]> git.proxmox.com Git - mirror_qemu.git/blob - vl.c
Silence some warnings about uninitialized variables
[mirror_qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw/hw.h"
25 #include "hw/boards.h"
26 #include "hw/usb.h"
27 #include "hw/pcmcia.h"
28 #include "hw/pc.h"
29 #include "hw/audiodev.h"
30 #include "hw/isa.h"
31 #include "hw/baum.h"
32 #include "hw/bt.h"
33 #include "net.h"
34 #include "console.h"
35 #include "sysemu.h"
36 #include "gdbstub.h"
37 #include "qemu-timer.h"
38 #include "qemu-char.h"
39 #include "block.h"
40 #include "audio/audio.h"
41
42 #include <unistd.h>
43 #include <fcntl.h>
44 #include <signal.h>
45 #include <time.h>
46 #include <errno.h>
47 #include <sys/time.h>
48 #include <zlib.h>
49
50 #ifndef _WIN32
51 #include <sys/times.h>
52 #include <sys/wait.h>
53 #include <termios.h>
54 #include <sys/poll.h>
55 #include <sys/mman.h>
56 #include <sys/ioctl.h>
57 #include <sys/socket.h>
58 #include <netinet/in.h>
59 #include <dirent.h>
60 #include <netdb.h>
61 #include <sys/select.h>
62 #include <arpa/inet.h>
63 #ifdef _BSD
64 #include <sys/stat.h>
65 #if !defined(__APPLE__) && !defined(__OpenBSD__)
66 #include <libutil.h>
67 #endif
68 #ifdef __OpenBSD__
69 #include <net/if.h>
70 #endif
71 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
72 #include <freebsd/stdlib.h>
73 #else
74 #ifdef __linux__
75 #include <linux/if.h>
76 #include <linux/if_tun.h>
77 #include <pty.h>
78 #include <malloc.h>
79 #include <linux/rtc.h>
80
81 /* For the benefit of older linux systems which don't supply it,
82 we use a local copy of hpet.h. */
83 /* #include <linux/hpet.h> */
84 #include "hpet.h"
85
86 #include <linux/ppdev.h>
87 #include <linux/parport.h>
88 #endif
89 #ifdef __sun__
90 #include <sys/stat.h>
91 #include <sys/ethernet.h>
92 #include <sys/sockio.h>
93 #include <netinet/arp.h>
94 #include <netinet/in.h>
95 #include <netinet/in_systm.h>
96 #include <netinet/ip.h>
97 #include <netinet/ip_icmp.h> // must come after ip.h
98 #include <netinet/udp.h>
99 #include <netinet/tcp.h>
100 #include <net/if.h>
101 #include <syslog.h>
102 #include <stropts.h>
103 #endif
104 #endif
105 #endif
106
107 #include "qemu_socket.h"
108
109 #if defined(CONFIG_SLIRP)
110 #include "libslirp.h"
111 #endif
112
113 #if defined(__OpenBSD__)
114 #include <util.h>
115 #endif
116
117 #if defined(CONFIG_VDE)
118 #include <libvdeplug.h>
119 #endif
120
121 #ifdef _WIN32
122 #include <malloc.h>
123 #include <sys/timeb.h>
124 #include <mmsystem.h>
125 #define getopt_long_only getopt_long
126 #define memalign(align, size) malloc(size)
127 #endif
128
129 #ifdef CONFIG_SDL
130 #ifdef __APPLE__
131 #include <SDL/SDL.h>
132 #endif
133 #endif /* CONFIG_SDL */
134
135 #ifdef CONFIG_COCOA
136 #undef main
137 #define main qemu_main
138 #endif /* CONFIG_COCOA */
139
140 #include "disas.h"
141
142 #include "exec-all.h"
143
144 #define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
145 #define DEFAULT_NETWORK_DOWN_SCRIPT "/etc/qemu-ifdown"
146 #ifdef __sun__
147 #define SMBD_COMMAND "/usr/sfw/sbin/smbd"
148 #else
149 #define SMBD_COMMAND "/usr/sbin/smbd"
150 #endif
151
152 //#define DEBUG_UNUSED_IOPORT
153 //#define DEBUG_IOPORT
154
155 #ifdef TARGET_PPC
156 #define DEFAULT_RAM_SIZE 144
157 #else
158 #define DEFAULT_RAM_SIZE 128
159 #endif
160
161 /* Max number of USB devices that can be specified on the commandline. */
162 #define MAX_USB_CMDLINE 8
163
164 /* XXX: use a two level table to limit memory usage */
165 #define MAX_IOPORTS 65536
166
167 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
168 const char *bios_name = NULL;
169 void *ioport_opaque[MAX_IOPORTS];
170 IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
171 IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
172 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
173 to store the VM snapshots */
174 DriveInfo drives_table[MAX_DRIVES+1];
175 int nb_drives;
176 /* point to the block driver where the snapshots are managed */
177 BlockDriverState *bs_snapshots;
178 int vga_ram_size;
179 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
180 static DisplayState display_state;
181 int nographic;
182 int curses;
183 const char* keyboard_layout = NULL;
184 int64_t ticks_per_sec;
185 ram_addr_t ram_size;
186 int pit_min_timer_count = 0;
187 int nb_nics;
188 NICInfo nd_table[MAX_NICS];
189 int vm_running;
190 static int rtc_utc = 1;
191 static int rtc_date_offset = -1; /* -1 means no change */
192 int cirrus_vga_enabled = 1;
193 int vmsvga_enabled = 0;
194 #ifdef TARGET_SPARC
195 int graphic_width = 1024;
196 int graphic_height = 768;
197 int graphic_depth = 8;
198 #else
199 int graphic_width = 800;
200 int graphic_height = 600;
201 int graphic_depth = 15;
202 #endif
203 int full_screen = 0;
204 int no_frame = 0;
205 int no_quit = 0;
206 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
207 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
208 #ifdef TARGET_I386
209 int win2k_install_hack = 0;
210 #endif
211 int usb_enabled = 0;
212 static VLANState *first_vlan;
213 int smp_cpus = 1;
214 const char *vnc_display;
215 #if defined(TARGET_SPARC)
216 #define MAX_CPUS 16
217 #elif defined(TARGET_I386)
218 #define MAX_CPUS 255
219 #else
220 #define MAX_CPUS 1
221 #endif
222 int acpi_enabled = 1;
223 int fd_bootchk = 1;
224 int no_reboot = 0;
225 int no_shutdown = 0;
226 int cursor_hide = 1;
227 int graphic_rotate = 0;
228 int daemonize = 0;
229 const char *option_rom[MAX_OPTION_ROMS];
230 int nb_option_roms;
231 int semihosting_enabled = 0;
232 int autostart = 1;
233 #ifdef TARGET_ARM
234 int old_param = 0;
235 #endif
236 const char *qemu_name;
237 int alt_grab = 0;
238 #ifdef TARGET_SPARC
239 unsigned int nb_prom_envs = 0;
240 const char *prom_envs[MAX_PROM_ENVS];
241 #endif
242 int nb_drives_opt;
243 struct drive_opt {
244 const char *file;
245 char opt[1024];
246 } drives_opt[MAX_DRIVES];
247
248 static CPUState *cur_cpu;
249 static CPUState *next_cpu;
250 static int event_pending = 1;
251 /* Conversion factor from emulated instructions to virtual clock ticks. */
252 static int icount_time_shift;
253 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
254 #define MAX_ICOUNT_SHIFT 10
255 /* Compensate for varying guest execution speed. */
256 static int64_t qemu_icount_bias;
257 QEMUTimer *icount_rt_timer;
258 QEMUTimer *icount_vm_timer;
259
260 uint8_t qemu_uuid[16];
261
262 #define TFR(expr) do { if ((expr) != -1) break; } while (errno == EINTR)
263
264 /***********************************************************/
265 /* x86 ISA bus support */
266
267 target_phys_addr_t isa_mem_base = 0;
268 PicState2 *isa_pic;
269
270 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
271 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
272
273 static uint32_t ioport_read(int index, uint32_t address)
274 {
275 static IOPortReadFunc *default_func[3] = {
276 default_ioport_readb,
277 default_ioport_readw,
278 default_ioport_readl
279 };
280 IOPortReadFunc *func = ioport_read_table[index][address];
281 if (!func)
282 func = default_func[index];
283 return func(ioport_opaque[address], address);
284 }
285
286 static void ioport_write(int index, uint32_t address, uint32_t data)
287 {
288 static IOPortWriteFunc *default_func[3] = {
289 default_ioport_writeb,
290 default_ioport_writew,
291 default_ioport_writel
292 };
293 IOPortWriteFunc *func = ioport_write_table[index][address];
294 if (!func)
295 func = default_func[index];
296 func(ioport_opaque[address], address, data);
297 }
298
299 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
300 {
301 #ifdef DEBUG_UNUSED_IOPORT
302 fprintf(stderr, "unused inb: port=0x%04x\n", address);
303 #endif
304 return 0xff;
305 }
306
307 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
308 {
309 #ifdef DEBUG_UNUSED_IOPORT
310 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
311 #endif
312 }
313
314 /* default is to make two byte accesses */
315 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
316 {
317 uint32_t data;
318 data = ioport_read(0, address);
319 address = (address + 1) & (MAX_IOPORTS - 1);
320 data |= ioport_read(0, address) << 8;
321 return data;
322 }
323
324 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
325 {
326 ioport_write(0, address, data & 0xff);
327 address = (address + 1) & (MAX_IOPORTS - 1);
328 ioport_write(0, address, (data >> 8) & 0xff);
329 }
330
331 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
332 {
333 #ifdef DEBUG_UNUSED_IOPORT
334 fprintf(stderr, "unused inl: port=0x%04x\n", address);
335 #endif
336 return 0xffffffff;
337 }
338
339 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
340 {
341 #ifdef DEBUG_UNUSED_IOPORT
342 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
343 #endif
344 }
345
346 /* size is the word size in byte */
347 int register_ioport_read(int start, int length, int size,
348 IOPortReadFunc *func, void *opaque)
349 {
350 int i, bsize;
351
352 if (size == 1) {
353 bsize = 0;
354 } else if (size == 2) {
355 bsize = 1;
356 } else if (size == 4) {
357 bsize = 2;
358 } else {
359 hw_error("register_ioport_read: invalid size");
360 return -1;
361 }
362 for(i = start; i < start + length; i += size) {
363 ioport_read_table[bsize][i] = func;
364 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
365 hw_error("register_ioport_read: invalid opaque");
366 ioport_opaque[i] = opaque;
367 }
368 return 0;
369 }
370
371 /* size is the word size in byte */
372 int register_ioport_write(int start, int length, int size,
373 IOPortWriteFunc *func, void *opaque)
374 {
375 int i, bsize;
376
377 if (size == 1) {
378 bsize = 0;
379 } else if (size == 2) {
380 bsize = 1;
381 } else if (size == 4) {
382 bsize = 2;
383 } else {
384 hw_error("register_ioport_write: invalid size");
385 return -1;
386 }
387 for(i = start; i < start + length; i += size) {
388 ioport_write_table[bsize][i] = func;
389 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
390 hw_error("register_ioport_write: invalid opaque");
391 ioport_opaque[i] = opaque;
392 }
393 return 0;
394 }
395
396 void isa_unassign_ioport(int start, int length)
397 {
398 int i;
399
400 for(i = start; i < start + length; i++) {
401 ioport_read_table[0][i] = default_ioport_readb;
402 ioport_read_table[1][i] = default_ioport_readw;
403 ioport_read_table[2][i] = default_ioport_readl;
404
405 ioport_write_table[0][i] = default_ioport_writeb;
406 ioport_write_table[1][i] = default_ioport_writew;
407 ioport_write_table[2][i] = default_ioport_writel;
408 }
409 }
410
411 /***********************************************************/
412
413 void cpu_outb(CPUState *env, int addr, int val)
414 {
415 #ifdef DEBUG_IOPORT
416 if (loglevel & CPU_LOG_IOPORT)
417 fprintf(logfile, "outb: %04x %02x\n", addr, val);
418 #endif
419 ioport_write(0, addr, val);
420 #ifdef USE_KQEMU
421 if (env)
422 env->last_io_time = cpu_get_time_fast();
423 #endif
424 }
425
426 void cpu_outw(CPUState *env, int addr, int val)
427 {
428 #ifdef DEBUG_IOPORT
429 if (loglevel & CPU_LOG_IOPORT)
430 fprintf(logfile, "outw: %04x %04x\n", addr, val);
431 #endif
432 ioport_write(1, addr, val);
433 #ifdef USE_KQEMU
434 if (env)
435 env->last_io_time = cpu_get_time_fast();
436 #endif
437 }
438
439 void cpu_outl(CPUState *env, int addr, int val)
440 {
441 #ifdef DEBUG_IOPORT
442 if (loglevel & CPU_LOG_IOPORT)
443 fprintf(logfile, "outl: %04x %08x\n", addr, val);
444 #endif
445 ioport_write(2, addr, val);
446 #ifdef USE_KQEMU
447 if (env)
448 env->last_io_time = cpu_get_time_fast();
449 #endif
450 }
451
452 int cpu_inb(CPUState *env, int addr)
453 {
454 int val;
455 val = ioport_read(0, addr);
456 #ifdef DEBUG_IOPORT
457 if (loglevel & CPU_LOG_IOPORT)
458 fprintf(logfile, "inb : %04x %02x\n", addr, val);
459 #endif
460 #ifdef USE_KQEMU
461 if (env)
462 env->last_io_time = cpu_get_time_fast();
463 #endif
464 return val;
465 }
466
467 int cpu_inw(CPUState *env, int addr)
468 {
469 int val;
470 val = ioport_read(1, addr);
471 #ifdef DEBUG_IOPORT
472 if (loglevel & CPU_LOG_IOPORT)
473 fprintf(logfile, "inw : %04x %04x\n", addr, val);
474 #endif
475 #ifdef USE_KQEMU
476 if (env)
477 env->last_io_time = cpu_get_time_fast();
478 #endif
479 return val;
480 }
481
482 int cpu_inl(CPUState *env, int addr)
483 {
484 int val;
485 val = ioport_read(2, addr);
486 #ifdef DEBUG_IOPORT
487 if (loglevel & CPU_LOG_IOPORT)
488 fprintf(logfile, "inl : %04x %08x\n", addr, val);
489 #endif
490 #ifdef USE_KQEMU
491 if (env)
492 env->last_io_time = cpu_get_time_fast();
493 #endif
494 return val;
495 }
496
497 /***********************************************************/
498 void hw_error(const char *fmt, ...)
499 {
500 va_list ap;
501 CPUState *env;
502
503 va_start(ap, fmt);
504 fprintf(stderr, "qemu: hardware error: ");
505 vfprintf(stderr, fmt, ap);
506 fprintf(stderr, "\n");
507 for(env = first_cpu; env != NULL; env = env->next_cpu) {
508 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
509 #ifdef TARGET_I386
510 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
511 #else
512 cpu_dump_state(env, stderr, fprintf, 0);
513 #endif
514 }
515 va_end(ap);
516 abort();
517 }
518
519 /***********************************************************/
520 /* keyboard/mouse */
521
522 static QEMUPutKBDEvent *qemu_put_kbd_event;
523 static void *qemu_put_kbd_event_opaque;
524 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
525 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
526
527 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
528 {
529 qemu_put_kbd_event_opaque = opaque;
530 qemu_put_kbd_event = func;
531 }
532
533 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
534 void *opaque, int absolute,
535 const char *name)
536 {
537 QEMUPutMouseEntry *s, *cursor;
538
539 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
540 if (!s)
541 return NULL;
542
543 s->qemu_put_mouse_event = func;
544 s->qemu_put_mouse_event_opaque = opaque;
545 s->qemu_put_mouse_event_absolute = absolute;
546 s->qemu_put_mouse_event_name = qemu_strdup(name);
547 s->next = NULL;
548
549 if (!qemu_put_mouse_event_head) {
550 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
551 return s;
552 }
553
554 cursor = qemu_put_mouse_event_head;
555 while (cursor->next != NULL)
556 cursor = cursor->next;
557
558 cursor->next = s;
559 qemu_put_mouse_event_current = s;
560
561 return s;
562 }
563
564 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
565 {
566 QEMUPutMouseEntry *prev = NULL, *cursor;
567
568 if (!qemu_put_mouse_event_head || entry == NULL)
569 return;
570
571 cursor = qemu_put_mouse_event_head;
572 while (cursor != NULL && cursor != entry) {
573 prev = cursor;
574 cursor = cursor->next;
575 }
576
577 if (cursor == NULL) // does not exist or list empty
578 return;
579 else if (prev == NULL) { // entry is head
580 qemu_put_mouse_event_head = cursor->next;
581 if (qemu_put_mouse_event_current == entry)
582 qemu_put_mouse_event_current = cursor->next;
583 qemu_free(entry->qemu_put_mouse_event_name);
584 qemu_free(entry);
585 return;
586 }
587
588 prev->next = entry->next;
589
590 if (qemu_put_mouse_event_current == entry)
591 qemu_put_mouse_event_current = prev;
592
593 qemu_free(entry->qemu_put_mouse_event_name);
594 qemu_free(entry);
595 }
596
597 void kbd_put_keycode(int keycode)
598 {
599 if (qemu_put_kbd_event) {
600 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
601 }
602 }
603
604 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
605 {
606 QEMUPutMouseEvent *mouse_event;
607 void *mouse_event_opaque;
608 int width;
609
610 if (!qemu_put_mouse_event_current) {
611 return;
612 }
613
614 mouse_event =
615 qemu_put_mouse_event_current->qemu_put_mouse_event;
616 mouse_event_opaque =
617 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
618
619 if (mouse_event) {
620 if (graphic_rotate) {
621 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
622 width = 0x7fff;
623 else
624 width = graphic_width - 1;
625 mouse_event(mouse_event_opaque,
626 width - dy, dx, dz, buttons_state);
627 } else
628 mouse_event(mouse_event_opaque,
629 dx, dy, dz, buttons_state);
630 }
631 }
632
633 int kbd_mouse_is_absolute(void)
634 {
635 if (!qemu_put_mouse_event_current)
636 return 0;
637
638 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
639 }
640
641 void do_info_mice(void)
642 {
643 QEMUPutMouseEntry *cursor;
644 int index = 0;
645
646 if (!qemu_put_mouse_event_head) {
647 term_printf("No mouse devices connected\n");
648 return;
649 }
650
651 term_printf("Mouse devices available:\n");
652 cursor = qemu_put_mouse_event_head;
653 while (cursor != NULL) {
654 term_printf("%c Mouse #%d: %s\n",
655 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
656 index, cursor->qemu_put_mouse_event_name);
657 index++;
658 cursor = cursor->next;
659 }
660 }
661
662 void do_mouse_set(int index)
663 {
664 QEMUPutMouseEntry *cursor;
665 int i = 0;
666
667 if (!qemu_put_mouse_event_head) {
668 term_printf("No mouse devices connected\n");
669 return;
670 }
671
672 cursor = qemu_put_mouse_event_head;
673 while (cursor != NULL && index != i) {
674 i++;
675 cursor = cursor->next;
676 }
677
678 if (cursor != NULL)
679 qemu_put_mouse_event_current = cursor;
680 else
681 term_printf("Mouse at given index not found\n");
682 }
683
684 /* compute with 96 bit intermediate result: (a*b)/c */
685 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
686 {
687 union {
688 uint64_t ll;
689 struct {
690 #ifdef WORDS_BIGENDIAN
691 uint32_t high, low;
692 #else
693 uint32_t low, high;
694 #endif
695 } l;
696 } u, res;
697 uint64_t rl, rh;
698
699 u.ll = a;
700 rl = (uint64_t)u.l.low * (uint64_t)b;
701 rh = (uint64_t)u.l.high * (uint64_t)b;
702 rh += (rl >> 32);
703 res.l.high = rh / c;
704 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
705 return res.ll;
706 }
707
708 /***********************************************************/
709 /* real time host monotonic timer */
710
711 #define QEMU_TIMER_BASE 1000000000LL
712
713 #ifdef WIN32
714
715 static int64_t clock_freq;
716
717 static void init_get_clock(void)
718 {
719 LARGE_INTEGER freq;
720 int ret;
721 ret = QueryPerformanceFrequency(&freq);
722 if (ret == 0) {
723 fprintf(stderr, "Could not calibrate ticks\n");
724 exit(1);
725 }
726 clock_freq = freq.QuadPart;
727 }
728
729 static int64_t get_clock(void)
730 {
731 LARGE_INTEGER ti;
732 QueryPerformanceCounter(&ti);
733 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
734 }
735
736 #else
737
738 static int use_rt_clock;
739
740 static void init_get_clock(void)
741 {
742 use_rt_clock = 0;
743 #if defined(__linux__)
744 {
745 struct timespec ts;
746 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
747 use_rt_clock = 1;
748 }
749 }
750 #endif
751 }
752
753 static int64_t get_clock(void)
754 {
755 #if defined(__linux__)
756 if (use_rt_clock) {
757 struct timespec ts;
758 clock_gettime(CLOCK_MONOTONIC, &ts);
759 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
760 } else
761 #endif
762 {
763 /* XXX: using gettimeofday leads to problems if the date
764 changes, so it should be avoided. */
765 struct timeval tv;
766 gettimeofday(&tv, NULL);
767 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
768 }
769 }
770 #endif
771
772 /* Return the virtual CPU time, based on the instruction counter. */
773 static int64_t cpu_get_icount(void)
774 {
775 int64_t icount;
776 CPUState *env = cpu_single_env;;
777 icount = qemu_icount;
778 if (env) {
779 if (!can_do_io(env))
780 fprintf(stderr, "Bad clock read\n");
781 icount -= (env->icount_decr.u16.low + env->icount_extra);
782 }
783 return qemu_icount_bias + (icount << icount_time_shift);
784 }
785
786 /***********************************************************/
787 /* guest cycle counter */
788
789 static int64_t cpu_ticks_prev;
790 static int64_t cpu_ticks_offset;
791 static int64_t cpu_clock_offset;
792 static int cpu_ticks_enabled;
793
794 /* return the host CPU cycle counter and handle stop/restart */
795 int64_t cpu_get_ticks(void)
796 {
797 if (use_icount) {
798 return cpu_get_icount();
799 }
800 if (!cpu_ticks_enabled) {
801 return cpu_ticks_offset;
802 } else {
803 int64_t ticks;
804 ticks = cpu_get_real_ticks();
805 if (cpu_ticks_prev > ticks) {
806 /* Note: non increasing ticks may happen if the host uses
807 software suspend */
808 cpu_ticks_offset += cpu_ticks_prev - ticks;
809 }
810 cpu_ticks_prev = ticks;
811 return ticks + cpu_ticks_offset;
812 }
813 }
814
815 /* return the host CPU monotonic timer and handle stop/restart */
816 static int64_t cpu_get_clock(void)
817 {
818 int64_t ti;
819 if (!cpu_ticks_enabled) {
820 return cpu_clock_offset;
821 } else {
822 ti = get_clock();
823 return ti + cpu_clock_offset;
824 }
825 }
826
827 /* enable cpu_get_ticks() */
828 void cpu_enable_ticks(void)
829 {
830 if (!cpu_ticks_enabled) {
831 cpu_ticks_offset -= cpu_get_real_ticks();
832 cpu_clock_offset -= get_clock();
833 cpu_ticks_enabled = 1;
834 }
835 }
836
837 /* disable cpu_get_ticks() : the clock is stopped. You must not call
838 cpu_get_ticks() after that. */
839 void cpu_disable_ticks(void)
840 {
841 if (cpu_ticks_enabled) {
842 cpu_ticks_offset = cpu_get_ticks();
843 cpu_clock_offset = cpu_get_clock();
844 cpu_ticks_enabled = 0;
845 }
846 }
847
848 /***********************************************************/
849 /* timers */
850
851 #define QEMU_TIMER_REALTIME 0
852 #define QEMU_TIMER_VIRTUAL 1
853
854 struct QEMUClock {
855 int type;
856 /* XXX: add frequency */
857 };
858
859 struct QEMUTimer {
860 QEMUClock *clock;
861 int64_t expire_time;
862 QEMUTimerCB *cb;
863 void *opaque;
864 struct QEMUTimer *next;
865 };
866
867 struct qemu_alarm_timer {
868 char const *name;
869 unsigned int flags;
870
871 int (*start)(struct qemu_alarm_timer *t);
872 void (*stop)(struct qemu_alarm_timer *t);
873 void (*rearm)(struct qemu_alarm_timer *t);
874 void *priv;
875 };
876
877 #define ALARM_FLAG_DYNTICKS 0x1
878 #define ALARM_FLAG_EXPIRED 0x2
879
880 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
881 {
882 return t->flags & ALARM_FLAG_DYNTICKS;
883 }
884
885 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
886 {
887 if (!alarm_has_dynticks(t))
888 return;
889
890 t->rearm(t);
891 }
892
893 /* TODO: MIN_TIMER_REARM_US should be optimized */
894 #define MIN_TIMER_REARM_US 250
895
896 static struct qemu_alarm_timer *alarm_timer;
897
898 #ifdef _WIN32
899
900 struct qemu_alarm_win32 {
901 MMRESULT timerId;
902 HANDLE host_alarm;
903 unsigned int period;
904 } alarm_win32_data = {0, NULL, -1};
905
906 static int win32_start_timer(struct qemu_alarm_timer *t);
907 static void win32_stop_timer(struct qemu_alarm_timer *t);
908 static void win32_rearm_timer(struct qemu_alarm_timer *t);
909
910 #else
911
912 static int unix_start_timer(struct qemu_alarm_timer *t);
913 static void unix_stop_timer(struct qemu_alarm_timer *t);
914
915 #ifdef __linux__
916
917 static int dynticks_start_timer(struct qemu_alarm_timer *t);
918 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
919 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
920
921 static int hpet_start_timer(struct qemu_alarm_timer *t);
922 static void hpet_stop_timer(struct qemu_alarm_timer *t);
923
924 static int rtc_start_timer(struct qemu_alarm_timer *t);
925 static void rtc_stop_timer(struct qemu_alarm_timer *t);
926
927 #endif /* __linux__ */
928
929 #endif /* _WIN32 */
930
931 /* Correlation between real and virtual time is always going to be
932 fairly approximate, so ignore small variation.
933 When the guest is idle real and virtual time will be aligned in
934 the IO wait loop. */
935 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
936
937 static void icount_adjust(void)
938 {
939 int64_t cur_time;
940 int64_t cur_icount;
941 int64_t delta;
942 static int64_t last_delta;
943 /* If the VM is not running, then do nothing. */
944 if (!vm_running)
945 return;
946
947 cur_time = cpu_get_clock();
948 cur_icount = qemu_get_clock(vm_clock);
949 delta = cur_icount - cur_time;
950 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
951 if (delta > 0
952 && last_delta + ICOUNT_WOBBLE < delta * 2
953 && icount_time_shift > 0) {
954 /* The guest is getting too far ahead. Slow time down. */
955 icount_time_shift--;
956 }
957 if (delta < 0
958 && last_delta - ICOUNT_WOBBLE > delta * 2
959 && icount_time_shift < MAX_ICOUNT_SHIFT) {
960 /* The guest is getting too far behind. Speed time up. */
961 icount_time_shift++;
962 }
963 last_delta = delta;
964 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
965 }
966
967 static void icount_adjust_rt(void * opaque)
968 {
969 qemu_mod_timer(icount_rt_timer,
970 qemu_get_clock(rt_clock) + 1000);
971 icount_adjust();
972 }
973
974 static void icount_adjust_vm(void * opaque)
975 {
976 qemu_mod_timer(icount_vm_timer,
977 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
978 icount_adjust();
979 }
980
981 static void init_icount_adjust(void)
982 {
983 /* Have both realtime and virtual time triggers for speed adjustment.
984 The realtime trigger catches emulated time passing too slowly,
985 the virtual time trigger catches emulated time passing too fast.
986 Realtime triggers occur even when idle, so use them less frequently
987 than VM triggers. */
988 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
989 qemu_mod_timer(icount_rt_timer,
990 qemu_get_clock(rt_clock) + 1000);
991 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
992 qemu_mod_timer(icount_vm_timer,
993 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
994 }
995
996 static struct qemu_alarm_timer alarm_timers[] = {
997 #ifndef _WIN32
998 #ifdef __linux__
999 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1000 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1001 /* HPET - if available - is preferred */
1002 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1003 /* ...otherwise try RTC */
1004 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1005 #endif
1006 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1007 #else
1008 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1009 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1010 {"win32", 0, win32_start_timer,
1011 win32_stop_timer, NULL, &alarm_win32_data},
1012 #endif
1013 {NULL, }
1014 };
1015
1016 static void show_available_alarms(void)
1017 {
1018 int i;
1019
1020 printf("Available alarm timers, in order of precedence:\n");
1021 for (i = 0; alarm_timers[i].name; i++)
1022 printf("%s\n", alarm_timers[i].name);
1023 }
1024
1025 static void configure_alarms(char const *opt)
1026 {
1027 int i;
1028 int cur = 0;
1029 int count = (sizeof(alarm_timers) / sizeof(*alarm_timers)) - 1;
1030 char *arg;
1031 char *name;
1032 struct qemu_alarm_timer tmp;
1033
1034 if (!strcmp(opt, "?")) {
1035 show_available_alarms();
1036 exit(0);
1037 }
1038
1039 arg = strdup(opt);
1040
1041 /* Reorder the array */
1042 name = strtok(arg, ",");
1043 while (name) {
1044 for (i = 0; i < count && alarm_timers[i].name; i++) {
1045 if (!strcmp(alarm_timers[i].name, name))
1046 break;
1047 }
1048
1049 if (i == count) {
1050 fprintf(stderr, "Unknown clock %s\n", name);
1051 goto next;
1052 }
1053
1054 if (i < cur)
1055 /* Ignore */
1056 goto next;
1057
1058 /* Swap */
1059 tmp = alarm_timers[i];
1060 alarm_timers[i] = alarm_timers[cur];
1061 alarm_timers[cur] = tmp;
1062
1063 cur++;
1064 next:
1065 name = strtok(NULL, ",");
1066 }
1067
1068 free(arg);
1069
1070 if (cur) {
1071 /* Disable remaining timers */
1072 for (i = cur; i < count; i++)
1073 alarm_timers[i].name = NULL;
1074 } else {
1075 show_available_alarms();
1076 exit(1);
1077 }
1078 }
1079
1080 QEMUClock *rt_clock;
1081 QEMUClock *vm_clock;
1082
1083 static QEMUTimer *active_timers[2];
1084
1085 static QEMUClock *qemu_new_clock(int type)
1086 {
1087 QEMUClock *clock;
1088 clock = qemu_mallocz(sizeof(QEMUClock));
1089 if (!clock)
1090 return NULL;
1091 clock->type = type;
1092 return clock;
1093 }
1094
1095 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1096 {
1097 QEMUTimer *ts;
1098
1099 ts = qemu_mallocz(sizeof(QEMUTimer));
1100 ts->clock = clock;
1101 ts->cb = cb;
1102 ts->opaque = opaque;
1103 return ts;
1104 }
1105
1106 void qemu_free_timer(QEMUTimer *ts)
1107 {
1108 qemu_free(ts);
1109 }
1110
1111 /* stop a timer, but do not dealloc it */
1112 void qemu_del_timer(QEMUTimer *ts)
1113 {
1114 QEMUTimer **pt, *t;
1115
1116 /* NOTE: this code must be signal safe because
1117 qemu_timer_expired() can be called from a signal. */
1118 pt = &active_timers[ts->clock->type];
1119 for(;;) {
1120 t = *pt;
1121 if (!t)
1122 break;
1123 if (t == ts) {
1124 *pt = t->next;
1125 break;
1126 }
1127 pt = &t->next;
1128 }
1129 }
1130
1131 /* modify the current timer so that it will be fired when current_time
1132 >= expire_time. The corresponding callback will be called. */
1133 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1134 {
1135 QEMUTimer **pt, *t;
1136
1137 qemu_del_timer(ts);
1138
1139 /* add the timer in the sorted list */
1140 /* NOTE: this code must be signal safe because
1141 qemu_timer_expired() can be called from a signal. */
1142 pt = &active_timers[ts->clock->type];
1143 for(;;) {
1144 t = *pt;
1145 if (!t)
1146 break;
1147 if (t->expire_time > expire_time)
1148 break;
1149 pt = &t->next;
1150 }
1151 ts->expire_time = expire_time;
1152 ts->next = *pt;
1153 *pt = ts;
1154
1155 /* Rearm if necessary */
1156 if (pt == &active_timers[ts->clock->type]) {
1157 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1158 qemu_rearm_alarm_timer(alarm_timer);
1159 }
1160 /* Interrupt execution to force deadline recalculation. */
1161 if (use_icount && cpu_single_env) {
1162 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
1163 }
1164 }
1165 }
1166
1167 int qemu_timer_pending(QEMUTimer *ts)
1168 {
1169 QEMUTimer *t;
1170 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1171 if (t == ts)
1172 return 1;
1173 }
1174 return 0;
1175 }
1176
1177 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1178 {
1179 if (!timer_head)
1180 return 0;
1181 return (timer_head->expire_time <= current_time);
1182 }
1183
1184 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1185 {
1186 QEMUTimer *ts;
1187
1188 for(;;) {
1189 ts = *ptimer_head;
1190 if (!ts || ts->expire_time > current_time)
1191 break;
1192 /* remove timer from the list before calling the callback */
1193 *ptimer_head = ts->next;
1194 ts->next = NULL;
1195
1196 /* run the callback (the timer list can be modified) */
1197 ts->cb(ts->opaque);
1198 }
1199 }
1200
1201 int64_t qemu_get_clock(QEMUClock *clock)
1202 {
1203 switch(clock->type) {
1204 case QEMU_TIMER_REALTIME:
1205 return get_clock() / 1000000;
1206 default:
1207 case QEMU_TIMER_VIRTUAL:
1208 if (use_icount) {
1209 return cpu_get_icount();
1210 } else {
1211 return cpu_get_clock();
1212 }
1213 }
1214 }
1215
1216 static void init_timers(void)
1217 {
1218 init_get_clock();
1219 ticks_per_sec = QEMU_TIMER_BASE;
1220 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1221 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1222 }
1223
1224 /* save a timer */
1225 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1226 {
1227 uint64_t expire_time;
1228
1229 if (qemu_timer_pending(ts)) {
1230 expire_time = ts->expire_time;
1231 } else {
1232 expire_time = -1;
1233 }
1234 qemu_put_be64(f, expire_time);
1235 }
1236
1237 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1238 {
1239 uint64_t expire_time;
1240
1241 expire_time = qemu_get_be64(f);
1242 if (expire_time != -1) {
1243 qemu_mod_timer(ts, expire_time);
1244 } else {
1245 qemu_del_timer(ts);
1246 }
1247 }
1248
1249 static void timer_save(QEMUFile *f, void *opaque)
1250 {
1251 if (cpu_ticks_enabled) {
1252 hw_error("cannot save state if virtual timers are running");
1253 }
1254 qemu_put_be64(f, cpu_ticks_offset);
1255 qemu_put_be64(f, ticks_per_sec);
1256 qemu_put_be64(f, cpu_clock_offset);
1257 }
1258
1259 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1260 {
1261 if (version_id != 1 && version_id != 2)
1262 return -EINVAL;
1263 if (cpu_ticks_enabled) {
1264 return -EINVAL;
1265 }
1266 cpu_ticks_offset=qemu_get_be64(f);
1267 ticks_per_sec=qemu_get_be64(f);
1268 if (version_id == 2) {
1269 cpu_clock_offset=qemu_get_be64(f);
1270 }
1271 return 0;
1272 }
1273
1274 #ifdef _WIN32
1275 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1276 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1277 #else
1278 static void host_alarm_handler(int host_signum)
1279 #endif
1280 {
1281 #if 0
1282 #define DISP_FREQ 1000
1283 {
1284 static int64_t delta_min = INT64_MAX;
1285 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1286 static int count;
1287 ti = qemu_get_clock(vm_clock);
1288 if (last_clock != 0) {
1289 delta = ti - last_clock;
1290 if (delta < delta_min)
1291 delta_min = delta;
1292 if (delta > delta_max)
1293 delta_max = delta;
1294 delta_cum += delta;
1295 if (++count == DISP_FREQ) {
1296 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1297 muldiv64(delta_min, 1000000, ticks_per_sec),
1298 muldiv64(delta_max, 1000000, ticks_per_sec),
1299 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1300 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1301 count = 0;
1302 delta_min = INT64_MAX;
1303 delta_max = 0;
1304 delta_cum = 0;
1305 }
1306 }
1307 last_clock = ti;
1308 }
1309 #endif
1310 if (alarm_has_dynticks(alarm_timer) ||
1311 (!use_icount &&
1312 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1313 qemu_get_clock(vm_clock))) ||
1314 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1315 qemu_get_clock(rt_clock))) {
1316 #ifdef _WIN32
1317 struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1318 SetEvent(data->host_alarm);
1319 #endif
1320 CPUState *env = next_cpu;
1321
1322 alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1323
1324 if (env) {
1325 /* stop the currently executing cpu because a timer occured */
1326 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1327 #ifdef USE_KQEMU
1328 if (env->kqemu_enabled) {
1329 kqemu_cpu_interrupt(env);
1330 }
1331 #endif
1332 }
1333 event_pending = 1;
1334 }
1335 }
1336
1337 static int64_t qemu_next_deadline(void)
1338 {
1339 int64_t delta;
1340
1341 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1342 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1343 qemu_get_clock(vm_clock);
1344 } else {
1345 /* To avoid problems with overflow limit this to 2^32. */
1346 delta = INT32_MAX;
1347 }
1348
1349 if (delta < 0)
1350 delta = 0;
1351
1352 return delta;
1353 }
1354
1355 #if defined(__linux__) || defined(_WIN32)
1356 static uint64_t qemu_next_deadline_dyntick(void)
1357 {
1358 int64_t delta;
1359 int64_t rtdelta;
1360
1361 if (use_icount)
1362 delta = INT32_MAX;
1363 else
1364 delta = (qemu_next_deadline() + 999) / 1000;
1365
1366 if (active_timers[QEMU_TIMER_REALTIME]) {
1367 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1368 qemu_get_clock(rt_clock))*1000;
1369 if (rtdelta < delta)
1370 delta = rtdelta;
1371 }
1372
1373 if (delta < MIN_TIMER_REARM_US)
1374 delta = MIN_TIMER_REARM_US;
1375
1376 return delta;
1377 }
1378 #endif
1379
1380 #ifndef _WIN32
1381
1382 #if defined(__linux__)
1383
1384 #define RTC_FREQ 1024
1385
1386 static void enable_sigio_timer(int fd)
1387 {
1388 struct sigaction act;
1389
1390 /* timer signal */
1391 sigfillset(&act.sa_mask);
1392 act.sa_flags = 0;
1393 act.sa_handler = host_alarm_handler;
1394
1395 sigaction(SIGIO, &act, NULL);
1396 fcntl(fd, F_SETFL, O_ASYNC);
1397 fcntl(fd, F_SETOWN, getpid());
1398 }
1399
1400 static int hpet_start_timer(struct qemu_alarm_timer *t)
1401 {
1402 struct hpet_info info;
1403 int r, fd;
1404
1405 fd = open("/dev/hpet", O_RDONLY);
1406 if (fd < 0)
1407 return -1;
1408
1409 /* Set frequency */
1410 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1411 if (r < 0) {
1412 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1413 "error, but for better emulation accuracy type:\n"
1414 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1415 goto fail;
1416 }
1417
1418 /* Check capabilities */
1419 r = ioctl(fd, HPET_INFO, &info);
1420 if (r < 0)
1421 goto fail;
1422
1423 /* Enable periodic mode */
1424 r = ioctl(fd, HPET_EPI, 0);
1425 if (info.hi_flags && (r < 0))
1426 goto fail;
1427
1428 /* Enable interrupt */
1429 r = ioctl(fd, HPET_IE_ON, 0);
1430 if (r < 0)
1431 goto fail;
1432
1433 enable_sigio_timer(fd);
1434 t->priv = (void *)(long)fd;
1435
1436 return 0;
1437 fail:
1438 close(fd);
1439 return -1;
1440 }
1441
1442 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1443 {
1444 int fd = (long)t->priv;
1445
1446 close(fd);
1447 }
1448
1449 static int rtc_start_timer(struct qemu_alarm_timer *t)
1450 {
1451 int rtc_fd;
1452 unsigned long current_rtc_freq = 0;
1453
1454 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1455 if (rtc_fd < 0)
1456 return -1;
1457 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1458 if (current_rtc_freq != RTC_FREQ &&
1459 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1460 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1461 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1462 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1463 goto fail;
1464 }
1465 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1466 fail:
1467 close(rtc_fd);
1468 return -1;
1469 }
1470
1471 enable_sigio_timer(rtc_fd);
1472
1473 t->priv = (void *)(long)rtc_fd;
1474
1475 return 0;
1476 }
1477
1478 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1479 {
1480 int rtc_fd = (long)t->priv;
1481
1482 close(rtc_fd);
1483 }
1484
1485 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1486 {
1487 struct sigevent ev;
1488 timer_t host_timer;
1489 struct sigaction act;
1490
1491 sigfillset(&act.sa_mask);
1492 act.sa_flags = 0;
1493 act.sa_handler = host_alarm_handler;
1494
1495 sigaction(SIGALRM, &act, NULL);
1496
1497 ev.sigev_value.sival_int = 0;
1498 ev.sigev_notify = SIGEV_SIGNAL;
1499 ev.sigev_signo = SIGALRM;
1500
1501 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1502 perror("timer_create");
1503
1504 /* disable dynticks */
1505 fprintf(stderr, "Dynamic Ticks disabled\n");
1506
1507 return -1;
1508 }
1509
1510 t->priv = (void *)host_timer;
1511
1512 return 0;
1513 }
1514
1515 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1516 {
1517 timer_t host_timer = (timer_t)t->priv;
1518
1519 timer_delete(host_timer);
1520 }
1521
1522 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1523 {
1524 timer_t host_timer = (timer_t)t->priv;
1525 struct itimerspec timeout;
1526 int64_t nearest_delta_us = INT64_MAX;
1527 int64_t current_us;
1528
1529 if (!active_timers[QEMU_TIMER_REALTIME] &&
1530 !active_timers[QEMU_TIMER_VIRTUAL])
1531 return;
1532
1533 nearest_delta_us = qemu_next_deadline_dyntick();
1534
1535 /* check whether a timer is already running */
1536 if (timer_gettime(host_timer, &timeout)) {
1537 perror("gettime");
1538 fprintf(stderr, "Internal timer error: aborting\n");
1539 exit(1);
1540 }
1541 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1542 if (current_us && current_us <= nearest_delta_us)
1543 return;
1544
1545 timeout.it_interval.tv_sec = 0;
1546 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1547 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1548 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1549 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1550 perror("settime");
1551 fprintf(stderr, "Internal timer error: aborting\n");
1552 exit(1);
1553 }
1554 }
1555
1556 #endif /* defined(__linux__) */
1557
1558 static int unix_start_timer(struct qemu_alarm_timer *t)
1559 {
1560 struct sigaction act;
1561 struct itimerval itv;
1562 int err;
1563
1564 /* timer signal */
1565 sigfillset(&act.sa_mask);
1566 act.sa_flags = 0;
1567 act.sa_handler = host_alarm_handler;
1568
1569 sigaction(SIGALRM, &act, NULL);
1570
1571 itv.it_interval.tv_sec = 0;
1572 /* for i386 kernel 2.6 to get 1 ms */
1573 itv.it_interval.tv_usec = 999;
1574 itv.it_value.tv_sec = 0;
1575 itv.it_value.tv_usec = 10 * 1000;
1576
1577 err = setitimer(ITIMER_REAL, &itv, NULL);
1578 if (err)
1579 return -1;
1580
1581 return 0;
1582 }
1583
1584 static void unix_stop_timer(struct qemu_alarm_timer *t)
1585 {
1586 struct itimerval itv;
1587
1588 memset(&itv, 0, sizeof(itv));
1589 setitimer(ITIMER_REAL, &itv, NULL);
1590 }
1591
1592 #endif /* !defined(_WIN32) */
1593
1594 #ifdef _WIN32
1595
1596 static int win32_start_timer(struct qemu_alarm_timer *t)
1597 {
1598 TIMECAPS tc;
1599 struct qemu_alarm_win32 *data = t->priv;
1600 UINT flags;
1601
1602 data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1603 if (!data->host_alarm) {
1604 perror("Failed CreateEvent");
1605 return -1;
1606 }
1607
1608 memset(&tc, 0, sizeof(tc));
1609 timeGetDevCaps(&tc, sizeof(tc));
1610
1611 if (data->period < tc.wPeriodMin)
1612 data->period = tc.wPeriodMin;
1613
1614 timeBeginPeriod(data->period);
1615
1616 flags = TIME_CALLBACK_FUNCTION;
1617 if (alarm_has_dynticks(t))
1618 flags |= TIME_ONESHOT;
1619 else
1620 flags |= TIME_PERIODIC;
1621
1622 data->timerId = timeSetEvent(1, // interval (ms)
1623 data->period, // resolution
1624 host_alarm_handler, // function
1625 (DWORD)t, // parameter
1626 flags);
1627
1628 if (!data->timerId) {
1629 perror("Failed to initialize win32 alarm timer");
1630
1631 timeEndPeriod(data->period);
1632 CloseHandle(data->host_alarm);
1633 return -1;
1634 }
1635
1636 qemu_add_wait_object(data->host_alarm, NULL, NULL);
1637
1638 return 0;
1639 }
1640
1641 static void win32_stop_timer(struct qemu_alarm_timer *t)
1642 {
1643 struct qemu_alarm_win32 *data = t->priv;
1644
1645 timeKillEvent(data->timerId);
1646 timeEndPeriod(data->period);
1647
1648 CloseHandle(data->host_alarm);
1649 }
1650
1651 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1652 {
1653 struct qemu_alarm_win32 *data = t->priv;
1654 uint64_t nearest_delta_us;
1655
1656 if (!active_timers[QEMU_TIMER_REALTIME] &&
1657 !active_timers[QEMU_TIMER_VIRTUAL])
1658 return;
1659
1660 nearest_delta_us = qemu_next_deadline_dyntick();
1661 nearest_delta_us /= 1000;
1662
1663 timeKillEvent(data->timerId);
1664
1665 data->timerId = timeSetEvent(1,
1666 data->period,
1667 host_alarm_handler,
1668 (DWORD)t,
1669 TIME_ONESHOT | TIME_PERIODIC);
1670
1671 if (!data->timerId) {
1672 perror("Failed to re-arm win32 alarm timer");
1673
1674 timeEndPeriod(data->period);
1675 CloseHandle(data->host_alarm);
1676 exit(1);
1677 }
1678 }
1679
1680 #endif /* _WIN32 */
1681
1682 static void init_timer_alarm(void)
1683 {
1684 struct qemu_alarm_timer *t = NULL;
1685 int i, err = -1;
1686
1687 for (i = 0; alarm_timers[i].name; i++) {
1688 t = &alarm_timers[i];
1689
1690 err = t->start(t);
1691 if (!err)
1692 break;
1693 }
1694
1695 if (err) {
1696 fprintf(stderr, "Unable to find any suitable alarm timer.\n");
1697 fprintf(stderr, "Terminating\n");
1698 exit(1);
1699 }
1700
1701 alarm_timer = t;
1702 }
1703
1704 static void quit_timers(void)
1705 {
1706 alarm_timer->stop(alarm_timer);
1707 alarm_timer = NULL;
1708 }
1709
1710 /***********************************************************/
1711 /* host time/date access */
1712 void qemu_get_timedate(struct tm *tm, int offset)
1713 {
1714 time_t ti;
1715 struct tm *ret;
1716
1717 time(&ti);
1718 ti += offset;
1719 if (rtc_date_offset == -1) {
1720 if (rtc_utc)
1721 ret = gmtime(&ti);
1722 else
1723 ret = localtime(&ti);
1724 } else {
1725 ti -= rtc_date_offset;
1726 ret = gmtime(&ti);
1727 }
1728
1729 memcpy(tm, ret, sizeof(struct tm));
1730 }
1731
1732 int qemu_timedate_diff(struct tm *tm)
1733 {
1734 time_t seconds;
1735
1736 if (rtc_date_offset == -1)
1737 if (rtc_utc)
1738 seconds = mktimegm(tm);
1739 else
1740 seconds = mktime(tm);
1741 else
1742 seconds = mktimegm(tm) + rtc_date_offset;
1743
1744 return seconds - time(NULL);
1745 }
1746
1747 /***********************************************************/
1748 /* character device */
1749
1750 static void qemu_chr_event(CharDriverState *s, int event)
1751 {
1752 if (!s->chr_event)
1753 return;
1754 s->chr_event(s->handler_opaque, event);
1755 }
1756
1757 static void qemu_chr_reset_bh(void *opaque)
1758 {
1759 CharDriverState *s = opaque;
1760 qemu_chr_event(s, CHR_EVENT_RESET);
1761 qemu_bh_delete(s->bh);
1762 s->bh = NULL;
1763 }
1764
1765 void qemu_chr_reset(CharDriverState *s)
1766 {
1767 if (s->bh == NULL) {
1768 s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1769 qemu_bh_schedule(s->bh);
1770 }
1771 }
1772
1773 int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1774 {
1775 return s->chr_write(s, buf, len);
1776 }
1777
1778 int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1779 {
1780 if (!s->chr_ioctl)
1781 return -ENOTSUP;
1782 return s->chr_ioctl(s, cmd, arg);
1783 }
1784
1785 int qemu_chr_can_read(CharDriverState *s)
1786 {
1787 if (!s->chr_can_read)
1788 return 0;
1789 return s->chr_can_read(s->handler_opaque);
1790 }
1791
1792 void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1793 {
1794 s->chr_read(s->handler_opaque, buf, len);
1795 }
1796
1797 void qemu_chr_accept_input(CharDriverState *s)
1798 {
1799 if (s->chr_accept_input)
1800 s->chr_accept_input(s);
1801 }
1802
1803 void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1804 {
1805 char buf[4096];
1806 va_list ap;
1807 va_start(ap, fmt);
1808 vsnprintf(buf, sizeof(buf), fmt, ap);
1809 qemu_chr_write(s, (uint8_t *)buf, strlen(buf));
1810 va_end(ap);
1811 }
1812
1813 void qemu_chr_send_event(CharDriverState *s, int event)
1814 {
1815 if (s->chr_send_event)
1816 s->chr_send_event(s, event);
1817 }
1818
1819 void qemu_chr_add_handlers(CharDriverState *s,
1820 IOCanRWHandler *fd_can_read,
1821 IOReadHandler *fd_read,
1822 IOEventHandler *fd_event,
1823 void *opaque)
1824 {
1825 s->chr_can_read = fd_can_read;
1826 s->chr_read = fd_read;
1827 s->chr_event = fd_event;
1828 s->handler_opaque = opaque;
1829 if (s->chr_update_read_handler)
1830 s->chr_update_read_handler(s);
1831 }
1832
1833 static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1834 {
1835 return len;
1836 }
1837
1838 static CharDriverState *qemu_chr_open_null(void)
1839 {
1840 CharDriverState *chr;
1841
1842 chr = qemu_mallocz(sizeof(CharDriverState));
1843 if (!chr)
1844 return NULL;
1845 chr->chr_write = null_chr_write;
1846 return chr;
1847 }
1848
1849 /* MUX driver for serial I/O splitting */
1850 static int term_timestamps;
1851 static int64_t term_timestamps_start;
1852 #define MAX_MUX 4
1853 #define MUX_BUFFER_SIZE 32 /* Must be a power of 2. */
1854 #define MUX_BUFFER_MASK (MUX_BUFFER_SIZE - 1)
1855 typedef struct {
1856 IOCanRWHandler *chr_can_read[MAX_MUX];
1857 IOReadHandler *chr_read[MAX_MUX];
1858 IOEventHandler *chr_event[MAX_MUX];
1859 void *ext_opaque[MAX_MUX];
1860 CharDriverState *drv;
1861 unsigned char buffer[MUX_BUFFER_SIZE];
1862 int prod;
1863 int cons;
1864 int mux_cnt;
1865 int term_got_escape;
1866 int max_size;
1867 } MuxDriver;
1868
1869
1870 static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1871 {
1872 MuxDriver *d = chr->opaque;
1873 int ret;
1874 if (!term_timestamps) {
1875 ret = d->drv->chr_write(d->drv, buf, len);
1876 } else {
1877 int i;
1878
1879 ret = 0;
1880 for(i = 0; i < len; i++) {
1881 ret += d->drv->chr_write(d->drv, buf+i, 1);
1882 if (buf[i] == '\n') {
1883 char buf1[64];
1884 int64_t ti;
1885 int secs;
1886
1887 ti = get_clock();
1888 if (term_timestamps_start == -1)
1889 term_timestamps_start = ti;
1890 ti -= term_timestamps_start;
1891 secs = ti / 1000000000;
1892 snprintf(buf1, sizeof(buf1),
1893 "[%02d:%02d:%02d.%03d] ",
1894 secs / 3600,
1895 (secs / 60) % 60,
1896 secs % 60,
1897 (int)((ti / 1000000) % 1000));
1898 d->drv->chr_write(d->drv, (uint8_t *)buf1, strlen(buf1));
1899 }
1900 }
1901 }
1902 return ret;
1903 }
1904
1905 static const char * const mux_help[] = {
1906 "% h print this help\n\r",
1907 "% x exit emulator\n\r",
1908 "% s save disk data back to file (if -snapshot)\n\r",
1909 "% t toggle console timestamps\n\r"
1910 "% b send break (magic sysrq)\n\r",
1911 "% c switch between console and monitor\n\r",
1912 "% % sends %\n\r",
1913 NULL
1914 };
1915
1916 static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1917 static void mux_print_help(CharDriverState *chr)
1918 {
1919 int i, j;
1920 char ebuf[15] = "Escape-Char";
1921 char cbuf[50] = "\n\r";
1922
1923 if (term_escape_char > 0 && term_escape_char < 26) {
1924 snprintf(cbuf, sizeof(cbuf), "\n\r");
1925 snprintf(ebuf, sizeof(ebuf), "C-%c", term_escape_char - 1 + 'a');
1926 } else {
1927 snprintf(cbuf, sizeof(cbuf),
1928 "\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r",
1929 term_escape_char);
1930 }
1931 chr->chr_write(chr, (uint8_t *)cbuf, strlen(cbuf));
1932 for (i = 0; mux_help[i] != NULL; i++) {
1933 for (j=0; mux_help[i][j] != '\0'; j++) {
1934 if (mux_help[i][j] == '%')
1935 chr->chr_write(chr, (uint8_t *)ebuf, strlen(ebuf));
1936 else
1937 chr->chr_write(chr, (uint8_t *)&mux_help[i][j], 1);
1938 }
1939 }
1940 }
1941
1942 static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1943 {
1944 if (d->term_got_escape) {
1945 d->term_got_escape = 0;
1946 if (ch == term_escape_char)
1947 goto send_char;
1948 switch(ch) {
1949 case '?':
1950 case 'h':
1951 mux_print_help(chr);
1952 break;
1953 case 'x':
1954 {
1955 const char *term = "QEMU: Terminated\n\r";
1956 chr->chr_write(chr,(uint8_t *)term,strlen(term));
1957 exit(0);
1958 break;
1959 }
1960 case 's':
1961 {
1962 int i;
1963 for (i = 0; i < nb_drives; i++) {
1964 bdrv_commit(drives_table[i].bdrv);
1965 }
1966 }
1967 break;
1968 case 'b':
1969 qemu_chr_event(chr, CHR_EVENT_BREAK);
1970 break;
1971 case 'c':
1972 /* Switch to the next registered device */
1973 chr->focus++;
1974 if (chr->focus >= d->mux_cnt)
1975 chr->focus = 0;
1976 break;
1977 case 't':
1978 term_timestamps = !term_timestamps;
1979 term_timestamps_start = -1;
1980 break;
1981 }
1982 } else if (ch == term_escape_char) {
1983 d->term_got_escape = 1;
1984 } else {
1985 send_char:
1986 return 1;
1987 }
1988 return 0;
1989 }
1990
1991 static void mux_chr_accept_input(CharDriverState *chr)
1992 {
1993 int m = chr->focus;
1994 MuxDriver *d = chr->opaque;
1995
1996 while (d->prod != d->cons &&
1997 d->chr_can_read[m] &&
1998 d->chr_can_read[m](d->ext_opaque[m])) {
1999 d->chr_read[m](d->ext_opaque[m],
2000 &d->buffer[d->cons++ & MUX_BUFFER_MASK], 1);
2001 }
2002 }
2003
2004 static int mux_chr_can_read(void *opaque)
2005 {
2006 CharDriverState *chr = opaque;
2007 MuxDriver *d = chr->opaque;
2008
2009 if ((d->prod - d->cons) < MUX_BUFFER_SIZE)
2010 return 1;
2011 if (d->chr_can_read[chr->focus])
2012 return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
2013 return 0;
2014 }
2015
2016 static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
2017 {
2018 CharDriverState *chr = opaque;
2019 MuxDriver *d = chr->opaque;
2020 int m = chr->focus;
2021 int i;
2022
2023 mux_chr_accept_input (opaque);
2024
2025 for(i = 0; i < size; i++)
2026 if (mux_proc_byte(chr, d, buf[i])) {
2027 if (d->prod == d->cons &&
2028 d->chr_can_read[m] &&
2029 d->chr_can_read[m](d->ext_opaque[m]))
2030 d->chr_read[m](d->ext_opaque[m], &buf[i], 1);
2031 else
2032 d->buffer[d->prod++ & MUX_BUFFER_MASK] = buf[i];
2033 }
2034 }
2035
2036 static void mux_chr_event(void *opaque, int event)
2037 {
2038 CharDriverState *chr = opaque;
2039 MuxDriver *d = chr->opaque;
2040 int i;
2041
2042 /* Send the event to all registered listeners */
2043 for (i = 0; i < d->mux_cnt; i++)
2044 if (d->chr_event[i])
2045 d->chr_event[i](d->ext_opaque[i], event);
2046 }
2047
2048 static void mux_chr_update_read_handler(CharDriverState *chr)
2049 {
2050 MuxDriver *d = chr->opaque;
2051
2052 if (d->mux_cnt >= MAX_MUX) {
2053 fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
2054 return;
2055 }
2056 d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
2057 d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
2058 d->chr_read[d->mux_cnt] = chr->chr_read;
2059 d->chr_event[d->mux_cnt] = chr->chr_event;
2060 /* Fix up the real driver with mux routines */
2061 if (d->mux_cnt == 0) {
2062 qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
2063 mux_chr_event, chr);
2064 }
2065 chr->focus = d->mux_cnt;
2066 d->mux_cnt++;
2067 }
2068
2069 static CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
2070 {
2071 CharDriverState *chr;
2072 MuxDriver *d;
2073
2074 chr = qemu_mallocz(sizeof(CharDriverState));
2075 if (!chr)
2076 return NULL;
2077 d = qemu_mallocz(sizeof(MuxDriver));
2078 if (!d) {
2079 free(chr);
2080 return NULL;
2081 }
2082
2083 chr->opaque = d;
2084 d->drv = drv;
2085 chr->focus = -1;
2086 chr->chr_write = mux_chr_write;
2087 chr->chr_update_read_handler = mux_chr_update_read_handler;
2088 chr->chr_accept_input = mux_chr_accept_input;
2089 return chr;
2090 }
2091
2092
2093 #ifdef _WIN32
2094
2095 static void socket_cleanup(void)
2096 {
2097 WSACleanup();
2098 }
2099
2100 static int socket_init(void)
2101 {
2102 WSADATA Data;
2103 int ret, err;
2104
2105 ret = WSAStartup(MAKEWORD(2,2), &Data);
2106 if (ret != 0) {
2107 err = WSAGetLastError();
2108 fprintf(stderr, "WSAStartup: %d\n", err);
2109 return -1;
2110 }
2111 atexit(socket_cleanup);
2112 return 0;
2113 }
2114
2115 static int send_all(int fd, const uint8_t *buf, int len1)
2116 {
2117 int ret, len;
2118
2119 len = len1;
2120 while (len > 0) {
2121 ret = send(fd, buf, len, 0);
2122 if (ret < 0) {
2123 int errno;
2124 errno = WSAGetLastError();
2125 if (errno != WSAEWOULDBLOCK) {
2126 return -1;
2127 }
2128 } else if (ret == 0) {
2129 break;
2130 } else {
2131 buf += ret;
2132 len -= ret;
2133 }
2134 }
2135 return len1 - len;
2136 }
2137
2138 #else
2139
2140 static int unix_write(int fd, const uint8_t *buf, int len1)
2141 {
2142 int ret, len;
2143
2144 len = len1;
2145 while (len > 0) {
2146 ret = write(fd, buf, len);
2147 if (ret < 0) {
2148 if (errno != EINTR && errno != EAGAIN)
2149 return -1;
2150 } else if (ret == 0) {
2151 break;
2152 } else {
2153 buf += ret;
2154 len -= ret;
2155 }
2156 }
2157 return len1 - len;
2158 }
2159
2160 static inline int send_all(int fd, const uint8_t *buf, int len1)
2161 {
2162 return unix_write(fd, buf, len1);
2163 }
2164 #endif /* !_WIN32 */
2165
2166 #ifndef _WIN32
2167
2168 typedef struct {
2169 int fd_in, fd_out;
2170 int max_size;
2171 } FDCharDriver;
2172
2173 #define STDIO_MAX_CLIENTS 1
2174 static int stdio_nb_clients = 0;
2175
2176 static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2177 {
2178 FDCharDriver *s = chr->opaque;
2179 return unix_write(s->fd_out, buf, len);
2180 }
2181
2182 static int fd_chr_read_poll(void *opaque)
2183 {
2184 CharDriverState *chr = opaque;
2185 FDCharDriver *s = chr->opaque;
2186
2187 s->max_size = qemu_chr_can_read(chr);
2188 return s->max_size;
2189 }
2190
2191 static void fd_chr_read(void *opaque)
2192 {
2193 CharDriverState *chr = opaque;
2194 FDCharDriver *s = chr->opaque;
2195 int size, len;
2196 uint8_t buf[1024];
2197
2198 len = sizeof(buf);
2199 if (len > s->max_size)
2200 len = s->max_size;
2201 if (len == 0)
2202 return;
2203 size = read(s->fd_in, buf, len);
2204 if (size == 0) {
2205 /* FD has been closed. Remove it from the active list. */
2206 qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
2207 return;
2208 }
2209 if (size > 0) {
2210 qemu_chr_read(chr, buf, size);
2211 }
2212 }
2213
2214 static void fd_chr_update_read_handler(CharDriverState *chr)
2215 {
2216 FDCharDriver *s = chr->opaque;
2217
2218 if (s->fd_in >= 0) {
2219 if (nographic && s->fd_in == 0) {
2220 } else {
2221 qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
2222 fd_chr_read, NULL, chr);
2223 }
2224 }
2225 }
2226
2227 static void fd_chr_close(struct CharDriverState *chr)
2228 {
2229 FDCharDriver *s = chr->opaque;
2230
2231 if (s->fd_in >= 0) {
2232 if (nographic && s->fd_in == 0) {
2233 } else {
2234 qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
2235 }
2236 }
2237
2238 qemu_free(s);
2239 }
2240
2241 /* open a character device to a unix fd */
2242 static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
2243 {
2244 CharDriverState *chr;
2245 FDCharDriver *s;
2246
2247 chr = qemu_mallocz(sizeof(CharDriverState));
2248 if (!chr)
2249 return NULL;
2250 s = qemu_mallocz(sizeof(FDCharDriver));
2251 if (!s) {
2252 free(chr);
2253 return NULL;
2254 }
2255 s->fd_in = fd_in;
2256 s->fd_out = fd_out;
2257 chr->opaque = s;
2258 chr->chr_write = fd_chr_write;
2259 chr->chr_update_read_handler = fd_chr_update_read_handler;
2260 chr->chr_close = fd_chr_close;
2261
2262 qemu_chr_reset(chr);
2263
2264 return chr;
2265 }
2266
2267 static CharDriverState *qemu_chr_open_file_out(const char *file_out)
2268 {
2269 int fd_out;
2270
2271 TFR(fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666));
2272 if (fd_out < 0)
2273 return NULL;
2274 return qemu_chr_open_fd(-1, fd_out);
2275 }
2276
2277 static CharDriverState *qemu_chr_open_pipe(const char *filename)
2278 {
2279 int fd_in, fd_out;
2280 char filename_in[256], filename_out[256];
2281
2282 snprintf(filename_in, 256, "%s.in", filename);
2283 snprintf(filename_out, 256, "%s.out", filename);
2284 TFR(fd_in = open(filename_in, O_RDWR | O_BINARY));
2285 TFR(fd_out = open(filename_out, O_RDWR | O_BINARY));
2286 if (fd_in < 0 || fd_out < 0) {
2287 if (fd_in >= 0)
2288 close(fd_in);
2289 if (fd_out >= 0)
2290 close(fd_out);
2291 TFR(fd_in = fd_out = open(filename, O_RDWR | O_BINARY));
2292 if (fd_in < 0)
2293 return NULL;
2294 }
2295 return qemu_chr_open_fd(fd_in, fd_out);
2296 }
2297
2298
2299 /* for STDIO, we handle the case where several clients use it
2300 (nographic mode) */
2301
2302 #define TERM_FIFO_MAX_SIZE 1
2303
2304 static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
2305 static int term_fifo_size;
2306
2307 static int stdio_read_poll(void *opaque)
2308 {
2309 CharDriverState *chr = opaque;
2310
2311 /* try to flush the queue if needed */
2312 if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
2313 qemu_chr_read(chr, term_fifo, 1);
2314 term_fifo_size = 0;
2315 }
2316 /* see if we can absorb more chars */
2317 if (term_fifo_size == 0)
2318 return 1;
2319 else
2320 return 0;
2321 }
2322
2323 static void stdio_read(void *opaque)
2324 {
2325 int size;
2326 uint8_t buf[1];
2327 CharDriverState *chr = opaque;
2328
2329 size = read(0, buf, 1);
2330 if (size == 0) {
2331 /* stdin has been closed. Remove it from the active list. */
2332 qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2333 return;
2334 }
2335 if (size > 0) {
2336 if (qemu_chr_can_read(chr) > 0) {
2337 qemu_chr_read(chr, buf, 1);
2338 } else if (term_fifo_size == 0) {
2339 term_fifo[term_fifo_size++] = buf[0];
2340 }
2341 }
2342 }
2343
2344 /* init terminal so that we can grab keys */
2345 static struct termios oldtty;
2346 static int old_fd0_flags;
2347 static int term_atexit_done;
2348
2349 static void term_exit(void)
2350 {
2351 tcsetattr (0, TCSANOW, &oldtty);
2352 fcntl(0, F_SETFL, old_fd0_flags);
2353 }
2354
2355 static void term_init(void)
2356 {
2357 struct termios tty;
2358
2359 tcgetattr (0, &tty);
2360 oldtty = tty;
2361 old_fd0_flags = fcntl(0, F_GETFL);
2362
2363 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2364 |INLCR|IGNCR|ICRNL|IXON);
2365 tty.c_oflag |= OPOST;
2366 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
2367 /* if graphical mode, we allow Ctrl-C handling */
2368 if (nographic)
2369 tty.c_lflag &= ~ISIG;
2370 tty.c_cflag &= ~(CSIZE|PARENB);
2371 tty.c_cflag |= CS8;
2372 tty.c_cc[VMIN] = 1;
2373 tty.c_cc[VTIME] = 0;
2374
2375 tcsetattr (0, TCSANOW, &tty);
2376
2377 if (!term_atexit_done++)
2378 atexit(term_exit);
2379
2380 fcntl(0, F_SETFL, O_NONBLOCK);
2381 }
2382
2383 static void qemu_chr_close_stdio(struct CharDriverState *chr)
2384 {
2385 term_exit();
2386 stdio_nb_clients--;
2387 qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2388 fd_chr_close(chr);
2389 }
2390
2391 static CharDriverState *qemu_chr_open_stdio(void)
2392 {
2393 CharDriverState *chr;
2394
2395 if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
2396 return NULL;
2397 chr = qemu_chr_open_fd(0, 1);
2398 chr->chr_close = qemu_chr_close_stdio;
2399 qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
2400 stdio_nb_clients++;
2401 term_init();
2402
2403 return chr;
2404 }
2405
2406 #ifdef __sun__
2407 /* Once Solaris has openpty(), this is going to be removed. */
2408 int openpty(int *amaster, int *aslave, char *name,
2409 struct termios *termp, struct winsize *winp)
2410 {
2411 const char *slave;
2412 int mfd = -1, sfd = -1;
2413
2414 *amaster = *aslave = -1;
2415
2416 mfd = open("/dev/ptmx", O_RDWR | O_NOCTTY);
2417 if (mfd < 0)
2418 goto err;
2419
2420 if (grantpt(mfd) == -1 || unlockpt(mfd) == -1)
2421 goto err;
2422
2423 if ((slave = ptsname(mfd)) == NULL)
2424 goto err;
2425
2426 if ((sfd = open(slave, O_RDONLY | O_NOCTTY)) == -1)
2427 goto err;
2428
2429 if (ioctl(sfd, I_PUSH, "ptem") == -1 ||
2430 (termp != NULL && tcgetattr(sfd, termp) < 0))
2431 goto err;
2432
2433 if (amaster)
2434 *amaster = mfd;
2435 if (aslave)
2436 *aslave = sfd;
2437 if (winp)
2438 ioctl(sfd, TIOCSWINSZ, winp);
2439
2440 return 0;
2441
2442 err:
2443 if (sfd != -1)
2444 close(sfd);
2445 close(mfd);
2446 return -1;
2447 }
2448
2449 void cfmakeraw (struct termios *termios_p)
2450 {
2451 termios_p->c_iflag &=
2452 ~(IGNBRK|BRKINT|PARMRK|ISTRIP|INLCR|IGNCR|ICRNL|IXON);
2453 termios_p->c_oflag &= ~OPOST;
2454 termios_p->c_lflag &= ~(ECHO|ECHONL|ICANON|ISIG|IEXTEN);
2455 termios_p->c_cflag &= ~(CSIZE|PARENB);
2456 termios_p->c_cflag |= CS8;
2457
2458 termios_p->c_cc[VMIN] = 0;
2459 termios_p->c_cc[VTIME] = 0;
2460 }
2461 #endif
2462
2463 #if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
2464 || defined(__NetBSD__) || defined(__OpenBSD__)
2465
2466 typedef struct {
2467 int fd;
2468 int connected;
2469 int polling;
2470 int read_bytes;
2471 QEMUTimer *timer;
2472 } PtyCharDriver;
2473
2474 static void pty_chr_update_read_handler(CharDriverState *chr);
2475 static void pty_chr_state(CharDriverState *chr, int connected);
2476
2477 static int pty_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2478 {
2479 PtyCharDriver *s = chr->opaque;
2480
2481 if (!s->connected) {
2482 /* guest sends data, check for (re-)connect */
2483 pty_chr_update_read_handler(chr);
2484 return 0;
2485 }
2486 return unix_write(s->fd, buf, len);
2487 }
2488
2489 static int pty_chr_read_poll(void *opaque)
2490 {
2491 CharDriverState *chr = opaque;
2492 PtyCharDriver *s = chr->opaque;
2493
2494 s->read_bytes = qemu_chr_can_read(chr);
2495 return s->read_bytes;
2496 }
2497
2498 static void pty_chr_read(void *opaque)
2499 {
2500 CharDriverState *chr = opaque;
2501 PtyCharDriver *s = chr->opaque;
2502 int size, len;
2503 uint8_t buf[1024];
2504
2505 len = sizeof(buf);
2506 if (len > s->read_bytes)
2507 len = s->read_bytes;
2508 if (len == 0)
2509 return;
2510 size = read(s->fd, buf, len);
2511 if ((size == -1 && errno == EIO) ||
2512 (size == 0)) {
2513 pty_chr_state(chr, 0);
2514 return;
2515 }
2516 if (size > 0) {
2517 pty_chr_state(chr, 1);
2518 qemu_chr_read(chr, buf, size);
2519 }
2520 }
2521
2522 static void pty_chr_update_read_handler(CharDriverState *chr)
2523 {
2524 PtyCharDriver *s = chr->opaque;
2525
2526 qemu_set_fd_handler2(s->fd, pty_chr_read_poll,
2527 pty_chr_read, NULL, chr);
2528 s->polling = 1;
2529 /*
2530 * Short timeout here: just need wait long enougth that qemu makes
2531 * it through the poll loop once. When reconnected we want a
2532 * short timeout so we notice it almost instantly. Otherwise
2533 * read() gives us -EIO instantly, making pty_chr_state() reset the
2534 * timeout to the normal (much longer) poll interval before the
2535 * timer triggers.
2536 */
2537 qemu_mod_timer(s->timer, qemu_get_clock(rt_clock) + 10);
2538 }
2539
2540 static void pty_chr_state(CharDriverState *chr, int connected)
2541 {
2542 PtyCharDriver *s = chr->opaque;
2543
2544 if (!connected) {
2545 qemu_set_fd_handler2(s->fd, NULL, NULL, NULL, NULL);
2546 s->connected = 0;
2547 s->polling = 0;
2548 /* (re-)connect poll interval for idle guests: once per second.
2549 * We check more frequently in case the guests sends data to
2550 * the virtual device linked to our pty. */
2551 qemu_mod_timer(s->timer, qemu_get_clock(rt_clock) + 1000);
2552 } else {
2553 if (!s->connected)
2554 qemu_chr_reset(chr);
2555 s->connected = 1;
2556 }
2557 }
2558
2559 static void pty_chr_timer(void *opaque)
2560 {
2561 struct CharDriverState *chr = opaque;
2562 PtyCharDriver *s = chr->opaque;
2563
2564 if (s->connected)
2565 return;
2566 if (s->polling) {
2567 /* If we arrive here without polling being cleared due
2568 * read returning -EIO, then we are (re-)connected */
2569 pty_chr_state(chr, 1);
2570 return;
2571 }
2572
2573 /* Next poll ... */
2574 pty_chr_update_read_handler(chr);
2575 }
2576
2577 static void pty_chr_close(struct CharDriverState *chr)
2578 {
2579 PtyCharDriver *s = chr->opaque;
2580
2581 qemu_set_fd_handler2(s->fd, NULL, NULL, NULL, NULL);
2582 close(s->fd);
2583 qemu_free(s);
2584 }
2585
2586 static CharDriverState *qemu_chr_open_pty(void)
2587 {
2588 CharDriverState *chr;
2589 PtyCharDriver *s;
2590 struct termios tty;
2591 int slave_fd;
2592 #if defined(__OpenBSD__)
2593 char pty_name[PATH_MAX];
2594 #define q_ptsname(x) pty_name
2595 #else
2596 char *pty_name = NULL;
2597 #define q_ptsname(x) ptsname(x)
2598 #endif
2599
2600 chr = qemu_mallocz(sizeof(CharDriverState));
2601 if (!chr)
2602 return NULL;
2603 s = qemu_mallocz(sizeof(PtyCharDriver));
2604 if (!s) {
2605 qemu_free(chr);
2606 return NULL;
2607 }
2608
2609 if (openpty(&s->fd, &slave_fd, pty_name, NULL, NULL) < 0) {
2610 return NULL;
2611 }
2612
2613 /* Set raw attributes on the pty. */
2614 cfmakeraw(&tty);
2615 tcsetattr(slave_fd, TCSAFLUSH, &tty);
2616 close(slave_fd);
2617
2618 fprintf(stderr, "char device redirected to %s\n", q_ptsname(s->fd));
2619
2620 chr->opaque = s;
2621 chr->chr_write = pty_chr_write;
2622 chr->chr_update_read_handler = pty_chr_update_read_handler;
2623 chr->chr_close = pty_chr_close;
2624
2625 s->timer = qemu_new_timer(rt_clock, pty_chr_timer, chr);
2626
2627 return chr;
2628 }
2629
2630 static void tty_serial_init(int fd, int speed,
2631 int parity, int data_bits, int stop_bits)
2632 {
2633 struct termios tty;
2634 speed_t spd;
2635
2636 #if 0
2637 printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
2638 speed, parity, data_bits, stop_bits);
2639 #endif
2640 tcgetattr (fd, &tty);
2641
2642 #define MARGIN 1.1
2643 if (speed <= 50 * MARGIN)
2644 spd = B50;
2645 else if (speed <= 75 * MARGIN)
2646 spd = B75;
2647 else if (speed <= 300 * MARGIN)
2648 spd = B300;
2649 else if (speed <= 600 * MARGIN)
2650 spd = B600;
2651 else if (speed <= 1200 * MARGIN)
2652 spd = B1200;
2653 else if (speed <= 2400 * MARGIN)
2654 spd = B2400;
2655 else if (speed <= 4800 * MARGIN)
2656 spd = B4800;
2657 else if (speed <= 9600 * MARGIN)
2658 spd = B9600;
2659 else if (speed <= 19200 * MARGIN)
2660 spd = B19200;
2661 else if (speed <= 38400 * MARGIN)
2662 spd = B38400;
2663 else if (speed <= 57600 * MARGIN)
2664 spd = B57600;
2665 else if (speed <= 115200 * MARGIN)
2666 spd = B115200;
2667 else
2668 spd = B115200;
2669
2670 cfsetispeed(&tty, spd);
2671 cfsetospeed(&tty, spd);
2672
2673 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2674 |INLCR|IGNCR|ICRNL|IXON);
2675 tty.c_oflag |= OPOST;
2676 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
2677 tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
2678 switch(data_bits) {
2679 default:
2680 case 8:
2681 tty.c_cflag |= CS8;
2682 break;
2683 case 7:
2684 tty.c_cflag |= CS7;
2685 break;
2686 case 6:
2687 tty.c_cflag |= CS6;
2688 break;
2689 case 5:
2690 tty.c_cflag |= CS5;
2691 break;
2692 }
2693 switch(parity) {
2694 default:
2695 case 'N':
2696 break;
2697 case 'E':
2698 tty.c_cflag |= PARENB;
2699 break;
2700 case 'O':
2701 tty.c_cflag |= PARENB | PARODD;
2702 break;
2703 }
2704 if (stop_bits == 2)
2705 tty.c_cflag |= CSTOPB;
2706
2707 tcsetattr (fd, TCSANOW, &tty);
2708 }
2709
2710 static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
2711 {
2712 FDCharDriver *s = chr->opaque;
2713
2714 switch(cmd) {
2715 case CHR_IOCTL_SERIAL_SET_PARAMS:
2716 {
2717 QEMUSerialSetParams *ssp = arg;
2718 tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
2719 ssp->data_bits, ssp->stop_bits);
2720 }
2721 break;
2722 case CHR_IOCTL_SERIAL_SET_BREAK:
2723 {
2724 int enable = *(int *)arg;
2725 if (enable)
2726 tcsendbreak(s->fd_in, 1);
2727 }
2728 break;
2729 case CHR_IOCTL_SERIAL_GET_TIOCM:
2730 {
2731 int sarg = 0;
2732 int *targ = (int *)arg;
2733 ioctl(s->fd_in, TIOCMGET, &sarg);
2734 *targ = 0;
2735 if (sarg | TIOCM_CTS)
2736 *targ |= CHR_TIOCM_CTS;
2737 if (sarg | TIOCM_CAR)
2738 *targ |= CHR_TIOCM_CAR;
2739 if (sarg | TIOCM_DSR)
2740 *targ |= CHR_TIOCM_DSR;
2741 if (sarg | TIOCM_RI)
2742 *targ |= CHR_TIOCM_RI;
2743 if (sarg | TIOCM_DTR)
2744 *targ |= CHR_TIOCM_DTR;
2745 if (sarg | TIOCM_RTS)
2746 *targ |= CHR_TIOCM_RTS;
2747 }
2748 break;
2749 case CHR_IOCTL_SERIAL_SET_TIOCM:
2750 {
2751 int sarg = *(int *)arg;
2752 int targ = 0;
2753 if (sarg | CHR_TIOCM_DTR)
2754 targ |= TIOCM_DTR;
2755 if (sarg | CHR_TIOCM_RTS)
2756 targ |= TIOCM_RTS;
2757 ioctl(s->fd_in, TIOCMSET, &targ);
2758 }
2759 break;
2760 default:
2761 return -ENOTSUP;
2762 }
2763 return 0;
2764 }
2765
2766 static CharDriverState *qemu_chr_open_tty(const char *filename)
2767 {
2768 CharDriverState *chr;
2769 int fd;
2770
2771 TFR(fd = open(filename, O_RDWR | O_NONBLOCK));
2772 tty_serial_init(fd, 115200, 'N', 8, 1);
2773 chr = qemu_chr_open_fd(fd, fd);
2774 if (!chr) {
2775 close(fd);
2776 return NULL;
2777 }
2778 chr->chr_ioctl = tty_serial_ioctl;
2779 qemu_chr_reset(chr);
2780 return chr;
2781 }
2782 #else /* ! __linux__ && ! __sun__ */
2783 static CharDriverState *qemu_chr_open_pty(void)
2784 {
2785 return NULL;
2786 }
2787 #endif /* __linux__ || __sun__ */
2788
2789 #if defined(__linux__)
2790 typedef struct {
2791 int fd;
2792 int mode;
2793 } ParallelCharDriver;
2794
2795 static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
2796 {
2797 if (s->mode != mode) {
2798 int m = mode;
2799 if (ioctl(s->fd, PPSETMODE, &m) < 0)
2800 return 0;
2801 s->mode = mode;
2802 }
2803 return 1;
2804 }
2805
2806 static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
2807 {
2808 ParallelCharDriver *drv = chr->opaque;
2809 int fd = drv->fd;
2810 uint8_t b;
2811
2812 switch(cmd) {
2813 case CHR_IOCTL_PP_READ_DATA:
2814 if (ioctl(fd, PPRDATA, &b) < 0)
2815 return -ENOTSUP;
2816 *(uint8_t *)arg = b;
2817 break;
2818 case CHR_IOCTL_PP_WRITE_DATA:
2819 b = *(uint8_t *)arg;
2820 if (ioctl(fd, PPWDATA, &b) < 0)
2821 return -ENOTSUP;
2822 break;
2823 case CHR_IOCTL_PP_READ_CONTROL:
2824 if (ioctl(fd, PPRCONTROL, &b) < 0)
2825 return -ENOTSUP;
2826 /* Linux gives only the lowest bits, and no way to know data
2827 direction! For better compatibility set the fixed upper
2828 bits. */
2829 *(uint8_t *)arg = b | 0xc0;
2830 break;
2831 case CHR_IOCTL_PP_WRITE_CONTROL:
2832 b = *(uint8_t *)arg;
2833 if (ioctl(fd, PPWCONTROL, &b) < 0)
2834 return -ENOTSUP;
2835 break;
2836 case CHR_IOCTL_PP_READ_STATUS:
2837 if (ioctl(fd, PPRSTATUS, &b) < 0)
2838 return -ENOTSUP;
2839 *(uint8_t *)arg = b;
2840 break;
2841 case CHR_IOCTL_PP_DATA_DIR:
2842 if (ioctl(fd, PPDATADIR, (int *)arg) < 0)
2843 return -ENOTSUP;
2844 break;
2845 case CHR_IOCTL_PP_EPP_READ_ADDR:
2846 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2847 struct ParallelIOArg *parg = arg;
2848 int n = read(fd, parg->buffer, parg->count);
2849 if (n != parg->count) {
2850 return -EIO;
2851 }
2852 }
2853 break;
2854 case CHR_IOCTL_PP_EPP_READ:
2855 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2856 struct ParallelIOArg *parg = arg;
2857 int n = read(fd, parg->buffer, parg->count);
2858 if (n != parg->count) {
2859 return -EIO;
2860 }
2861 }
2862 break;
2863 case CHR_IOCTL_PP_EPP_WRITE_ADDR:
2864 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2865 struct ParallelIOArg *parg = arg;
2866 int n = write(fd, parg->buffer, parg->count);
2867 if (n != parg->count) {
2868 return -EIO;
2869 }
2870 }
2871 break;
2872 case CHR_IOCTL_PP_EPP_WRITE:
2873 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2874 struct ParallelIOArg *parg = arg;
2875 int n = write(fd, parg->buffer, parg->count);
2876 if (n != parg->count) {
2877 return -EIO;
2878 }
2879 }
2880 break;
2881 default:
2882 return -ENOTSUP;
2883 }
2884 return 0;
2885 }
2886
2887 static void pp_close(CharDriverState *chr)
2888 {
2889 ParallelCharDriver *drv = chr->opaque;
2890 int fd = drv->fd;
2891
2892 pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2893 ioctl(fd, PPRELEASE);
2894 close(fd);
2895 qemu_free(drv);
2896 }
2897
2898 static CharDriverState *qemu_chr_open_pp(const char *filename)
2899 {
2900 CharDriverState *chr;
2901 ParallelCharDriver *drv;
2902 int fd;
2903
2904 TFR(fd = open(filename, O_RDWR));
2905 if (fd < 0)
2906 return NULL;
2907
2908 if (ioctl(fd, PPCLAIM) < 0) {
2909 close(fd);
2910 return NULL;
2911 }
2912
2913 drv = qemu_mallocz(sizeof(ParallelCharDriver));
2914 if (!drv) {
2915 close(fd);
2916 return NULL;
2917 }
2918 drv->fd = fd;
2919 drv->mode = IEEE1284_MODE_COMPAT;
2920
2921 chr = qemu_mallocz(sizeof(CharDriverState));
2922 if (!chr) {
2923 qemu_free(drv);
2924 close(fd);
2925 return NULL;
2926 }
2927 chr->chr_write = null_chr_write;
2928 chr->chr_ioctl = pp_ioctl;
2929 chr->chr_close = pp_close;
2930 chr->opaque = drv;
2931
2932 qemu_chr_reset(chr);
2933
2934 return chr;
2935 }
2936 #endif /* __linux__ */
2937
2938 #else /* _WIN32 */
2939
2940 typedef struct {
2941 int max_size;
2942 HANDLE hcom, hrecv, hsend;
2943 OVERLAPPED orecv, osend;
2944 BOOL fpipe;
2945 DWORD len;
2946 } WinCharState;
2947
2948 #define NSENDBUF 2048
2949 #define NRECVBUF 2048
2950 #define MAXCONNECT 1
2951 #define NTIMEOUT 5000
2952
2953 static int win_chr_poll(void *opaque);
2954 static int win_chr_pipe_poll(void *opaque);
2955
2956 static void win_chr_close(CharDriverState *chr)
2957 {
2958 WinCharState *s = chr->opaque;
2959
2960 if (s->hsend) {
2961 CloseHandle(s->hsend);
2962 s->hsend = NULL;
2963 }
2964 if (s->hrecv) {
2965 CloseHandle(s->hrecv);
2966 s->hrecv = NULL;
2967 }
2968 if (s->hcom) {
2969 CloseHandle(s->hcom);
2970 s->hcom = NULL;
2971 }
2972 if (s->fpipe)
2973 qemu_del_polling_cb(win_chr_pipe_poll, chr);
2974 else
2975 qemu_del_polling_cb(win_chr_poll, chr);
2976 }
2977
2978 static int win_chr_init(CharDriverState *chr, const char *filename)
2979 {
2980 WinCharState *s = chr->opaque;
2981 COMMCONFIG comcfg;
2982 COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2983 COMSTAT comstat;
2984 DWORD size;
2985 DWORD err;
2986
2987 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2988 if (!s->hsend) {
2989 fprintf(stderr, "Failed CreateEvent\n");
2990 goto fail;
2991 }
2992 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2993 if (!s->hrecv) {
2994 fprintf(stderr, "Failed CreateEvent\n");
2995 goto fail;
2996 }
2997
2998 s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2999 OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
3000 if (s->hcom == INVALID_HANDLE_VALUE) {
3001 fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
3002 s->hcom = NULL;
3003 goto fail;
3004 }
3005
3006 if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
3007 fprintf(stderr, "Failed SetupComm\n");
3008 goto fail;
3009 }
3010
3011 ZeroMemory(&comcfg, sizeof(COMMCONFIG));
3012 size = sizeof(COMMCONFIG);
3013 GetDefaultCommConfig(filename, &comcfg, &size);
3014 comcfg.dcb.DCBlength = sizeof(DCB);
3015 CommConfigDialog(filename, NULL, &comcfg);
3016
3017 if (!SetCommState(s->hcom, &comcfg.dcb)) {
3018 fprintf(stderr, "Failed SetCommState\n");
3019 goto fail;
3020 }
3021
3022 if (!SetCommMask(s->hcom, EV_ERR)) {
3023 fprintf(stderr, "Failed SetCommMask\n");
3024 goto fail;
3025 }
3026
3027 cto.ReadIntervalTimeout = MAXDWORD;
3028 if (!SetCommTimeouts(s->hcom, &cto)) {
3029 fprintf(stderr, "Failed SetCommTimeouts\n");
3030 goto fail;
3031 }
3032
3033 if (!ClearCommError(s->hcom, &err, &comstat)) {
3034 fprintf(stderr, "Failed ClearCommError\n");
3035 goto fail;
3036 }
3037 qemu_add_polling_cb(win_chr_poll, chr);
3038 return 0;
3039
3040 fail:
3041 win_chr_close(chr);
3042 return -1;
3043 }
3044
3045 static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
3046 {
3047 WinCharState *s = chr->opaque;
3048 DWORD len, ret, size, err;
3049
3050 len = len1;
3051 ZeroMemory(&s->osend, sizeof(s->osend));
3052 s->osend.hEvent = s->hsend;
3053 while (len > 0) {
3054 if (s->hsend)
3055 ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
3056 else
3057 ret = WriteFile(s->hcom, buf, len, &size, NULL);
3058 if (!ret) {
3059 err = GetLastError();
3060 if (err == ERROR_IO_PENDING) {
3061 ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
3062 if (ret) {
3063 buf += size;
3064 len -= size;
3065 } else {
3066 break;
3067 }
3068 } else {
3069 break;
3070 }
3071 } else {
3072 buf += size;
3073 len -= size;
3074 }
3075 }
3076 return len1 - len;
3077 }
3078
3079 static int win_chr_read_poll(CharDriverState *chr)
3080 {
3081 WinCharState *s = chr->opaque;
3082
3083 s->max_size = qemu_chr_can_read(chr);
3084 return s->max_size;
3085 }
3086
3087 static void win_chr_readfile(CharDriverState *chr)
3088 {
3089 WinCharState *s = chr->opaque;
3090 int ret, err;
3091 uint8_t buf[1024];
3092 DWORD size;
3093
3094 ZeroMemory(&s->orecv, sizeof(s->orecv));
3095 s->orecv.hEvent = s->hrecv;
3096 ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
3097 if (!ret) {
3098 err = GetLastError();
3099 if (err == ERROR_IO_PENDING) {
3100 ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
3101 }
3102 }
3103
3104 if (size > 0) {
3105 qemu_chr_read(chr, buf, size);
3106 }
3107 }
3108
3109 static void win_chr_read(CharDriverState *chr)
3110 {
3111 WinCharState *s = chr->opaque;
3112
3113 if (s->len > s->max_size)
3114 s->len = s->max_size;
3115 if (s->len == 0)
3116 return;
3117
3118 win_chr_readfile(chr);
3119 }
3120
3121 static int win_chr_poll(void *opaque)
3122 {
3123 CharDriverState *chr = opaque;
3124 WinCharState *s = chr->opaque;
3125 COMSTAT status;
3126 DWORD comerr;
3127
3128 ClearCommError(s->hcom, &comerr, &status);
3129 if (status.cbInQue > 0) {
3130 s->len = status.cbInQue;
3131 win_chr_read_poll(chr);
3132 win_chr_read(chr);
3133 return 1;
3134 }
3135 return 0;
3136 }
3137
3138 static CharDriverState *qemu_chr_open_win(const char *filename)
3139 {
3140 CharDriverState *chr;
3141 WinCharState *s;
3142
3143 chr = qemu_mallocz(sizeof(CharDriverState));
3144 if (!chr)
3145 return NULL;
3146 s = qemu_mallocz(sizeof(WinCharState));
3147 if (!s) {
3148 free(chr);
3149 return NULL;
3150 }
3151 chr->opaque = s;
3152 chr->chr_write = win_chr_write;
3153 chr->chr_close = win_chr_close;
3154
3155 if (win_chr_init(chr, filename) < 0) {
3156 free(s);
3157 free(chr);
3158 return NULL;
3159 }
3160 qemu_chr_reset(chr);
3161 return chr;
3162 }
3163
3164 static int win_chr_pipe_poll(void *opaque)
3165 {
3166 CharDriverState *chr = opaque;
3167 WinCharState *s = chr->opaque;
3168 DWORD size;
3169
3170 PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
3171 if (size > 0) {
3172 s->len = size;
3173 win_chr_read_poll(chr);
3174 win_chr_read(chr);
3175 return 1;
3176 }
3177 return 0;
3178 }
3179
3180 static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
3181 {
3182 WinCharState *s = chr->opaque;
3183 OVERLAPPED ov;
3184 int ret;
3185 DWORD size;
3186 char openname[256];
3187
3188 s->fpipe = TRUE;
3189
3190 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
3191 if (!s->hsend) {
3192 fprintf(stderr, "Failed CreateEvent\n");
3193 goto fail;
3194 }
3195 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
3196 if (!s->hrecv) {
3197 fprintf(stderr, "Failed CreateEvent\n");
3198 goto fail;
3199 }
3200
3201 snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
3202 s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
3203 PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
3204 PIPE_WAIT,
3205 MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
3206 if (s->hcom == INVALID_HANDLE_VALUE) {
3207 fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
3208 s->hcom = NULL;
3209 goto fail;
3210 }
3211
3212 ZeroMemory(&ov, sizeof(ov));
3213 ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
3214 ret = ConnectNamedPipe(s->hcom, &ov);
3215 if (ret) {
3216 fprintf(stderr, "Failed ConnectNamedPipe\n");
3217 goto fail;
3218 }
3219
3220 ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
3221 if (!ret) {
3222 fprintf(stderr, "Failed GetOverlappedResult\n");
3223 if (ov.hEvent) {
3224 CloseHandle(ov.hEvent);
3225 ov.hEvent = NULL;
3226 }
3227 goto fail;
3228 }
3229
3230 if (ov.hEvent) {
3231 CloseHandle(ov.hEvent);
3232 ov.hEvent = NULL;
3233 }
3234 qemu_add_polling_cb(win_chr_pipe_poll, chr);
3235 return 0;
3236
3237 fail:
3238 win_chr_close(chr);
3239 return -1;
3240 }
3241
3242
3243 static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
3244 {
3245 CharDriverState *chr;
3246 WinCharState *s;
3247
3248 chr = qemu_mallocz(sizeof(CharDriverState));
3249 if (!chr)
3250 return NULL;
3251 s = qemu_mallocz(sizeof(WinCharState));
3252 if (!s) {
3253 free(chr);
3254 return NULL;
3255 }
3256 chr->opaque = s;
3257 chr->chr_write = win_chr_write;
3258 chr->chr_close = win_chr_close;
3259
3260 if (win_chr_pipe_init(chr, filename) < 0) {
3261 free(s);
3262 free(chr);
3263 return NULL;
3264 }
3265 qemu_chr_reset(chr);
3266 return chr;
3267 }
3268
3269 static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
3270 {
3271 CharDriverState *chr;
3272 WinCharState *s;
3273
3274 chr = qemu_mallocz(sizeof(CharDriverState));
3275 if (!chr)
3276 return NULL;
3277 s = qemu_mallocz(sizeof(WinCharState));
3278 if (!s) {
3279 free(chr);
3280 return NULL;
3281 }
3282 s->hcom = fd_out;
3283 chr->opaque = s;
3284 chr->chr_write = win_chr_write;
3285 qemu_chr_reset(chr);
3286 return chr;
3287 }
3288
3289 static CharDriverState *qemu_chr_open_win_con(const char *filename)
3290 {
3291 return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
3292 }
3293
3294 static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
3295 {
3296 HANDLE fd_out;
3297
3298 fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
3299 OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
3300 if (fd_out == INVALID_HANDLE_VALUE)
3301 return NULL;
3302
3303 return qemu_chr_open_win_file(fd_out);
3304 }
3305 #endif /* !_WIN32 */
3306
3307 /***********************************************************/
3308 /* UDP Net console */
3309
3310 typedef struct {
3311 int fd;
3312 struct sockaddr_in daddr;
3313 uint8_t buf[1024];
3314 int bufcnt;
3315 int bufptr;
3316 int max_size;
3317 } NetCharDriver;
3318
3319 static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
3320 {
3321 NetCharDriver *s = chr->opaque;
3322
3323 return sendto(s->fd, buf, len, 0,
3324 (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
3325 }
3326
3327 static int udp_chr_read_poll(void *opaque)
3328 {
3329 CharDriverState *chr = opaque;
3330 NetCharDriver *s = chr->opaque;
3331
3332 s->max_size = qemu_chr_can_read(chr);
3333
3334 /* If there were any stray characters in the queue process them
3335 * first
3336 */
3337 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
3338 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
3339 s->bufptr++;
3340 s->max_size = qemu_chr_can_read(chr);
3341 }
3342 return s->max_size;
3343 }
3344
3345 static void udp_chr_read(void *opaque)
3346 {
3347 CharDriverState *chr = opaque;
3348 NetCharDriver *s = chr->opaque;
3349
3350 if (s->max_size == 0)
3351 return;
3352 s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
3353 s->bufptr = s->bufcnt;
3354 if (s->bufcnt <= 0)
3355 return;
3356
3357 s->bufptr = 0;
3358 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
3359 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
3360 s->bufptr++;
3361 s->max_size = qemu_chr_can_read(chr);
3362 }
3363 }
3364
3365 static void udp_chr_update_read_handler(CharDriverState *chr)
3366 {
3367 NetCharDriver *s = chr->opaque;
3368
3369 if (s->fd >= 0) {
3370 qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
3371 udp_chr_read, NULL, chr);
3372 }
3373 }
3374
3375 int parse_host_port(struct sockaddr_in *saddr, const char *str);
3376 #ifndef _WIN32
3377 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
3378 #endif
3379 int parse_host_src_port(struct sockaddr_in *haddr,
3380 struct sockaddr_in *saddr,
3381 const char *str);
3382
3383 static CharDriverState *qemu_chr_open_udp(const char *def)
3384 {
3385 CharDriverState *chr = NULL;
3386 NetCharDriver *s = NULL;
3387 int fd = -1;
3388 struct sockaddr_in saddr;
3389
3390 chr = qemu_mallocz(sizeof(CharDriverState));
3391 if (!chr)
3392 goto return_err;
3393 s = qemu_mallocz(sizeof(NetCharDriver));
3394 if (!s)
3395 goto return_err;
3396
3397 fd = socket(PF_INET, SOCK_DGRAM, 0);
3398 if (fd < 0) {
3399 perror("socket(PF_INET, SOCK_DGRAM)");
3400 goto return_err;
3401 }
3402
3403 if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
3404 printf("Could not parse: %s\n", def);
3405 goto return_err;
3406 }
3407
3408 if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
3409 {
3410 perror("bind");
3411 goto return_err;
3412 }
3413
3414 s->fd = fd;
3415 s->bufcnt = 0;
3416 s->bufptr = 0;
3417 chr->opaque = s;
3418 chr->chr_write = udp_chr_write;
3419 chr->chr_update_read_handler = udp_chr_update_read_handler;
3420 return chr;
3421
3422 return_err:
3423 if (chr)
3424 free(chr);
3425 if (s)
3426 free(s);
3427 if (fd >= 0)
3428 closesocket(fd);
3429 return NULL;
3430 }
3431
3432 /***********************************************************/
3433 /* TCP Net console */
3434
3435 typedef struct {
3436 int fd, listen_fd;
3437 int connected;
3438 int max_size;
3439 int do_telnetopt;
3440 int do_nodelay;
3441 int is_unix;
3442 } TCPCharDriver;
3443
3444 static void tcp_chr_accept(void *opaque);
3445
3446 static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
3447 {
3448 TCPCharDriver *s = chr->opaque;
3449 if (s->connected) {
3450 return send_all(s->fd, buf, len);
3451 } else {
3452 /* XXX: indicate an error ? */
3453 return len;
3454 }
3455 }
3456
3457 static int tcp_chr_read_poll(void *opaque)
3458 {
3459 CharDriverState *chr = opaque;
3460 TCPCharDriver *s = chr->opaque;
3461 if (!s->connected)
3462 return 0;
3463 s->max_size = qemu_chr_can_read(chr);
3464 return s->max_size;
3465 }
3466
3467 #define IAC 255
3468 #define IAC_BREAK 243
3469 static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
3470 TCPCharDriver *s,
3471 uint8_t *buf, int *size)
3472 {
3473 /* Handle any telnet client's basic IAC options to satisfy char by
3474 * char mode with no echo. All IAC options will be removed from
3475 * the buf and the do_telnetopt variable will be used to track the
3476 * state of the width of the IAC information.
3477 *
3478 * IAC commands come in sets of 3 bytes with the exception of the
3479 * "IAC BREAK" command and the double IAC.
3480 */
3481
3482 int i;
3483 int j = 0;
3484
3485 for (i = 0; i < *size; i++) {
3486 if (s->do_telnetopt > 1) {
3487 if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
3488 /* Double IAC means send an IAC */
3489 if (j != i)
3490 buf[j] = buf[i];
3491 j++;
3492 s->do_telnetopt = 1;
3493 } else {
3494 if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
3495 /* Handle IAC break commands by sending a serial break */
3496 qemu_chr_event(chr, CHR_EVENT_BREAK);
3497 s->do_telnetopt++;
3498 }
3499 s->do_telnetopt++;
3500 }
3501 if (s->do_telnetopt >= 4) {
3502 s->do_telnetopt = 1;
3503 }
3504 } else {
3505 if ((unsigned char)buf[i] == IAC) {
3506 s->do_telnetopt = 2;
3507 } else {
3508 if (j != i)
3509 buf[j] = buf[i];
3510 j++;
3511 }
3512 }
3513 }
3514 *size = j;
3515 }
3516
3517 static void tcp_chr_read(void *opaque)
3518 {
3519 CharDriverState *chr = opaque;
3520 TCPCharDriver *s = chr->opaque;
3521 uint8_t buf[1024];
3522 int len, size;
3523
3524 if (!s->connected || s->max_size <= 0)
3525 return;
3526 len = sizeof(buf);
3527 if (len > s->max_size)
3528 len = s->max_size;
3529 size = recv(s->fd, buf, len, 0);
3530 if (size == 0) {
3531 /* connection closed */
3532 s->connected = 0;
3533 if (s->listen_fd >= 0) {
3534 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3535 }
3536 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3537 closesocket(s->fd);
3538 s->fd = -1;
3539 } else if (size > 0) {
3540 if (s->do_telnetopt)
3541 tcp_chr_process_IAC_bytes(chr, s, buf, &size);
3542 if (size > 0)
3543 qemu_chr_read(chr, buf, size);
3544 }
3545 }
3546
3547 static void tcp_chr_connect(void *opaque)
3548 {
3549 CharDriverState *chr = opaque;
3550 TCPCharDriver *s = chr->opaque;
3551
3552 s->connected = 1;
3553 qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
3554 tcp_chr_read, NULL, chr);
3555 qemu_chr_reset(chr);
3556 }
3557
3558 #define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
3559 static void tcp_chr_telnet_init(int fd)
3560 {
3561 char buf[3];
3562 /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
3563 IACSET(buf, 0xff, 0xfb, 0x01); /* IAC WILL ECHO */
3564 send(fd, (char *)buf, 3, 0);
3565 IACSET(buf, 0xff, 0xfb, 0x03); /* IAC WILL Suppress go ahead */
3566 send(fd, (char *)buf, 3, 0);
3567 IACSET(buf, 0xff, 0xfb, 0x00); /* IAC WILL Binary */
3568 send(fd, (char *)buf, 3, 0);
3569 IACSET(buf, 0xff, 0xfd, 0x00); /* IAC DO Binary */
3570 send(fd, (char *)buf, 3, 0);
3571 }
3572
3573 static void socket_set_nodelay(int fd)
3574 {
3575 int val = 1;
3576 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
3577 }
3578
3579 static void tcp_chr_accept(void *opaque)
3580 {
3581 CharDriverState *chr = opaque;
3582 TCPCharDriver *s = chr->opaque;
3583 struct sockaddr_in saddr;
3584 #ifndef _WIN32
3585 struct sockaddr_un uaddr;
3586 #endif
3587 struct sockaddr *addr;
3588 socklen_t len;
3589 int fd;
3590
3591 for(;;) {
3592 #ifndef _WIN32
3593 if (s->is_unix) {
3594 len = sizeof(uaddr);
3595 addr = (struct sockaddr *)&uaddr;
3596 } else
3597 #endif
3598 {
3599 len = sizeof(saddr);
3600 addr = (struct sockaddr *)&saddr;
3601 }
3602 fd = accept(s->listen_fd, addr, &len);
3603 if (fd < 0 && errno != EINTR) {
3604 return;
3605 } else if (fd >= 0) {
3606 if (s->do_telnetopt)
3607 tcp_chr_telnet_init(fd);
3608 break;
3609 }
3610 }
3611 socket_set_nonblock(fd);
3612 if (s->do_nodelay)
3613 socket_set_nodelay(fd);
3614 s->fd = fd;
3615 qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
3616 tcp_chr_connect(chr);
3617 }
3618
3619 static void tcp_chr_close(CharDriverState *chr)
3620 {
3621 TCPCharDriver *s = chr->opaque;
3622 if (s->fd >= 0)
3623 closesocket(s->fd);
3624 if (s->listen_fd >= 0)
3625 closesocket(s->listen_fd);
3626 qemu_free(s);
3627 }
3628
3629 static CharDriverState *qemu_chr_open_tcp(const char *host_str,
3630 int is_telnet,
3631 int is_unix)
3632 {
3633 CharDriverState *chr = NULL;
3634 TCPCharDriver *s = NULL;
3635 int fd = -1, ret, err, val;
3636 int is_listen = 0;
3637 int is_waitconnect = 1;
3638 int do_nodelay = 0;
3639 const char *ptr;
3640 struct sockaddr_in saddr;
3641 #ifndef _WIN32
3642 struct sockaddr_un uaddr;
3643 #endif
3644 struct sockaddr *addr;
3645 socklen_t addrlen;
3646
3647 #ifndef _WIN32
3648 if (is_unix) {
3649 addr = (struct sockaddr *)&uaddr;
3650 addrlen = sizeof(uaddr);
3651 if (parse_unix_path(&uaddr, host_str) < 0)
3652 goto fail;
3653 } else
3654 #endif
3655 {
3656 addr = (struct sockaddr *)&saddr;
3657 addrlen = sizeof(saddr);
3658 if (parse_host_port(&saddr, host_str) < 0)
3659 goto fail;
3660 }
3661
3662 ptr = host_str;
3663 while((ptr = strchr(ptr,','))) {
3664 ptr++;
3665 if (!strncmp(ptr,"server",6)) {
3666 is_listen = 1;
3667 } else if (!strncmp(ptr,"nowait",6)) {
3668 is_waitconnect = 0;
3669 } else if (!strncmp(ptr,"nodelay",6)) {
3670 do_nodelay = 1;
3671 } else {
3672 printf("Unknown option: %s\n", ptr);
3673 goto fail;
3674 }
3675 }
3676 if (!is_listen)
3677 is_waitconnect = 0;
3678
3679 chr = qemu_mallocz(sizeof(CharDriverState));
3680 if (!chr)
3681 goto fail;
3682 s = qemu_mallocz(sizeof(TCPCharDriver));
3683 if (!s)
3684 goto fail;
3685
3686 #ifndef _WIN32
3687 if (is_unix)
3688 fd = socket(PF_UNIX, SOCK_STREAM, 0);
3689 else
3690 #endif
3691 fd = socket(PF_INET, SOCK_STREAM, 0);
3692
3693 if (fd < 0)
3694 goto fail;
3695
3696 if (!is_waitconnect)
3697 socket_set_nonblock(fd);
3698
3699 s->connected = 0;
3700 s->fd = -1;
3701 s->listen_fd = -1;
3702 s->is_unix = is_unix;
3703 s->do_nodelay = do_nodelay && !is_unix;
3704
3705 chr->opaque = s;
3706 chr->chr_write = tcp_chr_write;
3707 chr->chr_close = tcp_chr_close;
3708
3709 if (is_listen) {
3710 /* allow fast reuse */
3711 #ifndef _WIN32
3712 if (is_unix) {
3713 char path[109];
3714 pstrcpy(path, sizeof(path), uaddr.sun_path);
3715 unlink(path);
3716 } else
3717 #endif
3718 {
3719 val = 1;
3720 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3721 }
3722
3723 ret = bind(fd, addr, addrlen);
3724 if (ret < 0)
3725 goto fail;
3726
3727 ret = listen(fd, 0);
3728 if (ret < 0)
3729 goto fail;
3730
3731 s->listen_fd = fd;
3732 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3733 if (is_telnet)
3734 s->do_telnetopt = 1;
3735 } else {
3736 for(;;) {
3737 ret = connect(fd, addr, addrlen);
3738 if (ret < 0) {
3739 err = socket_error();
3740 if (err == EINTR || err == EWOULDBLOCK) {
3741 } else if (err == EINPROGRESS) {
3742 break;
3743 #ifdef _WIN32
3744 } else if (err == WSAEALREADY) {
3745 break;
3746 #endif
3747 } else {
3748 goto fail;
3749 }
3750 } else {
3751 s->connected = 1;
3752 break;
3753 }
3754 }
3755 s->fd = fd;
3756 socket_set_nodelay(fd);
3757 if (s->connected)
3758 tcp_chr_connect(chr);
3759 else
3760 qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
3761 }
3762
3763 if (is_listen && is_waitconnect) {
3764 printf("QEMU waiting for connection on: %s\n", host_str);
3765 tcp_chr_accept(chr);
3766 socket_set_nonblock(s->listen_fd);
3767 }
3768
3769 return chr;
3770 fail:
3771 if (fd >= 0)
3772 closesocket(fd);
3773 qemu_free(s);
3774 qemu_free(chr);
3775 return NULL;
3776 }
3777
3778 CharDriverState *qemu_chr_open(const char *filename)
3779 {
3780 const char *p;
3781
3782 if (!strcmp(filename, "vc")) {
3783 return text_console_init(&display_state, 0);
3784 } else if (strstart(filename, "vc:", &p)) {
3785 return text_console_init(&display_state, p);
3786 } else if (!strcmp(filename, "null")) {
3787 return qemu_chr_open_null();
3788 } else
3789 if (strstart(filename, "tcp:", &p)) {
3790 return qemu_chr_open_tcp(p, 0, 0);
3791 } else
3792 if (strstart(filename, "telnet:", &p)) {
3793 return qemu_chr_open_tcp(p, 1, 0);
3794 } else
3795 if (strstart(filename, "udp:", &p)) {
3796 return qemu_chr_open_udp(p);
3797 } else
3798 if (strstart(filename, "mon:", &p)) {
3799 CharDriverState *drv = qemu_chr_open(p);
3800 if (drv) {
3801 drv = qemu_chr_open_mux(drv);
3802 monitor_init(drv, !nographic);
3803 return drv;
3804 }
3805 printf("Unable to open driver: %s\n", p);
3806 return 0;
3807 } else
3808 #ifndef _WIN32
3809 if (strstart(filename, "unix:", &p)) {
3810 return qemu_chr_open_tcp(p, 0, 1);
3811 } else if (strstart(filename, "file:", &p)) {
3812 return qemu_chr_open_file_out(p);
3813 } else if (strstart(filename, "pipe:", &p)) {
3814 return qemu_chr_open_pipe(p);
3815 } else if (!strcmp(filename, "pty")) {
3816 return qemu_chr_open_pty();
3817 } else if (!strcmp(filename, "stdio")) {
3818 return qemu_chr_open_stdio();
3819 } else
3820 #if defined(__linux__)
3821 if (strstart(filename, "/dev/parport", NULL)) {
3822 return qemu_chr_open_pp(filename);
3823 } else
3824 #endif
3825 #if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
3826 || defined(__NetBSD__) || defined(__OpenBSD__)
3827 if (strstart(filename, "/dev/", NULL)) {
3828 return qemu_chr_open_tty(filename);
3829 } else
3830 #endif
3831 #else /* !_WIN32 */
3832 if (strstart(filename, "COM", NULL)) {
3833 return qemu_chr_open_win(filename);
3834 } else
3835 if (strstart(filename, "pipe:", &p)) {
3836 return qemu_chr_open_win_pipe(p);
3837 } else
3838 if (strstart(filename, "con:", NULL)) {
3839 return qemu_chr_open_win_con(filename);
3840 } else
3841 if (strstart(filename, "file:", &p)) {
3842 return qemu_chr_open_win_file_out(p);
3843 } else
3844 #endif
3845 #ifdef CONFIG_BRLAPI
3846 if (!strcmp(filename, "braille")) {
3847 return chr_baum_init();
3848 } else
3849 #endif
3850 {
3851 return NULL;
3852 }
3853 }
3854
3855 void qemu_chr_close(CharDriverState *chr)
3856 {
3857 if (chr->chr_close)
3858 chr->chr_close(chr);
3859 qemu_free(chr);
3860 }
3861
3862 /***********************************************************/
3863 /* network device redirectors */
3864
3865 __attribute__ (( unused ))
3866 static void hex_dump(FILE *f, const uint8_t *buf, int size)
3867 {
3868 int len, i, j, c;
3869
3870 for(i=0;i<size;i+=16) {
3871 len = size - i;
3872 if (len > 16)
3873 len = 16;
3874 fprintf(f, "%08x ", i);
3875 for(j=0;j<16;j++) {
3876 if (j < len)
3877 fprintf(f, " %02x", buf[i+j]);
3878 else
3879 fprintf(f, " ");
3880 }
3881 fprintf(f, " ");
3882 for(j=0;j<len;j++) {
3883 c = buf[i+j];
3884 if (c < ' ' || c > '~')
3885 c = '.';
3886 fprintf(f, "%c", c);
3887 }
3888 fprintf(f, "\n");
3889 }
3890 }
3891
3892 static int parse_macaddr(uint8_t *macaddr, const char *p)
3893 {
3894 int i;
3895 char *last_char;
3896 long int offset;
3897
3898 errno = 0;
3899 offset = strtol(p, &last_char, 0);
3900 if (0 == errno && '\0' == *last_char &&
3901 offset >= 0 && offset <= 0xFFFFFF) {
3902 macaddr[3] = (offset & 0xFF0000) >> 16;
3903 macaddr[4] = (offset & 0xFF00) >> 8;
3904 macaddr[5] = offset & 0xFF;
3905 return 0;
3906 } else {
3907 for(i = 0; i < 6; i++) {
3908 macaddr[i] = strtol(p, (char **)&p, 16);
3909 if (i == 5) {
3910 if (*p != '\0')
3911 return -1;
3912 } else {
3913 if (*p != ':' && *p != '-')
3914 return -1;
3915 p++;
3916 }
3917 }
3918 return 0;
3919 }
3920
3921 return -1;
3922 }
3923
3924 static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3925 {
3926 const char *p, *p1;
3927 int len;
3928 p = *pp;
3929 p1 = strchr(p, sep);
3930 if (!p1)
3931 return -1;
3932 len = p1 - p;
3933 p1++;
3934 if (buf_size > 0) {
3935 if (len > buf_size - 1)
3936 len = buf_size - 1;
3937 memcpy(buf, p, len);
3938 buf[len] = '\0';
3939 }
3940 *pp = p1;
3941 return 0;
3942 }
3943
3944 int parse_host_src_port(struct sockaddr_in *haddr,
3945 struct sockaddr_in *saddr,
3946 const char *input_str)
3947 {
3948 char *str = strdup(input_str);
3949 char *host_str = str;
3950 char *src_str;
3951 const char *src_str2;
3952 char *ptr;
3953
3954 /*
3955 * Chop off any extra arguments at the end of the string which
3956 * would start with a comma, then fill in the src port information
3957 * if it was provided else use the "any address" and "any port".
3958 */
3959 if ((ptr = strchr(str,',')))
3960 *ptr = '\0';
3961
3962 if ((src_str = strchr(input_str,'@'))) {
3963 *src_str = '\0';
3964 src_str++;
3965 }
3966
3967 if (parse_host_port(haddr, host_str) < 0)
3968 goto fail;
3969
3970 src_str2 = src_str;
3971 if (!src_str || *src_str == '\0')
3972 src_str2 = ":0";
3973
3974 if (parse_host_port(saddr, src_str2) < 0)
3975 goto fail;
3976
3977 free(str);
3978 return(0);
3979
3980 fail:
3981 free(str);
3982 return -1;
3983 }
3984
3985 int parse_host_port(struct sockaddr_in *saddr, const char *str)
3986 {
3987 char buf[512];
3988 struct hostent *he;
3989 const char *p, *r;
3990 int port;
3991
3992 p = str;
3993 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3994 return -1;
3995 saddr->sin_family = AF_INET;
3996 if (buf[0] == '\0') {
3997 saddr->sin_addr.s_addr = 0;
3998 } else {
3999 if (isdigit(buf[0])) {
4000 if (!inet_aton(buf, &saddr->sin_addr))
4001 return -1;
4002 } else {
4003 if ((he = gethostbyname(buf)) == NULL)
4004 return - 1;
4005 saddr->sin_addr = *(struct in_addr *)he->h_addr;
4006 }
4007 }
4008 port = strtol(p, (char **)&r, 0);
4009 if (r == p)
4010 return -1;
4011 saddr->sin_port = htons(port);
4012 return 0;
4013 }
4014
4015 #ifndef _WIN32
4016 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
4017 {
4018 const char *p;
4019 int len;
4020
4021 len = MIN(108, strlen(str));
4022 p = strchr(str, ',');
4023 if (p)
4024 len = MIN(len, p - str);
4025
4026 memset(uaddr, 0, sizeof(*uaddr));
4027
4028 uaddr->sun_family = AF_UNIX;
4029 memcpy(uaddr->sun_path, str, len);
4030
4031 return 0;
4032 }
4033 #endif
4034
4035 /* find or alloc a new VLAN */
4036 VLANState *qemu_find_vlan(int id)
4037 {
4038 VLANState **pvlan, *vlan;
4039 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4040 if (vlan->id == id)
4041 return vlan;
4042 }
4043 vlan = qemu_mallocz(sizeof(VLANState));
4044 if (!vlan)
4045 return NULL;
4046 vlan->id = id;
4047 vlan->next = NULL;
4048 pvlan = &first_vlan;
4049 while (*pvlan != NULL)
4050 pvlan = &(*pvlan)->next;
4051 *pvlan = vlan;
4052 return vlan;
4053 }
4054
4055 VLANClientState *qemu_new_vlan_client(VLANState *vlan,
4056 IOReadHandler *fd_read,
4057 IOCanRWHandler *fd_can_read,
4058 void *opaque)
4059 {
4060 VLANClientState *vc, **pvc;
4061 vc = qemu_mallocz(sizeof(VLANClientState));
4062 if (!vc)
4063 return NULL;
4064 vc->fd_read = fd_read;
4065 vc->fd_can_read = fd_can_read;
4066 vc->opaque = opaque;
4067 vc->vlan = vlan;
4068
4069 vc->next = NULL;
4070 pvc = &vlan->first_client;
4071 while (*pvc != NULL)
4072 pvc = &(*pvc)->next;
4073 *pvc = vc;
4074 return vc;
4075 }
4076
4077 void qemu_del_vlan_client(VLANClientState *vc)
4078 {
4079 VLANClientState **pvc = &vc->vlan->first_client;
4080
4081 while (*pvc != NULL)
4082 if (*pvc == vc) {
4083 *pvc = vc->next;
4084 free(vc);
4085 break;
4086 } else
4087 pvc = &(*pvc)->next;
4088 }
4089
4090 int qemu_can_send_packet(VLANClientState *vc1)
4091 {
4092 VLANState *vlan = vc1->vlan;
4093 VLANClientState *vc;
4094
4095 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
4096 if (vc != vc1) {
4097 if (vc->fd_can_read && vc->fd_can_read(vc->opaque))
4098 return 1;
4099 }
4100 }
4101 return 0;
4102 }
4103
4104 void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
4105 {
4106 VLANState *vlan = vc1->vlan;
4107 VLANClientState *vc;
4108
4109 #if 0
4110 printf("vlan %d send:\n", vlan->id);
4111 hex_dump(stdout, buf, size);
4112 #endif
4113 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
4114 if (vc != vc1) {
4115 vc->fd_read(vc->opaque, buf, size);
4116 }
4117 }
4118 }
4119
4120 #if defined(CONFIG_SLIRP)
4121
4122 /* slirp network adapter */
4123
4124 static int slirp_inited;
4125 static VLANClientState *slirp_vc;
4126
4127 int slirp_can_output(void)
4128 {
4129 return !slirp_vc || qemu_can_send_packet(slirp_vc);
4130 }
4131
4132 void slirp_output(const uint8_t *pkt, int pkt_len)
4133 {
4134 #if 0
4135 printf("slirp output:\n");
4136 hex_dump(stdout, pkt, pkt_len);
4137 #endif
4138 if (!slirp_vc)
4139 return;
4140 qemu_send_packet(slirp_vc, pkt, pkt_len);
4141 }
4142
4143 static void slirp_receive(void *opaque, const uint8_t *buf, int size)
4144 {
4145 #if 0
4146 printf("slirp input:\n");
4147 hex_dump(stdout, buf, size);
4148 #endif
4149 slirp_input(buf, size);
4150 }
4151
4152 static int net_slirp_init(VLANState *vlan)
4153 {
4154 if (!slirp_inited) {
4155 slirp_inited = 1;
4156 slirp_init();
4157 }
4158 slirp_vc = qemu_new_vlan_client(vlan,
4159 slirp_receive, NULL, NULL);
4160 snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
4161 return 0;
4162 }
4163
4164 static void net_slirp_redir(const char *redir_str)
4165 {
4166 int is_udp;
4167 char buf[256], *r;
4168 const char *p;
4169 struct in_addr guest_addr;
4170 int host_port, guest_port;
4171
4172 if (!slirp_inited) {
4173 slirp_inited = 1;
4174 slirp_init();
4175 }
4176
4177 p = redir_str;
4178 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
4179 goto fail;
4180 if (!strcmp(buf, "tcp")) {
4181 is_udp = 0;
4182 } else if (!strcmp(buf, "udp")) {
4183 is_udp = 1;
4184 } else {
4185 goto fail;
4186 }
4187
4188 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
4189 goto fail;
4190 host_port = strtol(buf, &r, 0);
4191 if (r == buf)
4192 goto fail;
4193
4194 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
4195 goto fail;
4196 if (buf[0] == '\0') {
4197 pstrcpy(buf, sizeof(buf), "10.0.2.15");
4198 }
4199 if (!inet_aton(buf, &guest_addr))
4200 goto fail;
4201
4202 guest_port = strtol(p, &r, 0);
4203 if (r == p)
4204 goto fail;
4205
4206 if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
4207 fprintf(stderr, "qemu: could not set up redirection\n");
4208 exit(1);
4209 }
4210 return;
4211 fail:
4212 fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
4213 exit(1);
4214 }
4215
4216 #ifndef _WIN32
4217
4218 char smb_dir[1024];
4219
4220 static void erase_dir(char *dir_name)
4221 {
4222 DIR *d;
4223 struct dirent *de;
4224 char filename[1024];
4225
4226 /* erase all the files in the directory */
4227 if ((d = opendir(dir_name)) != 0) {
4228 for(;;) {
4229 de = readdir(d);
4230 if (!de)
4231 break;
4232 if (strcmp(de->d_name, ".") != 0 &&
4233 strcmp(de->d_name, "..") != 0) {
4234 snprintf(filename, sizeof(filename), "%s/%s",
4235 smb_dir, de->d_name);
4236 if (unlink(filename) != 0) /* is it a directory? */
4237 erase_dir(filename);
4238 }
4239 }
4240 closedir(d);
4241 rmdir(dir_name);
4242 }
4243 }
4244
4245 /* automatic user mode samba server configuration */
4246 static void smb_exit(void)
4247 {
4248 erase_dir(smb_dir);
4249 }
4250
4251 /* automatic user mode samba server configuration */
4252 static void net_slirp_smb(const char *exported_dir)
4253 {
4254 char smb_conf[1024];
4255 char smb_cmdline[1024];
4256 FILE *f;
4257
4258 if (!slirp_inited) {
4259 slirp_inited = 1;
4260 slirp_init();
4261 }
4262
4263 /* XXX: better tmp dir construction */
4264 snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
4265 if (mkdir(smb_dir, 0700) < 0) {
4266 fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
4267 exit(1);
4268 }
4269 snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
4270
4271 f = fopen(smb_conf, "w");
4272 if (!f) {
4273 fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
4274 exit(1);
4275 }
4276 fprintf(f,
4277 "[global]\n"
4278 "private dir=%s\n"
4279 "smb ports=0\n"
4280 "socket address=127.0.0.1\n"
4281 "pid directory=%s\n"
4282 "lock directory=%s\n"
4283 "log file=%s/log.smbd\n"
4284 "smb passwd file=%s/smbpasswd\n"
4285 "security = share\n"
4286 "[qemu]\n"
4287 "path=%s\n"
4288 "read only=no\n"
4289 "guest ok=yes\n",
4290 smb_dir,
4291 smb_dir,
4292 smb_dir,
4293 smb_dir,
4294 smb_dir,
4295 exported_dir
4296 );
4297 fclose(f);
4298 atexit(smb_exit);
4299
4300 snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
4301 SMBD_COMMAND, smb_conf);
4302
4303 slirp_add_exec(0, smb_cmdline, 4, 139);
4304 }
4305
4306 #endif /* !defined(_WIN32) */
4307 void do_info_slirp(void)
4308 {
4309 slirp_stats();
4310 }
4311
4312 #endif /* CONFIG_SLIRP */
4313
4314 #if !defined(_WIN32)
4315
4316 typedef struct TAPState {
4317 VLANClientState *vc;
4318 int fd;
4319 char down_script[1024];
4320 } TAPState;
4321
4322 static void tap_receive(void *opaque, const uint8_t *buf, int size)
4323 {
4324 TAPState *s = opaque;
4325 int ret;
4326 for(;;) {
4327 ret = write(s->fd, buf, size);
4328 if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
4329 } else {
4330 break;
4331 }
4332 }
4333 }
4334
4335 static void tap_send(void *opaque)
4336 {
4337 TAPState *s = opaque;
4338 uint8_t buf[4096];
4339 int size;
4340
4341 #ifdef __sun__
4342 struct strbuf sbuf;
4343 int f = 0;
4344 sbuf.maxlen = sizeof(buf);
4345 sbuf.buf = buf;
4346 size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
4347 #else
4348 size = read(s->fd, buf, sizeof(buf));
4349 #endif
4350 if (size > 0) {
4351 qemu_send_packet(s->vc, buf, size);
4352 }
4353 }
4354
4355 /* fd support */
4356
4357 static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
4358 {
4359 TAPState *s;
4360
4361 s = qemu_mallocz(sizeof(TAPState));
4362 if (!s)
4363 return NULL;
4364 s->fd = fd;
4365 s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
4366 qemu_set_fd_handler(s->fd, tap_send, NULL, s);
4367 snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
4368 return s;
4369 }
4370
4371 #if defined (_BSD) || defined (__FreeBSD_kernel__)
4372 static int tap_open(char *ifname, int ifname_size)
4373 {
4374 int fd;
4375 char *dev;
4376 struct stat s;
4377
4378 TFR(fd = open("/dev/tap", O_RDWR));
4379 if (fd < 0) {
4380 fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
4381 return -1;
4382 }
4383
4384 fstat(fd, &s);
4385 dev = devname(s.st_rdev, S_IFCHR);
4386 pstrcpy(ifname, ifname_size, dev);
4387
4388 fcntl(fd, F_SETFL, O_NONBLOCK);
4389 return fd;
4390 }
4391 #elif defined(__sun__)
4392 #define TUNNEWPPA (('T'<<16) | 0x0001)
4393 /*
4394 * Allocate TAP device, returns opened fd.
4395 * Stores dev name in the first arg(must be large enough).
4396 */
4397 int tap_alloc(char *dev, size_t dev_size)
4398 {
4399 int tap_fd, if_fd, ppa = -1;
4400 static int ip_fd = 0;
4401 char *ptr;
4402
4403 static int arp_fd = 0;
4404 int ip_muxid, arp_muxid;
4405 struct strioctl strioc_if, strioc_ppa;
4406 int link_type = I_PLINK;;
4407 struct lifreq ifr;
4408 char actual_name[32] = "";
4409
4410 memset(&ifr, 0x0, sizeof(ifr));
4411
4412 if( *dev ){
4413 ptr = dev;
4414 while( *ptr && !isdigit((int)*ptr) ) ptr++;
4415 ppa = atoi(ptr);
4416 }
4417
4418 /* Check if IP device was opened */
4419 if( ip_fd )
4420 close(ip_fd);
4421
4422 TFR(ip_fd = open("/dev/udp", O_RDWR, 0));
4423 if (ip_fd < 0) {
4424 syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
4425 return -1;
4426 }
4427
4428 TFR(tap_fd = open("/dev/tap", O_RDWR, 0));
4429 if (tap_fd < 0) {
4430 syslog(LOG_ERR, "Can't open /dev/tap");
4431 return -1;
4432 }
4433
4434 /* Assign a new PPA and get its unit number. */
4435 strioc_ppa.ic_cmd = TUNNEWPPA;
4436 strioc_ppa.ic_timout = 0;
4437 strioc_ppa.ic_len = sizeof(ppa);
4438 strioc_ppa.ic_dp = (char *)&ppa;
4439 if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
4440 syslog (LOG_ERR, "Can't assign new interface");
4441
4442 TFR(if_fd = open("/dev/tap", O_RDWR, 0));
4443 if (if_fd < 0) {
4444 syslog(LOG_ERR, "Can't open /dev/tap (2)");
4445 return -1;
4446 }
4447 if(ioctl(if_fd, I_PUSH, "ip") < 0){
4448 syslog(LOG_ERR, "Can't push IP module");
4449 return -1;
4450 }
4451
4452 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
4453 syslog(LOG_ERR, "Can't get flags\n");
4454
4455 snprintf (actual_name, 32, "tap%d", ppa);
4456 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
4457
4458 ifr.lifr_ppa = ppa;
4459 /* Assign ppa according to the unit number returned by tun device */
4460
4461 if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
4462 syslog (LOG_ERR, "Can't set PPA %d", ppa);
4463 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
4464 syslog (LOG_ERR, "Can't get flags\n");
4465 /* Push arp module to if_fd */
4466 if (ioctl (if_fd, I_PUSH, "arp") < 0)
4467 syslog (LOG_ERR, "Can't push ARP module (2)");
4468
4469 /* Push arp module to ip_fd */
4470 if (ioctl (ip_fd, I_POP, NULL) < 0)
4471 syslog (LOG_ERR, "I_POP failed\n");
4472 if (ioctl (ip_fd, I_PUSH, "arp") < 0)
4473 syslog (LOG_ERR, "Can't push ARP module (3)\n");
4474 /* Open arp_fd */
4475 TFR(arp_fd = open ("/dev/tap", O_RDWR, 0));
4476 if (arp_fd < 0)
4477 syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
4478
4479 /* Set ifname to arp */
4480 strioc_if.ic_cmd = SIOCSLIFNAME;
4481 strioc_if.ic_timout = 0;
4482 strioc_if.ic_len = sizeof(ifr);
4483 strioc_if.ic_dp = (char *)&ifr;
4484 if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
4485 syslog (LOG_ERR, "Can't set ifname to arp\n");
4486 }
4487
4488 if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
4489 syslog(LOG_ERR, "Can't link TAP device to IP");
4490 return -1;
4491 }
4492
4493 if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
4494 syslog (LOG_ERR, "Can't link TAP device to ARP");
4495
4496 close (if_fd);
4497
4498 memset(&ifr, 0x0, sizeof(ifr));
4499 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
4500 ifr.lifr_ip_muxid = ip_muxid;
4501 ifr.lifr_arp_muxid = arp_muxid;
4502
4503 if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
4504 {
4505 ioctl (ip_fd, I_PUNLINK , arp_muxid);
4506 ioctl (ip_fd, I_PUNLINK, ip_muxid);
4507 syslog (LOG_ERR, "Can't set multiplexor id");
4508 }
4509
4510 snprintf(dev, dev_size, "tap%d", ppa);
4511 return tap_fd;
4512 }
4513
4514 static int tap_open(char *ifname, int ifname_size)
4515 {
4516 char dev[10]="";
4517 int fd;
4518 if( (fd = tap_alloc(dev, sizeof(dev))) < 0 ){
4519 fprintf(stderr, "Cannot allocate TAP device\n");
4520 return -1;
4521 }
4522 pstrcpy(ifname, ifname_size, dev);
4523 fcntl(fd, F_SETFL, O_NONBLOCK);
4524 return fd;
4525 }
4526 #else
4527 static int tap_open(char *ifname, int ifname_size)
4528 {
4529 struct ifreq ifr;
4530 int fd, ret;
4531
4532 TFR(fd = open("/dev/net/tun", O_RDWR));
4533 if (fd < 0) {
4534 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
4535 return -1;
4536 }
4537 memset(&ifr, 0, sizeof(ifr));
4538 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
4539 if (ifname[0] != '\0')
4540 pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
4541 else
4542 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
4543 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
4544 if (ret != 0) {
4545 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
4546 close(fd);
4547 return -1;
4548 }
4549 pstrcpy(ifname, ifname_size, ifr.ifr_name);
4550 fcntl(fd, F_SETFL, O_NONBLOCK);
4551 return fd;
4552 }
4553 #endif
4554
4555 static int launch_script(const char *setup_script, const char *ifname, int fd)
4556 {
4557 int pid, status;
4558 char *args[3];
4559 char **parg;
4560
4561 /* try to launch network script */
4562 pid = fork();
4563 if (pid >= 0) {
4564 if (pid == 0) {
4565 int open_max = sysconf (_SC_OPEN_MAX), i;
4566 for (i = 0; i < open_max; i++)
4567 if (i != STDIN_FILENO &&
4568 i != STDOUT_FILENO &&
4569 i != STDERR_FILENO &&
4570 i != fd)
4571 close(i);
4572
4573 parg = args;
4574 *parg++ = (char *)setup_script;
4575 *parg++ = (char *)ifname;
4576 *parg++ = NULL;
4577 execv(setup_script, args);
4578 _exit(1);
4579 }
4580 while (waitpid(pid, &status, 0) != pid);
4581 if (!WIFEXITED(status) ||
4582 WEXITSTATUS(status) != 0) {
4583 fprintf(stderr, "%s: could not launch network script\n",
4584 setup_script);
4585 return -1;
4586 }
4587 }
4588 return 0;
4589 }
4590
4591 static int net_tap_init(VLANState *vlan, const char *ifname1,
4592 const char *setup_script, const char *down_script)
4593 {
4594 TAPState *s;
4595 int fd;
4596 char ifname[128];
4597
4598 if (ifname1 != NULL)
4599 pstrcpy(ifname, sizeof(ifname), ifname1);
4600 else
4601 ifname[0] = '\0';
4602 TFR(fd = tap_open(ifname, sizeof(ifname)));
4603 if (fd < 0)
4604 return -1;
4605
4606 if (!setup_script || !strcmp(setup_script, "no"))
4607 setup_script = "";
4608 if (setup_script[0] != '\0') {
4609 if (launch_script(setup_script, ifname, fd))
4610 return -1;
4611 }
4612 s = net_tap_fd_init(vlan, fd);
4613 if (!s)
4614 return -1;
4615 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4616 "tap: ifname=%s setup_script=%s", ifname, setup_script);
4617 if (down_script && strcmp(down_script, "no"))
4618 snprintf(s->down_script, sizeof(s->down_script), "%s", down_script);
4619 return 0;
4620 }
4621
4622 #endif /* !_WIN32 */
4623
4624 #if defined(CONFIG_VDE)
4625 typedef struct VDEState {
4626 VLANClientState *vc;
4627 VDECONN *vde;
4628 } VDEState;
4629
4630 static void vde_to_qemu(void *opaque)
4631 {
4632 VDEState *s = opaque;
4633 uint8_t buf[4096];
4634 int size;
4635
4636 size = vde_recv(s->vde, buf, sizeof(buf), 0);
4637 if (size > 0) {
4638 qemu_send_packet(s->vc, buf, size);
4639 }
4640 }
4641
4642 static void vde_from_qemu(void *opaque, const uint8_t *buf, int size)
4643 {
4644 VDEState *s = opaque;
4645 int ret;
4646 for(;;) {
4647 ret = vde_send(s->vde, buf, size, 0);
4648 if (ret < 0 && errno == EINTR) {
4649 } else {
4650 break;
4651 }
4652 }
4653 }
4654
4655 static int net_vde_init(VLANState *vlan, const char *sock, int port,
4656 const char *group, int mode)
4657 {
4658 VDEState *s;
4659 char *init_group = strlen(group) ? (char *)group : NULL;
4660 char *init_sock = strlen(sock) ? (char *)sock : NULL;
4661
4662 struct vde_open_args args = {
4663 .port = port,
4664 .group = init_group,
4665 .mode = mode,
4666 };
4667
4668 s = qemu_mallocz(sizeof(VDEState));
4669 if (!s)
4670 return -1;
4671 s->vde = vde_open(init_sock, "QEMU", &args);
4672 if (!s->vde){
4673 free(s);
4674 return -1;
4675 }
4676 s->vc = qemu_new_vlan_client(vlan, vde_from_qemu, NULL, s);
4677 qemu_set_fd_handler(vde_datafd(s->vde), vde_to_qemu, NULL, s);
4678 snprintf(s->vc->info_str, sizeof(s->vc->info_str), "vde: sock=%s fd=%d",
4679 sock, vde_datafd(s->vde));
4680 return 0;
4681 }
4682 #endif
4683
4684 /* network connection */
4685 typedef struct NetSocketState {
4686 VLANClientState *vc;
4687 int fd;
4688 int state; /* 0 = getting length, 1 = getting data */
4689 int index;
4690 int packet_len;
4691 uint8_t buf[4096];
4692 struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
4693 } NetSocketState;
4694
4695 typedef struct NetSocketListenState {
4696 VLANState *vlan;
4697 int fd;
4698 } NetSocketListenState;
4699
4700 /* XXX: we consider we can send the whole packet without blocking */
4701 static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
4702 {
4703 NetSocketState *s = opaque;
4704 uint32_t len;
4705 len = htonl(size);
4706
4707 send_all(s->fd, (const uint8_t *)&len, sizeof(len));
4708 send_all(s->fd, buf, size);
4709 }
4710
4711 static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
4712 {
4713 NetSocketState *s = opaque;
4714 sendto(s->fd, buf, size, 0,
4715 (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
4716 }
4717
4718 static void net_socket_send(void *opaque)
4719 {
4720 NetSocketState *s = opaque;
4721 int l, size, err;
4722 uint8_t buf1[4096];
4723 const uint8_t *buf;
4724
4725 size = recv(s->fd, buf1, sizeof(buf1), 0);
4726 if (size < 0) {
4727 err = socket_error();
4728 if (err != EWOULDBLOCK)
4729 goto eoc;
4730 } else if (size == 0) {
4731 /* end of connection */
4732 eoc:
4733 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4734 closesocket(s->fd);
4735 return;
4736 }
4737 buf = buf1;
4738 while (size > 0) {
4739 /* reassemble a packet from the network */
4740 switch(s->state) {
4741 case 0:
4742 l = 4 - s->index;
4743 if (l > size)
4744 l = size;
4745 memcpy(s->buf + s->index, buf, l);
4746 buf += l;
4747 size -= l;
4748 s->index += l;
4749 if (s->index == 4) {
4750 /* got length */
4751 s->packet_len = ntohl(*(uint32_t *)s->buf);
4752 s->index = 0;
4753 s->state = 1;
4754 }
4755 break;
4756 case 1:
4757 l = s->packet_len - s->index;
4758 if (l > size)
4759 l = size;
4760 memcpy(s->buf + s->index, buf, l);
4761 s->index += l;
4762 buf += l;
4763 size -= l;
4764 if (s->index >= s->packet_len) {
4765 qemu_send_packet(s->vc, s->buf, s->packet_len);
4766 s->index = 0;
4767 s->state = 0;
4768 }
4769 break;
4770 }
4771 }
4772 }
4773
4774 static void net_socket_send_dgram(void *opaque)
4775 {
4776 NetSocketState *s = opaque;
4777 int size;
4778
4779 size = recv(s->fd, s->buf, sizeof(s->buf), 0);
4780 if (size < 0)
4781 return;
4782 if (size == 0) {
4783 /* end of connection */
4784 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4785 return;
4786 }
4787 qemu_send_packet(s->vc, s->buf, size);
4788 }
4789
4790 static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
4791 {
4792 struct ip_mreq imr;
4793 int fd;
4794 int val, ret;
4795 if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
4796 fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
4797 inet_ntoa(mcastaddr->sin_addr),
4798 (int)ntohl(mcastaddr->sin_addr.s_addr));
4799 return -1;
4800
4801 }
4802 fd = socket(PF_INET, SOCK_DGRAM, 0);
4803 if (fd < 0) {
4804 perror("socket(PF_INET, SOCK_DGRAM)");
4805 return -1;
4806 }
4807
4808 val = 1;
4809 ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
4810 (const char *)&val, sizeof(val));
4811 if (ret < 0) {
4812 perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
4813 goto fail;
4814 }
4815
4816 ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
4817 if (ret < 0) {
4818 perror("bind");
4819 goto fail;
4820 }
4821
4822 /* Add host to multicast group */
4823 imr.imr_multiaddr = mcastaddr->sin_addr;
4824 imr.imr_interface.s_addr = htonl(INADDR_ANY);
4825
4826 ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
4827 (const char *)&imr, sizeof(struct ip_mreq));
4828 if (ret < 0) {
4829 perror("setsockopt(IP_ADD_MEMBERSHIP)");
4830 goto fail;
4831 }
4832
4833 /* Force mcast msgs to loopback (eg. several QEMUs in same host */
4834 val = 1;
4835 ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
4836 (const char *)&val, sizeof(val));
4837 if (ret < 0) {
4838 perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
4839 goto fail;
4840 }
4841
4842 socket_set_nonblock(fd);
4843 return fd;
4844 fail:
4845 if (fd >= 0)
4846 closesocket(fd);
4847 return -1;
4848 }
4849
4850 static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
4851 int is_connected)
4852 {
4853 struct sockaddr_in saddr;
4854 int newfd;
4855 socklen_t saddr_len;
4856 NetSocketState *s;
4857
4858 /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
4859 * Because this may be "shared" socket from a "master" process, datagrams would be recv()
4860 * by ONLY ONE process: we must "clone" this dgram socket --jjo
4861 */
4862
4863 if (is_connected) {
4864 if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
4865 /* must be bound */
4866 if (saddr.sin_addr.s_addr==0) {
4867 fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
4868 fd);
4869 return NULL;
4870 }
4871 /* clone dgram socket */
4872 newfd = net_socket_mcast_create(&saddr);
4873 if (newfd < 0) {
4874 /* error already reported by net_socket_mcast_create() */
4875 close(fd);
4876 return NULL;
4877 }
4878 /* clone newfd to fd, close newfd */
4879 dup2(newfd, fd);
4880 close(newfd);
4881
4882 } else {
4883 fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
4884 fd, strerror(errno));
4885 return NULL;
4886 }
4887 }
4888
4889 s = qemu_mallocz(sizeof(NetSocketState));
4890 if (!s)
4891 return NULL;
4892 s->fd = fd;
4893
4894 s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
4895 qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
4896
4897 /* mcast: save bound address as dst */
4898 if (is_connected) s->dgram_dst=saddr;
4899
4900 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4901 "socket: fd=%d (%s mcast=%s:%d)",
4902 fd, is_connected? "cloned" : "",
4903 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4904 return s;
4905 }
4906
4907 static void net_socket_connect(void *opaque)
4908 {
4909 NetSocketState *s = opaque;
4910 qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
4911 }
4912
4913 static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
4914 int is_connected)
4915 {
4916 NetSocketState *s;
4917 s = qemu_mallocz(sizeof(NetSocketState));
4918 if (!s)
4919 return NULL;
4920 s->fd = fd;
4921 s->vc = qemu_new_vlan_client(vlan,
4922 net_socket_receive, NULL, s);
4923 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4924 "socket: fd=%d", fd);
4925 if (is_connected) {
4926 net_socket_connect(s);
4927 } else {
4928 qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
4929 }
4930 return s;
4931 }
4932
4933 static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
4934 int is_connected)
4935 {
4936 int so_type=-1, optlen=sizeof(so_type);
4937
4938 if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type,
4939 (socklen_t *)&optlen)< 0) {
4940 fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
4941 return NULL;
4942 }
4943 switch(so_type) {
4944 case SOCK_DGRAM:
4945 return net_socket_fd_init_dgram(vlan, fd, is_connected);
4946 case SOCK_STREAM:
4947 return net_socket_fd_init_stream(vlan, fd, is_connected);
4948 default:
4949 /* who knows ... this could be a eg. a pty, do warn and continue as stream */
4950 fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
4951 return net_socket_fd_init_stream(vlan, fd, is_connected);
4952 }
4953 return NULL;
4954 }
4955
4956 static void net_socket_accept(void *opaque)
4957 {
4958 NetSocketListenState *s = opaque;
4959 NetSocketState *s1;
4960 struct sockaddr_in saddr;
4961 socklen_t len;
4962 int fd;
4963
4964 for(;;) {
4965 len = sizeof(saddr);
4966 fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
4967 if (fd < 0 && errno != EINTR) {
4968 return;
4969 } else if (fd >= 0) {
4970 break;
4971 }
4972 }
4973 s1 = net_socket_fd_init(s->vlan, fd, 1);
4974 if (!s1) {
4975 closesocket(fd);
4976 } else {
4977 snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
4978 "socket: connection from %s:%d",
4979 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4980 }
4981 }
4982
4983 static int net_socket_listen_init(VLANState *vlan, const char *host_str)
4984 {
4985 NetSocketListenState *s;
4986 int fd, val, ret;
4987 struct sockaddr_in saddr;
4988
4989 if (parse_host_port(&saddr, host_str) < 0)
4990 return -1;
4991
4992 s = qemu_mallocz(sizeof(NetSocketListenState));
4993 if (!s)
4994 return -1;
4995
4996 fd = socket(PF_INET, SOCK_STREAM, 0);
4997 if (fd < 0) {
4998 perror("socket");
4999 return -1;
5000 }
5001 socket_set_nonblock(fd);
5002
5003 /* allow fast reuse */
5004 val = 1;
5005 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
5006
5007 ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
5008 if (ret < 0) {
5009 perror("bind");
5010 return -1;
5011 }
5012 ret = listen(fd, 0);
5013 if (ret < 0) {
5014 perror("listen");
5015 return -1;
5016 }
5017 s->vlan = vlan;
5018 s->fd = fd;
5019 qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
5020 return 0;
5021 }
5022
5023 static int net_socket_connect_init(VLANState *vlan, const char *host_str)
5024 {
5025 NetSocketState *s;
5026 int fd, connected, ret, err;
5027 struct sockaddr_in saddr;
5028
5029 if (parse_host_port(&saddr, host_str) < 0)
5030 return -1;
5031
5032 fd = socket(PF_INET, SOCK_STREAM, 0);
5033 if (fd < 0) {
5034 perror("socket");
5035 return -1;
5036 }
5037 socket_set_nonblock(fd);
5038
5039 connected = 0;
5040 for(;;) {
5041 ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
5042 if (ret < 0) {
5043 err = socket_error();
5044 if (err == EINTR || err == EWOULDBLOCK) {
5045 } else if (err == EINPROGRESS) {
5046 break;
5047 #ifdef _WIN32
5048 } else if (err == WSAEALREADY) {
5049 break;
5050 #endif
5051 } else {
5052 perror("connect");
5053 closesocket(fd);
5054 return -1;
5055 }
5056 } else {
5057 connected = 1;
5058 break;
5059 }
5060 }
5061 s = net_socket_fd_init(vlan, fd, connected);
5062 if (!s)
5063 return -1;
5064 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
5065 "socket: connect to %s:%d",
5066 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
5067 return 0;
5068 }
5069
5070 static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
5071 {
5072 NetSocketState *s;
5073 int fd;
5074 struct sockaddr_in saddr;
5075
5076 if (parse_host_port(&saddr, host_str) < 0)
5077 return -1;
5078
5079
5080 fd = net_socket_mcast_create(&saddr);
5081 if (fd < 0)
5082 return -1;
5083
5084 s = net_socket_fd_init(vlan, fd, 0);
5085 if (!s)
5086 return -1;
5087
5088 s->dgram_dst = saddr;
5089
5090 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
5091 "socket: mcast=%s:%d",
5092 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
5093 return 0;
5094
5095 }
5096
5097 static const char *get_opt_name(char *buf, int buf_size, const char *p)
5098 {
5099 char *q;
5100
5101 q = buf;
5102 while (*p != '\0' && *p != '=') {
5103 if (q && (q - buf) < buf_size - 1)
5104 *q++ = *p;
5105 p++;
5106 }
5107 if (q)
5108 *q = '\0';
5109
5110 return p;
5111 }
5112
5113 static const char *get_opt_value(char *buf, int buf_size, const char *p)
5114 {
5115 char *q;
5116
5117 q = buf;
5118 while (*p != '\0') {
5119 if (*p == ',') {
5120 if (*(p + 1) != ',')
5121 break;
5122 p++;
5123 }
5124 if (q && (q - buf) < buf_size - 1)
5125 *q++ = *p;
5126 p++;
5127 }
5128 if (q)
5129 *q = '\0';
5130
5131 return p;
5132 }
5133
5134 static int get_param_value(char *buf, int buf_size,
5135 const char *tag, const char *str)
5136 {
5137 const char *p;
5138 char option[128];
5139
5140 p = str;
5141 for(;;) {
5142 p = get_opt_name(option, sizeof(option), p);
5143 if (*p != '=')
5144 break;
5145 p++;
5146 if (!strcmp(tag, option)) {
5147 (void)get_opt_value(buf, buf_size, p);
5148 return strlen(buf);
5149 } else {
5150 p = get_opt_value(NULL, 0, p);
5151 }
5152 if (*p != ',')
5153 break;
5154 p++;
5155 }
5156 return 0;
5157 }
5158
5159 static int check_params(char *buf, int buf_size,
5160 const char * const *params, const char *str)
5161 {
5162 const char *p;
5163 int i;
5164
5165 p = str;
5166 for(;;) {
5167 p = get_opt_name(buf, buf_size, p);
5168 if (*p != '=')
5169 return -1;
5170 p++;
5171 for(i = 0; params[i] != NULL; i++)
5172 if (!strcmp(params[i], buf))
5173 break;
5174 if (params[i] == NULL)
5175 return -1;
5176 p = get_opt_value(NULL, 0, p);
5177 if (*p != ',')
5178 break;
5179 p++;
5180 }
5181 return 0;
5182 }
5183
5184 static int net_client_init(const char *device, const char *p)
5185 {
5186 char buf[1024];
5187 int vlan_id, ret;
5188 VLANState *vlan;
5189
5190 vlan_id = 0;
5191 if (get_param_value(buf, sizeof(buf), "vlan", p)) {
5192 vlan_id = strtol(buf, NULL, 0);
5193 }
5194 vlan = qemu_find_vlan(vlan_id);
5195 if (!vlan) {
5196 fprintf(stderr, "Could not create vlan %d\n", vlan_id);
5197 return -1;
5198 }
5199 if (!strcmp(device, "nic")) {
5200 NICInfo *nd;
5201 uint8_t *macaddr;
5202
5203 if (nb_nics >= MAX_NICS) {
5204 fprintf(stderr, "Too Many NICs\n");
5205 return -1;
5206 }
5207 nd = &nd_table[nb_nics];
5208 macaddr = nd->macaddr;
5209 macaddr[0] = 0x52;
5210 macaddr[1] = 0x54;
5211 macaddr[2] = 0x00;
5212 macaddr[3] = 0x12;
5213 macaddr[4] = 0x34;
5214 macaddr[5] = 0x56 + nb_nics;
5215
5216 if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
5217 if (parse_macaddr(macaddr, buf) < 0) {
5218 fprintf(stderr, "invalid syntax for ethernet address\n");
5219 return -1;
5220 }
5221 }
5222 if (get_param_value(buf, sizeof(buf), "model", p)) {
5223 nd->model = strdup(buf);
5224 }
5225 nd->vlan = vlan;
5226 nb_nics++;
5227 vlan->nb_guest_devs++;
5228 ret = 0;
5229 } else
5230 if (!strcmp(device, "none")) {
5231 /* does nothing. It is needed to signal that no network cards
5232 are wanted */
5233 ret = 0;
5234 } else
5235 #ifdef CONFIG_SLIRP
5236 if (!strcmp(device, "user")) {
5237 if (get_param_value(buf, sizeof(buf), "hostname", p)) {
5238 pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
5239 }
5240 vlan->nb_host_devs++;
5241 ret = net_slirp_init(vlan);
5242 } else
5243 #endif
5244 #ifdef _WIN32
5245 if (!strcmp(device, "tap")) {
5246 char ifname[64];
5247 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
5248 fprintf(stderr, "tap: no interface name\n");
5249 return -1;
5250 }
5251 vlan->nb_host_devs++;
5252 ret = tap_win32_init(vlan, ifname);
5253 } else
5254 #else
5255 if (!strcmp(device, "tap")) {
5256 char ifname[64];
5257 char setup_script[1024], down_script[1024];
5258 int fd;
5259 vlan->nb_host_devs++;
5260 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
5261 fd = strtol(buf, NULL, 0);
5262 fcntl(fd, F_SETFL, O_NONBLOCK);
5263 ret = -1;
5264 if (net_tap_fd_init(vlan, fd))
5265 ret = 0;
5266 } else {
5267 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
5268 ifname[0] = '\0';
5269 }
5270 if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
5271 pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
5272 }
5273 if (get_param_value(down_script, sizeof(down_script), "downscript", p) == 0) {
5274 pstrcpy(down_script, sizeof(down_script), DEFAULT_NETWORK_DOWN_SCRIPT);
5275 }
5276 ret = net_tap_init(vlan, ifname, setup_script, down_script);
5277 }
5278 } else
5279 #endif
5280 if (!strcmp(device, "socket")) {
5281 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
5282 int fd;
5283 fd = strtol(buf, NULL, 0);
5284 ret = -1;
5285 if (net_socket_fd_init(vlan, fd, 1))
5286 ret = 0;
5287 } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
5288 ret = net_socket_listen_init(vlan, buf);
5289 } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
5290 ret = net_socket_connect_init(vlan, buf);
5291 } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
5292 ret = net_socket_mcast_init(vlan, buf);
5293 } else {
5294 fprintf(stderr, "Unknown socket options: %s\n", p);
5295 return -1;
5296 }
5297 vlan->nb_host_devs++;
5298 } else
5299 #ifdef CONFIG_VDE
5300 if (!strcmp(device, "vde")) {
5301 char vde_sock[1024], vde_group[512];
5302 int vde_port, vde_mode;
5303 vlan->nb_host_devs++;
5304 if (get_param_value(vde_sock, sizeof(vde_sock), "sock", p) <= 0) {
5305 vde_sock[0] = '\0';
5306 }
5307 if (get_param_value(buf, sizeof(buf), "port", p) > 0) {
5308 vde_port = strtol(buf, NULL, 10);
5309 } else {
5310 vde_port = 0;
5311 }
5312 if (get_param_value(vde_group, sizeof(vde_group), "group", p) <= 0) {
5313 vde_group[0] = '\0';
5314 }
5315 if (get_param_value(buf, sizeof(buf), "mode", p) > 0) {
5316 vde_mode = strtol(buf, NULL, 8);
5317 } else {
5318 vde_mode = 0700;
5319 }
5320 ret = net_vde_init(vlan, vde_sock, vde_port, vde_group, vde_mode);
5321 } else
5322 #endif
5323 {
5324 fprintf(stderr, "Unknown network device: %s\n", device);
5325 return -1;
5326 }
5327 if (ret < 0) {
5328 fprintf(stderr, "Could not initialize device '%s'\n", device);
5329 }
5330
5331 return ret;
5332 }
5333
5334 static int net_client_parse(const char *str)
5335 {
5336 const char *p;
5337 char *q;
5338 char device[64];
5339
5340 p = str;
5341 q = device;
5342 while (*p != '\0' && *p != ',') {
5343 if ((q - device) < sizeof(device) - 1)
5344 *q++ = *p;
5345 p++;
5346 }
5347 *q = '\0';
5348 if (*p == ',')
5349 p++;
5350
5351 return net_client_init(device, p);
5352 }
5353
5354 void do_info_network(void)
5355 {
5356 VLANState *vlan;
5357 VLANClientState *vc;
5358
5359 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
5360 term_printf("VLAN %d devices:\n", vlan->id);
5361 for(vc = vlan->first_client; vc != NULL; vc = vc->next)
5362 term_printf(" %s\n", vc->info_str);
5363 }
5364 }
5365
5366 /***********************************************************/
5367 /* Bluetooth support */
5368 static int nb_hcis;
5369 static int cur_hci;
5370 static struct HCIInfo *hci_table[MAX_NICS];
5371 static struct bt_vlan_s {
5372 struct bt_scatternet_s net;
5373 int id;
5374 struct bt_vlan_s *next;
5375 } *first_bt_vlan;
5376
5377 /* find or alloc a new bluetooth "VLAN" */
5378 struct bt_scatternet_s *qemu_find_bt_vlan(int id)
5379 {
5380 struct bt_vlan_s **pvlan, *vlan;
5381 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
5382 if (vlan->id == id)
5383 return &vlan->net;
5384 }
5385 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
5386 vlan->id = id;
5387 pvlan = &first_bt_vlan;
5388 while (*pvlan != NULL)
5389 pvlan = &(*pvlan)->next;
5390 *pvlan = vlan;
5391 return &vlan->net;
5392 }
5393
5394 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
5395 {
5396 }
5397
5398 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
5399 {
5400 return -ENOTSUP;
5401 }
5402
5403 static struct HCIInfo null_hci = {
5404 .cmd_send = null_hci_send,
5405 .sco_send = null_hci_send,
5406 .acl_send = null_hci_send,
5407 .bdaddr_set = null_hci_addr_set,
5408 };
5409
5410 struct HCIInfo *qemu_next_hci(void)
5411 {
5412 if (cur_hci == nb_hcis)
5413 return &null_hci;
5414
5415 return hci_table[cur_hci++];
5416 }
5417
5418 /***********************************************************/
5419 /* QEMU Block devices */
5420
5421 #define HD_ALIAS "index=%d,media=disk"
5422 #ifdef TARGET_PPC
5423 #define CDROM_ALIAS "index=1,media=cdrom"
5424 #else
5425 #define CDROM_ALIAS "index=2,media=cdrom"
5426 #endif
5427 #define FD_ALIAS "index=%d,if=floppy"
5428 #define PFLASH_ALIAS "if=pflash"
5429 #define MTD_ALIAS "if=mtd"
5430 #define SD_ALIAS "index=0,if=sd"
5431
5432 static int drive_add(const char *file, const char *fmt, ...)
5433 {
5434 va_list ap;
5435
5436 if (nb_drives_opt >= MAX_DRIVES) {
5437 fprintf(stderr, "qemu: too many drives\n");
5438 exit(1);
5439 }
5440
5441 drives_opt[nb_drives_opt].file = file;
5442 va_start(ap, fmt);
5443 vsnprintf(drives_opt[nb_drives_opt].opt,
5444 sizeof(drives_opt[0].opt), fmt, ap);
5445 va_end(ap);
5446
5447 return nb_drives_opt++;
5448 }
5449
5450 int drive_get_index(BlockInterfaceType type, int bus, int unit)
5451 {
5452 int index;
5453
5454 /* seek interface, bus and unit */
5455
5456 for (index = 0; index < nb_drives; index++)
5457 if (drives_table[index].type == type &&
5458 drives_table[index].bus == bus &&
5459 drives_table[index].unit == unit)
5460 return index;
5461
5462 return -1;
5463 }
5464
5465 int drive_get_max_bus(BlockInterfaceType type)
5466 {
5467 int max_bus;
5468 int index;
5469
5470 max_bus = -1;
5471 for (index = 0; index < nb_drives; index++) {
5472 if(drives_table[index].type == type &&
5473 drives_table[index].bus > max_bus)
5474 max_bus = drives_table[index].bus;
5475 }
5476 return max_bus;
5477 }
5478
5479 static void bdrv_format_print(void *opaque, const char *name)
5480 {
5481 fprintf(stderr, " %s", name);
5482 }
5483
5484 static int drive_init(struct drive_opt *arg, int snapshot,
5485 QEMUMachine *machine)
5486 {
5487 char buf[128];
5488 char file[1024];
5489 char devname[128];
5490 const char *mediastr = "";
5491 BlockInterfaceType type;
5492 enum { MEDIA_DISK, MEDIA_CDROM } media;
5493 int bus_id, unit_id;
5494 int cyls, heads, secs, translation;
5495 BlockDriverState *bdrv;
5496 BlockDriver *drv = NULL;
5497 int max_devs;
5498 int index;
5499 int cache;
5500 int bdrv_flags;
5501 char *str = arg->opt;
5502 static const char * const params[] = { "bus", "unit", "if", "index",
5503 "cyls", "heads", "secs", "trans",
5504 "media", "snapshot", "file",
5505 "cache", "format", NULL };
5506
5507 if (check_params(buf, sizeof(buf), params, str) < 0) {
5508 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
5509 buf, str);
5510 return -1;
5511 }
5512
5513 file[0] = 0;
5514 cyls = heads = secs = 0;
5515 bus_id = 0;
5516 unit_id = -1;
5517 translation = BIOS_ATA_TRANSLATION_AUTO;
5518 index = -1;
5519 cache = 1;
5520
5521 if (machine->use_scsi) {
5522 type = IF_SCSI;
5523 max_devs = MAX_SCSI_DEVS;
5524 pstrcpy(devname, sizeof(devname), "scsi");
5525 } else {
5526 type = IF_IDE;
5527 max_devs = MAX_IDE_DEVS;
5528 pstrcpy(devname, sizeof(devname), "ide");
5529 }
5530 media = MEDIA_DISK;
5531
5532 /* extract parameters */
5533
5534 if (get_param_value(buf, sizeof(buf), "bus", str)) {
5535 bus_id = strtol(buf, NULL, 0);
5536 if (bus_id < 0) {
5537 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
5538 return -1;
5539 }
5540 }
5541
5542 if (get_param_value(buf, sizeof(buf), "unit", str)) {
5543 unit_id = strtol(buf, NULL, 0);
5544 if (unit_id < 0) {
5545 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
5546 return -1;
5547 }
5548 }
5549
5550 if (get_param_value(buf, sizeof(buf), "if", str)) {
5551 pstrcpy(devname, sizeof(devname), buf);
5552 if (!strcmp(buf, "ide")) {
5553 type = IF_IDE;
5554 max_devs = MAX_IDE_DEVS;
5555 } else if (!strcmp(buf, "scsi")) {
5556 type = IF_SCSI;
5557 max_devs = MAX_SCSI_DEVS;
5558 } else if (!strcmp(buf, "floppy")) {
5559 type = IF_FLOPPY;
5560 max_devs = 0;
5561 } else if (!strcmp(buf, "pflash")) {
5562 type = IF_PFLASH;
5563 max_devs = 0;
5564 } else if (!strcmp(buf, "mtd")) {
5565 type = IF_MTD;
5566 max_devs = 0;
5567 } else if (!strcmp(buf, "sd")) {
5568 type = IF_SD;
5569 max_devs = 0;
5570 } else {
5571 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
5572 return -1;
5573 }
5574 }
5575
5576 if (get_param_value(buf, sizeof(buf), "index", str)) {
5577 index = strtol(buf, NULL, 0);
5578 if (index < 0) {
5579 fprintf(stderr, "qemu: '%s' invalid index\n", str);
5580 return -1;
5581 }
5582 }
5583
5584 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
5585 cyls = strtol(buf, NULL, 0);
5586 }
5587
5588 if (get_param_value(buf, sizeof(buf), "heads", str)) {
5589 heads = strtol(buf, NULL, 0);
5590 }
5591
5592 if (get_param_value(buf, sizeof(buf), "secs", str)) {
5593 secs = strtol(buf, NULL, 0);
5594 }
5595
5596 if (cyls || heads || secs) {
5597 if (cyls < 1 || cyls > 16383) {
5598 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
5599 return -1;
5600 }
5601 if (heads < 1 || heads > 16) {
5602 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
5603 return -1;
5604 }
5605 if (secs < 1 || secs > 63) {
5606 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
5607 return -1;
5608 }
5609 }
5610
5611 if (get_param_value(buf, sizeof(buf), "trans", str)) {
5612 if (!cyls) {
5613 fprintf(stderr,
5614 "qemu: '%s' trans must be used with cyls,heads and secs\n",
5615 str);
5616 return -1;
5617 }
5618 if (!strcmp(buf, "none"))
5619 translation = BIOS_ATA_TRANSLATION_NONE;
5620 else if (!strcmp(buf, "lba"))
5621 translation = BIOS_ATA_TRANSLATION_LBA;
5622 else if (!strcmp(buf, "auto"))
5623 translation = BIOS_ATA_TRANSLATION_AUTO;
5624 else {
5625 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
5626 return -1;
5627 }
5628 }
5629
5630 if (get_param_value(buf, sizeof(buf), "media", str)) {
5631 if (!strcmp(buf, "disk")) {
5632 media = MEDIA_DISK;
5633 } else if (!strcmp(buf, "cdrom")) {
5634 if (cyls || secs || heads) {
5635 fprintf(stderr,
5636 "qemu: '%s' invalid physical CHS format\n", str);
5637 return -1;
5638 }
5639 media = MEDIA_CDROM;
5640 } else {
5641 fprintf(stderr, "qemu: '%s' invalid media\n", str);
5642 return -1;
5643 }
5644 }
5645
5646 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
5647 if (!strcmp(buf, "on"))
5648 snapshot = 1;
5649 else if (!strcmp(buf, "off"))
5650 snapshot = 0;
5651 else {
5652 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
5653 return -1;
5654 }
5655 }
5656
5657 if (get_param_value(buf, sizeof(buf), "cache", str)) {
5658 if (!strcmp(buf, "off"))
5659 cache = 0;
5660 else if (!strcmp(buf, "on"))
5661 cache = 1;
5662 else {
5663 fprintf(stderr, "qemu: invalid cache option\n");
5664 return -1;
5665 }
5666 }
5667
5668 if (get_param_value(buf, sizeof(buf), "format", str)) {
5669 if (strcmp(buf, "?") == 0) {
5670 fprintf(stderr, "qemu: Supported formats:");
5671 bdrv_iterate_format(bdrv_format_print, NULL);
5672 fprintf(stderr, "\n");
5673 return -1;
5674 }
5675 drv = bdrv_find_format(buf);
5676 if (!drv) {
5677 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
5678 return -1;
5679 }
5680 }
5681
5682 if (arg->file == NULL)
5683 get_param_value(file, sizeof(file), "file", str);
5684 else
5685 pstrcpy(file, sizeof(file), arg->file);
5686
5687 /* compute bus and unit according index */
5688
5689 if (index != -1) {
5690 if (bus_id != 0 || unit_id != -1) {
5691 fprintf(stderr,
5692 "qemu: '%s' index cannot be used with bus and unit\n", str);
5693 return -1;
5694 }
5695 if (max_devs == 0)
5696 {
5697 unit_id = index;
5698 bus_id = 0;
5699 } else {
5700 unit_id = index % max_devs;
5701 bus_id = index / max_devs;
5702 }
5703 }
5704
5705 /* if user doesn't specify a unit_id,
5706 * try to find the first free
5707 */
5708
5709 if (unit_id == -1) {
5710 unit_id = 0;
5711 while (drive_get_index(type, bus_id, unit_id) != -1) {
5712 unit_id++;
5713 if (max_devs && unit_id >= max_devs) {
5714 unit_id -= max_devs;
5715 bus_id++;
5716 }
5717 }
5718 }
5719
5720 /* check unit id */
5721
5722 if (max_devs && unit_id >= max_devs) {
5723 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
5724 str, unit_id, max_devs - 1);
5725 return -1;
5726 }
5727
5728 /*
5729 * ignore multiple definitions
5730 */
5731
5732 if (drive_get_index(type, bus_id, unit_id) != -1)
5733 return 0;
5734
5735 /* init */
5736
5737 if (type == IF_IDE || type == IF_SCSI)
5738 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
5739 if (max_devs)
5740 snprintf(buf, sizeof(buf), "%s%i%s%i",
5741 devname, bus_id, mediastr, unit_id);
5742 else
5743 snprintf(buf, sizeof(buf), "%s%s%i",
5744 devname, mediastr, unit_id);
5745 bdrv = bdrv_new(buf);
5746 drives_table[nb_drives].bdrv = bdrv;
5747 drives_table[nb_drives].type = type;
5748 drives_table[nb_drives].bus = bus_id;
5749 drives_table[nb_drives].unit = unit_id;
5750 nb_drives++;
5751
5752 switch(type) {
5753 case IF_IDE:
5754 case IF_SCSI:
5755 switch(media) {
5756 case MEDIA_DISK:
5757 if (cyls != 0) {
5758 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
5759 bdrv_set_translation_hint(bdrv, translation);
5760 }
5761 break;
5762 case MEDIA_CDROM:
5763 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
5764 break;
5765 }
5766 break;
5767 case IF_SD:
5768 /* FIXME: This isn't really a floppy, but it's a reasonable
5769 approximation. */
5770 case IF_FLOPPY:
5771 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
5772 break;
5773 case IF_PFLASH:
5774 case IF_MTD:
5775 break;
5776 }
5777 if (!file[0])
5778 return 0;
5779 bdrv_flags = 0;
5780 if (snapshot)
5781 bdrv_flags |= BDRV_O_SNAPSHOT;
5782 if (!cache)
5783 bdrv_flags |= BDRV_O_DIRECT;
5784 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0 || qemu_key_check(bdrv, file)) {
5785 fprintf(stderr, "qemu: could not open disk image %s\n",
5786 file);
5787 return -1;
5788 }
5789 return 0;
5790 }
5791
5792 /***********************************************************/
5793 /* USB devices */
5794
5795 static USBPort *used_usb_ports;
5796 static USBPort *free_usb_ports;
5797
5798 /* ??? Maybe change this to register a hub to keep track of the topology. */
5799 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
5800 usb_attachfn attach)
5801 {
5802 port->opaque = opaque;
5803 port->index = index;
5804 port->attach = attach;
5805 port->next = free_usb_ports;
5806 free_usb_ports = port;
5807 }
5808
5809 int usb_device_add_dev(USBDevice *dev)
5810 {
5811 USBPort *port;
5812
5813 /* Find a USB port to add the device to. */
5814 port = free_usb_ports;
5815 if (!port->next) {
5816 USBDevice *hub;
5817
5818 /* Create a new hub and chain it on. */
5819 free_usb_ports = NULL;
5820 port->next = used_usb_ports;
5821 used_usb_ports = port;
5822
5823 hub = usb_hub_init(VM_USB_HUB_SIZE);
5824 usb_attach(port, hub);
5825 port = free_usb_ports;
5826 }
5827
5828 free_usb_ports = port->next;
5829 port->next = used_usb_ports;
5830 used_usb_ports = port;
5831 usb_attach(port, dev);
5832 return 0;
5833 }
5834
5835 static int usb_device_add(const char *devname)
5836 {
5837 const char *p;
5838 USBDevice *dev;
5839
5840 if (!free_usb_ports)
5841 return -1;
5842
5843 if (strstart(devname, "host:", &p)) {
5844 dev = usb_host_device_open(p);
5845 } else if (!strcmp(devname, "mouse")) {
5846 dev = usb_mouse_init();
5847 } else if (!strcmp(devname, "tablet")) {
5848 dev = usb_tablet_init();
5849 } else if (!strcmp(devname, "keyboard")) {
5850 dev = usb_keyboard_init();
5851 } else if (strstart(devname, "disk:", &p)) {
5852 dev = usb_msd_init(p);
5853 } else if (!strcmp(devname, "wacom-tablet")) {
5854 dev = usb_wacom_init();
5855 } else if (strstart(devname, "serial:", &p)) {
5856 dev = usb_serial_init(p);
5857 #ifdef CONFIG_BRLAPI
5858 } else if (!strcmp(devname, "braille")) {
5859 dev = usb_baum_init();
5860 #endif
5861 } else if (strstart(devname, "net:", &p)) {
5862 int nic = nb_nics;
5863
5864 if (net_client_init("nic", p) < 0)
5865 return -1;
5866 nd_table[nic].model = "usb";
5867 dev = usb_net_init(&nd_table[nic]);
5868 } else {
5869 return -1;
5870 }
5871 if (!dev)
5872 return -1;
5873
5874 return usb_device_add_dev(dev);
5875 }
5876
5877 int usb_device_del_addr(int bus_num, int addr)
5878 {
5879 USBPort *port;
5880 USBPort **lastp;
5881 USBDevice *dev;
5882
5883 if (!used_usb_ports)
5884 return -1;
5885
5886 if (bus_num != 0)
5887 return -1;
5888
5889 lastp = &used_usb_ports;
5890 port = used_usb_ports;
5891 while (port && port->dev->addr != addr) {
5892 lastp = &port->next;
5893 port = port->next;
5894 }
5895
5896 if (!port)
5897 return -1;
5898
5899 dev = port->dev;
5900 *lastp = port->next;
5901 usb_attach(port, NULL);
5902 dev->handle_destroy(dev);
5903 port->next = free_usb_ports;
5904 free_usb_ports = port;
5905 return 0;
5906 }
5907
5908 static int usb_device_del(const char *devname)
5909 {
5910 int bus_num, addr;
5911 const char *p;
5912
5913 if (strstart(devname, "host:", &p))
5914 return usb_host_device_close(p);
5915
5916 if (!used_usb_ports)
5917 return -1;
5918
5919 p = strchr(devname, '.');
5920 if (!p)
5921 return -1;
5922 bus_num = strtoul(devname, NULL, 0);
5923 addr = strtoul(p + 1, NULL, 0);
5924
5925 return usb_device_del_addr(bus_num, addr);
5926 }
5927
5928 void do_usb_add(const char *devname)
5929 {
5930 usb_device_add(devname);
5931 }
5932
5933 void do_usb_del(const char *devname)
5934 {
5935 usb_device_del(devname);
5936 }
5937
5938 void usb_info(void)
5939 {
5940 USBDevice *dev;
5941 USBPort *port;
5942 const char *speed_str;
5943
5944 if (!usb_enabled) {
5945 term_printf("USB support not enabled\n");
5946 return;
5947 }
5948
5949 for (port = used_usb_ports; port; port = port->next) {
5950 dev = port->dev;
5951 if (!dev)
5952 continue;
5953 switch(dev->speed) {
5954 case USB_SPEED_LOW:
5955 speed_str = "1.5";
5956 break;
5957 case USB_SPEED_FULL:
5958 speed_str = "12";
5959 break;
5960 case USB_SPEED_HIGH:
5961 speed_str = "480";
5962 break;
5963 default:
5964 speed_str = "?";
5965 break;
5966 }
5967 term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n",
5968 0, dev->addr, speed_str, dev->devname);
5969 }
5970 }
5971
5972 /***********************************************************/
5973 /* PCMCIA/Cardbus */
5974
5975 static struct pcmcia_socket_entry_s {
5976 struct pcmcia_socket_s *socket;
5977 struct pcmcia_socket_entry_s *next;
5978 } *pcmcia_sockets = 0;
5979
5980 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
5981 {
5982 struct pcmcia_socket_entry_s *entry;
5983
5984 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
5985 entry->socket = socket;
5986 entry->next = pcmcia_sockets;
5987 pcmcia_sockets = entry;
5988 }
5989
5990 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
5991 {
5992 struct pcmcia_socket_entry_s *entry, **ptr;
5993
5994 ptr = &pcmcia_sockets;
5995 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
5996 if (entry->socket == socket) {
5997 *ptr = entry->next;
5998 qemu_free(entry);
5999 }
6000 }
6001
6002 void pcmcia_info(void)
6003 {
6004 struct pcmcia_socket_entry_s *iter;
6005 if (!pcmcia_sockets)
6006 term_printf("No PCMCIA sockets\n");
6007
6008 for (iter = pcmcia_sockets; iter; iter = iter->next)
6009 term_printf("%s: %s\n", iter->socket->slot_string,
6010 iter->socket->attached ? iter->socket->card_string :
6011 "Empty");
6012 }
6013
6014 /***********************************************************/
6015 /* dumb display */
6016
6017 static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
6018 {
6019 }
6020
6021 static void dumb_resize(DisplayState *ds, int w, int h)
6022 {
6023 }
6024
6025 static void dumb_refresh(DisplayState *ds)
6026 {
6027 #if defined(CONFIG_SDL)
6028 vga_hw_update();
6029 #endif
6030 }
6031
6032 static void dumb_display_init(DisplayState *ds)
6033 {
6034 ds->data = NULL;
6035 ds->linesize = 0;
6036 ds->depth = 0;
6037 ds->dpy_update = dumb_update;
6038 ds->dpy_resize = dumb_resize;
6039 ds->dpy_refresh = dumb_refresh;
6040 ds->gui_timer_interval = 500;
6041 ds->idle = 1;
6042 }
6043
6044 /***********************************************************/
6045 /* I/O handling */
6046
6047 #define MAX_IO_HANDLERS 64
6048
6049 typedef struct IOHandlerRecord {
6050 int fd;
6051 IOCanRWHandler *fd_read_poll;
6052 IOHandler *fd_read;
6053 IOHandler *fd_write;
6054 int deleted;
6055 void *opaque;
6056 /* temporary data */
6057 struct pollfd *ufd;
6058 struct IOHandlerRecord *next;
6059 } IOHandlerRecord;
6060
6061 static IOHandlerRecord *first_io_handler;
6062
6063 /* XXX: fd_read_poll should be suppressed, but an API change is
6064 necessary in the character devices to suppress fd_can_read(). */
6065 int qemu_set_fd_handler2(int fd,
6066 IOCanRWHandler *fd_read_poll,
6067 IOHandler *fd_read,
6068 IOHandler *fd_write,
6069 void *opaque)
6070 {
6071 IOHandlerRecord **pioh, *ioh;
6072
6073 if (!fd_read && !fd_write) {
6074 pioh = &first_io_handler;
6075 for(;;) {
6076 ioh = *pioh;
6077 if (ioh == NULL)
6078 break;
6079 if (ioh->fd == fd) {
6080 ioh->deleted = 1;
6081 break;
6082 }
6083 pioh = &ioh->next;
6084 }
6085 } else {
6086 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6087 if (ioh->fd == fd)
6088 goto found;
6089 }
6090 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
6091 if (!ioh)
6092 return -1;
6093 ioh->next = first_io_handler;
6094 first_io_handler = ioh;
6095 found:
6096 ioh->fd = fd;
6097 ioh->fd_read_poll = fd_read_poll;
6098 ioh->fd_read = fd_read;
6099 ioh->fd_write = fd_write;
6100 ioh->opaque = opaque;
6101 ioh->deleted = 0;
6102 }
6103 return 0;
6104 }
6105
6106 int qemu_set_fd_handler(int fd,
6107 IOHandler *fd_read,
6108 IOHandler *fd_write,
6109 void *opaque)
6110 {
6111 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
6112 }
6113
6114 /***********************************************************/
6115 /* Polling handling */
6116
6117 typedef struct PollingEntry {
6118 PollingFunc *func;
6119 void *opaque;
6120 struct PollingEntry *next;
6121 } PollingEntry;
6122
6123 static PollingEntry *first_polling_entry;
6124
6125 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
6126 {
6127 PollingEntry **ppe, *pe;
6128 pe = qemu_mallocz(sizeof(PollingEntry));
6129 if (!pe)
6130 return -1;
6131 pe->func = func;
6132 pe->opaque = opaque;
6133 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
6134 *ppe = pe;
6135 return 0;
6136 }
6137
6138 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
6139 {
6140 PollingEntry **ppe, *pe;
6141 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
6142 pe = *ppe;
6143 if (pe->func == func && pe->opaque == opaque) {
6144 *ppe = pe->next;
6145 qemu_free(pe);
6146 break;
6147 }
6148 }
6149 }
6150
6151 #ifdef _WIN32
6152 /***********************************************************/
6153 /* Wait objects support */
6154 typedef struct WaitObjects {
6155 int num;
6156 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
6157 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
6158 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
6159 } WaitObjects;
6160
6161 static WaitObjects wait_objects = {0};
6162
6163 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
6164 {
6165 WaitObjects *w = &wait_objects;
6166
6167 if (w->num >= MAXIMUM_WAIT_OBJECTS)
6168 return -1;
6169 w->events[w->num] = handle;
6170 w->func[w->num] = func;
6171 w->opaque[w->num] = opaque;
6172 w->num++;
6173 return 0;
6174 }
6175
6176 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
6177 {
6178 int i, found;
6179 WaitObjects *w = &wait_objects;
6180
6181 found = 0;
6182 for (i = 0; i < w->num; i++) {
6183 if (w->events[i] == handle)
6184 found = 1;
6185 if (found) {
6186 w->events[i] = w->events[i + 1];
6187 w->func[i] = w->func[i + 1];
6188 w->opaque[i] = w->opaque[i + 1];
6189 }
6190 }
6191 if (found)
6192 w->num--;
6193 }
6194 #endif
6195
6196 /***********************************************************/
6197 /* savevm/loadvm support */
6198
6199 #define IO_BUF_SIZE 32768
6200
6201 struct QEMUFile {
6202 QEMUFilePutBufferFunc *put_buffer;
6203 QEMUFileGetBufferFunc *get_buffer;
6204 QEMUFileCloseFunc *close;
6205 QEMUFileRateLimit *rate_limit;
6206 void *opaque;
6207
6208 int64_t buf_offset; /* start of buffer when writing, end of buffer
6209 when reading */
6210 int buf_index;
6211 int buf_size; /* 0 when writing */
6212 uint8_t buf[IO_BUF_SIZE];
6213 };
6214
6215 typedef struct QEMUFileFD
6216 {
6217 int fd;
6218 QEMUFile *file;
6219 } QEMUFileFD;
6220
6221 static void fd_put_notify(void *opaque)
6222 {
6223 QEMUFileFD *s = opaque;
6224
6225 /* Remove writable callback and do a put notify */
6226 qemu_set_fd_handler2(s->fd, NULL, NULL, NULL, NULL);
6227 qemu_file_put_notify(s->file);
6228 }
6229
6230 static int fd_put_buffer(void *opaque, const uint8_t *buf,
6231 int64_t pos, int size)
6232 {
6233 QEMUFileFD *s = opaque;
6234 ssize_t len;
6235
6236 do {
6237 len = write(s->fd, buf, size);
6238 } while (len == -1 && errno == EINTR);
6239
6240 if (len == -1)
6241 len = -errno;
6242
6243 /* When the fd becomes writable again, register a callback to do
6244 * a put notify */
6245 if (len == -EAGAIN)
6246 qemu_set_fd_handler2(s->fd, NULL, NULL, fd_put_notify, s);
6247
6248 return len;
6249 }
6250
6251 static int fd_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
6252 {
6253 QEMUFileFD *s = opaque;
6254 ssize_t len;
6255
6256 do {
6257 len = read(s->fd, buf, size);
6258 } while (len == -1 && errno == EINTR);
6259
6260 if (len == -1)
6261 len = -errno;
6262
6263 return len;
6264 }
6265
6266 static int fd_close(void *opaque)
6267 {
6268 QEMUFileFD *s = opaque;
6269 qemu_free(s);
6270 return 0;
6271 }
6272
6273 QEMUFile *qemu_fopen_fd(int fd)
6274 {
6275 QEMUFileFD *s = qemu_mallocz(sizeof(QEMUFileFD));
6276
6277 if (s == NULL)
6278 return NULL;
6279
6280 s->fd = fd;
6281 s->file = qemu_fopen_ops(s, fd_put_buffer, fd_get_buffer, fd_close, NULL);
6282 return s->file;
6283 }
6284
6285 typedef struct QEMUFileStdio
6286 {
6287 FILE *outfile;
6288 } QEMUFileStdio;
6289
6290 static void file_put_buffer(void *opaque, const uint8_t *buf,
6291 int64_t pos, int size)
6292 {
6293 QEMUFileStdio *s = opaque;
6294 fseek(s->outfile, pos, SEEK_SET);
6295 fwrite(buf, 1, size, s->outfile);
6296 }
6297
6298 static int file_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
6299 {
6300 QEMUFileStdio *s = opaque;
6301 fseek(s->outfile, pos, SEEK_SET);
6302 return fread(buf, 1, size, s->outfile);
6303 }
6304
6305 static int file_close(void *opaque)
6306 {
6307 QEMUFileStdio *s = opaque;
6308 fclose(s->outfile);
6309 qemu_free(s);
6310 return 0;
6311 }
6312
6313 QEMUFile *qemu_fopen(const char *filename, const char *mode)
6314 {
6315 QEMUFileStdio *s;
6316
6317 s = qemu_mallocz(sizeof(QEMUFileStdio));
6318 if (!s)
6319 return NULL;
6320
6321 s->outfile = fopen(filename, mode);
6322 if (!s->outfile)
6323 goto fail;
6324
6325 if (!strcmp(mode, "wb"))
6326 return qemu_fopen_ops(s, file_put_buffer, NULL, file_close, NULL);
6327 else if (!strcmp(mode, "rb"))
6328 return qemu_fopen_ops(s, NULL, file_get_buffer, file_close, NULL);
6329
6330 fail:
6331 if (s->outfile)
6332 fclose(s->outfile);
6333 qemu_free(s);
6334 return NULL;
6335 }
6336
6337 typedef struct QEMUFileBdrv
6338 {
6339 BlockDriverState *bs;
6340 int64_t base_offset;
6341 } QEMUFileBdrv;
6342
6343 static void bdrv_put_buffer(void *opaque, const uint8_t *buf,
6344 int64_t pos, int size)
6345 {
6346 QEMUFileBdrv *s = opaque;
6347 bdrv_pwrite(s->bs, s->base_offset + pos, buf, size);
6348 }
6349
6350 static int bdrv_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
6351 {
6352 QEMUFileBdrv *s = opaque;
6353 return bdrv_pread(s->bs, s->base_offset + pos, buf, size);
6354 }
6355
6356 static int bdrv_fclose(void *opaque)
6357 {
6358 QEMUFileBdrv *s = opaque;
6359 qemu_free(s);
6360 return 0;
6361 }
6362
6363 QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
6364 {
6365 QEMUFileBdrv *s;
6366
6367 s = qemu_mallocz(sizeof(QEMUFileBdrv));
6368 if (!s)
6369 return NULL;
6370
6371 s->bs = bs;
6372 s->base_offset = offset;
6373
6374 if (is_writable)
6375 return qemu_fopen_ops(s, bdrv_put_buffer, NULL, bdrv_fclose, NULL);
6376
6377 return qemu_fopen_ops(s, NULL, bdrv_get_buffer, bdrv_fclose, NULL);
6378 }
6379
6380 QEMUFile *qemu_fopen_ops(void *opaque, QEMUFilePutBufferFunc *put_buffer,
6381 QEMUFileGetBufferFunc *get_buffer,
6382 QEMUFileCloseFunc *close,
6383 QEMUFileRateLimit *rate_limit)
6384 {
6385 QEMUFile *f;
6386
6387 f = qemu_mallocz(sizeof(QEMUFile));
6388 if (!f)
6389 return NULL;
6390
6391 f->opaque = opaque;
6392 f->put_buffer = put_buffer;
6393 f->get_buffer = get_buffer;
6394 f->close = close;
6395 f->rate_limit = rate_limit;
6396
6397 return f;
6398 }
6399
6400 void qemu_fflush(QEMUFile *f)
6401 {
6402 if (!f->put_buffer)
6403 return;
6404
6405 if (f->buf_index > 0) {
6406 f->put_buffer(f->opaque, f->buf, f->buf_offset, f->buf_index);
6407 f->buf_offset += f->buf_index;
6408 f->buf_index = 0;
6409 }
6410 }
6411
6412 static void qemu_fill_buffer(QEMUFile *f)
6413 {
6414 int len;
6415
6416 if (!f->get_buffer)
6417 return;
6418
6419 len = f->get_buffer(f->opaque, f->buf, f->buf_offset, IO_BUF_SIZE);
6420 if (len < 0)
6421 len = 0;
6422
6423 f->buf_index = 0;
6424 f->buf_size = len;
6425 f->buf_offset += len;
6426 }
6427
6428 int qemu_fclose(QEMUFile *f)
6429 {
6430 int ret = 0;
6431 qemu_fflush(f);
6432 if (f->close)
6433 ret = f->close(f->opaque);
6434 qemu_free(f);
6435 return ret;
6436 }
6437
6438 void qemu_file_put_notify(QEMUFile *f)
6439 {
6440 f->put_buffer(f->opaque, NULL, 0, 0);
6441 }
6442
6443 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
6444 {
6445 int l;
6446 while (size > 0) {
6447 l = IO_BUF_SIZE - f->buf_index;
6448 if (l > size)
6449 l = size;
6450 memcpy(f->buf + f->buf_index, buf, l);
6451 f->buf_index += l;
6452 buf += l;
6453 size -= l;
6454 if (f->buf_index >= IO_BUF_SIZE)
6455 qemu_fflush(f);
6456 }
6457 }
6458
6459 void qemu_put_byte(QEMUFile *f, int v)
6460 {
6461 f->buf[f->buf_index++] = v;
6462 if (f->buf_index >= IO_BUF_SIZE)
6463 qemu_fflush(f);
6464 }
6465
6466 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
6467 {
6468 int size, l;
6469
6470 size = size1;
6471 while (size > 0) {
6472 l = f->buf_size - f->buf_index;
6473 if (l == 0) {
6474 qemu_fill_buffer(f);
6475 l = f->buf_size - f->buf_index;
6476 if (l == 0)
6477 break;
6478 }
6479 if (l > size)
6480 l = size;
6481 memcpy(buf, f->buf + f->buf_index, l);
6482 f->buf_index += l;
6483 buf += l;
6484 size -= l;
6485 }
6486 return size1 - size;
6487 }
6488
6489 int qemu_get_byte(QEMUFile *f)
6490 {
6491 if (f->buf_index >= f->buf_size) {
6492 qemu_fill_buffer(f);
6493 if (f->buf_index >= f->buf_size)
6494 return 0;
6495 }
6496 return f->buf[f->buf_index++];
6497 }
6498
6499 int64_t qemu_ftell(QEMUFile *f)
6500 {
6501 return f->buf_offset - f->buf_size + f->buf_index;
6502 }
6503
6504 int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
6505 {
6506 if (whence == SEEK_SET) {
6507 /* nothing to do */
6508 } else if (whence == SEEK_CUR) {
6509 pos += qemu_ftell(f);
6510 } else {
6511 /* SEEK_END not supported */
6512 return -1;
6513 }
6514 if (f->put_buffer) {
6515 qemu_fflush(f);
6516 f->buf_offset = pos;
6517 } else {
6518 f->buf_offset = pos;
6519 f->buf_index = 0;
6520 f->buf_size = 0;
6521 }
6522 return pos;
6523 }
6524
6525 int qemu_file_rate_limit(QEMUFile *f)
6526 {
6527 if (f->rate_limit)
6528 return f->rate_limit(f->opaque);
6529
6530 return 0;
6531 }
6532
6533 void qemu_put_be16(QEMUFile *f, unsigned int v)
6534 {
6535 qemu_put_byte(f, v >> 8);
6536 qemu_put_byte(f, v);
6537 }
6538
6539 void qemu_put_be32(QEMUFile *f, unsigned int v)
6540 {
6541 qemu_put_byte(f, v >> 24);
6542 qemu_put_byte(f, v >> 16);
6543 qemu_put_byte(f, v >> 8);
6544 qemu_put_byte(f, v);
6545 }
6546
6547 void qemu_put_be64(QEMUFile *f, uint64_t v)
6548 {
6549 qemu_put_be32(f, v >> 32);
6550 qemu_put_be32(f, v);
6551 }
6552
6553 unsigned int qemu_get_be16(QEMUFile *f)
6554 {
6555 unsigned int v;
6556 v = qemu_get_byte(f) << 8;
6557 v |= qemu_get_byte(f);
6558 return v;
6559 }
6560
6561 unsigned int qemu_get_be32(QEMUFile *f)
6562 {
6563 unsigned int v;
6564 v = qemu_get_byte(f) << 24;
6565 v |= qemu_get_byte(f) << 16;
6566 v |= qemu_get_byte(f) << 8;
6567 v |= qemu_get_byte(f);
6568 return v;
6569 }
6570
6571 uint64_t qemu_get_be64(QEMUFile *f)
6572 {
6573 uint64_t v;
6574 v = (uint64_t)qemu_get_be32(f) << 32;
6575 v |= qemu_get_be32(f);
6576 return v;
6577 }
6578
6579 typedef struct SaveStateEntry {
6580 char idstr[256];
6581 int instance_id;
6582 int version_id;
6583 SaveStateHandler *save_state;
6584 LoadStateHandler *load_state;
6585 void *opaque;
6586 struct SaveStateEntry *next;
6587 } SaveStateEntry;
6588
6589 static SaveStateEntry *first_se;
6590
6591 /* TODO: Individual devices generally have very little idea about the rest
6592 of the system, so instance_id should be removed/replaced.
6593 Meanwhile pass -1 as instance_id if you do not already have a clearly
6594 distinguishing id for all instances of your device class. */
6595 int register_savevm(const char *idstr,
6596 int instance_id,
6597 int version_id,
6598 SaveStateHandler *save_state,
6599 LoadStateHandler *load_state,
6600 void *opaque)
6601 {
6602 SaveStateEntry *se, **pse;
6603
6604 se = qemu_malloc(sizeof(SaveStateEntry));
6605 if (!se)
6606 return -1;
6607 pstrcpy(se->idstr, sizeof(se->idstr), idstr);
6608 se->instance_id = (instance_id == -1) ? 0 : instance_id;
6609 se->version_id = version_id;
6610 se->save_state = save_state;
6611 se->load_state = load_state;
6612 se->opaque = opaque;
6613 se->next = NULL;
6614
6615 /* add at the end of list */
6616 pse = &first_se;
6617 while (*pse != NULL) {
6618 if (instance_id == -1
6619 && strcmp(se->idstr, (*pse)->idstr) == 0
6620 && se->instance_id <= (*pse)->instance_id)
6621 se->instance_id = (*pse)->instance_id + 1;
6622 pse = &(*pse)->next;
6623 }
6624 *pse = se;
6625 return 0;
6626 }
6627
6628 #define QEMU_VM_FILE_MAGIC 0x5145564d
6629 #define QEMU_VM_FILE_VERSION 0x00000002
6630
6631 static int qemu_savevm_state(QEMUFile *f)
6632 {
6633 SaveStateEntry *se;
6634 int len, ret;
6635 int64_t cur_pos, len_pos, total_len_pos;
6636
6637 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
6638 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
6639 total_len_pos = qemu_ftell(f);
6640 qemu_put_be64(f, 0); /* total size */
6641
6642 for(se = first_se; se != NULL; se = se->next) {
6643 if (se->save_state == NULL)
6644 /* this one has a loader only, for backwards compatibility */
6645 continue;
6646
6647 /* ID string */
6648 len = strlen(se->idstr);
6649 qemu_put_byte(f, len);
6650 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
6651
6652 qemu_put_be32(f, se->instance_id);
6653 qemu_put_be32(f, se->version_id);
6654
6655 /* record size: filled later */
6656 len_pos = qemu_ftell(f);
6657 qemu_put_be32(f, 0);
6658 se->save_state(f, se->opaque);
6659
6660 /* fill record size */
6661 cur_pos = qemu_ftell(f);
6662 len = cur_pos - len_pos - 4;
6663 qemu_fseek(f, len_pos, SEEK_SET);
6664 qemu_put_be32(f, len);
6665 qemu_fseek(f, cur_pos, SEEK_SET);
6666 }
6667 cur_pos = qemu_ftell(f);
6668 qemu_fseek(f, total_len_pos, SEEK_SET);
6669 qemu_put_be64(f, cur_pos - total_len_pos - 8);
6670 qemu_fseek(f, cur_pos, SEEK_SET);
6671
6672 ret = 0;
6673 return ret;
6674 }
6675
6676 static SaveStateEntry *find_se(const char *idstr, int instance_id)
6677 {
6678 SaveStateEntry *se;
6679
6680 for(se = first_se; se != NULL; se = se->next) {
6681 if (!strcmp(se->idstr, idstr) &&
6682 instance_id == se->instance_id)
6683 return se;
6684 }
6685 return NULL;
6686 }
6687
6688 static int qemu_loadvm_state(QEMUFile *f)
6689 {
6690 SaveStateEntry *se;
6691 int len, ret, instance_id, record_len, version_id;
6692 int64_t total_len, end_pos, cur_pos;
6693 unsigned int v;
6694 char idstr[256];
6695
6696 v = qemu_get_be32(f);
6697 if (v != QEMU_VM_FILE_MAGIC)
6698 goto fail;
6699 v = qemu_get_be32(f);
6700 if (v != QEMU_VM_FILE_VERSION) {
6701 fail:
6702 ret = -1;
6703 goto the_end;
6704 }
6705 total_len = qemu_get_be64(f);
6706 end_pos = total_len + qemu_ftell(f);
6707 for(;;) {
6708 if (qemu_ftell(f) >= end_pos)
6709 break;
6710 len = qemu_get_byte(f);
6711 qemu_get_buffer(f, (uint8_t *)idstr, len);
6712 idstr[len] = '\0';
6713 instance_id = qemu_get_be32(f);
6714 version_id = qemu_get_be32(f);
6715 record_len = qemu_get_be32(f);
6716 #if 0
6717 printf("idstr=%s instance=0x%x version=%d len=%d\n",
6718 idstr, instance_id, version_id, record_len);
6719 #endif
6720 cur_pos = qemu_ftell(f);
6721 se = find_se(idstr, instance_id);
6722 if (!se) {
6723 fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
6724 instance_id, idstr);
6725 } else {
6726 ret = se->load_state(f, se->opaque, version_id);
6727 if (ret < 0) {
6728 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
6729 instance_id, idstr);
6730 }
6731 }
6732 /* always seek to exact end of record */
6733 qemu_fseek(f, cur_pos + record_len, SEEK_SET);
6734 }
6735 ret = 0;
6736 the_end:
6737 return ret;
6738 }
6739
6740 /* device can contain snapshots */
6741 static int bdrv_can_snapshot(BlockDriverState *bs)
6742 {
6743 return (bs &&
6744 !bdrv_is_removable(bs) &&
6745 !bdrv_is_read_only(bs));
6746 }
6747
6748 /* device must be snapshots in order to have a reliable snapshot */
6749 static int bdrv_has_snapshot(BlockDriverState *bs)
6750 {
6751 return (bs &&
6752 !bdrv_is_removable(bs) &&
6753 !bdrv_is_read_only(bs));
6754 }
6755
6756 static BlockDriverState *get_bs_snapshots(void)
6757 {
6758 BlockDriverState *bs;
6759 int i;
6760
6761 if (bs_snapshots)
6762 return bs_snapshots;
6763 for(i = 0; i <= nb_drives; i++) {
6764 bs = drives_table[i].bdrv;
6765 if (bdrv_can_snapshot(bs))
6766 goto ok;
6767 }
6768 return NULL;
6769 ok:
6770 bs_snapshots = bs;
6771 return bs;
6772 }
6773
6774 static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
6775 const char *name)
6776 {
6777 QEMUSnapshotInfo *sn_tab, *sn;
6778 int nb_sns, i, ret;
6779
6780 ret = -ENOENT;
6781 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
6782 if (nb_sns < 0)
6783 return ret;
6784 for(i = 0; i < nb_sns; i++) {
6785 sn = &sn_tab[i];
6786 if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
6787 *sn_info = *sn;
6788 ret = 0;
6789 break;
6790 }
6791 }
6792 qemu_free(sn_tab);
6793 return ret;
6794 }
6795
6796 void do_savevm(const char *name)
6797 {
6798 BlockDriverState *bs, *bs1;
6799 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
6800 int must_delete, ret, i;
6801 BlockDriverInfo bdi1, *bdi = &bdi1;
6802 QEMUFile *f;
6803 int saved_vm_running;
6804 #ifdef _WIN32
6805 struct _timeb tb;
6806 #else
6807 struct timeval tv;
6808 #endif
6809
6810 bs = get_bs_snapshots();
6811 if (!bs) {
6812 term_printf("No block device can accept snapshots\n");
6813 return;
6814 }
6815
6816 /* ??? Should this occur after vm_stop? */
6817 qemu_aio_flush();
6818
6819 saved_vm_running = vm_running;
6820 vm_stop(0);
6821
6822 must_delete = 0;
6823 if (name) {
6824 ret = bdrv_snapshot_find(bs, old_sn, name);
6825 if (ret >= 0) {
6826 must_delete = 1;
6827 }
6828 }
6829 memset(sn, 0, sizeof(*sn));
6830 if (must_delete) {
6831 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
6832 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
6833 } else {
6834 if (name)
6835 pstrcpy(sn->name, sizeof(sn->name), name);
6836 }
6837
6838 /* fill auxiliary fields */
6839 #ifdef _WIN32
6840 _ftime(&tb);
6841 sn->date_sec = tb.time;
6842 sn->date_nsec = tb.millitm * 1000000;
6843 #else
6844 gettimeofday(&tv, NULL);
6845 sn->date_sec = tv.tv_sec;
6846 sn->date_nsec = tv.tv_usec * 1000;
6847 #endif
6848 sn->vm_clock_nsec = qemu_get_clock(vm_clock);
6849
6850 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
6851 term_printf("Device %s does not support VM state snapshots\n",
6852 bdrv_get_device_name(bs));
6853 goto the_end;
6854 }
6855
6856 /* save the VM state */
6857 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
6858 if (!f) {
6859 term_printf("Could not open VM state file\n");
6860 goto the_end;
6861 }
6862 ret = qemu_savevm_state(f);
6863 sn->vm_state_size = qemu_ftell(f);
6864 qemu_fclose(f);
6865 if (ret < 0) {
6866 term_printf("Error %d while writing VM\n", ret);
6867 goto the_end;
6868 }
6869
6870 /* create the snapshots */
6871
6872 for(i = 0; i < nb_drives; i++) {
6873 bs1 = drives_table[i].bdrv;
6874 if (bdrv_has_snapshot(bs1)) {
6875 if (must_delete) {
6876 ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
6877 if (ret < 0) {
6878 term_printf("Error while deleting snapshot on '%s'\n",
6879 bdrv_get_device_name(bs1));
6880 }
6881 }
6882 ret = bdrv_snapshot_create(bs1, sn);
6883 if (ret < 0) {
6884 term_printf("Error while creating snapshot on '%s'\n",
6885 bdrv_get_device_name(bs1));
6886 }
6887 }
6888 }
6889
6890 the_end:
6891 if (saved_vm_running)
6892 vm_start();
6893 }
6894
6895 void do_loadvm(const char *name)
6896 {
6897 BlockDriverState *bs, *bs1;
6898 BlockDriverInfo bdi1, *bdi = &bdi1;
6899 QEMUFile *f;
6900 int i, ret;
6901 int saved_vm_running;
6902
6903 bs = get_bs_snapshots();
6904 if (!bs) {
6905 term_printf("No block device supports snapshots\n");
6906 return;
6907 }
6908
6909 /* Flush all IO requests so they don't interfere with the new state. */
6910 qemu_aio_flush();
6911
6912 saved_vm_running = vm_running;
6913 vm_stop(0);
6914
6915 for(i = 0; i <= nb_drives; i++) {
6916 bs1 = drives_table[i].bdrv;
6917 if (bdrv_has_snapshot(bs1)) {
6918 ret = bdrv_snapshot_goto(bs1, name);
6919 if (ret < 0) {
6920 if (bs != bs1)
6921 term_printf("Warning: ");
6922 switch(ret) {
6923 case -ENOTSUP:
6924 term_printf("Snapshots not supported on device '%s'\n",
6925 bdrv_get_device_name(bs1));
6926 break;
6927 case -ENOENT:
6928 term_printf("Could not find snapshot '%s' on device '%s'\n",
6929 name, bdrv_get_device_name(bs1));
6930 break;
6931 default:
6932 term_printf("Error %d while activating snapshot on '%s'\n",
6933 ret, bdrv_get_device_name(bs1));
6934 break;
6935 }
6936 /* fatal on snapshot block device */
6937 if (bs == bs1)
6938 goto the_end;
6939 }
6940 }
6941 }
6942
6943 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
6944 term_printf("Device %s does not support VM state snapshots\n",
6945 bdrv_get_device_name(bs));
6946 return;
6947 }
6948
6949 /* restore the VM state */
6950 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
6951 if (!f) {
6952 term_printf("Could not open VM state file\n");
6953 goto the_end;
6954 }
6955 ret = qemu_loadvm_state(f);
6956 qemu_fclose(f);
6957 if (ret < 0) {
6958 term_printf("Error %d while loading VM state\n", ret);
6959 }
6960 the_end:
6961 if (saved_vm_running)
6962 vm_start();
6963 }
6964
6965 void do_delvm(const char *name)
6966 {
6967 BlockDriverState *bs, *bs1;
6968 int i, ret;
6969
6970 bs = get_bs_snapshots();
6971 if (!bs) {
6972 term_printf("No block device supports snapshots\n");
6973 return;
6974 }
6975
6976 for(i = 0; i <= nb_drives; i++) {
6977 bs1 = drives_table[i].bdrv;
6978 if (bdrv_has_snapshot(bs1)) {
6979 ret = bdrv_snapshot_delete(bs1, name);
6980 if (ret < 0) {
6981 if (ret == -ENOTSUP)
6982 term_printf("Snapshots not supported on device '%s'\n",
6983 bdrv_get_device_name(bs1));
6984 else
6985 term_printf("Error %d while deleting snapshot on '%s'\n",
6986 ret, bdrv_get_device_name(bs1));
6987 }
6988 }
6989 }
6990 }
6991
6992 void do_info_snapshots(void)
6993 {
6994 BlockDriverState *bs, *bs1;
6995 QEMUSnapshotInfo *sn_tab, *sn;
6996 int nb_sns, i;
6997 char buf[256];
6998
6999 bs = get_bs_snapshots();
7000 if (!bs) {
7001 term_printf("No available block device supports snapshots\n");
7002 return;
7003 }
7004 term_printf("Snapshot devices:");
7005 for(i = 0; i <= nb_drives; i++) {
7006 bs1 = drives_table[i].bdrv;
7007 if (bdrv_has_snapshot(bs1)) {
7008 if (bs == bs1)
7009 term_printf(" %s", bdrv_get_device_name(bs1));
7010 }
7011 }
7012 term_printf("\n");
7013
7014 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
7015 if (nb_sns < 0) {
7016 term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
7017 return;
7018 }
7019 term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
7020 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
7021 for(i = 0; i < nb_sns; i++) {
7022 sn = &sn_tab[i];
7023 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
7024 }
7025 qemu_free(sn_tab);
7026 }
7027
7028 /***********************************************************/
7029 /* ram save/restore */
7030
7031 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
7032 {
7033 int v;
7034
7035 v = qemu_get_byte(f);
7036 switch(v) {
7037 case 0:
7038 if (qemu_get_buffer(f, buf, len) != len)
7039 return -EIO;
7040 break;
7041 case 1:
7042 v = qemu_get_byte(f);
7043 memset(buf, v, len);
7044 break;
7045 default:
7046 return -EINVAL;
7047 }
7048 return 0;
7049 }
7050
7051 static int ram_load_v1(QEMUFile *f, void *opaque)
7052 {
7053 int ret;
7054 ram_addr_t i;
7055
7056 if (qemu_get_be32(f) != phys_ram_size)
7057 return -EINVAL;
7058 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
7059 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
7060 if (ret)
7061 return ret;
7062 }
7063 return 0;
7064 }
7065
7066 #define BDRV_HASH_BLOCK_SIZE 1024
7067 #define IOBUF_SIZE 4096
7068 #define RAM_CBLOCK_MAGIC 0xfabe
7069
7070 typedef struct RamCompressState {
7071 z_stream zstream;
7072 QEMUFile *f;
7073 uint8_t buf[IOBUF_SIZE];
7074 } RamCompressState;
7075
7076 static int ram_compress_open(RamCompressState *s, QEMUFile *f)
7077 {
7078 int ret;
7079 memset(s, 0, sizeof(*s));
7080 s->f = f;
7081 ret = deflateInit2(&s->zstream, 1,
7082 Z_DEFLATED, 15,
7083 9, Z_DEFAULT_STRATEGY);
7084 if (ret != Z_OK)
7085 return -1;
7086 s->zstream.avail_out = IOBUF_SIZE;
7087 s->zstream.next_out = s->buf;
7088 return 0;
7089 }
7090
7091 static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
7092 {
7093 qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
7094 qemu_put_be16(s->f, len);
7095 qemu_put_buffer(s->f, buf, len);
7096 }
7097
7098 static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
7099 {
7100 int ret;
7101
7102 s->zstream.avail_in = len;
7103 s->zstream.next_in = (uint8_t *)buf;
7104 while (s->zstream.avail_in > 0) {
7105 ret = deflate(&s->zstream, Z_NO_FLUSH);
7106 if (ret != Z_OK)
7107 return -1;
7108 if (s->zstream.avail_out == 0) {
7109 ram_put_cblock(s, s->buf, IOBUF_SIZE);
7110 s->zstream.avail_out = IOBUF_SIZE;
7111 s->zstream.next_out = s->buf;
7112 }
7113 }
7114 return 0;
7115 }
7116
7117 static void ram_compress_close(RamCompressState *s)
7118 {
7119 int len, ret;
7120
7121 /* compress last bytes */
7122 for(;;) {
7123 ret = deflate(&s->zstream, Z_FINISH);
7124 if (ret == Z_OK || ret == Z_STREAM_END) {
7125 len = IOBUF_SIZE - s->zstream.avail_out;
7126 if (len > 0) {
7127 ram_put_cblock(s, s->buf, len);
7128 }
7129 s->zstream.avail_out = IOBUF_SIZE;
7130 s->zstream.next_out = s->buf;
7131 if (ret == Z_STREAM_END)
7132 break;
7133 } else {
7134 goto fail;
7135 }
7136 }
7137 fail:
7138 deflateEnd(&s->zstream);
7139 }
7140
7141 typedef struct RamDecompressState {
7142 z_stream zstream;
7143 QEMUFile *f;
7144 uint8_t buf[IOBUF_SIZE];
7145 } RamDecompressState;
7146
7147 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
7148 {
7149 int ret;
7150 memset(s, 0, sizeof(*s));
7151 s->f = f;
7152 ret = inflateInit(&s->zstream);
7153 if (ret != Z_OK)
7154 return -1;
7155 return 0;
7156 }
7157
7158 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
7159 {
7160 int ret, clen;
7161
7162 s->zstream.avail_out = len;
7163 s->zstream.next_out = buf;
7164 while (s->zstream.avail_out > 0) {
7165 if (s->zstream.avail_in == 0) {
7166 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
7167 return -1;
7168 clen = qemu_get_be16(s->f);
7169 if (clen > IOBUF_SIZE)
7170 return -1;
7171 qemu_get_buffer(s->f, s->buf, clen);
7172 s->zstream.avail_in = clen;
7173 s->zstream.next_in = s->buf;
7174 }
7175 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
7176 if (ret != Z_OK && ret != Z_STREAM_END) {
7177 return -1;
7178 }
7179 }
7180 return 0;
7181 }
7182
7183 static void ram_decompress_close(RamDecompressState *s)
7184 {
7185 inflateEnd(&s->zstream);
7186 }
7187
7188 static void ram_save(QEMUFile *f, void *opaque)
7189 {
7190 ram_addr_t i;
7191 RamCompressState s1, *s = &s1;
7192 uint8_t buf[10];
7193
7194 qemu_put_be32(f, phys_ram_size);
7195 if (ram_compress_open(s, f) < 0)
7196 return;
7197 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
7198 #if 0
7199 if (tight_savevm_enabled) {
7200 int64_t sector_num;
7201 int j;
7202
7203 /* find if the memory block is available on a virtual
7204 block device */
7205 sector_num = -1;
7206 for(j = 0; j < nb_drives; j++) {
7207 sector_num = bdrv_hash_find(drives_table[j].bdrv,
7208 phys_ram_base + i,
7209 BDRV_HASH_BLOCK_SIZE);
7210 if (sector_num >= 0)
7211 break;
7212 }
7213 if (j == nb_drives)
7214 goto normal_compress;
7215 buf[0] = 1;
7216 buf[1] = j;
7217 cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
7218 ram_compress_buf(s, buf, 10);
7219 } else
7220 #endif
7221 {
7222 // normal_compress:
7223 buf[0] = 0;
7224 ram_compress_buf(s, buf, 1);
7225 ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
7226 }
7227 }
7228 ram_compress_close(s);
7229 }
7230
7231 static int ram_load(QEMUFile *f, void *opaque, int version_id)
7232 {
7233 RamDecompressState s1, *s = &s1;
7234 uint8_t buf[10];
7235 ram_addr_t i;
7236
7237 if (version_id == 1)
7238 return ram_load_v1(f, opaque);
7239 if (version_id != 2)
7240 return -EINVAL;
7241 if (qemu_get_be32(f) != phys_ram_size)
7242 return -EINVAL;
7243 if (ram_decompress_open(s, f) < 0)
7244 return -EINVAL;
7245 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
7246 if (ram_decompress_buf(s, buf, 1) < 0) {
7247 fprintf(stderr, "Error while reading ram block header\n");
7248 goto error;
7249 }
7250 if (buf[0] == 0) {
7251 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
7252 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
7253 goto error;
7254 }
7255 } else
7256 #if 0
7257 if (buf[0] == 1) {
7258 int bs_index;
7259 int64_t sector_num;
7260
7261 ram_decompress_buf(s, buf + 1, 9);
7262 bs_index = buf[1];
7263 sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
7264 if (bs_index >= nb_drives) {
7265 fprintf(stderr, "Invalid block device index %d\n", bs_index);
7266 goto error;
7267 }
7268 if (bdrv_read(drives_table[bs_index].bdrv, sector_num,
7269 phys_ram_base + i,
7270 BDRV_HASH_BLOCK_SIZE / 512) < 0) {
7271 fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
7272 bs_index, sector_num);
7273 goto error;
7274 }
7275 } else
7276 #endif
7277 {
7278 error:
7279 printf("Error block header\n");
7280 return -EINVAL;
7281 }
7282 }
7283 ram_decompress_close(s);
7284 return 0;
7285 }
7286
7287 /***********************************************************/
7288 /* bottom halves (can be seen as timers which expire ASAP) */
7289
7290 struct QEMUBH {
7291 QEMUBHFunc *cb;
7292 void *opaque;
7293 int scheduled;
7294 QEMUBH *next;
7295 };
7296
7297 static QEMUBH *first_bh = NULL;
7298
7299 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
7300 {
7301 QEMUBH *bh;
7302 bh = qemu_mallocz(sizeof(QEMUBH));
7303 if (!bh)
7304 return NULL;
7305 bh->cb = cb;
7306 bh->opaque = opaque;
7307 return bh;
7308 }
7309
7310 int qemu_bh_poll(void)
7311 {
7312 QEMUBH *bh, **pbh;
7313 int ret;
7314
7315 ret = 0;
7316 for(;;) {
7317 pbh = &first_bh;
7318 bh = *pbh;
7319 if (!bh)
7320 break;
7321 ret = 1;
7322 *pbh = bh->next;
7323 bh->scheduled = 0;
7324 bh->cb(bh->opaque);
7325 }
7326 return ret;
7327 }
7328
7329 void qemu_bh_schedule(QEMUBH *bh)
7330 {
7331 CPUState *env = cpu_single_env;
7332 if (bh->scheduled)
7333 return;
7334 bh->scheduled = 1;
7335 bh->next = first_bh;
7336 first_bh = bh;
7337
7338 /* stop the currently executing CPU to execute the BH ASAP */
7339 if (env) {
7340 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
7341 }
7342 }
7343
7344 void qemu_bh_cancel(QEMUBH *bh)
7345 {
7346 QEMUBH **pbh;
7347 if (bh->scheduled) {
7348 pbh = &first_bh;
7349 while (*pbh != bh)
7350 pbh = &(*pbh)->next;
7351 *pbh = bh->next;
7352 bh->scheduled = 0;
7353 }
7354 }
7355
7356 void qemu_bh_delete(QEMUBH *bh)
7357 {
7358 qemu_bh_cancel(bh);
7359 qemu_free(bh);
7360 }
7361
7362 /***********************************************************/
7363 /* machine registration */
7364
7365 QEMUMachine *first_machine = NULL;
7366
7367 int qemu_register_machine(QEMUMachine *m)
7368 {
7369 QEMUMachine **pm;
7370 pm = &first_machine;
7371 while (*pm != NULL)
7372 pm = &(*pm)->next;
7373 m->next = NULL;
7374 *pm = m;
7375 return 0;
7376 }
7377
7378 static QEMUMachine *find_machine(const char *name)
7379 {
7380 QEMUMachine *m;
7381
7382 for(m = first_machine; m != NULL; m = m->next) {
7383 if (!strcmp(m->name, name))
7384 return m;
7385 }
7386 return NULL;
7387 }
7388
7389 /***********************************************************/
7390 /* main execution loop */
7391
7392 static void gui_update(void *opaque)
7393 {
7394 DisplayState *ds = opaque;
7395 ds->dpy_refresh(ds);
7396 qemu_mod_timer(ds->gui_timer,
7397 (ds->gui_timer_interval ?
7398 ds->gui_timer_interval :
7399 GUI_REFRESH_INTERVAL)
7400 + qemu_get_clock(rt_clock));
7401 }
7402
7403 struct vm_change_state_entry {
7404 VMChangeStateHandler *cb;
7405 void *opaque;
7406 LIST_ENTRY (vm_change_state_entry) entries;
7407 };
7408
7409 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
7410
7411 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
7412 void *opaque)
7413 {
7414 VMChangeStateEntry *e;
7415
7416 e = qemu_mallocz(sizeof (*e));
7417 if (!e)
7418 return NULL;
7419
7420 e->cb = cb;
7421 e->opaque = opaque;
7422 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
7423 return e;
7424 }
7425
7426 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
7427 {
7428 LIST_REMOVE (e, entries);
7429 qemu_free (e);
7430 }
7431
7432 static void vm_state_notify(int running)
7433 {
7434 VMChangeStateEntry *e;
7435
7436 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
7437 e->cb(e->opaque, running);
7438 }
7439 }
7440
7441 /* XXX: support several handlers */
7442 static VMStopHandler *vm_stop_cb;
7443 static void *vm_stop_opaque;
7444
7445 int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
7446 {
7447 vm_stop_cb = cb;
7448 vm_stop_opaque = opaque;
7449 return 0;
7450 }
7451
7452 void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
7453 {
7454 vm_stop_cb = NULL;
7455 }
7456
7457 void vm_start(void)
7458 {
7459 if (!vm_running) {
7460 cpu_enable_ticks();
7461 vm_running = 1;
7462 vm_state_notify(1);
7463 qemu_rearm_alarm_timer(alarm_timer);
7464 }
7465 }
7466
7467 void vm_stop(int reason)
7468 {
7469 if (vm_running) {
7470 cpu_disable_ticks();
7471 vm_running = 0;
7472 if (reason != 0) {
7473 if (vm_stop_cb) {
7474 vm_stop_cb(vm_stop_opaque, reason);
7475 }
7476 }
7477 vm_state_notify(0);
7478 }
7479 }
7480
7481 /* reset/shutdown handler */
7482
7483 typedef struct QEMUResetEntry {
7484 QEMUResetHandler *func;
7485 void *opaque;
7486 struct QEMUResetEntry *next;
7487 } QEMUResetEntry;
7488
7489 static QEMUResetEntry *first_reset_entry;
7490 static int reset_requested;
7491 static int shutdown_requested;
7492 static int powerdown_requested;
7493
7494 int qemu_shutdown_requested(void)
7495 {
7496 int r = shutdown_requested;
7497 shutdown_requested = 0;
7498 return r;
7499 }
7500
7501 int qemu_reset_requested(void)
7502 {
7503 int r = reset_requested;
7504 reset_requested = 0;
7505 return r;
7506 }
7507
7508 int qemu_powerdown_requested(void)
7509 {
7510 int r = powerdown_requested;
7511 powerdown_requested = 0;
7512 return r;
7513 }
7514
7515 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
7516 {
7517 QEMUResetEntry **pre, *re;
7518
7519 pre = &first_reset_entry;
7520 while (*pre != NULL)
7521 pre = &(*pre)->next;
7522 re = qemu_mallocz(sizeof(QEMUResetEntry));
7523 re->func = func;
7524 re->opaque = opaque;
7525 re->next = NULL;
7526 *pre = re;
7527 }
7528
7529 void qemu_system_reset(void)
7530 {
7531 QEMUResetEntry *re;
7532
7533 /* reset all devices */
7534 for(re = first_reset_entry; re != NULL; re = re->next) {
7535 re->func(re->opaque);
7536 }
7537 }
7538
7539 void qemu_system_reset_request(void)
7540 {
7541 if (no_reboot) {
7542 shutdown_requested = 1;
7543 } else {
7544 reset_requested = 1;
7545 }
7546 if (cpu_single_env)
7547 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7548 }
7549
7550 void qemu_system_shutdown_request(void)
7551 {
7552 shutdown_requested = 1;
7553 if (cpu_single_env)
7554 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7555 }
7556
7557 void qemu_system_powerdown_request(void)
7558 {
7559 powerdown_requested = 1;
7560 if (cpu_single_env)
7561 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7562 }
7563
7564 void main_loop_wait(int timeout)
7565 {
7566 IOHandlerRecord *ioh;
7567 fd_set rfds, wfds, xfds;
7568 int ret, nfds;
7569 #ifdef _WIN32
7570 int ret2, i;
7571 #endif
7572 struct timeval tv;
7573 PollingEntry *pe;
7574
7575
7576 /* XXX: need to suppress polling by better using win32 events */
7577 ret = 0;
7578 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
7579 ret |= pe->func(pe->opaque);
7580 }
7581 #ifdef _WIN32
7582 if (ret == 0) {
7583 int err;
7584 WaitObjects *w = &wait_objects;
7585
7586 ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
7587 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
7588 if (w->func[ret - WAIT_OBJECT_0])
7589 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
7590
7591 /* Check for additional signaled events */
7592 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
7593
7594 /* Check if event is signaled */
7595 ret2 = WaitForSingleObject(w->events[i], 0);
7596 if(ret2 == WAIT_OBJECT_0) {
7597 if (w->func[i])
7598 w->func[i](w->opaque[i]);
7599 } else if (ret2 == WAIT_TIMEOUT) {
7600 } else {
7601 err = GetLastError();
7602 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
7603 }
7604 }
7605 } else if (ret == WAIT_TIMEOUT) {
7606 } else {
7607 err = GetLastError();
7608 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
7609 }
7610 }
7611 #endif
7612 /* poll any events */
7613 /* XXX: separate device handlers from system ones */
7614 nfds = -1;
7615 FD_ZERO(&rfds);
7616 FD_ZERO(&wfds);
7617 FD_ZERO(&xfds);
7618 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
7619 if (ioh->deleted)
7620 continue;
7621 if (ioh->fd_read &&
7622 (!ioh->fd_read_poll ||
7623 ioh->fd_read_poll(ioh->opaque) != 0)) {
7624 FD_SET(ioh->fd, &rfds);
7625 if (ioh->fd > nfds)
7626 nfds = ioh->fd;
7627 }
7628 if (ioh->fd_write) {
7629 FD_SET(ioh->fd, &wfds);
7630 if (ioh->fd > nfds)
7631 nfds = ioh->fd;
7632 }
7633 }
7634
7635 tv.tv_sec = 0;
7636 #ifdef _WIN32
7637 tv.tv_usec = 0;
7638 #else
7639 tv.tv_usec = timeout * 1000;
7640 #endif
7641 #if defined(CONFIG_SLIRP)
7642 if (slirp_inited) {
7643 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
7644 }
7645 #endif
7646 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
7647 if (ret > 0) {
7648 IOHandlerRecord **pioh;
7649
7650 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
7651 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
7652 ioh->fd_read(ioh->opaque);
7653 }
7654 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
7655 ioh->fd_write(ioh->opaque);
7656 }
7657 }
7658
7659 /* remove deleted IO handlers */
7660 pioh = &first_io_handler;
7661 while (*pioh) {
7662 ioh = *pioh;
7663 if (ioh->deleted) {
7664 *pioh = ioh->next;
7665 qemu_free(ioh);
7666 } else
7667 pioh = &ioh->next;
7668 }
7669 }
7670 #if defined(CONFIG_SLIRP)
7671 if (slirp_inited) {
7672 if (ret < 0) {
7673 FD_ZERO(&rfds);
7674 FD_ZERO(&wfds);
7675 FD_ZERO(&xfds);
7676 }
7677 slirp_select_poll(&rfds, &wfds, &xfds);
7678 }
7679 #endif
7680
7681 if (vm_running) {
7682 if (likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
7683 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
7684 qemu_get_clock(vm_clock));
7685 /* run dma transfers, if any */
7686 DMA_run();
7687 }
7688
7689 /* real time timers */
7690 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
7691 qemu_get_clock(rt_clock));
7692
7693 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
7694 alarm_timer->flags &= ~(ALARM_FLAG_EXPIRED);
7695 qemu_rearm_alarm_timer(alarm_timer);
7696 }
7697
7698 /* Check bottom-halves last in case any of the earlier events triggered
7699 them. */
7700 qemu_bh_poll();
7701
7702 }
7703
7704 static int main_loop(void)
7705 {
7706 int ret, timeout;
7707 #ifdef CONFIG_PROFILER
7708 int64_t ti;
7709 #endif
7710 CPUState *env;
7711
7712 cur_cpu = first_cpu;
7713 next_cpu = cur_cpu->next_cpu ?: first_cpu;
7714 for(;;) {
7715 if (vm_running) {
7716
7717 for(;;) {
7718 /* get next cpu */
7719 env = next_cpu;
7720 #ifdef CONFIG_PROFILER
7721 ti = profile_getclock();
7722 #endif
7723 if (use_icount) {
7724 int64_t count;
7725 int decr;
7726 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
7727 env->icount_decr.u16.low = 0;
7728 env->icount_extra = 0;
7729 count = qemu_next_deadline();
7730 count = (count + (1 << icount_time_shift) - 1)
7731 >> icount_time_shift;
7732 qemu_icount += count;
7733 decr = (count > 0xffff) ? 0xffff : count;
7734 count -= decr;
7735 env->icount_decr.u16.low = decr;
7736 env->icount_extra = count;
7737 }
7738 ret = cpu_exec(env);
7739 #ifdef CONFIG_PROFILER
7740 qemu_time += profile_getclock() - ti;
7741 #endif
7742 if (use_icount) {
7743 /* Fold pending instructions back into the
7744 instruction counter, and clear the interrupt flag. */
7745 qemu_icount -= (env->icount_decr.u16.low
7746 + env->icount_extra);
7747 env->icount_decr.u32 = 0;
7748 env->icount_extra = 0;
7749 }
7750 next_cpu = env->next_cpu ?: first_cpu;
7751 if (event_pending && likely(ret != EXCP_DEBUG)) {
7752 ret = EXCP_INTERRUPT;
7753 event_pending = 0;
7754 break;
7755 }
7756 if (ret == EXCP_HLT) {
7757 /* Give the next CPU a chance to run. */
7758 cur_cpu = env;
7759 continue;
7760 }
7761 if (ret != EXCP_HALTED)
7762 break;
7763 /* all CPUs are halted ? */
7764 if (env == cur_cpu)
7765 break;
7766 }
7767 cur_cpu = env;
7768
7769 if (shutdown_requested) {
7770 ret = EXCP_INTERRUPT;
7771 if (no_shutdown) {
7772 vm_stop(0);
7773 no_shutdown = 0;
7774 }
7775 else
7776 break;
7777 }
7778 if (reset_requested) {
7779 reset_requested = 0;
7780 qemu_system_reset();
7781 ret = EXCP_INTERRUPT;
7782 }
7783 if (powerdown_requested) {
7784 powerdown_requested = 0;
7785 qemu_system_powerdown();
7786 ret = EXCP_INTERRUPT;
7787 }
7788 if (unlikely(ret == EXCP_DEBUG)) {
7789 vm_stop(EXCP_DEBUG);
7790 }
7791 /* If all cpus are halted then wait until the next IRQ */
7792 /* XXX: use timeout computed from timers */
7793 if (ret == EXCP_HALTED) {
7794 if (use_icount) {
7795 int64_t add;
7796 int64_t delta;
7797 /* Advance virtual time to the next event. */
7798 if (use_icount == 1) {
7799 /* When not using an adaptive execution frequency
7800 we tend to get badly out of sync with real time,
7801 so just delay for a reasonable amount of time. */
7802 delta = 0;
7803 } else {
7804 delta = cpu_get_icount() - cpu_get_clock();
7805 }
7806 if (delta > 0) {
7807 /* If virtual time is ahead of real time then just
7808 wait for IO. */
7809 timeout = (delta / 1000000) + 1;
7810 } else {
7811 /* Wait for either IO to occur or the next
7812 timer event. */
7813 add = qemu_next_deadline();
7814 /* We advance the timer before checking for IO.
7815 Limit the amount we advance so that early IO
7816 activity won't get the guest too far ahead. */
7817 if (add > 10000000)
7818 add = 10000000;
7819 delta += add;
7820 add = (add + (1 << icount_time_shift) - 1)
7821 >> icount_time_shift;
7822 qemu_icount += add;
7823 timeout = delta / 1000000;
7824 if (timeout < 0)
7825 timeout = 0;
7826 }
7827 } else {
7828 timeout = 10;
7829 }
7830 } else {
7831 timeout = 0;
7832 }
7833 } else {
7834 if (shutdown_requested) {
7835 ret = EXCP_INTERRUPT;
7836 break;
7837 }
7838 timeout = 10;
7839 }
7840 #ifdef CONFIG_PROFILER
7841 ti = profile_getclock();
7842 #endif
7843 main_loop_wait(timeout);
7844 #ifdef CONFIG_PROFILER
7845 dev_time += profile_getclock() - ti;
7846 #endif
7847 }
7848 cpu_disable_ticks();
7849 return ret;
7850 }
7851
7852 static void help(int exitcode)
7853 {
7854 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
7855 "usage: %s [options] [disk_image]\n"
7856 "\n"
7857 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
7858 "\n"
7859 "Standard options:\n"
7860 "-M machine select emulated machine (-M ? for list)\n"
7861 "-cpu cpu select CPU (-cpu ? for list)\n"
7862 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
7863 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
7864 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
7865 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
7866 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
7867 " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
7868 " [,cache=on|off][,format=f]\n"
7869 " use 'file' as a drive image\n"
7870 "-mtdblock file use 'file' as on-board Flash memory image\n"
7871 "-sd file use 'file' as SecureDigital card image\n"
7872 "-pflash file use 'file' as a parallel flash image\n"
7873 "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
7874 "-snapshot write to temporary files instead of disk image files\n"
7875 #ifdef CONFIG_SDL
7876 "-no-frame open SDL window without a frame and window decorations\n"
7877 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
7878 "-no-quit disable SDL window close capability\n"
7879 #endif
7880 #ifdef TARGET_I386
7881 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
7882 #endif
7883 "-m megs set virtual RAM size to megs MB [default=%d]\n"
7884 "-smp n set the number of CPUs to 'n' [default=1]\n"
7885 "-nographic disable graphical output and redirect serial I/Os to console\n"
7886 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n"
7887 #ifndef _WIN32
7888 "-k language use keyboard layout (for example \"fr\" for French)\n"
7889 #endif
7890 #ifdef HAS_AUDIO
7891 "-audio-help print list of audio drivers and their options\n"
7892 "-soundhw c1,... enable audio support\n"
7893 " and only specified sound cards (comma separated list)\n"
7894 " use -soundhw ? to get the list of supported cards\n"
7895 " use -soundhw all to enable all of them\n"
7896 #endif
7897 "-vga [std|cirrus|vmware]\n"
7898 " select video card type\n"
7899 "-localtime set the real time clock to local time [default=utc]\n"
7900 "-full-screen start in full screen\n"
7901 #ifdef TARGET_I386
7902 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
7903 #endif
7904 "-usb enable the USB driver (will be the default soon)\n"
7905 "-usbdevice name add the host or guest USB device 'name'\n"
7906 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
7907 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
7908 #endif
7909 "-name string set the name of the guest\n"
7910 "-uuid %%08x-%%04x-%%04x-%%04x-%%012x specify machine UUID\n"
7911 "\n"
7912 "Network options:\n"
7913 "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
7914 " create a new Network Interface Card and connect it to VLAN 'n'\n"
7915 #ifdef CONFIG_SLIRP
7916 "-net user[,vlan=n][,hostname=host]\n"
7917 " connect the user mode network stack to VLAN 'n' and send\n"
7918 " hostname 'host' to DHCP clients\n"
7919 #endif
7920 #ifdef _WIN32
7921 "-net tap[,vlan=n],ifname=name\n"
7922 " connect the host TAP network interface to VLAN 'n'\n"
7923 #else
7924 "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
7925 " connect the host TAP network interface to VLAN 'n' and use the\n"
7926 " network scripts 'file' (default=%s)\n"
7927 " and 'dfile' (default=%s);\n"
7928 " use '[down]script=no' to disable script execution;\n"
7929 " use 'fd=h' to connect to an already opened TAP interface\n"
7930 #endif
7931 "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
7932 " connect the vlan 'n' to another VLAN using a socket connection\n"
7933 "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
7934 " connect the vlan 'n' to multicast maddr and port\n"
7935 #ifdef CONFIG_VDE
7936 "-net vde[,vlan=n][,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
7937 " connect the vlan 'n' to port 'n' of a vde switch running\n"
7938 " on host and listening for incoming connections on 'socketpath'.\n"
7939 " Use group 'groupname' and mode 'octalmode' to change default\n"
7940 " ownership and permissions for communication port.\n"
7941 #endif
7942 "-net none use it alone to have zero network devices; if no -net option\n"
7943 " is provided, the default is '-net nic -net user'\n"
7944 "\n"
7945 #ifdef CONFIG_SLIRP
7946 "-tftp dir allow tftp access to files in dir [-net user]\n"
7947 "-bootp file advertise file in BOOTP replies\n"
7948 #ifndef _WIN32
7949 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
7950 #endif
7951 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
7952 " redirect TCP or UDP connections from host to guest [-net user]\n"
7953 #endif
7954 "\n"
7955 "Linux boot specific:\n"
7956 "-kernel bzImage use 'bzImage' as kernel image\n"
7957 "-append cmdline use 'cmdline' as kernel command line\n"
7958 "-initrd file use 'file' as initial ram disk\n"
7959 "\n"
7960 "Debug/Expert options:\n"
7961 "-monitor dev redirect the monitor to char device 'dev'\n"
7962 "-serial dev redirect the serial port to char device 'dev'\n"
7963 "-parallel dev redirect the parallel port to char device 'dev'\n"
7964 "-pidfile file Write PID to 'file'\n"
7965 "-S freeze CPU at startup (use 'c' to start execution)\n"
7966 "-s wait gdb connection to port\n"
7967 "-p port set gdb connection port [default=%s]\n"
7968 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
7969 "-hdachs c,h,s[,t] force hard disk 0 physical geometry and the optional BIOS\n"
7970 " translation (t=none or lba) (usually qemu can guess them)\n"
7971 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
7972 #ifdef USE_KQEMU
7973 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
7974 "-no-kqemu disable KQEMU kernel module usage\n"
7975 #endif
7976 #ifdef TARGET_I386
7977 "-no-acpi disable ACPI\n"
7978 #endif
7979 #ifdef CONFIG_CURSES
7980 "-curses use a curses/ncurses interface instead of SDL\n"
7981 #endif
7982 "-no-reboot exit instead of rebooting\n"
7983 "-no-shutdown stop before shutdown\n"
7984 "-loadvm [tag|id] start right away with a saved state (loadvm in monitor)\n"
7985 "-vnc display start a VNC server on display\n"
7986 #ifndef _WIN32
7987 "-daemonize daemonize QEMU after initializing\n"
7988 #endif
7989 "-option-rom rom load a file, rom, into the option ROM space\n"
7990 #ifdef TARGET_SPARC
7991 "-prom-env variable=value set OpenBIOS nvram variables\n"
7992 #endif
7993 "-clock force the use of the given methods for timer alarm.\n"
7994 " To see what timers are available use -clock ?\n"
7995 "-startdate select initial date of the clock\n"
7996 "-icount [N|auto]\n"
7997 " Enable virtual instruction counter with 2^N clock ticks per instruction\n"
7998 "\n"
7999 "During emulation, the following keys are useful:\n"
8000 "ctrl-alt-f toggle full screen\n"
8001 "ctrl-alt-n switch to virtual console 'n'\n"
8002 "ctrl-alt toggle mouse and keyboard grab\n"
8003 "\n"
8004 "When using -nographic, press 'ctrl-a h' to get some help.\n"
8005 ,
8006 "qemu",
8007 DEFAULT_RAM_SIZE,
8008 #ifndef _WIN32
8009 DEFAULT_NETWORK_SCRIPT,
8010 DEFAULT_NETWORK_DOWN_SCRIPT,
8011 #endif
8012 DEFAULT_GDBSTUB_PORT,
8013 "/tmp/qemu.log");
8014 exit(exitcode);
8015 }
8016
8017 #define HAS_ARG 0x0001
8018
8019 enum {
8020 QEMU_OPTION_h,
8021
8022 QEMU_OPTION_M,
8023 QEMU_OPTION_cpu,
8024 QEMU_OPTION_fda,
8025 QEMU_OPTION_fdb,
8026 QEMU_OPTION_hda,
8027 QEMU_OPTION_hdb,
8028 QEMU_OPTION_hdc,
8029 QEMU_OPTION_hdd,
8030 QEMU_OPTION_drive,
8031 QEMU_OPTION_cdrom,
8032 QEMU_OPTION_mtdblock,
8033 QEMU_OPTION_sd,
8034 QEMU_OPTION_pflash,
8035 QEMU_OPTION_boot,
8036 QEMU_OPTION_snapshot,
8037 #ifdef TARGET_I386
8038 QEMU_OPTION_no_fd_bootchk,
8039 #endif
8040 QEMU_OPTION_m,
8041 QEMU_OPTION_nographic,
8042 QEMU_OPTION_portrait,
8043 #ifdef HAS_AUDIO
8044 QEMU_OPTION_audio_help,
8045 QEMU_OPTION_soundhw,
8046 #endif
8047
8048 QEMU_OPTION_net,
8049 QEMU_OPTION_tftp,
8050 QEMU_OPTION_bootp,
8051 QEMU_OPTION_smb,
8052 QEMU_OPTION_redir,
8053
8054 QEMU_OPTION_kernel,
8055 QEMU_OPTION_append,
8056 QEMU_OPTION_initrd,
8057
8058 QEMU_OPTION_S,
8059 QEMU_OPTION_s,
8060 QEMU_OPTION_p,
8061 QEMU_OPTION_d,
8062 QEMU_OPTION_hdachs,
8063 QEMU_OPTION_L,
8064 QEMU_OPTION_bios,
8065 QEMU_OPTION_k,
8066 QEMU_OPTION_localtime,
8067 QEMU_OPTION_g,
8068 QEMU_OPTION_vga,
8069 QEMU_OPTION_echr,
8070 QEMU_OPTION_monitor,
8071 QEMU_OPTION_serial,
8072 QEMU_OPTION_parallel,
8073 QEMU_OPTION_loadvm,
8074 QEMU_OPTION_full_screen,
8075 QEMU_OPTION_no_frame,
8076 QEMU_OPTION_alt_grab,
8077 QEMU_OPTION_no_quit,
8078 QEMU_OPTION_pidfile,
8079 QEMU_OPTION_no_kqemu,
8080 QEMU_OPTION_kernel_kqemu,
8081 QEMU_OPTION_win2k_hack,
8082 QEMU_OPTION_usb,
8083 QEMU_OPTION_usbdevice,
8084 QEMU_OPTION_smp,
8085 QEMU_OPTION_vnc,
8086 QEMU_OPTION_no_acpi,
8087 QEMU_OPTION_curses,
8088 QEMU_OPTION_no_reboot,
8089 QEMU_OPTION_no_shutdown,
8090 QEMU_OPTION_show_cursor,
8091 QEMU_OPTION_daemonize,
8092 QEMU_OPTION_option_rom,
8093 QEMU_OPTION_semihosting,
8094 QEMU_OPTION_name,
8095 QEMU_OPTION_prom_env,
8096 QEMU_OPTION_old_param,
8097 QEMU_OPTION_clock,
8098 QEMU_OPTION_startdate,
8099 QEMU_OPTION_tb_size,
8100 QEMU_OPTION_icount,
8101 QEMU_OPTION_uuid,
8102 };
8103
8104 typedef struct QEMUOption {
8105 const char *name;
8106 int flags;
8107 int index;
8108 } QEMUOption;
8109
8110 const QEMUOption qemu_options[] = {
8111 { "h", 0, QEMU_OPTION_h },
8112 { "help", 0, QEMU_OPTION_h },
8113
8114 { "M", HAS_ARG, QEMU_OPTION_M },
8115 { "cpu", HAS_ARG, QEMU_OPTION_cpu },
8116 { "fda", HAS_ARG, QEMU_OPTION_fda },
8117 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
8118 { "hda", HAS_ARG, QEMU_OPTION_hda },
8119 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
8120 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
8121 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
8122 { "drive", HAS_ARG, QEMU_OPTION_drive },
8123 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
8124 { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
8125 { "sd", HAS_ARG, QEMU_OPTION_sd },
8126 { "pflash", HAS_ARG, QEMU_OPTION_pflash },
8127 { "boot", HAS_ARG, QEMU_OPTION_boot },
8128 { "snapshot", 0, QEMU_OPTION_snapshot },
8129 #ifdef TARGET_I386
8130 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
8131 #endif
8132 { "m", HAS_ARG, QEMU_OPTION_m },
8133 { "nographic", 0, QEMU_OPTION_nographic },
8134 { "portrait", 0, QEMU_OPTION_portrait },
8135 { "k", HAS_ARG, QEMU_OPTION_k },
8136 #ifdef HAS_AUDIO
8137 { "audio-help", 0, QEMU_OPTION_audio_help },
8138 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
8139 #endif
8140
8141 { "net", HAS_ARG, QEMU_OPTION_net},
8142 #ifdef CONFIG_SLIRP
8143 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
8144 { "bootp", HAS_ARG, QEMU_OPTION_bootp },
8145 #ifndef _WIN32
8146 { "smb", HAS_ARG, QEMU_OPTION_smb },
8147 #endif
8148 { "redir", HAS_ARG, QEMU_OPTION_redir },
8149 #endif
8150
8151 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
8152 { "append", HAS_ARG, QEMU_OPTION_append },
8153 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
8154
8155 { "S", 0, QEMU_OPTION_S },
8156 { "s", 0, QEMU_OPTION_s },
8157 { "p", HAS_ARG, QEMU_OPTION_p },
8158 { "d", HAS_ARG, QEMU_OPTION_d },
8159 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
8160 { "L", HAS_ARG, QEMU_OPTION_L },
8161 { "bios", HAS_ARG, QEMU_OPTION_bios },
8162 #ifdef USE_KQEMU
8163 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
8164 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
8165 #endif
8166 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
8167 { "g", 1, QEMU_OPTION_g },
8168 #endif
8169 { "localtime", 0, QEMU_OPTION_localtime },
8170 { "vga", HAS_ARG, QEMU_OPTION_vga },
8171 { "echr", HAS_ARG, QEMU_OPTION_echr },
8172 { "monitor", HAS_ARG, QEMU_OPTION_monitor },
8173 { "serial", HAS_ARG, QEMU_OPTION_serial },
8174 { "parallel", HAS_ARG, QEMU_OPTION_parallel },
8175 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
8176 { "full-screen", 0, QEMU_OPTION_full_screen },
8177 #ifdef CONFIG_SDL
8178 { "no-frame", 0, QEMU_OPTION_no_frame },
8179 { "alt-grab", 0, QEMU_OPTION_alt_grab },
8180 { "no-quit", 0, QEMU_OPTION_no_quit },
8181 #endif
8182 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
8183 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
8184 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
8185 { "smp", HAS_ARG, QEMU_OPTION_smp },
8186 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
8187 #ifdef CONFIG_CURSES
8188 { "curses", 0, QEMU_OPTION_curses },
8189 #endif
8190 { "uuid", HAS_ARG, QEMU_OPTION_uuid },
8191
8192 /* temporary options */
8193 { "usb", 0, QEMU_OPTION_usb },
8194 { "no-acpi", 0, QEMU_OPTION_no_acpi },
8195 { "no-reboot", 0, QEMU_OPTION_no_reboot },
8196 { "no-shutdown", 0, QEMU_OPTION_no_shutdown },
8197 { "show-cursor", 0, QEMU_OPTION_show_cursor },
8198 { "daemonize", 0, QEMU_OPTION_daemonize },
8199 { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
8200 #if defined(TARGET_ARM) || defined(TARGET_M68K)
8201 { "semihosting", 0, QEMU_OPTION_semihosting },
8202 #endif
8203 { "name", HAS_ARG, QEMU_OPTION_name },
8204 #if defined(TARGET_SPARC)
8205 { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
8206 #endif
8207 #if defined(TARGET_ARM)
8208 { "old-param", 0, QEMU_OPTION_old_param },
8209 #endif
8210 { "clock", HAS_ARG, QEMU_OPTION_clock },
8211 { "startdate", HAS_ARG, QEMU_OPTION_startdate },
8212 { "tb-size", HAS_ARG, QEMU_OPTION_tb_size },
8213 { "icount", HAS_ARG, QEMU_OPTION_icount },
8214 { NULL },
8215 };
8216
8217 /* password input */
8218
8219 int qemu_key_check(BlockDriverState *bs, const char *name)
8220 {
8221 char password[256];
8222 int i;
8223
8224 if (!bdrv_is_encrypted(bs))
8225 return 0;
8226
8227 term_printf("%s is encrypted.\n", name);
8228 for(i = 0; i < 3; i++) {
8229 monitor_readline("Password: ", 1, password, sizeof(password));
8230 if (bdrv_set_key(bs, password) == 0)
8231 return 0;
8232 term_printf("invalid password\n");
8233 }
8234 return -EPERM;
8235 }
8236
8237 static BlockDriverState *get_bdrv(int index)
8238 {
8239 if (index > nb_drives)
8240 return NULL;
8241 return drives_table[index].bdrv;
8242 }
8243
8244 static void read_passwords(void)
8245 {
8246 BlockDriverState *bs;
8247 int i;
8248
8249 for(i = 0; i < 6; i++) {
8250 bs = get_bdrv(i);
8251 if (bs)
8252 qemu_key_check(bs, bdrv_get_device_name(bs));
8253 }
8254 }
8255
8256 #ifdef HAS_AUDIO
8257 struct soundhw soundhw[] = {
8258 #ifdef HAS_AUDIO_CHOICE
8259 #if defined(TARGET_I386) || defined(TARGET_MIPS)
8260 {
8261 "pcspk",
8262 "PC speaker",
8263 0,
8264 1,
8265 { .init_isa = pcspk_audio_init }
8266 },
8267 #endif
8268 {
8269 "sb16",
8270 "Creative Sound Blaster 16",
8271 0,
8272 1,
8273 { .init_isa = SB16_init }
8274 },
8275
8276 #ifdef CONFIG_CS4231A
8277 {
8278 "cs4231a",
8279 "CS4231A",
8280 0,
8281 1,
8282 { .init_isa = cs4231a_init }
8283 },
8284 #endif
8285
8286 #ifdef CONFIG_ADLIB
8287 {
8288 "adlib",
8289 #ifdef HAS_YMF262
8290 "Yamaha YMF262 (OPL3)",
8291 #else
8292 "Yamaha YM3812 (OPL2)",
8293 #endif
8294 0,
8295 1,
8296 { .init_isa = Adlib_init }
8297 },
8298 #endif
8299
8300 #ifdef CONFIG_GUS
8301 {
8302 "gus",
8303 "Gravis Ultrasound GF1",
8304 0,
8305 1,
8306 { .init_isa = GUS_init }
8307 },
8308 #endif
8309
8310 #ifdef CONFIG_AC97
8311 {
8312 "ac97",
8313 "Intel 82801AA AC97 Audio",
8314 0,
8315 0,
8316 { .init_pci = ac97_init }
8317 },
8318 #endif
8319
8320 {
8321 "es1370",
8322 "ENSONIQ AudioPCI ES1370",
8323 0,
8324 0,
8325 { .init_pci = es1370_init }
8326 },
8327 #endif
8328
8329 { NULL, NULL, 0, 0, { NULL } }
8330 };
8331
8332 static void select_soundhw (const char *optarg)
8333 {
8334 struct soundhw *c;
8335
8336 if (*optarg == '?') {
8337 show_valid_cards:
8338
8339 printf ("Valid sound card names (comma separated):\n");
8340 for (c = soundhw; c->name; ++c) {
8341 printf ("%-11s %s\n", c->name, c->descr);
8342 }
8343 printf ("\n-soundhw all will enable all of the above\n");
8344 exit (*optarg != '?');
8345 }
8346 else {
8347 size_t l;
8348 const char *p;
8349 char *e;
8350 int bad_card = 0;
8351
8352 if (!strcmp (optarg, "all")) {
8353 for (c = soundhw; c->name; ++c) {
8354 c->enabled = 1;
8355 }
8356 return;
8357 }
8358
8359 p = optarg;
8360 while (*p) {
8361 e = strchr (p, ',');
8362 l = !e ? strlen (p) : (size_t) (e - p);
8363
8364 for (c = soundhw; c->name; ++c) {
8365 if (!strncmp (c->name, p, l)) {
8366 c->enabled = 1;
8367 break;
8368 }
8369 }
8370
8371 if (!c->name) {
8372 if (l > 80) {
8373 fprintf (stderr,
8374 "Unknown sound card name (too big to show)\n");
8375 }
8376 else {
8377 fprintf (stderr, "Unknown sound card name `%.*s'\n",
8378 (int) l, p);
8379 }
8380 bad_card = 1;
8381 }
8382 p += l + (e != NULL);
8383 }
8384
8385 if (bad_card)
8386 goto show_valid_cards;
8387 }
8388 }
8389 #endif
8390
8391 static void select_vgahw (const char *p)
8392 {
8393 const char *opts;
8394
8395 if (strstart(p, "std", &opts)) {
8396 cirrus_vga_enabled = 0;
8397 vmsvga_enabled = 0;
8398 } else if (strstart(p, "cirrus", &opts)) {
8399 cirrus_vga_enabled = 1;
8400 vmsvga_enabled = 0;
8401 } else if (strstart(p, "vmware", &opts)) {
8402 cirrus_vga_enabled = 0;
8403 vmsvga_enabled = 1;
8404 } else {
8405 invalid_vga:
8406 fprintf(stderr, "Unknown vga type: %s\n", p);
8407 exit(1);
8408 }
8409 while (*opts) {
8410 const char *nextopt;
8411
8412 if (strstart(opts, ",retrace=", &nextopt)) {
8413 opts = nextopt;
8414 if (strstart(opts, "dumb", &nextopt))
8415 vga_retrace_method = VGA_RETRACE_DUMB;
8416 else if (strstart(opts, "precise", &nextopt))
8417 vga_retrace_method = VGA_RETRACE_PRECISE;
8418 else goto invalid_vga;
8419 } else goto invalid_vga;
8420 opts = nextopt;
8421 }
8422 }
8423
8424 #ifdef _WIN32
8425 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
8426 {
8427 exit(STATUS_CONTROL_C_EXIT);
8428 return TRUE;
8429 }
8430 #endif
8431
8432 static int qemu_uuid_parse(const char *str, uint8_t *uuid)
8433 {
8434 int ret;
8435
8436 if(strlen(str) != 36)
8437 return -1;
8438
8439 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
8440 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
8441 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
8442
8443 if(ret != 16)
8444 return -1;
8445
8446 return 0;
8447 }
8448
8449 #define MAX_NET_CLIENTS 32
8450
8451 #ifndef _WIN32
8452
8453 static void termsig_handler(int signal)
8454 {
8455 qemu_system_shutdown_request();
8456 }
8457
8458 static void termsig_setup(void)
8459 {
8460 struct sigaction act;
8461
8462 memset(&act, 0, sizeof(act));
8463 act.sa_handler = termsig_handler;
8464 sigaction(SIGINT, &act, NULL);
8465 sigaction(SIGHUP, &act, NULL);
8466 sigaction(SIGTERM, &act, NULL);
8467 }
8468
8469 #endif
8470
8471 int main(int argc, char **argv)
8472 {
8473 #ifdef CONFIG_GDBSTUB
8474 int use_gdbstub;
8475 const char *gdbstub_port;
8476 #endif
8477 uint32_t boot_devices_bitmap = 0;
8478 int i;
8479 int snapshot, linux_boot, net_boot;
8480 const char *initrd_filename;
8481 const char *kernel_filename, *kernel_cmdline;
8482 const char *boot_devices = "";
8483 DisplayState *ds = &display_state;
8484 int cyls, heads, secs, translation;
8485 const char *net_clients[MAX_NET_CLIENTS];
8486 int nb_net_clients;
8487 int hda_index;
8488 int optind;
8489 const char *r, *optarg;
8490 CharDriverState *monitor_hd;
8491 const char *monitor_device;
8492 const char *serial_devices[MAX_SERIAL_PORTS];
8493 int serial_device_index;
8494 const char *parallel_devices[MAX_PARALLEL_PORTS];
8495 int parallel_device_index;
8496 const char *loadvm = NULL;
8497 QEMUMachine *machine;
8498 const char *cpu_model;
8499 const char *usb_devices[MAX_USB_CMDLINE];
8500 int usb_devices_index;
8501 int fds[2];
8502 int tb_size;
8503 const char *pid_file = NULL;
8504 VLANState *vlan;
8505
8506 LIST_INIT (&vm_change_state_head);
8507 #ifndef _WIN32
8508 {
8509 struct sigaction act;
8510 sigfillset(&act.sa_mask);
8511 act.sa_flags = 0;
8512 act.sa_handler = SIG_IGN;
8513 sigaction(SIGPIPE, &act, NULL);
8514 }
8515 #else
8516 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
8517 /* Note: cpu_interrupt() is currently not SMP safe, so we force
8518 QEMU to run on a single CPU */
8519 {
8520 HANDLE h;
8521 DWORD mask, smask;
8522 int i;
8523 h = GetCurrentProcess();
8524 if (GetProcessAffinityMask(h, &mask, &smask)) {
8525 for(i = 0; i < 32; i++) {
8526 if (mask & (1 << i))
8527 break;
8528 }
8529 if (i != 32) {
8530 mask = 1 << i;
8531 SetProcessAffinityMask(h, mask);
8532 }
8533 }
8534 }
8535 #endif
8536
8537 register_machines();
8538 machine = first_machine;
8539 cpu_model = NULL;
8540 initrd_filename = NULL;
8541 ram_size = 0;
8542 vga_ram_size = VGA_RAM_SIZE;
8543 #ifdef CONFIG_GDBSTUB
8544 use_gdbstub = 0;
8545 gdbstub_port = DEFAULT_GDBSTUB_PORT;
8546 #endif
8547 snapshot = 0;
8548 nographic = 0;
8549 curses = 0;
8550 kernel_filename = NULL;
8551 kernel_cmdline = "";
8552 cyls = heads = secs = 0;
8553 translation = BIOS_ATA_TRANSLATION_AUTO;
8554 monitor_device = "vc";
8555
8556 serial_devices[0] = "vc:80Cx24C";
8557 for(i = 1; i < MAX_SERIAL_PORTS; i++)
8558 serial_devices[i] = NULL;
8559 serial_device_index = 0;
8560
8561 parallel_devices[0] = "vc:640x480";
8562 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
8563 parallel_devices[i] = NULL;
8564 parallel_device_index = 0;
8565
8566 usb_devices_index = 0;
8567
8568 nb_net_clients = 0;
8569 nb_drives = 0;
8570 nb_drives_opt = 0;
8571 hda_index = -1;
8572
8573 nb_nics = 0;
8574
8575 tb_size = 0;
8576
8577 optind = 1;
8578 for(;;) {
8579 if (optind >= argc)
8580 break;
8581 r = argv[optind];
8582 if (r[0] != '-') {
8583 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
8584 } else {
8585 const QEMUOption *popt;
8586
8587 optind++;
8588 /* Treat --foo the same as -foo. */
8589 if (r[1] == '-')
8590 r++;
8591 popt = qemu_options;
8592 for(;;) {
8593 if (!popt->name) {
8594 fprintf(stderr, "%s: invalid option -- '%s'\n",
8595 argv[0], r);
8596 exit(1);
8597 }
8598 if (!strcmp(popt->name, r + 1))
8599 break;
8600 popt++;
8601 }
8602 if (popt->flags & HAS_ARG) {
8603 if (optind >= argc) {
8604 fprintf(stderr, "%s: option '%s' requires an argument\n",
8605 argv[0], r);
8606 exit(1);
8607 }
8608 optarg = argv[optind++];
8609 } else {
8610 optarg = NULL;
8611 }
8612
8613 switch(popt->index) {
8614 case QEMU_OPTION_M:
8615 machine = find_machine(optarg);
8616 if (!machine) {
8617 QEMUMachine *m;
8618 printf("Supported machines are:\n");
8619 for(m = first_machine; m != NULL; m = m->next) {
8620 printf("%-10s %s%s\n",
8621 m->name, m->desc,
8622 m == first_machine ? " (default)" : "");
8623 }
8624 exit(*optarg != '?');
8625 }
8626 break;
8627 case QEMU_OPTION_cpu:
8628 /* hw initialization will check this */
8629 if (*optarg == '?') {
8630 /* XXX: implement xxx_cpu_list for targets that still miss it */
8631 #if defined(cpu_list)
8632 cpu_list(stdout, &fprintf);
8633 #endif
8634 exit(0);
8635 } else {
8636 cpu_model = optarg;
8637 }
8638 break;
8639 case QEMU_OPTION_initrd:
8640 initrd_filename = optarg;
8641 break;
8642 case QEMU_OPTION_hda:
8643 if (cyls == 0)
8644 hda_index = drive_add(optarg, HD_ALIAS, 0);
8645 else
8646 hda_index = drive_add(optarg, HD_ALIAS
8647 ",cyls=%d,heads=%d,secs=%d%s",
8648 0, cyls, heads, secs,
8649 translation == BIOS_ATA_TRANSLATION_LBA ?
8650 ",trans=lba" :
8651 translation == BIOS_ATA_TRANSLATION_NONE ?
8652 ",trans=none" : "");
8653 break;
8654 case QEMU_OPTION_hdb:
8655 case QEMU_OPTION_hdc:
8656 case QEMU_OPTION_hdd:
8657 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
8658 break;
8659 case QEMU_OPTION_drive:
8660 drive_add(NULL, "%s", optarg);
8661 break;
8662 case QEMU_OPTION_mtdblock:
8663 drive_add(optarg, MTD_ALIAS);
8664 break;
8665 case QEMU_OPTION_sd:
8666 drive_add(optarg, SD_ALIAS);
8667 break;
8668 case QEMU_OPTION_pflash:
8669 drive_add(optarg, PFLASH_ALIAS);
8670 break;
8671 case QEMU_OPTION_snapshot:
8672 snapshot = 1;
8673 break;
8674 case QEMU_OPTION_hdachs:
8675 {
8676 const char *p;
8677 p = optarg;
8678 cyls = strtol(p, (char **)&p, 0);
8679 if (cyls < 1 || cyls > 16383)
8680 goto chs_fail;
8681 if (*p != ',')
8682 goto chs_fail;
8683 p++;
8684 heads = strtol(p, (char **)&p, 0);
8685 if (heads < 1 || heads > 16)
8686 goto chs_fail;
8687 if (*p != ',')
8688 goto chs_fail;
8689 p++;
8690 secs = strtol(p, (char **)&p, 0);
8691 if (secs < 1 || secs > 63)
8692 goto chs_fail;
8693 if (*p == ',') {
8694 p++;
8695 if (!strcmp(p, "none"))
8696 translation = BIOS_ATA_TRANSLATION_NONE;
8697 else if (!strcmp(p, "lba"))
8698 translation = BIOS_ATA_TRANSLATION_LBA;
8699 else if (!strcmp(p, "auto"))
8700 translation = BIOS_ATA_TRANSLATION_AUTO;
8701 else
8702 goto chs_fail;
8703 } else if (*p != '\0') {
8704 chs_fail:
8705 fprintf(stderr, "qemu: invalid physical CHS format\n");
8706 exit(1);
8707 }
8708 if (hda_index != -1)
8709 snprintf(drives_opt[hda_index].opt,
8710 sizeof(drives_opt[hda_index].opt),
8711 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
8712 0, cyls, heads, secs,
8713 translation == BIOS_ATA_TRANSLATION_LBA ?
8714 ",trans=lba" :
8715 translation == BIOS_ATA_TRANSLATION_NONE ?
8716 ",trans=none" : "");
8717 }
8718 break;
8719 case QEMU_OPTION_nographic:
8720 nographic = 1;
8721 break;
8722 #ifdef CONFIG_CURSES
8723 case QEMU_OPTION_curses:
8724 curses = 1;
8725 break;
8726 #endif
8727 case QEMU_OPTION_portrait:
8728 graphic_rotate = 1;
8729 break;
8730 case QEMU_OPTION_kernel:
8731 kernel_filename = optarg;
8732 break;
8733 case QEMU_OPTION_append:
8734 kernel_cmdline = optarg;
8735 break;
8736 case QEMU_OPTION_cdrom:
8737 drive_add(optarg, CDROM_ALIAS);
8738 break;
8739 case QEMU_OPTION_boot:
8740 boot_devices = optarg;
8741 /* We just do some generic consistency checks */
8742 {
8743 /* Could easily be extended to 64 devices if needed */
8744 const char *p;
8745
8746 boot_devices_bitmap = 0;
8747 for (p = boot_devices; *p != '\0'; p++) {
8748 /* Allowed boot devices are:
8749 * a b : floppy disk drives
8750 * c ... f : IDE disk drives
8751 * g ... m : machine implementation dependant drives
8752 * n ... p : network devices
8753 * It's up to each machine implementation to check
8754 * if the given boot devices match the actual hardware
8755 * implementation and firmware features.
8756 */
8757 if (*p < 'a' || *p > 'q') {
8758 fprintf(stderr, "Invalid boot device '%c'\n", *p);
8759 exit(1);
8760 }
8761 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
8762 fprintf(stderr,
8763 "Boot device '%c' was given twice\n",*p);
8764 exit(1);
8765 }
8766 boot_devices_bitmap |= 1 << (*p - 'a');
8767 }
8768 }
8769 break;
8770 case QEMU_OPTION_fda:
8771 case QEMU_OPTION_fdb:
8772 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
8773 break;
8774 #ifdef TARGET_I386
8775 case QEMU_OPTION_no_fd_bootchk:
8776 fd_bootchk = 0;
8777 break;
8778 #endif
8779 case QEMU_OPTION_net:
8780 if (nb_net_clients >= MAX_NET_CLIENTS) {
8781 fprintf(stderr, "qemu: too many network clients\n");
8782 exit(1);
8783 }
8784 net_clients[nb_net_clients] = optarg;
8785 nb_net_clients++;
8786 break;
8787 #ifdef CONFIG_SLIRP
8788 case QEMU_OPTION_tftp:
8789 tftp_prefix = optarg;
8790 break;
8791 case QEMU_OPTION_bootp:
8792 bootp_filename = optarg;
8793 break;
8794 #ifndef _WIN32
8795 case QEMU_OPTION_smb:
8796 net_slirp_smb(optarg);
8797 break;
8798 #endif
8799 case QEMU_OPTION_redir:
8800 net_slirp_redir(optarg);
8801 break;
8802 #endif
8803 #ifdef HAS_AUDIO
8804 case QEMU_OPTION_audio_help:
8805 AUD_help ();
8806 exit (0);
8807 break;
8808 case QEMU_OPTION_soundhw:
8809 select_soundhw (optarg);
8810 break;
8811 #endif
8812 case QEMU_OPTION_h:
8813 help(0);
8814 break;
8815 case QEMU_OPTION_m: {
8816 uint64_t value;
8817 char *ptr;
8818
8819 value = strtoul(optarg, &ptr, 10);
8820 switch (*ptr) {
8821 case 0: case 'M': case 'm':
8822 value <<= 20;
8823 break;
8824 case 'G': case 'g':
8825 value <<= 30;
8826 break;
8827 default:
8828 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
8829 exit(1);
8830 }
8831
8832 /* On 32-bit hosts, QEMU is limited by virtual address space */
8833 if (value > (2047 << 20)
8834 #ifndef USE_KQEMU
8835 && HOST_LONG_BITS == 32
8836 #endif
8837 ) {
8838 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
8839 exit(1);
8840 }
8841 if (value != (uint64_t)(ram_addr_t)value) {
8842 fprintf(stderr, "qemu: ram size too large\n");
8843 exit(1);
8844 }
8845 ram_size = value;
8846 break;
8847 }
8848 case QEMU_OPTION_d:
8849 {
8850 int mask;
8851 CPULogItem *item;
8852
8853 mask = cpu_str_to_log_mask(optarg);
8854 if (!mask) {
8855 printf("Log items (comma separated):\n");
8856 for(item = cpu_log_items; item->mask != 0; item++) {
8857 printf("%-10s %s\n", item->name, item->help);
8858 }
8859 exit(1);
8860 }
8861 cpu_set_log(mask);
8862 }
8863 break;
8864 #ifdef CONFIG_GDBSTUB
8865 case QEMU_OPTION_s:
8866 use_gdbstub = 1;
8867 break;
8868 case QEMU_OPTION_p:
8869 gdbstub_port = optarg;
8870 break;
8871 #endif
8872 case QEMU_OPTION_L:
8873 bios_dir = optarg;
8874 break;
8875 case QEMU_OPTION_bios:
8876 bios_name = optarg;
8877 break;
8878 case QEMU_OPTION_S:
8879 autostart = 0;
8880 break;
8881 case QEMU_OPTION_k:
8882 keyboard_layout = optarg;
8883 break;
8884 case QEMU_OPTION_localtime:
8885 rtc_utc = 0;
8886 break;
8887 case QEMU_OPTION_vga:
8888 select_vgahw (optarg);
8889 break;
8890 case QEMU_OPTION_g:
8891 {
8892 const char *p;
8893 int w, h, depth;
8894 p = optarg;
8895 w = strtol(p, (char **)&p, 10);
8896 if (w <= 0) {
8897 graphic_error:
8898 fprintf(stderr, "qemu: invalid resolution or depth\n");
8899 exit(1);
8900 }
8901 if (*p != 'x')
8902 goto graphic_error;
8903 p++;
8904 h = strtol(p, (char **)&p, 10);
8905 if (h <= 0)
8906 goto graphic_error;
8907 if (*p == 'x') {
8908 p++;
8909 depth = strtol(p, (char **)&p, 10);
8910 if (depth != 8 && depth != 15 && depth != 16 &&
8911 depth != 24 && depth != 32)
8912 goto graphic_error;
8913 } else if (*p == '\0') {
8914 depth = graphic_depth;
8915 } else {
8916 goto graphic_error;
8917 }
8918
8919 graphic_width = w;
8920 graphic_height = h;
8921 graphic_depth = depth;
8922 }
8923 break;
8924 case QEMU_OPTION_echr:
8925 {
8926 char *r;
8927 term_escape_char = strtol(optarg, &r, 0);
8928 if (r == optarg)
8929 printf("Bad argument to echr\n");
8930 break;
8931 }
8932 case QEMU_OPTION_monitor:
8933 monitor_device = optarg;
8934 break;
8935 case QEMU_OPTION_serial:
8936 if (serial_device_index >= MAX_SERIAL_PORTS) {
8937 fprintf(stderr, "qemu: too many serial ports\n");
8938 exit(1);
8939 }
8940 serial_devices[serial_device_index] = optarg;
8941 serial_device_index++;
8942 break;
8943 case QEMU_OPTION_parallel:
8944 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
8945 fprintf(stderr, "qemu: too many parallel ports\n");
8946 exit(1);
8947 }
8948 parallel_devices[parallel_device_index] = optarg;
8949 parallel_device_index++;
8950 break;
8951 case QEMU_OPTION_loadvm:
8952 loadvm = optarg;
8953 break;
8954 case QEMU_OPTION_full_screen:
8955 full_screen = 1;
8956 break;
8957 #ifdef CONFIG_SDL
8958 case QEMU_OPTION_no_frame:
8959 no_frame = 1;
8960 break;
8961 case QEMU_OPTION_alt_grab:
8962 alt_grab = 1;
8963 break;
8964 case QEMU_OPTION_no_quit:
8965 no_quit = 1;
8966 break;
8967 #endif
8968 case QEMU_OPTION_pidfile:
8969 pid_file = optarg;
8970 break;
8971 #ifdef TARGET_I386
8972 case QEMU_OPTION_win2k_hack:
8973 win2k_install_hack = 1;
8974 break;
8975 #endif
8976 #ifdef USE_KQEMU
8977 case QEMU_OPTION_no_kqemu:
8978 kqemu_allowed = 0;
8979 break;
8980 case QEMU_OPTION_kernel_kqemu:
8981 kqemu_allowed = 2;
8982 break;
8983 #endif
8984 case QEMU_OPTION_usb:
8985 usb_enabled = 1;
8986 break;
8987 case QEMU_OPTION_usbdevice:
8988 usb_enabled = 1;
8989 if (usb_devices_index >= MAX_USB_CMDLINE) {
8990 fprintf(stderr, "Too many USB devices\n");
8991 exit(1);
8992 }
8993 usb_devices[usb_devices_index] = optarg;
8994 usb_devices_index++;
8995 break;
8996 case QEMU_OPTION_smp:
8997 smp_cpus = atoi(optarg);
8998 if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
8999 fprintf(stderr, "Invalid number of CPUs\n");
9000 exit(1);
9001 }
9002 break;
9003 case QEMU_OPTION_vnc:
9004 vnc_display = optarg;
9005 break;
9006 case QEMU_OPTION_no_acpi:
9007 acpi_enabled = 0;
9008 break;
9009 case QEMU_OPTION_no_reboot:
9010 no_reboot = 1;
9011 break;
9012 case QEMU_OPTION_no_shutdown:
9013 no_shutdown = 1;
9014 break;
9015 case QEMU_OPTION_show_cursor:
9016 cursor_hide = 0;
9017 break;
9018 case QEMU_OPTION_uuid:
9019 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
9020 fprintf(stderr, "Fail to parse UUID string."
9021 " Wrong format.\n");
9022 exit(1);
9023 }
9024 break;
9025 case QEMU_OPTION_daemonize:
9026 daemonize = 1;
9027 break;
9028 case QEMU_OPTION_option_rom:
9029 if (nb_option_roms >= MAX_OPTION_ROMS) {
9030 fprintf(stderr, "Too many option ROMs\n");
9031 exit(1);
9032 }
9033 option_rom[nb_option_roms] = optarg;
9034 nb_option_roms++;
9035 break;
9036 case QEMU_OPTION_semihosting:
9037 semihosting_enabled = 1;
9038 break;
9039 case QEMU_OPTION_name:
9040 qemu_name = optarg;
9041 break;
9042 #ifdef TARGET_SPARC
9043 case QEMU_OPTION_prom_env:
9044 if (nb_prom_envs >= MAX_PROM_ENVS) {
9045 fprintf(stderr, "Too many prom variables\n");
9046 exit(1);
9047 }
9048 prom_envs[nb_prom_envs] = optarg;
9049 nb_prom_envs++;
9050 break;
9051 #endif
9052 #ifdef TARGET_ARM
9053 case QEMU_OPTION_old_param:
9054 old_param = 1;
9055 break;
9056 #endif
9057 case QEMU_OPTION_clock:
9058 configure_alarms(optarg);
9059 break;
9060 case QEMU_OPTION_startdate:
9061 {
9062 struct tm tm;
9063 time_t rtc_start_date;
9064 if (!strcmp(optarg, "now")) {
9065 rtc_date_offset = -1;
9066 } else {
9067 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
9068 &tm.tm_year,
9069 &tm.tm_mon,
9070 &tm.tm_mday,
9071 &tm.tm_hour,
9072 &tm.tm_min,
9073 &tm.tm_sec) == 6) {
9074 /* OK */
9075 } else if (sscanf(optarg, "%d-%d-%d",
9076 &tm.tm_year,
9077 &tm.tm_mon,
9078 &tm.tm_mday) == 3) {
9079 tm.tm_hour = 0;
9080 tm.tm_min = 0;
9081 tm.tm_sec = 0;
9082 } else {
9083 goto date_fail;
9084 }
9085 tm.tm_year -= 1900;
9086 tm.tm_mon--;
9087 rtc_start_date = mktimegm(&tm);
9088 if (rtc_start_date == -1) {
9089 date_fail:
9090 fprintf(stderr, "Invalid date format. Valid format are:\n"
9091 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
9092 exit(1);
9093 }
9094 rtc_date_offset = time(NULL) - rtc_start_date;
9095 }
9096 }
9097 break;
9098 case QEMU_OPTION_tb_size:
9099 tb_size = strtol(optarg, NULL, 0);
9100 if (tb_size < 0)
9101 tb_size = 0;
9102 break;
9103 case QEMU_OPTION_icount:
9104 use_icount = 1;
9105 if (strcmp(optarg, "auto") == 0) {
9106 icount_time_shift = -1;
9107 } else {
9108 icount_time_shift = strtol(optarg, NULL, 0);
9109 }
9110 break;
9111 }
9112 }
9113 }
9114
9115 if (nographic) {
9116 if (serial_device_index == 0)
9117 serial_devices[0] = "stdio";
9118 if (parallel_device_index == 0)
9119 parallel_devices[0] = "null";
9120 if (strncmp(monitor_device, "vc", 2) == 0)
9121 monitor_device = "stdio";
9122 }
9123
9124 #ifndef _WIN32
9125 if (daemonize) {
9126 pid_t pid;
9127
9128 if (pipe(fds) == -1)
9129 exit(1);
9130
9131 pid = fork();
9132 if (pid > 0) {
9133 uint8_t status;
9134 ssize_t len;
9135
9136 close(fds[1]);
9137
9138 again:
9139 len = read(fds[0], &status, 1);
9140 if (len == -1 && (errno == EINTR))
9141 goto again;
9142
9143 if (len != 1)
9144 exit(1);
9145 else if (status == 1) {
9146 fprintf(stderr, "Could not acquire pidfile\n");
9147 exit(1);
9148 } else
9149 exit(0);
9150 } else if (pid < 0)
9151 exit(1);
9152
9153 setsid();
9154
9155 pid = fork();
9156 if (pid > 0)
9157 exit(0);
9158 else if (pid < 0)
9159 exit(1);
9160
9161 umask(027);
9162
9163 signal(SIGTSTP, SIG_IGN);
9164 signal(SIGTTOU, SIG_IGN);
9165 signal(SIGTTIN, SIG_IGN);
9166 }
9167 #endif
9168
9169 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
9170 if (daemonize) {
9171 uint8_t status = 1;
9172 write(fds[1], &status, 1);
9173 } else
9174 fprintf(stderr, "Could not acquire pid file\n");
9175 exit(1);
9176 }
9177
9178 #ifdef USE_KQEMU
9179 if (smp_cpus > 1)
9180 kqemu_allowed = 0;
9181 #endif
9182 linux_boot = (kernel_filename != NULL);
9183 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
9184
9185 if (!linux_boot && net_boot == 0 &&
9186 !machine->nodisk_ok && nb_drives_opt == 0)
9187 help(1);
9188
9189 if (!linux_boot && *kernel_cmdline != '\0') {
9190 fprintf(stderr, "-append only allowed with -kernel option\n");
9191 exit(1);
9192 }
9193
9194 if (!linux_boot && initrd_filename != NULL) {
9195 fprintf(stderr, "-initrd only allowed with -kernel option\n");
9196 exit(1);
9197 }
9198
9199 /* boot to floppy or the default cd if no hard disk defined yet */
9200 if (!boot_devices[0]) {
9201 boot_devices = "cad";
9202 }
9203 setvbuf(stdout, NULL, _IOLBF, 0);
9204
9205 init_timers();
9206 init_timer_alarm();
9207 if (use_icount && icount_time_shift < 0) {
9208 use_icount = 2;
9209 /* 125MIPS seems a reasonable initial guess at the guest speed.
9210 It will be corrected fairly quickly anyway. */
9211 icount_time_shift = 3;
9212 init_icount_adjust();
9213 }
9214
9215 #ifdef _WIN32
9216 socket_init();
9217 #endif
9218
9219 /* init network clients */
9220 if (nb_net_clients == 0) {
9221 /* if no clients, we use a default config */
9222 net_clients[nb_net_clients++] = "nic";
9223 #ifdef CONFIG_SLIRP
9224 net_clients[nb_net_clients++] = "user";
9225 #endif
9226 }
9227
9228 for(i = 0;i < nb_net_clients; i++) {
9229 if (net_client_parse(net_clients[i]) < 0)
9230 exit(1);
9231 }
9232 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
9233 if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
9234 continue;
9235 if (vlan->nb_guest_devs == 0)
9236 fprintf(stderr, "Warning: vlan %d with no nics\n", vlan->id);
9237 if (vlan->nb_host_devs == 0)
9238 fprintf(stderr,
9239 "Warning: vlan %d is not connected to host network\n",
9240 vlan->id);
9241 }
9242
9243 #ifdef TARGET_I386
9244 /* XXX: this should be moved in the PC machine instantiation code */
9245 if (net_boot != 0) {
9246 int netroms = 0;
9247 for (i = 0; i < nb_nics && i < 4; i++) {
9248 const char *model = nd_table[i].model;
9249 char buf[1024];
9250 if (net_boot & (1 << i)) {
9251 if (model == NULL)
9252 model = "ne2k_pci";
9253 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
9254 if (get_image_size(buf) > 0) {
9255 if (nb_option_roms >= MAX_OPTION_ROMS) {
9256 fprintf(stderr, "Too many option ROMs\n");
9257 exit(1);
9258 }
9259 option_rom[nb_option_roms] = strdup(buf);
9260 nb_option_roms++;
9261 netroms++;
9262 }
9263 }
9264 }
9265 if (netroms == 0) {
9266 fprintf(stderr, "No valid PXE rom found for network device\n");
9267 exit(1);
9268 }
9269 }
9270 #endif
9271
9272 /* init the memory */
9273 phys_ram_size = machine->ram_require & ~RAMSIZE_FIXED;
9274
9275 if (machine->ram_require & RAMSIZE_FIXED) {
9276 if (ram_size > 0) {
9277 if (ram_size < phys_ram_size) {
9278 fprintf(stderr, "Machine `%s' requires %llu bytes of memory\n",
9279 machine->name, (unsigned long long) phys_ram_size);
9280 exit(-1);
9281 }
9282
9283 phys_ram_size = ram_size;
9284 } else
9285 ram_size = phys_ram_size;
9286 } else {
9287 if (ram_size == 0)
9288 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
9289
9290 phys_ram_size += ram_size;
9291 }
9292
9293 phys_ram_base = qemu_vmalloc(phys_ram_size);
9294 if (!phys_ram_base) {
9295 fprintf(stderr, "Could not allocate physical memory\n");
9296 exit(1);
9297 }
9298
9299 /* init the dynamic translator */
9300 cpu_exec_init_all(tb_size * 1024 * 1024);
9301
9302 bdrv_init();
9303
9304 /* we always create the cdrom drive, even if no disk is there */
9305
9306 if (nb_drives_opt < MAX_DRIVES)
9307 drive_add(NULL, CDROM_ALIAS);
9308
9309 /* we always create at least one floppy */
9310
9311 if (nb_drives_opt < MAX_DRIVES)
9312 drive_add(NULL, FD_ALIAS, 0);
9313
9314 /* we always create one sd slot, even if no card is in it */
9315
9316 if (nb_drives_opt < MAX_DRIVES)
9317 drive_add(NULL, SD_ALIAS);
9318
9319 /* open the virtual block devices */
9320
9321 for(i = 0; i < nb_drives_opt; i++)
9322 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
9323 exit(1);
9324
9325 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
9326 register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
9327
9328 /* terminal init */
9329 memset(&display_state, 0, sizeof(display_state));
9330 if (nographic) {
9331 if (curses) {
9332 fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
9333 exit(1);
9334 }
9335 /* nearly nothing to do */
9336 dumb_display_init(ds);
9337 } else if (vnc_display != NULL) {
9338 vnc_display_init(ds);
9339 if (vnc_display_open(ds, vnc_display) < 0)
9340 exit(1);
9341 } else
9342 #if defined(CONFIG_CURSES)
9343 if (curses) {
9344 curses_display_init(ds, full_screen);
9345 } else
9346 #endif
9347 {
9348 #if defined(CONFIG_SDL)
9349 sdl_display_init(ds, full_screen, no_frame);
9350 #elif defined(CONFIG_COCOA)
9351 cocoa_display_init(ds, full_screen);
9352 #else
9353 dumb_display_init(ds);
9354 #endif
9355 }
9356
9357 #ifndef _WIN32
9358 /* must be after terminal init, SDL library changes signal handlers */
9359 termsig_setup();
9360 #endif
9361
9362 /* Maintain compatibility with multiple stdio monitors */
9363 if (!strcmp(monitor_device,"stdio")) {
9364 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
9365 const char *devname = serial_devices[i];
9366 if (devname && !strcmp(devname,"mon:stdio")) {
9367 monitor_device = NULL;
9368 break;
9369 } else if (devname && !strcmp(devname,"stdio")) {
9370 monitor_device = NULL;
9371 serial_devices[i] = "mon:stdio";
9372 break;
9373 }
9374 }
9375 }
9376 if (monitor_device) {
9377 monitor_hd = qemu_chr_open(monitor_device);
9378 if (!monitor_hd) {
9379 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
9380 exit(1);
9381 }
9382 monitor_init(monitor_hd, !nographic);
9383 }
9384
9385 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
9386 const char *devname = serial_devices[i];
9387 if (devname && strcmp(devname, "none")) {
9388 serial_hds[i] = qemu_chr_open(devname);
9389 if (!serial_hds[i]) {
9390 fprintf(stderr, "qemu: could not open serial device '%s'\n",
9391 devname);
9392 exit(1);
9393 }
9394 if (strstart(devname, "vc", 0))
9395 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
9396 }
9397 }
9398
9399 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
9400 const char *devname = parallel_devices[i];
9401 if (devname && strcmp(devname, "none")) {
9402 parallel_hds[i] = qemu_chr_open(devname);
9403 if (!parallel_hds[i]) {
9404 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
9405 devname);
9406 exit(1);
9407 }
9408 if (strstart(devname, "vc", 0))
9409 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
9410 }
9411 }
9412
9413 machine->init(ram_size, vga_ram_size, boot_devices, ds,
9414 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
9415
9416 /* init USB devices */
9417 if (usb_enabled) {
9418 for(i = 0; i < usb_devices_index; i++) {
9419 if (usb_device_add(usb_devices[i]) < 0) {
9420 fprintf(stderr, "Warning: could not add USB device %s\n",
9421 usb_devices[i]);
9422 }
9423 }
9424 }
9425
9426 if (display_state.dpy_refresh) {
9427 display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
9428 qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
9429 }
9430
9431 #ifdef CONFIG_GDBSTUB
9432 if (use_gdbstub) {
9433 /* XXX: use standard host:port notation and modify options
9434 accordingly. */
9435 if (gdbserver_start(gdbstub_port) < 0) {
9436 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
9437 gdbstub_port);
9438 exit(1);
9439 }
9440 }
9441 #endif
9442
9443 if (loadvm)
9444 do_loadvm(loadvm);
9445
9446 {
9447 /* XXX: simplify init */
9448 read_passwords();
9449 if (autostart) {
9450 vm_start();
9451 }
9452 }
9453
9454 if (daemonize) {
9455 uint8_t status = 0;
9456 ssize_t len;
9457 int fd;
9458
9459 again1:
9460 len = write(fds[1], &status, 1);
9461 if (len == -1 && (errno == EINTR))
9462 goto again1;
9463
9464 if (len != 1)
9465 exit(1);
9466
9467 chdir("/");
9468 TFR(fd = open("/dev/null", O_RDWR));
9469 if (fd == -1)
9470 exit(1);
9471
9472 dup2(fd, 0);
9473 dup2(fd, 1);
9474 dup2(fd, 2);
9475
9476 close(fd);
9477 }
9478
9479 main_loop();
9480 quit_timers();
9481
9482 #if !defined(_WIN32)
9483 /* close network clients */
9484 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
9485 VLANClientState *vc;
9486
9487 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
9488 if (vc->fd_read == tap_receive) {
9489 char ifname[64];
9490 TAPState *s = vc->opaque;
9491
9492 if (sscanf(vc->info_str, "tap: ifname=%63s ", ifname) == 1 &&
9493 s->down_script[0])
9494 launch_script(s->down_script, ifname, s->fd);
9495 }
9496 #if defined(CONFIG_VDE)
9497 if (vc->fd_read == vde_from_qemu) {
9498 VDEState *s = vc->opaque;
9499 vde_close(s->vde);
9500 }
9501 #endif
9502 }
9503 }
9504 #endif
9505 return 0;
9506 }