]> git.proxmox.com Git - mirror_qemu.git/blob - vl.c
Allow additions of ACPI tables from command line (Gleb Natapov)
[mirror_qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw/hw.h"
25 #include "hw/boards.h"
26 #include "hw/usb.h"
27 #include "hw/pcmcia.h"
28 #include "hw/pc.h"
29 #include "hw/audiodev.h"
30 #include "hw/isa.h"
31 #include "hw/baum.h"
32 #include "hw/bt.h"
33 #include "net.h"
34 #include "console.h"
35 #include "sysemu.h"
36 #include "gdbstub.h"
37 #include "qemu-timer.h"
38 #include "qemu-char.h"
39 #include "cache-utils.h"
40 #include "block.h"
41 #include "audio/audio.h"
42 #include "migration.h"
43 #include "kvm.h"
44 #include "balloon.h"
45
46 #include <unistd.h>
47 #include <fcntl.h>
48 #include <signal.h>
49 #include <time.h>
50 #include <errno.h>
51 #include <sys/time.h>
52 #include <zlib.h>
53
54 #ifndef _WIN32
55 #include <sys/times.h>
56 #include <sys/wait.h>
57 #include <termios.h>
58 #include <sys/mman.h>
59 #include <sys/ioctl.h>
60 #include <sys/resource.h>
61 #include <sys/socket.h>
62 #include <netinet/in.h>
63 #include <net/if.h>
64 #if defined(__NetBSD__)
65 #include <net/if_tap.h>
66 #endif
67 #ifdef __linux__
68 #include <linux/if_tun.h>
69 #endif
70 #include <arpa/inet.h>
71 #include <dirent.h>
72 #include <netdb.h>
73 #include <sys/select.h>
74 #ifdef _BSD
75 #include <sys/stat.h>
76 #ifdef __FreeBSD__
77 #include <libutil.h>
78 #else
79 #include <util.h>
80 #endif
81 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
82 #include <freebsd/stdlib.h>
83 #else
84 #ifdef __linux__
85 #include <pty.h>
86 #include <malloc.h>
87 #include <linux/rtc.h>
88
89 /* For the benefit of older linux systems which don't supply it,
90 we use a local copy of hpet.h. */
91 /* #include <linux/hpet.h> */
92 #include "hpet.h"
93
94 #include <linux/ppdev.h>
95 #include <linux/parport.h>
96 #endif
97 #ifdef __sun__
98 #include <sys/stat.h>
99 #include <sys/ethernet.h>
100 #include <sys/sockio.h>
101 #include <netinet/arp.h>
102 #include <netinet/in.h>
103 #include <netinet/in_systm.h>
104 #include <netinet/ip.h>
105 #include <netinet/ip_icmp.h> // must come after ip.h
106 #include <netinet/udp.h>
107 #include <netinet/tcp.h>
108 #include <net/if.h>
109 #include <syslog.h>
110 #include <stropts.h>
111 #endif
112 #endif
113 #endif
114
115 #include "qemu_socket.h"
116
117 #if defined(CONFIG_SLIRP)
118 #include "libslirp.h"
119 #endif
120
121 #if defined(__OpenBSD__)
122 #include <util.h>
123 #endif
124
125 #if defined(CONFIG_VDE)
126 #include <libvdeplug.h>
127 #endif
128
129 #ifdef _WIN32
130 #include <malloc.h>
131 #include <sys/timeb.h>
132 #include <mmsystem.h>
133 #define getopt_long_only getopt_long
134 #define memalign(align, size) malloc(size)
135 #endif
136
137 #ifdef CONFIG_SDL
138 #ifdef __APPLE__
139 #include <SDL/SDL.h>
140 int qemu_main(int argc, char **argv, char **envp);
141 int main(int argc, char **argv)
142 {
143 qemu_main(argc, argv, NULL);
144 }
145 #undef main
146 #define main qemu_main
147 #endif
148 #endif /* CONFIG_SDL */
149
150 #ifdef CONFIG_COCOA
151 #undef main
152 #define main qemu_main
153 #endif /* CONFIG_COCOA */
154
155 #include "disas.h"
156
157 #include "exec-all.h"
158
159 //#define DEBUG_UNUSED_IOPORT
160 //#define DEBUG_IOPORT
161 //#define DEBUG_NET
162 //#define DEBUG_SLIRP
163
164
165 #ifdef DEBUG_IOPORT
166 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
167 #else
168 # define LOG_IOPORT(...) do { } while (0)
169 #endif
170
171 #define DEFAULT_RAM_SIZE 128
172
173 /* Max number of USB devices that can be specified on the commandline. */
174 #define MAX_USB_CMDLINE 8
175
176 /* Max number of bluetooth switches on the commandline. */
177 #define MAX_BT_CMDLINE 10
178
179 /* XXX: use a two level table to limit memory usage */
180 #define MAX_IOPORTS 65536
181
182 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
183 const char *bios_name = NULL;
184 static void *ioport_opaque[MAX_IOPORTS];
185 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
186 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
187 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
188 to store the VM snapshots */
189 DriveInfo drives_table[MAX_DRIVES+1];
190 int nb_drives;
191 static int vga_ram_size;
192 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
193 static DisplayState *display_state;
194 int nographic;
195 static int curses;
196 static int sdl;
197 const char* keyboard_layout = NULL;
198 int64_t ticks_per_sec;
199 ram_addr_t ram_size;
200 int nb_nics;
201 NICInfo nd_table[MAX_NICS];
202 int vm_running;
203 static int rtc_utc = 1;
204 static int rtc_date_offset = -1; /* -1 means no change */
205 int cirrus_vga_enabled = 1;
206 int std_vga_enabled = 0;
207 int vmsvga_enabled = 0;
208 #ifdef TARGET_SPARC
209 int graphic_width = 1024;
210 int graphic_height = 768;
211 int graphic_depth = 8;
212 #else
213 int graphic_width = 800;
214 int graphic_height = 600;
215 int graphic_depth = 15;
216 #endif
217 static int full_screen = 0;
218 #ifdef CONFIG_SDL
219 static int no_frame = 0;
220 #endif
221 int no_quit = 0;
222 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
223 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
224 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
225 #ifdef TARGET_I386
226 int win2k_install_hack = 0;
227 int rtc_td_hack = 0;
228 #endif
229 int usb_enabled = 0;
230 int smp_cpus = 1;
231 const char *vnc_display;
232 int acpi_enabled = 1;
233 int no_hpet = 0;
234 int fd_bootchk = 1;
235 int no_reboot = 0;
236 int no_shutdown = 0;
237 int cursor_hide = 1;
238 int graphic_rotate = 0;
239 int daemonize = 0;
240 const char *option_rom[MAX_OPTION_ROMS];
241 int nb_option_roms;
242 int semihosting_enabled = 0;
243 #ifdef TARGET_ARM
244 int old_param = 0;
245 #endif
246 const char *qemu_name;
247 int alt_grab = 0;
248 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
249 unsigned int nb_prom_envs = 0;
250 const char *prom_envs[MAX_PROM_ENVS];
251 #endif
252 int nb_drives_opt;
253 struct drive_opt drives_opt[MAX_DRIVES];
254
255 static CPUState *cur_cpu;
256 static CPUState *next_cpu;
257 static int event_pending = 1;
258 /* Conversion factor from emulated instructions to virtual clock ticks. */
259 static int icount_time_shift;
260 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
261 #define MAX_ICOUNT_SHIFT 10
262 /* Compensate for varying guest execution speed. */
263 static int64_t qemu_icount_bias;
264 static QEMUTimer *icount_rt_timer;
265 static QEMUTimer *icount_vm_timer;
266 static QEMUTimer *nographic_timer;
267
268 uint8_t qemu_uuid[16];
269
270 /***********************************************************/
271 /* x86 ISA bus support */
272
273 target_phys_addr_t isa_mem_base = 0;
274 PicState2 *isa_pic;
275
276 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
277 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
278
279 static uint32_t ioport_read(int index, uint32_t address)
280 {
281 static IOPortReadFunc *default_func[3] = {
282 default_ioport_readb,
283 default_ioport_readw,
284 default_ioport_readl
285 };
286 IOPortReadFunc *func = ioport_read_table[index][address];
287 if (!func)
288 func = default_func[index];
289 return func(ioport_opaque[address], address);
290 }
291
292 static void ioport_write(int index, uint32_t address, uint32_t data)
293 {
294 static IOPortWriteFunc *default_func[3] = {
295 default_ioport_writeb,
296 default_ioport_writew,
297 default_ioport_writel
298 };
299 IOPortWriteFunc *func = ioport_write_table[index][address];
300 if (!func)
301 func = default_func[index];
302 func(ioport_opaque[address], address, data);
303 }
304
305 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
306 {
307 #ifdef DEBUG_UNUSED_IOPORT
308 fprintf(stderr, "unused inb: port=0x%04x\n", address);
309 #endif
310 return 0xff;
311 }
312
313 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
314 {
315 #ifdef DEBUG_UNUSED_IOPORT
316 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
317 #endif
318 }
319
320 /* default is to make two byte accesses */
321 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
322 {
323 uint32_t data;
324 data = ioport_read(0, address);
325 address = (address + 1) & (MAX_IOPORTS - 1);
326 data |= ioport_read(0, address) << 8;
327 return data;
328 }
329
330 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
331 {
332 ioport_write(0, address, data & 0xff);
333 address = (address + 1) & (MAX_IOPORTS - 1);
334 ioport_write(0, address, (data >> 8) & 0xff);
335 }
336
337 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
338 {
339 #ifdef DEBUG_UNUSED_IOPORT
340 fprintf(stderr, "unused inl: port=0x%04x\n", address);
341 #endif
342 return 0xffffffff;
343 }
344
345 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
346 {
347 #ifdef DEBUG_UNUSED_IOPORT
348 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
349 #endif
350 }
351
352 /* size is the word size in byte */
353 int register_ioport_read(int start, int length, int size,
354 IOPortReadFunc *func, void *opaque)
355 {
356 int i, bsize;
357
358 if (size == 1) {
359 bsize = 0;
360 } else if (size == 2) {
361 bsize = 1;
362 } else if (size == 4) {
363 bsize = 2;
364 } else {
365 hw_error("register_ioport_read: invalid size");
366 return -1;
367 }
368 for(i = start; i < start + length; i += size) {
369 ioport_read_table[bsize][i] = func;
370 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
371 hw_error("register_ioport_read: invalid opaque");
372 ioport_opaque[i] = opaque;
373 }
374 return 0;
375 }
376
377 /* size is the word size in byte */
378 int register_ioport_write(int start, int length, int size,
379 IOPortWriteFunc *func, void *opaque)
380 {
381 int i, bsize;
382
383 if (size == 1) {
384 bsize = 0;
385 } else if (size == 2) {
386 bsize = 1;
387 } else if (size == 4) {
388 bsize = 2;
389 } else {
390 hw_error("register_ioport_write: invalid size");
391 return -1;
392 }
393 for(i = start; i < start + length; i += size) {
394 ioport_write_table[bsize][i] = func;
395 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
396 hw_error("register_ioport_write: invalid opaque");
397 ioport_opaque[i] = opaque;
398 }
399 return 0;
400 }
401
402 void isa_unassign_ioport(int start, int length)
403 {
404 int i;
405
406 for(i = start; i < start + length; i++) {
407 ioport_read_table[0][i] = default_ioport_readb;
408 ioport_read_table[1][i] = default_ioport_readw;
409 ioport_read_table[2][i] = default_ioport_readl;
410
411 ioport_write_table[0][i] = default_ioport_writeb;
412 ioport_write_table[1][i] = default_ioport_writew;
413 ioport_write_table[2][i] = default_ioport_writel;
414
415 ioport_opaque[i] = NULL;
416 }
417 }
418
419 /***********************************************************/
420
421 void cpu_outb(CPUState *env, int addr, int val)
422 {
423 LOG_IOPORT("outb: %04x %02x\n", addr, val);
424 ioport_write(0, addr, val);
425 #ifdef USE_KQEMU
426 if (env)
427 env->last_io_time = cpu_get_time_fast();
428 #endif
429 }
430
431 void cpu_outw(CPUState *env, int addr, int val)
432 {
433 LOG_IOPORT("outw: %04x %04x\n", addr, val);
434 ioport_write(1, addr, val);
435 #ifdef USE_KQEMU
436 if (env)
437 env->last_io_time = cpu_get_time_fast();
438 #endif
439 }
440
441 void cpu_outl(CPUState *env, int addr, int val)
442 {
443 LOG_IOPORT("outl: %04x %08x\n", addr, val);
444 ioport_write(2, addr, val);
445 #ifdef USE_KQEMU
446 if (env)
447 env->last_io_time = cpu_get_time_fast();
448 #endif
449 }
450
451 int cpu_inb(CPUState *env, int addr)
452 {
453 int val;
454 val = ioport_read(0, addr);
455 LOG_IOPORT("inb : %04x %02x\n", addr, val);
456 #ifdef USE_KQEMU
457 if (env)
458 env->last_io_time = cpu_get_time_fast();
459 #endif
460 return val;
461 }
462
463 int cpu_inw(CPUState *env, int addr)
464 {
465 int val;
466 val = ioport_read(1, addr);
467 LOG_IOPORT("inw : %04x %04x\n", addr, val);
468 #ifdef USE_KQEMU
469 if (env)
470 env->last_io_time = cpu_get_time_fast();
471 #endif
472 return val;
473 }
474
475 int cpu_inl(CPUState *env, int addr)
476 {
477 int val;
478 val = ioport_read(2, addr);
479 LOG_IOPORT("inl : %04x %08x\n", addr, val);
480 #ifdef USE_KQEMU
481 if (env)
482 env->last_io_time = cpu_get_time_fast();
483 #endif
484 return val;
485 }
486
487 /***********************************************************/
488 void hw_error(const char *fmt, ...)
489 {
490 va_list ap;
491 CPUState *env;
492
493 va_start(ap, fmt);
494 fprintf(stderr, "qemu: hardware error: ");
495 vfprintf(stderr, fmt, ap);
496 fprintf(stderr, "\n");
497 for(env = first_cpu; env != NULL; env = env->next_cpu) {
498 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
499 #ifdef TARGET_I386
500 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
501 #else
502 cpu_dump_state(env, stderr, fprintf, 0);
503 #endif
504 }
505 va_end(ap);
506 abort();
507 }
508
509 /***************/
510 /* ballooning */
511
512 static QEMUBalloonEvent *qemu_balloon_event;
513 void *qemu_balloon_event_opaque;
514
515 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
516 {
517 qemu_balloon_event = func;
518 qemu_balloon_event_opaque = opaque;
519 }
520
521 void qemu_balloon(ram_addr_t target)
522 {
523 if (qemu_balloon_event)
524 qemu_balloon_event(qemu_balloon_event_opaque, target);
525 }
526
527 ram_addr_t qemu_balloon_status(void)
528 {
529 if (qemu_balloon_event)
530 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
531 return 0;
532 }
533
534 /***********************************************************/
535 /* keyboard/mouse */
536
537 static QEMUPutKBDEvent *qemu_put_kbd_event;
538 static void *qemu_put_kbd_event_opaque;
539 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
540 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
541
542 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
543 {
544 qemu_put_kbd_event_opaque = opaque;
545 qemu_put_kbd_event = func;
546 }
547
548 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
549 void *opaque, int absolute,
550 const char *name)
551 {
552 QEMUPutMouseEntry *s, *cursor;
553
554 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
555
556 s->qemu_put_mouse_event = func;
557 s->qemu_put_mouse_event_opaque = opaque;
558 s->qemu_put_mouse_event_absolute = absolute;
559 s->qemu_put_mouse_event_name = qemu_strdup(name);
560 s->next = NULL;
561
562 if (!qemu_put_mouse_event_head) {
563 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
564 return s;
565 }
566
567 cursor = qemu_put_mouse_event_head;
568 while (cursor->next != NULL)
569 cursor = cursor->next;
570
571 cursor->next = s;
572 qemu_put_mouse_event_current = s;
573
574 return s;
575 }
576
577 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
578 {
579 QEMUPutMouseEntry *prev = NULL, *cursor;
580
581 if (!qemu_put_mouse_event_head || entry == NULL)
582 return;
583
584 cursor = qemu_put_mouse_event_head;
585 while (cursor != NULL && cursor != entry) {
586 prev = cursor;
587 cursor = cursor->next;
588 }
589
590 if (cursor == NULL) // does not exist or list empty
591 return;
592 else if (prev == NULL) { // entry is head
593 qemu_put_mouse_event_head = cursor->next;
594 if (qemu_put_mouse_event_current == entry)
595 qemu_put_mouse_event_current = cursor->next;
596 qemu_free(entry->qemu_put_mouse_event_name);
597 qemu_free(entry);
598 return;
599 }
600
601 prev->next = entry->next;
602
603 if (qemu_put_mouse_event_current == entry)
604 qemu_put_mouse_event_current = prev;
605
606 qemu_free(entry->qemu_put_mouse_event_name);
607 qemu_free(entry);
608 }
609
610 void kbd_put_keycode(int keycode)
611 {
612 if (qemu_put_kbd_event) {
613 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
614 }
615 }
616
617 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
618 {
619 QEMUPutMouseEvent *mouse_event;
620 void *mouse_event_opaque;
621 int width;
622
623 if (!qemu_put_mouse_event_current) {
624 return;
625 }
626
627 mouse_event =
628 qemu_put_mouse_event_current->qemu_put_mouse_event;
629 mouse_event_opaque =
630 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
631
632 if (mouse_event) {
633 if (graphic_rotate) {
634 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
635 width = 0x7fff;
636 else
637 width = graphic_width - 1;
638 mouse_event(mouse_event_opaque,
639 width - dy, dx, dz, buttons_state);
640 } else
641 mouse_event(mouse_event_opaque,
642 dx, dy, dz, buttons_state);
643 }
644 }
645
646 int kbd_mouse_is_absolute(void)
647 {
648 if (!qemu_put_mouse_event_current)
649 return 0;
650
651 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
652 }
653
654 void do_info_mice(void)
655 {
656 QEMUPutMouseEntry *cursor;
657 int index = 0;
658
659 if (!qemu_put_mouse_event_head) {
660 term_printf("No mouse devices connected\n");
661 return;
662 }
663
664 term_printf("Mouse devices available:\n");
665 cursor = qemu_put_mouse_event_head;
666 while (cursor != NULL) {
667 term_printf("%c Mouse #%d: %s\n",
668 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
669 index, cursor->qemu_put_mouse_event_name);
670 index++;
671 cursor = cursor->next;
672 }
673 }
674
675 void do_mouse_set(int index)
676 {
677 QEMUPutMouseEntry *cursor;
678 int i = 0;
679
680 if (!qemu_put_mouse_event_head) {
681 term_printf("No mouse devices connected\n");
682 return;
683 }
684
685 cursor = qemu_put_mouse_event_head;
686 while (cursor != NULL && index != i) {
687 i++;
688 cursor = cursor->next;
689 }
690
691 if (cursor != NULL)
692 qemu_put_mouse_event_current = cursor;
693 else
694 term_printf("Mouse at given index not found\n");
695 }
696
697 /* compute with 96 bit intermediate result: (a*b)/c */
698 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
699 {
700 union {
701 uint64_t ll;
702 struct {
703 #ifdef WORDS_BIGENDIAN
704 uint32_t high, low;
705 #else
706 uint32_t low, high;
707 #endif
708 } l;
709 } u, res;
710 uint64_t rl, rh;
711
712 u.ll = a;
713 rl = (uint64_t)u.l.low * (uint64_t)b;
714 rh = (uint64_t)u.l.high * (uint64_t)b;
715 rh += (rl >> 32);
716 res.l.high = rh / c;
717 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
718 return res.ll;
719 }
720
721 /***********************************************************/
722 /* real time host monotonic timer */
723
724 #define QEMU_TIMER_BASE 1000000000LL
725
726 #ifdef WIN32
727
728 static int64_t clock_freq;
729
730 static void init_get_clock(void)
731 {
732 LARGE_INTEGER freq;
733 int ret;
734 ret = QueryPerformanceFrequency(&freq);
735 if (ret == 0) {
736 fprintf(stderr, "Could not calibrate ticks\n");
737 exit(1);
738 }
739 clock_freq = freq.QuadPart;
740 }
741
742 static int64_t get_clock(void)
743 {
744 LARGE_INTEGER ti;
745 QueryPerformanceCounter(&ti);
746 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
747 }
748
749 #else
750
751 static int use_rt_clock;
752
753 static void init_get_clock(void)
754 {
755 use_rt_clock = 0;
756 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000)
757 {
758 struct timespec ts;
759 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
760 use_rt_clock = 1;
761 }
762 }
763 #endif
764 }
765
766 static int64_t get_clock(void)
767 {
768 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000)
769 if (use_rt_clock) {
770 struct timespec ts;
771 clock_gettime(CLOCK_MONOTONIC, &ts);
772 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
773 } else
774 #endif
775 {
776 /* XXX: using gettimeofday leads to problems if the date
777 changes, so it should be avoided. */
778 struct timeval tv;
779 gettimeofday(&tv, NULL);
780 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
781 }
782 }
783 #endif
784
785 /* Return the virtual CPU time, based on the instruction counter. */
786 static int64_t cpu_get_icount(void)
787 {
788 int64_t icount;
789 CPUState *env = cpu_single_env;;
790 icount = qemu_icount;
791 if (env) {
792 if (!can_do_io(env))
793 fprintf(stderr, "Bad clock read\n");
794 icount -= (env->icount_decr.u16.low + env->icount_extra);
795 }
796 return qemu_icount_bias + (icount << icount_time_shift);
797 }
798
799 /***********************************************************/
800 /* guest cycle counter */
801
802 static int64_t cpu_ticks_prev;
803 static int64_t cpu_ticks_offset;
804 static int64_t cpu_clock_offset;
805 static int cpu_ticks_enabled;
806
807 /* return the host CPU cycle counter and handle stop/restart */
808 int64_t cpu_get_ticks(void)
809 {
810 if (use_icount) {
811 return cpu_get_icount();
812 }
813 if (!cpu_ticks_enabled) {
814 return cpu_ticks_offset;
815 } else {
816 int64_t ticks;
817 ticks = cpu_get_real_ticks();
818 if (cpu_ticks_prev > ticks) {
819 /* Note: non increasing ticks may happen if the host uses
820 software suspend */
821 cpu_ticks_offset += cpu_ticks_prev - ticks;
822 }
823 cpu_ticks_prev = ticks;
824 return ticks + cpu_ticks_offset;
825 }
826 }
827
828 /* return the host CPU monotonic timer and handle stop/restart */
829 static int64_t cpu_get_clock(void)
830 {
831 int64_t ti;
832 if (!cpu_ticks_enabled) {
833 return cpu_clock_offset;
834 } else {
835 ti = get_clock();
836 return ti + cpu_clock_offset;
837 }
838 }
839
840 /* enable cpu_get_ticks() */
841 void cpu_enable_ticks(void)
842 {
843 if (!cpu_ticks_enabled) {
844 cpu_ticks_offset -= cpu_get_real_ticks();
845 cpu_clock_offset -= get_clock();
846 cpu_ticks_enabled = 1;
847 }
848 }
849
850 /* disable cpu_get_ticks() : the clock is stopped. You must not call
851 cpu_get_ticks() after that. */
852 void cpu_disable_ticks(void)
853 {
854 if (cpu_ticks_enabled) {
855 cpu_ticks_offset = cpu_get_ticks();
856 cpu_clock_offset = cpu_get_clock();
857 cpu_ticks_enabled = 0;
858 }
859 }
860
861 /***********************************************************/
862 /* timers */
863
864 #define QEMU_TIMER_REALTIME 0
865 #define QEMU_TIMER_VIRTUAL 1
866
867 struct QEMUClock {
868 int type;
869 /* XXX: add frequency */
870 };
871
872 struct QEMUTimer {
873 QEMUClock *clock;
874 int64_t expire_time;
875 QEMUTimerCB *cb;
876 void *opaque;
877 struct QEMUTimer *next;
878 };
879
880 struct qemu_alarm_timer {
881 char const *name;
882 unsigned int flags;
883
884 int (*start)(struct qemu_alarm_timer *t);
885 void (*stop)(struct qemu_alarm_timer *t);
886 void (*rearm)(struct qemu_alarm_timer *t);
887 void *priv;
888 };
889
890 #define ALARM_FLAG_DYNTICKS 0x1
891 #define ALARM_FLAG_EXPIRED 0x2
892
893 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
894 {
895 return t->flags & ALARM_FLAG_DYNTICKS;
896 }
897
898 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
899 {
900 if (!alarm_has_dynticks(t))
901 return;
902
903 t->rearm(t);
904 }
905
906 /* TODO: MIN_TIMER_REARM_US should be optimized */
907 #define MIN_TIMER_REARM_US 250
908
909 static struct qemu_alarm_timer *alarm_timer;
910 #ifndef _WIN32
911 static int alarm_timer_rfd, alarm_timer_wfd;
912 #endif
913
914 #ifdef _WIN32
915
916 struct qemu_alarm_win32 {
917 MMRESULT timerId;
918 HANDLE host_alarm;
919 unsigned int period;
920 } alarm_win32_data = {0, NULL, -1};
921
922 static int win32_start_timer(struct qemu_alarm_timer *t);
923 static void win32_stop_timer(struct qemu_alarm_timer *t);
924 static void win32_rearm_timer(struct qemu_alarm_timer *t);
925
926 #else
927
928 static int unix_start_timer(struct qemu_alarm_timer *t);
929 static void unix_stop_timer(struct qemu_alarm_timer *t);
930
931 #ifdef __linux__
932
933 static int dynticks_start_timer(struct qemu_alarm_timer *t);
934 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
935 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
936
937 static int hpet_start_timer(struct qemu_alarm_timer *t);
938 static void hpet_stop_timer(struct qemu_alarm_timer *t);
939
940 static int rtc_start_timer(struct qemu_alarm_timer *t);
941 static void rtc_stop_timer(struct qemu_alarm_timer *t);
942
943 #endif /* __linux__ */
944
945 #endif /* _WIN32 */
946
947 /* Correlation between real and virtual time is always going to be
948 fairly approximate, so ignore small variation.
949 When the guest is idle real and virtual time will be aligned in
950 the IO wait loop. */
951 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
952
953 static void icount_adjust(void)
954 {
955 int64_t cur_time;
956 int64_t cur_icount;
957 int64_t delta;
958 static int64_t last_delta;
959 /* If the VM is not running, then do nothing. */
960 if (!vm_running)
961 return;
962
963 cur_time = cpu_get_clock();
964 cur_icount = qemu_get_clock(vm_clock);
965 delta = cur_icount - cur_time;
966 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
967 if (delta > 0
968 && last_delta + ICOUNT_WOBBLE < delta * 2
969 && icount_time_shift > 0) {
970 /* The guest is getting too far ahead. Slow time down. */
971 icount_time_shift--;
972 }
973 if (delta < 0
974 && last_delta - ICOUNT_WOBBLE > delta * 2
975 && icount_time_shift < MAX_ICOUNT_SHIFT) {
976 /* The guest is getting too far behind. Speed time up. */
977 icount_time_shift++;
978 }
979 last_delta = delta;
980 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
981 }
982
983 static void icount_adjust_rt(void * opaque)
984 {
985 qemu_mod_timer(icount_rt_timer,
986 qemu_get_clock(rt_clock) + 1000);
987 icount_adjust();
988 }
989
990 static void icount_adjust_vm(void * opaque)
991 {
992 qemu_mod_timer(icount_vm_timer,
993 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
994 icount_adjust();
995 }
996
997 static void init_icount_adjust(void)
998 {
999 /* Have both realtime and virtual time triggers for speed adjustment.
1000 The realtime trigger catches emulated time passing too slowly,
1001 the virtual time trigger catches emulated time passing too fast.
1002 Realtime triggers occur even when idle, so use them less frequently
1003 than VM triggers. */
1004 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1005 qemu_mod_timer(icount_rt_timer,
1006 qemu_get_clock(rt_clock) + 1000);
1007 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1008 qemu_mod_timer(icount_vm_timer,
1009 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1010 }
1011
1012 static struct qemu_alarm_timer alarm_timers[] = {
1013 #ifndef _WIN32
1014 #ifdef __linux__
1015 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1016 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1017 /* HPET - if available - is preferred */
1018 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1019 /* ...otherwise try RTC */
1020 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1021 #endif
1022 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1023 #else
1024 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1025 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1026 {"win32", 0, win32_start_timer,
1027 win32_stop_timer, NULL, &alarm_win32_data},
1028 #endif
1029 {NULL, }
1030 };
1031
1032 static void show_available_alarms(void)
1033 {
1034 int i;
1035
1036 printf("Available alarm timers, in order of precedence:\n");
1037 for (i = 0; alarm_timers[i].name; i++)
1038 printf("%s\n", alarm_timers[i].name);
1039 }
1040
1041 static void configure_alarms(char const *opt)
1042 {
1043 int i;
1044 int cur = 0;
1045 int count = ARRAY_SIZE(alarm_timers) - 1;
1046 char *arg;
1047 char *name;
1048 struct qemu_alarm_timer tmp;
1049
1050 if (!strcmp(opt, "?")) {
1051 show_available_alarms();
1052 exit(0);
1053 }
1054
1055 arg = strdup(opt);
1056
1057 /* Reorder the array */
1058 name = strtok(arg, ",");
1059 while (name) {
1060 for (i = 0; i < count && alarm_timers[i].name; i++) {
1061 if (!strcmp(alarm_timers[i].name, name))
1062 break;
1063 }
1064
1065 if (i == count) {
1066 fprintf(stderr, "Unknown clock %s\n", name);
1067 goto next;
1068 }
1069
1070 if (i < cur)
1071 /* Ignore */
1072 goto next;
1073
1074 /* Swap */
1075 tmp = alarm_timers[i];
1076 alarm_timers[i] = alarm_timers[cur];
1077 alarm_timers[cur] = tmp;
1078
1079 cur++;
1080 next:
1081 name = strtok(NULL, ",");
1082 }
1083
1084 free(arg);
1085
1086 if (cur) {
1087 /* Disable remaining timers */
1088 for (i = cur; i < count; i++)
1089 alarm_timers[i].name = NULL;
1090 } else {
1091 show_available_alarms();
1092 exit(1);
1093 }
1094 }
1095
1096 QEMUClock *rt_clock;
1097 QEMUClock *vm_clock;
1098
1099 static QEMUTimer *active_timers[2];
1100
1101 static QEMUClock *qemu_new_clock(int type)
1102 {
1103 QEMUClock *clock;
1104 clock = qemu_mallocz(sizeof(QEMUClock));
1105 clock->type = type;
1106 return clock;
1107 }
1108
1109 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1110 {
1111 QEMUTimer *ts;
1112
1113 ts = qemu_mallocz(sizeof(QEMUTimer));
1114 ts->clock = clock;
1115 ts->cb = cb;
1116 ts->opaque = opaque;
1117 return ts;
1118 }
1119
1120 void qemu_free_timer(QEMUTimer *ts)
1121 {
1122 qemu_free(ts);
1123 }
1124
1125 /* stop a timer, but do not dealloc it */
1126 void qemu_del_timer(QEMUTimer *ts)
1127 {
1128 QEMUTimer **pt, *t;
1129
1130 /* NOTE: this code must be signal safe because
1131 qemu_timer_expired() can be called from a signal. */
1132 pt = &active_timers[ts->clock->type];
1133 for(;;) {
1134 t = *pt;
1135 if (!t)
1136 break;
1137 if (t == ts) {
1138 *pt = t->next;
1139 break;
1140 }
1141 pt = &t->next;
1142 }
1143 }
1144
1145 /* modify the current timer so that it will be fired when current_time
1146 >= expire_time. The corresponding callback will be called. */
1147 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1148 {
1149 QEMUTimer **pt, *t;
1150
1151 qemu_del_timer(ts);
1152
1153 /* add the timer in the sorted list */
1154 /* NOTE: this code must be signal safe because
1155 qemu_timer_expired() can be called from a signal. */
1156 pt = &active_timers[ts->clock->type];
1157 for(;;) {
1158 t = *pt;
1159 if (!t)
1160 break;
1161 if (t->expire_time > expire_time)
1162 break;
1163 pt = &t->next;
1164 }
1165 ts->expire_time = expire_time;
1166 ts->next = *pt;
1167 *pt = ts;
1168
1169 /* Rearm if necessary */
1170 if (pt == &active_timers[ts->clock->type]) {
1171 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1172 qemu_rearm_alarm_timer(alarm_timer);
1173 }
1174 /* Interrupt execution to force deadline recalculation. */
1175 if (use_icount && cpu_single_env) {
1176 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
1177 }
1178 }
1179 }
1180
1181 int qemu_timer_pending(QEMUTimer *ts)
1182 {
1183 QEMUTimer *t;
1184 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1185 if (t == ts)
1186 return 1;
1187 }
1188 return 0;
1189 }
1190
1191 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1192 {
1193 if (!timer_head)
1194 return 0;
1195 return (timer_head->expire_time <= current_time);
1196 }
1197
1198 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1199 {
1200 QEMUTimer *ts;
1201
1202 for(;;) {
1203 ts = *ptimer_head;
1204 if (!ts || ts->expire_time > current_time)
1205 break;
1206 /* remove timer from the list before calling the callback */
1207 *ptimer_head = ts->next;
1208 ts->next = NULL;
1209
1210 /* run the callback (the timer list can be modified) */
1211 ts->cb(ts->opaque);
1212 }
1213 }
1214
1215 int64_t qemu_get_clock(QEMUClock *clock)
1216 {
1217 switch(clock->type) {
1218 case QEMU_TIMER_REALTIME:
1219 return get_clock() / 1000000;
1220 default:
1221 case QEMU_TIMER_VIRTUAL:
1222 if (use_icount) {
1223 return cpu_get_icount();
1224 } else {
1225 return cpu_get_clock();
1226 }
1227 }
1228 }
1229
1230 static void init_timers(void)
1231 {
1232 init_get_clock();
1233 ticks_per_sec = QEMU_TIMER_BASE;
1234 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1235 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1236 }
1237
1238 /* save a timer */
1239 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1240 {
1241 uint64_t expire_time;
1242
1243 if (qemu_timer_pending(ts)) {
1244 expire_time = ts->expire_time;
1245 } else {
1246 expire_time = -1;
1247 }
1248 qemu_put_be64(f, expire_time);
1249 }
1250
1251 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1252 {
1253 uint64_t expire_time;
1254
1255 expire_time = qemu_get_be64(f);
1256 if (expire_time != -1) {
1257 qemu_mod_timer(ts, expire_time);
1258 } else {
1259 qemu_del_timer(ts);
1260 }
1261 }
1262
1263 static void timer_save(QEMUFile *f, void *opaque)
1264 {
1265 if (cpu_ticks_enabled) {
1266 hw_error("cannot save state if virtual timers are running");
1267 }
1268 qemu_put_be64(f, cpu_ticks_offset);
1269 qemu_put_be64(f, ticks_per_sec);
1270 qemu_put_be64(f, cpu_clock_offset);
1271 }
1272
1273 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1274 {
1275 if (version_id != 1 && version_id != 2)
1276 return -EINVAL;
1277 if (cpu_ticks_enabled) {
1278 return -EINVAL;
1279 }
1280 cpu_ticks_offset=qemu_get_be64(f);
1281 ticks_per_sec=qemu_get_be64(f);
1282 if (version_id == 2) {
1283 cpu_clock_offset=qemu_get_be64(f);
1284 }
1285 return 0;
1286 }
1287
1288 #ifdef _WIN32
1289 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1290 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1291 #else
1292 static void host_alarm_handler(int host_signum)
1293 #endif
1294 {
1295 #if 0
1296 #define DISP_FREQ 1000
1297 {
1298 static int64_t delta_min = INT64_MAX;
1299 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1300 static int count;
1301 ti = qemu_get_clock(vm_clock);
1302 if (last_clock != 0) {
1303 delta = ti - last_clock;
1304 if (delta < delta_min)
1305 delta_min = delta;
1306 if (delta > delta_max)
1307 delta_max = delta;
1308 delta_cum += delta;
1309 if (++count == DISP_FREQ) {
1310 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1311 muldiv64(delta_min, 1000000, ticks_per_sec),
1312 muldiv64(delta_max, 1000000, ticks_per_sec),
1313 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1314 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1315 count = 0;
1316 delta_min = INT64_MAX;
1317 delta_max = 0;
1318 delta_cum = 0;
1319 }
1320 }
1321 last_clock = ti;
1322 }
1323 #endif
1324 if (alarm_has_dynticks(alarm_timer) ||
1325 (!use_icount &&
1326 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1327 qemu_get_clock(vm_clock))) ||
1328 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1329 qemu_get_clock(rt_clock))) {
1330 CPUState *env = next_cpu;
1331
1332 #ifdef _WIN32
1333 struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1334 SetEvent(data->host_alarm);
1335 #else
1336 static const char byte = 0;
1337 write(alarm_timer_wfd, &byte, sizeof(byte));
1338 #endif
1339 alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1340
1341 if (env) {
1342 /* stop the currently executing cpu because a timer occured */
1343 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1344 #ifdef USE_KQEMU
1345 if (env->kqemu_enabled) {
1346 kqemu_cpu_interrupt(env);
1347 }
1348 #endif
1349 }
1350 event_pending = 1;
1351 }
1352 }
1353
1354 static int64_t qemu_next_deadline(void)
1355 {
1356 int64_t delta;
1357
1358 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1359 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1360 qemu_get_clock(vm_clock);
1361 } else {
1362 /* To avoid problems with overflow limit this to 2^32. */
1363 delta = INT32_MAX;
1364 }
1365
1366 if (delta < 0)
1367 delta = 0;
1368
1369 return delta;
1370 }
1371
1372 #if defined(__linux__) || defined(_WIN32)
1373 static uint64_t qemu_next_deadline_dyntick(void)
1374 {
1375 int64_t delta;
1376 int64_t rtdelta;
1377
1378 if (use_icount)
1379 delta = INT32_MAX;
1380 else
1381 delta = (qemu_next_deadline() + 999) / 1000;
1382
1383 if (active_timers[QEMU_TIMER_REALTIME]) {
1384 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1385 qemu_get_clock(rt_clock))*1000;
1386 if (rtdelta < delta)
1387 delta = rtdelta;
1388 }
1389
1390 if (delta < MIN_TIMER_REARM_US)
1391 delta = MIN_TIMER_REARM_US;
1392
1393 return delta;
1394 }
1395 #endif
1396
1397 #ifndef _WIN32
1398
1399 /* Sets a specific flag */
1400 static int fcntl_setfl(int fd, int flag)
1401 {
1402 int flags;
1403
1404 flags = fcntl(fd, F_GETFL);
1405 if (flags == -1)
1406 return -errno;
1407
1408 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1409 return -errno;
1410
1411 return 0;
1412 }
1413
1414 #if defined(__linux__)
1415
1416 #define RTC_FREQ 1024
1417
1418 static void enable_sigio_timer(int fd)
1419 {
1420 struct sigaction act;
1421
1422 /* timer signal */
1423 sigfillset(&act.sa_mask);
1424 act.sa_flags = 0;
1425 act.sa_handler = host_alarm_handler;
1426
1427 sigaction(SIGIO, &act, NULL);
1428 fcntl_setfl(fd, O_ASYNC);
1429 fcntl(fd, F_SETOWN, getpid());
1430 }
1431
1432 static int hpet_start_timer(struct qemu_alarm_timer *t)
1433 {
1434 struct hpet_info info;
1435 int r, fd;
1436
1437 fd = open("/dev/hpet", O_RDONLY);
1438 if (fd < 0)
1439 return -1;
1440
1441 /* Set frequency */
1442 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1443 if (r < 0) {
1444 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1445 "error, but for better emulation accuracy type:\n"
1446 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1447 goto fail;
1448 }
1449
1450 /* Check capabilities */
1451 r = ioctl(fd, HPET_INFO, &info);
1452 if (r < 0)
1453 goto fail;
1454
1455 /* Enable periodic mode */
1456 r = ioctl(fd, HPET_EPI, 0);
1457 if (info.hi_flags && (r < 0))
1458 goto fail;
1459
1460 /* Enable interrupt */
1461 r = ioctl(fd, HPET_IE_ON, 0);
1462 if (r < 0)
1463 goto fail;
1464
1465 enable_sigio_timer(fd);
1466 t->priv = (void *)(long)fd;
1467
1468 return 0;
1469 fail:
1470 close(fd);
1471 return -1;
1472 }
1473
1474 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1475 {
1476 int fd = (long)t->priv;
1477
1478 close(fd);
1479 }
1480
1481 static int rtc_start_timer(struct qemu_alarm_timer *t)
1482 {
1483 int rtc_fd;
1484 unsigned long current_rtc_freq = 0;
1485
1486 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1487 if (rtc_fd < 0)
1488 return -1;
1489 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1490 if (current_rtc_freq != RTC_FREQ &&
1491 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1492 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1493 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1494 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1495 goto fail;
1496 }
1497 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1498 fail:
1499 close(rtc_fd);
1500 return -1;
1501 }
1502
1503 enable_sigio_timer(rtc_fd);
1504
1505 t->priv = (void *)(long)rtc_fd;
1506
1507 return 0;
1508 }
1509
1510 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1511 {
1512 int rtc_fd = (long)t->priv;
1513
1514 close(rtc_fd);
1515 }
1516
1517 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1518 {
1519 struct sigevent ev;
1520 timer_t host_timer;
1521 struct sigaction act;
1522
1523 sigfillset(&act.sa_mask);
1524 act.sa_flags = 0;
1525 act.sa_handler = host_alarm_handler;
1526
1527 sigaction(SIGALRM, &act, NULL);
1528
1529 ev.sigev_value.sival_int = 0;
1530 ev.sigev_notify = SIGEV_SIGNAL;
1531 ev.sigev_signo = SIGALRM;
1532
1533 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1534 perror("timer_create");
1535
1536 /* disable dynticks */
1537 fprintf(stderr, "Dynamic Ticks disabled\n");
1538
1539 return -1;
1540 }
1541
1542 t->priv = (void *)(long)host_timer;
1543
1544 return 0;
1545 }
1546
1547 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1548 {
1549 timer_t host_timer = (timer_t)(long)t->priv;
1550
1551 timer_delete(host_timer);
1552 }
1553
1554 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1555 {
1556 timer_t host_timer = (timer_t)(long)t->priv;
1557 struct itimerspec timeout;
1558 int64_t nearest_delta_us = INT64_MAX;
1559 int64_t current_us;
1560
1561 if (!active_timers[QEMU_TIMER_REALTIME] &&
1562 !active_timers[QEMU_TIMER_VIRTUAL])
1563 return;
1564
1565 nearest_delta_us = qemu_next_deadline_dyntick();
1566
1567 /* check whether a timer is already running */
1568 if (timer_gettime(host_timer, &timeout)) {
1569 perror("gettime");
1570 fprintf(stderr, "Internal timer error: aborting\n");
1571 exit(1);
1572 }
1573 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1574 if (current_us && current_us <= nearest_delta_us)
1575 return;
1576
1577 timeout.it_interval.tv_sec = 0;
1578 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1579 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1580 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1581 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1582 perror("settime");
1583 fprintf(stderr, "Internal timer error: aborting\n");
1584 exit(1);
1585 }
1586 }
1587
1588 #endif /* defined(__linux__) */
1589
1590 static int unix_start_timer(struct qemu_alarm_timer *t)
1591 {
1592 struct sigaction act;
1593 struct itimerval itv;
1594 int err;
1595
1596 /* timer signal */
1597 sigfillset(&act.sa_mask);
1598 act.sa_flags = 0;
1599 act.sa_handler = host_alarm_handler;
1600
1601 sigaction(SIGALRM, &act, NULL);
1602
1603 itv.it_interval.tv_sec = 0;
1604 /* for i386 kernel 2.6 to get 1 ms */
1605 itv.it_interval.tv_usec = 999;
1606 itv.it_value.tv_sec = 0;
1607 itv.it_value.tv_usec = 10 * 1000;
1608
1609 err = setitimer(ITIMER_REAL, &itv, NULL);
1610 if (err)
1611 return -1;
1612
1613 return 0;
1614 }
1615
1616 static void unix_stop_timer(struct qemu_alarm_timer *t)
1617 {
1618 struct itimerval itv;
1619
1620 memset(&itv, 0, sizeof(itv));
1621 setitimer(ITIMER_REAL, &itv, NULL);
1622 }
1623
1624 #endif /* !defined(_WIN32) */
1625
1626 static void try_to_rearm_timer(void *opaque)
1627 {
1628 struct qemu_alarm_timer *t = opaque;
1629 #ifndef _WIN32
1630 ssize_t len;
1631
1632 /* Drain the notify pipe */
1633 do {
1634 char buffer[512];
1635 len = read(alarm_timer_rfd, buffer, sizeof(buffer));
1636 } while ((len == -1 && errno == EINTR) || len > 0);
1637 #endif
1638
1639 if (t->flags & ALARM_FLAG_EXPIRED) {
1640 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
1641 qemu_rearm_alarm_timer(alarm_timer);
1642 }
1643 }
1644
1645 #ifdef _WIN32
1646
1647 static int win32_start_timer(struct qemu_alarm_timer *t)
1648 {
1649 TIMECAPS tc;
1650 struct qemu_alarm_win32 *data = t->priv;
1651 UINT flags;
1652
1653 data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1654 if (!data->host_alarm) {
1655 perror("Failed CreateEvent");
1656 return -1;
1657 }
1658
1659 memset(&tc, 0, sizeof(tc));
1660 timeGetDevCaps(&tc, sizeof(tc));
1661
1662 if (data->period < tc.wPeriodMin)
1663 data->period = tc.wPeriodMin;
1664
1665 timeBeginPeriod(data->period);
1666
1667 flags = TIME_CALLBACK_FUNCTION;
1668 if (alarm_has_dynticks(t))
1669 flags |= TIME_ONESHOT;
1670 else
1671 flags |= TIME_PERIODIC;
1672
1673 data->timerId = timeSetEvent(1, // interval (ms)
1674 data->period, // resolution
1675 host_alarm_handler, // function
1676 (DWORD)t, // parameter
1677 flags);
1678
1679 if (!data->timerId) {
1680 perror("Failed to initialize win32 alarm timer");
1681
1682 timeEndPeriod(data->period);
1683 CloseHandle(data->host_alarm);
1684 return -1;
1685 }
1686
1687 qemu_add_wait_object(data->host_alarm, try_to_rearm_timer, t);
1688
1689 return 0;
1690 }
1691
1692 static void win32_stop_timer(struct qemu_alarm_timer *t)
1693 {
1694 struct qemu_alarm_win32 *data = t->priv;
1695
1696 timeKillEvent(data->timerId);
1697 timeEndPeriod(data->period);
1698
1699 CloseHandle(data->host_alarm);
1700 }
1701
1702 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1703 {
1704 struct qemu_alarm_win32 *data = t->priv;
1705 uint64_t nearest_delta_us;
1706
1707 if (!active_timers[QEMU_TIMER_REALTIME] &&
1708 !active_timers[QEMU_TIMER_VIRTUAL])
1709 return;
1710
1711 nearest_delta_us = qemu_next_deadline_dyntick();
1712 nearest_delta_us /= 1000;
1713
1714 timeKillEvent(data->timerId);
1715
1716 data->timerId = timeSetEvent(1,
1717 data->period,
1718 host_alarm_handler,
1719 (DWORD)t,
1720 TIME_ONESHOT | TIME_PERIODIC);
1721
1722 if (!data->timerId) {
1723 perror("Failed to re-arm win32 alarm timer");
1724
1725 timeEndPeriod(data->period);
1726 CloseHandle(data->host_alarm);
1727 exit(1);
1728 }
1729 }
1730
1731 #endif /* _WIN32 */
1732
1733 static int init_timer_alarm(void)
1734 {
1735 struct qemu_alarm_timer *t = NULL;
1736 int i, err = -1;
1737
1738 #ifndef _WIN32
1739 int fds[2];
1740
1741 err = pipe(fds);
1742 if (err == -1)
1743 return -errno;
1744
1745 err = fcntl_setfl(fds[0], O_NONBLOCK);
1746 if (err < 0)
1747 goto fail;
1748
1749 err = fcntl_setfl(fds[1], O_NONBLOCK);
1750 if (err < 0)
1751 goto fail;
1752
1753 alarm_timer_rfd = fds[0];
1754 alarm_timer_wfd = fds[1];
1755 #endif
1756
1757 for (i = 0; alarm_timers[i].name; i++) {
1758 t = &alarm_timers[i];
1759
1760 err = t->start(t);
1761 if (!err)
1762 break;
1763 }
1764
1765 if (err) {
1766 err = -ENOENT;
1767 goto fail;
1768 }
1769
1770 #ifndef _WIN32
1771 qemu_set_fd_handler2(alarm_timer_rfd, NULL,
1772 try_to_rearm_timer, NULL, t);
1773 #endif
1774
1775 alarm_timer = t;
1776
1777 return 0;
1778
1779 fail:
1780 #ifndef _WIN32
1781 close(fds[0]);
1782 close(fds[1]);
1783 #endif
1784 return err;
1785 }
1786
1787 static void quit_timers(void)
1788 {
1789 alarm_timer->stop(alarm_timer);
1790 alarm_timer = NULL;
1791 }
1792
1793 /***********************************************************/
1794 /* host time/date access */
1795 void qemu_get_timedate(struct tm *tm, int offset)
1796 {
1797 time_t ti;
1798 struct tm *ret;
1799
1800 time(&ti);
1801 ti += offset;
1802 if (rtc_date_offset == -1) {
1803 if (rtc_utc)
1804 ret = gmtime(&ti);
1805 else
1806 ret = localtime(&ti);
1807 } else {
1808 ti -= rtc_date_offset;
1809 ret = gmtime(&ti);
1810 }
1811
1812 memcpy(tm, ret, sizeof(struct tm));
1813 }
1814
1815 int qemu_timedate_diff(struct tm *tm)
1816 {
1817 time_t seconds;
1818
1819 if (rtc_date_offset == -1)
1820 if (rtc_utc)
1821 seconds = mktimegm(tm);
1822 else
1823 seconds = mktime(tm);
1824 else
1825 seconds = mktimegm(tm) + rtc_date_offset;
1826
1827 return seconds - time(NULL);
1828 }
1829
1830 #ifdef _WIN32
1831 static void socket_cleanup(void)
1832 {
1833 WSACleanup();
1834 }
1835
1836 static int socket_init(void)
1837 {
1838 WSADATA Data;
1839 int ret, err;
1840
1841 ret = WSAStartup(MAKEWORD(2,2), &Data);
1842 if (ret != 0) {
1843 err = WSAGetLastError();
1844 fprintf(stderr, "WSAStartup: %d\n", err);
1845 return -1;
1846 }
1847 atexit(socket_cleanup);
1848 return 0;
1849 }
1850 #endif
1851
1852 const char *get_opt_name(char *buf, int buf_size, const char *p)
1853 {
1854 char *q;
1855
1856 q = buf;
1857 while (*p != '\0' && *p != '=') {
1858 if (q && (q - buf) < buf_size - 1)
1859 *q++ = *p;
1860 p++;
1861 }
1862 if (q)
1863 *q = '\0';
1864
1865 return p;
1866 }
1867
1868 const char *get_opt_value(char *buf, int buf_size, const char *p)
1869 {
1870 char *q;
1871
1872 q = buf;
1873 while (*p != '\0') {
1874 if (*p == ',') {
1875 if (*(p + 1) != ',')
1876 break;
1877 p++;
1878 }
1879 if (q && (q - buf) < buf_size - 1)
1880 *q++ = *p;
1881 p++;
1882 }
1883 if (q)
1884 *q = '\0';
1885
1886 return p;
1887 }
1888
1889 int get_param_value(char *buf, int buf_size,
1890 const char *tag, const char *str)
1891 {
1892 const char *p;
1893 char option[128];
1894
1895 p = str;
1896 for(;;) {
1897 p = get_opt_name(option, sizeof(option), p);
1898 if (*p != '=')
1899 break;
1900 p++;
1901 if (!strcmp(tag, option)) {
1902 (void)get_opt_value(buf, buf_size, p);
1903 return strlen(buf);
1904 } else {
1905 p = get_opt_value(NULL, 0, p);
1906 }
1907 if (*p != ',')
1908 break;
1909 p++;
1910 }
1911 return 0;
1912 }
1913
1914 int check_params(char *buf, int buf_size,
1915 const char * const *params, const char *str)
1916 {
1917 const char *p;
1918 int i;
1919
1920 p = str;
1921 for(;;) {
1922 p = get_opt_name(buf, buf_size, p);
1923 if (*p != '=')
1924 return -1;
1925 p++;
1926 for(i = 0; params[i] != NULL; i++)
1927 if (!strcmp(params[i], buf))
1928 break;
1929 if (params[i] == NULL)
1930 return -1;
1931 p = get_opt_value(NULL, 0, p);
1932 if (*p != ',')
1933 break;
1934 p++;
1935 }
1936 return 0;
1937 }
1938
1939 /***********************************************************/
1940 /* Bluetooth support */
1941 static int nb_hcis;
1942 static int cur_hci;
1943 static struct HCIInfo *hci_table[MAX_NICS];
1944
1945 static struct bt_vlan_s {
1946 struct bt_scatternet_s net;
1947 int id;
1948 struct bt_vlan_s *next;
1949 } *first_bt_vlan;
1950
1951 /* find or alloc a new bluetooth "VLAN" */
1952 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1953 {
1954 struct bt_vlan_s **pvlan, *vlan;
1955 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1956 if (vlan->id == id)
1957 return &vlan->net;
1958 }
1959 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1960 vlan->id = id;
1961 pvlan = &first_bt_vlan;
1962 while (*pvlan != NULL)
1963 pvlan = &(*pvlan)->next;
1964 *pvlan = vlan;
1965 return &vlan->net;
1966 }
1967
1968 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1969 {
1970 }
1971
1972 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1973 {
1974 return -ENOTSUP;
1975 }
1976
1977 static struct HCIInfo null_hci = {
1978 .cmd_send = null_hci_send,
1979 .sco_send = null_hci_send,
1980 .acl_send = null_hci_send,
1981 .bdaddr_set = null_hci_addr_set,
1982 };
1983
1984 struct HCIInfo *qemu_next_hci(void)
1985 {
1986 if (cur_hci == nb_hcis)
1987 return &null_hci;
1988
1989 return hci_table[cur_hci++];
1990 }
1991
1992 static struct HCIInfo *hci_init(const char *str)
1993 {
1994 char *endp;
1995 struct bt_scatternet_s *vlan = 0;
1996
1997 if (!strcmp(str, "null"))
1998 /* null */
1999 return &null_hci;
2000 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
2001 /* host[:hciN] */
2002 return bt_host_hci(str[4] ? str + 5 : "hci0");
2003 else if (!strncmp(str, "hci", 3)) {
2004 /* hci[,vlan=n] */
2005 if (str[3]) {
2006 if (!strncmp(str + 3, ",vlan=", 6)) {
2007 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
2008 if (*endp)
2009 vlan = 0;
2010 }
2011 } else
2012 vlan = qemu_find_bt_vlan(0);
2013 if (vlan)
2014 return bt_new_hci(vlan);
2015 }
2016
2017 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
2018
2019 return 0;
2020 }
2021
2022 static int bt_hci_parse(const char *str)
2023 {
2024 struct HCIInfo *hci;
2025 bdaddr_t bdaddr;
2026
2027 if (nb_hcis >= MAX_NICS) {
2028 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
2029 return -1;
2030 }
2031
2032 hci = hci_init(str);
2033 if (!hci)
2034 return -1;
2035
2036 bdaddr.b[0] = 0x52;
2037 bdaddr.b[1] = 0x54;
2038 bdaddr.b[2] = 0x00;
2039 bdaddr.b[3] = 0x12;
2040 bdaddr.b[4] = 0x34;
2041 bdaddr.b[5] = 0x56 + nb_hcis;
2042 hci->bdaddr_set(hci, bdaddr.b);
2043
2044 hci_table[nb_hcis++] = hci;
2045
2046 return 0;
2047 }
2048
2049 static void bt_vhci_add(int vlan_id)
2050 {
2051 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
2052
2053 if (!vlan->slave)
2054 fprintf(stderr, "qemu: warning: adding a VHCI to "
2055 "an empty scatternet %i\n", vlan_id);
2056
2057 bt_vhci_init(bt_new_hci(vlan));
2058 }
2059
2060 static struct bt_device_s *bt_device_add(const char *opt)
2061 {
2062 struct bt_scatternet_s *vlan;
2063 int vlan_id = 0;
2064 char *endp = strstr(opt, ",vlan=");
2065 int len = (endp ? endp - opt : strlen(opt)) + 1;
2066 char devname[10];
2067
2068 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2069
2070 if (endp) {
2071 vlan_id = strtol(endp + 6, &endp, 0);
2072 if (*endp) {
2073 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2074 return 0;
2075 }
2076 }
2077
2078 vlan = qemu_find_bt_vlan(vlan_id);
2079
2080 if (!vlan->slave)
2081 fprintf(stderr, "qemu: warning: adding a slave device to "
2082 "an empty scatternet %i\n", vlan_id);
2083
2084 if (!strcmp(devname, "keyboard"))
2085 return bt_keyboard_init(vlan);
2086
2087 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2088 return 0;
2089 }
2090
2091 static int bt_parse(const char *opt)
2092 {
2093 const char *endp, *p;
2094 int vlan;
2095
2096 if (strstart(opt, "hci", &endp)) {
2097 if (!*endp || *endp == ',') {
2098 if (*endp)
2099 if (!strstart(endp, ",vlan=", 0))
2100 opt = endp + 1;
2101
2102 return bt_hci_parse(opt);
2103 }
2104 } else if (strstart(opt, "vhci", &endp)) {
2105 if (!*endp || *endp == ',') {
2106 if (*endp) {
2107 if (strstart(endp, ",vlan=", &p)) {
2108 vlan = strtol(p, (char **) &endp, 0);
2109 if (*endp) {
2110 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2111 return 1;
2112 }
2113 } else {
2114 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2115 return 1;
2116 }
2117 } else
2118 vlan = 0;
2119
2120 bt_vhci_add(vlan);
2121 return 0;
2122 }
2123 } else if (strstart(opt, "device:", &endp))
2124 return !bt_device_add(endp);
2125
2126 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2127 return 1;
2128 }
2129
2130 /***********************************************************/
2131 /* QEMU Block devices */
2132
2133 #define HD_ALIAS "index=%d,media=disk"
2134 #ifdef TARGET_PPC
2135 #define CDROM_ALIAS "index=1,media=cdrom"
2136 #else
2137 #define CDROM_ALIAS "index=2,media=cdrom"
2138 #endif
2139 #define FD_ALIAS "index=%d,if=floppy"
2140 #define PFLASH_ALIAS "if=pflash"
2141 #define MTD_ALIAS "if=mtd"
2142 #define SD_ALIAS "index=0,if=sd"
2143
2144 static int drive_opt_get_free_idx(void)
2145 {
2146 int index;
2147
2148 for (index = 0; index < MAX_DRIVES; index++)
2149 if (!drives_opt[index].used) {
2150 drives_opt[index].used = 1;
2151 return index;
2152 }
2153
2154 return -1;
2155 }
2156
2157 static int drive_get_free_idx(void)
2158 {
2159 int index;
2160
2161 for (index = 0; index < MAX_DRIVES; index++)
2162 if (!drives_table[index].used) {
2163 drives_table[index].used = 1;
2164 return index;
2165 }
2166
2167 return -1;
2168 }
2169
2170 int drive_add(const char *file, const char *fmt, ...)
2171 {
2172 va_list ap;
2173 int index = drive_opt_get_free_idx();
2174
2175 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2176 fprintf(stderr, "qemu: too many drives\n");
2177 return -1;
2178 }
2179
2180 drives_opt[index].file = file;
2181 va_start(ap, fmt);
2182 vsnprintf(drives_opt[index].opt,
2183 sizeof(drives_opt[0].opt), fmt, ap);
2184 va_end(ap);
2185
2186 nb_drives_opt++;
2187 return index;
2188 }
2189
2190 void drive_remove(int index)
2191 {
2192 drives_opt[index].used = 0;
2193 nb_drives_opt--;
2194 }
2195
2196 int drive_get_index(BlockInterfaceType type, int bus, int unit)
2197 {
2198 int index;
2199
2200 /* seek interface, bus and unit */
2201
2202 for (index = 0; index < MAX_DRIVES; index++)
2203 if (drives_table[index].type == type &&
2204 drives_table[index].bus == bus &&
2205 drives_table[index].unit == unit &&
2206 drives_table[index].used)
2207 return index;
2208
2209 return -1;
2210 }
2211
2212 int drive_get_max_bus(BlockInterfaceType type)
2213 {
2214 int max_bus;
2215 int index;
2216
2217 max_bus = -1;
2218 for (index = 0; index < nb_drives; index++) {
2219 if(drives_table[index].type == type &&
2220 drives_table[index].bus > max_bus)
2221 max_bus = drives_table[index].bus;
2222 }
2223 return max_bus;
2224 }
2225
2226 const char *drive_get_serial(BlockDriverState *bdrv)
2227 {
2228 int index;
2229
2230 for (index = 0; index < nb_drives; index++)
2231 if (drives_table[index].bdrv == bdrv)
2232 return drives_table[index].serial;
2233
2234 return "\0";
2235 }
2236
2237 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2238 {
2239 int index;
2240
2241 for (index = 0; index < nb_drives; index++)
2242 if (drives_table[index].bdrv == bdrv)
2243 return drives_table[index].onerror;
2244
2245 return BLOCK_ERR_REPORT;
2246 }
2247
2248 static void bdrv_format_print(void *opaque, const char *name)
2249 {
2250 fprintf(stderr, " %s", name);
2251 }
2252
2253 void drive_uninit(BlockDriverState *bdrv)
2254 {
2255 int i;
2256
2257 for (i = 0; i < MAX_DRIVES; i++)
2258 if (drives_table[i].bdrv == bdrv) {
2259 drives_table[i].bdrv = NULL;
2260 drives_table[i].used = 0;
2261 drive_remove(drives_table[i].drive_opt_idx);
2262 nb_drives--;
2263 break;
2264 }
2265 }
2266
2267 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2268 {
2269 char buf[128];
2270 char file[1024];
2271 char devname[128];
2272 char serial[21];
2273 const char *mediastr = "";
2274 BlockInterfaceType type;
2275 enum { MEDIA_DISK, MEDIA_CDROM } media;
2276 int bus_id, unit_id;
2277 int cyls, heads, secs, translation;
2278 BlockDriverState *bdrv;
2279 BlockDriver *drv = NULL;
2280 QEMUMachine *machine = opaque;
2281 int max_devs;
2282 int index;
2283 int cache;
2284 int bdrv_flags, onerror;
2285 int drives_table_idx;
2286 char *str = arg->opt;
2287 static const char * const params[] = { "bus", "unit", "if", "index",
2288 "cyls", "heads", "secs", "trans",
2289 "media", "snapshot", "file",
2290 "cache", "format", "serial", "werror",
2291 NULL };
2292
2293 if (check_params(buf, sizeof(buf), params, str) < 0) {
2294 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2295 buf, str);
2296 return -1;
2297 }
2298
2299 file[0] = 0;
2300 cyls = heads = secs = 0;
2301 bus_id = 0;
2302 unit_id = -1;
2303 translation = BIOS_ATA_TRANSLATION_AUTO;
2304 index = -1;
2305 cache = 3;
2306
2307 if (machine->use_scsi) {
2308 type = IF_SCSI;
2309 max_devs = MAX_SCSI_DEVS;
2310 pstrcpy(devname, sizeof(devname), "scsi");
2311 } else {
2312 type = IF_IDE;
2313 max_devs = MAX_IDE_DEVS;
2314 pstrcpy(devname, sizeof(devname), "ide");
2315 }
2316 media = MEDIA_DISK;
2317
2318 /* extract parameters */
2319
2320 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2321 bus_id = strtol(buf, NULL, 0);
2322 if (bus_id < 0) {
2323 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2324 return -1;
2325 }
2326 }
2327
2328 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2329 unit_id = strtol(buf, NULL, 0);
2330 if (unit_id < 0) {
2331 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2332 return -1;
2333 }
2334 }
2335
2336 if (get_param_value(buf, sizeof(buf), "if", str)) {
2337 pstrcpy(devname, sizeof(devname), buf);
2338 if (!strcmp(buf, "ide")) {
2339 type = IF_IDE;
2340 max_devs = MAX_IDE_DEVS;
2341 } else if (!strcmp(buf, "scsi")) {
2342 type = IF_SCSI;
2343 max_devs = MAX_SCSI_DEVS;
2344 } else if (!strcmp(buf, "floppy")) {
2345 type = IF_FLOPPY;
2346 max_devs = 0;
2347 } else if (!strcmp(buf, "pflash")) {
2348 type = IF_PFLASH;
2349 max_devs = 0;
2350 } else if (!strcmp(buf, "mtd")) {
2351 type = IF_MTD;
2352 max_devs = 0;
2353 } else if (!strcmp(buf, "sd")) {
2354 type = IF_SD;
2355 max_devs = 0;
2356 } else if (!strcmp(buf, "virtio")) {
2357 type = IF_VIRTIO;
2358 max_devs = 0;
2359 } else {
2360 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2361 return -1;
2362 }
2363 }
2364
2365 if (get_param_value(buf, sizeof(buf), "index", str)) {
2366 index = strtol(buf, NULL, 0);
2367 if (index < 0) {
2368 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2369 return -1;
2370 }
2371 }
2372
2373 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2374 cyls = strtol(buf, NULL, 0);
2375 }
2376
2377 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2378 heads = strtol(buf, NULL, 0);
2379 }
2380
2381 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2382 secs = strtol(buf, NULL, 0);
2383 }
2384
2385 if (cyls || heads || secs) {
2386 if (cyls < 1 || cyls > 16383) {
2387 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2388 return -1;
2389 }
2390 if (heads < 1 || heads > 16) {
2391 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2392 return -1;
2393 }
2394 if (secs < 1 || secs > 63) {
2395 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2396 return -1;
2397 }
2398 }
2399
2400 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2401 if (!cyls) {
2402 fprintf(stderr,
2403 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2404 str);
2405 return -1;
2406 }
2407 if (!strcmp(buf, "none"))
2408 translation = BIOS_ATA_TRANSLATION_NONE;
2409 else if (!strcmp(buf, "lba"))
2410 translation = BIOS_ATA_TRANSLATION_LBA;
2411 else if (!strcmp(buf, "auto"))
2412 translation = BIOS_ATA_TRANSLATION_AUTO;
2413 else {
2414 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2415 return -1;
2416 }
2417 }
2418
2419 if (get_param_value(buf, sizeof(buf), "media", str)) {
2420 if (!strcmp(buf, "disk")) {
2421 media = MEDIA_DISK;
2422 } else if (!strcmp(buf, "cdrom")) {
2423 if (cyls || secs || heads) {
2424 fprintf(stderr,
2425 "qemu: '%s' invalid physical CHS format\n", str);
2426 return -1;
2427 }
2428 media = MEDIA_CDROM;
2429 } else {
2430 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2431 return -1;
2432 }
2433 }
2434
2435 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2436 if (!strcmp(buf, "on"))
2437 snapshot = 1;
2438 else if (!strcmp(buf, "off"))
2439 snapshot = 0;
2440 else {
2441 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2442 return -1;
2443 }
2444 }
2445
2446 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2447 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2448 cache = 0;
2449 else if (!strcmp(buf, "writethrough"))
2450 cache = 1;
2451 else if (!strcmp(buf, "writeback"))
2452 cache = 2;
2453 else {
2454 fprintf(stderr, "qemu: invalid cache option\n");
2455 return -1;
2456 }
2457 }
2458
2459 if (get_param_value(buf, sizeof(buf), "format", str)) {
2460 if (strcmp(buf, "?") == 0) {
2461 fprintf(stderr, "qemu: Supported formats:");
2462 bdrv_iterate_format(bdrv_format_print, NULL);
2463 fprintf(stderr, "\n");
2464 return -1;
2465 }
2466 drv = bdrv_find_format(buf);
2467 if (!drv) {
2468 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2469 return -1;
2470 }
2471 }
2472
2473 if (arg->file == NULL)
2474 get_param_value(file, sizeof(file), "file", str);
2475 else
2476 pstrcpy(file, sizeof(file), arg->file);
2477
2478 if (!get_param_value(serial, sizeof(serial), "serial", str))
2479 memset(serial, 0, sizeof(serial));
2480
2481 onerror = BLOCK_ERR_REPORT;
2482 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2483 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2484 fprintf(stderr, "werror is no supported by this format\n");
2485 return -1;
2486 }
2487 if (!strcmp(buf, "ignore"))
2488 onerror = BLOCK_ERR_IGNORE;
2489 else if (!strcmp(buf, "enospc"))
2490 onerror = BLOCK_ERR_STOP_ENOSPC;
2491 else if (!strcmp(buf, "stop"))
2492 onerror = BLOCK_ERR_STOP_ANY;
2493 else if (!strcmp(buf, "report"))
2494 onerror = BLOCK_ERR_REPORT;
2495 else {
2496 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2497 return -1;
2498 }
2499 }
2500
2501 /* compute bus and unit according index */
2502
2503 if (index != -1) {
2504 if (bus_id != 0 || unit_id != -1) {
2505 fprintf(stderr,
2506 "qemu: '%s' index cannot be used with bus and unit\n", str);
2507 return -1;
2508 }
2509 if (max_devs == 0)
2510 {
2511 unit_id = index;
2512 bus_id = 0;
2513 } else {
2514 unit_id = index % max_devs;
2515 bus_id = index / max_devs;
2516 }
2517 }
2518
2519 /* if user doesn't specify a unit_id,
2520 * try to find the first free
2521 */
2522
2523 if (unit_id == -1) {
2524 unit_id = 0;
2525 while (drive_get_index(type, bus_id, unit_id) != -1) {
2526 unit_id++;
2527 if (max_devs && unit_id >= max_devs) {
2528 unit_id -= max_devs;
2529 bus_id++;
2530 }
2531 }
2532 }
2533
2534 /* check unit id */
2535
2536 if (max_devs && unit_id >= max_devs) {
2537 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2538 str, unit_id, max_devs - 1);
2539 return -1;
2540 }
2541
2542 /*
2543 * ignore multiple definitions
2544 */
2545
2546 if (drive_get_index(type, bus_id, unit_id) != -1)
2547 return -2;
2548
2549 /* init */
2550
2551 if (type == IF_IDE || type == IF_SCSI)
2552 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2553 if (max_devs)
2554 snprintf(buf, sizeof(buf), "%s%i%s%i",
2555 devname, bus_id, mediastr, unit_id);
2556 else
2557 snprintf(buf, sizeof(buf), "%s%s%i",
2558 devname, mediastr, unit_id);
2559 bdrv = bdrv_new(buf);
2560 drives_table_idx = drive_get_free_idx();
2561 drives_table[drives_table_idx].bdrv = bdrv;
2562 drives_table[drives_table_idx].type = type;
2563 drives_table[drives_table_idx].bus = bus_id;
2564 drives_table[drives_table_idx].unit = unit_id;
2565 drives_table[drives_table_idx].onerror = onerror;
2566 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2567 strncpy(drives_table[nb_drives].serial, serial, sizeof(serial));
2568 nb_drives++;
2569
2570 switch(type) {
2571 case IF_IDE:
2572 case IF_SCSI:
2573 switch(media) {
2574 case MEDIA_DISK:
2575 if (cyls != 0) {
2576 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2577 bdrv_set_translation_hint(bdrv, translation);
2578 }
2579 break;
2580 case MEDIA_CDROM:
2581 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2582 break;
2583 }
2584 break;
2585 case IF_SD:
2586 /* FIXME: This isn't really a floppy, but it's a reasonable
2587 approximation. */
2588 case IF_FLOPPY:
2589 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2590 break;
2591 case IF_PFLASH:
2592 case IF_MTD:
2593 case IF_VIRTIO:
2594 break;
2595 }
2596 if (!file[0])
2597 return -2;
2598 bdrv_flags = 0;
2599 if (snapshot) {
2600 bdrv_flags |= BDRV_O_SNAPSHOT;
2601 cache = 2; /* always use write-back with snapshot */
2602 }
2603 if (cache == 0) /* no caching */
2604 bdrv_flags |= BDRV_O_NOCACHE;
2605 else if (cache == 2) /* write-back */
2606 bdrv_flags |= BDRV_O_CACHE_WB;
2607 else if (cache == 3) /* not specified */
2608 bdrv_flags |= BDRV_O_CACHE_DEF;
2609 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0 || qemu_key_check(bdrv, file)) {
2610 fprintf(stderr, "qemu: could not open disk image %s\n",
2611 file);
2612 return -1;
2613 }
2614 return drives_table_idx;
2615 }
2616
2617 /***********************************************************/
2618 /* USB devices */
2619
2620 static USBPort *used_usb_ports;
2621 static USBPort *free_usb_ports;
2622
2623 /* ??? Maybe change this to register a hub to keep track of the topology. */
2624 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2625 usb_attachfn attach)
2626 {
2627 port->opaque = opaque;
2628 port->index = index;
2629 port->attach = attach;
2630 port->next = free_usb_ports;
2631 free_usb_ports = port;
2632 }
2633
2634 int usb_device_add_dev(USBDevice *dev)
2635 {
2636 USBPort *port;
2637
2638 /* Find a USB port to add the device to. */
2639 port = free_usb_ports;
2640 if (!port->next) {
2641 USBDevice *hub;
2642
2643 /* Create a new hub and chain it on. */
2644 free_usb_ports = NULL;
2645 port->next = used_usb_ports;
2646 used_usb_ports = port;
2647
2648 hub = usb_hub_init(VM_USB_HUB_SIZE);
2649 usb_attach(port, hub);
2650 port = free_usb_ports;
2651 }
2652
2653 free_usb_ports = port->next;
2654 port->next = used_usb_ports;
2655 used_usb_ports = port;
2656 usb_attach(port, dev);
2657 return 0;
2658 }
2659
2660 static int usb_device_add(const char *devname)
2661 {
2662 const char *p;
2663 USBDevice *dev;
2664
2665 if (!free_usb_ports)
2666 return -1;
2667
2668 if (strstart(devname, "host:", &p)) {
2669 dev = usb_host_device_open(p);
2670 } else if (!strcmp(devname, "mouse")) {
2671 dev = usb_mouse_init();
2672 } else if (!strcmp(devname, "tablet")) {
2673 dev = usb_tablet_init();
2674 } else if (!strcmp(devname, "keyboard")) {
2675 dev = usb_keyboard_init();
2676 } else if (strstart(devname, "disk:", &p)) {
2677 dev = usb_msd_init(p);
2678 } else if (!strcmp(devname, "wacom-tablet")) {
2679 dev = usb_wacom_init();
2680 } else if (strstart(devname, "serial:", &p)) {
2681 dev = usb_serial_init(p);
2682 #ifdef CONFIG_BRLAPI
2683 } else if (!strcmp(devname, "braille")) {
2684 dev = usb_baum_init();
2685 #endif
2686 } else if (strstart(devname, "net:", &p)) {
2687 int nic = nb_nics;
2688
2689 if (net_client_init("nic", p) < 0)
2690 return -1;
2691 nd_table[nic].model = "usb";
2692 dev = usb_net_init(&nd_table[nic]);
2693 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2694 dev = usb_bt_init(devname[2] ? hci_init(p) :
2695 bt_new_hci(qemu_find_bt_vlan(0)));
2696 } else {
2697 return -1;
2698 }
2699 if (!dev)
2700 return -1;
2701
2702 return usb_device_add_dev(dev);
2703 }
2704
2705 int usb_device_del_addr(int bus_num, int addr)
2706 {
2707 USBPort *port;
2708 USBPort **lastp;
2709 USBDevice *dev;
2710
2711 if (!used_usb_ports)
2712 return -1;
2713
2714 if (bus_num != 0)
2715 return -1;
2716
2717 lastp = &used_usb_ports;
2718 port = used_usb_ports;
2719 while (port && port->dev->addr != addr) {
2720 lastp = &port->next;
2721 port = port->next;
2722 }
2723
2724 if (!port)
2725 return -1;
2726
2727 dev = port->dev;
2728 *lastp = port->next;
2729 usb_attach(port, NULL);
2730 dev->handle_destroy(dev);
2731 port->next = free_usb_ports;
2732 free_usb_ports = port;
2733 return 0;
2734 }
2735
2736 static int usb_device_del(const char *devname)
2737 {
2738 int bus_num, addr;
2739 const char *p;
2740
2741 if (strstart(devname, "host:", &p))
2742 return usb_host_device_close(p);
2743
2744 if (!used_usb_ports)
2745 return -1;
2746
2747 p = strchr(devname, '.');
2748 if (!p)
2749 return -1;
2750 bus_num = strtoul(devname, NULL, 0);
2751 addr = strtoul(p + 1, NULL, 0);
2752
2753 return usb_device_del_addr(bus_num, addr);
2754 }
2755
2756 void do_usb_add(const char *devname)
2757 {
2758 usb_device_add(devname);
2759 }
2760
2761 void do_usb_del(const char *devname)
2762 {
2763 usb_device_del(devname);
2764 }
2765
2766 void usb_info(void)
2767 {
2768 USBDevice *dev;
2769 USBPort *port;
2770 const char *speed_str;
2771
2772 if (!usb_enabled) {
2773 term_printf("USB support not enabled\n");
2774 return;
2775 }
2776
2777 for (port = used_usb_ports; port; port = port->next) {
2778 dev = port->dev;
2779 if (!dev)
2780 continue;
2781 switch(dev->speed) {
2782 case USB_SPEED_LOW:
2783 speed_str = "1.5";
2784 break;
2785 case USB_SPEED_FULL:
2786 speed_str = "12";
2787 break;
2788 case USB_SPEED_HIGH:
2789 speed_str = "480";
2790 break;
2791 default:
2792 speed_str = "?";
2793 break;
2794 }
2795 term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n",
2796 0, dev->addr, speed_str, dev->devname);
2797 }
2798 }
2799
2800 /***********************************************************/
2801 /* PCMCIA/Cardbus */
2802
2803 static struct pcmcia_socket_entry_s {
2804 struct pcmcia_socket_s *socket;
2805 struct pcmcia_socket_entry_s *next;
2806 } *pcmcia_sockets = 0;
2807
2808 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
2809 {
2810 struct pcmcia_socket_entry_s *entry;
2811
2812 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2813 entry->socket = socket;
2814 entry->next = pcmcia_sockets;
2815 pcmcia_sockets = entry;
2816 }
2817
2818 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
2819 {
2820 struct pcmcia_socket_entry_s *entry, **ptr;
2821
2822 ptr = &pcmcia_sockets;
2823 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2824 if (entry->socket == socket) {
2825 *ptr = entry->next;
2826 qemu_free(entry);
2827 }
2828 }
2829
2830 void pcmcia_info(void)
2831 {
2832 struct pcmcia_socket_entry_s *iter;
2833 if (!pcmcia_sockets)
2834 term_printf("No PCMCIA sockets\n");
2835
2836 for (iter = pcmcia_sockets; iter; iter = iter->next)
2837 term_printf("%s: %s\n", iter->socket->slot_string,
2838 iter->socket->attached ? iter->socket->card_string :
2839 "Empty");
2840 }
2841
2842 /***********************************************************/
2843 /* register display */
2844
2845 void register_displaystate(DisplayState *ds)
2846 {
2847 DisplayState **s;
2848 s = &display_state;
2849 while (*s != NULL)
2850 s = &(*s)->next;
2851 ds->next = NULL;
2852 *s = ds;
2853 }
2854
2855 DisplayState *get_displaystate(void)
2856 {
2857 return display_state;
2858 }
2859
2860 /* dumb display */
2861
2862 static void dumb_display_init(void)
2863 {
2864 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2865 ds->surface = qemu_create_displaysurface(640, 480, 32, 640 * 4);
2866 register_displaystate(ds);
2867 }
2868
2869 /***********************************************************/
2870 /* I/O handling */
2871
2872 #define MAX_IO_HANDLERS 64
2873
2874 typedef struct IOHandlerRecord {
2875 int fd;
2876 IOCanRWHandler *fd_read_poll;
2877 IOHandler *fd_read;
2878 IOHandler *fd_write;
2879 int deleted;
2880 void *opaque;
2881 /* temporary data */
2882 struct pollfd *ufd;
2883 struct IOHandlerRecord *next;
2884 } IOHandlerRecord;
2885
2886 static IOHandlerRecord *first_io_handler;
2887
2888 /* XXX: fd_read_poll should be suppressed, but an API change is
2889 necessary in the character devices to suppress fd_can_read(). */
2890 int qemu_set_fd_handler2(int fd,
2891 IOCanRWHandler *fd_read_poll,
2892 IOHandler *fd_read,
2893 IOHandler *fd_write,
2894 void *opaque)
2895 {
2896 IOHandlerRecord **pioh, *ioh;
2897
2898 if (!fd_read && !fd_write) {
2899 pioh = &first_io_handler;
2900 for(;;) {
2901 ioh = *pioh;
2902 if (ioh == NULL)
2903 break;
2904 if (ioh->fd == fd) {
2905 ioh->deleted = 1;
2906 break;
2907 }
2908 pioh = &ioh->next;
2909 }
2910 } else {
2911 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2912 if (ioh->fd == fd)
2913 goto found;
2914 }
2915 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2916 ioh->next = first_io_handler;
2917 first_io_handler = ioh;
2918 found:
2919 ioh->fd = fd;
2920 ioh->fd_read_poll = fd_read_poll;
2921 ioh->fd_read = fd_read;
2922 ioh->fd_write = fd_write;
2923 ioh->opaque = opaque;
2924 ioh->deleted = 0;
2925 }
2926 return 0;
2927 }
2928
2929 int qemu_set_fd_handler(int fd,
2930 IOHandler *fd_read,
2931 IOHandler *fd_write,
2932 void *opaque)
2933 {
2934 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2935 }
2936
2937 #ifdef _WIN32
2938 /***********************************************************/
2939 /* Polling handling */
2940
2941 typedef struct PollingEntry {
2942 PollingFunc *func;
2943 void *opaque;
2944 struct PollingEntry *next;
2945 } PollingEntry;
2946
2947 static PollingEntry *first_polling_entry;
2948
2949 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2950 {
2951 PollingEntry **ppe, *pe;
2952 pe = qemu_mallocz(sizeof(PollingEntry));
2953 pe->func = func;
2954 pe->opaque = opaque;
2955 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2956 *ppe = pe;
2957 return 0;
2958 }
2959
2960 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2961 {
2962 PollingEntry **ppe, *pe;
2963 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2964 pe = *ppe;
2965 if (pe->func == func && pe->opaque == opaque) {
2966 *ppe = pe->next;
2967 qemu_free(pe);
2968 break;
2969 }
2970 }
2971 }
2972
2973 /***********************************************************/
2974 /* Wait objects support */
2975 typedef struct WaitObjects {
2976 int num;
2977 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2978 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2979 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2980 } WaitObjects;
2981
2982 static WaitObjects wait_objects = {0};
2983
2984 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2985 {
2986 WaitObjects *w = &wait_objects;
2987
2988 if (w->num >= MAXIMUM_WAIT_OBJECTS)
2989 return -1;
2990 w->events[w->num] = handle;
2991 w->func[w->num] = func;
2992 w->opaque[w->num] = opaque;
2993 w->num++;
2994 return 0;
2995 }
2996
2997 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2998 {
2999 int i, found;
3000 WaitObjects *w = &wait_objects;
3001
3002 found = 0;
3003 for (i = 0; i < w->num; i++) {
3004 if (w->events[i] == handle)
3005 found = 1;
3006 if (found) {
3007 w->events[i] = w->events[i + 1];
3008 w->func[i] = w->func[i + 1];
3009 w->opaque[i] = w->opaque[i + 1];
3010 }
3011 }
3012 if (found)
3013 w->num--;
3014 }
3015 #endif
3016
3017 /***********************************************************/
3018 /* ram save/restore */
3019
3020 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3021 {
3022 int v;
3023
3024 v = qemu_get_byte(f);
3025 switch(v) {
3026 case 0:
3027 if (qemu_get_buffer(f, buf, len) != len)
3028 return -EIO;
3029 break;
3030 case 1:
3031 v = qemu_get_byte(f);
3032 memset(buf, v, len);
3033 break;
3034 default:
3035 return -EINVAL;
3036 }
3037
3038 if (qemu_file_has_error(f))
3039 return -EIO;
3040
3041 return 0;
3042 }
3043
3044 static int ram_load_v1(QEMUFile *f, void *opaque)
3045 {
3046 int ret;
3047 ram_addr_t i;
3048
3049 if (qemu_get_be32(f) != phys_ram_size)
3050 return -EINVAL;
3051 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
3052 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
3053 if (ret)
3054 return ret;
3055 }
3056 return 0;
3057 }
3058
3059 #define BDRV_HASH_BLOCK_SIZE 1024
3060 #define IOBUF_SIZE 4096
3061 #define RAM_CBLOCK_MAGIC 0xfabe
3062
3063 typedef struct RamDecompressState {
3064 z_stream zstream;
3065 QEMUFile *f;
3066 uint8_t buf[IOBUF_SIZE];
3067 } RamDecompressState;
3068
3069 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3070 {
3071 int ret;
3072 memset(s, 0, sizeof(*s));
3073 s->f = f;
3074 ret = inflateInit(&s->zstream);
3075 if (ret != Z_OK)
3076 return -1;
3077 return 0;
3078 }
3079
3080 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3081 {
3082 int ret, clen;
3083
3084 s->zstream.avail_out = len;
3085 s->zstream.next_out = buf;
3086 while (s->zstream.avail_out > 0) {
3087 if (s->zstream.avail_in == 0) {
3088 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3089 return -1;
3090 clen = qemu_get_be16(s->f);
3091 if (clen > IOBUF_SIZE)
3092 return -1;
3093 qemu_get_buffer(s->f, s->buf, clen);
3094 s->zstream.avail_in = clen;
3095 s->zstream.next_in = s->buf;
3096 }
3097 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3098 if (ret != Z_OK && ret != Z_STREAM_END) {
3099 return -1;
3100 }
3101 }
3102 return 0;
3103 }
3104
3105 static void ram_decompress_close(RamDecompressState *s)
3106 {
3107 inflateEnd(&s->zstream);
3108 }
3109
3110 #define RAM_SAVE_FLAG_FULL 0x01
3111 #define RAM_SAVE_FLAG_COMPRESS 0x02
3112 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3113 #define RAM_SAVE_FLAG_PAGE 0x08
3114 #define RAM_SAVE_FLAG_EOS 0x10
3115
3116 static int is_dup_page(uint8_t *page, uint8_t ch)
3117 {
3118 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3119 uint32_t *array = (uint32_t *)page;
3120 int i;
3121
3122 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3123 if (array[i] != val)
3124 return 0;
3125 }
3126
3127 return 1;
3128 }
3129
3130 static int ram_save_block(QEMUFile *f)
3131 {
3132 static ram_addr_t current_addr = 0;
3133 ram_addr_t saved_addr = current_addr;
3134 ram_addr_t addr = 0;
3135 int found = 0;
3136
3137 while (addr < phys_ram_size) {
3138 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3139 uint8_t ch;
3140
3141 cpu_physical_memory_reset_dirty(current_addr,
3142 current_addr + TARGET_PAGE_SIZE,
3143 MIGRATION_DIRTY_FLAG);
3144
3145 ch = *(phys_ram_base + current_addr);
3146
3147 if (is_dup_page(phys_ram_base + current_addr, ch)) {
3148 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3149 qemu_put_byte(f, ch);
3150 } else {
3151 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3152 qemu_put_buffer(f, phys_ram_base + current_addr, TARGET_PAGE_SIZE);
3153 }
3154
3155 found = 1;
3156 break;
3157 }
3158 addr += TARGET_PAGE_SIZE;
3159 current_addr = (saved_addr + addr) % phys_ram_size;
3160 }
3161
3162 return found;
3163 }
3164
3165 static ram_addr_t ram_save_threshold = 10;
3166
3167 static ram_addr_t ram_save_remaining(void)
3168 {
3169 ram_addr_t addr;
3170 ram_addr_t count = 0;
3171
3172 for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
3173 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3174 count++;
3175 }
3176
3177 return count;
3178 }
3179
3180 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3181 {
3182 ram_addr_t addr;
3183
3184 if (stage == 1) {
3185 /* Make sure all dirty bits are set */
3186 for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
3187 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3188 cpu_physical_memory_set_dirty(addr);
3189 }
3190
3191 /* Enable dirty memory tracking */
3192 cpu_physical_memory_set_dirty_tracking(1);
3193
3194 qemu_put_be64(f, phys_ram_size | RAM_SAVE_FLAG_MEM_SIZE);
3195 }
3196
3197 while (!qemu_file_rate_limit(f)) {
3198 int ret;
3199
3200 ret = ram_save_block(f);
3201 if (ret == 0) /* no more blocks */
3202 break;
3203 }
3204
3205 /* try transferring iterative blocks of memory */
3206
3207 if (stage == 3) {
3208 cpu_physical_memory_set_dirty_tracking(0);
3209
3210 /* flush all remaining blocks regardless of rate limiting */
3211 while (ram_save_block(f) != 0);
3212 }
3213
3214 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3215
3216 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3217 }
3218
3219 static int ram_load_dead(QEMUFile *f, void *opaque)
3220 {
3221 RamDecompressState s1, *s = &s1;
3222 uint8_t buf[10];
3223 ram_addr_t i;
3224
3225 if (ram_decompress_open(s, f) < 0)
3226 return -EINVAL;
3227 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
3228 if (ram_decompress_buf(s, buf, 1) < 0) {
3229 fprintf(stderr, "Error while reading ram block header\n");
3230 goto error;
3231 }
3232 if (buf[0] == 0) {
3233 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
3234 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3235 goto error;
3236 }
3237 } else {
3238 error:
3239 printf("Error block header\n");
3240 return -EINVAL;
3241 }
3242 }
3243 ram_decompress_close(s);
3244
3245 return 0;
3246 }
3247
3248 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3249 {
3250 ram_addr_t addr;
3251 int flags;
3252
3253 if (version_id == 1)
3254 return ram_load_v1(f, opaque);
3255
3256 if (version_id == 2) {
3257 if (qemu_get_be32(f) != phys_ram_size)
3258 return -EINVAL;
3259 return ram_load_dead(f, opaque);
3260 }
3261
3262 if (version_id != 3)
3263 return -EINVAL;
3264
3265 do {
3266 addr = qemu_get_be64(f);
3267
3268 flags = addr & ~TARGET_PAGE_MASK;
3269 addr &= TARGET_PAGE_MASK;
3270
3271 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3272 if (addr != phys_ram_size)
3273 return -EINVAL;
3274 }
3275
3276 if (flags & RAM_SAVE_FLAG_FULL) {
3277 if (ram_load_dead(f, opaque) < 0)
3278 return -EINVAL;
3279 }
3280
3281 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3282 uint8_t ch = qemu_get_byte(f);
3283 memset(phys_ram_base + addr, ch, TARGET_PAGE_SIZE);
3284 } else if (flags & RAM_SAVE_FLAG_PAGE)
3285 qemu_get_buffer(f, phys_ram_base + addr, TARGET_PAGE_SIZE);
3286 } while (!(flags & RAM_SAVE_FLAG_EOS));
3287
3288 return 0;
3289 }
3290
3291 void qemu_service_io(void)
3292 {
3293 CPUState *env = cpu_single_env;
3294 if (env) {
3295 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
3296 #ifdef USE_KQEMU
3297 if (env->kqemu_enabled) {
3298 kqemu_cpu_interrupt(env);
3299 }
3300 #endif
3301 }
3302 }
3303
3304 /***********************************************************/
3305 /* bottom halves (can be seen as timers which expire ASAP) */
3306
3307 struct QEMUBH {
3308 QEMUBHFunc *cb;
3309 void *opaque;
3310 int scheduled;
3311 int idle;
3312 int deleted;
3313 QEMUBH *next;
3314 };
3315
3316 static QEMUBH *first_bh = NULL;
3317
3318 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3319 {
3320 QEMUBH *bh;
3321 bh = qemu_mallocz(sizeof(QEMUBH));
3322 bh->cb = cb;
3323 bh->opaque = opaque;
3324 bh->next = first_bh;
3325 first_bh = bh;
3326 return bh;
3327 }
3328
3329 int qemu_bh_poll(void)
3330 {
3331 QEMUBH *bh, **bhp;
3332 int ret;
3333
3334 ret = 0;
3335 for (bh = first_bh; bh; bh = bh->next) {
3336 if (!bh->deleted && bh->scheduled) {
3337 bh->scheduled = 0;
3338 if (!bh->idle)
3339 ret = 1;
3340 bh->idle = 0;
3341 bh->cb(bh->opaque);
3342 }
3343 }
3344
3345 /* remove deleted bhs */
3346 bhp = &first_bh;
3347 while (*bhp) {
3348 bh = *bhp;
3349 if (bh->deleted) {
3350 *bhp = bh->next;
3351 qemu_free(bh);
3352 } else
3353 bhp = &bh->next;
3354 }
3355
3356 return ret;
3357 }
3358
3359 void qemu_bh_schedule_idle(QEMUBH *bh)
3360 {
3361 if (bh->scheduled)
3362 return;
3363 bh->scheduled = 1;
3364 bh->idle = 1;
3365 }
3366
3367 void qemu_bh_schedule(QEMUBH *bh)
3368 {
3369 CPUState *env = cpu_single_env;
3370 if (bh->scheduled)
3371 return;
3372 bh->scheduled = 1;
3373 bh->idle = 0;
3374 /* stop the currently executing CPU to execute the BH ASAP */
3375 if (env) {
3376 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
3377 }
3378 }
3379
3380 void qemu_bh_cancel(QEMUBH *bh)
3381 {
3382 bh->scheduled = 0;
3383 }
3384
3385 void qemu_bh_delete(QEMUBH *bh)
3386 {
3387 bh->scheduled = 0;
3388 bh->deleted = 1;
3389 }
3390
3391 static void qemu_bh_update_timeout(int *timeout)
3392 {
3393 QEMUBH *bh;
3394
3395 for (bh = first_bh; bh; bh = bh->next) {
3396 if (!bh->deleted && bh->scheduled) {
3397 if (bh->idle) {
3398 /* idle bottom halves will be polled at least
3399 * every 10ms */
3400 *timeout = MIN(10, *timeout);
3401 } else {
3402 /* non-idle bottom halves will be executed
3403 * immediately */
3404 *timeout = 0;
3405 break;
3406 }
3407 }
3408 }
3409 }
3410
3411 /***********************************************************/
3412 /* machine registration */
3413
3414 static QEMUMachine *first_machine = NULL;
3415 QEMUMachine *current_machine = NULL;
3416
3417 int qemu_register_machine(QEMUMachine *m)
3418 {
3419 QEMUMachine **pm;
3420 pm = &first_machine;
3421 while (*pm != NULL)
3422 pm = &(*pm)->next;
3423 m->next = NULL;
3424 *pm = m;
3425 return 0;
3426 }
3427
3428 static QEMUMachine *find_machine(const char *name)
3429 {
3430 QEMUMachine *m;
3431
3432 for(m = first_machine; m != NULL; m = m->next) {
3433 if (!strcmp(m->name, name))
3434 return m;
3435 }
3436 return NULL;
3437 }
3438
3439 /***********************************************************/
3440 /* main execution loop */
3441
3442 static void gui_update(void *opaque)
3443 {
3444 uint64_t interval = GUI_REFRESH_INTERVAL;
3445 DisplayState *ds = opaque;
3446 DisplayChangeListener *dcl = ds->listeners;
3447
3448 dpy_refresh(ds);
3449
3450 while (dcl != NULL) {
3451 if (dcl->gui_timer_interval &&
3452 dcl->gui_timer_interval < interval)
3453 interval = dcl->gui_timer_interval;
3454 dcl = dcl->next;
3455 }
3456 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3457 }
3458
3459 static void nographic_update(void *opaque)
3460 {
3461 uint64_t interval = GUI_REFRESH_INTERVAL;
3462
3463 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3464 }
3465
3466 struct vm_change_state_entry {
3467 VMChangeStateHandler *cb;
3468 void *opaque;
3469 LIST_ENTRY (vm_change_state_entry) entries;
3470 };
3471
3472 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3473
3474 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3475 void *opaque)
3476 {
3477 VMChangeStateEntry *e;
3478
3479 e = qemu_mallocz(sizeof (*e));
3480
3481 e->cb = cb;
3482 e->opaque = opaque;
3483 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3484 return e;
3485 }
3486
3487 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3488 {
3489 LIST_REMOVE (e, entries);
3490 qemu_free (e);
3491 }
3492
3493 static void vm_state_notify(int running, int reason)
3494 {
3495 VMChangeStateEntry *e;
3496
3497 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3498 e->cb(e->opaque, running, reason);
3499 }
3500 }
3501
3502 void vm_start(void)
3503 {
3504 if (!vm_running) {
3505 cpu_enable_ticks();
3506 vm_running = 1;
3507 vm_state_notify(1, 0);
3508 qemu_rearm_alarm_timer(alarm_timer);
3509 }
3510 }
3511
3512 void vm_stop(int reason)
3513 {
3514 if (vm_running) {
3515 cpu_disable_ticks();
3516 vm_running = 0;
3517 vm_state_notify(0, reason);
3518 }
3519 }
3520
3521 /* reset/shutdown handler */
3522
3523 typedef struct QEMUResetEntry {
3524 QEMUResetHandler *func;
3525 void *opaque;
3526 struct QEMUResetEntry *next;
3527 } QEMUResetEntry;
3528
3529 static QEMUResetEntry *first_reset_entry;
3530 static int reset_requested;
3531 static int shutdown_requested;
3532 static int powerdown_requested;
3533
3534 int qemu_shutdown_requested(void)
3535 {
3536 int r = shutdown_requested;
3537 shutdown_requested = 0;
3538 return r;
3539 }
3540
3541 int qemu_reset_requested(void)
3542 {
3543 int r = reset_requested;
3544 reset_requested = 0;
3545 return r;
3546 }
3547
3548 int qemu_powerdown_requested(void)
3549 {
3550 int r = powerdown_requested;
3551 powerdown_requested = 0;
3552 return r;
3553 }
3554
3555 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3556 {
3557 QEMUResetEntry **pre, *re;
3558
3559 pre = &first_reset_entry;
3560 while (*pre != NULL)
3561 pre = &(*pre)->next;
3562 re = qemu_mallocz(sizeof(QEMUResetEntry));
3563 re->func = func;
3564 re->opaque = opaque;
3565 re->next = NULL;
3566 *pre = re;
3567 }
3568
3569 void qemu_system_reset(void)
3570 {
3571 QEMUResetEntry *re;
3572
3573 /* reset all devices */
3574 for(re = first_reset_entry; re != NULL; re = re->next) {
3575 re->func(re->opaque);
3576 }
3577 }
3578
3579 void qemu_system_reset_request(void)
3580 {
3581 if (no_reboot) {
3582 shutdown_requested = 1;
3583 } else {
3584 reset_requested = 1;
3585 }
3586 if (cpu_single_env)
3587 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3588 }
3589
3590 void qemu_system_shutdown_request(void)
3591 {
3592 shutdown_requested = 1;
3593 if (cpu_single_env)
3594 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3595 }
3596
3597 void qemu_system_powerdown_request(void)
3598 {
3599 powerdown_requested = 1;
3600 if (cpu_single_env)
3601 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3602 }
3603
3604 #ifdef _WIN32
3605 static void host_main_loop_wait(int *timeout)
3606 {
3607 int ret, ret2, i;
3608 PollingEntry *pe;
3609
3610
3611 /* XXX: need to suppress polling by better using win32 events */
3612 ret = 0;
3613 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3614 ret |= pe->func(pe->opaque);
3615 }
3616 if (ret == 0) {
3617 int err;
3618 WaitObjects *w = &wait_objects;
3619
3620 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3621 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3622 if (w->func[ret - WAIT_OBJECT_0])
3623 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3624
3625 /* Check for additional signaled events */
3626 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3627
3628 /* Check if event is signaled */
3629 ret2 = WaitForSingleObject(w->events[i], 0);
3630 if(ret2 == WAIT_OBJECT_0) {
3631 if (w->func[i])
3632 w->func[i](w->opaque[i]);
3633 } else if (ret2 == WAIT_TIMEOUT) {
3634 } else {
3635 err = GetLastError();
3636 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3637 }
3638 }
3639 } else if (ret == WAIT_TIMEOUT) {
3640 } else {
3641 err = GetLastError();
3642 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3643 }
3644 }
3645
3646 *timeout = 0;
3647 }
3648 #else
3649 static void host_main_loop_wait(int *timeout)
3650 {
3651 }
3652 #endif
3653
3654 void main_loop_wait(int timeout)
3655 {
3656 IOHandlerRecord *ioh;
3657 fd_set rfds, wfds, xfds;
3658 int ret, nfds;
3659 struct timeval tv;
3660
3661 qemu_bh_update_timeout(&timeout);
3662
3663 host_main_loop_wait(&timeout);
3664
3665 /* poll any events */
3666 /* XXX: separate device handlers from system ones */
3667 nfds = -1;
3668 FD_ZERO(&rfds);
3669 FD_ZERO(&wfds);
3670 FD_ZERO(&xfds);
3671 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3672 if (ioh->deleted)
3673 continue;
3674 if (ioh->fd_read &&
3675 (!ioh->fd_read_poll ||
3676 ioh->fd_read_poll(ioh->opaque) != 0)) {
3677 FD_SET(ioh->fd, &rfds);
3678 if (ioh->fd > nfds)
3679 nfds = ioh->fd;
3680 }
3681 if (ioh->fd_write) {
3682 FD_SET(ioh->fd, &wfds);
3683 if (ioh->fd > nfds)
3684 nfds = ioh->fd;
3685 }
3686 }
3687
3688 tv.tv_sec = timeout / 1000;
3689 tv.tv_usec = (timeout % 1000) * 1000;
3690
3691 #if defined(CONFIG_SLIRP)
3692 if (slirp_is_inited()) {
3693 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3694 }
3695 #endif
3696 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3697 if (ret > 0) {
3698 IOHandlerRecord **pioh;
3699
3700 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3701 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3702 ioh->fd_read(ioh->opaque);
3703 }
3704 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3705 ioh->fd_write(ioh->opaque);
3706 }
3707 }
3708
3709 /* remove deleted IO handlers */
3710 pioh = &first_io_handler;
3711 while (*pioh) {
3712 ioh = *pioh;
3713 if (ioh->deleted) {
3714 *pioh = ioh->next;
3715 qemu_free(ioh);
3716 } else
3717 pioh = &ioh->next;
3718 }
3719 }
3720 #if defined(CONFIG_SLIRP)
3721 if (slirp_is_inited()) {
3722 if (ret < 0) {
3723 FD_ZERO(&rfds);
3724 FD_ZERO(&wfds);
3725 FD_ZERO(&xfds);
3726 }
3727 slirp_select_poll(&rfds, &wfds, &xfds);
3728 }
3729 #endif
3730
3731 /* vm time timers */
3732 if (vm_running && likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3733 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
3734 qemu_get_clock(vm_clock));
3735
3736 /* real time timers */
3737 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
3738 qemu_get_clock(rt_clock));
3739
3740 /* Check bottom-halves last in case any of the earlier events triggered
3741 them. */
3742 qemu_bh_poll();
3743
3744 }
3745
3746 static int main_loop(void)
3747 {
3748 int ret, timeout;
3749 #ifdef CONFIG_PROFILER
3750 int64_t ti;
3751 #endif
3752 CPUState *env;
3753
3754 cur_cpu = first_cpu;
3755 next_cpu = cur_cpu->next_cpu ?: first_cpu;
3756 for(;;) {
3757 if (vm_running) {
3758
3759 for(;;) {
3760 /* get next cpu */
3761 env = next_cpu;
3762 #ifdef CONFIG_PROFILER
3763 ti = profile_getclock();
3764 #endif
3765 if (use_icount) {
3766 int64_t count;
3767 int decr;
3768 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
3769 env->icount_decr.u16.low = 0;
3770 env->icount_extra = 0;
3771 count = qemu_next_deadline();
3772 count = (count + (1 << icount_time_shift) - 1)
3773 >> icount_time_shift;
3774 qemu_icount += count;
3775 decr = (count > 0xffff) ? 0xffff : count;
3776 count -= decr;
3777 env->icount_decr.u16.low = decr;
3778 env->icount_extra = count;
3779 }
3780 ret = cpu_exec(env);
3781 #ifdef CONFIG_PROFILER
3782 qemu_time += profile_getclock() - ti;
3783 #endif
3784 if (use_icount) {
3785 /* Fold pending instructions back into the
3786 instruction counter, and clear the interrupt flag. */
3787 qemu_icount -= (env->icount_decr.u16.low
3788 + env->icount_extra);
3789 env->icount_decr.u32 = 0;
3790 env->icount_extra = 0;
3791 }
3792 next_cpu = env->next_cpu ?: first_cpu;
3793 if (event_pending && likely(ret != EXCP_DEBUG)) {
3794 ret = EXCP_INTERRUPT;
3795 event_pending = 0;
3796 break;
3797 }
3798 if (ret == EXCP_HLT) {
3799 /* Give the next CPU a chance to run. */
3800 cur_cpu = env;
3801 continue;
3802 }
3803 if (ret != EXCP_HALTED)
3804 break;
3805 /* all CPUs are halted ? */
3806 if (env == cur_cpu)
3807 break;
3808 }
3809 cur_cpu = env;
3810
3811 if (shutdown_requested) {
3812 ret = EXCP_INTERRUPT;
3813 if (no_shutdown) {
3814 vm_stop(0);
3815 no_shutdown = 0;
3816 }
3817 else
3818 break;
3819 }
3820 if (reset_requested) {
3821 reset_requested = 0;
3822 qemu_system_reset();
3823 ret = EXCP_INTERRUPT;
3824 }
3825 if (powerdown_requested) {
3826 powerdown_requested = 0;
3827 qemu_system_powerdown();
3828 ret = EXCP_INTERRUPT;
3829 }
3830 if (unlikely(ret == EXCP_DEBUG)) {
3831 gdb_set_stop_cpu(cur_cpu);
3832 vm_stop(EXCP_DEBUG);
3833 }
3834 /* If all cpus are halted then wait until the next IRQ */
3835 /* XXX: use timeout computed from timers */
3836 if (ret == EXCP_HALTED) {
3837 if (use_icount) {
3838 int64_t add;
3839 int64_t delta;
3840 /* Advance virtual time to the next event. */
3841 if (use_icount == 1) {
3842 /* When not using an adaptive execution frequency
3843 we tend to get badly out of sync with real time,
3844 so just delay for a reasonable amount of time. */
3845 delta = 0;
3846 } else {
3847 delta = cpu_get_icount() - cpu_get_clock();
3848 }
3849 if (delta > 0) {
3850 /* If virtual time is ahead of real time then just
3851 wait for IO. */
3852 timeout = (delta / 1000000) + 1;
3853 } else {
3854 /* Wait for either IO to occur or the next
3855 timer event. */
3856 add = qemu_next_deadline();
3857 /* We advance the timer before checking for IO.
3858 Limit the amount we advance so that early IO
3859 activity won't get the guest too far ahead. */
3860 if (add > 10000000)
3861 add = 10000000;
3862 delta += add;
3863 add = (add + (1 << icount_time_shift) - 1)
3864 >> icount_time_shift;
3865 qemu_icount += add;
3866 timeout = delta / 1000000;
3867 if (timeout < 0)
3868 timeout = 0;
3869 }
3870 } else {
3871 timeout = 5000;
3872 }
3873 } else {
3874 timeout = 0;
3875 }
3876 } else {
3877 if (shutdown_requested) {
3878 ret = EXCP_INTERRUPT;
3879 break;
3880 }
3881 timeout = 5000;
3882 }
3883 #ifdef CONFIG_PROFILER
3884 ti = profile_getclock();
3885 #endif
3886 main_loop_wait(timeout);
3887 #ifdef CONFIG_PROFILER
3888 dev_time += profile_getclock() - ti;
3889 #endif
3890 }
3891 cpu_disable_ticks();
3892 return ret;
3893 }
3894
3895 static void help(int exitcode)
3896 {
3897 /* Please keep in synch with QEMU_OPTION_ enums, qemu_options[]
3898 and qemu-doc.texi */
3899 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
3900 "usage: %s [options] [disk_image]\n"
3901 "\n"
3902 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
3903 "\n"
3904 "Standard options:\n"
3905 "-h or -help display this help and exit\n"
3906 "-M machine select emulated machine (-M ? for list)\n"
3907 "-cpu cpu select CPU (-cpu ? for list)\n"
3908 "-smp n set the number of CPUs to 'n' [default=1]\n"
3909 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
3910 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
3911 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
3912 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
3913 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
3914 " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
3915 " [,cache=writethrough|writeback|none][,format=f][,serial=s]\n"
3916 " use 'file' as a drive image\n"
3917 "-mtdblock file use 'file' as on-board Flash memory image\n"
3918 "-sd file use 'file' as SecureDigital card image\n"
3919 "-pflash file use 'file' as a parallel flash image\n"
3920 "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
3921 "-snapshot write to temporary files instead of disk image files\n"
3922 "-m megs set virtual RAM size to megs MB [default=%d]\n"
3923 #ifndef _WIN32
3924 "-k language use keyboard layout (for example \"fr\" for French)\n"
3925 #endif
3926 #ifdef HAS_AUDIO
3927 "-audio-help print list of audio drivers and their options\n"
3928 "-soundhw c1,... enable audio support\n"
3929 " and only specified sound cards (comma separated list)\n"
3930 " use -soundhw ? to get the list of supported cards\n"
3931 " use -soundhw all to enable all of them\n"
3932 #endif
3933 "-usb enable the USB driver (will be the default soon)\n"
3934 "-usbdevice name add the host or guest USB device 'name'\n"
3935 "-name string set the name of the guest\n"
3936 "-uuid %%08x-%%04x-%%04x-%%04x-%%012x\n"
3937 " specify machine UUID\n"
3938 "\n"
3939 "Display options:\n"
3940 "-nographic disable graphical output and redirect serial I/Os to console\n"
3941 #ifdef CONFIG_CURSES
3942 "-curses use a curses/ncurses interface instead of SDL\n"
3943 #endif
3944 #ifdef CONFIG_SDL
3945 "-no-frame open SDL window without a frame and window decorations\n"
3946 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
3947 "-no-quit disable SDL window close capability\n"
3948 "-sdl enable SDL\n"
3949 #endif
3950 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n"
3951 "-vga [std|cirrus|vmware|none]\n"
3952 " select video card type\n"
3953 "-full-screen start in full screen\n"
3954 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
3955 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
3956 #endif
3957 "-vnc display start a VNC server on display\n"
3958 "\n"
3959 "Network options:\n"
3960 "-net nic[,vlan=n][,macaddr=addr][,model=type][,name=str]\n"
3961 " create a new Network Interface Card and connect it to VLAN 'n'\n"
3962 #ifdef CONFIG_SLIRP
3963 "-net user[,vlan=n][,name=str][,hostname=host]\n"
3964 " connect the user mode network stack to VLAN 'n' and send\n"
3965 " hostname 'host' to DHCP clients\n"
3966 #endif
3967 #ifdef _WIN32
3968 "-net tap[,vlan=n][,name=str],ifname=name\n"
3969 " connect the host TAP network interface to VLAN 'n'\n"
3970 #else
3971 "-net tap[,vlan=n][,name=str][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
3972 " connect the host TAP network interface to VLAN 'n' and use the\n"
3973 " network scripts 'file' (default=%s)\n"
3974 " and 'dfile' (default=%s);\n"
3975 " use '[down]script=no' to disable script execution;\n"
3976 " use 'fd=h' to connect to an already opened TAP interface\n"
3977 #endif
3978 "-net socket[,vlan=n][,name=str][,fd=h][,listen=[host]:port][,connect=host:port]\n"
3979 " connect the vlan 'n' to another VLAN using a socket connection\n"
3980 "-net socket[,vlan=n][,name=str][,fd=h][,mcast=maddr:port]\n"
3981 " connect the vlan 'n' to multicast maddr and port\n"
3982 #ifdef CONFIG_VDE
3983 "-net vde[,vlan=n][,name=str][,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
3984 " connect the vlan 'n' to port 'n' of a vde switch running\n"
3985 " on host and listening for incoming connections on 'socketpath'.\n"
3986 " Use group 'groupname' and mode 'octalmode' to change default\n"
3987 " ownership and permissions for communication port.\n"
3988 #endif
3989 "-net none use it alone to have zero network devices; if no -net option\n"
3990 " is provided, the default is '-net nic -net user'\n"
3991 #ifdef CONFIG_SLIRP
3992 "-tftp dir allow tftp access to files in dir [-net user]\n"
3993 "-bootp file advertise file in BOOTP replies\n"
3994 #ifndef _WIN32
3995 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
3996 #endif
3997 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
3998 " redirect TCP or UDP connections from host to guest [-net user]\n"
3999 #endif
4000 "\n"
4001 "-bt hci,null dumb bluetooth HCI - doesn't respond to commands\n"
4002 "-bt hci,host[:id]\n"
4003 " use host's HCI with the given name\n"
4004 "-bt hci[,vlan=n]\n"
4005 " emulate a standard HCI in virtual scatternet 'n'\n"
4006 "-bt vhci[,vlan=n]\n"
4007 " add host computer to virtual scatternet 'n' using VHCI\n"
4008 "-bt device:dev[,vlan=n]\n"
4009 " emulate a bluetooth device 'dev' in scatternet 'n'\n"
4010 "\n"
4011 #ifdef TARGET_I386
4012 "\n"
4013 "i386 target only:\n"
4014 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
4015 "-rtc-td-hack use it to fix time drift in Windows ACPI HAL\n"
4016 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
4017 "-no-acpi disable ACPI\n"
4018 "-no-hpet disable HPET\n"
4019 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,data=file1[:file2]...]\n"
4020 " ACPI table description\n"
4021 #endif
4022 "Linux boot specific:\n"
4023 "-kernel bzImage use 'bzImage' as kernel image\n"
4024 "-append cmdline use 'cmdline' as kernel command line\n"
4025 "-initrd file use 'file' as initial ram disk\n"
4026 "\n"
4027 "Debug/Expert options:\n"
4028 "-serial dev redirect the serial port to char device 'dev'\n"
4029 "-parallel dev redirect the parallel port to char device 'dev'\n"
4030 "-monitor dev redirect the monitor to char device 'dev'\n"
4031 "-pidfile file write PID to 'file'\n"
4032 "-S freeze CPU at startup (use 'c' to start execution)\n"
4033 "-s wait gdb connection to port\n"
4034 "-p port set gdb connection port [default=%s]\n"
4035 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
4036 "-hdachs c,h,s[,t]\n"
4037 " force hard disk 0 physical geometry and the optional BIOS\n"
4038 " translation (t=none or lba) (usually qemu can guess them)\n"
4039 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
4040 "-bios file set the filename for the BIOS\n"
4041 #ifdef USE_KQEMU
4042 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
4043 "-no-kqemu disable KQEMU kernel module usage\n"
4044 #endif
4045 #ifdef CONFIG_KVM
4046 "-enable-kvm enable KVM full virtualization support\n"
4047 #endif
4048 "-no-reboot exit instead of rebooting\n"
4049 "-no-shutdown stop before shutdown\n"
4050 "-loadvm [tag|id]\n"
4051 " start right away with a saved state (loadvm in monitor)\n"
4052 #ifndef _WIN32
4053 "-daemonize daemonize QEMU after initializing\n"
4054 #endif
4055 "-option-rom rom load a file, rom, into the option ROM space\n"
4056 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
4057 "-prom-env variable=value\n"
4058 " set OpenBIOS nvram variables\n"
4059 #endif
4060 "-clock force the use of the given methods for timer alarm.\n"
4061 " To see what timers are available use -clock ?\n"
4062 "-localtime set the real time clock to local time [default=utc]\n"
4063 "-startdate select initial date of the clock\n"
4064 "-icount [N|auto]\n"
4065 " enable virtual instruction counter with 2^N clock ticks per instruction\n"
4066 "-echr chr set terminal escape character instead of ctrl-a\n"
4067 "-virtioconsole c\n"
4068 " set virtio console\n"
4069 "-show-cursor show cursor\n"
4070 #if defined(TARGET_ARM) || defined(TARGET_M68K)
4071 "-semihosting semihosting mode\n"
4072 #endif
4073 #if defined(TARGET_ARM)
4074 "-old-param old param mode\n"
4075 #endif
4076 "-tb-size n set TB size\n"
4077 "-incoming p prepare for incoming migration, listen on port p\n"
4078 "\n"
4079 "During emulation, the following keys are useful:\n"
4080 "ctrl-alt-f toggle full screen\n"
4081 "ctrl-alt-n switch to virtual console 'n'\n"
4082 "ctrl-alt toggle mouse and keyboard grab\n"
4083 "\n"
4084 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4085 ,
4086 "qemu",
4087 DEFAULT_RAM_SIZE,
4088 #ifndef _WIN32
4089 DEFAULT_NETWORK_SCRIPT,
4090 DEFAULT_NETWORK_DOWN_SCRIPT,
4091 #endif
4092 DEFAULT_GDBSTUB_PORT,
4093 "/tmp/qemu.log");
4094 exit(exitcode);
4095 }
4096
4097 #define HAS_ARG 0x0001
4098
4099 enum {
4100 /* Please keep in synch with help, qemu_options[] and
4101 qemu-doc.texi */
4102 /* Standard options: */
4103 QEMU_OPTION_h,
4104 QEMU_OPTION_M,
4105 QEMU_OPTION_cpu,
4106 QEMU_OPTION_smp,
4107 QEMU_OPTION_fda,
4108 QEMU_OPTION_fdb,
4109 QEMU_OPTION_hda,
4110 QEMU_OPTION_hdb,
4111 QEMU_OPTION_hdc,
4112 QEMU_OPTION_hdd,
4113 QEMU_OPTION_cdrom,
4114 QEMU_OPTION_drive,
4115 QEMU_OPTION_mtdblock,
4116 QEMU_OPTION_sd,
4117 QEMU_OPTION_pflash,
4118 QEMU_OPTION_boot,
4119 QEMU_OPTION_snapshot,
4120 QEMU_OPTION_m,
4121 QEMU_OPTION_k,
4122 QEMU_OPTION_audio_help,
4123 QEMU_OPTION_soundhw,
4124 QEMU_OPTION_usb,
4125 QEMU_OPTION_usbdevice,
4126 QEMU_OPTION_name,
4127 QEMU_OPTION_uuid,
4128
4129 /* Display options: */
4130 QEMU_OPTION_nographic,
4131 QEMU_OPTION_curses,
4132 QEMU_OPTION_no_frame,
4133 QEMU_OPTION_alt_grab,
4134 QEMU_OPTION_no_quit,
4135 QEMU_OPTION_sdl,
4136 QEMU_OPTION_portrait,
4137 QEMU_OPTION_vga,
4138 QEMU_OPTION_full_screen,
4139 QEMU_OPTION_g,
4140 QEMU_OPTION_vnc,
4141
4142 /* Network options: */
4143 QEMU_OPTION_net,
4144 QEMU_OPTION_tftp,
4145 QEMU_OPTION_bootp,
4146 QEMU_OPTION_smb,
4147 QEMU_OPTION_redir,
4148 QEMU_OPTION_bt,
4149
4150 /* i386 target only: */
4151 QEMU_OPTION_win2k_hack,
4152 QEMU_OPTION_rtc_td_hack,
4153 QEMU_OPTION_no_fd_bootchk,
4154 QEMU_OPTION_no_acpi,
4155 QEMU_OPTION_no_hpet,
4156 QEMU_OPTION_acpitable,
4157
4158 /* Linux boot specific: */
4159 QEMU_OPTION_kernel,
4160 QEMU_OPTION_append,
4161 QEMU_OPTION_initrd,
4162
4163 /* Debug/Expert options: */
4164 QEMU_OPTION_serial,
4165 QEMU_OPTION_parallel,
4166 QEMU_OPTION_monitor,
4167 QEMU_OPTION_pidfile,
4168 QEMU_OPTION_S,
4169 QEMU_OPTION_s,
4170 QEMU_OPTION_p,
4171 QEMU_OPTION_d,
4172 QEMU_OPTION_hdachs,
4173 QEMU_OPTION_L,
4174 QEMU_OPTION_bios,
4175 QEMU_OPTION_kernel_kqemu,
4176 QEMU_OPTION_no_kqemu,
4177 QEMU_OPTION_enable_kvm,
4178 QEMU_OPTION_no_reboot,
4179 QEMU_OPTION_no_shutdown,
4180 QEMU_OPTION_loadvm,
4181 QEMU_OPTION_daemonize,
4182 QEMU_OPTION_option_rom,
4183 QEMU_OPTION_prom_env,
4184 QEMU_OPTION_clock,
4185 QEMU_OPTION_localtime,
4186 QEMU_OPTION_startdate,
4187 QEMU_OPTION_icount,
4188 QEMU_OPTION_echr,
4189 QEMU_OPTION_virtiocon,
4190 QEMU_OPTION_show_cursor,
4191 QEMU_OPTION_semihosting,
4192 QEMU_OPTION_old_param,
4193 QEMU_OPTION_tb_size,
4194 QEMU_OPTION_incoming,
4195 };
4196
4197 typedef struct QEMUOption {
4198 const char *name;
4199 int flags;
4200 int index;
4201 } QEMUOption;
4202
4203 static const QEMUOption qemu_options[] = {
4204 /* Please keep in synch with help, QEMU_OPTION_ enums, and
4205 qemu-doc.texi */
4206 /* Standard options: */
4207 { "h", 0, QEMU_OPTION_h },
4208 { "help", 0, QEMU_OPTION_h },
4209 { "M", HAS_ARG, QEMU_OPTION_M },
4210 { "cpu", HAS_ARG, QEMU_OPTION_cpu },
4211 { "smp", HAS_ARG, QEMU_OPTION_smp },
4212 { "fda", HAS_ARG, QEMU_OPTION_fda },
4213 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
4214 { "hda", HAS_ARG, QEMU_OPTION_hda },
4215 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
4216 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
4217 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
4218 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
4219 { "drive", HAS_ARG, QEMU_OPTION_drive },
4220 { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
4221 { "sd", HAS_ARG, QEMU_OPTION_sd },
4222 { "pflash", HAS_ARG, QEMU_OPTION_pflash },
4223 { "boot", HAS_ARG, QEMU_OPTION_boot },
4224 { "snapshot", 0, QEMU_OPTION_snapshot },
4225 { "m", HAS_ARG, QEMU_OPTION_m },
4226 #ifndef _WIN32
4227 { "k", HAS_ARG, QEMU_OPTION_k },
4228 #endif
4229 #ifdef HAS_AUDIO
4230 { "audio-help", 0, QEMU_OPTION_audio_help },
4231 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
4232 #endif
4233 { "usb", 0, QEMU_OPTION_usb },
4234 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
4235 { "name", HAS_ARG, QEMU_OPTION_name },
4236 { "uuid", HAS_ARG, QEMU_OPTION_uuid },
4237
4238 /* Display options: */
4239 { "nographic", 0, QEMU_OPTION_nographic },
4240 #ifdef CONFIG_CURSES
4241 { "curses", 0, QEMU_OPTION_curses },
4242 #endif
4243 #ifdef CONFIG_SDL
4244 { "no-frame", 0, QEMU_OPTION_no_frame },
4245 { "alt-grab", 0, QEMU_OPTION_alt_grab },
4246 { "no-quit", 0, QEMU_OPTION_no_quit },
4247 { "sdl", 0, QEMU_OPTION_sdl },
4248 #endif
4249 { "portrait", 0, QEMU_OPTION_portrait },
4250 { "vga", HAS_ARG, QEMU_OPTION_vga },
4251 { "full-screen", 0, QEMU_OPTION_full_screen },
4252 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
4253 { "g", 1, QEMU_OPTION_g },
4254 #endif
4255 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
4256
4257 /* Network options: */
4258 { "net", HAS_ARG, QEMU_OPTION_net},
4259 #ifdef CONFIG_SLIRP
4260 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
4261 { "bootp", HAS_ARG, QEMU_OPTION_bootp },
4262 #ifndef _WIN32
4263 { "smb", HAS_ARG, QEMU_OPTION_smb },
4264 #endif
4265 { "redir", HAS_ARG, QEMU_OPTION_redir },
4266 #endif
4267 { "bt", HAS_ARG, QEMU_OPTION_bt },
4268 #ifdef TARGET_I386
4269 /* i386 target only: */
4270 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
4271 { "rtc-td-hack", 0, QEMU_OPTION_rtc_td_hack },
4272 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
4273 { "no-acpi", 0, QEMU_OPTION_no_acpi },
4274 { "no-hpet", 0, QEMU_OPTION_no_hpet },
4275 { "acpitable", HAS_ARG, QEMU_OPTION_acpitable },
4276 #endif
4277
4278 /* Linux boot specific: */
4279 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
4280 { "append", HAS_ARG, QEMU_OPTION_append },
4281 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
4282
4283 /* Debug/Expert options: */
4284 { "serial", HAS_ARG, QEMU_OPTION_serial },
4285 { "parallel", HAS_ARG, QEMU_OPTION_parallel },
4286 { "monitor", HAS_ARG, QEMU_OPTION_monitor },
4287 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
4288 { "S", 0, QEMU_OPTION_S },
4289 { "s", 0, QEMU_OPTION_s },
4290 { "p", HAS_ARG, QEMU_OPTION_p },
4291 { "d", HAS_ARG, QEMU_OPTION_d },
4292 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
4293 { "L", HAS_ARG, QEMU_OPTION_L },
4294 { "bios", HAS_ARG, QEMU_OPTION_bios },
4295 #ifdef USE_KQEMU
4296 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
4297 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
4298 #endif
4299 #ifdef CONFIG_KVM
4300 { "enable-kvm", 0, QEMU_OPTION_enable_kvm },
4301 #endif
4302 { "no-reboot", 0, QEMU_OPTION_no_reboot },
4303 { "no-shutdown", 0, QEMU_OPTION_no_shutdown },
4304 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
4305 { "daemonize", 0, QEMU_OPTION_daemonize },
4306 { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
4307 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
4308 { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
4309 #endif
4310 { "clock", HAS_ARG, QEMU_OPTION_clock },
4311 { "localtime", 0, QEMU_OPTION_localtime },
4312 { "startdate", HAS_ARG, QEMU_OPTION_startdate },
4313 { "icount", HAS_ARG, QEMU_OPTION_icount },
4314 { "echr", HAS_ARG, QEMU_OPTION_echr },
4315 { "virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon },
4316 { "show-cursor", 0, QEMU_OPTION_show_cursor },
4317 #if defined(TARGET_ARM) || defined(TARGET_M68K)
4318 { "semihosting", 0, QEMU_OPTION_semihosting },
4319 #endif
4320 #if defined(TARGET_ARM)
4321 { "old-param", 0, QEMU_OPTION_old_param },
4322 #endif
4323 { "tb-size", HAS_ARG, QEMU_OPTION_tb_size },
4324 { "incoming", HAS_ARG, QEMU_OPTION_incoming },
4325 { NULL },
4326 };
4327
4328 /* password input */
4329
4330 int qemu_key_check(BlockDriverState *bs, const char *name)
4331 {
4332 char password[256];
4333 int i;
4334
4335 if (!bdrv_is_encrypted(bs))
4336 return 0;
4337
4338 term_printf("%s is encrypted.\n", name);
4339 for(i = 0; i < 3; i++) {
4340 monitor_readline("Password: ", 1, password, sizeof(password));
4341 if (bdrv_set_key(bs, password) == 0)
4342 return 0;
4343 term_printf("invalid password\n");
4344 }
4345 return -EPERM;
4346 }
4347
4348 static BlockDriverState *get_bdrv(int index)
4349 {
4350 if (index > nb_drives)
4351 return NULL;
4352 return drives_table[index].bdrv;
4353 }
4354
4355 static void read_passwords(void)
4356 {
4357 BlockDriverState *bs;
4358 int i;
4359
4360 for(i = 0; i < 6; i++) {
4361 bs = get_bdrv(i);
4362 if (bs)
4363 qemu_key_check(bs, bdrv_get_device_name(bs));
4364 }
4365 }
4366
4367 #ifdef HAS_AUDIO
4368 struct soundhw soundhw[] = {
4369 #ifdef HAS_AUDIO_CHOICE
4370 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4371 {
4372 "pcspk",
4373 "PC speaker",
4374 0,
4375 1,
4376 { .init_isa = pcspk_audio_init }
4377 },
4378 #endif
4379
4380 #ifdef CONFIG_SB16
4381 {
4382 "sb16",
4383 "Creative Sound Blaster 16",
4384 0,
4385 1,
4386 { .init_isa = SB16_init }
4387 },
4388 #endif
4389
4390 #ifdef CONFIG_CS4231A
4391 {
4392 "cs4231a",
4393 "CS4231A",
4394 0,
4395 1,
4396 { .init_isa = cs4231a_init }
4397 },
4398 #endif
4399
4400 #ifdef CONFIG_ADLIB
4401 {
4402 "adlib",
4403 #ifdef HAS_YMF262
4404 "Yamaha YMF262 (OPL3)",
4405 #else
4406 "Yamaha YM3812 (OPL2)",
4407 #endif
4408 0,
4409 1,
4410 { .init_isa = Adlib_init }
4411 },
4412 #endif
4413
4414 #ifdef CONFIG_GUS
4415 {
4416 "gus",
4417 "Gravis Ultrasound GF1",
4418 0,
4419 1,
4420 { .init_isa = GUS_init }
4421 },
4422 #endif
4423
4424 #ifdef CONFIG_AC97
4425 {
4426 "ac97",
4427 "Intel 82801AA AC97 Audio",
4428 0,
4429 0,
4430 { .init_pci = ac97_init }
4431 },
4432 #endif
4433
4434 #ifdef CONFIG_ES1370
4435 {
4436 "es1370",
4437 "ENSONIQ AudioPCI ES1370",
4438 0,
4439 0,
4440 { .init_pci = es1370_init }
4441 },
4442 #endif
4443
4444 #endif /* HAS_AUDIO_CHOICE */
4445
4446 { NULL, NULL, 0, 0, { NULL } }
4447 };
4448
4449 static void select_soundhw (const char *optarg)
4450 {
4451 struct soundhw *c;
4452
4453 if (*optarg == '?') {
4454 show_valid_cards:
4455
4456 printf ("Valid sound card names (comma separated):\n");
4457 for (c = soundhw; c->name; ++c) {
4458 printf ("%-11s %s\n", c->name, c->descr);
4459 }
4460 printf ("\n-soundhw all will enable all of the above\n");
4461 exit (*optarg != '?');
4462 }
4463 else {
4464 size_t l;
4465 const char *p;
4466 char *e;
4467 int bad_card = 0;
4468
4469 if (!strcmp (optarg, "all")) {
4470 for (c = soundhw; c->name; ++c) {
4471 c->enabled = 1;
4472 }
4473 return;
4474 }
4475
4476 p = optarg;
4477 while (*p) {
4478 e = strchr (p, ',');
4479 l = !e ? strlen (p) : (size_t) (e - p);
4480
4481 for (c = soundhw; c->name; ++c) {
4482 if (!strncmp (c->name, p, l)) {
4483 c->enabled = 1;
4484 break;
4485 }
4486 }
4487
4488 if (!c->name) {
4489 if (l > 80) {
4490 fprintf (stderr,
4491 "Unknown sound card name (too big to show)\n");
4492 }
4493 else {
4494 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4495 (int) l, p);
4496 }
4497 bad_card = 1;
4498 }
4499 p += l + (e != NULL);
4500 }
4501
4502 if (bad_card)
4503 goto show_valid_cards;
4504 }
4505 }
4506 #endif
4507
4508 static void select_vgahw (const char *p)
4509 {
4510 const char *opts;
4511
4512 if (strstart(p, "std", &opts)) {
4513 std_vga_enabled = 1;
4514 cirrus_vga_enabled = 0;
4515 vmsvga_enabled = 0;
4516 } else if (strstart(p, "cirrus", &opts)) {
4517 cirrus_vga_enabled = 1;
4518 std_vga_enabled = 0;
4519 vmsvga_enabled = 0;
4520 } else if (strstart(p, "vmware", &opts)) {
4521 cirrus_vga_enabled = 0;
4522 std_vga_enabled = 0;
4523 vmsvga_enabled = 1;
4524 } else if (strstart(p, "none", &opts)) {
4525 cirrus_vga_enabled = 0;
4526 std_vga_enabled = 0;
4527 vmsvga_enabled = 0;
4528 } else {
4529 invalid_vga:
4530 fprintf(stderr, "Unknown vga type: %s\n", p);
4531 exit(1);
4532 }
4533 while (*opts) {
4534 const char *nextopt;
4535
4536 if (strstart(opts, ",retrace=", &nextopt)) {
4537 opts = nextopt;
4538 if (strstart(opts, "dumb", &nextopt))
4539 vga_retrace_method = VGA_RETRACE_DUMB;
4540 else if (strstart(opts, "precise", &nextopt))
4541 vga_retrace_method = VGA_RETRACE_PRECISE;
4542 else goto invalid_vga;
4543 } else goto invalid_vga;
4544 opts = nextopt;
4545 }
4546 }
4547
4548 #ifdef _WIN32
4549 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4550 {
4551 exit(STATUS_CONTROL_C_EXIT);
4552 return TRUE;
4553 }
4554 #endif
4555
4556 static int qemu_uuid_parse(const char *str, uint8_t *uuid)
4557 {
4558 int ret;
4559
4560 if(strlen(str) != 36)
4561 return -1;
4562
4563 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4564 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4565 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4566
4567 if(ret != 16)
4568 return -1;
4569
4570 return 0;
4571 }
4572
4573 #define MAX_NET_CLIENTS 32
4574
4575 #ifndef _WIN32
4576
4577 static void termsig_handler(int signal)
4578 {
4579 qemu_system_shutdown_request();
4580 }
4581
4582 static void termsig_setup(void)
4583 {
4584 struct sigaction act;
4585
4586 memset(&act, 0, sizeof(act));
4587 act.sa_handler = termsig_handler;
4588 sigaction(SIGINT, &act, NULL);
4589 sigaction(SIGHUP, &act, NULL);
4590 sigaction(SIGTERM, &act, NULL);
4591 }
4592
4593 #endif
4594
4595 int main(int argc, char **argv, char **envp)
4596 {
4597 #ifdef CONFIG_GDBSTUB
4598 int use_gdbstub;
4599 const char *gdbstub_port;
4600 #endif
4601 uint32_t boot_devices_bitmap = 0;
4602 int i;
4603 int snapshot, linux_boot, net_boot;
4604 const char *initrd_filename;
4605 const char *kernel_filename, *kernel_cmdline;
4606 const char *boot_devices = "";
4607 DisplayState *ds;
4608 DisplayChangeListener *dcl;
4609 int cyls, heads, secs, translation;
4610 const char *net_clients[MAX_NET_CLIENTS];
4611 int nb_net_clients;
4612 const char *bt_opts[MAX_BT_CMDLINE];
4613 int nb_bt_opts;
4614 int hda_index;
4615 int optind;
4616 const char *r, *optarg;
4617 CharDriverState *monitor_hd = NULL;
4618 const char *monitor_device;
4619 const char *serial_devices[MAX_SERIAL_PORTS];
4620 int serial_device_index;
4621 const char *parallel_devices[MAX_PARALLEL_PORTS];
4622 int parallel_device_index;
4623 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4624 int virtio_console_index;
4625 const char *loadvm = NULL;
4626 QEMUMachine *machine;
4627 const char *cpu_model;
4628 const char *usb_devices[MAX_USB_CMDLINE];
4629 int usb_devices_index;
4630 int fds[2];
4631 int tb_size;
4632 const char *pid_file = NULL;
4633 int autostart;
4634 const char *incoming = NULL;
4635
4636 qemu_cache_utils_init(envp);
4637
4638 LIST_INIT (&vm_change_state_head);
4639 #ifndef _WIN32
4640 {
4641 struct sigaction act;
4642 sigfillset(&act.sa_mask);
4643 act.sa_flags = 0;
4644 act.sa_handler = SIG_IGN;
4645 sigaction(SIGPIPE, &act, NULL);
4646 }
4647 #else
4648 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4649 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4650 QEMU to run on a single CPU */
4651 {
4652 HANDLE h;
4653 DWORD mask, smask;
4654 int i;
4655 h = GetCurrentProcess();
4656 if (GetProcessAffinityMask(h, &mask, &smask)) {
4657 for(i = 0; i < 32; i++) {
4658 if (mask & (1 << i))
4659 break;
4660 }
4661 if (i != 32) {
4662 mask = 1 << i;
4663 SetProcessAffinityMask(h, mask);
4664 }
4665 }
4666 }
4667 #endif
4668
4669 register_machines();
4670 machine = first_machine;
4671 cpu_model = NULL;
4672 initrd_filename = NULL;
4673 ram_size = 0;
4674 vga_ram_size = VGA_RAM_SIZE;
4675 #ifdef CONFIG_GDBSTUB
4676 use_gdbstub = 0;
4677 gdbstub_port = DEFAULT_GDBSTUB_PORT;
4678 #endif
4679 snapshot = 0;
4680 nographic = 0;
4681 curses = 0;
4682 kernel_filename = NULL;
4683 kernel_cmdline = "";
4684 cyls = heads = secs = 0;
4685 translation = BIOS_ATA_TRANSLATION_AUTO;
4686 monitor_device = "vc";
4687
4688 serial_devices[0] = "vc:80Cx24C";
4689 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4690 serial_devices[i] = NULL;
4691 serial_device_index = 0;
4692
4693 parallel_devices[0] = "vc:640x480";
4694 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4695 parallel_devices[i] = NULL;
4696 parallel_device_index = 0;
4697
4698 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4699 virtio_consoles[i] = NULL;
4700 virtio_console_index = 0;
4701
4702 usb_devices_index = 0;
4703
4704 nb_net_clients = 0;
4705 nb_bt_opts = 0;
4706 nb_drives = 0;
4707 nb_drives_opt = 0;
4708 hda_index = -1;
4709
4710 nb_nics = 0;
4711
4712 tb_size = 0;
4713 autostart= 1;
4714
4715 optind = 1;
4716 for(;;) {
4717 if (optind >= argc)
4718 break;
4719 r = argv[optind];
4720 if (r[0] != '-') {
4721 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4722 } else {
4723 const QEMUOption *popt;
4724
4725 optind++;
4726 /* Treat --foo the same as -foo. */
4727 if (r[1] == '-')
4728 r++;
4729 popt = qemu_options;
4730 for(;;) {
4731 if (!popt->name) {
4732 fprintf(stderr, "%s: invalid option -- '%s'\n",
4733 argv[0], r);
4734 exit(1);
4735 }
4736 if (!strcmp(popt->name, r + 1))
4737 break;
4738 popt++;
4739 }
4740 if (popt->flags & HAS_ARG) {
4741 if (optind >= argc) {
4742 fprintf(stderr, "%s: option '%s' requires an argument\n",
4743 argv[0], r);
4744 exit(1);
4745 }
4746 optarg = argv[optind++];
4747 } else {
4748 optarg = NULL;
4749 }
4750
4751 switch(popt->index) {
4752 case QEMU_OPTION_M:
4753 machine = find_machine(optarg);
4754 if (!machine) {
4755 QEMUMachine *m;
4756 printf("Supported machines are:\n");
4757 for(m = first_machine; m != NULL; m = m->next) {
4758 printf("%-10s %s%s\n",
4759 m->name, m->desc,
4760 m == first_machine ? " (default)" : "");
4761 }
4762 exit(*optarg != '?');
4763 }
4764 break;
4765 case QEMU_OPTION_cpu:
4766 /* hw initialization will check this */
4767 if (*optarg == '?') {
4768 /* XXX: implement xxx_cpu_list for targets that still miss it */
4769 #if defined(cpu_list)
4770 cpu_list(stdout, &fprintf);
4771 #endif
4772 exit(0);
4773 } else {
4774 cpu_model = optarg;
4775 }
4776 break;
4777 case QEMU_OPTION_initrd:
4778 initrd_filename = optarg;
4779 break;
4780 case QEMU_OPTION_hda:
4781 if (cyls == 0)
4782 hda_index = drive_add(optarg, HD_ALIAS, 0);
4783 else
4784 hda_index = drive_add(optarg, HD_ALIAS
4785 ",cyls=%d,heads=%d,secs=%d%s",
4786 0, cyls, heads, secs,
4787 translation == BIOS_ATA_TRANSLATION_LBA ?
4788 ",trans=lba" :
4789 translation == BIOS_ATA_TRANSLATION_NONE ?
4790 ",trans=none" : "");
4791 break;
4792 case QEMU_OPTION_hdb:
4793 case QEMU_OPTION_hdc:
4794 case QEMU_OPTION_hdd:
4795 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4796 break;
4797 case QEMU_OPTION_drive:
4798 drive_add(NULL, "%s", optarg);
4799 break;
4800 case QEMU_OPTION_mtdblock:
4801 drive_add(optarg, MTD_ALIAS);
4802 break;
4803 case QEMU_OPTION_sd:
4804 drive_add(optarg, SD_ALIAS);
4805 break;
4806 case QEMU_OPTION_pflash:
4807 drive_add(optarg, PFLASH_ALIAS);
4808 break;
4809 case QEMU_OPTION_snapshot:
4810 snapshot = 1;
4811 break;
4812 case QEMU_OPTION_hdachs:
4813 {
4814 const char *p;
4815 p = optarg;
4816 cyls = strtol(p, (char **)&p, 0);
4817 if (cyls < 1 || cyls > 16383)
4818 goto chs_fail;
4819 if (*p != ',')
4820 goto chs_fail;
4821 p++;
4822 heads = strtol(p, (char **)&p, 0);
4823 if (heads < 1 || heads > 16)
4824 goto chs_fail;
4825 if (*p != ',')
4826 goto chs_fail;
4827 p++;
4828 secs = strtol(p, (char **)&p, 0);
4829 if (secs < 1 || secs > 63)
4830 goto chs_fail;
4831 if (*p == ',') {
4832 p++;
4833 if (!strcmp(p, "none"))
4834 translation = BIOS_ATA_TRANSLATION_NONE;
4835 else if (!strcmp(p, "lba"))
4836 translation = BIOS_ATA_TRANSLATION_LBA;
4837 else if (!strcmp(p, "auto"))
4838 translation = BIOS_ATA_TRANSLATION_AUTO;
4839 else
4840 goto chs_fail;
4841 } else if (*p != '\0') {
4842 chs_fail:
4843 fprintf(stderr, "qemu: invalid physical CHS format\n");
4844 exit(1);
4845 }
4846 if (hda_index != -1)
4847 snprintf(drives_opt[hda_index].opt,
4848 sizeof(drives_opt[hda_index].opt),
4849 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
4850 0, cyls, heads, secs,
4851 translation == BIOS_ATA_TRANSLATION_LBA ?
4852 ",trans=lba" :
4853 translation == BIOS_ATA_TRANSLATION_NONE ?
4854 ",trans=none" : "");
4855 }
4856 break;
4857 case QEMU_OPTION_nographic:
4858 nographic = 1;
4859 break;
4860 #ifdef CONFIG_CURSES
4861 case QEMU_OPTION_curses:
4862 curses = 1;
4863 break;
4864 #endif
4865 case QEMU_OPTION_portrait:
4866 graphic_rotate = 1;
4867 break;
4868 case QEMU_OPTION_kernel:
4869 kernel_filename = optarg;
4870 break;
4871 case QEMU_OPTION_append:
4872 kernel_cmdline = optarg;
4873 break;
4874 case QEMU_OPTION_cdrom:
4875 drive_add(optarg, CDROM_ALIAS);
4876 break;
4877 case QEMU_OPTION_boot:
4878 boot_devices = optarg;
4879 /* We just do some generic consistency checks */
4880 {
4881 /* Could easily be extended to 64 devices if needed */
4882 const char *p;
4883
4884 boot_devices_bitmap = 0;
4885 for (p = boot_devices; *p != '\0'; p++) {
4886 /* Allowed boot devices are:
4887 * a b : floppy disk drives
4888 * c ... f : IDE disk drives
4889 * g ... m : machine implementation dependant drives
4890 * n ... p : network devices
4891 * It's up to each machine implementation to check
4892 * if the given boot devices match the actual hardware
4893 * implementation and firmware features.
4894 */
4895 if (*p < 'a' || *p > 'q') {
4896 fprintf(stderr, "Invalid boot device '%c'\n", *p);
4897 exit(1);
4898 }
4899 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
4900 fprintf(stderr,
4901 "Boot device '%c' was given twice\n",*p);
4902 exit(1);
4903 }
4904 boot_devices_bitmap |= 1 << (*p - 'a');
4905 }
4906 }
4907 break;
4908 case QEMU_OPTION_fda:
4909 case QEMU_OPTION_fdb:
4910 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
4911 break;
4912 #ifdef TARGET_I386
4913 case QEMU_OPTION_no_fd_bootchk:
4914 fd_bootchk = 0;
4915 break;
4916 #endif
4917 case QEMU_OPTION_net:
4918 if (nb_net_clients >= MAX_NET_CLIENTS) {
4919 fprintf(stderr, "qemu: too many network clients\n");
4920 exit(1);
4921 }
4922 net_clients[nb_net_clients] = optarg;
4923 nb_net_clients++;
4924 break;
4925 #ifdef CONFIG_SLIRP
4926 case QEMU_OPTION_tftp:
4927 tftp_prefix = optarg;
4928 break;
4929 case QEMU_OPTION_bootp:
4930 bootp_filename = optarg;
4931 break;
4932 #ifndef _WIN32
4933 case QEMU_OPTION_smb:
4934 net_slirp_smb(optarg);
4935 break;
4936 #endif
4937 case QEMU_OPTION_redir:
4938 net_slirp_redir(optarg);
4939 break;
4940 #endif
4941 case QEMU_OPTION_bt:
4942 if (nb_bt_opts >= MAX_BT_CMDLINE) {
4943 fprintf(stderr, "qemu: too many bluetooth options\n");
4944 exit(1);
4945 }
4946 bt_opts[nb_bt_opts++] = optarg;
4947 break;
4948 #ifdef HAS_AUDIO
4949 case QEMU_OPTION_audio_help:
4950 AUD_help ();
4951 exit (0);
4952 break;
4953 case QEMU_OPTION_soundhw:
4954 select_soundhw (optarg);
4955 break;
4956 #endif
4957 case QEMU_OPTION_h:
4958 help(0);
4959 break;
4960 case QEMU_OPTION_m: {
4961 uint64_t value;
4962 char *ptr;
4963
4964 value = strtoul(optarg, &ptr, 10);
4965 switch (*ptr) {
4966 case 0: case 'M': case 'm':
4967 value <<= 20;
4968 break;
4969 case 'G': case 'g':
4970 value <<= 30;
4971 break;
4972 default:
4973 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
4974 exit(1);
4975 }
4976
4977 /* On 32-bit hosts, QEMU is limited by virtual address space */
4978 if (value > (2047 << 20)
4979 #ifndef USE_KQEMU
4980 && HOST_LONG_BITS == 32
4981 #endif
4982 ) {
4983 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
4984 exit(1);
4985 }
4986 if (value != (uint64_t)(ram_addr_t)value) {
4987 fprintf(stderr, "qemu: ram size too large\n");
4988 exit(1);
4989 }
4990 ram_size = value;
4991 break;
4992 }
4993 case QEMU_OPTION_d:
4994 {
4995 int mask;
4996 const CPULogItem *item;
4997
4998 mask = cpu_str_to_log_mask(optarg);
4999 if (!mask) {
5000 printf("Log items (comma separated):\n");
5001 for(item = cpu_log_items; item->mask != 0; item++) {
5002 printf("%-10s %s\n", item->name, item->help);
5003 }
5004 exit(1);
5005 }
5006 cpu_set_log(mask);
5007 }
5008 break;
5009 #ifdef CONFIG_GDBSTUB
5010 case QEMU_OPTION_s:
5011 use_gdbstub = 1;
5012 break;
5013 case QEMU_OPTION_p:
5014 gdbstub_port = optarg;
5015 break;
5016 #endif
5017 case QEMU_OPTION_L:
5018 bios_dir = optarg;
5019 break;
5020 case QEMU_OPTION_bios:
5021 bios_name = optarg;
5022 break;
5023 case QEMU_OPTION_S:
5024 autostart = 0;
5025 break;
5026 case QEMU_OPTION_k:
5027 keyboard_layout = optarg;
5028 break;
5029 case QEMU_OPTION_localtime:
5030 rtc_utc = 0;
5031 break;
5032 case QEMU_OPTION_vga:
5033 select_vgahw (optarg);
5034 break;
5035 case QEMU_OPTION_g:
5036 {
5037 const char *p;
5038 int w, h, depth;
5039 p = optarg;
5040 w = strtol(p, (char **)&p, 10);
5041 if (w <= 0) {
5042 graphic_error:
5043 fprintf(stderr, "qemu: invalid resolution or depth\n");
5044 exit(1);
5045 }
5046 if (*p != 'x')
5047 goto graphic_error;
5048 p++;
5049 h = strtol(p, (char **)&p, 10);
5050 if (h <= 0)
5051 goto graphic_error;
5052 if (*p == 'x') {
5053 p++;
5054 depth = strtol(p, (char **)&p, 10);
5055 if (depth != 8 && depth != 15 && depth != 16 &&
5056 depth != 24 && depth != 32)
5057 goto graphic_error;
5058 } else if (*p == '\0') {
5059 depth = graphic_depth;
5060 } else {
5061 goto graphic_error;
5062 }
5063
5064 graphic_width = w;
5065 graphic_height = h;
5066 graphic_depth = depth;
5067 }
5068 break;
5069 case QEMU_OPTION_echr:
5070 {
5071 char *r;
5072 term_escape_char = strtol(optarg, &r, 0);
5073 if (r == optarg)
5074 printf("Bad argument to echr\n");
5075 break;
5076 }
5077 case QEMU_OPTION_monitor:
5078 monitor_device = optarg;
5079 break;
5080 case QEMU_OPTION_serial:
5081 if (serial_device_index >= MAX_SERIAL_PORTS) {
5082 fprintf(stderr, "qemu: too many serial ports\n");
5083 exit(1);
5084 }
5085 serial_devices[serial_device_index] = optarg;
5086 serial_device_index++;
5087 break;
5088 case QEMU_OPTION_virtiocon:
5089 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5090 fprintf(stderr, "qemu: too many virtio consoles\n");
5091 exit(1);
5092 }
5093 virtio_consoles[virtio_console_index] = optarg;
5094 virtio_console_index++;
5095 break;
5096 case QEMU_OPTION_parallel:
5097 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5098 fprintf(stderr, "qemu: too many parallel ports\n");
5099 exit(1);
5100 }
5101 parallel_devices[parallel_device_index] = optarg;
5102 parallel_device_index++;
5103 break;
5104 case QEMU_OPTION_loadvm:
5105 loadvm = optarg;
5106 break;
5107 case QEMU_OPTION_full_screen:
5108 full_screen = 1;
5109 break;
5110 #ifdef CONFIG_SDL
5111 case QEMU_OPTION_no_frame:
5112 no_frame = 1;
5113 break;
5114 case QEMU_OPTION_alt_grab:
5115 alt_grab = 1;
5116 break;
5117 case QEMU_OPTION_no_quit:
5118 no_quit = 1;
5119 break;
5120 case QEMU_OPTION_sdl:
5121 sdl = 1;
5122 break;
5123 #endif
5124 case QEMU_OPTION_pidfile:
5125 pid_file = optarg;
5126 break;
5127 #ifdef TARGET_I386
5128 case QEMU_OPTION_win2k_hack:
5129 win2k_install_hack = 1;
5130 break;
5131 case QEMU_OPTION_rtc_td_hack:
5132 rtc_td_hack = 1;
5133 break;
5134 case QEMU_OPTION_acpitable:
5135 if(acpi_table_add(optarg) < 0) {
5136 fprintf(stderr, "Wrong acpi table provided\n");
5137 exit(1);
5138 }
5139 break;
5140 #endif
5141 #ifdef USE_KQEMU
5142 case QEMU_OPTION_no_kqemu:
5143 kqemu_allowed = 0;
5144 break;
5145 case QEMU_OPTION_kernel_kqemu:
5146 kqemu_allowed = 2;
5147 break;
5148 #endif
5149 #ifdef CONFIG_KVM
5150 case QEMU_OPTION_enable_kvm:
5151 kvm_allowed = 1;
5152 #ifdef USE_KQEMU
5153 kqemu_allowed = 0;
5154 #endif
5155 break;
5156 #endif
5157 case QEMU_OPTION_usb:
5158 usb_enabled = 1;
5159 break;
5160 case QEMU_OPTION_usbdevice:
5161 usb_enabled = 1;
5162 if (usb_devices_index >= MAX_USB_CMDLINE) {
5163 fprintf(stderr, "Too many USB devices\n");
5164 exit(1);
5165 }
5166 usb_devices[usb_devices_index] = optarg;
5167 usb_devices_index++;
5168 break;
5169 case QEMU_OPTION_smp:
5170 smp_cpus = atoi(optarg);
5171 if (smp_cpus < 1) {
5172 fprintf(stderr, "Invalid number of CPUs\n");
5173 exit(1);
5174 }
5175 break;
5176 case QEMU_OPTION_vnc:
5177 vnc_display = optarg;
5178 break;
5179 case QEMU_OPTION_no_acpi:
5180 acpi_enabled = 0;
5181 break;
5182 case QEMU_OPTION_no_hpet:
5183 no_hpet = 1;
5184 break;
5185 case QEMU_OPTION_no_reboot:
5186 no_reboot = 1;
5187 break;
5188 case QEMU_OPTION_no_shutdown:
5189 no_shutdown = 1;
5190 break;
5191 case QEMU_OPTION_show_cursor:
5192 cursor_hide = 0;
5193 break;
5194 case QEMU_OPTION_uuid:
5195 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5196 fprintf(stderr, "Fail to parse UUID string."
5197 " Wrong format.\n");
5198 exit(1);
5199 }
5200 break;
5201 case QEMU_OPTION_daemonize:
5202 daemonize = 1;
5203 break;
5204 case QEMU_OPTION_option_rom:
5205 if (nb_option_roms >= MAX_OPTION_ROMS) {
5206 fprintf(stderr, "Too many option ROMs\n");
5207 exit(1);
5208 }
5209 option_rom[nb_option_roms] = optarg;
5210 nb_option_roms++;
5211 break;
5212 case QEMU_OPTION_semihosting:
5213 semihosting_enabled = 1;
5214 break;
5215 case QEMU_OPTION_name:
5216 qemu_name = optarg;
5217 break;
5218 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5219 case QEMU_OPTION_prom_env:
5220 if (nb_prom_envs >= MAX_PROM_ENVS) {
5221 fprintf(stderr, "Too many prom variables\n");
5222 exit(1);
5223 }
5224 prom_envs[nb_prom_envs] = optarg;
5225 nb_prom_envs++;
5226 break;
5227 #endif
5228 #ifdef TARGET_ARM
5229 case QEMU_OPTION_old_param:
5230 old_param = 1;
5231 break;
5232 #endif
5233 case QEMU_OPTION_clock:
5234 configure_alarms(optarg);
5235 break;
5236 case QEMU_OPTION_startdate:
5237 {
5238 struct tm tm;
5239 time_t rtc_start_date;
5240 if (!strcmp(optarg, "now")) {
5241 rtc_date_offset = -1;
5242 } else {
5243 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5244 &tm.tm_year,
5245 &tm.tm_mon,
5246 &tm.tm_mday,
5247 &tm.tm_hour,
5248 &tm.tm_min,
5249 &tm.tm_sec) == 6) {
5250 /* OK */
5251 } else if (sscanf(optarg, "%d-%d-%d",
5252 &tm.tm_year,
5253 &tm.tm_mon,
5254 &tm.tm_mday) == 3) {
5255 tm.tm_hour = 0;
5256 tm.tm_min = 0;
5257 tm.tm_sec = 0;
5258 } else {
5259 goto date_fail;
5260 }
5261 tm.tm_year -= 1900;
5262 tm.tm_mon--;
5263 rtc_start_date = mktimegm(&tm);
5264 if (rtc_start_date == -1) {
5265 date_fail:
5266 fprintf(stderr, "Invalid date format. Valid format are:\n"
5267 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5268 exit(1);
5269 }
5270 rtc_date_offset = time(NULL) - rtc_start_date;
5271 }
5272 }
5273 break;
5274 case QEMU_OPTION_tb_size:
5275 tb_size = strtol(optarg, NULL, 0);
5276 if (tb_size < 0)
5277 tb_size = 0;
5278 break;
5279 case QEMU_OPTION_icount:
5280 use_icount = 1;
5281 if (strcmp(optarg, "auto") == 0) {
5282 icount_time_shift = -1;
5283 } else {
5284 icount_time_shift = strtol(optarg, NULL, 0);
5285 }
5286 break;
5287 case QEMU_OPTION_incoming:
5288 incoming = optarg;
5289 break;
5290 }
5291 }
5292 }
5293
5294 #if defined(CONFIG_KVM) && defined(USE_KQEMU)
5295 if (kvm_allowed && kqemu_allowed) {
5296 fprintf(stderr,
5297 "You can not enable both KVM and kqemu at the same time\n");
5298 exit(1);
5299 }
5300 #endif
5301
5302 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5303 if (smp_cpus > machine->max_cpus) {
5304 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5305 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5306 machine->max_cpus);
5307 exit(1);
5308 }
5309
5310 if (nographic) {
5311 if (serial_device_index == 0)
5312 serial_devices[0] = "stdio";
5313 if (parallel_device_index == 0)
5314 parallel_devices[0] = "null";
5315 if (strncmp(monitor_device, "vc", 2) == 0)
5316 monitor_device = "stdio";
5317 }
5318
5319 #ifndef _WIN32
5320 if (daemonize) {
5321 pid_t pid;
5322
5323 if (pipe(fds) == -1)
5324 exit(1);
5325
5326 pid = fork();
5327 if (pid > 0) {
5328 uint8_t status;
5329 ssize_t len;
5330
5331 close(fds[1]);
5332
5333 again:
5334 len = read(fds[0], &status, 1);
5335 if (len == -1 && (errno == EINTR))
5336 goto again;
5337
5338 if (len != 1)
5339 exit(1);
5340 else if (status == 1) {
5341 fprintf(stderr, "Could not acquire pidfile\n");
5342 exit(1);
5343 } else
5344 exit(0);
5345 } else if (pid < 0)
5346 exit(1);
5347
5348 setsid();
5349
5350 pid = fork();
5351 if (pid > 0)
5352 exit(0);
5353 else if (pid < 0)
5354 exit(1);
5355
5356 umask(027);
5357
5358 signal(SIGTSTP, SIG_IGN);
5359 signal(SIGTTOU, SIG_IGN);
5360 signal(SIGTTIN, SIG_IGN);
5361 }
5362 #endif
5363
5364 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5365 if (daemonize) {
5366 uint8_t status = 1;
5367 write(fds[1], &status, 1);
5368 } else
5369 fprintf(stderr, "Could not acquire pid file\n");
5370 exit(1);
5371 }
5372
5373 #ifdef USE_KQEMU
5374 if (smp_cpus > 1)
5375 kqemu_allowed = 0;
5376 #endif
5377 linux_boot = (kernel_filename != NULL);
5378 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5379
5380 if (!linux_boot && net_boot == 0 &&
5381 !machine->nodisk_ok && nb_drives_opt == 0)
5382 help(1);
5383
5384 if (!linux_boot && *kernel_cmdline != '\0') {
5385 fprintf(stderr, "-append only allowed with -kernel option\n");
5386 exit(1);
5387 }
5388
5389 if (!linux_boot && initrd_filename != NULL) {
5390 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5391 exit(1);
5392 }
5393
5394 /* boot to floppy or the default cd if no hard disk defined yet */
5395 if (!boot_devices[0]) {
5396 boot_devices = "cad";
5397 }
5398 setvbuf(stdout, NULL, _IOLBF, 0);
5399
5400 init_timers();
5401 if (init_timer_alarm() < 0) {
5402 fprintf(stderr, "could not initialize alarm timer\n");
5403 exit(1);
5404 }
5405 if (use_icount && icount_time_shift < 0) {
5406 use_icount = 2;
5407 /* 125MIPS seems a reasonable initial guess at the guest speed.
5408 It will be corrected fairly quickly anyway. */
5409 icount_time_shift = 3;
5410 init_icount_adjust();
5411 }
5412
5413 #ifdef _WIN32
5414 socket_init();
5415 #endif
5416
5417 /* init network clients */
5418 if (nb_net_clients == 0) {
5419 /* if no clients, we use a default config */
5420 net_clients[nb_net_clients++] = "nic";
5421 #ifdef CONFIG_SLIRP
5422 net_clients[nb_net_clients++] = "user";
5423 #endif
5424 }
5425
5426 for(i = 0;i < nb_net_clients; i++) {
5427 if (net_client_parse(net_clients[i]) < 0)
5428 exit(1);
5429 }
5430 net_client_check();
5431
5432 #ifdef TARGET_I386
5433 /* XXX: this should be moved in the PC machine instantiation code */
5434 if (net_boot != 0) {
5435 int netroms = 0;
5436 for (i = 0; i < nb_nics && i < 4; i++) {
5437 const char *model = nd_table[i].model;
5438 char buf[1024];
5439 if (net_boot & (1 << i)) {
5440 if (model == NULL)
5441 model = "ne2k_pci";
5442 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5443 if (get_image_size(buf) > 0) {
5444 if (nb_option_roms >= MAX_OPTION_ROMS) {
5445 fprintf(stderr, "Too many option ROMs\n");
5446 exit(1);
5447 }
5448 option_rom[nb_option_roms] = strdup(buf);
5449 nb_option_roms++;
5450 netroms++;
5451 }
5452 }
5453 }
5454 if (netroms == 0) {
5455 fprintf(stderr, "No valid PXE rom found for network device\n");
5456 exit(1);
5457 }
5458 }
5459 #endif
5460
5461 /* init the bluetooth world */
5462 for (i = 0; i < nb_bt_opts; i++)
5463 if (bt_parse(bt_opts[i]))
5464 exit(1);
5465
5466 /* init the memory */
5467 phys_ram_size = machine->ram_require & ~RAMSIZE_FIXED;
5468
5469 if (machine->ram_require & RAMSIZE_FIXED) {
5470 if (ram_size > 0) {
5471 if (ram_size < phys_ram_size) {
5472 fprintf(stderr, "Machine `%s' requires %llu bytes of memory\n",
5473 machine->name, (unsigned long long) phys_ram_size);
5474 exit(-1);
5475 }
5476
5477 phys_ram_size = ram_size;
5478 } else
5479 ram_size = phys_ram_size;
5480 } else {
5481 if (ram_size == 0)
5482 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5483
5484 phys_ram_size += ram_size;
5485 }
5486
5487 phys_ram_base = qemu_vmalloc(phys_ram_size);
5488 if (!phys_ram_base) {
5489 fprintf(stderr, "Could not allocate physical memory\n");
5490 exit(1);
5491 }
5492
5493 /* init the dynamic translator */
5494 cpu_exec_init_all(tb_size * 1024 * 1024);
5495
5496 bdrv_init();
5497
5498 /* we always create the cdrom drive, even if no disk is there */
5499
5500 if (nb_drives_opt < MAX_DRIVES)
5501 drive_add(NULL, CDROM_ALIAS);
5502
5503 /* we always create at least one floppy */
5504
5505 if (nb_drives_opt < MAX_DRIVES)
5506 drive_add(NULL, FD_ALIAS, 0);
5507
5508 /* we always create one sd slot, even if no card is in it */
5509
5510 if (nb_drives_opt < MAX_DRIVES)
5511 drive_add(NULL, SD_ALIAS);
5512
5513 /* open the virtual block devices */
5514
5515 for(i = 0; i < nb_drives_opt; i++)
5516 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5517 exit(1);
5518
5519 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5520 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5521
5522 #ifndef _WIN32
5523 /* must be after terminal init, SDL library changes signal handlers */
5524 termsig_setup();
5525 #endif
5526
5527 /* Maintain compatibility with multiple stdio monitors */
5528 if (!strcmp(monitor_device,"stdio")) {
5529 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5530 const char *devname = serial_devices[i];
5531 if (devname && !strcmp(devname,"mon:stdio")) {
5532 monitor_device = NULL;
5533 break;
5534 } else if (devname && !strcmp(devname,"stdio")) {
5535 monitor_device = NULL;
5536 serial_devices[i] = "mon:stdio";
5537 break;
5538 }
5539 }
5540 }
5541
5542 if (kvm_enabled()) {
5543 int ret;
5544
5545 ret = kvm_init(smp_cpus);
5546 if (ret < 0) {
5547 fprintf(stderr, "failed to initialize KVM\n");
5548 exit(1);
5549 }
5550 }
5551
5552 if (monitor_device) {
5553 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5554 if (!monitor_hd) {
5555 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5556 exit(1);
5557 }
5558 }
5559
5560 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5561 const char *devname = serial_devices[i];
5562 if (devname && strcmp(devname, "none")) {
5563 char label[32];
5564 snprintf(label, sizeof(label), "serial%d", i);
5565 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5566 if (!serial_hds[i]) {
5567 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5568 devname);
5569 exit(1);
5570 }
5571 }
5572 }
5573
5574 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5575 const char *devname = parallel_devices[i];
5576 if (devname && strcmp(devname, "none")) {
5577 char label[32];
5578 snprintf(label, sizeof(label), "parallel%d", i);
5579 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5580 if (!parallel_hds[i]) {
5581 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5582 devname);
5583 exit(1);
5584 }
5585 }
5586 }
5587
5588 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5589 const char *devname = virtio_consoles[i];
5590 if (devname && strcmp(devname, "none")) {
5591 char label[32];
5592 snprintf(label, sizeof(label), "virtcon%d", i);
5593 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5594 if (!virtcon_hds[i]) {
5595 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5596 devname);
5597 exit(1);
5598 }
5599 }
5600 }
5601
5602 machine->init(ram_size, vga_ram_size, boot_devices,
5603 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5604
5605 current_machine = machine;
5606
5607 /* Set KVM's vcpu state to qemu's initial CPUState. */
5608 if (kvm_enabled()) {
5609 int ret;
5610
5611 ret = kvm_sync_vcpus();
5612 if (ret < 0) {
5613 fprintf(stderr, "failed to initialize vcpus\n");
5614 exit(1);
5615 }
5616 }
5617
5618 /* init USB devices */
5619 if (usb_enabled) {
5620 for(i = 0; i < usb_devices_index; i++) {
5621 if (usb_device_add(usb_devices[i]) < 0) {
5622 fprintf(stderr, "Warning: could not add USB device %s\n",
5623 usb_devices[i]);
5624 }
5625 }
5626 }
5627
5628 if (!display_state)
5629 dumb_display_init();
5630 /* just use the first displaystate for the moment */
5631 ds = display_state;
5632 /* terminal init */
5633 if (nographic) {
5634 if (curses) {
5635 fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
5636 exit(1);
5637 }
5638 } else {
5639 #if defined(CONFIG_CURSES)
5640 if (curses) {
5641 /* At the moment curses cannot be used with other displays */
5642 curses_display_init(ds, full_screen);
5643 } else
5644 #endif
5645 {
5646 if (vnc_display != NULL) {
5647 vnc_display_init(ds);
5648 if (vnc_display_open(ds, vnc_display) < 0)
5649 exit(1);
5650 }
5651 #if defined(CONFIG_SDL)
5652 if (sdl || !vnc_display)
5653 sdl_display_init(ds, full_screen, no_frame);
5654 #elif defined(CONFIG_COCOA)
5655 if (sdl || !vnc_display)
5656 cocoa_display_init(ds, full_screen);
5657 #endif
5658 }
5659 }
5660 dpy_resize(ds);
5661
5662 dcl = ds->listeners;
5663 while (dcl != NULL) {
5664 if (dcl->dpy_refresh != NULL) {
5665 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5666 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5667 }
5668 dcl = dcl->next;
5669 }
5670
5671 if (nographic || (vnc_display && !sdl)) {
5672 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5673 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5674 }
5675
5676 text_consoles_set_display(display_state);
5677
5678 if (monitor_device && monitor_hd)
5679 monitor_init(monitor_hd, !nographic);
5680
5681 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5682 const char *devname = serial_devices[i];
5683 if (devname && strcmp(devname, "none")) {
5684 char label[32];
5685 snprintf(label, sizeof(label), "serial%d", i);
5686 if (strstart(devname, "vc", 0))
5687 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5688 }
5689 }
5690
5691 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5692 const char *devname = parallel_devices[i];
5693 if (devname && strcmp(devname, "none")) {
5694 char label[32];
5695 snprintf(label, sizeof(label), "parallel%d", i);
5696 if (strstart(devname, "vc", 0))
5697 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5698 }
5699 }
5700
5701 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5702 const char *devname = virtio_consoles[i];
5703 if (virtcon_hds[i] && devname) {
5704 char label[32];
5705 snprintf(label, sizeof(label), "virtcon%d", i);
5706 if (strstart(devname, "vc", 0))
5707 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
5708 }
5709 }
5710
5711 #ifdef CONFIG_GDBSTUB
5712 if (use_gdbstub) {
5713 /* XXX: use standard host:port notation and modify options
5714 accordingly. */
5715 if (gdbserver_start(gdbstub_port) < 0) {
5716 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
5717 gdbstub_port);
5718 exit(1);
5719 }
5720 }
5721 #endif
5722
5723 if (loadvm)
5724 do_loadvm(loadvm);
5725
5726 if (incoming) {
5727 autostart = 0; /* fixme how to deal with -daemonize */
5728 qemu_start_incoming_migration(incoming);
5729 }
5730
5731 {
5732 /* XXX: simplify init */
5733 read_passwords();
5734 if (autostart) {
5735 vm_start();
5736 }
5737 }
5738
5739 if (daemonize) {
5740 uint8_t status = 0;
5741 ssize_t len;
5742 int fd;
5743
5744 again1:
5745 len = write(fds[1], &status, 1);
5746 if (len == -1 && (errno == EINTR))
5747 goto again1;
5748
5749 if (len != 1)
5750 exit(1);
5751
5752 chdir("/");
5753 TFR(fd = open("/dev/null", O_RDWR));
5754 if (fd == -1)
5755 exit(1);
5756
5757 dup2(fd, 0);
5758 dup2(fd, 1);
5759 dup2(fd, 2);
5760
5761 close(fd);
5762 }
5763
5764 main_loop();
5765 quit_timers();
5766 net_cleanup();
5767
5768 return 0;
5769 }