
6083 }
6084
6085 if (chroot_dir) {
6086 if (chroot(chroot_dir) < 0) {
6087 fprintf(stderr, "chroot failed\n");
6088 exit(1);
6089 }
6090 chdir("/");
6091 }
6092
6093 if (run_as) {
6094 if (setgid(pwd->pw_gid) < 0) {
6095 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6096 exit(1);
6097 }
6098 if (setuid(pwd->pw_uid) < 0) {
6099 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6100 exit(1);
6101 }
6102 if (setuid(0) != -1) {
6103 fprintf(stderr, "Dropping privileges failed\n");
6104 exit(1);
6105 }
6106 }
6107
6108 if (daemonize) {
6109 dup2(fd, 0);
6110 dup2(fd, 1);
6111 dup2(fd, 2);
6112
6113 close(fd);
6114 }
6115 #endif
6116
6117 main_loop();
6118 quit_timers();
6119 net_cleanup();
6120
6121 return 0;
6122 }