]> git.proxmox.com Git - mirror_qemu.git/blob - vl.c
Expand cache= option and use write-through caching by default
[mirror_qemu.git] / vl.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw/hw.h"
25 #include "hw/boards.h"
26 #include "hw/usb.h"
27 #include "hw/pcmcia.h"
28 #include "hw/pc.h"
29 #include "hw/audiodev.h"
30 #include "hw/isa.h"
31 #include "hw/baum.h"
32 #include "hw/bt.h"
33 #include "net.h"
34 #include "console.h"
35 #include "sysemu.h"
36 #include "gdbstub.h"
37 #include "qemu-timer.h"
38 #include "qemu-char.h"
39 #include "block.h"
40 #include "audio/audio.h"
41 #include "migration.h"
42
43 #include <unistd.h>
44 #include <fcntl.h>
45 #include <signal.h>
46 #include <time.h>
47 #include <errno.h>
48 #include <sys/time.h>
49 #include <zlib.h>
50
51 #ifndef _WIN32
52 #include <sys/times.h>
53 #include <sys/wait.h>
54 #include <termios.h>
55 #include <sys/mman.h>
56 #include <sys/ioctl.h>
57 #include <sys/socket.h>
58 #include <netinet/in.h>
59 #include <dirent.h>
60 #include <netdb.h>
61 #include <sys/select.h>
62 #include <arpa/inet.h>
63 #ifdef _BSD
64 #include <sys/stat.h>
65 #if !defined(__APPLE__) && !defined(__OpenBSD__)
66 #include <libutil.h>
67 #endif
68 #ifdef __OpenBSD__
69 #include <net/if.h>
70 #endif
71 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
72 #include <freebsd/stdlib.h>
73 #else
74 #ifdef __linux__
75 #include <linux/if.h>
76 #include <linux/if_tun.h>
77 #include <pty.h>
78 #include <malloc.h>
79 #include <linux/rtc.h>
80
81 /* For the benefit of older linux systems which don't supply it,
82 we use a local copy of hpet.h. */
83 /* #include <linux/hpet.h> */
84 #include "hpet.h"
85
86 #include <linux/ppdev.h>
87 #include <linux/parport.h>
88 #endif
89 #ifdef __sun__
90 #include <sys/stat.h>
91 #include <sys/ethernet.h>
92 #include <sys/sockio.h>
93 #include <netinet/arp.h>
94 #include <netinet/in.h>
95 #include <netinet/in_systm.h>
96 #include <netinet/ip.h>
97 #include <netinet/ip_icmp.h> // must come after ip.h
98 #include <netinet/udp.h>
99 #include <netinet/tcp.h>
100 #include <net/if.h>
101 #include <syslog.h>
102 #include <stropts.h>
103 #endif
104 #endif
105 #endif
106
107 #include "qemu_socket.h"
108
109 #if defined(CONFIG_SLIRP)
110 #include "libslirp.h"
111 #endif
112
113 #if defined(__OpenBSD__)
114 #include <util.h>
115 #endif
116
117 #if defined(CONFIG_VDE)
118 #include <libvdeplug.h>
119 #endif
120
121 #ifdef _WIN32
122 #include <malloc.h>
123 #include <sys/timeb.h>
124 #include <mmsystem.h>
125 #define getopt_long_only getopt_long
126 #define memalign(align, size) malloc(size)
127 #endif
128
129 #ifdef CONFIG_SDL
130 #ifdef __APPLE__
131 #include <SDL/SDL.h>
132 #endif
133 #endif /* CONFIG_SDL */
134
135 #ifdef CONFIG_COCOA
136 #undef main
137 #define main qemu_main
138 #endif /* CONFIG_COCOA */
139
140 #include "disas.h"
141
142 #include "exec-all.h"
143
144 #define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
145 #define DEFAULT_NETWORK_DOWN_SCRIPT "/etc/qemu-ifdown"
146 #ifdef __sun__
147 #define SMBD_COMMAND "/usr/sfw/sbin/smbd"
148 #else
149 #define SMBD_COMMAND "/usr/sbin/smbd"
150 #endif
151
152 //#define DEBUG_UNUSED_IOPORT
153 //#define DEBUG_IOPORT
154 //#define DEBUG_NET
155 //#define DEBUG_SLIRP
156
157 #ifdef TARGET_PPC
158 #define DEFAULT_RAM_SIZE 144
159 #else
160 #define DEFAULT_RAM_SIZE 128
161 #endif
162
163 /* Max number of USB devices that can be specified on the commandline. */
164 #define MAX_USB_CMDLINE 8
165
166 /* XXX: use a two level table to limit memory usage */
167 #define MAX_IOPORTS 65536
168
169 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
170 const char *bios_name = NULL;
171 static void *ioport_opaque[MAX_IOPORTS];
172 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
173 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
174 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
175 to store the VM snapshots */
176 DriveInfo drives_table[MAX_DRIVES+1];
177 int nb_drives;
178 /* point to the block driver where the snapshots are managed */
179 static BlockDriverState *bs_snapshots;
180 static int vga_ram_size;
181 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
182 static DisplayState display_state;
183 int nographic;
184 static int curses;
185 const char* keyboard_layout = NULL;
186 int64_t ticks_per_sec;
187 ram_addr_t ram_size;
188 int nb_nics;
189 NICInfo nd_table[MAX_NICS];
190 int vm_running;
191 static int rtc_utc = 1;
192 static int rtc_date_offset = -1; /* -1 means no change */
193 int cirrus_vga_enabled = 1;
194 int vmsvga_enabled = 0;
195 #ifdef TARGET_SPARC
196 int graphic_width = 1024;
197 int graphic_height = 768;
198 int graphic_depth = 8;
199 #else
200 int graphic_width = 800;
201 int graphic_height = 600;
202 int graphic_depth = 15;
203 #endif
204 static int full_screen = 0;
205 static int no_frame = 0;
206 int no_quit = 0;
207 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
208 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
209 #ifdef TARGET_I386
210 int win2k_install_hack = 0;
211 #endif
212 int usb_enabled = 0;
213 static VLANState *first_vlan;
214 int smp_cpus = 1;
215 const char *vnc_display;
216 int acpi_enabled = 1;
217 int fd_bootchk = 1;
218 int no_reboot = 0;
219 int no_shutdown = 0;
220 int cursor_hide = 1;
221 int graphic_rotate = 0;
222 int daemonize = 0;
223 const char *option_rom[MAX_OPTION_ROMS];
224 int nb_option_roms;
225 int semihosting_enabled = 0;
226 #ifdef TARGET_ARM
227 int old_param = 0;
228 #endif
229 const char *qemu_name;
230 int alt_grab = 0;
231 #ifdef TARGET_SPARC
232 unsigned int nb_prom_envs = 0;
233 const char *prom_envs[MAX_PROM_ENVS];
234 #endif
235 static int nb_drives_opt;
236 static struct drive_opt {
237 const char *file;
238 char opt[1024];
239 } drives_opt[MAX_DRIVES];
240
241 static CPUState *cur_cpu;
242 static CPUState *next_cpu;
243 static int event_pending = 1;
244 /* Conversion factor from emulated instructions to virtual clock ticks. */
245 static int icount_time_shift;
246 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
247 #define MAX_ICOUNT_SHIFT 10
248 /* Compensate for varying guest execution speed. */
249 static int64_t qemu_icount_bias;
250 static QEMUTimer *icount_rt_timer;
251 static QEMUTimer *icount_vm_timer;
252
253 uint8_t qemu_uuid[16];
254
255 #define TFR(expr) do { if ((expr) != -1) break; } while (errno == EINTR)
256
257 /***********************************************************/
258 /* x86 ISA bus support */
259
260 target_phys_addr_t isa_mem_base = 0;
261 PicState2 *isa_pic;
262
263 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
264 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
265
266 static uint32_t ioport_read(int index, uint32_t address)
267 {
268 static IOPortReadFunc *default_func[3] = {
269 default_ioport_readb,
270 default_ioport_readw,
271 default_ioport_readl
272 };
273 IOPortReadFunc *func = ioport_read_table[index][address];
274 if (!func)
275 func = default_func[index];
276 return func(ioport_opaque[address], address);
277 }
278
279 static void ioport_write(int index, uint32_t address, uint32_t data)
280 {
281 static IOPortWriteFunc *default_func[3] = {
282 default_ioport_writeb,
283 default_ioport_writew,
284 default_ioport_writel
285 };
286 IOPortWriteFunc *func = ioport_write_table[index][address];
287 if (!func)
288 func = default_func[index];
289 func(ioport_opaque[address], address, data);
290 }
291
292 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
293 {
294 #ifdef DEBUG_UNUSED_IOPORT
295 fprintf(stderr, "unused inb: port=0x%04x\n", address);
296 #endif
297 return 0xff;
298 }
299
300 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
301 {
302 #ifdef DEBUG_UNUSED_IOPORT
303 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
304 #endif
305 }
306
307 /* default is to make two byte accesses */
308 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
309 {
310 uint32_t data;
311 data = ioport_read(0, address);
312 address = (address + 1) & (MAX_IOPORTS - 1);
313 data |= ioport_read(0, address) << 8;
314 return data;
315 }
316
317 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
318 {
319 ioport_write(0, address, data & 0xff);
320 address = (address + 1) & (MAX_IOPORTS - 1);
321 ioport_write(0, address, (data >> 8) & 0xff);
322 }
323
324 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
325 {
326 #ifdef DEBUG_UNUSED_IOPORT
327 fprintf(stderr, "unused inl: port=0x%04x\n", address);
328 #endif
329 return 0xffffffff;
330 }
331
332 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
333 {
334 #ifdef DEBUG_UNUSED_IOPORT
335 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
336 #endif
337 }
338
339 /* size is the word size in byte */
340 int register_ioport_read(int start, int length, int size,
341 IOPortReadFunc *func, void *opaque)
342 {
343 int i, bsize;
344
345 if (size == 1) {
346 bsize = 0;
347 } else if (size == 2) {
348 bsize = 1;
349 } else if (size == 4) {
350 bsize = 2;
351 } else {
352 hw_error("register_ioport_read: invalid size");
353 return -1;
354 }
355 for(i = start; i < start + length; i += size) {
356 ioport_read_table[bsize][i] = func;
357 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
358 hw_error("register_ioport_read: invalid opaque");
359 ioport_opaque[i] = opaque;
360 }
361 return 0;
362 }
363
364 /* size is the word size in byte */
365 int register_ioport_write(int start, int length, int size,
366 IOPortWriteFunc *func, void *opaque)
367 {
368 int i, bsize;
369
370 if (size == 1) {
371 bsize = 0;
372 } else if (size == 2) {
373 bsize = 1;
374 } else if (size == 4) {
375 bsize = 2;
376 } else {
377 hw_error("register_ioport_write: invalid size");
378 return -1;
379 }
380 for(i = start; i < start + length; i += size) {
381 ioport_write_table[bsize][i] = func;
382 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
383 hw_error("register_ioport_write: invalid opaque");
384 ioport_opaque[i] = opaque;
385 }
386 return 0;
387 }
388
389 void isa_unassign_ioport(int start, int length)
390 {
391 int i;
392
393 for(i = start; i < start + length; i++) {
394 ioport_read_table[0][i] = default_ioport_readb;
395 ioport_read_table[1][i] = default_ioport_readw;
396 ioport_read_table[2][i] = default_ioport_readl;
397
398 ioport_write_table[0][i] = default_ioport_writeb;
399 ioport_write_table[1][i] = default_ioport_writew;
400 ioport_write_table[2][i] = default_ioport_writel;
401 }
402 }
403
404 /***********************************************************/
405
406 void cpu_outb(CPUState *env, int addr, int val)
407 {
408 #ifdef DEBUG_IOPORT
409 if (loglevel & CPU_LOG_IOPORT)
410 fprintf(logfile, "outb: %04x %02x\n", addr, val);
411 #endif
412 ioport_write(0, addr, val);
413 #ifdef USE_KQEMU
414 if (env)
415 env->last_io_time = cpu_get_time_fast();
416 #endif
417 }
418
419 void cpu_outw(CPUState *env, int addr, int val)
420 {
421 #ifdef DEBUG_IOPORT
422 if (loglevel & CPU_LOG_IOPORT)
423 fprintf(logfile, "outw: %04x %04x\n", addr, val);
424 #endif
425 ioport_write(1, addr, val);
426 #ifdef USE_KQEMU
427 if (env)
428 env->last_io_time = cpu_get_time_fast();
429 #endif
430 }
431
432 void cpu_outl(CPUState *env, int addr, int val)
433 {
434 #ifdef DEBUG_IOPORT
435 if (loglevel & CPU_LOG_IOPORT)
436 fprintf(logfile, "outl: %04x %08x\n", addr, val);
437 #endif
438 ioport_write(2, addr, val);
439 #ifdef USE_KQEMU
440 if (env)
441 env->last_io_time = cpu_get_time_fast();
442 #endif
443 }
444
445 int cpu_inb(CPUState *env, int addr)
446 {
447 int val;
448 val = ioport_read(0, addr);
449 #ifdef DEBUG_IOPORT
450 if (loglevel & CPU_LOG_IOPORT)
451 fprintf(logfile, "inb : %04x %02x\n", addr, val);
452 #endif
453 #ifdef USE_KQEMU
454 if (env)
455 env->last_io_time = cpu_get_time_fast();
456 #endif
457 return val;
458 }
459
460 int cpu_inw(CPUState *env, int addr)
461 {
462 int val;
463 val = ioport_read(1, addr);
464 #ifdef DEBUG_IOPORT
465 if (loglevel & CPU_LOG_IOPORT)
466 fprintf(logfile, "inw : %04x %04x\n", addr, val);
467 #endif
468 #ifdef USE_KQEMU
469 if (env)
470 env->last_io_time = cpu_get_time_fast();
471 #endif
472 return val;
473 }
474
475 int cpu_inl(CPUState *env, int addr)
476 {
477 int val;
478 val = ioport_read(2, addr);
479 #ifdef DEBUG_IOPORT
480 if (loglevel & CPU_LOG_IOPORT)
481 fprintf(logfile, "inl : %04x %08x\n", addr, val);
482 #endif
483 #ifdef USE_KQEMU
484 if (env)
485 env->last_io_time = cpu_get_time_fast();
486 #endif
487 return val;
488 }
489
490 /***********************************************************/
491 void hw_error(const char *fmt, ...)
492 {
493 va_list ap;
494 CPUState *env;
495
496 va_start(ap, fmt);
497 fprintf(stderr, "qemu: hardware error: ");
498 vfprintf(stderr, fmt, ap);
499 fprintf(stderr, "\n");
500 for(env = first_cpu; env != NULL; env = env->next_cpu) {
501 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
502 #ifdef TARGET_I386
503 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
504 #else
505 cpu_dump_state(env, stderr, fprintf, 0);
506 #endif
507 }
508 va_end(ap);
509 abort();
510 }
511
512 /***********************************************************/
513 /* keyboard/mouse */
514
515 static QEMUPutKBDEvent *qemu_put_kbd_event;
516 static void *qemu_put_kbd_event_opaque;
517 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
518 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
519
520 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
521 {
522 qemu_put_kbd_event_opaque = opaque;
523 qemu_put_kbd_event = func;
524 }
525
526 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
527 void *opaque, int absolute,
528 const char *name)
529 {
530 QEMUPutMouseEntry *s, *cursor;
531
532 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
533 if (!s)
534 return NULL;
535
536 s->qemu_put_mouse_event = func;
537 s->qemu_put_mouse_event_opaque = opaque;
538 s->qemu_put_mouse_event_absolute = absolute;
539 s->qemu_put_mouse_event_name = qemu_strdup(name);
540 s->next = NULL;
541
542 if (!qemu_put_mouse_event_head) {
543 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
544 return s;
545 }
546
547 cursor = qemu_put_mouse_event_head;
548 while (cursor->next != NULL)
549 cursor = cursor->next;
550
551 cursor->next = s;
552 qemu_put_mouse_event_current = s;
553
554 return s;
555 }
556
557 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
558 {
559 QEMUPutMouseEntry *prev = NULL, *cursor;
560
561 if (!qemu_put_mouse_event_head || entry == NULL)
562 return;
563
564 cursor = qemu_put_mouse_event_head;
565 while (cursor != NULL && cursor != entry) {
566 prev = cursor;
567 cursor = cursor->next;
568 }
569
570 if (cursor == NULL) // does not exist or list empty
571 return;
572 else if (prev == NULL) { // entry is head
573 qemu_put_mouse_event_head = cursor->next;
574 if (qemu_put_mouse_event_current == entry)
575 qemu_put_mouse_event_current = cursor->next;
576 qemu_free(entry->qemu_put_mouse_event_name);
577 qemu_free(entry);
578 return;
579 }
580
581 prev->next = entry->next;
582
583 if (qemu_put_mouse_event_current == entry)
584 qemu_put_mouse_event_current = prev;
585
586 qemu_free(entry->qemu_put_mouse_event_name);
587 qemu_free(entry);
588 }
589
590 void kbd_put_keycode(int keycode)
591 {
592 if (qemu_put_kbd_event) {
593 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
594 }
595 }
596
597 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
598 {
599 QEMUPutMouseEvent *mouse_event;
600 void *mouse_event_opaque;
601 int width;
602
603 if (!qemu_put_mouse_event_current) {
604 return;
605 }
606
607 mouse_event =
608 qemu_put_mouse_event_current->qemu_put_mouse_event;
609 mouse_event_opaque =
610 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
611
612 if (mouse_event) {
613 if (graphic_rotate) {
614 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
615 width = 0x7fff;
616 else
617 width = graphic_width - 1;
618 mouse_event(mouse_event_opaque,
619 width - dy, dx, dz, buttons_state);
620 } else
621 mouse_event(mouse_event_opaque,
622 dx, dy, dz, buttons_state);
623 }
624 }
625
626 int kbd_mouse_is_absolute(void)
627 {
628 if (!qemu_put_mouse_event_current)
629 return 0;
630
631 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
632 }
633
634 void do_info_mice(void)
635 {
636 QEMUPutMouseEntry *cursor;
637 int index = 0;
638
639 if (!qemu_put_mouse_event_head) {
640 term_printf("No mouse devices connected\n");
641 return;
642 }
643
644 term_printf("Mouse devices available:\n");
645 cursor = qemu_put_mouse_event_head;
646 while (cursor != NULL) {
647 term_printf("%c Mouse #%d: %s\n",
648 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
649 index, cursor->qemu_put_mouse_event_name);
650 index++;
651 cursor = cursor->next;
652 }
653 }
654
655 void do_mouse_set(int index)
656 {
657 QEMUPutMouseEntry *cursor;
658 int i = 0;
659
660 if (!qemu_put_mouse_event_head) {
661 term_printf("No mouse devices connected\n");
662 return;
663 }
664
665 cursor = qemu_put_mouse_event_head;
666 while (cursor != NULL && index != i) {
667 i++;
668 cursor = cursor->next;
669 }
670
671 if (cursor != NULL)
672 qemu_put_mouse_event_current = cursor;
673 else
674 term_printf("Mouse at given index not found\n");
675 }
676
677 /* compute with 96 bit intermediate result: (a*b)/c */
678 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
679 {
680 union {
681 uint64_t ll;
682 struct {
683 #ifdef WORDS_BIGENDIAN
684 uint32_t high, low;
685 #else
686 uint32_t low, high;
687 #endif
688 } l;
689 } u, res;
690 uint64_t rl, rh;
691
692 u.ll = a;
693 rl = (uint64_t)u.l.low * (uint64_t)b;
694 rh = (uint64_t)u.l.high * (uint64_t)b;
695 rh += (rl >> 32);
696 res.l.high = rh / c;
697 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
698 return res.ll;
699 }
700
701 /***********************************************************/
702 /* real time host monotonic timer */
703
704 #define QEMU_TIMER_BASE 1000000000LL
705
706 #ifdef WIN32
707
708 static int64_t clock_freq;
709
710 static void init_get_clock(void)
711 {
712 LARGE_INTEGER freq;
713 int ret;
714 ret = QueryPerformanceFrequency(&freq);
715 if (ret == 0) {
716 fprintf(stderr, "Could not calibrate ticks\n");
717 exit(1);
718 }
719 clock_freq = freq.QuadPart;
720 }
721
722 static int64_t get_clock(void)
723 {
724 LARGE_INTEGER ti;
725 QueryPerformanceCounter(&ti);
726 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
727 }
728
729 #else
730
731 static int use_rt_clock;
732
733 static void init_get_clock(void)
734 {
735 use_rt_clock = 0;
736 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000)
737 {
738 struct timespec ts;
739 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
740 use_rt_clock = 1;
741 }
742 }
743 #endif
744 }
745
746 static int64_t get_clock(void)
747 {
748 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000)
749 if (use_rt_clock) {
750 struct timespec ts;
751 clock_gettime(CLOCK_MONOTONIC, &ts);
752 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
753 } else
754 #endif
755 {
756 /* XXX: using gettimeofday leads to problems if the date
757 changes, so it should be avoided. */
758 struct timeval tv;
759 gettimeofday(&tv, NULL);
760 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
761 }
762 }
763 #endif
764
765 /* Return the virtual CPU time, based on the instruction counter. */
766 static int64_t cpu_get_icount(void)
767 {
768 int64_t icount;
769 CPUState *env = cpu_single_env;;
770 icount = qemu_icount;
771 if (env) {
772 if (!can_do_io(env))
773 fprintf(stderr, "Bad clock read\n");
774 icount -= (env->icount_decr.u16.low + env->icount_extra);
775 }
776 return qemu_icount_bias + (icount << icount_time_shift);
777 }
778
779 /***********************************************************/
780 /* guest cycle counter */
781
782 static int64_t cpu_ticks_prev;
783 static int64_t cpu_ticks_offset;
784 static int64_t cpu_clock_offset;
785 static int cpu_ticks_enabled;
786
787 /* return the host CPU cycle counter and handle stop/restart */
788 int64_t cpu_get_ticks(void)
789 {
790 if (use_icount) {
791 return cpu_get_icount();
792 }
793 if (!cpu_ticks_enabled) {
794 return cpu_ticks_offset;
795 } else {
796 int64_t ticks;
797 ticks = cpu_get_real_ticks();
798 if (cpu_ticks_prev > ticks) {
799 /* Note: non increasing ticks may happen if the host uses
800 software suspend */
801 cpu_ticks_offset += cpu_ticks_prev - ticks;
802 }
803 cpu_ticks_prev = ticks;
804 return ticks + cpu_ticks_offset;
805 }
806 }
807
808 /* return the host CPU monotonic timer and handle stop/restart */
809 static int64_t cpu_get_clock(void)
810 {
811 int64_t ti;
812 if (!cpu_ticks_enabled) {
813 return cpu_clock_offset;
814 } else {
815 ti = get_clock();
816 return ti + cpu_clock_offset;
817 }
818 }
819
820 /* enable cpu_get_ticks() */
821 void cpu_enable_ticks(void)
822 {
823 if (!cpu_ticks_enabled) {
824 cpu_ticks_offset -= cpu_get_real_ticks();
825 cpu_clock_offset -= get_clock();
826 cpu_ticks_enabled = 1;
827 }
828 }
829
830 /* disable cpu_get_ticks() : the clock is stopped. You must not call
831 cpu_get_ticks() after that. */
832 void cpu_disable_ticks(void)
833 {
834 if (cpu_ticks_enabled) {
835 cpu_ticks_offset = cpu_get_ticks();
836 cpu_clock_offset = cpu_get_clock();
837 cpu_ticks_enabled = 0;
838 }
839 }
840
841 /***********************************************************/
842 /* timers */
843
844 #define QEMU_TIMER_REALTIME 0
845 #define QEMU_TIMER_VIRTUAL 1
846
847 struct QEMUClock {
848 int type;
849 /* XXX: add frequency */
850 };
851
852 struct QEMUTimer {
853 QEMUClock *clock;
854 int64_t expire_time;
855 QEMUTimerCB *cb;
856 void *opaque;
857 struct QEMUTimer *next;
858 };
859
860 struct qemu_alarm_timer {
861 char const *name;
862 unsigned int flags;
863
864 int (*start)(struct qemu_alarm_timer *t);
865 void (*stop)(struct qemu_alarm_timer *t);
866 void (*rearm)(struct qemu_alarm_timer *t);
867 void *priv;
868 };
869
870 #define ALARM_FLAG_DYNTICKS 0x1
871 #define ALARM_FLAG_EXPIRED 0x2
872
873 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
874 {
875 return t->flags & ALARM_FLAG_DYNTICKS;
876 }
877
878 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
879 {
880 if (!alarm_has_dynticks(t))
881 return;
882
883 t->rearm(t);
884 }
885
886 /* TODO: MIN_TIMER_REARM_US should be optimized */
887 #define MIN_TIMER_REARM_US 250
888
889 static struct qemu_alarm_timer *alarm_timer;
890
891 #ifdef _WIN32
892
893 struct qemu_alarm_win32 {
894 MMRESULT timerId;
895 HANDLE host_alarm;
896 unsigned int period;
897 } alarm_win32_data = {0, NULL, -1};
898
899 static int win32_start_timer(struct qemu_alarm_timer *t);
900 static void win32_stop_timer(struct qemu_alarm_timer *t);
901 static void win32_rearm_timer(struct qemu_alarm_timer *t);
902
903 #else
904
905 static int unix_start_timer(struct qemu_alarm_timer *t);
906 static void unix_stop_timer(struct qemu_alarm_timer *t);
907
908 #ifdef __linux__
909
910 static int dynticks_start_timer(struct qemu_alarm_timer *t);
911 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
912 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
913
914 static int hpet_start_timer(struct qemu_alarm_timer *t);
915 static void hpet_stop_timer(struct qemu_alarm_timer *t);
916
917 static int rtc_start_timer(struct qemu_alarm_timer *t);
918 static void rtc_stop_timer(struct qemu_alarm_timer *t);
919
920 #endif /* __linux__ */
921
922 #endif /* _WIN32 */
923
924 /* Correlation between real and virtual time is always going to be
925 fairly approximate, so ignore small variation.
926 When the guest is idle real and virtual time will be aligned in
927 the IO wait loop. */
928 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
929
930 static void icount_adjust(void)
931 {
932 int64_t cur_time;
933 int64_t cur_icount;
934 int64_t delta;
935 static int64_t last_delta;
936 /* If the VM is not running, then do nothing. */
937 if (!vm_running)
938 return;
939
940 cur_time = cpu_get_clock();
941 cur_icount = qemu_get_clock(vm_clock);
942 delta = cur_icount - cur_time;
943 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
944 if (delta > 0
945 && last_delta + ICOUNT_WOBBLE < delta * 2
946 && icount_time_shift > 0) {
947 /* The guest is getting too far ahead. Slow time down. */
948 icount_time_shift--;
949 }
950 if (delta < 0
951 && last_delta - ICOUNT_WOBBLE > delta * 2
952 && icount_time_shift < MAX_ICOUNT_SHIFT) {
953 /* The guest is getting too far behind. Speed time up. */
954 icount_time_shift++;
955 }
956 last_delta = delta;
957 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
958 }
959
960 static void icount_adjust_rt(void * opaque)
961 {
962 qemu_mod_timer(icount_rt_timer,
963 qemu_get_clock(rt_clock) + 1000);
964 icount_adjust();
965 }
966
967 static void icount_adjust_vm(void * opaque)
968 {
969 qemu_mod_timer(icount_vm_timer,
970 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
971 icount_adjust();
972 }
973
974 static void init_icount_adjust(void)
975 {
976 /* Have both realtime and virtual time triggers for speed adjustment.
977 The realtime trigger catches emulated time passing too slowly,
978 the virtual time trigger catches emulated time passing too fast.
979 Realtime triggers occur even when idle, so use them less frequently
980 than VM triggers. */
981 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
982 qemu_mod_timer(icount_rt_timer,
983 qemu_get_clock(rt_clock) + 1000);
984 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
985 qemu_mod_timer(icount_vm_timer,
986 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
987 }
988
989 static struct qemu_alarm_timer alarm_timers[] = {
990 #ifndef _WIN32
991 #ifdef __linux__
992 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
993 dynticks_stop_timer, dynticks_rearm_timer, NULL},
994 /* HPET - if available - is preferred */
995 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
996 /* ...otherwise try RTC */
997 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
998 #endif
999 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1000 #else
1001 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1002 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1003 {"win32", 0, win32_start_timer,
1004 win32_stop_timer, NULL, &alarm_win32_data},
1005 #endif
1006 {NULL, }
1007 };
1008
1009 static void show_available_alarms(void)
1010 {
1011 int i;
1012
1013 printf("Available alarm timers, in order of precedence:\n");
1014 for (i = 0; alarm_timers[i].name; i++)
1015 printf("%s\n", alarm_timers[i].name);
1016 }
1017
1018 static void configure_alarms(char const *opt)
1019 {
1020 int i;
1021 int cur = 0;
1022 int count = (sizeof(alarm_timers) / sizeof(*alarm_timers)) - 1;
1023 char *arg;
1024 char *name;
1025 struct qemu_alarm_timer tmp;
1026
1027 if (!strcmp(opt, "?")) {
1028 show_available_alarms();
1029 exit(0);
1030 }
1031
1032 arg = strdup(opt);
1033
1034 /* Reorder the array */
1035 name = strtok(arg, ",");
1036 while (name) {
1037 for (i = 0; i < count && alarm_timers[i].name; i++) {
1038 if (!strcmp(alarm_timers[i].name, name))
1039 break;
1040 }
1041
1042 if (i == count) {
1043 fprintf(stderr, "Unknown clock %s\n", name);
1044 goto next;
1045 }
1046
1047 if (i < cur)
1048 /* Ignore */
1049 goto next;
1050
1051 /* Swap */
1052 tmp = alarm_timers[i];
1053 alarm_timers[i] = alarm_timers[cur];
1054 alarm_timers[cur] = tmp;
1055
1056 cur++;
1057 next:
1058 name = strtok(NULL, ",");
1059 }
1060
1061 free(arg);
1062
1063 if (cur) {
1064 /* Disable remaining timers */
1065 for (i = cur; i < count; i++)
1066 alarm_timers[i].name = NULL;
1067 } else {
1068 show_available_alarms();
1069 exit(1);
1070 }
1071 }
1072
1073 QEMUClock *rt_clock;
1074 QEMUClock *vm_clock;
1075
1076 static QEMUTimer *active_timers[2];
1077
1078 static QEMUClock *qemu_new_clock(int type)
1079 {
1080 QEMUClock *clock;
1081 clock = qemu_mallocz(sizeof(QEMUClock));
1082 if (!clock)
1083 return NULL;
1084 clock->type = type;
1085 return clock;
1086 }
1087
1088 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1089 {
1090 QEMUTimer *ts;
1091
1092 ts = qemu_mallocz(sizeof(QEMUTimer));
1093 ts->clock = clock;
1094 ts->cb = cb;
1095 ts->opaque = opaque;
1096 return ts;
1097 }
1098
1099 void qemu_free_timer(QEMUTimer *ts)
1100 {
1101 qemu_free(ts);
1102 }
1103
1104 /* stop a timer, but do not dealloc it */
1105 void qemu_del_timer(QEMUTimer *ts)
1106 {
1107 QEMUTimer **pt, *t;
1108
1109 /* NOTE: this code must be signal safe because
1110 qemu_timer_expired() can be called from a signal. */
1111 pt = &active_timers[ts->clock->type];
1112 for(;;) {
1113 t = *pt;
1114 if (!t)
1115 break;
1116 if (t == ts) {
1117 *pt = t->next;
1118 break;
1119 }
1120 pt = &t->next;
1121 }
1122 }
1123
1124 /* modify the current timer so that it will be fired when current_time
1125 >= expire_time. The corresponding callback will be called. */
1126 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1127 {
1128 QEMUTimer **pt, *t;
1129
1130 qemu_del_timer(ts);
1131
1132 /* add the timer in the sorted list */
1133 /* NOTE: this code must be signal safe because
1134 qemu_timer_expired() can be called from a signal. */
1135 pt = &active_timers[ts->clock->type];
1136 for(;;) {
1137 t = *pt;
1138 if (!t)
1139 break;
1140 if (t->expire_time > expire_time)
1141 break;
1142 pt = &t->next;
1143 }
1144 ts->expire_time = expire_time;
1145 ts->next = *pt;
1146 *pt = ts;
1147
1148 /* Rearm if necessary */
1149 if (pt == &active_timers[ts->clock->type]) {
1150 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1151 qemu_rearm_alarm_timer(alarm_timer);
1152 }
1153 /* Interrupt execution to force deadline recalculation. */
1154 if (use_icount && cpu_single_env) {
1155 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
1156 }
1157 }
1158 }
1159
1160 int qemu_timer_pending(QEMUTimer *ts)
1161 {
1162 QEMUTimer *t;
1163 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1164 if (t == ts)
1165 return 1;
1166 }
1167 return 0;
1168 }
1169
1170 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1171 {
1172 if (!timer_head)
1173 return 0;
1174 return (timer_head->expire_time <= current_time);
1175 }
1176
1177 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1178 {
1179 QEMUTimer *ts;
1180
1181 for(;;) {
1182 ts = *ptimer_head;
1183 if (!ts || ts->expire_time > current_time)
1184 break;
1185 /* remove timer from the list before calling the callback */
1186 *ptimer_head = ts->next;
1187 ts->next = NULL;
1188
1189 /* run the callback (the timer list can be modified) */
1190 ts->cb(ts->opaque);
1191 }
1192 }
1193
1194 int64_t qemu_get_clock(QEMUClock *clock)
1195 {
1196 switch(clock->type) {
1197 case QEMU_TIMER_REALTIME:
1198 return get_clock() / 1000000;
1199 default:
1200 case QEMU_TIMER_VIRTUAL:
1201 if (use_icount) {
1202 return cpu_get_icount();
1203 } else {
1204 return cpu_get_clock();
1205 }
1206 }
1207 }
1208
1209 static void init_timers(void)
1210 {
1211 init_get_clock();
1212 ticks_per_sec = QEMU_TIMER_BASE;
1213 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1214 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1215 }
1216
1217 /* save a timer */
1218 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1219 {
1220 uint64_t expire_time;
1221
1222 if (qemu_timer_pending(ts)) {
1223 expire_time = ts->expire_time;
1224 } else {
1225 expire_time = -1;
1226 }
1227 qemu_put_be64(f, expire_time);
1228 }
1229
1230 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1231 {
1232 uint64_t expire_time;
1233
1234 expire_time = qemu_get_be64(f);
1235 if (expire_time != -1) {
1236 qemu_mod_timer(ts, expire_time);
1237 } else {
1238 qemu_del_timer(ts);
1239 }
1240 }
1241
1242 static void timer_save(QEMUFile *f, void *opaque)
1243 {
1244 if (cpu_ticks_enabled) {
1245 hw_error("cannot save state if virtual timers are running");
1246 }
1247 qemu_put_be64(f, cpu_ticks_offset);
1248 qemu_put_be64(f, ticks_per_sec);
1249 qemu_put_be64(f, cpu_clock_offset);
1250 }
1251
1252 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1253 {
1254 if (version_id != 1 && version_id != 2)
1255 return -EINVAL;
1256 if (cpu_ticks_enabled) {
1257 return -EINVAL;
1258 }
1259 cpu_ticks_offset=qemu_get_be64(f);
1260 ticks_per_sec=qemu_get_be64(f);
1261 if (version_id == 2) {
1262 cpu_clock_offset=qemu_get_be64(f);
1263 }
1264 return 0;
1265 }
1266
1267 #ifdef _WIN32
1268 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1269 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1270 #else
1271 static void host_alarm_handler(int host_signum)
1272 #endif
1273 {
1274 #if 0
1275 #define DISP_FREQ 1000
1276 {
1277 static int64_t delta_min = INT64_MAX;
1278 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1279 static int count;
1280 ti = qemu_get_clock(vm_clock);
1281 if (last_clock != 0) {
1282 delta = ti - last_clock;
1283 if (delta < delta_min)
1284 delta_min = delta;
1285 if (delta > delta_max)
1286 delta_max = delta;
1287 delta_cum += delta;
1288 if (++count == DISP_FREQ) {
1289 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1290 muldiv64(delta_min, 1000000, ticks_per_sec),
1291 muldiv64(delta_max, 1000000, ticks_per_sec),
1292 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1293 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1294 count = 0;
1295 delta_min = INT64_MAX;
1296 delta_max = 0;
1297 delta_cum = 0;
1298 }
1299 }
1300 last_clock = ti;
1301 }
1302 #endif
1303 if (alarm_has_dynticks(alarm_timer) ||
1304 (!use_icount &&
1305 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1306 qemu_get_clock(vm_clock))) ||
1307 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1308 qemu_get_clock(rt_clock))) {
1309 #ifdef _WIN32
1310 struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1311 SetEvent(data->host_alarm);
1312 #endif
1313 CPUState *env = next_cpu;
1314
1315 alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1316
1317 if (env) {
1318 /* stop the currently executing cpu because a timer occured */
1319 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1320 #ifdef USE_KQEMU
1321 if (env->kqemu_enabled) {
1322 kqemu_cpu_interrupt(env);
1323 }
1324 #endif
1325 }
1326 event_pending = 1;
1327 }
1328 }
1329
1330 static int64_t qemu_next_deadline(void)
1331 {
1332 int64_t delta;
1333
1334 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1335 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1336 qemu_get_clock(vm_clock);
1337 } else {
1338 /* To avoid problems with overflow limit this to 2^32. */
1339 delta = INT32_MAX;
1340 }
1341
1342 if (delta < 0)
1343 delta = 0;
1344
1345 return delta;
1346 }
1347
1348 #if defined(__linux__) || defined(_WIN32)
1349 static uint64_t qemu_next_deadline_dyntick(void)
1350 {
1351 int64_t delta;
1352 int64_t rtdelta;
1353
1354 if (use_icount)
1355 delta = INT32_MAX;
1356 else
1357 delta = (qemu_next_deadline() + 999) / 1000;
1358
1359 if (active_timers[QEMU_TIMER_REALTIME]) {
1360 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1361 qemu_get_clock(rt_clock))*1000;
1362 if (rtdelta < delta)
1363 delta = rtdelta;
1364 }
1365
1366 if (delta < MIN_TIMER_REARM_US)
1367 delta = MIN_TIMER_REARM_US;
1368
1369 return delta;
1370 }
1371 #endif
1372
1373 #ifndef _WIN32
1374
1375 #if defined(__linux__)
1376
1377 #define RTC_FREQ 1024
1378
1379 static void enable_sigio_timer(int fd)
1380 {
1381 struct sigaction act;
1382
1383 /* timer signal */
1384 sigfillset(&act.sa_mask);
1385 act.sa_flags = 0;
1386 act.sa_handler = host_alarm_handler;
1387
1388 sigaction(SIGIO, &act, NULL);
1389 fcntl(fd, F_SETFL, O_ASYNC);
1390 fcntl(fd, F_SETOWN, getpid());
1391 }
1392
1393 static int hpet_start_timer(struct qemu_alarm_timer *t)
1394 {
1395 struct hpet_info info;
1396 int r, fd;
1397
1398 fd = open("/dev/hpet", O_RDONLY);
1399 if (fd < 0)
1400 return -1;
1401
1402 /* Set frequency */
1403 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1404 if (r < 0) {
1405 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1406 "error, but for better emulation accuracy type:\n"
1407 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1408 goto fail;
1409 }
1410
1411 /* Check capabilities */
1412 r = ioctl(fd, HPET_INFO, &info);
1413 if (r < 0)
1414 goto fail;
1415
1416 /* Enable periodic mode */
1417 r = ioctl(fd, HPET_EPI, 0);
1418 if (info.hi_flags && (r < 0))
1419 goto fail;
1420
1421 /* Enable interrupt */
1422 r = ioctl(fd, HPET_IE_ON, 0);
1423 if (r < 0)
1424 goto fail;
1425
1426 enable_sigio_timer(fd);
1427 t->priv = (void *)(long)fd;
1428
1429 return 0;
1430 fail:
1431 close(fd);
1432 return -1;
1433 }
1434
1435 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1436 {
1437 int fd = (long)t->priv;
1438
1439 close(fd);
1440 }
1441
1442 static int rtc_start_timer(struct qemu_alarm_timer *t)
1443 {
1444 int rtc_fd;
1445 unsigned long current_rtc_freq = 0;
1446
1447 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1448 if (rtc_fd < 0)
1449 return -1;
1450 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1451 if (current_rtc_freq != RTC_FREQ &&
1452 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1453 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1454 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1455 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1456 goto fail;
1457 }
1458 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1459 fail:
1460 close(rtc_fd);
1461 return -1;
1462 }
1463
1464 enable_sigio_timer(rtc_fd);
1465
1466 t->priv = (void *)(long)rtc_fd;
1467
1468 return 0;
1469 }
1470
1471 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1472 {
1473 int rtc_fd = (long)t->priv;
1474
1475 close(rtc_fd);
1476 }
1477
1478 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1479 {
1480 struct sigevent ev;
1481 timer_t host_timer;
1482 struct sigaction act;
1483
1484 sigfillset(&act.sa_mask);
1485 act.sa_flags = 0;
1486 act.sa_handler = host_alarm_handler;
1487
1488 sigaction(SIGALRM, &act, NULL);
1489
1490 ev.sigev_value.sival_int = 0;
1491 ev.sigev_notify = SIGEV_SIGNAL;
1492 ev.sigev_signo = SIGALRM;
1493
1494 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1495 perror("timer_create");
1496
1497 /* disable dynticks */
1498 fprintf(stderr, "Dynamic Ticks disabled\n");
1499
1500 return -1;
1501 }
1502
1503 t->priv = (void *)host_timer;
1504
1505 return 0;
1506 }
1507
1508 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1509 {
1510 timer_t host_timer = (timer_t)t->priv;
1511
1512 timer_delete(host_timer);
1513 }
1514
1515 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1516 {
1517 timer_t host_timer = (timer_t)t->priv;
1518 struct itimerspec timeout;
1519 int64_t nearest_delta_us = INT64_MAX;
1520 int64_t current_us;
1521
1522 if (!active_timers[QEMU_TIMER_REALTIME] &&
1523 !active_timers[QEMU_TIMER_VIRTUAL])
1524 return;
1525
1526 nearest_delta_us = qemu_next_deadline_dyntick();
1527
1528 /* check whether a timer is already running */
1529 if (timer_gettime(host_timer, &timeout)) {
1530 perror("gettime");
1531 fprintf(stderr, "Internal timer error: aborting\n");
1532 exit(1);
1533 }
1534 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1535 if (current_us && current_us <= nearest_delta_us)
1536 return;
1537
1538 timeout.it_interval.tv_sec = 0;
1539 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1540 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1541 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1542 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1543 perror("settime");
1544 fprintf(stderr, "Internal timer error: aborting\n");
1545 exit(1);
1546 }
1547 }
1548
1549 #endif /* defined(__linux__) */
1550
1551 static int unix_start_timer(struct qemu_alarm_timer *t)
1552 {
1553 struct sigaction act;
1554 struct itimerval itv;
1555 int err;
1556
1557 /* timer signal */
1558 sigfillset(&act.sa_mask);
1559 act.sa_flags = 0;
1560 act.sa_handler = host_alarm_handler;
1561
1562 sigaction(SIGALRM, &act, NULL);
1563
1564 itv.it_interval.tv_sec = 0;
1565 /* for i386 kernel 2.6 to get 1 ms */
1566 itv.it_interval.tv_usec = 999;
1567 itv.it_value.tv_sec = 0;
1568 itv.it_value.tv_usec = 10 * 1000;
1569
1570 err = setitimer(ITIMER_REAL, &itv, NULL);
1571 if (err)
1572 return -1;
1573
1574 return 0;
1575 }
1576
1577 static void unix_stop_timer(struct qemu_alarm_timer *t)
1578 {
1579 struct itimerval itv;
1580
1581 memset(&itv, 0, sizeof(itv));
1582 setitimer(ITIMER_REAL, &itv, NULL);
1583 }
1584
1585 #endif /* !defined(_WIN32) */
1586
1587 #ifdef _WIN32
1588
1589 static int win32_start_timer(struct qemu_alarm_timer *t)
1590 {
1591 TIMECAPS tc;
1592 struct qemu_alarm_win32 *data = t->priv;
1593 UINT flags;
1594
1595 data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1596 if (!data->host_alarm) {
1597 perror("Failed CreateEvent");
1598 return -1;
1599 }
1600
1601 memset(&tc, 0, sizeof(tc));
1602 timeGetDevCaps(&tc, sizeof(tc));
1603
1604 if (data->period < tc.wPeriodMin)
1605 data->period = tc.wPeriodMin;
1606
1607 timeBeginPeriod(data->period);
1608
1609 flags = TIME_CALLBACK_FUNCTION;
1610 if (alarm_has_dynticks(t))
1611 flags |= TIME_ONESHOT;
1612 else
1613 flags |= TIME_PERIODIC;
1614
1615 data->timerId = timeSetEvent(1, // interval (ms)
1616 data->period, // resolution
1617 host_alarm_handler, // function
1618 (DWORD)t, // parameter
1619 flags);
1620
1621 if (!data->timerId) {
1622 perror("Failed to initialize win32 alarm timer");
1623
1624 timeEndPeriod(data->period);
1625 CloseHandle(data->host_alarm);
1626 return -1;
1627 }
1628
1629 qemu_add_wait_object(data->host_alarm, NULL, NULL);
1630
1631 return 0;
1632 }
1633
1634 static void win32_stop_timer(struct qemu_alarm_timer *t)
1635 {
1636 struct qemu_alarm_win32 *data = t->priv;
1637
1638 timeKillEvent(data->timerId);
1639 timeEndPeriod(data->period);
1640
1641 CloseHandle(data->host_alarm);
1642 }
1643
1644 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1645 {
1646 struct qemu_alarm_win32 *data = t->priv;
1647 uint64_t nearest_delta_us;
1648
1649 if (!active_timers[QEMU_TIMER_REALTIME] &&
1650 !active_timers[QEMU_TIMER_VIRTUAL])
1651 return;
1652
1653 nearest_delta_us = qemu_next_deadline_dyntick();
1654 nearest_delta_us /= 1000;
1655
1656 timeKillEvent(data->timerId);
1657
1658 data->timerId = timeSetEvent(1,
1659 data->period,
1660 host_alarm_handler,
1661 (DWORD)t,
1662 TIME_ONESHOT | TIME_PERIODIC);
1663
1664 if (!data->timerId) {
1665 perror("Failed to re-arm win32 alarm timer");
1666
1667 timeEndPeriod(data->period);
1668 CloseHandle(data->host_alarm);
1669 exit(1);
1670 }
1671 }
1672
1673 #endif /* _WIN32 */
1674
1675 static void init_timer_alarm(void)
1676 {
1677 struct qemu_alarm_timer *t = NULL;
1678 int i, err = -1;
1679
1680 for (i = 0; alarm_timers[i].name; i++) {
1681 t = &alarm_timers[i];
1682
1683 err = t->start(t);
1684 if (!err)
1685 break;
1686 }
1687
1688 if (err) {
1689 fprintf(stderr, "Unable to find any suitable alarm timer.\n");
1690 fprintf(stderr, "Terminating\n");
1691 exit(1);
1692 }
1693
1694 alarm_timer = t;
1695 }
1696
1697 static void quit_timers(void)
1698 {
1699 alarm_timer->stop(alarm_timer);
1700 alarm_timer = NULL;
1701 }
1702
1703 /***********************************************************/
1704 /* host time/date access */
1705 void qemu_get_timedate(struct tm *tm, int offset)
1706 {
1707 time_t ti;
1708 struct tm *ret;
1709
1710 time(&ti);
1711 ti += offset;
1712 if (rtc_date_offset == -1) {
1713 if (rtc_utc)
1714 ret = gmtime(&ti);
1715 else
1716 ret = localtime(&ti);
1717 } else {
1718 ti -= rtc_date_offset;
1719 ret = gmtime(&ti);
1720 }
1721
1722 memcpy(tm, ret, sizeof(struct tm));
1723 }
1724
1725 int qemu_timedate_diff(struct tm *tm)
1726 {
1727 time_t seconds;
1728
1729 if (rtc_date_offset == -1)
1730 if (rtc_utc)
1731 seconds = mktimegm(tm);
1732 else
1733 seconds = mktime(tm);
1734 else
1735 seconds = mktimegm(tm) + rtc_date_offset;
1736
1737 return seconds - time(NULL);
1738 }
1739
1740 /***********************************************************/
1741 /* character device */
1742
1743 static void qemu_chr_event(CharDriverState *s, int event)
1744 {
1745 if (!s->chr_event)
1746 return;
1747 s->chr_event(s->handler_opaque, event);
1748 }
1749
1750 static void qemu_chr_reset_bh(void *opaque)
1751 {
1752 CharDriverState *s = opaque;
1753 qemu_chr_event(s, CHR_EVENT_RESET);
1754 qemu_bh_delete(s->bh);
1755 s->bh = NULL;
1756 }
1757
1758 void qemu_chr_reset(CharDriverState *s)
1759 {
1760 if (s->bh == NULL) {
1761 s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1762 qemu_bh_schedule(s->bh);
1763 }
1764 }
1765
1766 int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1767 {
1768 return s->chr_write(s, buf, len);
1769 }
1770
1771 int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1772 {
1773 if (!s->chr_ioctl)
1774 return -ENOTSUP;
1775 return s->chr_ioctl(s, cmd, arg);
1776 }
1777
1778 int qemu_chr_can_read(CharDriverState *s)
1779 {
1780 if (!s->chr_can_read)
1781 return 0;
1782 return s->chr_can_read(s->handler_opaque);
1783 }
1784
1785 void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1786 {
1787 s->chr_read(s->handler_opaque, buf, len);
1788 }
1789
1790 void qemu_chr_accept_input(CharDriverState *s)
1791 {
1792 if (s->chr_accept_input)
1793 s->chr_accept_input(s);
1794 }
1795
1796 void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1797 {
1798 char buf[4096];
1799 va_list ap;
1800 va_start(ap, fmt);
1801 vsnprintf(buf, sizeof(buf), fmt, ap);
1802 qemu_chr_write(s, (uint8_t *)buf, strlen(buf));
1803 va_end(ap);
1804 }
1805
1806 void qemu_chr_send_event(CharDriverState *s, int event)
1807 {
1808 if (s->chr_send_event)
1809 s->chr_send_event(s, event);
1810 }
1811
1812 void qemu_chr_add_handlers(CharDriverState *s,
1813 IOCanRWHandler *fd_can_read,
1814 IOReadHandler *fd_read,
1815 IOEventHandler *fd_event,
1816 void *opaque)
1817 {
1818 s->chr_can_read = fd_can_read;
1819 s->chr_read = fd_read;
1820 s->chr_event = fd_event;
1821 s->handler_opaque = opaque;
1822 if (s->chr_update_read_handler)
1823 s->chr_update_read_handler(s);
1824 }
1825
1826 static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1827 {
1828 return len;
1829 }
1830
1831 static CharDriverState *qemu_chr_open_null(void)
1832 {
1833 CharDriverState *chr;
1834
1835 chr = qemu_mallocz(sizeof(CharDriverState));
1836 if (!chr)
1837 return NULL;
1838 chr->chr_write = null_chr_write;
1839 return chr;
1840 }
1841
1842 /* MUX driver for serial I/O splitting */
1843 static int term_timestamps;
1844 static int64_t term_timestamps_start;
1845 #define MAX_MUX 4
1846 #define MUX_BUFFER_SIZE 32 /* Must be a power of 2. */
1847 #define MUX_BUFFER_MASK (MUX_BUFFER_SIZE - 1)
1848 typedef struct {
1849 IOCanRWHandler *chr_can_read[MAX_MUX];
1850 IOReadHandler *chr_read[MAX_MUX];
1851 IOEventHandler *chr_event[MAX_MUX];
1852 void *ext_opaque[MAX_MUX];
1853 CharDriverState *drv;
1854 unsigned char buffer[MUX_BUFFER_SIZE];
1855 int prod;
1856 int cons;
1857 int mux_cnt;
1858 int term_got_escape;
1859 int max_size;
1860 } MuxDriver;
1861
1862
1863 static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1864 {
1865 MuxDriver *d = chr->opaque;
1866 int ret;
1867 if (!term_timestamps) {
1868 ret = d->drv->chr_write(d->drv, buf, len);
1869 } else {
1870 int i;
1871
1872 ret = 0;
1873 for(i = 0; i < len; i++) {
1874 ret += d->drv->chr_write(d->drv, buf+i, 1);
1875 if (buf[i] == '\n') {
1876 char buf1[64];
1877 int64_t ti;
1878 int secs;
1879
1880 ti = get_clock();
1881 if (term_timestamps_start == -1)
1882 term_timestamps_start = ti;
1883 ti -= term_timestamps_start;
1884 secs = ti / 1000000000;
1885 snprintf(buf1, sizeof(buf1),
1886 "[%02d:%02d:%02d.%03d] ",
1887 secs / 3600,
1888 (secs / 60) % 60,
1889 secs % 60,
1890 (int)((ti / 1000000) % 1000));
1891 d->drv->chr_write(d->drv, (uint8_t *)buf1, strlen(buf1));
1892 }
1893 }
1894 }
1895 return ret;
1896 }
1897
1898 static const char * const mux_help[] = {
1899 "% h print this help\n\r",
1900 "% x exit emulator\n\r",
1901 "% s save disk data back to file (if -snapshot)\n\r",
1902 "% t toggle console timestamps\n\r"
1903 "% b send break (magic sysrq)\n\r",
1904 "% c switch between console and monitor\n\r",
1905 "% % sends %\n\r",
1906 NULL
1907 };
1908
1909 static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1910 static void mux_print_help(CharDriverState *chr)
1911 {
1912 int i, j;
1913 char ebuf[15] = "Escape-Char";
1914 char cbuf[50] = "\n\r";
1915
1916 if (term_escape_char > 0 && term_escape_char < 26) {
1917 snprintf(cbuf, sizeof(cbuf), "\n\r");
1918 snprintf(ebuf, sizeof(ebuf), "C-%c", term_escape_char - 1 + 'a');
1919 } else {
1920 snprintf(cbuf, sizeof(cbuf),
1921 "\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r",
1922 term_escape_char);
1923 }
1924 chr->chr_write(chr, (uint8_t *)cbuf, strlen(cbuf));
1925 for (i = 0; mux_help[i] != NULL; i++) {
1926 for (j=0; mux_help[i][j] != '\0'; j++) {
1927 if (mux_help[i][j] == '%')
1928 chr->chr_write(chr, (uint8_t *)ebuf, strlen(ebuf));
1929 else
1930 chr->chr_write(chr, (uint8_t *)&mux_help[i][j], 1);
1931 }
1932 }
1933 }
1934
1935 static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1936 {
1937 if (d->term_got_escape) {
1938 d->term_got_escape = 0;
1939 if (ch == term_escape_char)
1940 goto send_char;
1941 switch(ch) {
1942 case '?':
1943 case 'h':
1944 mux_print_help(chr);
1945 break;
1946 case 'x':
1947 {
1948 const char *term = "QEMU: Terminated\n\r";
1949 chr->chr_write(chr,(uint8_t *)term,strlen(term));
1950 exit(0);
1951 break;
1952 }
1953 case 's':
1954 {
1955 int i;
1956 for (i = 0; i < nb_drives; i++) {
1957 bdrv_commit(drives_table[i].bdrv);
1958 }
1959 }
1960 break;
1961 case 'b':
1962 qemu_chr_event(chr, CHR_EVENT_BREAK);
1963 break;
1964 case 'c':
1965 /* Switch to the next registered device */
1966 chr->focus++;
1967 if (chr->focus >= d->mux_cnt)
1968 chr->focus = 0;
1969 break;
1970 case 't':
1971 term_timestamps = !term_timestamps;
1972 term_timestamps_start = -1;
1973 break;
1974 }
1975 } else if (ch == term_escape_char) {
1976 d->term_got_escape = 1;
1977 } else {
1978 send_char:
1979 return 1;
1980 }
1981 return 0;
1982 }
1983
1984 static void mux_chr_accept_input(CharDriverState *chr)
1985 {
1986 int m = chr->focus;
1987 MuxDriver *d = chr->opaque;
1988
1989 while (d->prod != d->cons &&
1990 d->chr_can_read[m] &&
1991 d->chr_can_read[m](d->ext_opaque[m])) {
1992 d->chr_read[m](d->ext_opaque[m],
1993 &d->buffer[d->cons++ & MUX_BUFFER_MASK], 1);
1994 }
1995 }
1996
1997 static int mux_chr_can_read(void *opaque)
1998 {
1999 CharDriverState *chr = opaque;
2000 MuxDriver *d = chr->opaque;
2001
2002 if ((d->prod - d->cons) < MUX_BUFFER_SIZE)
2003 return 1;
2004 if (d->chr_can_read[chr->focus])
2005 return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
2006 return 0;
2007 }
2008
2009 static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
2010 {
2011 CharDriverState *chr = opaque;
2012 MuxDriver *d = chr->opaque;
2013 int m = chr->focus;
2014 int i;
2015
2016 mux_chr_accept_input (opaque);
2017
2018 for(i = 0; i < size; i++)
2019 if (mux_proc_byte(chr, d, buf[i])) {
2020 if (d->prod == d->cons &&
2021 d->chr_can_read[m] &&
2022 d->chr_can_read[m](d->ext_opaque[m]))
2023 d->chr_read[m](d->ext_opaque[m], &buf[i], 1);
2024 else
2025 d->buffer[d->prod++ & MUX_BUFFER_MASK] = buf[i];
2026 }
2027 }
2028
2029 static void mux_chr_event(void *opaque, int event)
2030 {
2031 CharDriverState *chr = opaque;
2032 MuxDriver *d = chr->opaque;
2033 int i;
2034
2035 /* Send the event to all registered listeners */
2036 for (i = 0; i < d->mux_cnt; i++)
2037 if (d->chr_event[i])
2038 d->chr_event[i](d->ext_opaque[i], event);
2039 }
2040
2041 static void mux_chr_update_read_handler(CharDriverState *chr)
2042 {
2043 MuxDriver *d = chr->opaque;
2044
2045 if (d->mux_cnt >= MAX_MUX) {
2046 fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
2047 return;
2048 }
2049 d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
2050 d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
2051 d->chr_read[d->mux_cnt] = chr->chr_read;
2052 d->chr_event[d->mux_cnt] = chr->chr_event;
2053 /* Fix up the real driver with mux routines */
2054 if (d->mux_cnt == 0) {
2055 qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
2056 mux_chr_event, chr);
2057 }
2058 chr->focus = d->mux_cnt;
2059 d->mux_cnt++;
2060 }
2061
2062 static CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
2063 {
2064 CharDriverState *chr;
2065 MuxDriver *d;
2066
2067 chr = qemu_mallocz(sizeof(CharDriverState));
2068 if (!chr)
2069 return NULL;
2070 d = qemu_mallocz(sizeof(MuxDriver));
2071 if (!d) {
2072 free(chr);
2073 return NULL;
2074 }
2075
2076 chr->opaque = d;
2077 d->drv = drv;
2078 chr->focus = -1;
2079 chr->chr_write = mux_chr_write;
2080 chr->chr_update_read_handler = mux_chr_update_read_handler;
2081 chr->chr_accept_input = mux_chr_accept_input;
2082 return chr;
2083 }
2084
2085
2086 #ifdef _WIN32
2087
2088 static void socket_cleanup(void)
2089 {
2090 WSACleanup();
2091 }
2092
2093 static int socket_init(void)
2094 {
2095 WSADATA Data;
2096 int ret, err;
2097
2098 ret = WSAStartup(MAKEWORD(2,2), &Data);
2099 if (ret != 0) {
2100 err = WSAGetLastError();
2101 fprintf(stderr, "WSAStartup: %d\n", err);
2102 return -1;
2103 }
2104 atexit(socket_cleanup);
2105 return 0;
2106 }
2107
2108 static int send_all(int fd, const uint8_t *buf, int len1)
2109 {
2110 int ret, len;
2111
2112 len = len1;
2113 while (len > 0) {
2114 ret = send(fd, buf, len, 0);
2115 if (ret < 0) {
2116 int errno;
2117 errno = WSAGetLastError();
2118 if (errno != WSAEWOULDBLOCK) {
2119 return -1;
2120 }
2121 } else if (ret == 0) {
2122 break;
2123 } else {
2124 buf += ret;
2125 len -= ret;
2126 }
2127 }
2128 return len1 - len;
2129 }
2130
2131 #else
2132
2133 static int unix_write(int fd, const uint8_t *buf, int len1)
2134 {
2135 int ret, len;
2136
2137 len = len1;
2138 while (len > 0) {
2139 ret = write(fd, buf, len);
2140 if (ret < 0) {
2141 if (errno != EINTR && errno != EAGAIN)
2142 return -1;
2143 } else if (ret == 0) {
2144 break;
2145 } else {
2146 buf += ret;
2147 len -= ret;
2148 }
2149 }
2150 return len1 - len;
2151 }
2152
2153 static inline int send_all(int fd, const uint8_t *buf, int len1)
2154 {
2155 return unix_write(fd, buf, len1);
2156 }
2157 #endif /* !_WIN32 */
2158
2159 #ifndef _WIN32
2160
2161 typedef struct {
2162 int fd_in, fd_out;
2163 int max_size;
2164 } FDCharDriver;
2165
2166 #define STDIO_MAX_CLIENTS 1
2167 static int stdio_nb_clients = 0;
2168
2169 static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2170 {
2171 FDCharDriver *s = chr->opaque;
2172 return unix_write(s->fd_out, buf, len);
2173 }
2174
2175 static int fd_chr_read_poll(void *opaque)
2176 {
2177 CharDriverState *chr = opaque;
2178 FDCharDriver *s = chr->opaque;
2179
2180 s->max_size = qemu_chr_can_read(chr);
2181 return s->max_size;
2182 }
2183
2184 static void fd_chr_read(void *opaque)
2185 {
2186 CharDriverState *chr = opaque;
2187 FDCharDriver *s = chr->opaque;
2188 int size, len;
2189 uint8_t buf[1024];
2190
2191 len = sizeof(buf);
2192 if (len > s->max_size)
2193 len = s->max_size;
2194 if (len == 0)
2195 return;
2196 size = read(s->fd_in, buf, len);
2197 if (size == 0) {
2198 /* FD has been closed. Remove it from the active list. */
2199 qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
2200 return;
2201 }
2202 if (size > 0) {
2203 qemu_chr_read(chr, buf, size);
2204 }
2205 }
2206
2207 static void fd_chr_update_read_handler(CharDriverState *chr)
2208 {
2209 FDCharDriver *s = chr->opaque;
2210
2211 if (s->fd_in >= 0) {
2212 if (nographic && s->fd_in == 0) {
2213 } else {
2214 qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
2215 fd_chr_read, NULL, chr);
2216 }
2217 }
2218 }
2219
2220 static void fd_chr_close(struct CharDriverState *chr)
2221 {
2222 FDCharDriver *s = chr->opaque;
2223
2224 if (s->fd_in >= 0) {
2225 if (nographic && s->fd_in == 0) {
2226 } else {
2227 qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
2228 }
2229 }
2230
2231 qemu_free(s);
2232 }
2233
2234 /* open a character device to a unix fd */
2235 static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
2236 {
2237 CharDriverState *chr;
2238 FDCharDriver *s;
2239
2240 chr = qemu_mallocz(sizeof(CharDriverState));
2241 if (!chr)
2242 return NULL;
2243 s = qemu_mallocz(sizeof(FDCharDriver));
2244 if (!s) {
2245 free(chr);
2246 return NULL;
2247 }
2248 s->fd_in = fd_in;
2249 s->fd_out = fd_out;
2250 chr->opaque = s;
2251 chr->chr_write = fd_chr_write;
2252 chr->chr_update_read_handler = fd_chr_update_read_handler;
2253 chr->chr_close = fd_chr_close;
2254
2255 qemu_chr_reset(chr);
2256
2257 return chr;
2258 }
2259
2260 static CharDriverState *qemu_chr_open_file_out(const char *file_out)
2261 {
2262 int fd_out;
2263
2264 TFR(fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666));
2265 if (fd_out < 0)
2266 return NULL;
2267 return qemu_chr_open_fd(-1, fd_out);
2268 }
2269
2270 static CharDriverState *qemu_chr_open_pipe(const char *filename)
2271 {
2272 int fd_in, fd_out;
2273 char filename_in[256], filename_out[256];
2274
2275 snprintf(filename_in, 256, "%s.in", filename);
2276 snprintf(filename_out, 256, "%s.out", filename);
2277 TFR(fd_in = open(filename_in, O_RDWR | O_BINARY));
2278 TFR(fd_out = open(filename_out, O_RDWR | O_BINARY));
2279 if (fd_in < 0 || fd_out < 0) {
2280 if (fd_in >= 0)
2281 close(fd_in);
2282 if (fd_out >= 0)
2283 close(fd_out);
2284 TFR(fd_in = fd_out = open(filename, O_RDWR | O_BINARY));
2285 if (fd_in < 0)
2286 return NULL;
2287 }
2288 return qemu_chr_open_fd(fd_in, fd_out);
2289 }
2290
2291
2292 /* for STDIO, we handle the case where several clients use it
2293 (nographic mode) */
2294
2295 #define TERM_FIFO_MAX_SIZE 1
2296
2297 static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
2298 static int term_fifo_size;
2299
2300 static int stdio_read_poll(void *opaque)
2301 {
2302 CharDriverState *chr = opaque;
2303
2304 /* try to flush the queue if needed */
2305 if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
2306 qemu_chr_read(chr, term_fifo, 1);
2307 term_fifo_size = 0;
2308 }
2309 /* see if we can absorb more chars */
2310 if (term_fifo_size == 0)
2311 return 1;
2312 else
2313 return 0;
2314 }
2315
2316 static void stdio_read(void *opaque)
2317 {
2318 int size;
2319 uint8_t buf[1];
2320 CharDriverState *chr = opaque;
2321
2322 size = read(0, buf, 1);
2323 if (size == 0) {
2324 /* stdin has been closed. Remove it from the active list. */
2325 qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2326 return;
2327 }
2328 if (size > 0) {
2329 if (qemu_chr_can_read(chr) > 0) {
2330 qemu_chr_read(chr, buf, 1);
2331 } else if (term_fifo_size == 0) {
2332 term_fifo[term_fifo_size++] = buf[0];
2333 }
2334 }
2335 }
2336
2337 /* init terminal so that we can grab keys */
2338 static struct termios oldtty;
2339 static int old_fd0_flags;
2340 static int term_atexit_done;
2341
2342 static void term_exit(void)
2343 {
2344 tcsetattr (0, TCSANOW, &oldtty);
2345 fcntl(0, F_SETFL, old_fd0_flags);
2346 }
2347
2348 static void term_init(void)
2349 {
2350 struct termios tty;
2351
2352 tcgetattr (0, &tty);
2353 oldtty = tty;
2354 old_fd0_flags = fcntl(0, F_GETFL);
2355
2356 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2357 |INLCR|IGNCR|ICRNL|IXON);
2358 tty.c_oflag |= OPOST;
2359 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
2360 /* if graphical mode, we allow Ctrl-C handling */
2361 if (nographic)
2362 tty.c_lflag &= ~ISIG;
2363 tty.c_cflag &= ~(CSIZE|PARENB);
2364 tty.c_cflag |= CS8;
2365 tty.c_cc[VMIN] = 1;
2366 tty.c_cc[VTIME] = 0;
2367
2368 tcsetattr (0, TCSANOW, &tty);
2369
2370 if (!term_atexit_done++)
2371 atexit(term_exit);
2372
2373 fcntl(0, F_SETFL, O_NONBLOCK);
2374 }
2375
2376 static void qemu_chr_close_stdio(struct CharDriverState *chr)
2377 {
2378 term_exit();
2379 stdio_nb_clients--;
2380 qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2381 fd_chr_close(chr);
2382 }
2383
2384 static CharDriverState *qemu_chr_open_stdio(void)
2385 {
2386 CharDriverState *chr;
2387
2388 if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
2389 return NULL;
2390 chr = qemu_chr_open_fd(0, 1);
2391 chr->chr_close = qemu_chr_close_stdio;
2392 qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
2393 stdio_nb_clients++;
2394 term_init();
2395
2396 return chr;
2397 }
2398
2399 #ifdef __sun__
2400 /* Once Solaris has openpty(), this is going to be removed. */
2401 int openpty(int *amaster, int *aslave, char *name,
2402 struct termios *termp, struct winsize *winp)
2403 {
2404 const char *slave;
2405 int mfd = -1, sfd = -1;
2406
2407 *amaster = *aslave = -1;
2408
2409 mfd = open("/dev/ptmx", O_RDWR | O_NOCTTY);
2410 if (mfd < 0)
2411 goto err;
2412
2413 if (grantpt(mfd) == -1 || unlockpt(mfd) == -1)
2414 goto err;
2415
2416 if ((slave = ptsname(mfd)) == NULL)
2417 goto err;
2418
2419 if ((sfd = open(slave, O_RDONLY | O_NOCTTY)) == -1)
2420 goto err;
2421
2422 if (ioctl(sfd, I_PUSH, "ptem") == -1 ||
2423 (termp != NULL && tcgetattr(sfd, termp) < 0))
2424 goto err;
2425
2426 if (amaster)
2427 *amaster = mfd;
2428 if (aslave)
2429 *aslave = sfd;
2430 if (winp)
2431 ioctl(sfd, TIOCSWINSZ, winp);
2432
2433 return 0;
2434
2435 err:
2436 if (sfd != -1)
2437 close(sfd);
2438 close(mfd);
2439 return -1;
2440 }
2441
2442 void cfmakeraw (struct termios *termios_p)
2443 {
2444 termios_p->c_iflag &=
2445 ~(IGNBRK|BRKINT|PARMRK|ISTRIP|INLCR|IGNCR|ICRNL|IXON);
2446 termios_p->c_oflag &= ~OPOST;
2447 termios_p->c_lflag &= ~(ECHO|ECHONL|ICANON|ISIG|IEXTEN);
2448 termios_p->c_cflag &= ~(CSIZE|PARENB);
2449 termios_p->c_cflag |= CS8;
2450
2451 termios_p->c_cc[VMIN] = 0;
2452 termios_p->c_cc[VTIME] = 0;
2453 }
2454 #endif
2455
2456 #if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
2457 || defined(__NetBSD__) || defined(__OpenBSD__)
2458
2459 typedef struct {
2460 int fd;
2461 int connected;
2462 int polling;
2463 int read_bytes;
2464 QEMUTimer *timer;
2465 } PtyCharDriver;
2466
2467 static void pty_chr_update_read_handler(CharDriverState *chr);
2468 static void pty_chr_state(CharDriverState *chr, int connected);
2469
2470 static int pty_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2471 {
2472 PtyCharDriver *s = chr->opaque;
2473
2474 if (!s->connected) {
2475 /* guest sends data, check for (re-)connect */
2476 pty_chr_update_read_handler(chr);
2477 return 0;
2478 }
2479 return unix_write(s->fd, buf, len);
2480 }
2481
2482 static int pty_chr_read_poll(void *opaque)
2483 {
2484 CharDriverState *chr = opaque;
2485 PtyCharDriver *s = chr->opaque;
2486
2487 s->read_bytes = qemu_chr_can_read(chr);
2488 return s->read_bytes;
2489 }
2490
2491 static void pty_chr_read(void *opaque)
2492 {
2493 CharDriverState *chr = opaque;
2494 PtyCharDriver *s = chr->opaque;
2495 int size, len;
2496 uint8_t buf[1024];
2497
2498 len = sizeof(buf);
2499 if (len > s->read_bytes)
2500 len = s->read_bytes;
2501 if (len == 0)
2502 return;
2503 size = read(s->fd, buf, len);
2504 if ((size == -1 && errno == EIO) ||
2505 (size == 0)) {
2506 pty_chr_state(chr, 0);
2507 return;
2508 }
2509 if (size > 0) {
2510 pty_chr_state(chr, 1);
2511 qemu_chr_read(chr, buf, size);
2512 }
2513 }
2514
2515 static void pty_chr_update_read_handler(CharDriverState *chr)
2516 {
2517 PtyCharDriver *s = chr->opaque;
2518
2519 qemu_set_fd_handler2(s->fd, pty_chr_read_poll,
2520 pty_chr_read, NULL, chr);
2521 s->polling = 1;
2522 /*
2523 * Short timeout here: just need wait long enougth that qemu makes
2524 * it through the poll loop once. When reconnected we want a
2525 * short timeout so we notice it almost instantly. Otherwise
2526 * read() gives us -EIO instantly, making pty_chr_state() reset the
2527 * timeout to the normal (much longer) poll interval before the
2528 * timer triggers.
2529 */
2530 qemu_mod_timer(s->timer, qemu_get_clock(rt_clock) + 10);
2531 }
2532
2533 static void pty_chr_state(CharDriverState *chr, int connected)
2534 {
2535 PtyCharDriver *s = chr->opaque;
2536
2537 if (!connected) {
2538 qemu_set_fd_handler2(s->fd, NULL, NULL, NULL, NULL);
2539 s->connected = 0;
2540 s->polling = 0;
2541 /* (re-)connect poll interval for idle guests: once per second.
2542 * We check more frequently in case the guests sends data to
2543 * the virtual device linked to our pty. */
2544 qemu_mod_timer(s->timer, qemu_get_clock(rt_clock) + 1000);
2545 } else {
2546 if (!s->connected)
2547 qemu_chr_reset(chr);
2548 s->connected = 1;
2549 }
2550 }
2551
2552 static void pty_chr_timer(void *opaque)
2553 {
2554 struct CharDriverState *chr = opaque;
2555 PtyCharDriver *s = chr->opaque;
2556
2557 if (s->connected)
2558 return;
2559 if (s->polling) {
2560 /* If we arrive here without polling being cleared due
2561 * read returning -EIO, then we are (re-)connected */
2562 pty_chr_state(chr, 1);
2563 return;
2564 }
2565
2566 /* Next poll ... */
2567 pty_chr_update_read_handler(chr);
2568 }
2569
2570 static void pty_chr_close(struct CharDriverState *chr)
2571 {
2572 PtyCharDriver *s = chr->opaque;
2573
2574 qemu_set_fd_handler2(s->fd, NULL, NULL, NULL, NULL);
2575 close(s->fd);
2576 qemu_free(s);
2577 }
2578
2579 static CharDriverState *qemu_chr_open_pty(void)
2580 {
2581 CharDriverState *chr;
2582 PtyCharDriver *s;
2583 struct termios tty;
2584 int slave_fd;
2585 #if defined(__OpenBSD__)
2586 char pty_name[PATH_MAX];
2587 #define q_ptsname(x) pty_name
2588 #else
2589 char *pty_name = NULL;
2590 #define q_ptsname(x) ptsname(x)
2591 #endif
2592
2593 chr = qemu_mallocz(sizeof(CharDriverState));
2594 if (!chr)
2595 return NULL;
2596 s = qemu_mallocz(sizeof(PtyCharDriver));
2597 if (!s) {
2598 qemu_free(chr);
2599 return NULL;
2600 }
2601
2602 if (openpty(&s->fd, &slave_fd, pty_name, NULL, NULL) < 0) {
2603 return NULL;
2604 }
2605
2606 /* Set raw attributes on the pty. */
2607 cfmakeraw(&tty);
2608 tcsetattr(slave_fd, TCSAFLUSH, &tty);
2609 close(slave_fd);
2610
2611 fprintf(stderr, "char device redirected to %s\n", q_ptsname(s->fd));
2612
2613 chr->opaque = s;
2614 chr->chr_write = pty_chr_write;
2615 chr->chr_update_read_handler = pty_chr_update_read_handler;
2616 chr->chr_close = pty_chr_close;
2617
2618 s->timer = qemu_new_timer(rt_clock, pty_chr_timer, chr);
2619
2620 return chr;
2621 }
2622
2623 static void tty_serial_init(int fd, int speed,
2624 int parity, int data_bits, int stop_bits)
2625 {
2626 struct termios tty;
2627 speed_t spd;
2628
2629 #if 0
2630 printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
2631 speed, parity, data_bits, stop_bits);
2632 #endif
2633 tcgetattr (fd, &tty);
2634
2635 #define MARGIN 1.1
2636 if (speed <= 50 * MARGIN)
2637 spd = B50;
2638 else if (speed <= 75 * MARGIN)
2639 spd = B75;
2640 else if (speed <= 300 * MARGIN)
2641 spd = B300;
2642 else if (speed <= 600 * MARGIN)
2643 spd = B600;
2644 else if (speed <= 1200 * MARGIN)
2645 spd = B1200;
2646 else if (speed <= 2400 * MARGIN)
2647 spd = B2400;
2648 else if (speed <= 4800 * MARGIN)
2649 spd = B4800;
2650 else if (speed <= 9600 * MARGIN)
2651 spd = B9600;
2652 else if (speed <= 19200 * MARGIN)
2653 spd = B19200;
2654 else if (speed <= 38400 * MARGIN)
2655 spd = B38400;
2656 else if (speed <= 57600 * MARGIN)
2657 spd = B57600;
2658 else if (speed <= 115200 * MARGIN)
2659 spd = B115200;
2660 else
2661 spd = B115200;
2662
2663 cfsetispeed(&tty, spd);
2664 cfsetospeed(&tty, spd);
2665
2666 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2667 |INLCR|IGNCR|ICRNL|IXON);
2668 tty.c_oflag |= OPOST;
2669 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
2670 tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
2671 switch(data_bits) {
2672 default:
2673 case 8:
2674 tty.c_cflag |= CS8;
2675 break;
2676 case 7:
2677 tty.c_cflag |= CS7;
2678 break;
2679 case 6:
2680 tty.c_cflag |= CS6;
2681 break;
2682 case 5:
2683 tty.c_cflag |= CS5;
2684 break;
2685 }
2686 switch(parity) {
2687 default:
2688 case 'N':
2689 break;
2690 case 'E':
2691 tty.c_cflag |= PARENB;
2692 break;
2693 case 'O':
2694 tty.c_cflag |= PARENB | PARODD;
2695 break;
2696 }
2697 if (stop_bits == 2)
2698 tty.c_cflag |= CSTOPB;
2699
2700 tcsetattr (fd, TCSANOW, &tty);
2701 }
2702
2703 static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
2704 {
2705 FDCharDriver *s = chr->opaque;
2706
2707 switch(cmd) {
2708 case CHR_IOCTL_SERIAL_SET_PARAMS:
2709 {
2710 QEMUSerialSetParams *ssp = arg;
2711 tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
2712 ssp->data_bits, ssp->stop_bits);
2713 }
2714 break;
2715 case CHR_IOCTL_SERIAL_SET_BREAK:
2716 {
2717 int enable = *(int *)arg;
2718 if (enable)
2719 tcsendbreak(s->fd_in, 1);
2720 }
2721 break;
2722 case CHR_IOCTL_SERIAL_GET_TIOCM:
2723 {
2724 int sarg = 0;
2725 int *targ = (int *)arg;
2726 ioctl(s->fd_in, TIOCMGET, &sarg);
2727 *targ = 0;
2728 if (sarg | TIOCM_CTS)
2729 *targ |= CHR_TIOCM_CTS;
2730 if (sarg | TIOCM_CAR)
2731 *targ |= CHR_TIOCM_CAR;
2732 if (sarg | TIOCM_DSR)
2733 *targ |= CHR_TIOCM_DSR;
2734 if (sarg | TIOCM_RI)
2735 *targ |= CHR_TIOCM_RI;
2736 if (sarg | TIOCM_DTR)
2737 *targ |= CHR_TIOCM_DTR;
2738 if (sarg | TIOCM_RTS)
2739 *targ |= CHR_TIOCM_RTS;
2740 }
2741 break;
2742 case CHR_IOCTL_SERIAL_SET_TIOCM:
2743 {
2744 int sarg = *(int *)arg;
2745 int targ = 0;
2746 if (sarg | CHR_TIOCM_DTR)
2747 targ |= TIOCM_DTR;
2748 if (sarg | CHR_TIOCM_RTS)
2749 targ |= TIOCM_RTS;
2750 ioctl(s->fd_in, TIOCMSET, &targ);
2751 }
2752 break;
2753 default:
2754 return -ENOTSUP;
2755 }
2756 return 0;
2757 }
2758
2759 static CharDriverState *qemu_chr_open_tty(const char *filename)
2760 {
2761 CharDriverState *chr;
2762 int fd;
2763
2764 TFR(fd = open(filename, O_RDWR | O_NONBLOCK));
2765 tty_serial_init(fd, 115200, 'N', 8, 1);
2766 chr = qemu_chr_open_fd(fd, fd);
2767 if (!chr) {
2768 close(fd);
2769 return NULL;
2770 }
2771 chr->chr_ioctl = tty_serial_ioctl;
2772 qemu_chr_reset(chr);
2773 return chr;
2774 }
2775 #else /* ! __linux__ && ! __sun__ */
2776 static CharDriverState *qemu_chr_open_pty(void)
2777 {
2778 return NULL;
2779 }
2780 #endif /* __linux__ || __sun__ */
2781
2782 #if defined(__linux__)
2783 typedef struct {
2784 int fd;
2785 int mode;
2786 } ParallelCharDriver;
2787
2788 static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
2789 {
2790 if (s->mode != mode) {
2791 int m = mode;
2792 if (ioctl(s->fd, PPSETMODE, &m) < 0)
2793 return 0;
2794 s->mode = mode;
2795 }
2796 return 1;
2797 }
2798
2799 static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
2800 {
2801 ParallelCharDriver *drv = chr->opaque;
2802 int fd = drv->fd;
2803 uint8_t b;
2804
2805 switch(cmd) {
2806 case CHR_IOCTL_PP_READ_DATA:
2807 if (ioctl(fd, PPRDATA, &b) < 0)
2808 return -ENOTSUP;
2809 *(uint8_t *)arg = b;
2810 break;
2811 case CHR_IOCTL_PP_WRITE_DATA:
2812 b = *(uint8_t *)arg;
2813 if (ioctl(fd, PPWDATA, &b) < 0)
2814 return -ENOTSUP;
2815 break;
2816 case CHR_IOCTL_PP_READ_CONTROL:
2817 if (ioctl(fd, PPRCONTROL, &b) < 0)
2818 return -ENOTSUP;
2819 /* Linux gives only the lowest bits, and no way to know data
2820 direction! For better compatibility set the fixed upper
2821 bits. */
2822 *(uint8_t *)arg = b | 0xc0;
2823 break;
2824 case CHR_IOCTL_PP_WRITE_CONTROL:
2825 b = *(uint8_t *)arg;
2826 if (ioctl(fd, PPWCONTROL, &b) < 0)
2827 return -ENOTSUP;
2828 break;
2829 case CHR_IOCTL_PP_READ_STATUS:
2830 if (ioctl(fd, PPRSTATUS, &b) < 0)
2831 return -ENOTSUP;
2832 *(uint8_t *)arg = b;
2833 break;
2834 case CHR_IOCTL_PP_DATA_DIR:
2835 if (ioctl(fd, PPDATADIR, (int *)arg) < 0)
2836 return -ENOTSUP;
2837 break;
2838 case CHR_IOCTL_PP_EPP_READ_ADDR:
2839 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2840 struct ParallelIOArg *parg = arg;
2841 int n = read(fd, parg->buffer, parg->count);
2842 if (n != parg->count) {
2843 return -EIO;
2844 }
2845 }
2846 break;
2847 case CHR_IOCTL_PP_EPP_READ:
2848 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2849 struct ParallelIOArg *parg = arg;
2850 int n = read(fd, parg->buffer, parg->count);
2851 if (n != parg->count) {
2852 return -EIO;
2853 }
2854 }
2855 break;
2856 case CHR_IOCTL_PP_EPP_WRITE_ADDR:
2857 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2858 struct ParallelIOArg *parg = arg;
2859 int n = write(fd, parg->buffer, parg->count);
2860 if (n != parg->count) {
2861 return -EIO;
2862 }
2863 }
2864 break;
2865 case CHR_IOCTL_PP_EPP_WRITE:
2866 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2867 struct ParallelIOArg *parg = arg;
2868 int n = write(fd, parg->buffer, parg->count);
2869 if (n != parg->count) {
2870 return -EIO;
2871 }
2872 }
2873 break;
2874 default:
2875 return -ENOTSUP;
2876 }
2877 return 0;
2878 }
2879
2880 static void pp_close(CharDriverState *chr)
2881 {
2882 ParallelCharDriver *drv = chr->opaque;
2883 int fd = drv->fd;
2884
2885 pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2886 ioctl(fd, PPRELEASE);
2887 close(fd);
2888 qemu_free(drv);
2889 }
2890
2891 static CharDriverState *qemu_chr_open_pp(const char *filename)
2892 {
2893 CharDriverState *chr;
2894 ParallelCharDriver *drv;
2895 int fd;
2896
2897 TFR(fd = open(filename, O_RDWR));
2898 if (fd < 0)
2899 return NULL;
2900
2901 if (ioctl(fd, PPCLAIM) < 0) {
2902 close(fd);
2903 return NULL;
2904 }
2905
2906 drv = qemu_mallocz(sizeof(ParallelCharDriver));
2907 if (!drv) {
2908 close(fd);
2909 return NULL;
2910 }
2911 drv->fd = fd;
2912 drv->mode = IEEE1284_MODE_COMPAT;
2913
2914 chr = qemu_mallocz(sizeof(CharDriverState));
2915 if (!chr) {
2916 qemu_free(drv);
2917 close(fd);
2918 return NULL;
2919 }
2920 chr->chr_write = null_chr_write;
2921 chr->chr_ioctl = pp_ioctl;
2922 chr->chr_close = pp_close;
2923 chr->opaque = drv;
2924
2925 qemu_chr_reset(chr);
2926
2927 return chr;
2928 }
2929 #endif /* __linux__ */
2930
2931 #else /* _WIN32 */
2932
2933 typedef struct {
2934 int max_size;
2935 HANDLE hcom, hrecv, hsend;
2936 OVERLAPPED orecv, osend;
2937 BOOL fpipe;
2938 DWORD len;
2939 } WinCharState;
2940
2941 #define NSENDBUF 2048
2942 #define NRECVBUF 2048
2943 #define MAXCONNECT 1
2944 #define NTIMEOUT 5000
2945
2946 static int win_chr_poll(void *opaque);
2947 static int win_chr_pipe_poll(void *opaque);
2948
2949 static void win_chr_close(CharDriverState *chr)
2950 {
2951 WinCharState *s = chr->opaque;
2952
2953 if (s->hsend) {
2954 CloseHandle(s->hsend);
2955 s->hsend = NULL;
2956 }
2957 if (s->hrecv) {
2958 CloseHandle(s->hrecv);
2959 s->hrecv = NULL;
2960 }
2961 if (s->hcom) {
2962 CloseHandle(s->hcom);
2963 s->hcom = NULL;
2964 }
2965 if (s->fpipe)
2966 qemu_del_polling_cb(win_chr_pipe_poll, chr);
2967 else
2968 qemu_del_polling_cb(win_chr_poll, chr);
2969 }
2970
2971 static int win_chr_init(CharDriverState *chr, const char *filename)
2972 {
2973 WinCharState *s = chr->opaque;
2974 COMMCONFIG comcfg;
2975 COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2976 COMSTAT comstat;
2977 DWORD size;
2978 DWORD err;
2979
2980 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2981 if (!s->hsend) {
2982 fprintf(stderr, "Failed CreateEvent\n");
2983 goto fail;
2984 }
2985 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2986 if (!s->hrecv) {
2987 fprintf(stderr, "Failed CreateEvent\n");
2988 goto fail;
2989 }
2990
2991 s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2992 OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2993 if (s->hcom == INVALID_HANDLE_VALUE) {
2994 fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2995 s->hcom = NULL;
2996 goto fail;
2997 }
2998
2999 if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
3000 fprintf(stderr, "Failed SetupComm\n");
3001 goto fail;
3002 }
3003
3004 ZeroMemory(&comcfg, sizeof(COMMCONFIG));
3005 size = sizeof(COMMCONFIG);
3006 GetDefaultCommConfig(filename, &comcfg, &size);
3007 comcfg.dcb.DCBlength = sizeof(DCB);
3008 CommConfigDialog(filename, NULL, &comcfg);
3009
3010 if (!SetCommState(s->hcom, &comcfg.dcb)) {
3011 fprintf(stderr, "Failed SetCommState\n");
3012 goto fail;
3013 }
3014
3015 if (!SetCommMask(s->hcom, EV_ERR)) {
3016 fprintf(stderr, "Failed SetCommMask\n");
3017 goto fail;
3018 }
3019
3020 cto.ReadIntervalTimeout = MAXDWORD;
3021 if (!SetCommTimeouts(s->hcom, &cto)) {
3022 fprintf(stderr, "Failed SetCommTimeouts\n");
3023 goto fail;
3024 }
3025
3026 if (!ClearCommError(s->hcom, &err, &comstat)) {
3027 fprintf(stderr, "Failed ClearCommError\n");
3028 goto fail;
3029 }
3030 qemu_add_polling_cb(win_chr_poll, chr);
3031 return 0;
3032
3033 fail:
3034 win_chr_close(chr);
3035 return -1;
3036 }
3037
3038 static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
3039 {
3040 WinCharState *s = chr->opaque;
3041 DWORD len, ret, size, err;
3042
3043 len = len1;
3044 ZeroMemory(&s->osend, sizeof(s->osend));
3045 s->osend.hEvent = s->hsend;
3046 while (len > 0) {
3047 if (s->hsend)
3048 ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
3049 else
3050 ret = WriteFile(s->hcom, buf, len, &size, NULL);
3051 if (!ret) {
3052 err = GetLastError();
3053 if (err == ERROR_IO_PENDING) {
3054 ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
3055 if (ret) {
3056 buf += size;
3057 len -= size;
3058 } else {
3059 break;
3060 }
3061 } else {
3062 break;
3063 }
3064 } else {
3065 buf += size;
3066 len -= size;
3067 }
3068 }
3069 return len1 - len;
3070 }
3071
3072 static int win_chr_read_poll(CharDriverState *chr)
3073 {
3074 WinCharState *s = chr->opaque;
3075
3076 s->max_size = qemu_chr_can_read(chr);
3077 return s->max_size;
3078 }
3079
3080 static void win_chr_readfile(CharDriverState *chr)
3081 {
3082 WinCharState *s = chr->opaque;
3083 int ret, err;
3084 uint8_t buf[1024];
3085 DWORD size;
3086
3087 ZeroMemory(&s->orecv, sizeof(s->orecv));
3088 s->orecv.hEvent = s->hrecv;
3089 ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
3090 if (!ret) {
3091 err = GetLastError();
3092 if (err == ERROR_IO_PENDING) {
3093 ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
3094 }
3095 }
3096
3097 if (size > 0) {
3098 qemu_chr_read(chr, buf, size);
3099 }
3100 }
3101
3102 static void win_chr_read(CharDriverState *chr)
3103 {
3104 WinCharState *s = chr->opaque;
3105
3106 if (s->len > s->max_size)
3107 s->len = s->max_size;
3108 if (s->len == 0)
3109 return;
3110
3111 win_chr_readfile(chr);
3112 }
3113
3114 static int win_chr_poll(void *opaque)
3115 {
3116 CharDriverState *chr = opaque;
3117 WinCharState *s = chr->opaque;
3118 COMSTAT status;
3119 DWORD comerr;
3120
3121 ClearCommError(s->hcom, &comerr, &status);
3122 if (status.cbInQue > 0) {
3123 s->len = status.cbInQue;
3124 win_chr_read_poll(chr);
3125 win_chr_read(chr);
3126 return 1;
3127 }
3128 return 0;
3129 }
3130
3131 static CharDriverState *qemu_chr_open_win(const char *filename)
3132 {
3133 CharDriverState *chr;
3134 WinCharState *s;
3135
3136 chr = qemu_mallocz(sizeof(CharDriverState));
3137 if (!chr)
3138 return NULL;
3139 s = qemu_mallocz(sizeof(WinCharState));
3140 if (!s) {
3141 free(chr);
3142 return NULL;
3143 }
3144 chr->opaque = s;
3145 chr->chr_write = win_chr_write;
3146 chr->chr_close = win_chr_close;
3147
3148 if (win_chr_init(chr, filename) < 0) {
3149 free(s);
3150 free(chr);
3151 return NULL;
3152 }
3153 qemu_chr_reset(chr);
3154 return chr;
3155 }
3156
3157 static int win_chr_pipe_poll(void *opaque)
3158 {
3159 CharDriverState *chr = opaque;
3160 WinCharState *s = chr->opaque;
3161 DWORD size;
3162
3163 PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
3164 if (size > 0) {
3165 s->len = size;
3166 win_chr_read_poll(chr);
3167 win_chr_read(chr);
3168 return 1;
3169 }
3170 return 0;
3171 }
3172
3173 static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
3174 {
3175 WinCharState *s = chr->opaque;
3176 OVERLAPPED ov;
3177 int ret;
3178 DWORD size;
3179 char openname[256];
3180
3181 s->fpipe = TRUE;
3182
3183 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
3184 if (!s->hsend) {
3185 fprintf(stderr, "Failed CreateEvent\n");
3186 goto fail;
3187 }
3188 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
3189 if (!s->hrecv) {
3190 fprintf(stderr, "Failed CreateEvent\n");
3191 goto fail;
3192 }
3193
3194 snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
3195 s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
3196 PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
3197 PIPE_WAIT,
3198 MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
3199 if (s->hcom == INVALID_HANDLE_VALUE) {
3200 fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
3201 s->hcom = NULL;
3202 goto fail;
3203 }
3204
3205 ZeroMemory(&ov, sizeof(ov));
3206 ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
3207 ret = ConnectNamedPipe(s->hcom, &ov);
3208 if (ret) {
3209 fprintf(stderr, "Failed ConnectNamedPipe\n");
3210 goto fail;
3211 }
3212
3213 ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
3214 if (!ret) {
3215 fprintf(stderr, "Failed GetOverlappedResult\n");
3216 if (ov.hEvent) {
3217 CloseHandle(ov.hEvent);
3218 ov.hEvent = NULL;
3219 }
3220 goto fail;
3221 }
3222
3223 if (ov.hEvent) {
3224 CloseHandle(ov.hEvent);
3225 ov.hEvent = NULL;
3226 }
3227 qemu_add_polling_cb(win_chr_pipe_poll, chr);
3228 return 0;
3229
3230 fail:
3231 win_chr_close(chr);
3232 return -1;
3233 }
3234
3235
3236 static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
3237 {
3238 CharDriverState *chr;
3239 WinCharState *s;
3240
3241 chr = qemu_mallocz(sizeof(CharDriverState));
3242 if (!chr)
3243 return NULL;
3244 s = qemu_mallocz(sizeof(WinCharState));
3245 if (!s) {
3246 free(chr);
3247 return NULL;
3248 }
3249 chr->opaque = s;
3250 chr->chr_write = win_chr_write;
3251 chr->chr_close = win_chr_close;
3252
3253 if (win_chr_pipe_init(chr, filename) < 0) {
3254 free(s);
3255 free(chr);
3256 return NULL;
3257 }
3258 qemu_chr_reset(chr);
3259 return chr;
3260 }
3261
3262 static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
3263 {
3264 CharDriverState *chr;
3265 WinCharState *s;
3266
3267 chr = qemu_mallocz(sizeof(CharDriverState));
3268 if (!chr)
3269 return NULL;
3270 s = qemu_mallocz(sizeof(WinCharState));
3271 if (!s) {
3272 free(chr);
3273 return NULL;
3274 }
3275 s->hcom = fd_out;
3276 chr->opaque = s;
3277 chr->chr_write = win_chr_write;
3278 qemu_chr_reset(chr);
3279 return chr;
3280 }
3281
3282 static CharDriverState *qemu_chr_open_win_con(const char *filename)
3283 {
3284 return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
3285 }
3286
3287 static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
3288 {
3289 HANDLE fd_out;
3290
3291 fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
3292 OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
3293 if (fd_out == INVALID_HANDLE_VALUE)
3294 return NULL;
3295
3296 return qemu_chr_open_win_file(fd_out);
3297 }
3298 #endif /* !_WIN32 */
3299
3300 /***********************************************************/
3301 /* UDP Net console */
3302
3303 typedef struct {
3304 int fd;
3305 struct sockaddr_in daddr;
3306 uint8_t buf[1024];
3307 int bufcnt;
3308 int bufptr;
3309 int max_size;
3310 } NetCharDriver;
3311
3312 static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
3313 {
3314 NetCharDriver *s = chr->opaque;
3315
3316 return sendto(s->fd, buf, len, 0,
3317 (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
3318 }
3319
3320 static int udp_chr_read_poll(void *opaque)
3321 {
3322 CharDriverState *chr = opaque;
3323 NetCharDriver *s = chr->opaque;
3324
3325 s->max_size = qemu_chr_can_read(chr);
3326
3327 /* If there were any stray characters in the queue process them
3328 * first
3329 */
3330 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
3331 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
3332 s->bufptr++;
3333 s->max_size = qemu_chr_can_read(chr);
3334 }
3335 return s->max_size;
3336 }
3337
3338 static void udp_chr_read(void *opaque)
3339 {
3340 CharDriverState *chr = opaque;
3341 NetCharDriver *s = chr->opaque;
3342
3343 if (s->max_size == 0)
3344 return;
3345 s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
3346 s->bufptr = s->bufcnt;
3347 if (s->bufcnt <= 0)
3348 return;
3349
3350 s->bufptr = 0;
3351 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
3352 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
3353 s->bufptr++;
3354 s->max_size = qemu_chr_can_read(chr);
3355 }
3356 }
3357
3358 static void udp_chr_update_read_handler(CharDriverState *chr)
3359 {
3360 NetCharDriver *s = chr->opaque;
3361
3362 if (s->fd >= 0) {
3363 qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
3364 udp_chr_read, NULL, chr);
3365 }
3366 }
3367
3368 #ifndef _WIN32
3369 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
3370 #endif
3371 int parse_host_src_port(struct sockaddr_in *haddr,
3372 struct sockaddr_in *saddr,
3373 const char *str);
3374
3375 static CharDriverState *qemu_chr_open_udp(const char *def)
3376 {
3377 CharDriverState *chr = NULL;
3378 NetCharDriver *s = NULL;
3379 int fd = -1;
3380 struct sockaddr_in saddr;
3381
3382 chr = qemu_mallocz(sizeof(CharDriverState));
3383 if (!chr)
3384 goto return_err;
3385 s = qemu_mallocz(sizeof(NetCharDriver));
3386 if (!s)
3387 goto return_err;
3388
3389 fd = socket(PF_INET, SOCK_DGRAM, 0);
3390 if (fd < 0) {
3391 perror("socket(PF_INET, SOCK_DGRAM)");
3392 goto return_err;
3393 }
3394
3395 if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
3396 printf("Could not parse: %s\n", def);
3397 goto return_err;
3398 }
3399
3400 if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
3401 {
3402 perror("bind");
3403 goto return_err;
3404 }
3405
3406 s->fd = fd;
3407 s->bufcnt = 0;
3408 s->bufptr = 0;
3409 chr->opaque = s;
3410 chr->chr_write = udp_chr_write;
3411 chr->chr_update_read_handler = udp_chr_update_read_handler;
3412 return chr;
3413
3414 return_err:
3415 if (chr)
3416 free(chr);
3417 if (s)
3418 free(s);
3419 if (fd >= 0)
3420 closesocket(fd);
3421 return NULL;
3422 }
3423
3424 /***********************************************************/
3425 /* TCP Net console */
3426
3427 typedef struct {
3428 int fd, listen_fd;
3429 int connected;
3430 int max_size;
3431 int do_telnetopt;
3432 int do_nodelay;
3433 int is_unix;
3434 } TCPCharDriver;
3435
3436 static void tcp_chr_accept(void *opaque);
3437
3438 static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
3439 {
3440 TCPCharDriver *s = chr->opaque;
3441 if (s->connected) {
3442 return send_all(s->fd, buf, len);
3443 } else {
3444 /* XXX: indicate an error ? */
3445 return len;
3446 }
3447 }
3448
3449 static int tcp_chr_read_poll(void *opaque)
3450 {
3451 CharDriverState *chr = opaque;
3452 TCPCharDriver *s = chr->opaque;
3453 if (!s->connected)
3454 return 0;
3455 s->max_size = qemu_chr_can_read(chr);
3456 return s->max_size;
3457 }
3458
3459 #define IAC 255
3460 #define IAC_BREAK 243
3461 static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
3462 TCPCharDriver *s,
3463 uint8_t *buf, int *size)
3464 {
3465 /* Handle any telnet client's basic IAC options to satisfy char by
3466 * char mode with no echo. All IAC options will be removed from
3467 * the buf and the do_telnetopt variable will be used to track the
3468 * state of the width of the IAC information.
3469 *
3470 * IAC commands come in sets of 3 bytes with the exception of the
3471 * "IAC BREAK" command and the double IAC.
3472 */
3473
3474 int i;
3475 int j = 0;
3476
3477 for (i = 0; i < *size; i++) {
3478 if (s->do_telnetopt > 1) {
3479 if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
3480 /* Double IAC means send an IAC */
3481 if (j != i)
3482 buf[j] = buf[i];
3483 j++;
3484 s->do_telnetopt = 1;
3485 } else {
3486 if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
3487 /* Handle IAC break commands by sending a serial break */
3488 qemu_chr_event(chr, CHR_EVENT_BREAK);
3489 s->do_telnetopt++;
3490 }
3491 s->do_telnetopt++;
3492 }
3493 if (s->do_telnetopt >= 4) {
3494 s->do_telnetopt = 1;
3495 }
3496 } else {
3497 if ((unsigned char)buf[i] == IAC) {
3498 s->do_telnetopt = 2;
3499 } else {
3500 if (j != i)
3501 buf[j] = buf[i];
3502 j++;
3503 }
3504 }
3505 }
3506 *size = j;
3507 }
3508
3509 static void tcp_chr_read(void *opaque)
3510 {
3511 CharDriverState *chr = opaque;
3512 TCPCharDriver *s = chr->opaque;
3513 uint8_t buf[1024];
3514 int len, size;
3515
3516 if (!s->connected || s->max_size <= 0)
3517 return;
3518 len = sizeof(buf);
3519 if (len > s->max_size)
3520 len = s->max_size;
3521 size = recv(s->fd, buf, len, 0);
3522 if (size == 0) {
3523 /* connection closed */
3524 s->connected = 0;
3525 if (s->listen_fd >= 0) {
3526 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3527 }
3528 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3529 closesocket(s->fd);
3530 s->fd = -1;
3531 } else if (size > 0) {
3532 if (s->do_telnetopt)
3533 tcp_chr_process_IAC_bytes(chr, s, buf, &size);
3534 if (size > 0)
3535 qemu_chr_read(chr, buf, size);
3536 }
3537 }
3538
3539 static void tcp_chr_connect(void *opaque)
3540 {
3541 CharDriverState *chr = opaque;
3542 TCPCharDriver *s = chr->opaque;
3543
3544 s->connected = 1;
3545 qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
3546 tcp_chr_read, NULL, chr);
3547 qemu_chr_reset(chr);
3548 }
3549
3550 #define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
3551 static void tcp_chr_telnet_init(int fd)
3552 {
3553 char buf[3];
3554 /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
3555 IACSET(buf, 0xff, 0xfb, 0x01); /* IAC WILL ECHO */
3556 send(fd, (char *)buf, 3, 0);
3557 IACSET(buf, 0xff, 0xfb, 0x03); /* IAC WILL Suppress go ahead */
3558 send(fd, (char *)buf, 3, 0);
3559 IACSET(buf, 0xff, 0xfb, 0x00); /* IAC WILL Binary */
3560 send(fd, (char *)buf, 3, 0);
3561 IACSET(buf, 0xff, 0xfd, 0x00); /* IAC DO Binary */
3562 send(fd, (char *)buf, 3, 0);
3563 }
3564
3565 static void socket_set_nodelay(int fd)
3566 {
3567 int val = 1;
3568 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
3569 }
3570
3571 static void tcp_chr_accept(void *opaque)
3572 {
3573 CharDriverState *chr = opaque;
3574 TCPCharDriver *s = chr->opaque;
3575 struct sockaddr_in saddr;
3576 #ifndef _WIN32
3577 struct sockaddr_un uaddr;
3578 #endif
3579 struct sockaddr *addr;
3580 socklen_t len;
3581 int fd;
3582
3583 for(;;) {
3584 #ifndef _WIN32
3585 if (s->is_unix) {
3586 len = sizeof(uaddr);
3587 addr = (struct sockaddr *)&uaddr;
3588 } else
3589 #endif
3590 {
3591 len = sizeof(saddr);
3592 addr = (struct sockaddr *)&saddr;
3593 }
3594 fd = accept(s->listen_fd, addr, &len);
3595 if (fd < 0 && errno != EINTR) {
3596 return;
3597 } else if (fd >= 0) {
3598 if (s->do_telnetopt)
3599 tcp_chr_telnet_init(fd);
3600 break;
3601 }
3602 }
3603 socket_set_nonblock(fd);
3604 if (s->do_nodelay)
3605 socket_set_nodelay(fd);
3606 s->fd = fd;
3607 qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
3608 tcp_chr_connect(chr);
3609 }
3610
3611 static void tcp_chr_close(CharDriverState *chr)
3612 {
3613 TCPCharDriver *s = chr->opaque;
3614 if (s->fd >= 0)
3615 closesocket(s->fd);
3616 if (s->listen_fd >= 0)
3617 closesocket(s->listen_fd);
3618 qemu_free(s);
3619 }
3620
3621 static CharDriverState *qemu_chr_open_tcp(const char *host_str,
3622 int is_telnet,
3623 int is_unix)
3624 {
3625 CharDriverState *chr = NULL;
3626 TCPCharDriver *s = NULL;
3627 int fd = -1, ret, err, val;
3628 int is_listen = 0;
3629 int is_waitconnect = 1;
3630 int do_nodelay = 0;
3631 const char *ptr;
3632 struct sockaddr_in saddr;
3633 #ifndef _WIN32
3634 struct sockaddr_un uaddr;
3635 #endif
3636 struct sockaddr *addr;
3637 socklen_t addrlen;
3638
3639 #ifndef _WIN32
3640 if (is_unix) {
3641 addr = (struct sockaddr *)&uaddr;
3642 addrlen = sizeof(uaddr);
3643 if (parse_unix_path(&uaddr, host_str) < 0)
3644 goto fail;
3645 } else
3646 #endif
3647 {
3648 addr = (struct sockaddr *)&saddr;
3649 addrlen = sizeof(saddr);
3650 if (parse_host_port(&saddr, host_str) < 0)
3651 goto fail;
3652 }
3653
3654 ptr = host_str;
3655 while((ptr = strchr(ptr,','))) {
3656 ptr++;
3657 if (!strncmp(ptr,"server",6)) {
3658 is_listen = 1;
3659 } else if (!strncmp(ptr,"nowait",6)) {
3660 is_waitconnect = 0;
3661 } else if (!strncmp(ptr,"nodelay",6)) {
3662 do_nodelay = 1;
3663 } else {
3664 printf("Unknown option: %s\n", ptr);
3665 goto fail;
3666 }
3667 }
3668 if (!is_listen)
3669 is_waitconnect = 0;
3670
3671 chr = qemu_mallocz(sizeof(CharDriverState));
3672 if (!chr)
3673 goto fail;
3674 s = qemu_mallocz(sizeof(TCPCharDriver));
3675 if (!s)
3676 goto fail;
3677
3678 #ifndef _WIN32
3679 if (is_unix)
3680 fd = socket(PF_UNIX, SOCK_STREAM, 0);
3681 else
3682 #endif
3683 fd = socket(PF_INET, SOCK_STREAM, 0);
3684
3685 if (fd < 0)
3686 goto fail;
3687
3688 if (!is_waitconnect)
3689 socket_set_nonblock(fd);
3690
3691 s->connected = 0;
3692 s->fd = -1;
3693 s->listen_fd = -1;
3694 s->is_unix = is_unix;
3695 s->do_nodelay = do_nodelay && !is_unix;
3696
3697 chr->opaque = s;
3698 chr->chr_write = tcp_chr_write;
3699 chr->chr_close = tcp_chr_close;
3700
3701 if (is_listen) {
3702 /* allow fast reuse */
3703 #ifndef _WIN32
3704 if (is_unix) {
3705 char path[109];
3706 pstrcpy(path, sizeof(path), uaddr.sun_path);
3707 unlink(path);
3708 } else
3709 #endif
3710 {
3711 val = 1;
3712 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3713 }
3714
3715 ret = bind(fd, addr, addrlen);
3716 if (ret < 0)
3717 goto fail;
3718
3719 ret = listen(fd, 0);
3720 if (ret < 0)
3721 goto fail;
3722
3723 s->listen_fd = fd;
3724 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3725 if (is_telnet)
3726 s->do_telnetopt = 1;
3727 } else {
3728 for(;;) {
3729 ret = connect(fd, addr, addrlen);
3730 if (ret < 0) {
3731 err = socket_error();
3732 if (err == EINTR || err == EWOULDBLOCK) {
3733 } else if (err == EINPROGRESS) {
3734 break;
3735 #ifdef _WIN32
3736 } else if (err == WSAEALREADY) {
3737 break;
3738 #endif
3739 } else {
3740 goto fail;
3741 }
3742 } else {
3743 s->connected = 1;
3744 break;
3745 }
3746 }
3747 s->fd = fd;
3748 socket_set_nodelay(fd);
3749 if (s->connected)
3750 tcp_chr_connect(chr);
3751 else
3752 qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
3753 }
3754
3755 if (is_listen && is_waitconnect) {
3756 printf("QEMU waiting for connection on: %s\n", host_str);
3757 tcp_chr_accept(chr);
3758 socket_set_nonblock(s->listen_fd);
3759 }
3760
3761 return chr;
3762 fail:
3763 if (fd >= 0)
3764 closesocket(fd);
3765 qemu_free(s);
3766 qemu_free(chr);
3767 return NULL;
3768 }
3769
3770 CharDriverState *qemu_chr_open(const char *filename)
3771 {
3772 const char *p;
3773
3774 if (!strcmp(filename, "vc")) {
3775 return text_console_init(&display_state, 0);
3776 } else if (strstart(filename, "vc:", &p)) {
3777 return text_console_init(&display_state, p);
3778 } else if (!strcmp(filename, "null")) {
3779 return qemu_chr_open_null();
3780 } else
3781 if (strstart(filename, "tcp:", &p)) {
3782 return qemu_chr_open_tcp(p, 0, 0);
3783 } else
3784 if (strstart(filename, "telnet:", &p)) {
3785 return qemu_chr_open_tcp(p, 1, 0);
3786 } else
3787 if (strstart(filename, "udp:", &p)) {
3788 return qemu_chr_open_udp(p);
3789 } else
3790 if (strstart(filename, "mon:", &p)) {
3791 CharDriverState *drv = qemu_chr_open(p);
3792 if (drv) {
3793 drv = qemu_chr_open_mux(drv);
3794 monitor_init(drv, !nographic);
3795 return drv;
3796 }
3797 printf("Unable to open driver: %s\n", p);
3798 return 0;
3799 } else
3800 #ifndef _WIN32
3801 if (strstart(filename, "unix:", &p)) {
3802 return qemu_chr_open_tcp(p, 0, 1);
3803 } else if (strstart(filename, "file:", &p)) {
3804 return qemu_chr_open_file_out(p);
3805 } else if (strstart(filename, "pipe:", &p)) {
3806 return qemu_chr_open_pipe(p);
3807 } else if (!strcmp(filename, "pty")) {
3808 return qemu_chr_open_pty();
3809 } else if (!strcmp(filename, "stdio")) {
3810 return qemu_chr_open_stdio();
3811 } else
3812 #if defined(__linux__)
3813 if (strstart(filename, "/dev/parport", NULL)) {
3814 return qemu_chr_open_pp(filename);
3815 } else
3816 #endif
3817 #if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
3818 || defined(__NetBSD__) || defined(__OpenBSD__)
3819 if (strstart(filename, "/dev/", NULL)) {
3820 return qemu_chr_open_tty(filename);
3821 } else
3822 #endif
3823 #else /* !_WIN32 */
3824 if (strstart(filename, "COM", NULL)) {
3825 return qemu_chr_open_win(filename);
3826 } else
3827 if (strstart(filename, "pipe:", &p)) {
3828 return qemu_chr_open_win_pipe(p);
3829 } else
3830 if (strstart(filename, "con:", NULL)) {
3831 return qemu_chr_open_win_con(filename);
3832 } else
3833 if (strstart(filename, "file:", &p)) {
3834 return qemu_chr_open_win_file_out(p);
3835 } else
3836 #endif
3837 #ifdef CONFIG_BRLAPI
3838 if (!strcmp(filename, "braille")) {
3839 return chr_baum_init();
3840 } else
3841 #endif
3842 {
3843 return NULL;
3844 }
3845 }
3846
3847 void qemu_chr_close(CharDriverState *chr)
3848 {
3849 if (chr->chr_close)
3850 chr->chr_close(chr);
3851 qemu_free(chr);
3852 }
3853
3854 /***********************************************************/
3855 /* network device redirectors */
3856
3857 #if defined(DEBUG_NET) || defined(DEBUG_SLIRP)
3858 static void hex_dump(FILE *f, const uint8_t *buf, int size)
3859 {
3860 int len, i, j, c;
3861
3862 for(i=0;i<size;i+=16) {
3863 len = size - i;
3864 if (len > 16)
3865 len = 16;
3866 fprintf(f, "%08x ", i);
3867 for(j=0;j<16;j++) {
3868 if (j < len)
3869 fprintf(f, " %02x", buf[i+j]);
3870 else
3871 fprintf(f, " ");
3872 }
3873 fprintf(f, " ");
3874 for(j=0;j<len;j++) {
3875 c = buf[i+j];
3876 if (c < ' ' || c > '~')
3877 c = '.';
3878 fprintf(f, "%c", c);
3879 }
3880 fprintf(f, "\n");
3881 }
3882 }
3883 #endif
3884
3885 static int parse_macaddr(uint8_t *macaddr, const char *p)
3886 {
3887 int i;
3888 char *last_char;
3889 long int offset;
3890
3891 errno = 0;
3892 offset = strtol(p, &last_char, 0);
3893 if (0 == errno && '\0' == *last_char &&
3894 offset >= 0 && offset <= 0xFFFFFF) {
3895 macaddr[3] = (offset & 0xFF0000) >> 16;
3896 macaddr[4] = (offset & 0xFF00) >> 8;
3897 macaddr[5] = offset & 0xFF;
3898 return 0;
3899 } else {
3900 for(i = 0; i < 6; i++) {
3901 macaddr[i] = strtol(p, (char **)&p, 16);
3902 if (i == 5) {
3903 if (*p != '\0')
3904 return -1;
3905 } else {
3906 if (*p != ':' && *p != '-')
3907 return -1;
3908 p++;
3909 }
3910 }
3911 return 0;
3912 }
3913
3914 return -1;
3915 }
3916
3917 static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3918 {
3919 const char *p, *p1;
3920 int len;
3921 p = *pp;
3922 p1 = strchr(p, sep);
3923 if (!p1)
3924 return -1;
3925 len = p1 - p;
3926 p1++;
3927 if (buf_size > 0) {
3928 if (len > buf_size - 1)
3929 len = buf_size - 1;
3930 memcpy(buf, p, len);
3931 buf[len] = '\0';
3932 }
3933 *pp = p1;
3934 return 0;
3935 }
3936
3937 int parse_host_src_port(struct sockaddr_in *haddr,
3938 struct sockaddr_in *saddr,
3939 const char *input_str)
3940 {
3941 char *str = strdup(input_str);
3942 char *host_str = str;
3943 char *src_str;
3944 const char *src_str2;
3945 char *ptr;
3946
3947 /*
3948 * Chop off any extra arguments at the end of the string which
3949 * would start with a comma, then fill in the src port information
3950 * if it was provided else use the "any address" and "any port".
3951 */
3952 if ((ptr = strchr(str,',')))
3953 *ptr = '\0';
3954
3955 if ((src_str = strchr(input_str,'@'))) {
3956 *src_str = '\0';
3957 src_str++;
3958 }
3959
3960 if (parse_host_port(haddr, host_str) < 0)
3961 goto fail;
3962
3963 src_str2 = src_str;
3964 if (!src_str || *src_str == '\0')
3965 src_str2 = ":0";
3966
3967 if (parse_host_port(saddr, src_str2) < 0)
3968 goto fail;
3969
3970 free(str);
3971 return(0);
3972
3973 fail:
3974 free(str);
3975 return -1;
3976 }
3977
3978 int parse_host_port(struct sockaddr_in *saddr, const char *str)
3979 {
3980 char buf[512];
3981 struct hostent *he;
3982 const char *p, *r;
3983 int port;
3984
3985 p = str;
3986 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3987 return -1;
3988 saddr->sin_family = AF_INET;
3989 if (buf[0] == '\0') {
3990 saddr->sin_addr.s_addr = 0;
3991 } else {
3992 if (isdigit(buf[0])) {
3993 if (!inet_aton(buf, &saddr->sin_addr))
3994 return -1;
3995 } else {
3996 if ((he = gethostbyname(buf)) == NULL)
3997 return - 1;
3998 saddr->sin_addr = *(struct in_addr *)he->h_addr;
3999 }
4000 }
4001 port = strtol(p, (char **)&r, 0);
4002 if (r == p)
4003 return -1;
4004 saddr->sin_port = htons(port);
4005 return 0;
4006 }
4007
4008 #ifndef _WIN32
4009 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
4010 {
4011 const char *p;
4012 int len;
4013
4014 len = MIN(108, strlen(str));
4015 p = strchr(str, ',');
4016 if (p)
4017 len = MIN(len, p - str);
4018
4019 memset(uaddr, 0, sizeof(*uaddr));
4020
4021 uaddr->sun_family = AF_UNIX;
4022 memcpy(uaddr->sun_path, str, len);
4023
4024 return 0;
4025 }
4026 #endif
4027
4028 /* find or alloc a new VLAN */
4029 VLANState *qemu_find_vlan(int id)
4030 {
4031 VLANState **pvlan, *vlan;
4032 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4033 if (vlan->id == id)
4034 return vlan;
4035 }
4036 vlan = qemu_mallocz(sizeof(VLANState));
4037 if (!vlan)
4038 return NULL;
4039 vlan->id = id;
4040 vlan->next = NULL;
4041 pvlan = &first_vlan;
4042 while (*pvlan != NULL)
4043 pvlan = &(*pvlan)->next;
4044 *pvlan = vlan;
4045 return vlan;
4046 }
4047
4048 VLANClientState *qemu_new_vlan_client(VLANState *vlan,
4049 IOReadHandler *fd_read,
4050 IOCanRWHandler *fd_can_read,
4051 void *opaque)
4052 {
4053 VLANClientState *vc, **pvc;
4054 vc = qemu_mallocz(sizeof(VLANClientState));
4055 if (!vc)
4056 return NULL;
4057 vc->fd_read = fd_read;
4058 vc->fd_can_read = fd_can_read;
4059 vc->opaque = opaque;
4060 vc->vlan = vlan;
4061
4062 vc->next = NULL;
4063 pvc = &vlan->first_client;
4064 while (*pvc != NULL)
4065 pvc = &(*pvc)->next;
4066 *pvc = vc;
4067 return vc;
4068 }
4069
4070 void qemu_del_vlan_client(VLANClientState *vc)
4071 {
4072 VLANClientState **pvc = &vc->vlan->first_client;
4073
4074 while (*pvc != NULL)
4075 if (*pvc == vc) {
4076 *pvc = vc->next;
4077 free(vc);
4078 break;
4079 } else
4080 pvc = &(*pvc)->next;
4081 }
4082
4083 int qemu_can_send_packet(VLANClientState *vc1)
4084 {
4085 VLANState *vlan = vc1->vlan;
4086 VLANClientState *vc;
4087
4088 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
4089 if (vc != vc1) {
4090 if (vc->fd_can_read && vc->fd_can_read(vc->opaque))
4091 return 1;
4092 }
4093 }
4094 return 0;
4095 }
4096
4097 void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
4098 {
4099 VLANState *vlan = vc1->vlan;
4100 VLANClientState *vc;
4101
4102 #ifdef DEBUG_NET
4103 printf("vlan %d send:\n", vlan->id);
4104 hex_dump(stdout, buf, size);
4105 #endif
4106 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
4107 if (vc != vc1) {
4108 vc->fd_read(vc->opaque, buf, size);
4109 }
4110 }
4111 }
4112
4113 #if defined(CONFIG_SLIRP)
4114
4115 /* slirp network adapter */
4116
4117 static int slirp_inited;
4118 static VLANClientState *slirp_vc;
4119
4120 int slirp_can_output(void)
4121 {
4122 return !slirp_vc || qemu_can_send_packet(slirp_vc);
4123 }
4124
4125 void slirp_output(const uint8_t *pkt, int pkt_len)
4126 {
4127 #ifdef DEBUG_SLIRP
4128 printf("slirp output:\n");
4129 hex_dump(stdout, pkt, pkt_len);
4130 #endif
4131 if (!slirp_vc)
4132 return;
4133 qemu_send_packet(slirp_vc, pkt, pkt_len);
4134 }
4135
4136 static void slirp_receive(void *opaque, const uint8_t *buf, int size)
4137 {
4138 #ifdef DEBUG_SLIRP
4139 printf("slirp input:\n");
4140 hex_dump(stdout, buf, size);
4141 #endif
4142 slirp_input(buf, size);
4143 }
4144
4145 static int net_slirp_init(VLANState *vlan)
4146 {
4147 if (!slirp_inited) {
4148 slirp_inited = 1;
4149 slirp_init();
4150 }
4151 slirp_vc = qemu_new_vlan_client(vlan,
4152 slirp_receive, NULL, NULL);
4153 snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
4154 return 0;
4155 }
4156
4157 static void net_slirp_redir(const char *redir_str)
4158 {
4159 int is_udp;
4160 char buf[256], *r;
4161 const char *p;
4162 struct in_addr guest_addr;
4163 int host_port, guest_port;
4164
4165 if (!slirp_inited) {
4166 slirp_inited = 1;
4167 slirp_init();
4168 }
4169
4170 p = redir_str;
4171 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
4172 goto fail;
4173 if (!strcmp(buf, "tcp")) {
4174 is_udp = 0;
4175 } else if (!strcmp(buf, "udp")) {
4176 is_udp = 1;
4177 } else {
4178 goto fail;
4179 }
4180
4181 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
4182 goto fail;
4183 host_port = strtol(buf, &r, 0);
4184 if (r == buf)
4185 goto fail;
4186
4187 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
4188 goto fail;
4189 if (buf[0] == '\0') {
4190 pstrcpy(buf, sizeof(buf), "10.0.2.15");
4191 }
4192 if (!inet_aton(buf, &guest_addr))
4193 goto fail;
4194
4195 guest_port = strtol(p, &r, 0);
4196 if (r == p)
4197 goto fail;
4198
4199 if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
4200 fprintf(stderr, "qemu: could not set up redirection\n");
4201 exit(1);
4202 }
4203 return;
4204 fail:
4205 fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
4206 exit(1);
4207 }
4208
4209 #ifndef _WIN32
4210
4211 static char smb_dir[1024];
4212
4213 static void erase_dir(char *dir_name)
4214 {
4215 DIR *d;
4216 struct dirent *de;
4217 char filename[1024];
4218
4219 /* erase all the files in the directory */
4220 if ((d = opendir(dir_name)) != 0) {
4221 for(;;) {
4222 de = readdir(d);
4223 if (!de)
4224 break;
4225 if (strcmp(de->d_name, ".") != 0 &&
4226 strcmp(de->d_name, "..") != 0) {
4227 snprintf(filename, sizeof(filename), "%s/%s",
4228 smb_dir, de->d_name);
4229 if (unlink(filename) != 0) /* is it a directory? */
4230 erase_dir(filename);
4231 }
4232 }
4233 closedir(d);
4234 rmdir(dir_name);
4235 }
4236 }
4237
4238 /* automatic user mode samba server configuration */
4239 static void smb_exit(void)
4240 {
4241 erase_dir(smb_dir);
4242 }
4243
4244 /* automatic user mode samba server configuration */
4245 static void net_slirp_smb(const char *exported_dir)
4246 {
4247 char smb_conf[1024];
4248 char smb_cmdline[1024];
4249 FILE *f;
4250
4251 if (!slirp_inited) {
4252 slirp_inited = 1;
4253 slirp_init();
4254 }
4255
4256 /* XXX: better tmp dir construction */
4257 snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
4258 if (mkdir(smb_dir, 0700) < 0) {
4259 fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
4260 exit(1);
4261 }
4262 snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
4263
4264 f = fopen(smb_conf, "w");
4265 if (!f) {
4266 fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
4267 exit(1);
4268 }
4269 fprintf(f,
4270 "[global]\n"
4271 "private dir=%s\n"
4272 "smb ports=0\n"
4273 "socket address=127.0.0.1\n"
4274 "pid directory=%s\n"
4275 "lock directory=%s\n"
4276 "log file=%s/log.smbd\n"
4277 "smb passwd file=%s/smbpasswd\n"
4278 "security = share\n"
4279 "[qemu]\n"
4280 "path=%s\n"
4281 "read only=no\n"
4282 "guest ok=yes\n",
4283 smb_dir,
4284 smb_dir,
4285 smb_dir,
4286 smb_dir,
4287 smb_dir,
4288 exported_dir
4289 );
4290 fclose(f);
4291 atexit(smb_exit);
4292
4293 snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
4294 SMBD_COMMAND, smb_conf);
4295
4296 slirp_add_exec(0, smb_cmdline, 4, 139);
4297 }
4298
4299 #endif /* !defined(_WIN32) */
4300 void do_info_slirp(void)
4301 {
4302 slirp_stats();
4303 }
4304
4305 #endif /* CONFIG_SLIRP */
4306
4307 #if !defined(_WIN32)
4308
4309 typedef struct TAPState {
4310 VLANClientState *vc;
4311 int fd;
4312 char down_script[1024];
4313 } TAPState;
4314
4315 static void tap_receive(void *opaque, const uint8_t *buf, int size)
4316 {
4317 TAPState *s = opaque;
4318 int ret;
4319 for(;;) {
4320 ret = write(s->fd, buf, size);
4321 if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
4322 } else {
4323 break;
4324 }
4325 }
4326 }
4327
4328 static void tap_send(void *opaque)
4329 {
4330 TAPState *s = opaque;
4331 uint8_t buf[4096];
4332 int size;
4333
4334 #ifdef __sun__
4335 struct strbuf sbuf;
4336 int f = 0;
4337 sbuf.maxlen = sizeof(buf);
4338 sbuf.buf = buf;
4339 size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
4340 #else
4341 size = read(s->fd, buf, sizeof(buf));
4342 #endif
4343 if (size > 0) {
4344 qemu_send_packet(s->vc, buf, size);
4345 }
4346 }
4347
4348 /* fd support */
4349
4350 static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
4351 {
4352 TAPState *s;
4353
4354 s = qemu_mallocz(sizeof(TAPState));
4355 if (!s)
4356 return NULL;
4357 s->fd = fd;
4358 s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
4359 qemu_set_fd_handler(s->fd, tap_send, NULL, s);
4360 snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
4361 return s;
4362 }
4363
4364 #if defined (_BSD) || defined (__FreeBSD_kernel__)
4365 static int tap_open(char *ifname, int ifname_size)
4366 {
4367 int fd;
4368 char *dev;
4369 struct stat s;
4370
4371 TFR(fd = open("/dev/tap", O_RDWR));
4372 if (fd < 0) {
4373 fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
4374 return -1;
4375 }
4376
4377 fstat(fd, &s);
4378 dev = devname(s.st_rdev, S_IFCHR);
4379 pstrcpy(ifname, ifname_size, dev);
4380
4381 fcntl(fd, F_SETFL, O_NONBLOCK);
4382 return fd;
4383 }
4384 #elif defined(__sun__)
4385 #define TUNNEWPPA (('T'<<16) | 0x0001)
4386 /*
4387 * Allocate TAP device, returns opened fd.
4388 * Stores dev name in the first arg(must be large enough).
4389 */
4390 int tap_alloc(char *dev, size_t dev_size)
4391 {
4392 int tap_fd, if_fd, ppa = -1;
4393 static int ip_fd = 0;
4394 char *ptr;
4395
4396 static int arp_fd = 0;
4397 int ip_muxid, arp_muxid;
4398 struct strioctl strioc_if, strioc_ppa;
4399 int link_type = I_PLINK;;
4400 struct lifreq ifr;
4401 char actual_name[32] = "";
4402
4403 memset(&ifr, 0x0, sizeof(ifr));
4404
4405 if( *dev ){
4406 ptr = dev;
4407 while( *ptr && !isdigit((int)*ptr) ) ptr++;
4408 ppa = atoi(ptr);
4409 }
4410
4411 /* Check if IP device was opened */
4412 if( ip_fd )
4413 close(ip_fd);
4414
4415 TFR(ip_fd = open("/dev/udp", O_RDWR, 0));
4416 if (ip_fd < 0) {
4417 syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
4418 return -1;
4419 }
4420
4421 TFR(tap_fd = open("/dev/tap", O_RDWR, 0));
4422 if (tap_fd < 0) {
4423 syslog(LOG_ERR, "Can't open /dev/tap");
4424 return -1;
4425 }
4426
4427 /* Assign a new PPA and get its unit number. */
4428 strioc_ppa.ic_cmd = TUNNEWPPA;
4429 strioc_ppa.ic_timout = 0;
4430 strioc_ppa.ic_len = sizeof(ppa);
4431 strioc_ppa.ic_dp = (char *)&ppa;
4432 if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
4433 syslog (LOG_ERR, "Can't assign new interface");
4434
4435 TFR(if_fd = open("/dev/tap", O_RDWR, 0));
4436 if (if_fd < 0) {
4437 syslog(LOG_ERR, "Can't open /dev/tap (2)");
4438 return -1;
4439 }
4440 if(ioctl(if_fd, I_PUSH, "ip") < 0){
4441 syslog(LOG_ERR, "Can't push IP module");
4442 return -1;
4443 }
4444
4445 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
4446 syslog(LOG_ERR, "Can't get flags\n");
4447
4448 snprintf (actual_name, 32, "tap%d", ppa);
4449 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
4450
4451 ifr.lifr_ppa = ppa;
4452 /* Assign ppa according to the unit number returned by tun device */
4453
4454 if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
4455 syslog (LOG_ERR, "Can't set PPA %d", ppa);
4456 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
4457 syslog (LOG_ERR, "Can't get flags\n");
4458 /* Push arp module to if_fd */
4459 if (ioctl (if_fd, I_PUSH, "arp") < 0)
4460 syslog (LOG_ERR, "Can't push ARP module (2)");
4461
4462 /* Push arp module to ip_fd */
4463 if (ioctl (ip_fd, I_POP, NULL) < 0)
4464 syslog (LOG_ERR, "I_POP failed\n");
4465 if (ioctl (ip_fd, I_PUSH, "arp") < 0)
4466 syslog (LOG_ERR, "Can't push ARP module (3)\n");
4467 /* Open arp_fd */
4468 TFR(arp_fd = open ("/dev/tap", O_RDWR, 0));
4469 if (arp_fd < 0)
4470 syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
4471
4472 /* Set ifname to arp */
4473 strioc_if.ic_cmd = SIOCSLIFNAME;
4474 strioc_if.ic_timout = 0;
4475 strioc_if.ic_len = sizeof(ifr);
4476 strioc_if.ic_dp = (char *)&ifr;
4477 if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
4478 syslog (LOG_ERR, "Can't set ifname to arp\n");
4479 }
4480
4481 if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
4482 syslog(LOG_ERR, "Can't link TAP device to IP");
4483 return -1;
4484 }
4485
4486 if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
4487 syslog (LOG_ERR, "Can't link TAP device to ARP");
4488
4489 close (if_fd);
4490
4491 memset(&ifr, 0x0, sizeof(ifr));
4492 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
4493 ifr.lifr_ip_muxid = ip_muxid;
4494 ifr.lifr_arp_muxid = arp_muxid;
4495
4496 if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
4497 {
4498 ioctl (ip_fd, I_PUNLINK , arp_muxid);
4499 ioctl (ip_fd, I_PUNLINK, ip_muxid);
4500 syslog (LOG_ERR, "Can't set multiplexor id");
4501 }
4502
4503 snprintf(dev, dev_size, "tap%d", ppa);
4504 return tap_fd;
4505 }
4506
4507 static int tap_open(char *ifname, int ifname_size)
4508 {
4509 char dev[10]="";
4510 int fd;
4511 if( (fd = tap_alloc(dev, sizeof(dev))) < 0 ){
4512 fprintf(stderr, "Cannot allocate TAP device\n");
4513 return -1;
4514 }
4515 pstrcpy(ifname, ifname_size, dev);
4516 fcntl(fd, F_SETFL, O_NONBLOCK);
4517 return fd;
4518 }
4519 #else
4520 static int tap_open(char *ifname, int ifname_size)
4521 {
4522 struct ifreq ifr;
4523 int fd, ret;
4524
4525 TFR(fd = open("/dev/net/tun", O_RDWR));
4526 if (fd < 0) {
4527 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
4528 return -1;
4529 }
4530 memset(&ifr, 0, sizeof(ifr));
4531 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
4532 if (ifname[0] != '\0')
4533 pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
4534 else
4535 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
4536 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
4537 if (ret != 0) {
4538 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
4539 close(fd);
4540 return -1;
4541 }
4542 pstrcpy(ifname, ifname_size, ifr.ifr_name);
4543 fcntl(fd, F_SETFL, O_NONBLOCK);
4544 return fd;
4545 }
4546 #endif
4547
4548 static int launch_script(const char *setup_script, const char *ifname, int fd)
4549 {
4550 int pid, status;
4551 char *args[3];
4552 char **parg;
4553
4554 /* try to launch network script */
4555 pid = fork();
4556 if (pid >= 0) {
4557 if (pid == 0) {
4558 int open_max = sysconf (_SC_OPEN_MAX), i;
4559 for (i = 0; i < open_max; i++)
4560 if (i != STDIN_FILENO &&
4561 i != STDOUT_FILENO &&
4562 i != STDERR_FILENO &&
4563 i != fd)
4564 close(i);
4565
4566 parg = args;
4567 *parg++ = (char *)setup_script;
4568 *parg++ = (char *)ifname;
4569 *parg++ = NULL;
4570 execv(setup_script, args);
4571 _exit(1);
4572 }
4573 while (waitpid(pid, &status, 0) != pid);
4574 if (!WIFEXITED(status) ||
4575 WEXITSTATUS(status) != 0) {
4576 fprintf(stderr, "%s: could not launch network script\n",
4577 setup_script);
4578 return -1;
4579 }
4580 }
4581 return 0;
4582 }
4583
4584 static int net_tap_init(VLANState *vlan, const char *ifname1,
4585 const char *setup_script, const char *down_script)
4586 {
4587 TAPState *s;
4588 int fd;
4589 char ifname[128];
4590
4591 if (ifname1 != NULL)
4592 pstrcpy(ifname, sizeof(ifname), ifname1);
4593 else
4594 ifname[0] = '\0';
4595 TFR(fd = tap_open(ifname, sizeof(ifname)));
4596 if (fd < 0)
4597 return -1;
4598
4599 if (!setup_script || !strcmp(setup_script, "no"))
4600 setup_script = "";
4601 if (setup_script[0] != '\0') {
4602 if (launch_script(setup_script, ifname, fd))
4603 return -1;
4604 }
4605 s = net_tap_fd_init(vlan, fd);
4606 if (!s)
4607 return -1;
4608 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4609 "tap: ifname=%s setup_script=%s", ifname, setup_script);
4610 if (down_script && strcmp(down_script, "no"))
4611 snprintf(s->down_script, sizeof(s->down_script), "%s", down_script);
4612 return 0;
4613 }
4614
4615 #endif /* !_WIN32 */
4616
4617 #if defined(CONFIG_VDE)
4618 typedef struct VDEState {
4619 VLANClientState *vc;
4620 VDECONN *vde;
4621 } VDEState;
4622
4623 static void vde_to_qemu(void *opaque)
4624 {
4625 VDEState *s = opaque;
4626 uint8_t buf[4096];
4627 int size;
4628
4629 size = vde_recv(s->vde, buf, sizeof(buf), 0);
4630 if (size > 0) {
4631 qemu_send_packet(s->vc, buf, size);
4632 }
4633 }
4634
4635 static void vde_from_qemu(void *opaque, const uint8_t *buf, int size)
4636 {
4637 VDEState *s = opaque;
4638 int ret;
4639 for(;;) {
4640 ret = vde_send(s->vde, buf, size, 0);
4641 if (ret < 0 && errno == EINTR) {
4642 } else {
4643 break;
4644 }
4645 }
4646 }
4647
4648 static int net_vde_init(VLANState *vlan, const char *sock, int port,
4649 const char *group, int mode)
4650 {
4651 VDEState *s;
4652 char *init_group = strlen(group) ? (char *)group : NULL;
4653 char *init_sock = strlen(sock) ? (char *)sock : NULL;
4654
4655 struct vde_open_args args = {
4656 .port = port,
4657 .group = init_group,
4658 .mode = mode,
4659 };
4660
4661 s = qemu_mallocz(sizeof(VDEState));
4662 if (!s)
4663 return -1;
4664 s->vde = vde_open(init_sock, "QEMU", &args);
4665 if (!s->vde){
4666 free(s);
4667 return -1;
4668 }
4669 s->vc = qemu_new_vlan_client(vlan, vde_from_qemu, NULL, s);
4670 qemu_set_fd_handler(vde_datafd(s->vde), vde_to_qemu, NULL, s);
4671 snprintf(s->vc->info_str, sizeof(s->vc->info_str), "vde: sock=%s fd=%d",
4672 sock, vde_datafd(s->vde));
4673 return 0;
4674 }
4675 #endif
4676
4677 /* network connection */
4678 typedef struct NetSocketState {
4679 VLANClientState *vc;
4680 int fd;
4681 int state; /* 0 = getting length, 1 = getting data */
4682 int index;
4683 int packet_len;
4684 uint8_t buf[4096];
4685 struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
4686 } NetSocketState;
4687
4688 typedef struct NetSocketListenState {
4689 VLANState *vlan;
4690 int fd;
4691 } NetSocketListenState;
4692
4693 /* XXX: we consider we can send the whole packet without blocking */
4694 static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
4695 {
4696 NetSocketState *s = opaque;
4697 uint32_t len;
4698 len = htonl(size);
4699
4700 send_all(s->fd, (const uint8_t *)&len, sizeof(len));
4701 send_all(s->fd, buf, size);
4702 }
4703
4704 static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
4705 {
4706 NetSocketState *s = opaque;
4707 sendto(s->fd, buf, size, 0,
4708 (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
4709 }
4710
4711 static void net_socket_send(void *opaque)
4712 {
4713 NetSocketState *s = opaque;
4714 int l, size, err;
4715 uint8_t buf1[4096];
4716 const uint8_t *buf;
4717
4718 size = recv(s->fd, buf1, sizeof(buf1), 0);
4719 if (size < 0) {
4720 err = socket_error();
4721 if (err != EWOULDBLOCK)
4722 goto eoc;
4723 } else if (size == 0) {
4724 /* end of connection */
4725 eoc:
4726 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4727 closesocket(s->fd);
4728 return;
4729 }
4730 buf = buf1;
4731 while (size > 0) {
4732 /* reassemble a packet from the network */
4733 switch(s->state) {
4734 case 0:
4735 l = 4 - s->index;
4736 if (l > size)
4737 l = size;
4738 memcpy(s->buf + s->index, buf, l);
4739 buf += l;
4740 size -= l;
4741 s->index += l;
4742 if (s->index == 4) {
4743 /* got length */
4744 s->packet_len = ntohl(*(uint32_t *)s->buf);
4745 s->index = 0;
4746 s->state = 1;
4747 }
4748 break;
4749 case 1:
4750 l = s->packet_len - s->index;
4751 if (l > size)
4752 l = size;
4753 memcpy(s->buf + s->index, buf, l);
4754 s->index += l;
4755 buf += l;
4756 size -= l;
4757 if (s->index >= s->packet_len) {
4758 qemu_send_packet(s->vc, s->buf, s->packet_len);
4759 s->index = 0;
4760 s->state = 0;
4761 }
4762 break;
4763 }
4764 }
4765 }
4766
4767 static void net_socket_send_dgram(void *opaque)
4768 {
4769 NetSocketState *s = opaque;
4770 int size;
4771
4772 size = recv(s->fd, s->buf, sizeof(s->buf), 0);
4773 if (size < 0)
4774 return;
4775 if (size == 0) {
4776 /* end of connection */
4777 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4778 return;
4779 }
4780 qemu_send_packet(s->vc, s->buf, size);
4781 }
4782
4783 static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
4784 {
4785 struct ip_mreq imr;
4786 int fd;
4787 int val, ret;
4788 if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
4789 fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
4790 inet_ntoa(mcastaddr->sin_addr),
4791 (int)ntohl(mcastaddr->sin_addr.s_addr));
4792 return -1;
4793
4794 }
4795 fd = socket(PF_INET, SOCK_DGRAM, 0);
4796 if (fd < 0) {
4797 perror("socket(PF_INET, SOCK_DGRAM)");
4798 return -1;
4799 }
4800
4801 val = 1;
4802 ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
4803 (const char *)&val, sizeof(val));
4804 if (ret < 0) {
4805 perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
4806 goto fail;
4807 }
4808
4809 ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
4810 if (ret < 0) {
4811 perror("bind");
4812 goto fail;
4813 }
4814
4815 /* Add host to multicast group */
4816 imr.imr_multiaddr = mcastaddr->sin_addr;
4817 imr.imr_interface.s_addr = htonl(INADDR_ANY);
4818
4819 ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
4820 (const char *)&imr, sizeof(struct ip_mreq));
4821 if (ret < 0) {
4822 perror("setsockopt(IP_ADD_MEMBERSHIP)");
4823 goto fail;
4824 }
4825
4826 /* Force mcast msgs to loopback (eg. several QEMUs in same host */
4827 val = 1;
4828 ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
4829 (const char *)&val, sizeof(val));
4830 if (ret < 0) {
4831 perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
4832 goto fail;
4833 }
4834
4835 socket_set_nonblock(fd);
4836 return fd;
4837 fail:
4838 if (fd >= 0)
4839 closesocket(fd);
4840 return -1;
4841 }
4842
4843 static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
4844 int is_connected)
4845 {
4846 struct sockaddr_in saddr;
4847 int newfd;
4848 socklen_t saddr_len;
4849 NetSocketState *s;
4850
4851 /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
4852 * Because this may be "shared" socket from a "master" process, datagrams would be recv()
4853 * by ONLY ONE process: we must "clone" this dgram socket --jjo
4854 */
4855
4856 if (is_connected) {
4857 if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
4858 /* must be bound */
4859 if (saddr.sin_addr.s_addr==0) {
4860 fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
4861 fd);
4862 return NULL;
4863 }
4864 /* clone dgram socket */
4865 newfd = net_socket_mcast_create(&saddr);
4866 if (newfd < 0) {
4867 /* error already reported by net_socket_mcast_create() */
4868 close(fd);
4869 return NULL;
4870 }
4871 /* clone newfd to fd, close newfd */
4872 dup2(newfd, fd);
4873 close(newfd);
4874
4875 } else {
4876 fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
4877 fd, strerror(errno));
4878 return NULL;
4879 }
4880 }
4881
4882 s = qemu_mallocz(sizeof(NetSocketState));
4883 if (!s)
4884 return NULL;
4885 s->fd = fd;
4886
4887 s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
4888 qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
4889
4890 /* mcast: save bound address as dst */
4891 if (is_connected) s->dgram_dst=saddr;
4892
4893 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4894 "socket: fd=%d (%s mcast=%s:%d)",
4895 fd, is_connected? "cloned" : "",
4896 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4897 return s;
4898 }
4899
4900 static void net_socket_connect(void *opaque)
4901 {
4902 NetSocketState *s = opaque;
4903 qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
4904 }
4905
4906 static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
4907 int is_connected)
4908 {
4909 NetSocketState *s;
4910 s = qemu_mallocz(sizeof(NetSocketState));
4911 if (!s)
4912 return NULL;
4913 s->fd = fd;
4914 s->vc = qemu_new_vlan_client(vlan,
4915 net_socket_receive, NULL, s);
4916 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4917 "socket: fd=%d", fd);
4918 if (is_connected) {
4919 net_socket_connect(s);
4920 } else {
4921 qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
4922 }
4923 return s;
4924 }
4925
4926 static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
4927 int is_connected)
4928 {
4929 int so_type=-1, optlen=sizeof(so_type);
4930
4931 if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type,
4932 (socklen_t *)&optlen)< 0) {
4933 fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
4934 return NULL;
4935 }
4936 switch(so_type) {
4937 case SOCK_DGRAM:
4938 return net_socket_fd_init_dgram(vlan, fd, is_connected);
4939 case SOCK_STREAM:
4940 return net_socket_fd_init_stream(vlan, fd, is_connected);
4941 default:
4942 /* who knows ... this could be a eg. a pty, do warn and continue as stream */
4943 fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
4944 return net_socket_fd_init_stream(vlan, fd, is_connected);
4945 }
4946 return NULL;
4947 }
4948
4949 static void net_socket_accept(void *opaque)
4950 {
4951 NetSocketListenState *s = opaque;
4952 NetSocketState *s1;
4953 struct sockaddr_in saddr;
4954 socklen_t len;
4955 int fd;
4956
4957 for(;;) {
4958 len = sizeof(saddr);
4959 fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
4960 if (fd < 0 && errno != EINTR) {
4961 return;
4962 } else if (fd >= 0) {
4963 break;
4964 }
4965 }
4966 s1 = net_socket_fd_init(s->vlan, fd, 1);
4967 if (!s1) {
4968 closesocket(fd);
4969 } else {
4970 snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
4971 "socket: connection from %s:%d",
4972 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4973 }
4974 }
4975
4976 static int net_socket_listen_init(VLANState *vlan, const char *host_str)
4977 {
4978 NetSocketListenState *s;
4979 int fd, val, ret;
4980 struct sockaddr_in saddr;
4981
4982 if (parse_host_port(&saddr, host_str) < 0)
4983 return -1;
4984
4985 s = qemu_mallocz(sizeof(NetSocketListenState));
4986 if (!s)
4987 return -1;
4988
4989 fd = socket(PF_INET, SOCK_STREAM, 0);
4990 if (fd < 0) {
4991 perror("socket");
4992 return -1;
4993 }
4994 socket_set_nonblock(fd);
4995
4996 /* allow fast reuse */
4997 val = 1;
4998 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
4999
5000 ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
5001 if (ret < 0) {
5002 perror("bind");
5003 return -1;
5004 }
5005 ret = listen(fd, 0);
5006 if (ret < 0) {
5007 perror("listen");
5008 return -1;
5009 }
5010 s->vlan = vlan;
5011 s->fd = fd;
5012 qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
5013 return 0;
5014 }
5015
5016 static int net_socket_connect_init(VLANState *vlan, const char *host_str)
5017 {
5018 NetSocketState *s;
5019 int fd, connected, ret, err;
5020 struct sockaddr_in saddr;
5021
5022 if (parse_host_port(&saddr, host_str) < 0)
5023 return -1;
5024
5025 fd = socket(PF_INET, SOCK_STREAM, 0);
5026 if (fd < 0) {
5027 perror("socket");
5028 return -1;
5029 }
5030 socket_set_nonblock(fd);
5031
5032 connected = 0;
5033 for(;;) {
5034 ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
5035 if (ret < 0) {
5036 err = socket_error();
5037 if (err == EINTR || err == EWOULDBLOCK) {
5038 } else if (err == EINPROGRESS) {
5039 break;
5040 #ifdef _WIN32
5041 } else if (err == WSAEALREADY) {
5042 break;
5043 #endif
5044 } else {
5045 perror("connect");
5046 closesocket(fd);
5047 return -1;
5048 }
5049 } else {
5050 connected = 1;
5051 break;
5052 }
5053 }
5054 s = net_socket_fd_init(vlan, fd, connected);
5055 if (!s)
5056 return -1;
5057 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
5058 "socket: connect to %s:%d",
5059 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
5060 return 0;
5061 }
5062
5063 static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
5064 {
5065 NetSocketState *s;
5066 int fd;
5067 struct sockaddr_in saddr;
5068
5069 if (parse_host_port(&saddr, host_str) < 0)
5070 return -1;
5071
5072
5073 fd = net_socket_mcast_create(&saddr);
5074 if (fd < 0)
5075 return -1;
5076
5077 s = net_socket_fd_init(vlan, fd, 0);
5078 if (!s)
5079 return -1;
5080
5081 s->dgram_dst = saddr;
5082
5083 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
5084 "socket: mcast=%s:%d",
5085 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
5086 return 0;
5087
5088 }
5089
5090 static const char *get_opt_name(char *buf, int buf_size, const char *p)
5091 {
5092 char *q;
5093
5094 q = buf;
5095 while (*p != '\0' && *p != '=') {
5096 if (q && (q - buf) < buf_size - 1)
5097 *q++ = *p;
5098 p++;
5099 }
5100 if (q)
5101 *q = '\0';
5102
5103 return p;
5104 }
5105
5106 static const char *get_opt_value(char *buf, int buf_size, const char *p)
5107 {
5108 char *q;
5109
5110 q = buf;
5111 while (*p != '\0') {
5112 if (*p == ',') {
5113 if (*(p + 1) != ',')
5114 break;
5115 p++;
5116 }
5117 if (q && (q - buf) < buf_size - 1)
5118 *q++ = *p;
5119 p++;
5120 }
5121 if (q)
5122 *q = '\0';
5123
5124 return p;
5125 }
5126
5127 static int get_param_value(char *buf, int buf_size,
5128 const char *tag, const char *str)
5129 {
5130 const char *p;
5131 char option[128];
5132
5133 p = str;
5134 for(;;) {
5135 p = get_opt_name(option, sizeof(option), p);
5136 if (*p != '=')
5137 break;
5138 p++;
5139 if (!strcmp(tag, option)) {
5140 (void)get_opt_value(buf, buf_size, p);
5141 return strlen(buf);
5142 } else {
5143 p = get_opt_value(NULL, 0, p);
5144 }
5145 if (*p != ',')
5146 break;
5147 p++;
5148 }
5149 return 0;
5150 }
5151
5152 static int check_params(char *buf, int buf_size,
5153 const char * const *params, const char *str)
5154 {
5155 const char *p;
5156 int i;
5157
5158 p = str;
5159 for(;;) {
5160 p = get_opt_name(buf, buf_size, p);
5161 if (*p != '=')
5162 return -1;
5163 p++;
5164 for(i = 0; params[i] != NULL; i++)
5165 if (!strcmp(params[i], buf))
5166 break;
5167 if (params[i] == NULL)
5168 return -1;
5169 p = get_opt_value(NULL, 0, p);
5170 if (*p != ',')
5171 break;
5172 p++;
5173 }
5174 return 0;
5175 }
5176
5177 static int net_client_init(const char *device, const char *p)
5178 {
5179 char buf[1024];
5180 int vlan_id, ret;
5181 VLANState *vlan;
5182
5183 vlan_id = 0;
5184 if (get_param_value(buf, sizeof(buf), "vlan", p)) {
5185 vlan_id = strtol(buf, NULL, 0);
5186 }
5187 vlan = qemu_find_vlan(vlan_id);
5188 if (!vlan) {
5189 fprintf(stderr, "Could not create vlan %d\n", vlan_id);
5190 return -1;
5191 }
5192 if (!strcmp(device, "nic")) {
5193 NICInfo *nd;
5194 uint8_t *macaddr;
5195
5196 if (nb_nics >= MAX_NICS) {
5197 fprintf(stderr, "Too Many NICs\n");
5198 return -1;
5199 }
5200 nd = &nd_table[nb_nics];
5201 macaddr = nd->macaddr;
5202 macaddr[0] = 0x52;
5203 macaddr[1] = 0x54;
5204 macaddr[2] = 0x00;
5205 macaddr[3] = 0x12;
5206 macaddr[4] = 0x34;
5207 macaddr[5] = 0x56 + nb_nics;
5208
5209 if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
5210 if (parse_macaddr(macaddr, buf) < 0) {
5211 fprintf(stderr, "invalid syntax for ethernet address\n");
5212 return -1;
5213 }
5214 }
5215 if (get_param_value(buf, sizeof(buf), "model", p)) {
5216 nd->model = strdup(buf);
5217 }
5218 nd->vlan = vlan;
5219 nb_nics++;
5220 vlan->nb_guest_devs++;
5221 ret = 0;
5222 } else
5223 if (!strcmp(device, "none")) {
5224 /* does nothing. It is needed to signal that no network cards
5225 are wanted */
5226 ret = 0;
5227 } else
5228 #ifdef CONFIG_SLIRP
5229 if (!strcmp(device, "user")) {
5230 if (get_param_value(buf, sizeof(buf), "hostname", p)) {
5231 pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
5232 }
5233 vlan->nb_host_devs++;
5234 ret = net_slirp_init(vlan);
5235 } else
5236 #endif
5237 #ifdef _WIN32
5238 if (!strcmp(device, "tap")) {
5239 char ifname[64];
5240 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
5241 fprintf(stderr, "tap: no interface name\n");
5242 return -1;
5243 }
5244 vlan->nb_host_devs++;
5245 ret = tap_win32_init(vlan, ifname);
5246 } else
5247 #else
5248 if (!strcmp(device, "tap")) {
5249 char ifname[64];
5250 char setup_script[1024], down_script[1024];
5251 int fd;
5252 vlan->nb_host_devs++;
5253 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
5254 fd = strtol(buf, NULL, 0);
5255 fcntl(fd, F_SETFL, O_NONBLOCK);
5256 ret = -1;
5257 if (net_tap_fd_init(vlan, fd))
5258 ret = 0;
5259 } else {
5260 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
5261 ifname[0] = '\0';
5262 }
5263 if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
5264 pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
5265 }
5266 if (get_param_value(down_script, sizeof(down_script), "downscript", p) == 0) {
5267 pstrcpy(down_script, sizeof(down_script), DEFAULT_NETWORK_DOWN_SCRIPT);
5268 }
5269 ret = net_tap_init(vlan, ifname, setup_script, down_script);
5270 }
5271 } else
5272 #endif
5273 if (!strcmp(device, "socket")) {
5274 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
5275 int fd;
5276 fd = strtol(buf, NULL, 0);
5277 ret = -1;
5278 if (net_socket_fd_init(vlan, fd, 1))
5279 ret = 0;
5280 } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
5281 ret = net_socket_listen_init(vlan, buf);
5282 } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
5283 ret = net_socket_connect_init(vlan, buf);
5284 } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
5285 ret = net_socket_mcast_init(vlan, buf);
5286 } else {
5287 fprintf(stderr, "Unknown socket options: %s\n", p);
5288 return -1;
5289 }
5290 vlan->nb_host_devs++;
5291 } else
5292 #ifdef CONFIG_VDE
5293 if (!strcmp(device, "vde")) {
5294 char vde_sock[1024], vde_group[512];
5295 int vde_port, vde_mode;
5296 vlan->nb_host_devs++;
5297 if (get_param_value(vde_sock, sizeof(vde_sock), "sock", p) <= 0) {
5298 vde_sock[0] = '\0';
5299 }
5300 if (get_param_value(buf, sizeof(buf), "port", p) > 0) {
5301 vde_port = strtol(buf, NULL, 10);
5302 } else {
5303 vde_port = 0;
5304 }
5305 if (get_param_value(vde_group, sizeof(vde_group), "group", p) <= 0) {
5306 vde_group[0] = '\0';
5307 }
5308 if (get_param_value(buf, sizeof(buf), "mode", p) > 0) {
5309 vde_mode = strtol(buf, NULL, 8);
5310 } else {
5311 vde_mode = 0700;
5312 }
5313 ret = net_vde_init(vlan, vde_sock, vde_port, vde_group, vde_mode);
5314 } else
5315 #endif
5316 {
5317 fprintf(stderr, "Unknown network device: %s\n", device);
5318 return -1;
5319 }
5320 if (ret < 0) {
5321 fprintf(stderr, "Could not initialize device '%s'\n", device);
5322 }
5323
5324 return ret;
5325 }
5326
5327 static int net_client_parse(const char *str)
5328 {
5329 const char *p;
5330 char *q;
5331 char device[64];
5332
5333 p = str;
5334 q = device;
5335 while (*p != '\0' && *p != ',') {
5336 if ((q - device) < sizeof(device) - 1)
5337 *q++ = *p;
5338 p++;
5339 }
5340 *q = '\0';
5341 if (*p == ',')
5342 p++;
5343
5344 return net_client_init(device, p);
5345 }
5346
5347 void do_info_network(void)
5348 {
5349 VLANState *vlan;
5350 VLANClientState *vc;
5351
5352 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
5353 term_printf("VLAN %d devices:\n", vlan->id);
5354 for(vc = vlan->first_client; vc != NULL; vc = vc->next)
5355 term_printf(" %s\n", vc->info_str);
5356 }
5357 }
5358
5359 /***********************************************************/
5360 /* Bluetooth support */
5361 static int nb_hcis;
5362 static int cur_hci;
5363 static struct HCIInfo *hci_table[MAX_NICS];
5364 static struct bt_vlan_s {
5365 struct bt_scatternet_s net;
5366 int id;
5367 struct bt_vlan_s *next;
5368 } *first_bt_vlan;
5369
5370 /* find or alloc a new bluetooth "VLAN" */
5371 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
5372 {
5373 struct bt_vlan_s **pvlan, *vlan;
5374 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
5375 if (vlan->id == id)
5376 return &vlan->net;
5377 }
5378 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
5379 vlan->id = id;
5380 pvlan = &first_bt_vlan;
5381 while (*pvlan != NULL)
5382 pvlan = &(*pvlan)->next;
5383 *pvlan = vlan;
5384 return &vlan->net;
5385 }
5386
5387 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
5388 {
5389 }
5390
5391 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
5392 {
5393 return -ENOTSUP;
5394 }
5395
5396 static struct HCIInfo null_hci = {
5397 .cmd_send = null_hci_send,
5398 .sco_send = null_hci_send,
5399 .acl_send = null_hci_send,
5400 .bdaddr_set = null_hci_addr_set,
5401 };
5402
5403 struct HCIInfo *qemu_next_hci(void)
5404 {
5405 if (cur_hci == nb_hcis)
5406 return &null_hci;
5407
5408 return hci_table[cur_hci++];
5409 }
5410
5411 /***********************************************************/
5412 /* QEMU Block devices */
5413
5414 #define HD_ALIAS "index=%d,media=disk"
5415 #ifdef TARGET_PPC
5416 #define CDROM_ALIAS "index=1,media=cdrom"
5417 #else
5418 #define CDROM_ALIAS "index=2,media=cdrom"
5419 #endif
5420 #define FD_ALIAS "index=%d,if=floppy"
5421 #define PFLASH_ALIAS "if=pflash"
5422 #define MTD_ALIAS "if=mtd"
5423 #define SD_ALIAS "index=0,if=sd"
5424
5425 static int drive_add(const char *file, const char *fmt, ...)
5426 {
5427 va_list ap;
5428
5429 if (nb_drives_opt >= MAX_DRIVES) {
5430 fprintf(stderr, "qemu: too many drives\n");
5431 exit(1);
5432 }
5433
5434 drives_opt[nb_drives_opt].file = file;
5435 va_start(ap, fmt);
5436 vsnprintf(drives_opt[nb_drives_opt].opt,
5437 sizeof(drives_opt[0].opt), fmt, ap);
5438 va_end(ap);
5439
5440 return nb_drives_opt++;
5441 }
5442
5443 int drive_get_index(BlockInterfaceType type, int bus, int unit)
5444 {
5445 int index;
5446
5447 /* seek interface, bus and unit */
5448
5449 for (index = 0; index < nb_drives; index++)
5450 if (drives_table[index].type == type &&
5451 drives_table[index].bus == bus &&
5452 drives_table[index].unit == unit)
5453 return index;
5454
5455 return -1;
5456 }
5457
5458 int drive_get_max_bus(BlockInterfaceType type)
5459 {
5460 int max_bus;
5461 int index;
5462
5463 max_bus = -1;
5464 for (index = 0; index < nb_drives; index++) {
5465 if(drives_table[index].type == type &&
5466 drives_table[index].bus > max_bus)
5467 max_bus = drives_table[index].bus;
5468 }
5469 return max_bus;
5470 }
5471
5472 static void bdrv_format_print(void *opaque, const char *name)
5473 {
5474 fprintf(stderr, " %s", name);
5475 }
5476
5477 static int drive_init(struct drive_opt *arg, int snapshot,
5478 QEMUMachine *machine)
5479 {
5480 char buf[128];
5481 char file[1024];
5482 char devname[128];
5483 const char *mediastr = "";
5484 BlockInterfaceType type;
5485 enum { MEDIA_DISK, MEDIA_CDROM } media;
5486 int bus_id, unit_id;
5487 int cyls, heads, secs, translation;
5488 BlockDriverState *bdrv;
5489 BlockDriver *drv = NULL;
5490 int max_devs;
5491 int index;
5492 int cache;
5493 int bdrv_flags;
5494 char *str = arg->opt;
5495 static const char * const params[] = { "bus", "unit", "if", "index",
5496 "cyls", "heads", "secs", "trans",
5497 "media", "snapshot", "file",
5498 "cache", "format", NULL };
5499
5500 if (check_params(buf, sizeof(buf), params, str) < 0) {
5501 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
5502 buf, str);
5503 return -1;
5504 }
5505
5506 file[0] = 0;
5507 cyls = heads = secs = 0;
5508 bus_id = 0;
5509 unit_id = -1;
5510 translation = BIOS_ATA_TRANSLATION_AUTO;
5511 index = -1;
5512 cache = 1;
5513
5514 if (machine->use_scsi) {
5515 type = IF_SCSI;
5516 max_devs = MAX_SCSI_DEVS;
5517 pstrcpy(devname, sizeof(devname), "scsi");
5518 } else {
5519 type = IF_IDE;
5520 max_devs = MAX_IDE_DEVS;
5521 pstrcpy(devname, sizeof(devname), "ide");
5522 }
5523 media = MEDIA_DISK;
5524
5525 /* extract parameters */
5526
5527 if (get_param_value(buf, sizeof(buf), "bus", str)) {
5528 bus_id = strtol(buf, NULL, 0);
5529 if (bus_id < 0) {
5530 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
5531 return -1;
5532 }
5533 }
5534
5535 if (get_param_value(buf, sizeof(buf), "unit", str)) {
5536 unit_id = strtol(buf, NULL, 0);
5537 if (unit_id < 0) {
5538 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
5539 return -1;
5540 }
5541 }
5542
5543 if (get_param_value(buf, sizeof(buf), "if", str)) {
5544 pstrcpy(devname, sizeof(devname), buf);
5545 if (!strcmp(buf, "ide")) {
5546 type = IF_IDE;
5547 max_devs = MAX_IDE_DEVS;
5548 } else if (!strcmp(buf, "scsi")) {
5549 type = IF_SCSI;
5550 max_devs = MAX_SCSI_DEVS;
5551 } else if (!strcmp(buf, "floppy")) {
5552 type = IF_FLOPPY;
5553 max_devs = 0;
5554 } else if (!strcmp(buf, "pflash")) {
5555 type = IF_PFLASH;
5556 max_devs = 0;
5557 } else if (!strcmp(buf, "mtd")) {
5558 type = IF_MTD;
5559 max_devs = 0;
5560 } else if (!strcmp(buf, "sd")) {
5561 type = IF_SD;
5562 max_devs = 0;
5563 } else {
5564 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
5565 return -1;
5566 }
5567 }
5568
5569 if (get_param_value(buf, sizeof(buf), "index", str)) {
5570 index = strtol(buf, NULL, 0);
5571 if (index < 0) {
5572 fprintf(stderr, "qemu: '%s' invalid index\n", str);
5573 return -1;
5574 }
5575 }
5576
5577 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
5578 cyls = strtol(buf, NULL, 0);
5579 }
5580
5581 if (get_param_value(buf, sizeof(buf), "heads", str)) {
5582 heads = strtol(buf, NULL, 0);
5583 }
5584
5585 if (get_param_value(buf, sizeof(buf), "secs", str)) {
5586 secs = strtol(buf, NULL, 0);
5587 }
5588
5589 if (cyls || heads || secs) {
5590 if (cyls < 1 || cyls > 16383) {
5591 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
5592 return -1;
5593 }
5594 if (heads < 1 || heads > 16) {
5595 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
5596 return -1;
5597 }
5598 if (secs < 1 || secs > 63) {
5599 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
5600 return -1;
5601 }
5602 }
5603
5604 if (get_param_value(buf, sizeof(buf), "trans", str)) {
5605 if (!cyls) {
5606 fprintf(stderr,
5607 "qemu: '%s' trans must be used with cyls,heads and secs\n",
5608 str);
5609 return -1;
5610 }
5611 if (!strcmp(buf, "none"))
5612 translation = BIOS_ATA_TRANSLATION_NONE;
5613 else if (!strcmp(buf, "lba"))
5614 translation = BIOS_ATA_TRANSLATION_LBA;
5615 else if (!strcmp(buf, "auto"))
5616 translation = BIOS_ATA_TRANSLATION_AUTO;
5617 else {
5618 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
5619 return -1;
5620 }
5621 }
5622
5623 if (get_param_value(buf, sizeof(buf), "media", str)) {
5624 if (!strcmp(buf, "disk")) {
5625 media = MEDIA_DISK;
5626 } else if (!strcmp(buf, "cdrom")) {
5627 if (cyls || secs || heads) {
5628 fprintf(stderr,
5629 "qemu: '%s' invalid physical CHS format\n", str);
5630 return -1;
5631 }
5632 media = MEDIA_CDROM;
5633 } else {
5634 fprintf(stderr, "qemu: '%s' invalid media\n", str);
5635 return -1;
5636 }
5637 }
5638
5639 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
5640 if (!strcmp(buf, "on"))
5641 snapshot = 1;
5642 else if (!strcmp(buf, "off"))
5643 snapshot = 0;
5644 else {
5645 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
5646 return -1;
5647 }
5648 }
5649
5650 if (get_param_value(buf, sizeof(buf), "cache", str)) {
5651 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
5652 cache = 0;
5653 else if (!strcmp(buf, "writethrough"))
5654 cache = 1;
5655 else if (!strcmp(buf, "writeback"))
5656 cache = 2;
5657 else {
5658 fprintf(stderr, "qemu: invalid cache option\n");
5659 return -1;
5660 }
5661 }
5662
5663 if (get_param_value(buf, sizeof(buf), "format", str)) {
5664 if (strcmp(buf, "?") == 0) {
5665 fprintf(stderr, "qemu: Supported formats:");
5666 bdrv_iterate_format(bdrv_format_print, NULL);
5667 fprintf(stderr, "\n");
5668 return -1;
5669 }
5670 drv = bdrv_find_format(buf);
5671 if (!drv) {
5672 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
5673 return -1;
5674 }
5675 }
5676
5677 if (arg->file == NULL)
5678 get_param_value(file, sizeof(file), "file", str);
5679 else
5680 pstrcpy(file, sizeof(file), arg->file);
5681
5682 /* compute bus and unit according index */
5683
5684 if (index != -1) {
5685 if (bus_id != 0 || unit_id != -1) {
5686 fprintf(stderr,
5687 "qemu: '%s' index cannot be used with bus and unit\n", str);
5688 return -1;
5689 }
5690 if (max_devs == 0)
5691 {
5692 unit_id = index;
5693 bus_id = 0;
5694 } else {
5695 unit_id = index % max_devs;
5696 bus_id = index / max_devs;
5697 }
5698 }
5699
5700 /* if user doesn't specify a unit_id,
5701 * try to find the first free
5702 */
5703
5704 if (unit_id == -1) {
5705 unit_id = 0;
5706 while (drive_get_index(type, bus_id, unit_id) != -1) {
5707 unit_id++;
5708 if (max_devs && unit_id >= max_devs) {
5709 unit_id -= max_devs;
5710 bus_id++;
5711 }
5712 }
5713 }
5714
5715 /* check unit id */
5716
5717 if (max_devs && unit_id >= max_devs) {
5718 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
5719 str, unit_id, max_devs - 1);
5720 return -1;
5721 }
5722
5723 /*
5724 * ignore multiple definitions
5725 */
5726
5727 if (drive_get_index(type, bus_id, unit_id) != -1)
5728 return 0;
5729
5730 /* init */
5731
5732 if (type == IF_IDE || type == IF_SCSI)
5733 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
5734 if (max_devs)
5735 snprintf(buf, sizeof(buf), "%s%i%s%i",
5736 devname, bus_id, mediastr, unit_id);
5737 else
5738 snprintf(buf, sizeof(buf), "%s%s%i",
5739 devname, mediastr, unit_id);
5740 bdrv = bdrv_new(buf);
5741 drives_table[nb_drives].bdrv = bdrv;
5742 drives_table[nb_drives].type = type;
5743 drives_table[nb_drives].bus = bus_id;
5744 drives_table[nb_drives].unit = unit_id;
5745 nb_drives++;
5746
5747 switch(type) {
5748 case IF_IDE:
5749 case IF_SCSI:
5750 switch(media) {
5751 case MEDIA_DISK:
5752 if (cyls != 0) {
5753 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
5754 bdrv_set_translation_hint(bdrv, translation);
5755 }
5756 break;
5757 case MEDIA_CDROM:
5758 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
5759 break;
5760 }
5761 break;
5762 case IF_SD:
5763 /* FIXME: This isn't really a floppy, but it's a reasonable
5764 approximation. */
5765 case IF_FLOPPY:
5766 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
5767 break;
5768 case IF_PFLASH:
5769 case IF_MTD:
5770 break;
5771 }
5772 if (!file[0])
5773 return 0;
5774 bdrv_flags = 0;
5775 if (snapshot) {
5776 bdrv_flags |= BDRV_O_SNAPSHOT;
5777 cache = 2; /* always use write-back with snapshot */
5778 }
5779 if (cache == 0) /* no caching */
5780 bdrv_flags |= BDRV_O_NOCACHE;
5781 else if (cache == 2) /* write-back */
5782 bdrv_flags |= BDRV_O_CACHE_WB;
5783 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0 || qemu_key_check(bdrv, file)) {
5784 fprintf(stderr, "qemu: could not open disk image %s\n",
5785 file);
5786 return -1;
5787 }
5788 return 0;
5789 }
5790
5791 /***********************************************************/
5792 /* USB devices */
5793
5794 static USBPort *used_usb_ports;
5795 static USBPort *free_usb_ports;
5796
5797 /* ??? Maybe change this to register a hub to keep track of the topology. */
5798 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
5799 usb_attachfn attach)
5800 {
5801 port->opaque = opaque;
5802 port->index = index;
5803 port->attach = attach;
5804 port->next = free_usb_ports;
5805 free_usb_ports = port;
5806 }
5807
5808 int usb_device_add_dev(USBDevice *dev)
5809 {
5810 USBPort *port;
5811
5812 /* Find a USB port to add the device to. */
5813 port = free_usb_ports;
5814 if (!port->next) {
5815 USBDevice *hub;
5816
5817 /* Create a new hub and chain it on. */
5818 free_usb_ports = NULL;
5819 port->next = used_usb_ports;
5820 used_usb_ports = port;
5821
5822 hub = usb_hub_init(VM_USB_HUB_SIZE);
5823 usb_attach(port, hub);
5824 port = free_usb_ports;
5825 }
5826
5827 free_usb_ports = port->next;
5828 port->next = used_usb_ports;
5829 used_usb_ports = port;
5830 usb_attach(port, dev);
5831 return 0;
5832 }
5833
5834 static int usb_device_add(const char *devname)
5835 {
5836 const char *p;
5837 USBDevice *dev;
5838
5839 if (!free_usb_ports)
5840 return -1;
5841
5842 if (strstart(devname, "host:", &p)) {
5843 dev = usb_host_device_open(p);
5844 } else if (!strcmp(devname, "mouse")) {
5845 dev = usb_mouse_init();
5846 } else if (!strcmp(devname, "tablet")) {
5847 dev = usb_tablet_init();
5848 } else if (!strcmp(devname, "keyboard")) {
5849 dev = usb_keyboard_init();
5850 } else if (strstart(devname, "disk:", &p)) {
5851 dev = usb_msd_init(p);
5852 } else if (!strcmp(devname, "wacom-tablet")) {
5853 dev = usb_wacom_init();
5854 } else if (strstart(devname, "serial:", &p)) {
5855 dev = usb_serial_init(p);
5856 #ifdef CONFIG_BRLAPI
5857 } else if (!strcmp(devname, "braille")) {
5858 dev = usb_baum_init();
5859 #endif
5860 } else if (strstart(devname, "net:", &p)) {
5861 int nic = nb_nics;
5862
5863 if (net_client_init("nic", p) < 0)
5864 return -1;
5865 nd_table[nic].model = "usb";
5866 dev = usb_net_init(&nd_table[nic]);
5867 } else {
5868 return -1;
5869 }
5870 if (!dev)
5871 return -1;
5872
5873 return usb_device_add_dev(dev);
5874 }
5875
5876 int usb_device_del_addr(int bus_num, int addr)
5877 {
5878 USBPort *port;
5879 USBPort **lastp;
5880 USBDevice *dev;
5881
5882 if (!used_usb_ports)
5883 return -1;
5884
5885 if (bus_num != 0)
5886 return -1;
5887
5888 lastp = &used_usb_ports;
5889 port = used_usb_ports;
5890 while (port && port->dev->addr != addr) {
5891 lastp = &port->next;
5892 port = port->next;
5893 }
5894
5895 if (!port)
5896 return -1;
5897
5898 dev = port->dev;
5899 *lastp = port->next;
5900 usb_attach(port, NULL);
5901 dev->handle_destroy(dev);
5902 port->next = free_usb_ports;
5903 free_usb_ports = port;
5904 return 0;
5905 }
5906
5907 static int usb_device_del(const char *devname)
5908 {
5909 int bus_num, addr;
5910 const char *p;
5911
5912 if (strstart(devname, "host:", &p))
5913 return usb_host_device_close(p);
5914
5915 if (!used_usb_ports)
5916 return -1;
5917
5918 p = strchr(devname, '.');
5919 if (!p)
5920 return -1;
5921 bus_num = strtoul(devname, NULL, 0);
5922 addr = strtoul(p + 1, NULL, 0);
5923
5924 return usb_device_del_addr(bus_num, addr);
5925 }
5926
5927 void do_usb_add(const char *devname)
5928 {
5929 usb_device_add(devname);
5930 }
5931
5932 void do_usb_del(const char *devname)
5933 {
5934 usb_device_del(devname);
5935 }
5936
5937 void usb_info(void)
5938 {
5939 USBDevice *dev;
5940 USBPort *port;
5941 const char *speed_str;
5942
5943 if (!usb_enabled) {
5944 term_printf("USB support not enabled\n");
5945 return;
5946 }
5947
5948 for (port = used_usb_ports; port; port = port->next) {
5949 dev = port->dev;
5950 if (!dev)
5951 continue;
5952 switch(dev->speed) {
5953 case USB_SPEED_LOW:
5954 speed_str = "1.5";
5955 break;
5956 case USB_SPEED_FULL:
5957 speed_str = "12";
5958 break;
5959 case USB_SPEED_HIGH:
5960 speed_str = "480";
5961 break;
5962 default:
5963 speed_str = "?";
5964 break;
5965 }
5966 term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n",
5967 0, dev->addr, speed_str, dev->devname);
5968 }
5969 }
5970
5971 /***********************************************************/
5972 /* PCMCIA/Cardbus */
5973
5974 static struct pcmcia_socket_entry_s {
5975 struct pcmcia_socket_s *socket;
5976 struct pcmcia_socket_entry_s *next;
5977 } *pcmcia_sockets = 0;
5978
5979 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
5980 {
5981 struct pcmcia_socket_entry_s *entry;
5982
5983 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
5984 entry->socket = socket;
5985 entry->next = pcmcia_sockets;
5986 pcmcia_sockets = entry;
5987 }
5988
5989 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
5990 {
5991 struct pcmcia_socket_entry_s *entry, **ptr;
5992
5993 ptr = &pcmcia_sockets;
5994 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
5995 if (entry->socket == socket) {
5996 *ptr = entry->next;
5997 qemu_free(entry);
5998 }
5999 }
6000
6001 void pcmcia_info(void)
6002 {
6003 struct pcmcia_socket_entry_s *iter;
6004 if (!pcmcia_sockets)
6005 term_printf("No PCMCIA sockets\n");
6006
6007 for (iter = pcmcia_sockets; iter; iter = iter->next)
6008 term_printf("%s: %s\n", iter->socket->slot_string,
6009 iter->socket->attached ? iter->socket->card_string :
6010 "Empty");
6011 }
6012
6013 /***********************************************************/
6014 /* dumb display */
6015
6016 static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
6017 {
6018 }
6019
6020 static void dumb_resize(DisplayState *ds, int w, int h)
6021 {
6022 }
6023
6024 static void dumb_refresh(DisplayState *ds)
6025 {
6026 #if defined(CONFIG_SDL)
6027 vga_hw_update();
6028 #endif
6029 }
6030
6031 static void dumb_display_init(DisplayState *ds)
6032 {
6033 ds->data = NULL;
6034 ds->linesize = 0;
6035 ds->depth = 0;
6036 ds->dpy_update = dumb_update;
6037 ds->dpy_resize = dumb_resize;
6038 ds->dpy_refresh = dumb_refresh;
6039 ds->gui_timer_interval = 500;
6040 ds->idle = 1;
6041 }
6042
6043 /***********************************************************/
6044 /* I/O handling */
6045
6046 #define MAX_IO_HANDLERS 64
6047
6048 typedef struct IOHandlerRecord {
6049 int fd;
6050 IOCanRWHandler *fd_read_poll;
6051 IOHandler *fd_read;
6052 IOHandler *fd_write;
6053 int deleted;
6054 void *opaque;
6055 /* temporary data */
6056 struct pollfd *ufd;
6057 struct IOHandlerRecord *next;
6058 } IOHandlerRecord;
6059
6060 static IOHandlerRecord *first_io_handler;
6061
6062 /* XXX: fd_read_poll should be suppressed, but an API change is
6063 necessary in the character devices to suppress fd_can_read(). */
6064 int qemu_set_fd_handler2(int fd,
6065 IOCanRWHandler *fd_read_poll,
6066 IOHandler *fd_read,
6067 IOHandler *fd_write,
6068 void *opaque)
6069 {
6070 IOHandlerRecord **pioh, *ioh;
6071
6072 if (!fd_read && !fd_write) {
6073 pioh = &first_io_handler;
6074 for(;;) {
6075 ioh = *pioh;
6076 if (ioh == NULL)
6077 break;
6078 if (ioh->fd == fd) {
6079 ioh->deleted = 1;
6080 break;
6081 }
6082 pioh = &ioh->next;
6083 }
6084 } else {
6085 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6086 if (ioh->fd == fd)
6087 goto found;
6088 }
6089 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
6090 if (!ioh)
6091 return -1;
6092 ioh->next = first_io_handler;
6093 first_io_handler = ioh;
6094 found:
6095 ioh->fd = fd;
6096 ioh->fd_read_poll = fd_read_poll;
6097 ioh->fd_read = fd_read;
6098 ioh->fd_write = fd_write;
6099 ioh->opaque = opaque;
6100 ioh->deleted = 0;
6101 }
6102 return 0;
6103 }
6104
6105 int qemu_set_fd_handler(int fd,
6106 IOHandler *fd_read,
6107 IOHandler *fd_write,
6108 void *opaque)
6109 {
6110 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
6111 }
6112
6113 /***********************************************************/
6114 /* Polling handling */
6115
6116 typedef struct PollingEntry {
6117 PollingFunc *func;
6118 void *opaque;
6119 struct PollingEntry *next;
6120 } PollingEntry;
6121
6122 static PollingEntry *first_polling_entry;
6123
6124 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
6125 {
6126 PollingEntry **ppe, *pe;
6127 pe = qemu_mallocz(sizeof(PollingEntry));
6128 if (!pe)
6129 return -1;
6130 pe->func = func;
6131 pe->opaque = opaque;
6132 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
6133 *ppe = pe;
6134 return 0;
6135 }
6136
6137 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
6138 {
6139 PollingEntry **ppe, *pe;
6140 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
6141 pe = *ppe;
6142 if (pe->func == func && pe->opaque == opaque) {
6143 *ppe = pe->next;
6144 qemu_free(pe);
6145 break;
6146 }
6147 }
6148 }
6149
6150 #ifdef _WIN32
6151 /***********************************************************/
6152 /* Wait objects support */
6153 typedef struct WaitObjects {
6154 int num;
6155 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
6156 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
6157 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
6158 } WaitObjects;
6159
6160 static WaitObjects wait_objects = {0};
6161
6162 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
6163 {
6164 WaitObjects *w = &wait_objects;
6165
6166 if (w->num >= MAXIMUM_WAIT_OBJECTS)
6167 return -1;
6168 w->events[w->num] = handle;
6169 w->func[w->num] = func;
6170 w->opaque[w->num] = opaque;
6171 w->num++;
6172 return 0;
6173 }
6174
6175 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
6176 {
6177 int i, found;
6178 WaitObjects *w = &wait_objects;
6179
6180 found = 0;
6181 for (i = 0; i < w->num; i++) {
6182 if (w->events[i] == handle)
6183 found = 1;
6184 if (found) {
6185 w->events[i] = w->events[i + 1];
6186 w->func[i] = w->func[i + 1];
6187 w->opaque[i] = w->opaque[i + 1];
6188 }
6189 }
6190 if (found)
6191 w->num--;
6192 }
6193 #endif
6194
6195 #define SELF_ANNOUNCE_ROUNDS 5
6196 #define ETH_P_EXPERIMENTAL 0x01F1 /* just a number */
6197 //#define ETH_P_EXPERIMENTAL 0x0012 /* make it the size of the packet */
6198 #define EXPERIMENTAL_MAGIC 0xf1f23f4f
6199
6200 static int announce_self_create(uint8_t *buf,
6201 uint8_t *mac_addr)
6202 {
6203 uint32_t magic = EXPERIMENTAL_MAGIC;
6204 uint16_t proto = htons(ETH_P_EXPERIMENTAL);
6205
6206 /* FIXME: should we send a different packet (arp/rarp/ping)? */
6207
6208 memset(buf, 0xff, 6); /* h_dst */
6209 memcpy(buf + 6, mac_addr, 6); /* h_src */
6210 memcpy(buf + 12, &proto, 2); /* h_proto */
6211 memcpy(buf + 14, &magic, 4); /* magic */
6212
6213 return 18; /* len */
6214 }
6215
6216 void qemu_announce_self(void)
6217 {
6218 int i, j, len;
6219 VLANState *vlan;
6220 VLANClientState *vc;
6221 uint8_t buf[256];
6222
6223 for (i = 0; i < nb_nics; i++) {
6224 len = announce_self_create(buf, nd_table[i].macaddr);
6225 vlan = nd_table[i].vlan;
6226 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
6227 if (vc->fd_read == tap_receive) /* send only if tap */
6228 for (j=0; j < SELF_ANNOUNCE_ROUNDS; j++)
6229 vc->fd_read(vc->opaque, buf, len);
6230 }
6231 }
6232 }
6233
6234 /***********************************************************/
6235 /* savevm/loadvm support */
6236
6237 #define IO_BUF_SIZE 32768
6238
6239 struct QEMUFile {
6240 QEMUFilePutBufferFunc *put_buffer;
6241 QEMUFileGetBufferFunc *get_buffer;
6242 QEMUFileCloseFunc *close;
6243 QEMUFileRateLimit *rate_limit;
6244 void *opaque;
6245 int is_write;
6246
6247 int64_t buf_offset; /* start of buffer when writing, end of buffer
6248 when reading */
6249 int buf_index;
6250 int buf_size; /* 0 when writing */
6251 uint8_t buf[IO_BUF_SIZE];
6252
6253 int has_error;
6254 };
6255
6256 typedef struct QEMUFileFD
6257 {
6258 int fd;
6259 QEMUFile *file;
6260 } QEMUFileFD;
6261
6262 static int fd_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
6263 {
6264 QEMUFileFD *s = opaque;
6265 ssize_t len;
6266
6267 do {
6268 len = read(s->fd, buf, size);
6269 } while (len == -1 && errno == EINTR);
6270
6271 if (len == -1)
6272 len = -errno;
6273
6274 return len;
6275 }
6276
6277 static int fd_close(void *opaque)
6278 {
6279 QEMUFileFD *s = opaque;
6280 qemu_free(s);
6281 return 0;
6282 }
6283
6284 QEMUFile *qemu_fopen_fd(int fd)
6285 {
6286 QEMUFileFD *s = qemu_mallocz(sizeof(QEMUFileFD));
6287
6288 if (s == NULL)
6289 return NULL;
6290
6291 s->fd = fd;
6292 s->file = qemu_fopen_ops(s, NULL, fd_get_buffer, fd_close, NULL);
6293 return s->file;
6294 }
6295
6296 typedef struct QEMUFileStdio
6297 {
6298 FILE *outfile;
6299 } QEMUFileStdio;
6300
6301 static int file_put_buffer(void *opaque, const uint8_t *buf,
6302 int64_t pos, int size)
6303 {
6304 QEMUFileStdio *s = opaque;
6305 fseek(s->outfile, pos, SEEK_SET);
6306 fwrite(buf, 1, size, s->outfile);
6307 return size;
6308 }
6309
6310 static int file_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
6311 {
6312 QEMUFileStdio *s = opaque;
6313 fseek(s->outfile, pos, SEEK_SET);
6314 return fread(buf, 1, size, s->outfile);
6315 }
6316
6317 static int file_close(void *opaque)
6318 {
6319 QEMUFileStdio *s = opaque;
6320 fclose(s->outfile);
6321 qemu_free(s);
6322 return 0;
6323 }
6324
6325 QEMUFile *qemu_fopen(const char *filename, const char *mode)
6326 {
6327 QEMUFileStdio *s;
6328
6329 s = qemu_mallocz(sizeof(QEMUFileStdio));
6330 if (!s)
6331 return NULL;
6332
6333 s->outfile = fopen(filename, mode);
6334 if (!s->outfile)
6335 goto fail;
6336
6337 if (!strcmp(mode, "wb"))
6338 return qemu_fopen_ops(s, file_put_buffer, NULL, file_close, NULL);
6339 else if (!strcmp(mode, "rb"))
6340 return qemu_fopen_ops(s, NULL, file_get_buffer, file_close, NULL);
6341
6342 fail:
6343 if (s->outfile)
6344 fclose(s->outfile);
6345 qemu_free(s);
6346 return NULL;
6347 }
6348
6349 typedef struct QEMUFileBdrv
6350 {
6351 BlockDriverState *bs;
6352 int64_t base_offset;
6353 } QEMUFileBdrv;
6354
6355 static int bdrv_put_buffer(void *opaque, const uint8_t *buf,
6356 int64_t pos, int size)
6357 {
6358 QEMUFileBdrv *s = opaque;
6359 bdrv_pwrite(s->bs, s->base_offset + pos, buf, size);
6360 return size;
6361 }
6362
6363 static int bdrv_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
6364 {
6365 QEMUFileBdrv *s = opaque;
6366 return bdrv_pread(s->bs, s->base_offset + pos, buf, size);
6367 }
6368
6369 static int bdrv_fclose(void *opaque)
6370 {
6371 QEMUFileBdrv *s = opaque;
6372 qemu_free(s);
6373 return 0;
6374 }
6375
6376 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
6377 {
6378 QEMUFileBdrv *s;
6379
6380 s = qemu_mallocz(sizeof(QEMUFileBdrv));
6381 if (!s)
6382 return NULL;
6383
6384 s->bs = bs;
6385 s->base_offset = offset;
6386
6387 if (is_writable)
6388 return qemu_fopen_ops(s, bdrv_put_buffer, NULL, bdrv_fclose, NULL);
6389
6390 return qemu_fopen_ops(s, NULL, bdrv_get_buffer, bdrv_fclose, NULL);
6391 }
6392
6393 QEMUFile *qemu_fopen_ops(void *opaque, QEMUFilePutBufferFunc *put_buffer,
6394 QEMUFileGetBufferFunc *get_buffer,
6395 QEMUFileCloseFunc *close,
6396 QEMUFileRateLimit *rate_limit)
6397 {
6398 QEMUFile *f;
6399
6400 f = qemu_mallocz(sizeof(QEMUFile));
6401 if (!f)
6402 return NULL;
6403
6404 f->opaque = opaque;
6405 f->put_buffer = put_buffer;
6406 f->get_buffer = get_buffer;
6407 f->close = close;
6408 f->rate_limit = rate_limit;
6409 f->is_write = 0;
6410
6411 return f;
6412 }
6413
6414 int qemu_file_has_error(QEMUFile *f)
6415 {
6416 return f->has_error;
6417 }
6418
6419 void qemu_fflush(QEMUFile *f)
6420 {
6421 if (!f->put_buffer)
6422 return;
6423
6424 if (f->is_write && f->buf_index > 0) {
6425 int len;
6426
6427 len = f->put_buffer(f->opaque, f->buf, f->buf_offset, f->buf_index);
6428 if (len > 0)
6429 f->buf_offset += f->buf_index;
6430 else
6431 f->has_error = 1;
6432 f->buf_index = 0;
6433 }
6434 }
6435
6436 static void qemu_fill_buffer(QEMUFile *f)
6437 {
6438 int len;
6439
6440 if (!f->get_buffer)
6441 return;
6442
6443 if (f->is_write)
6444 abort();
6445
6446 len = f->get_buffer(f->opaque, f->buf, f->buf_offset, IO_BUF_SIZE);
6447 if (len > 0) {
6448 f->buf_index = 0;
6449 f->buf_size = len;
6450 f->buf_offset += len;
6451 } else if (len != -EAGAIN)
6452 f->has_error = 1;
6453 }
6454
6455 int qemu_fclose(QEMUFile *f)
6456 {
6457 int ret = 0;
6458 qemu_fflush(f);
6459 if (f->close)
6460 ret = f->close(f->opaque);
6461 qemu_free(f);
6462 return ret;
6463 }
6464
6465 void qemu_file_put_notify(QEMUFile *f)
6466 {
6467 f->put_buffer(f->opaque, NULL, 0, 0);
6468 }
6469
6470 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
6471 {
6472 int l;
6473
6474 if (!f->has_error && f->is_write == 0 && f->buf_index > 0) {
6475 fprintf(stderr,
6476 "Attempted to write to buffer while read buffer is not empty\n");
6477 abort();
6478 }
6479
6480 while (!f->has_error && size > 0) {
6481 l = IO_BUF_SIZE - f->buf_index;
6482 if (l > size)
6483 l = size;
6484 memcpy(f->buf + f->buf_index, buf, l);
6485 f->is_write = 1;
6486 f->buf_index += l;
6487 buf += l;
6488 size -= l;
6489 if (f->buf_index >= IO_BUF_SIZE)
6490 qemu_fflush(f);
6491 }
6492 }
6493
6494 void qemu_put_byte(QEMUFile *f, int v)
6495 {
6496 if (!f->has_error && f->is_write == 0 && f->buf_index > 0) {
6497 fprintf(stderr,
6498 "Attempted to write to buffer while read buffer is not empty\n");
6499 abort();
6500 }
6501
6502 f->buf[f->buf_index++] = v;
6503 f->is_write = 1;
6504 if (f->buf_index >= IO_BUF_SIZE)
6505 qemu_fflush(f);
6506 }
6507
6508 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
6509 {
6510 int size, l;
6511
6512 if (f->is_write)
6513 abort();
6514
6515 size = size1;
6516 while (size > 0) {
6517 l = f->buf_size - f->buf_index;
6518 if (l == 0) {
6519 qemu_fill_buffer(f);
6520 l = f->buf_size - f->buf_index;
6521 if (l == 0)
6522 break;
6523 }
6524 if (l > size)
6525 l = size;
6526 memcpy(buf, f->buf + f->buf_index, l);
6527 f->buf_index += l;
6528 buf += l;
6529 size -= l;
6530 }
6531 return size1 - size;
6532 }
6533
6534 int qemu_get_byte(QEMUFile *f)
6535 {
6536 if (f->is_write)
6537 abort();
6538
6539 if (f->buf_index >= f->buf_size) {
6540 qemu_fill_buffer(f);
6541 if (f->buf_index >= f->buf_size)
6542 return 0;
6543 }
6544 return f->buf[f->buf_index++];
6545 }
6546
6547 int64_t qemu_ftell(QEMUFile *f)
6548 {
6549 return f->buf_offset - f->buf_size + f->buf_index;
6550 }
6551
6552 int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
6553 {
6554 if (whence == SEEK_SET) {
6555 /* nothing to do */
6556 } else if (whence == SEEK_CUR) {
6557 pos += qemu_ftell(f);
6558 } else {
6559 /* SEEK_END not supported */
6560 return -1;
6561 }
6562 if (f->put_buffer) {
6563 qemu_fflush(f);
6564 f->buf_offset = pos;
6565 } else {
6566 f->buf_offset = pos;
6567 f->buf_index = 0;
6568 f->buf_size = 0;
6569 }
6570 return pos;
6571 }
6572
6573 int qemu_file_rate_limit(QEMUFile *f)
6574 {
6575 if (f->rate_limit)
6576 return f->rate_limit(f->opaque);
6577
6578 return 0;
6579 }
6580
6581 void qemu_put_be16(QEMUFile *f, unsigned int v)
6582 {
6583 qemu_put_byte(f, v >> 8);
6584 qemu_put_byte(f, v);
6585 }
6586
6587 void qemu_put_be32(QEMUFile *f, unsigned int v)
6588 {
6589 qemu_put_byte(f, v >> 24);
6590 qemu_put_byte(f, v >> 16);
6591 qemu_put_byte(f, v >> 8);
6592 qemu_put_byte(f, v);
6593 }
6594
6595 void qemu_put_be64(QEMUFile *f, uint64_t v)
6596 {
6597 qemu_put_be32(f, v >> 32);
6598 qemu_put_be32(f, v);
6599 }
6600
6601 unsigned int qemu_get_be16(QEMUFile *f)
6602 {
6603 unsigned int v;
6604 v = qemu_get_byte(f) << 8;
6605 v |= qemu_get_byte(f);
6606 return v;
6607 }
6608
6609 unsigned int qemu_get_be32(QEMUFile *f)
6610 {
6611 unsigned int v;
6612 v = qemu_get_byte(f) << 24;
6613 v |= qemu_get_byte(f) << 16;
6614 v |= qemu_get_byte(f) << 8;
6615 v |= qemu_get_byte(f);
6616 return v;
6617 }
6618
6619 uint64_t qemu_get_be64(QEMUFile *f)
6620 {
6621 uint64_t v;
6622 v = (uint64_t)qemu_get_be32(f) << 32;
6623 v |= qemu_get_be32(f);
6624 return v;
6625 }
6626
6627 typedef struct SaveStateEntry {
6628 char idstr[256];
6629 int instance_id;
6630 int version_id;
6631 int section_id;
6632 SaveLiveStateHandler *save_live_state;
6633 SaveStateHandler *save_state;
6634 LoadStateHandler *load_state;
6635 void *opaque;
6636 struct SaveStateEntry *next;
6637 } SaveStateEntry;
6638
6639 static SaveStateEntry *first_se;
6640
6641 /* TODO: Individual devices generally have very little idea about the rest
6642 of the system, so instance_id should be removed/replaced.
6643 Meanwhile pass -1 as instance_id if you do not already have a clearly
6644 distinguishing id for all instances of your device class. */
6645 int register_savevm_live(const char *idstr,
6646 int instance_id,
6647 int version_id,
6648 SaveLiveStateHandler *save_live_state,
6649 SaveStateHandler *save_state,
6650 LoadStateHandler *load_state,
6651 void *opaque)
6652 {
6653 SaveStateEntry *se, **pse;
6654 static int global_section_id;
6655
6656 se = qemu_malloc(sizeof(SaveStateEntry));
6657 if (!se)
6658 return -1;
6659 pstrcpy(se->idstr, sizeof(se->idstr), idstr);
6660 se->instance_id = (instance_id == -1) ? 0 : instance_id;
6661 se->version_id = version_id;
6662 se->section_id = global_section_id++;
6663 se->save_live_state = save_live_state;
6664 se->save_state = save_state;
6665 se->load_state = load_state;
6666 se->opaque = opaque;
6667 se->next = NULL;
6668
6669 /* add at the end of list */
6670 pse = &first_se;
6671 while (*pse != NULL) {
6672 if (instance_id == -1
6673 && strcmp(se->idstr, (*pse)->idstr) == 0
6674 && se->instance_id <= (*pse)->instance_id)
6675 se->instance_id = (*pse)->instance_id + 1;
6676 pse = &(*pse)->next;
6677 }
6678 *pse = se;
6679 return 0;
6680 }
6681
6682 int register_savevm(const char *idstr,
6683 int instance_id,
6684 int version_id,
6685 SaveStateHandler *save_state,
6686 LoadStateHandler *load_state,
6687 void *opaque)
6688 {
6689 return register_savevm_live(idstr, instance_id, version_id,
6690 NULL, save_state, load_state, opaque);
6691 }
6692
6693 #define QEMU_VM_FILE_MAGIC 0x5145564d
6694 #define QEMU_VM_FILE_VERSION_COMPAT 0x00000002
6695 #define QEMU_VM_FILE_VERSION 0x00000003
6696
6697 #define QEMU_VM_EOF 0x00
6698 #define QEMU_VM_SECTION_START 0x01
6699 #define QEMU_VM_SECTION_PART 0x02
6700 #define QEMU_VM_SECTION_END 0x03
6701 #define QEMU_VM_SECTION_FULL 0x04
6702
6703 int qemu_savevm_state_begin(QEMUFile *f)
6704 {
6705 SaveStateEntry *se;
6706
6707 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
6708 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
6709
6710 for (se = first_se; se != NULL; se = se->next) {
6711 int len;
6712
6713 if (se->save_live_state == NULL)
6714 continue;
6715
6716 /* Section type */
6717 qemu_put_byte(f, QEMU_VM_SECTION_START);
6718 qemu_put_be32(f, se->section_id);
6719
6720 /* ID string */
6721 len = strlen(se->idstr);
6722 qemu_put_byte(f, len);
6723 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
6724
6725 qemu_put_be32(f, se->instance_id);
6726 qemu_put_be32(f, se->version_id);
6727
6728 se->save_live_state(f, QEMU_VM_SECTION_START, se->opaque);
6729 }
6730
6731 if (qemu_file_has_error(f))
6732 return -EIO;
6733
6734 return 0;
6735 }
6736
6737 int qemu_savevm_state_iterate(QEMUFile *f)
6738 {
6739 SaveStateEntry *se;
6740 int ret = 1;
6741
6742 for (se = first_se; se != NULL; se = se->next) {
6743 if (se->save_live_state == NULL)
6744 continue;
6745
6746 /* Section type */
6747 qemu_put_byte(f, QEMU_VM_SECTION_PART);
6748 qemu_put_be32(f, se->section_id);
6749
6750 ret &= !!se->save_live_state(f, QEMU_VM_SECTION_PART, se->opaque);
6751 }
6752
6753 if (ret)
6754 return 1;
6755
6756 if (qemu_file_has_error(f))
6757 return -EIO;
6758
6759 return 0;
6760 }
6761
6762 int qemu_savevm_state_complete(QEMUFile *f)
6763 {
6764 SaveStateEntry *se;
6765
6766 for (se = first_se; se != NULL; se = se->next) {
6767 if (se->save_live_state == NULL)
6768 continue;
6769
6770 /* Section type */
6771 qemu_put_byte(f, QEMU_VM_SECTION_END);
6772 qemu_put_be32(f, se->section_id);
6773
6774 se->save_live_state(f, QEMU_VM_SECTION_END, se->opaque);
6775 }
6776
6777 for(se = first_se; se != NULL; se = se->next) {
6778 int len;
6779
6780 if (se->save_state == NULL)
6781 continue;
6782
6783 /* Section type */
6784 qemu_put_byte(f, QEMU_VM_SECTION_FULL);
6785 qemu_put_be32(f, se->section_id);
6786
6787 /* ID string */
6788 len = strlen(se->idstr);
6789 qemu_put_byte(f, len);
6790 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
6791
6792 qemu_put_be32(f, se->instance_id);
6793 qemu_put_be32(f, se->version_id);
6794
6795 se->save_state(f, se->opaque);
6796 }
6797
6798 qemu_put_byte(f, QEMU_VM_EOF);
6799
6800 if (qemu_file_has_error(f))
6801 return -EIO;
6802
6803 return 0;
6804 }
6805
6806 int qemu_savevm_state(QEMUFile *f)
6807 {
6808 int saved_vm_running;
6809 int ret;
6810
6811 saved_vm_running = vm_running;
6812 vm_stop(0);
6813
6814 bdrv_flush_all();
6815
6816 ret = qemu_savevm_state_begin(f);
6817 if (ret < 0)
6818 goto out;
6819
6820 do {
6821 ret = qemu_savevm_state_iterate(f);
6822 if (ret < 0)
6823 goto out;
6824 } while (ret == 0);
6825
6826 ret = qemu_savevm_state_complete(f);
6827
6828 out:
6829 if (qemu_file_has_error(f))
6830 ret = -EIO;
6831
6832 if (!ret && saved_vm_running)
6833 vm_start();
6834
6835 return ret;
6836 }
6837
6838 static SaveStateEntry *find_se(const char *idstr, int instance_id)
6839 {
6840 SaveStateEntry *se;
6841
6842 for(se = first_se; se != NULL; se = se->next) {
6843 if (!strcmp(se->idstr, idstr) &&
6844 instance_id == se->instance_id)
6845 return se;
6846 }
6847 return NULL;
6848 }
6849
6850 typedef struct LoadStateEntry {
6851 SaveStateEntry *se;
6852 int section_id;
6853 int version_id;
6854 struct LoadStateEntry *next;
6855 } LoadStateEntry;
6856
6857 static int qemu_loadvm_state_v2(QEMUFile *f)
6858 {
6859 SaveStateEntry *se;
6860 int len, ret, instance_id, record_len, version_id;
6861 int64_t total_len, end_pos, cur_pos;
6862 char idstr[256];
6863
6864 total_len = qemu_get_be64(f);
6865 end_pos = total_len + qemu_ftell(f);
6866 for(;;) {
6867 if (qemu_ftell(f) >= end_pos)
6868 break;
6869 len = qemu_get_byte(f);
6870 qemu_get_buffer(f, (uint8_t *)idstr, len);
6871 idstr[len] = '\0';
6872 instance_id = qemu_get_be32(f);
6873 version_id = qemu_get_be32(f);
6874 record_len = qemu_get_be32(f);
6875 cur_pos = qemu_ftell(f);
6876 se = find_se(idstr, instance_id);
6877 if (!se) {
6878 fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
6879 instance_id, idstr);
6880 } else {
6881 ret = se->load_state(f, se->opaque, version_id);
6882 if (ret < 0) {
6883 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
6884 instance_id, idstr);
6885 }
6886 }
6887 /* always seek to exact end of record */
6888 qemu_fseek(f, cur_pos + record_len, SEEK_SET);
6889 }
6890
6891 if (qemu_file_has_error(f))
6892 return -EIO;
6893
6894 return 0;
6895 }
6896
6897 int qemu_loadvm_state(QEMUFile *f)
6898 {
6899 LoadStateEntry *first_le = NULL;
6900 uint8_t section_type;
6901 unsigned int v;
6902 int ret;
6903
6904 v = qemu_get_be32(f);
6905 if (v != QEMU_VM_FILE_MAGIC)
6906 return -EINVAL;
6907
6908 v = qemu_get_be32(f);
6909 if (v == QEMU_VM_FILE_VERSION_COMPAT)
6910 return qemu_loadvm_state_v2(f);
6911 if (v != QEMU_VM_FILE_VERSION)
6912 return -ENOTSUP;
6913
6914 while ((section_type = qemu_get_byte(f)) != QEMU_VM_EOF) {
6915 uint32_t instance_id, version_id, section_id;
6916 LoadStateEntry *le;
6917 SaveStateEntry *se;
6918 char idstr[257];
6919 int len;
6920
6921 switch (section_type) {
6922 case QEMU_VM_SECTION_START:
6923 case QEMU_VM_SECTION_FULL:
6924 /* Read section start */
6925 section_id = qemu_get_be32(f);
6926 len = qemu_get_byte(f);
6927 qemu_get_buffer(f, (uint8_t *)idstr, len);
6928 idstr[len] = 0;
6929 instance_id = qemu_get_be32(f);
6930 version_id = qemu_get_be32(f);
6931
6932 /* Find savevm section */
6933 se = find_se(idstr, instance_id);
6934 if (se == NULL) {
6935 fprintf(stderr, "Unknown savevm section or instance '%s' %d\n", idstr, instance_id);
6936 ret = -EINVAL;
6937 goto out;
6938 }
6939
6940 /* Validate version */
6941 if (version_id > se->version_id) {
6942 fprintf(stderr, "savevm: unsupported version %d for '%s' v%d\n",
6943 version_id, idstr, se->version_id);
6944 ret = -EINVAL;
6945 goto out;
6946 }
6947
6948 /* Add entry */
6949 le = qemu_mallocz(sizeof(*le));
6950 if (le == NULL) {
6951 ret = -ENOMEM;
6952 goto out;
6953 }
6954
6955 le->se = se;
6956 le->section_id = section_id;
6957 le->version_id = version_id;
6958 le->next = first_le;
6959 first_le = le;
6960
6961 le->se->load_state(f, le->se->opaque, le->version_id);
6962 break;
6963 case QEMU_VM_SECTION_PART:
6964 case QEMU_VM_SECTION_END:
6965 section_id = qemu_get_be32(f);
6966
6967 for (le = first_le; le && le->section_id != section_id; le = le->next);
6968 if (le == NULL) {
6969 fprintf(stderr, "Unknown savevm section %d\n", section_id);
6970 ret = -EINVAL;
6971 goto out;
6972 }
6973
6974 le->se->load_state(f, le->se->opaque, le->version_id);
6975 break;
6976 default:
6977 fprintf(stderr, "Unknown savevm section type %d\n", section_type);
6978 ret = -EINVAL;
6979 goto out;
6980 }
6981 }
6982
6983 ret = 0;
6984
6985 out:
6986 while (first_le) {
6987 LoadStateEntry *le = first_le;
6988 first_le = first_le->next;
6989 qemu_free(le);
6990 }
6991
6992 if (qemu_file_has_error(f))
6993 ret = -EIO;
6994
6995 return ret;
6996 }
6997
6998 /* device can contain snapshots */
6999 static int bdrv_can_snapshot(BlockDriverState *bs)
7000 {
7001 return (bs &&
7002 !bdrv_is_removable(bs) &&
7003 !bdrv_is_read_only(bs));
7004 }
7005
7006 /* device must be snapshots in order to have a reliable snapshot */
7007 static int bdrv_has_snapshot(BlockDriverState *bs)
7008 {
7009 return (bs &&
7010 !bdrv_is_removable(bs) &&
7011 !bdrv_is_read_only(bs));
7012 }
7013
7014 static BlockDriverState *get_bs_snapshots(void)
7015 {
7016 BlockDriverState *bs;
7017 int i;
7018
7019 if (bs_snapshots)
7020 return bs_snapshots;
7021 for(i = 0; i <= nb_drives; i++) {
7022 bs = drives_table[i].bdrv;
7023 if (bdrv_can_snapshot(bs))
7024 goto ok;
7025 }
7026 return NULL;
7027 ok:
7028 bs_snapshots = bs;
7029 return bs;
7030 }
7031
7032 static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
7033 const char *name)
7034 {
7035 QEMUSnapshotInfo *sn_tab, *sn;
7036 int nb_sns, i, ret;
7037
7038 ret = -ENOENT;
7039 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
7040 if (nb_sns < 0)
7041 return ret;
7042 for(i = 0; i < nb_sns; i++) {
7043 sn = &sn_tab[i];
7044 if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
7045 *sn_info = *sn;
7046 ret = 0;
7047 break;
7048 }
7049 }
7050 qemu_free(sn_tab);
7051 return ret;
7052 }
7053
7054 void do_savevm(const char *name)
7055 {
7056 BlockDriverState *bs, *bs1;
7057 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
7058 int must_delete, ret, i;
7059 BlockDriverInfo bdi1, *bdi = &bdi1;
7060 QEMUFile *f;
7061 int saved_vm_running;
7062 #ifdef _WIN32
7063 struct _timeb tb;
7064 #else
7065 struct timeval tv;
7066 #endif
7067
7068 bs = get_bs_snapshots();
7069 if (!bs) {
7070 term_printf("No block device can accept snapshots\n");
7071 return;
7072 }
7073
7074 /* ??? Should this occur after vm_stop? */
7075 qemu_aio_flush();
7076
7077 saved_vm_running = vm_running;
7078 vm_stop(0);
7079
7080 must_delete = 0;
7081 if (name) {
7082 ret = bdrv_snapshot_find(bs, old_sn, name);
7083 if (ret >= 0) {
7084 must_delete = 1;
7085 }
7086 }
7087 memset(sn, 0, sizeof(*sn));
7088 if (must_delete) {
7089 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
7090 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
7091 } else {
7092 if (name)
7093 pstrcpy(sn->name, sizeof(sn->name), name);
7094 }
7095
7096 /* fill auxiliary fields */
7097 #ifdef _WIN32
7098 _ftime(&tb);
7099 sn->date_sec = tb.time;
7100 sn->date_nsec = tb.millitm * 1000000;
7101 #else
7102 gettimeofday(&tv, NULL);
7103 sn->date_sec = tv.tv_sec;
7104 sn->date_nsec = tv.tv_usec * 1000;
7105 #endif
7106 sn->vm_clock_nsec = qemu_get_clock(vm_clock);
7107
7108 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
7109 term_printf("Device %s does not support VM state snapshots\n",
7110 bdrv_get_device_name(bs));
7111 goto the_end;
7112 }
7113
7114 /* save the VM state */
7115 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
7116 if (!f) {
7117 term_printf("Could not open VM state file\n");
7118 goto the_end;
7119 }
7120 ret = qemu_savevm_state(f);
7121 sn->vm_state_size = qemu_ftell(f);
7122 qemu_fclose(f);
7123 if (ret < 0) {
7124 term_printf("Error %d while writing VM\n", ret);
7125 goto the_end;
7126 }
7127
7128 /* create the snapshots */
7129
7130 for(i = 0; i < nb_drives; i++) {
7131 bs1 = drives_table[i].bdrv;
7132 if (bdrv_has_snapshot(bs1)) {
7133 if (must_delete) {
7134 ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
7135 if (ret < 0) {
7136 term_printf("Error while deleting snapshot on '%s'\n",
7137 bdrv_get_device_name(bs1));
7138 }
7139 }
7140 ret = bdrv_snapshot_create(bs1, sn);
7141 if (ret < 0) {
7142 term_printf("Error while creating snapshot on '%s'\n",
7143 bdrv_get_device_name(bs1));
7144 }
7145 }
7146 }
7147
7148 the_end:
7149 if (saved_vm_running)
7150 vm_start();
7151 }
7152
7153 void do_loadvm(const char *name)
7154 {
7155 BlockDriverState *bs, *bs1;
7156 BlockDriverInfo bdi1, *bdi = &bdi1;
7157 QEMUFile *f;
7158 int i, ret;
7159 int saved_vm_running;
7160
7161 bs = get_bs_snapshots();
7162 if (!bs) {
7163 term_printf("No block device supports snapshots\n");
7164 return;
7165 }
7166
7167 /* Flush all IO requests so they don't interfere with the new state. */
7168 qemu_aio_flush();
7169
7170 saved_vm_running = vm_running;
7171 vm_stop(0);
7172
7173 for(i = 0; i <= nb_drives; i++) {
7174 bs1 = drives_table[i].bdrv;
7175 if (bdrv_has_snapshot(bs1)) {
7176 ret = bdrv_snapshot_goto(bs1, name);
7177 if (ret < 0) {
7178 if (bs != bs1)
7179 term_printf("Warning: ");
7180 switch(ret) {
7181 case -ENOTSUP:
7182 term_printf("Snapshots not supported on device '%s'\n",
7183 bdrv_get_device_name(bs1));
7184 break;
7185 case -ENOENT:
7186 term_printf("Could not find snapshot '%s' on device '%s'\n",
7187 name, bdrv_get_device_name(bs1));
7188 break;
7189 default:
7190 term_printf("Error %d while activating snapshot on '%s'\n",
7191 ret, bdrv_get_device_name(bs1));
7192 break;
7193 }
7194 /* fatal on snapshot block device */
7195 if (bs == bs1)
7196 goto the_end;
7197 }
7198 }
7199 }
7200
7201 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
7202 term_printf("Device %s does not support VM state snapshots\n",
7203 bdrv_get_device_name(bs));
7204 return;
7205 }
7206
7207 /* restore the VM state */
7208 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
7209 if (!f) {
7210 term_printf("Could not open VM state file\n");
7211 goto the_end;
7212 }
7213 ret = qemu_loadvm_state(f);
7214 qemu_fclose(f);
7215 if (ret < 0) {
7216 term_printf("Error %d while loading VM state\n", ret);
7217 }
7218 the_end:
7219 if (saved_vm_running)
7220 vm_start();
7221 }
7222
7223 void do_delvm(const char *name)
7224 {
7225 BlockDriverState *bs, *bs1;
7226 int i, ret;
7227
7228 bs = get_bs_snapshots();
7229 if (!bs) {
7230 term_printf("No block device supports snapshots\n");
7231 return;
7232 }
7233
7234 for(i = 0; i <= nb_drives; i++) {
7235 bs1 = drives_table[i].bdrv;
7236 if (bdrv_has_snapshot(bs1)) {
7237 ret = bdrv_snapshot_delete(bs1, name);
7238 if (ret < 0) {
7239 if (ret == -ENOTSUP)
7240 term_printf("Snapshots not supported on device '%s'\n",
7241 bdrv_get_device_name(bs1));
7242 else
7243 term_printf("Error %d while deleting snapshot on '%s'\n",
7244 ret, bdrv_get_device_name(bs1));
7245 }
7246 }
7247 }
7248 }
7249
7250 void do_info_snapshots(void)
7251 {
7252 BlockDriverState *bs, *bs1;
7253 QEMUSnapshotInfo *sn_tab, *sn;
7254 int nb_sns, i;
7255 char buf[256];
7256
7257 bs = get_bs_snapshots();
7258 if (!bs) {
7259 term_printf("No available block device supports snapshots\n");
7260 return;
7261 }
7262 term_printf("Snapshot devices:");
7263 for(i = 0; i <= nb_drives; i++) {
7264 bs1 = drives_table[i].bdrv;
7265 if (bdrv_has_snapshot(bs1)) {
7266 if (bs == bs1)
7267 term_printf(" %s", bdrv_get_device_name(bs1));
7268 }
7269 }
7270 term_printf("\n");
7271
7272 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
7273 if (nb_sns < 0) {
7274 term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
7275 return;
7276 }
7277 term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
7278 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
7279 for(i = 0; i < nb_sns; i++) {
7280 sn = &sn_tab[i];
7281 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
7282 }
7283 qemu_free(sn_tab);
7284 }
7285
7286 /***********************************************************/
7287 /* ram save/restore */
7288
7289 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
7290 {
7291 int v;
7292
7293 v = qemu_get_byte(f);
7294 switch(v) {
7295 case 0:
7296 if (qemu_get_buffer(f, buf, len) != len)
7297 return -EIO;
7298 break;
7299 case 1:
7300 v = qemu_get_byte(f);
7301 memset(buf, v, len);
7302 break;
7303 default:
7304 return -EINVAL;
7305 }
7306
7307 if (qemu_file_has_error(f))
7308 return -EIO;
7309
7310 return 0;
7311 }
7312
7313 static int ram_load_v1(QEMUFile *f, void *opaque)
7314 {
7315 int ret;
7316 ram_addr_t i;
7317
7318 if (qemu_get_be32(f) != phys_ram_size)
7319 return -EINVAL;
7320 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
7321 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
7322 if (ret)
7323 return ret;
7324 }
7325 return 0;
7326 }
7327
7328 #define BDRV_HASH_BLOCK_SIZE 1024
7329 #define IOBUF_SIZE 4096
7330 #define RAM_CBLOCK_MAGIC 0xfabe
7331
7332 typedef struct RamDecompressState {
7333 z_stream zstream;
7334 QEMUFile *f;
7335 uint8_t buf[IOBUF_SIZE];
7336 } RamDecompressState;
7337
7338 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
7339 {
7340 int ret;
7341 memset(s, 0, sizeof(*s));
7342 s->f = f;
7343 ret = inflateInit(&s->zstream);
7344 if (ret != Z_OK)
7345 return -1;
7346 return 0;
7347 }
7348
7349 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
7350 {
7351 int ret, clen;
7352
7353 s->zstream.avail_out = len;
7354 s->zstream.next_out = buf;
7355 while (s->zstream.avail_out > 0) {
7356 if (s->zstream.avail_in == 0) {
7357 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
7358 return -1;
7359 clen = qemu_get_be16(s->f);
7360 if (clen > IOBUF_SIZE)
7361 return -1;
7362 qemu_get_buffer(s->f, s->buf, clen);
7363 s->zstream.avail_in = clen;
7364 s->zstream.next_in = s->buf;
7365 }
7366 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
7367 if (ret != Z_OK && ret != Z_STREAM_END) {
7368 return -1;
7369 }
7370 }
7371 return 0;
7372 }
7373
7374 static void ram_decompress_close(RamDecompressState *s)
7375 {
7376 inflateEnd(&s->zstream);
7377 }
7378
7379 #define RAM_SAVE_FLAG_FULL 0x01
7380 #define RAM_SAVE_FLAG_COMPRESS 0x02
7381 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
7382 #define RAM_SAVE_FLAG_PAGE 0x08
7383 #define RAM_SAVE_FLAG_EOS 0x10
7384
7385 static int is_dup_page(uint8_t *page, uint8_t ch)
7386 {
7387 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
7388 uint32_t *array = (uint32_t *)page;
7389 int i;
7390
7391 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
7392 if (array[i] != val)
7393 return 0;
7394 }
7395
7396 return 1;
7397 }
7398
7399 static int ram_save_block(QEMUFile *f)
7400 {
7401 static ram_addr_t current_addr = 0;
7402 ram_addr_t saved_addr = current_addr;
7403 ram_addr_t addr = 0;
7404 int found = 0;
7405
7406 while (addr < phys_ram_size) {
7407 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
7408 uint8_t ch;
7409
7410 cpu_physical_memory_reset_dirty(current_addr,
7411 current_addr + TARGET_PAGE_SIZE,
7412 MIGRATION_DIRTY_FLAG);
7413
7414 ch = *(phys_ram_base + current_addr);
7415
7416 if (is_dup_page(phys_ram_base + current_addr, ch)) {
7417 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
7418 qemu_put_byte(f, ch);
7419 } else {
7420 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
7421 qemu_put_buffer(f, phys_ram_base + current_addr, TARGET_PAGE_SIZE);
7422 }
7423
7424 found = 1;
7425 break;
7426 }
7427 addr += TARGET_PAGE_SIZE;
7428 current_addr = (saved_addr + addr) % phys_ram_size;
7429 }
7430
7431 return found;
7432 }
7433
7434 static ram_addr_t ram_save_threshold = 10;
7435
7436 static ram_addr_t ram_save_remaining(void)
7437 {
7438 ram_addr_t addr;
7439 ram_addr_t count = 0;
7440
7441 for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
7442 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
7443 count++;
7444 }
7445
7446 return count;
7447 }
7448
7449 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
7450 {
7451 ram_addr_t addr;
7452
7453 if (stage == 1) {
7454 /* Make sure all dirty bits are set */
7455 for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
7456 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
7457 cpu_physical_memory_set_dirty(addr);
7458 }
7459
7460 /* Enable dirty memory tracking */
7461 cpu_physical_memory_set_dirty_tracking(1);
7462
7463 qemu_put_be64(f, phys_ram_size | RAM_SAVE_FLAG_MEM_SIZE);
7464 }
7465
7466 while (!qemu_file_rate_limit(f)) {
7467 int ret;
7468
7469 ret = ram_save_block(f);
7470 if (ret == 0) /* no more blocks */
7471 break;
7472 }
7473
7474 /* try transferring iterative blocks of memory */
7475
7476 if (stage == 3) {
7477 cpu_physical_memory_set_dirty_tracking(0);
7478
7479 /* flush all remaining blocks regardless of rate limiting */
7480 while (ram_save_block(f) != 0);
7481 }
7482
7483 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
7484
7485 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
7486 }
7487
7488 static int ram_load_dead(QEMUFile *f, void *opaque)
7489 {
7490 RamDecompressState s1, *s = &s1;
7491 uint8_t buf[10];
7492 ram_addr_t i;
7493
7494 if (ram_decompress_open(s, f) < 0)
7495 return -EINVAL;
7496 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
7497 if (ram_decompress_buf(s, buf, 1) < 0) {
7498 fprintf(stderr, "Error while reading ram block header\n");
7499 goto error;
7500 }
7501 if (buf[0] == 0) {
7502 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
7503 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
7504 goto error;
7505 }
7506 } else {
7507 error:
7508 printf("Error block header\n");
7509 return -EINVAL;
7510 }
7511 }
7512 ram_decompress_close(s);
7513
7514 return 0;
7515 }
7516
7517 static int ram_load(QEMUFile *f, void *opaque, int version_id)
7518 {
7519 ram_addr_t addr;
7520 int flags;
7521
7522 if (version_id == 1)
7523 return ram_load_v1(f, opaque);
7524
7525 if (version_id == 2) {
7526 if (qemu_get_be32(f) != phys_ram_size)
7527 return -EINVAL;
7528 return ram_load_dead(f, opaque);
7529 }
7530
7531 if (version_id != 3)
7532 return -EINVAL;
7533
7534 do {
7535 addr = qemu_get_be64(f);
7536
7537 flags = addr & ~TARGET_PAGE_MASK;
7538 addr &= TARGET_PAGE_MASK;
7539
7540 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
7541 if (addr != phys_ram_size)
7542 return -EINVAL;
7543 }
7544
7545 if (flags & RAM_SAVE_FLAG_FULL) {
7546 if (ram_load_dead(f, opaque) < 0)
7547 return -EINVAL;
7548 }
7549
7550 if (flags & RAM_SAVE_FLAG_COMPRESS) {
7551 uint8_t ch = qemu_get_byte(f);
7552 memset(phys_ram_base + addr, ch, TARGET_PAGE_SIZE);
7553 } else if (flags & RAM_SAVE_FLAG_PAGE)
7554 qemu_get_buffer(f, phys_ram_base + addr, TARGET_PAGE_SIZE);
7555 } while (!(flags & RAM_SAVE_FLAG_EOS));
7556
7557 return 0;
7558 }
7559
7560 void qemu_service_io(void)
7561 {
7562 CPUState *env = cpu_single_env;
7563 if (env) {
7564 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
7565 #ifdef USE_KQEMU
7566 if (env->kqemu_enabled) {
7567 kqemu_cpu_interrupt(env);
7568 }
7569 #endif
7570 }
7571 }
7572
7573 /***********************************************************/
7574 /* bottom halves (can be seen as timers which expire ASAP) */
7575
7576 struct QEMUBH {
7577 QEMUBHFunc *cb;
7578 void *opaque;
7579 int scheduled;
7580 QEMUBH *next;
7581 };
7582
7583 static QEMUBH *first_bh = NULL;
7584
7585 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
7586 {
7587 QEMUBH *bh;
7588 bh = qemu_mallocz(sizeof(QEMUBH));
7589 if (!bh)
7590 return NULL;
7591 bh->cb = cb;
7592 bh->opaque = opaque;
7593 return bh;
7594 }
7595
7596 int qemu_bh_poll(void)
7597 {
7598 QEMUBH *bh, **pbh;
7599 int ret;
7600
7601 ret = 0;
7602 for(;;) {
7603 pbh = &first_bh;
7604 bh = *pbh;
7605 if (!bh)
7606 break;
7607 ret = 1;
7608 *pbh = bh->next;
7609 bh->scheduled = 0;
7610 bh->cb(bh->opaque);
7611 }
7612 return ret;
7613 }
7614
7615 void qemu_bh_schedule(QEMUBH *bh)
7616 {
7617 CPUState *env = cpu_single_env;
7618 if (bh->scheduled)
7619 return;
7620 bh->scheduled = 1;
7621 bh->next = first_bh;
7622 first_bh = bh;
7623
7624 /* stop the currently executing CPU to execute the BH ASAP */
7625 if (env) {
7626 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
7627 }
7628 }
7629
7630 void qemu_bh_cancel(QEMUBH *bh)
7631 {
7632 QEMUBH **pbh;
7633 if (bh->scheduled) {
7634 pbh = &first_bh;
7635 while (*pbh != bh)
7636 pbh = &(*pbh)->next;
7637 *pbh = bh->next;
7638 bh->scheduled = 0;
7639 }
7640 }
7641
7642 void qemu_bh_delete(QEMUBH *bh)
7643 {
7644 qemu_bh_cancel(bh);
7645 qemu_free(bh);
7646 }
7647
7648 /***********************************************************/
7649 /* machine registration */
7650
7651 static QEMUMachine *first_machine = NULL;
7652
7653 int qemu_register_machine(QEMUMachine *m)
7654 {
7655 QEMUMachine **pm;
7656 pm = &first_machine;
7657 while (*pm != NULL)
7658 pm = &(*pm)->next;
7659 m->next = NULL;
7660 *pm = m;
7661 return 0;
7662 }
7663
7664 static QEMUMachine *find_machine(const char *name)
7665 {
7666 QEMUMachine *m;
7667
7668 for(m = first_machine; m != NULL; m = m->next) {
7669 if (!strcmp(m->name, name))
7670 return m;
7671 }
7672 return NULL;
7673 }
7674
7675 /***********************************************************/
7676 /* main execution loop */
7677
7678 static void gui_update(void *opaque)
7679 {
7680 DisplayState *ds = opaque;
7681 ds->dpy_refresh(ds);
7682 qemu_mod_timer(ds->gui_timer,
7683 (ds->gui_timer_interval ?
7684 ds->gui_timer_interval :
7685 GUI_REFRESH_INTERVAL)
7686 + qemu_get_clock(rt_clock));
7687 }
7688
7689 struct vm_change_state_entry {
7690 VMChangeStateHandler *cb;
7691 void *opaque;
7692 LIST_ENTRY (vm_change_state_entry) entries;
7693 };
7694
7695 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
7696
7697 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
7698 void *opaque)
7699 {
7700 VMChangeStateEntry *e;
7701
7702 e = qemu_mallocz(sizeof (*e));
7703 if (!e)
7704 return NULL;
7705
7706 e->cb = cb;
7707 e->opaque = opaque;
7708 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
7709 return e;
7710 }
7711
7712 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
7713 {
7714 LIST_REMOVE (e, entries);
7715 qemu_free (e);
7716 }
7717
7718 static void vm_state_notify(int running)
7719 {
7720 VMChangeStateEntry *e;
7721
7722 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
7723 e->cb(e->opaque, running);
7724 }
7725 }
7726
7727 /* XXX: support several handlers */
7728 static VMStopHandler *vm_stop_cb;
7729 static void *vm_stop_opaque;
7730
7731 int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
7732 {
7733 vm_stop_cb = cb;
7734 vm_stop_opaque = opaque;
7735 return 0;
7736 }
7737
7738 void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
7739 {
7740 vm_stop_cb = NULL;
7741 }
7742
7743 void vm_start(void)
7744 {
7745 if (!vm_running) {
7746 cpu_enable_ticks();
7747 vm_running = 1;
7748 vm_state_notify(1);
7749 qemu_rearm_alarm_timer(alarm_timer);
7750 }
7751 }
7752
7753 void vm_stop(int reason)
7754 {
7755 if (vm_running) {
7756 cpu_disable_ticks();
7757 vm_running = 0;
7758 if (reason != 0) {
7759 if (vm_stop_cb) {
7760 vm_stop_cb(vm_stop_opaque, reason);
7761 }
7762 }
7763 vm_state_notify(0);
7764 }
7765 }
7766
7767 /* reset/shutdown handler */
7768
7769 typedef struct QEMUResetEntry {
7770 QEMUResetHandler *func;
7771 void *opaque;
7772 struct QEMUResetEntry *next;
7773 } QEMUResetEntry;
7774
7775 static QEMUResetEntry *first_reset_entry;
7776 static int reset_requested;
7777 static int shutdown_requested;
7778 static int powerdown_requested;
7779
7780 int qemu_shutdown_requested(void)
7781 {
7782 int r = shutdown_requested;
7783 shutdown_requested = 0;
7784 return r;
7785 }
7786
7787 int qemu_reset_requested(void)
7788 {
7789 int r = reset_requested;
7790 reset_requested = 0;
7791 return r;
7792 }
7793
7794 int qemu_powerdown_requested(void)
7795 {
7796 int r = powerdown_requested;
7797 powerdown_requested = 0;
7798 return r;
7799 }
7800
7801 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
7802 {
7803 QEMUResetEntry **pre, *re;
7804
7805 pre = &first_reset_entry;
7806 while (*pre != NULL)
7807 pre = &(*pre)->next;
7808 re = qemu_mallocz(sizeof(QEMUResetEntry));
7809 re->func = func;
7810 re->opaque = opaque;
7811 re->next = NULL;
7812 *pre = re;
7813 }
7814
7815 void qemu_system_reset(void)
7816 {
7817 QEMUResetEntry *re;
7818
7819 /* reset all devices */
7820 for(re = first_reset_entry; re != NULL; re = re->next) {
7821 re->func(re->opaque);
7822 }
7823 }
7824
7825 void qemu_system_reset_request(void)
7826 {
7827 if (no_reboot) {
7828 shutdown_requested = 1;
7829 } else {
7830 reset_requested = 1;
7831 }
7832 if (cpu_single_env)
7833 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7834 }
7835
7836 void qemu_system_shutdown_request(void)
7837 {
7838 shutdown_requested = 1;
7839 if (cpu_single_env)
7840 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7841 }
7842
7843 void qemu_system_powerdown_request(void)
7844 {
7845 powerdown_requested = 1;
7846 if (cpu_single_env)
7847 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7848 }
7849
7850 void main_loop_wait(int timeout)
7851 {
7852 IOHandlerRecord *ioh;
7853 fd_set rfds, wfds, xfds;
7854 int ret, nfds;
7855 #ifdef _WIN32
7856 int ret2, i;
7857 #endif
7858 struct timeval tv;
7859 PollingEntry *pe;
7860
7861
7862 /* XXX: need to suppress polling by better using win32 events */
7863 ret = 0;
7864 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
7865 ret |= pe->func(pe->opaque);
7866 }
7867 #ifdef _WIN32
7868 if (ret == 0) {
7869 int err;
7870 WaitObjects *w = &wait_objects;
7871
7872 ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
7873 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
7874 if (w->func[ret - WAIT_OBJECT_0])
7875 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
7876
7877 /* Check for additional signaled events */
7878 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
7879
7880 /* Check if event is signaled */
7881 ret2 = WaitForSingleObject(w->events[i], 0);
7882 if(ret2 == WAIT_OBJECT_0) {
7883 if (w->func[i])
7884 w->func[i](w->opaque[i]);
7885 } else if (ret2 == WAIT_TIMEOUT) {
7886 } else {
7887 err = GetLastError();
7888 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
7889 }
7890 }
7891 } else if (ret == WAIT_TIMEOUT) {
7892 } else {
7893 err = GetLastError();
7894 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
7895 }
7896 }
7897 #endif
7898 /* poll any events */
7899 /* XXX: separate device handlers from system ones */
7900 nfds = -1;
7901 FD_ZERO(&rfds);
7902 FD_ZERO(&wfds);
7903 FD_ZERO(&xfds);
7904 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
7905 if (ioh->deleted)
7906 continue;
7907 if (ioh->fd_read &&
7908 (!ioh->fd_read_poll ||
7909 ioh->fd_read_poll(ioh->opaque) != 0)) {
7910 FD_SET(ioh->fd, &rfds);
7911 if (ioh->fd > nfds)
7912 nfds = ioh->fd;
7913 }
7914 if (ioh->fd_write) {
7915 FD_SET(ioh->fd, &wfds);
7916 if (ioh->fd > nfds)
7917 nfds = ioh->fd;
7918 }
7919 }
7920
7921 tv.tv_sec = 0;
7922 #ifdef _WIN32
7923 tv.tv_usec = 0;
7924 #else
7925 tv.tv_usec = timeout * 1000;
7926 #endif
7927 #if defined(CONFIG_SLIRP)
7928 if (slirp_inited) {
7929 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
7930 }
7931 #endif
7932 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
7933 if (ret > 0) {
7934 IOHandlerRecord **pioh;
7935
7936 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
7937 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
7938 ioh->fd_read(ioh->opaque);
7939 }
7940 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
7941 ioh->fd_write(ioh->opaque);
7942 }
7943 }
7944
7945 /* remove deleted IO handlers */
7946 pioh = &first_io_handler;
7947 while (*pioh) {
7948 ioh = *pioh;
7949 if (ioh->deleted) {
7950 *pioh = ioh->next;
7951 qemu_free(ioh);
7952 } else
7953 pioh = &ioh->next;
7954 }
7955 }
7956 #if defined(CONFIG_SLIRP)
7957 if (slirp_inited) {
7958 if (ret < 0) {
7959 FD_ZERO(&rfds);
7960 FD_ZERO(&wfds);
7961 FD_ZERO(&xfds);
7962 }
7963 slirp_select_poll(&rfds, &wfds, &xfds);
7964 }
7965 #endif
7966
7967 if (vm_running) {
7968 if (likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
7969 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
7970 qemu_get_clock(vm_clock));
7971 /* run dma transfers, if any */
7972 DMA_run();
7973 }
7974
7975 /* real time timers */
7976 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
7977 qemu_get_clock(rt_clock));
7978
7979 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
7980 alarm_timer->flags &= ~(ALARM_FLAG_EXPIRED);
7981 qemu_rearm_alarm_timer(alarm_timer);
7982 }
7983
7984 /* Check bottom-halves last in case any of the earlier events triggered
7985 them. */
7986 qemu_bh_poll();
7987
7988 }
7989
7990 static int main_loop(void)
7991 {
7992 int ret, timeout;
7993 #ifdef CONFIG_PROFILER
7994 int64_t ti;
7995 #endif
7996 CPUState *env;
7997
7998 cur_cpu = first_cpu;
7999 next_cpu = cur_cpu->next_cpu ?: first_cpu;
8000 for(;;) {
8001 if (vm_running) {
8002
8003 for(;;) {
8004 /* get next cpu */
8005 env = next_cpu;
8006 #ifdef CONFIG_PROFILER
8007 ti = profile_getclock();
8008 #endif
8009 if (use_icount) {
8010 int64_t count;
8011 int decr;
8012 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
8013 env->icount_decr.u16.low = 0;
8014 env->icount_extra = 0;
8015 count = qemu_next_deadline();
8016 count = (count + (1 << icount_time_shift) - 1)
8017 >> icount_time_shift;
8018 qemu_icount += count;
8019 decr = (count > 0xffff) ? 0xffff : count;
8020 count -= decr;
8021 env->icount_decr.u16.low = decr;
8022 env->icount_extra = count;
8023 }
8024 ret = cpu_exec(env);
8025 #ifdef CONFIG_PROFILER
8026 qemu_time += profile_getclock() - ti;
8027 #endif
8028 if (use_icount) {
8029 /* Fold pending instructions back into the
8030 instruction counter, and clear the interrupt flag. */
8031 qemu_icount -= (env->icount_decr.u16.low
8032 + env->icount_extra);
8033 env->icount_decr.u32 = 0;
8034 env->icount_extra = 0;
8035 }
8036 next_cpu = env->next_cpu ?: first_cpu;
8037 if (event_pending && likely(ret != EXCP_DEBUG)) {
8038 ret = EXCP_INTERRUPT;
8039 event_pending = 0;
8040 break;
8041 }
8042 if (ret == EXCP_HLT) {
8043 /* Give the next CPU a chance to run. */
8044 cur_cpu = env;
8045 continue;
8046 }
8047 if (ret != EXCP_HALTED)
8048 break;
8049 /* all CPUs are halted ? */
8050 if (env == cur_cpu)
8051 break;
8052 }
8053 cur_cpu = env;
8054
8055 if (shutdown_requested) {
8056 ret = EXCP_INTERRUPT;
8057 if (no_shutdown) {
8058 vm_stop(0);
8059 no_shutdown = 0;
8060 }
8061 else
8062 break;
8063 }
8064 if (reset_requested) {
8065 reset_requested = 0;
8066 qemu_system_reset();
8067 ret = EXCP_INTERRUPT;
8068 }
8069 if (powerdown_requested) {
8070 powerdown_requested = 0;
8071 qemu_system_powerdown();
8072 ret = EXCP_INTERRUPT;
8073 }
8074 if (unlikely(ret == EXCP_DEBUG)) {
8075 vm_stop(EXCP_DEBUG);
8076 }
8077 /* If all cpus are halted then wait until the next IRQ */
8078 /* XXX: use timeout computed from timers */
8079 if (ret == EXCP_HALTED) {
8080 if (use_icount) {
8081 int64_t add;
8082 int64_t delta;
8083 /* Advance virtual time to the next event. */
8084 if (use_icount == 1) {
8085 /* When not using an adaptive execution frequency
8086 we tend to get badly out of sync with real time,
8087 so just delay for a reasonable amount of time. */
8088 delta = 0;
8089 } else {
8090 delta = cpu_get_icount() - cpu_get_clock();
8091 }
8092 if (delta > 0) {
8093 /* If virtual time is ahead of real time then just
8094 wait for IO. */
8095 timeout = (delta / 1000000) + 1;
8096 } else {
8097 /* Wait for either IO to occur or the next
8098 timer event. */
8099 add = qemu_next_deadline();
8100 /* We advance the timer before checking for IO.
8101 Limit the amount we advance so that early IO
8102 activity won't get the guest too far ahead. */
8103 if (add > 10000000)
8104 add = 10000000;
8105 delta += add;
8106 add = (add + (1 << icount_time_shift) - 1)
8107 >> icount_time_shift;
8108 qemu_icount += add;
8109 timeout = delta / 1000000;
8110 if (timeout < 0)
8111 timeout = 0;
8112 }
8113 } else {
8114 timeout = 10;
8115 }
8116 } else {
8117 timeout = 0;
8118 }
8119 } else {
8120 if (shutdown_requested) {
8121 ret = EXCP_INTERRUPT;
8122 break;
8123 }
8124 timeout = 10;
8125 }
8126 #ifdef CONFIG_PROFILER
8127 ti = profile_getclock();
8128 #endif
8129 main_loop_wait(timeout);
8130 #ifdef CONFIG_PROFILER
8131 dev_time += profile_getclock() - ti;
8132 #endif
8133 }
8134 cpu_disable_ticks();
8135 return ret;
8136 }
8137
8138 static void help(int exitcode)
8139 {
8140 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
8141 "usage: %s [options] [disk_image]\n"
8142 "\n"
8143 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
8144 "\n"
8145 "Standard options:\n"
8146 "-M machine select emulated machine (-M ? for list)\n"
8147 "-cpu cpu select CPU (-cpu ? for list)\n"
8148 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
8149 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
8150 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
8151 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
8152 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
8153 " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
8154 " [,cache=writethrough|writeback|none][,format=f]\n"
8155 " use 'file' as a drive image\n"
8156 "-mtdblock file use 'file' as on-board Flash memory image\n"
8157 "-sd file use 'file' as SecureDigital card image\n"
8158 "-pflash file use 'file' as a parallel flash image\n"
8159 "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
8160 "-snapshot write to temporary files instead of disk image files\n"
8161 #ifdef CONFIG_SDL
8162 "-no-frame open SDL window without a frame and window decorations\n"
8163 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
8164 "-no-quit disable SDL window close capability\n"
8165 #endif
8166 #ifdef TARGET_I386
8167 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
8168 #endif
8169 "-m megs set virtual RAM size to megs MB [default=%d]\n"
8170 "-smp n set the number of CPUs to 'n' [default=1]\n"
8171 "-nographic disable graphical output and redirect serial I/Os to console\n"
8172 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n"
8173 #ifndef _WIN32
8174 "-k language use keyboard layout (for example \"fr\" for French)\n"
8175 #endif
8176 #ifdef HAS_AUDIO
8177 "-audio-help print list of audio drivers and their options\n"
8178 "-soundhw c1,... enable audio support\n"
8179 " and only specified sound cards (comma separated list)\n"
8180 " use -soundhw ? to get the list of supported cards\n"
8181 " use -soundhw all to enable all of them\n"
8182 #endif
8183 "-vga [std|cirrus|vmware]\n"
8184 " select video card type\n"
8185 "-localtime set the real time clock to local time [default=utc]\n"
8186 "-full-screen start in full screen\n"
8187 #ifdef TARGET_I386
8188 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
8189 #endif
8190 "-usb enable the USB driver (will be the default soon)\n"
8191 "-usbdevice name add the host or guest USB device 'name'\n"
8192 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
8193 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
8194 #endif
8195 "-name string set the name of the guest\n"
8196 "-uuid %%08x-%%04x-%%04x-%%04x-%%012x specify machine UUID\n"
8197 "\n"
8198 "Network options:\n"
8199 "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
8200 " create a new Network Interface Card and connect it to VLAN 'n'\n"
8201 #ifdef CONFIG_SLIRP
8202 "-net user[,vlan=n][,hostname=host]\n"
8203 " connect the user mode network stack to VLAN 'n' and send\n"
8204 " hostname 'host' to DHCP clients\n"
8205 #endif
8206 #ifdef _WIN32
8207 "-net tap[,vlan=n],ifname=name\n"
8208 " connect the host TAP network interface to VLAN 'n'\n"
8209 #else
8210 "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
8211 " connect the host TAP network interface to VLAN 'n' and use the\n"
8212 " network scripts 'file' (default=%s)\n"
8213 " and 'dfile' (default=%s);\n"
8214 " use '[down]script=no' to disable script execution;\n"
8215 " use 'fd=h' to connect to an already opened TAP interface\n"
8216 #endif
8217 "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
8218 " connect the vlan 'n' to another VLAN using a socket connection\n"
8219 "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
8220 " connect the vlan 'n' to multicast maddr and port\n"
8221 #ifdef CONFIG_VDE
8222 "-net vde[,vlan=n][,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
8223 " connect the vlan 'n' to port 'n' of a vde switch running\n"
8224 " on host and listening for incoming connections on 'socketpath'.\n"
8225 " Use group 'groupname' and mode 'octalmode' to change default\n"
8226 " ownership and permissions for communication port.\n"
8227 #endif
8228 "-net none use it alone to have zero network devices; if no -net option\n"
8229 " is provided, the default is '-net nic -net user'\n"
8230 "\n"
8231 #ifdef CONFIG_SLIRP
8232 "-tftp dir allow tftp access to files in dir [-net user]\n"
8233 "-bootp file advertise file in BOOTP replies\n"
8234 #ifndef _WIN32
8235 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
8236 #endif
8237 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
8238 " redirect TCP or UDP connections from host to guest [-net user]\n"
8239 #endif
8240 "\n"
8241 "Linux boot specific:\n"
8242 "-kernel bzImage use 'bzImage' as kernel image\n"
8243 "-append cmdline use 'cmdline' as kernel command line\n"
8244 "-initrd file use 'file' as initial ram disk\n"
8245 "\n"
8246 "Debug/Expert options:\n"
8247 "-monitor dev redirect the monitor to char device 'dev'\n"
8248 "-serial dev redirect the serial port to char device 'dev'\n"
8249 "-parallel dev redirect the parallel port to char device 'dev'\n"
8250 "-pidfile file Write PID to 'file'\n"
8251 "-S freeze CPU at startup (use 'c' to start execution)\n"
8252 "-s wait gdb connection to port\n"
8253 "-p port set gdb connection port [default=%s]\n"
8254 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
8255 "-hdachs c,h,s[,t] force hard disk 0 physical geometry and the optional BIOS\n"
8256 " translation (t=none or lba) (usually qemu can guess them)\n"
8257 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
8258 #ifdef USE_KQEMU
8259 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
8260 "-no-kqemu disable KQEMU kernel module usage\n"
8261 #endif
8262 #ifdef TARGET_I386
8263 "-no-acpi disable ACPI\n"
8264 #endif
8265 #ifdef CONFIG_CURSES
8266 "-curses use a curses/ncurses interface instead of SDL\n"
8267 #endif
8268 "-no-reboot exit instead of rebooting\n"
8269 "-no-shutdown stop before shutdown\n"
8270 "-loadvm [tag|id] start right away with a saved state (loadvm in monitor)\n"
8271 "-vnc display start a VNC server on display\n"
8272 #ifndef _WIN32
8273 "-daemonize daemonize QEMU after initializing\n"
8274 #endif
8275 "-option-rom rom load a file, rom, into the option ROM space\n"
8276 #ifdef TARGET_SPARC
8277 "-prom-env variable=value set OpenBIOS nvram variables\n"
8278 #endif
8279 "-clock force the use of the given methods for timer alarm.\n"
8280 " To see what timers are available use -clock ?\n"
8281 "-startdate select initial date of the clock\n"
8282 "-icount [N|auto]\n"
8283 " Enable virtual instruction counter with 2^N clock ticks per instruction\n"
8284 "\n"
8285 "During emulation, the following keys are useful:\n"
8286 "ctrl-alt-f toggle full screen\n"
8287 "ctrl-alt-n switch to virtual console 'n'\n"
8288 "ctrl-alt toggle mouse and keyboard grab\n"
8289 "\n"
8290 "When using -nographic, press 'ctrl-a h' to get some help.\n"
8291 ,
8292 "qemu",
8293 DEFAULT_RAM_SIZE,
8294 #ifndef _WIN32
8295 DEFAULT_NETWORK_SCRIPT,
8296 DEFAULT_NETWORK_DOWN_SCRIPT,
8297 #endif
8298 DEFAULT_GDBSTUB_PORT,
8299 "/tmp/qemu.log");
8300 exit(exitcode);
8301 }
8302
8303 #define HAS_ARG 0x0001
8304
8305 enum {
8306 QEMU_OPTION_h,
8307
8308 QEMU_OPTION_M,
8309 QEMU_OPTION_cpu,
8310 QEMU_OPTION_fda,
8311 QEMU_OPTION_fdb,
8312 QEMU_OPTION_hda,
8313 QEMU_OPTION_hdb,
8314 QEMU_OPTION_hdc,
8315 QEMU_OPTION_hdd,
8316 QEMU_OPTION_drive,
8317 QEMU_OPTION_cdrom,
8318 QEMU_OPTION_mtdblock,
8319 QEMU_OPTION_sd,
8320 QEMU_OPTION_pflash,
8321 QEMU_OPTION_boot,
8322 QEMU_OPTION_snapshot,
8323 #ifdef TARGET_I386
8324 QEMU_OPTION_no_fd_bootchk,
8325 #endif
8326 QEMU_OPTION_m,
8327 QEMU_OPTION_nographic,
8328 QEMU_OPTION_portrait,
8329 #ifdef HAS_AUDIO
8330 QEMU_OPTION_audio_help,
8331 QEMU_OPTION_soundhw,
8332 #endif
8333
8334 QEMU_OPTION_net,
8335 QEMU_OPTION_tftp,
8336 QEMU_OPTION_bootp,
8337 QEMU_OPTION_smb,
8338 QEMU_OPTION_redir,
8339
8340 QEMU_OPTION_kernel,
8341 QEMU_OPTION_append,
8342 QEMU_OPTION_initrd,
8343
8344 QEMU_OPTION_S,
8345 QEMU_OPTION_s,
8346 QEMU_OPTION_p,
8347 QEMU_OPTION_d,
8348 QEMU_OPTION_hdachs,
8349 QEMU_OPTION_L,
8350 QEMU_OPTION_bios,
8351 QEMU_OPTION_k,
8352 QEMU_OPTION_localtime,
8353 QEMU_OPTION_g,
8354 QEMU_OPTION_vga,
8355 QEMU_OPTION_echr,
8356 QEMU_OPTION_monitor,
8357 QEMU_OPTION_serial,
8358 QEMU_OPTION_parallel,
8359 QEMU_OPTION_loadvm,
8360 QEMU_OPTION_full_screen,
8361 QEMU_OPTION_no_frame,
8362 QEMU_OPTION_alt_grab,
8363 QEMU_OPTION_no_quit,
8364 QEMU_OPTION_pidfile,
8365 QEMU_OPTION_no_kqemu,
8366 QEMU_OPTION_kernel_kqemu,
8367 QEMU_OPTION_win2k_hack,
8368 QEMU_OPTION_usb,
8369 QEMU_OPTION_usbdevice,
8370 QEMU_OPTION_smp,
8371 QEMU_OPTION_vnc,
8372 QEMU_OPTION_no_acpi,
8373 QEMU_OPTION_curses,
8374 QEMU_OPTION_no_reboot,
8375 QEMU_OPTION_no_shutdown,
8376 QEMU_OPTION_show_cursor,
8377 QEMU_OPTION_daemonize,
8378 QEMU_OPTION_option_rom,
8379 QEMU_OPTION_semihosting,
8380 QEMU_OPTION_name,
8381 QEMU_OPTION_prom_env,
8382 QEMU_OPTION_old_param,
8383 QEMU_OPTION_clock,
8384 QEMU_OPTION_startdate,
8385 QEMU_OPTION_tb_size,
8386 QEMU_OPTION_icount,
8387 QEMU_OPTION_uuid,
8388 QEMU_OPTION_incoming,
8389 };
8390
8391 typedef struct QEMUOption {
8392 const char *name;
8393 int flags;
8394 int index;
8395 } QEMUOption;
8396
8397 static const QEMUOption qemu_options[] = {
8398 { "h", 0, QEMU_OPTION_h },
8399 { "help", 0, QEMU_OPTION_h },
8400
8401 { "M", HAS_ARG, QEMU_OPTION_M },
8402 { "cpu", HAS_ARG, QEMU_OPTION_cpu },
8403 { "fda", HAS_ARG, QEMU_OPTION_fda },
8404 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
8405 { "hda", HAS_ARG, QEMU_OPTION_hda },
8406 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
8407 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
8408 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
8409 { "drive", HAS_ARG, QEMU_OPTION_drive },
8410 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
8411 { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
8412 { "sd", HAS_ARG, QEMU_OPTION_sd },
8413 { "pflash", HAS_ARG, QEMU_OPTION_pflash },
8414 { "boot", HAS_ARG, QEMU_OPTION_boot },
8415 { "snapshot", 0, QEMU_OPTION_snapshot },
8416 #ifdef TARGET_I386
8417 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
8418 #endif
8419 { "m", HAS_ARG, QEMU_OPTION_m },
8420 { "nographic", 0, QEMU_OPTION_nographic },
8421 { "portrait", 0, QEMU_OPTION_portrait },
8422 { "k", HAS_ARG, QEMU_OPTION_k },
8423 #ifdef HAS_AUDIO
8424 { "audio-help", 0, QEMU_OPTION_audio_help },
8425 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
8426 #endif
8427
8428 { "net", HAS_ARG, QEMU_OPTION_net},
8429 #ifdef CONFIG_SLIRP
8430 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
8431 { "bootp", HAS_ARG, QEMU_OPTION_bootp },
8432 #ifndef _WIN32
8433 { "smb", HAS_ARG, QEMU_OPTION_smb },
8434 #endif
8435 { "redir", HAS_ARG, QEMU_OPTION_redir },
8436 #endif
8437
8438 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
8439 { "append", HAS_ARG, QEMU_OPTION_append },
8440 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
8441
8442 { "S", 0, QEMU_OPTION_S },
8443 { "s", 0, QEMU_OPTION_s },
8444 { "p", HAS_ARG, QEMU_OPTION_p },
8445 { "d", HAS_ARG, QEMU_OPTION_d },
8446 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
8447 { "L", HAS_ARG, QEMU_OPTION_L },
8448 { "bios", HAS_ARG, QEMU_OPTION_bios },
8449 #ifdef USE_KQEMU
8450 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
8451 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
8452 #endif
8453 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
8454 { "g", 1, QEMU_OPTION_g },
8455 #endif
8456 { "localtime", 0, QEMU_OPTION_localtime },
8457 { "vga", HAS_ARG, QEMU_OPTION_vga },
8458 { "echr", HAS_ARG, QEMU_OPTION_echr },
8459 { "monitor", HAS_ARG, QEMU_OPTION_monitor },
8460 { "serial", HAS_ARG, QEMU_OPTION_serial },
8461 { "parallel", HAS_ARG, QEMU_OPTION_parallel },
8462 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
8463 { "full-screen", 0, QEMU_OPTION_full_screen },
8464 #ifdef CONFIG_SDL
8465 { "no-frame", 0, QEMU_OPTION_no_frame },
8466 { "alt-grab", 0, QEMU_OPTION_alt_grab },
8467 { "no-quit", 0, QEMU_OPTION_no_quit },
8468 #endif
8469 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
8470 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
8471 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
8472 { "smp", HAS_ARG, QEMU_OPTION_smp },
8473 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
8474 #ifdef CONFIG_CURSES
8475 { "curses", 0, QEMU_OPTION_curses },
8476 #endif
8477 { "uuid", HAS_ARG, QEMU_OPTION_uuid },
8478
8479 /* temporary options */
8480 { "usb", 0, QEMU_OPTION_usb },
8481 { "no-acpi", 0, QEMU_OPTION_no_acpi },
8482 { "no-reboot", 0, QEMU_OPTION_no_reboot },
8483 { "no-shutdown", 0, QEMU_OPTION_no_shutdown },
8484 { "show-cursor", 0, QEMU_OPTION_show_cursor },
8485 { "daemonize", 0, QEMU_OPTION_daemonize },
8486 { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
8487 #if defined(TARGET_ARM) || defined(TARGET_M68K)
8488 { "semihosting", 0, QEMU_OPTION_semihosting },
8489 #endif
8490 { "name", HAS_ARG, QEMU_OPTION_name },
8491 #if defined(TARGET_SPARC)
8492 { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
8493 #endif
8494 #if defined(TARGET_ARM)
8495 { "old-param", 0, QEMU_OPTION_old_param },
8496 #endif
8497 { "clock", HAS_ARG, QEMU_OPTION_clock },
8498 { "startdate", HAS_ARG, QEMU_OPTION_startdate },
8499 { "tb-size", HAS_ARG, QEMU_OPTION_tb_size },
8500 { "icount", HAS_ARG, QEMU_OPTION_icount },
8501 { "incoming", HAS_ARG, QEMU_OPTION_incoming },
8502 { NULL },
8503 };
8504
8505 /* password input */
8506
8507 int qemu_key_check(BlockDriverState *bs, const char *name)
8508 {
8509 char password[256];
8510 int i;
8511
8512 if (!bdrv_is_encrypted(bs))
8513 return 0;
8514
8515 term_printf("%s is encrypted.\n", name);
8516 for(i = 0; i < 3; i++) {
8517 monitor_readline("Password: ", 1, password, sizeof(password));
8518 if (bdrv_set_key(bs, password) == 0)
8519 return 0;
8520 term_printf("invalid password\n");
8521 }
8522 return -EPERM;
8523 }
8524
8525 static BlockDriverState *get_bdrv(int index)
8526 {
8527 if (index > nb_drives)
8528 return NULL;
8529 return drives_table[index].bdrv;
8530 }
8531
8532 static void read_passwords(void)
8533 {
8534 BlockDriverState *bs;
8535 int i;
8536
8537 for(i = 0; i < 6; i++) {
8538 bs = get_bdrv(i);
8539 if (bs)
8540 qemu_key_check(bs, bdrv_get_device_name(bs));
8541 }
8542 }
8543
8544 #ifdef HAS_AUDIO
8545 struct soundhw soundhw[] = {
8546 #ifdef HAS_AUDIO_CHOICE
8547 #if defined(TARGET_I386) || defined(TARGET_MIPS)
8548 {
8549 "pcspk",
8550 "PC speaker",
8551 0,
8552 1,
8553 { .init_isa = pcspk_audio_init }
8554 },
8555 #endif
8556 {
8557 "sb16",
8558 "Creative Sound Blaster 16",
8559 0,
8560 1,
8561 { .init_isa = SB16_init }
8562 },
8563
8564 #ifdef CONFIG_CS4231A
8565 {
8566 "cs4231a",
8567 "CS4231A",
8568 0,
8569 1,
8570 { .init_isa = cs4231a_init }
8571 },
8572 #endif
8573
8574 #ifdef CONFIG_ADLIB
8575 {
8576 "adlib",
8577 #ifdef HAS_YMF262
8578 "Yamaha YMF262 (OPL3)",
8579 #else
8580 "Yamaha YM3812 (OPL2)",
8581 #endif
8582 0,
8583 1,
8584 { .init_isa = Adlib_init }
8585 },
8586 #endif
8587
8588 #ifdef CONFIG_GUS
8589 {
8590 "gus",
8591 "Gravis Ultrasound GF1",
8592 0,
8593 1,
8594 { .init_isa = GUS_init }
8595 },
8596 #endif
8597
8598 #ifdef CONFIG_AC97
8599 {
8600 "ac97",
8601 "Intel 82801AA AC97 Audio",
8602 0,
8603 0,
8604 { .init_pci = ac97_init }
8605 },
8606 #endif
8607
8608 {
8609 "es1370",
8610 "ENSONIQ AudioPCI ES1370",
8611 0,
8612 0,
8613 { .init_pci = es1370_init }
8614 },
8615 #endif
8616
8617 { NULL, NULL, 0, 0, { NULL } }
8618 };
8619
8620 static void select_soundhw (const char *optarg)
8621 {
8622 struct soundhw *c;
8623
8624 if (*optarg == '?') {
8625 show_valid_cards:
8626
8627 printf ("Valid sound card names (comma separated):\n");
8628 for (c = soundhw; c->name; ++c) {
8629 printf ("%-11s %s\n", c->name, c->descr);
8630 }
8631 printf ("\n-soundhw all will enable all of the above\n");
8632 exit (*optarg != '?');
8633 }
8634 else {
8635 size_t l;
8636 const char *p;
8637 char *e;
8638 int bad_card = 0;
8639
8640 if (!strcmp (optarg, "all")) {
8641 for (c = soundhw; c->name; ++c) {
8642 c->enabled = 1;
8643 }
8644 return;
8645 }
8646
8647 p = optarg;
8648 while (*p) {
8649 e = strchr (p, ',');
8650 l = !e ? strlen (p) : (size_t) (e - p);
8651
8652 for (c = soundhw; c->name; ++c) {
8653 if (!strncmp (c->name, p, l)) {
8654 c->enabled = 1;
8655 break;
8656 }
8657 }
8658
8659 if (!c->name) {
8660 if (l > 80) {
8661 fprintf (stderr,
8662 "Unknown sound card name (too big to show)\n");
8663 }
8664 else {
8665 fprintf (stderr, "Unknown sound card name `%.*s'\n",
8666 (int) l, p);
8667 }
8668 bad_card = 1;
8669 }
8670 p += l + (e != NULL);
8671 }
8672
8673 if (bad_card)
8674 goto show_valid_cards;
8675 }
8676 }
8677 #endif
8678
8679 static void select_vgahw (const char *p)
8680 {
8681 const char *opts;
8682
8683 if (strstart(p, "std", &opts)) {
8684 cirrus_vga_enabled = 0;
8685 vmsvga_enabled = 0;
8686 } else if (strstart(p, "cirrus", &opts)) {
8687 cirrus_vga_enabled = 1;
8688 vmsvga_enabled = 0;
8689 } else if (strstart(p, "vmware", &opts)) {
8690 cirrus_vga_enabled = 0;
8691 vmsvga_enabled = 1;
8692 } else {
8693 invalid_vga:
8694 fprintf(stderr, "Unknown vga type: %s\n", p);
8695 exit(1);
8696 }
8697 while (*opts) {
8698 const char *nextopt;
8699
8700 if (strstart(opts, ",retrace=", &nextopt)) {
8701 opts = nextopt;
8702 if (strstart(opts, "dumb", &nextopt))
8703 vga_retrace_method = VGA_RETRACE_DUMB;
8704 else if (strstart(opts, "precise", &nextopt))
8705 vga_retrace_method = VGA_RETRACE_PRECISE;
8706 else goto invalid_vga;
8707 } else goto invalid_vga;
8708 opts = nextopt;
8709 }
8710 }
8711
8712 #ifdef _WIN32
8713 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
8714 {
8715 exit(STATUS_CONTROL_C_EXIT);
8716 return TRUE;
8717 }
8718 #endif
8719
8720 static int qemu_uuid_parse(const char *str, uint8_t *uuid)
8721 {
8722 int ret;
8723
8724 if(strlen(str) != 36)
8725 return -1;
8726
8727 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
8728 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
8729 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
8730
8731 if(ret != 16)
8732 return -1;
8733
8734 return 0;
8735 }
8736
8737 #define MAX_NET_CLIENTS 32
8738
8739 #ifndef _WIN32
8740
8741 static void termsig_handler(int signal)
8742 {
8743 qemu_system_shutdown_request();
8744 }
8745
8746 static void termsig_setup(void)
8747 {
8748 struct sigaction act;
8749
8750 memset(&act, 0, sizeof(act));
8751 act.sa_handler = termsig_handler;
8752 sigaction(SIGINT, &act, NULL);
8753 sigaction(SIGHUP, &act, NULL);
8754 sigaction(SIGTERM, &act, NULL);
8755 }
8756
8757 #endif
8758
8759 int main(int argc, char **argv)
8760 {
8761 #ifdef CONFIG_GDBSTUB
8762 int use_gdbstub;
8763 const char *gdbstub_port;
8764 #endif
8765 uint32_t boot_devices_bitmap = 0;
8766 int i;
8767 int snapshot, linux_boot, net_boot;
8768 const char *initrd_filename;
8769 const char *kernel_filename, *kernel_cmdline;
8770 const char *boot_devices = "";
8771 DisplayState *ds = &display_state;
8772 int cyls, heads, secs, translation;
8773 const char *net_clients[MAX_NET_CLIENTS];
8774 int nb_net_clients;
8775 int hda_index;
8776 int optind;
8777 const char *r, *optarg;
8778 CharDriverState *monitor_hd;
8779 const char *monitor_device;
8780 const char *serial_devices[MAX_SERIAL_PORTS];
8781 int serial_device_index;
8782 const char *parallel_devices[MAX_PARALLEL_PORTS];
8783 int parallel_device_index;
8784 const char *loadvm = NULL;
8785 QEMUMachine *machine;
8786 const char *cpu_model;
8787 const char *usb_devices[MAX_USB_CMDLINE];
8788 int usb_devices_index;
8789 int fds[2];
8790 int tb_size;
8791 const char *pid_file = NULL;
8792 VLANState *vlan;
8793 int autostart;
8794 const char *incoming = NULL;
8795
8796 LIST_INIT (&vm_change_state_head);
8797 #ifndef _WIN32
8798 {
8799 struct sigaction act;
8800 sigfillset(&act.sa_mask);
8801 act.sa_flags = 0;
8802 act.sa_handler = SIG_IGN;
8803 sigaction(SIGPIPE, &act, NULL);
8804 }
8805 #else
8806 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
8807 /* Note: cpu_interrupt() is currently not SMP safe, so we force
8808 QEMU to run on a single CPU */
8809 {
8810 HANDLE h;
8811 DWORD mask, smask;
8812 int i;
8813 h = GetCurrentProcess();
8814 if (GetProcessAffinityMask(h, &mask, &smask)) {
8815 for(i = 0; i < 32; i++) {
8816 if (mask & (1 << i))
8817 break;
8818 }
8819 if (i != 32) {
8820 mask = 1 << i;
8821 SetProcessAffinityMask(h, mask);
8822 }
8823 }
8824 }
8825 #endif
8826
8827 register_machines();
8828 machine = first_machine;
8829 cpu_model = NULL;
8830 initrd_filename = NULL;
8831 ram_size = 0;
8832 vga_ram_size = VGA_RAM_SIZE;
8833 #ifdef CONFIG_GDBSTUB
8834 use_gdbstub = 0;
8835 gdbstub_port = DEFAULT_GDBSTUB_PORT;
8836 #endif
8837 snapshot = 0;
8838 nographic = 0;
8839 curses = 0;
8840 kernel_filename = NULL;
8841 kernel_cmdline = "";
8842 cyls = heads = secs = 0;
8843 translation = BIOS_ATA_TRANSLATION_AUTO;
8844 monitor_device = "vc";
8845
8846 serial_devices[0] = "vc:80Cx24C";
8847 for(i = 1; i < MAX_SERIAL_PORTS; i++)
8848 serial_devices[i] = NULL;
8849 serial_device_index = 0;
8850
8851 parallel_devices[0] = "vc:640x480";
8852 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
8853 parallel_devices[i] = NULL;
8854 parallel_device_index = 0;
8855
8856 usb_devices_index = 0;
8857
8858 nb_net_clients = 0;
8859 nb_drives = 0;
8860 nb_drives_opt = 0;
8861 hda_index = -1;
8862
8863 nb_nics = 0;
8864
8865 tb_size = 0;
8866 autostart= 1;
8867
8868 optind = 1;
8869 for(;;) {
8870 if (optind >= argc)
8871 break;
8872 r = argv[optind];
8873 if (r[0] != '-') {
8874 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
8875 } else {
8876 const QEMUOption *popt;
8877
8878 optind++;
8879 /* Treat --foo the same as -foo. */
8880 if (r[1] == '-')
8881 r++;
8882 popt = qemu_options;
8883 for(;;) {
8884 if (!popt->name) {
8885 fprintf(stderr, "%s: invalid option -- '%s'\n",
8886 argv[0], r);
8887 exit(1);
8888 }
8889 if (!strcmp(popt->name, r + 1))
8890 break;
8891 popt++;
8892 }
8893 if (popt->flags & HAS_ARG) {
8894 if (optind >= argc) {
8895 fprintf(stderr, "%s: option '%s' requires an argument\n",
8896 argv[0], r);
8897 exit(1);
8898 }
8899 optarg = argv[optind++];
8900 } else {
8901 optarg = NULL;
8902 }
8903
8904 switch(popt->index) {
8905 case QEMU_OPTION_M:
8906 machine = find_machine(optarg);
8907 if (!machine) {
8908 QEMUMachine *m;
8909 printf("Supported machines are:\n");
8910 for(m = first_machine; m != NULL; m = m->next) {
8911 printf("%-10s %s%s\n",
8912 m->name, m->desc,
8913 m == first_machine ? " (default)" : "");
8914 }
8915 exit(*optarg != '?');
8916 }
8917 break;
8918 case QEMU_OPTION_cpu:
8919 /* hw initialization will check this */
8920 if (*optarg == '?') {
8921 /* XXX: implement xxx_cpu_list for targets that still miss it */
8922 #if defined(cpu_list)
8923 cpu_list(stdout, &fprintf);
8924 #endif
8925 exit(0);
8926 } else {
8927 cpu_model = optarg;
8928 }
8929 break;
8930 case QEMU_OPTION_initrd:
8931 initrd_filename = optarg;
8932 break;
8933 case QEMU_OPTION_hda:
8934 if (cyls == 0)
8935 hda_index = drive_add(optarg, HD_ALIAS, 0);
8936 else
8937 hda_index = drive_add(optarg, HD_ALIAS
8938 ",cyls=%d,heads=%d,secs=%d%s",
8939 0, cyls, heads, secs,
8940 translation == BIOS_ATA_TRANSLATION_LBA ?
8941 ",trans=lba" :
8942 translation == BIOS_ATA_TRANSLATION_NONE ?
8943 ",trans=none" : "");
8944 break;
8945 case QEMU_OPTION_hdb:
8946 case QEMU_OPTION_hdc:
8947 case QEMU_OPTION_hdd:
8948 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
8949 break;
8950 case QEMU_OPTION_drive:
8951 drive_add(NULL, "%s", optarg);
8952 break;
8953 case QEMU_OPTION_mtdblock:
8954 drive_add(optarg, MTD_ALIAS);
8955 break;
8956 case QEMU_OPTION_sd:
8957 drive_add(optarg, SD_ALIAS);
8958 break;
8959 case QEMU_OPTION_pflash:
8960 drive_add(optarg, PFLASH_ALIAS);
8961 break;
8962 case QEMU_OPTION_snapshot:
8963 snapshot = 1;
8964 break;
8965 case QEMU_OPTION_hdachs:
8966 {
8967 const char *p;
8968 p = optarg;
8969 cyls = strtol(p, (char **)&p, 0);
8970 if (cyls < 1 || cyls > 16383)
8971 goto chs_fail;
8972 if (*p != ',')
8973 goto chs_fail;
8974 p++;
8975 heads = strtol(p, (char **)&p, 0);
8976 if (heads < 1 || heads > 16)
8977 goto chs_fail;
8978 if (*p != ',')
8979 goto chs_fail;
8980 p++;
8981 secs = strtol(p, (char **)&p, 0);
8982 if (secs < 1 || secs > 63)
8983 goto chs_fail;
8984 if (*p == ',') {
8985 p++;
8986 if (!strcmp(p, "none"))
8987 translation = BIOS_ATA_TRANSLATION_NONE;
8988 else if (!strcmp(p, "lba"))
8989 translation = BIOS_ATA_TRANSLATION_LBA;
8990 else if (!strcmp(p, "auto"))
8991 translation = BIOS_ATA_TRANSLATION_AUTO;
8992 else
8993 goto chs_fail;
8994 } else if (*p != '\0') {
8995 chs_fail:
8996 fprintf(stderr, "qemu: invalid physical CHS format\n");
8997 exit(1);
8998 }
8999 if (hda_index != -1)
9000 snprintf(drives_opt[hda_index].opt,
9001 sizeof(drives_opt[hda_index].opt),
9002 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
9003 0, cyls, heads, secs,
9004 translation == BIOS_ATA_TRANSLATION_LBA ?
9005 ",trans=lba" :
9006 translation == BIOS_ATA_TRANSLATION_NONE ?
9007 ",trans=none" : "");
9008 }
9009 break;
9010 case QEMU_OPTION_nographic:
9011 nographic = 1;
9012 break;
9013 #ifdef CONFIG_CURSES
9014 case QEMU_OPTION_curses:
9015 curses = 1;
9016 break;
9017 #endif
9018 case QEMU_OPTION_portrait:
9019 graphic_rotate = 1;
9020 break;
9021 case QEMU_OPTION_kernel:
9022 kernel_filename = optarg;
9023 break;
9024 case QEMU_OPTION_append:
9025 kernel_cmdline = optarg;
9026 break;
9027 case QEMU_OPTION_cdrom:
9028 drive_add(optarg, CDROM_ALIAS);
9029 break;
9030 case QEMU_OPTION_boot:
9031 boot_devices = optarg;
9032 /* We just do some generic consistency checks */
9033 {
9034 /* Could easily be extended to 64 devices if needed */
9035 const char *p;
9036
9037 boot_devices_bitmap = 0;
9038 for (p = boot_devices; *p != '\0'; p++) {
9039 /* Allowed boot devices are:
9040 * a b : floppy disk drives
9041 * c ... f : IDE disk drives
9042 * g ... m : machine implementation dependant drives
9043 * n ... p : network devices
9044 * It's up to each machine implementation to check
9045 * if the given boot devices match the actual hardware
9046 * implementation and firmware features.
9047 */
9048 if (*p < 'a' || *p > 'q') {
9049 fprintf(stderr, "Invalid boot device '%c'\n", *p);
9050 exit(1);
9051 }
9052 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
9053 fprintf(stderr,
9054 "Boot device '%c' was given twice\n",*p);
9055 exit(1);
9056 }
9057 boot_devices_bitmap |= 1 << (*p - 'a');
9058 }
9059 }
9060 break;
9061 case QEMU_OPTION_fda:
9062 case QEMU_OPTION_fdb:
9063 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
9064 break;
9065 #ifdef TARGET_I386
9066 case QEMU_OPTION_no_fd_bootchk:
9067 fd_bootchk = 0;
9068 break;
9069 #endif
9070 case QEMU_OPTION_net:
9071 if (nb_net_clients >= MAX_NET_CLIENTS) {
9072 fprintf(stderr, "qemu: too many network clients\n");
9073 exit(1);
9074 }
9075 net_clients[nb_net_clients] = optarg;
9076 nb_net_clients++;
9077 break;
9078 #ifdef CONFIG_SLIRP
9079 case QEMU_OPTION_tftp:
9080 tftp_prefix = optarg;
9081 break;
9082 case QEMU_OPTION_bootp:
9083 bootp_filename = optarg;
9084 break;
9085 #ifndef _WIN32
9086 case QEMU_OPTION_smb:
9087 net_slirp_smb(optarg);
9088 break;
9089 #endif
9090 case QEMU_OPTION_redir:
9091 net_slirp_redir(optarg);
9092 break;
9093 #endif
9094 #ifdef HAS_AUDIO
9095 case QEMU_OPTION_audio_help:
9096 AUD_help ();
9097 exit (0);
9098 break;
9099 case QEMU_OPTION_soundhw:
9100 select_soundhw (optarg);
9101 break;
9102 #endif
9103 case QEMU_OPTION_h:
9104 help(0);
9105 break;
9106 case QEMU_OPTION_m: {
9107 uint64_t value;
9108 char *ptr;
9109
9110 value = strtoul(optarg, &ptr, 10);
9111 switch (*ptr) {
9112 case 0: case 'M': case 'm':
9113 value <<= 20;
9114 break;
9115 case 'G': case 'g':
9116 value <<= 30;
9117 break;
9118 default:
9119 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
9120 exit(1);
9121 }
9122
9123 /* On 32-bit hosts, QEMU is limited by virtual address space */
9124 if (value > (2047 << 20)
9125 #ifndef USE_KQEMU
9126 && HOST_LONG_BITS == 32
9127 #endif
9128 ) {
9129 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
9130 exit(1);
9131 }
9132 if (value != (uint64_t)(ram_addr_t)value) {
9133 fprintf(stderr, "qemu: ram size too large\n");
9134 exit(1);
9135 }
9136 ram_size = value;
9137 break;
9138 }
9139 case QEMU_OPTION_d:
9140 {
9141 int mask;
9142 const CPULogItem *item;
9143
9144 mask = cpu_str_to_log_mask(optarg);
9145 if (!mask) {
9146 printf("Log items (comma separated):\n");
9147 for(item = cpu_log_items; item->mask != 0; item++) {
9148 printf("%-10s %s\n", item->name, item->help);
9149 }
9150 exit(1);
9151 }
9152 cpu_set_log(mask);
9153 }
9154 break;
9155 #ifdef CONFIG_GDBSTUB
9156 case QEMU_OPTION_s:
9157 use_gdbstub = 1;
9158 break;
9159 case QEMU_OPTION_p:
9160 gdbstub_port = optarg;
9161 break;
9162 #endif
9163 case QEMU_OPTION_L:
9164 bios_dir = optarg;
9165 break;
9166 case QEMU_OPTION_bios:
9167 bios_name = optarg;
9168 break;
9169 case QEMU_OPTION_S:
9170 autostart = 0;
9171 break;
9172 case QEMU_OPTION_k:
9173 keyboard_layout = optarg;
9174 break;
9175 case QEMU_OPTION_localtime:
9176 rtc_utc = 0;
9177 break;
9178 case QEMU_OPTION_vga:
9179 select_vgahw (optarg);
9180 break;
9181 case QEMU_OPTION_g:
9182 {
9183 const char *p;
9184 int w, h, depth;
9185 p = optarg;
9186 w = strtol(p, (char **)&p, 10);
9187 if (w <= 0) {
9188 graphic_error:
9189 fprintf(stderr, "qemu: invalid resolution or depth\n");
9190 exit(1);
9191 }
9192 if (*p != 'x')
9193 goto graphic_error;
9194 p++;
9195 h = strtol(p, (char **)&p, 10);
9196 if (h <= 0)
9197 goto graphic_error;
9198 if (*p == 'x') {
9199 p++;
9200 depth = strtol(p, (char **)&p, 10);
9201 if (depth != 8 && depth != 15 && depth != 16 &&
9202 depth != 24 && depth != 32)
9203 goto graphic_error;
9204 } else if (*p == '\0') {
9205 depth = graphic_depth;
9206 } else {
9207 goto graphic_error;
9208 }
9209
9210 graphic_width = w;
9211 graphic_height = h;
9212 graphic_depth = depth;
9213 }
9214 break;
9215 case QEMU_OPTION_echr:
9216 {
9217 char *r;
9218 term_escape_char = strtol(optarg, &r, 0);
9219 if (r == optarg)
9220 printf("Bad argument to echr\n");
9221 break;
9222 }
9223 case QEMU_OPTION_monitor:
9224 monitor_device = optarg;
9225 break;
9226 case QEMU_OPTION_serial:
9227 if (serial_device_index >= MAX_SERIAL_PORTS) {
9228 fprintf(stderr, "qemu: too many serial ports\n");
9229 exit(1);
9230 }
9231 serial_devices[serial_device_index] = optarg;
9232 serial_device_index++;
9233 break;
9234 case QEMU_OPTION_parallel:
9235 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
9236 fprintf(stderr, "qemu: too many parallel ports\n");
9237 exit(1);
9238 }
9239 parallel_devices[parallel_device_index] = optarg;
9240 parallel_device_index++;
9241 break;
9242 case QEMU_OPTION_loadvm:
9243 loadvm = optarg;
9244 break;
9245 case QEMU_OPTION_full_screen:
9246 full_screen = 1;
9247 break;
9248 #ifdef CONFIG_SDL
9249 case QEMU_OPTION_no_frame:
9250 no_frame = 1;
9251 break;
9252 case QEMU_OPTION_alt_grab:
9253 alt_grab = 1;
9254 break;
9255 case QEMU_OPTION_no_quit:
9256 no_quit = 1;
9257 break;
9258 #endif
9259 case QEMU_OPTION_pidfile:
9260 pid_file = optarg;
9261 break;
9262 #ifdef TARGET_I386
9263 case QEMU_OPTION_win2k_hack:
9264 win2k_install_hack = 1;
9265 break;
9266 #endif
9267 #ifdef USE_KQEMU
9268 case QEMU_OPTION_no_kqemu:
9269 kqemu_allowed = 0;
9270 break;
9271 case QEMU_OPTION_kernel_kqemu:
9272 kqemu_allowed = 2;
9273 break;
9274 #endif
9275 case QEMU_OPTION_usb:
9276 usb_enabled = 1;
9277 break;
9278 case QEMU_OPTION_usbdevice:
9279 usb_enabled = 1;
9280 if (usb_devices_index >= MAX_USB_CMDLINE) {
9281 fprintf(stderr, "Too many USB devices\n");
9282 exit(1);
9283 }
9284 usb_devices[usb_devices_index] = optarg;
9285 usb_devices_index++;
9286 break;
9287 case QEMU_OPTION_smp:
9288 smp_cpus = atoi(optarg);
9289 if (smp_cpus < 1) {
9290 fprintf(stderr, "Invalid number of CPUs\n");
9291 exit(1);
9292 }
9293 break;
9294 case QEMU_OPTION_vnc:
9295 vnc_display = optarg;
9296 break;
9297 case QEMU_OPTION_no_acpi:
9298 acpi_enabled = 0;
9299 break;
9300 case QEMU_OPTION_no_reboot:
9301 no_reboot = 1;
9302 break;
9303 case QEMU_OPTION_no_shutdown:
9304 no_shutdown = 1;
9305 break;
9306 case QEMU_OPTION_show_cursor:
9307 cursor_hide = 0;
9308 break;
9309 case QEMU_OPTION_uuid:
9310 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
9311 fprintf(stderr, "Fail to parse UUID string."
9312 " Wrong format.\n");
9313 exit(1);
9314 }
9315 break;
9316 case QEMU_OPTION_daemonize:
9317 daemonize = 1;
9318 break;
9319 case QEMU_OPTION_option_rom:
9320 if (nb_option_roms >= MAX_OPTION_ROMS) {
9321 fprintf(stderr, "Too many option ROMs\n");
9322 exit(1);
9323 }
9324 option_rom[nb_option_roms] = optarg;
9325 nb_option_roms++;
9326 break;
9327 case QEMU_OPTION_semihosting:
9328 semihosting_enabled = 1;
9329 break;
9330 case QEMU_OPTION_name:
9331 qemu_name = optarg;
9332 break;
9333 #ifdef TARGET_SPARC
9334 case QEMU_OPTION_prom_env:
9335 if (nb_prom_envs >= MAX_PROM_ENVS) {
9336 fprintf(stderr, "Too many prom variables\n");
9337 exit(1);
9338 }
9339 prom_envs[nb_prom_envs] = optarg;
9340 nb_prom_envs++;
9341 break;
9342 #endif
9343 #ifdef TARGET_ARM
9344 case QEMU_OPTION_old_param:
9345 old_param = 1;
9346 break;
9347 #endif
9348 case QEMU_OPTION_clock:
9349 configure_alarms(optarg);
9350 break;
9351 case QEMU_OPTION_startdate:
9352 {
9353 struct tm tm;
9354 time_t rtc_start_date;
9355 if (!strcmp(optarg, "now")) {
9356 rtc_date_offset = -1;
9357 } else {
9358 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
9359 &tm.tm_year,
9360 &tm.tm_mon,
9361 &tm.tm_mday,
9362 &tm.tm_hour,
9363 &tm.tm_min,
9364 &tm.tm_sec) == 6) {
9365 /* OK */
9366 } else if (sscanf(optarg, "%d-%d-%d",
9367 &tm.tm_year,
9368 &tm.tm_mon,
9369 &tm.tm_mday) == 3) {
9370 tm.tm_hour = 0;
9371 tm.tm_min = 0;
9372 tm.tm_sec = 0;
9373 } else {
9374 goto date_fail;
9375 }
9376 tm.tm_year -= 1900;
9377 tm.tm_mon--;
9378 rtc_start_date = mktimegm(&tm);
9379 if (rtc_start_date == -1) {
9380 date_fail:
9381 fprintf(stderr, "Invalid date format. Valid format are:\n"
9382 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
9383 exit(1);
9384 }
9385 rtc_date_offset = time(NULL) - rtc_start_date;
9386 }
9387 }
9388 break;
9389 case QEMU_OPTION_tb_size:
9390 tb_size = strtol(optarg, NULL, 0);
9391 if (tb_size < 0)
9392 tb_size = 0;
9393 break;
9394 case QEMU_OPTION_icount:
9395 use_icount = 1;
9396 if (strcmp(optarg, "auto") == 0) {
9397 icount_time_shift = -1;
9398 } else {
9399 icount_time_shift = strtol(optarg, NULL, 0);
9400 }
9401 break;
9402 case QEMU_OPTION_incoming:
9403 incoming = optarg;
9404 break;
9405 }
9406 }
9407 }
9408
9409 if (smp_cpus > machine->max_cpus) {
9410 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
9411 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
9412 machine->max_cpus);
9413 exit(1);
9414 }
9415
9416 if (nographic) {
9417 if (serial_device_index == 0)
9418 serial_devices[0] = "stdio";
9419 if (parallel_device_index == 0)
9420 parallel_devices[0] = "null";
9421 if (strncmp(monitor_device, "vc", 2) == 0)
9422 monitor_device = "stdio";
9423 }
9424
9425 #ifndef _WIN32
9426 if (daemonize) {
9427 pid_t pid;
9428
9429 if (pipe(fds) == -1)
9430 exit(1);
9431
9432 pid = fork();
9433 if (pid > 0) {
9434 uint8_t status;
9435 ssize_t len;
9436
9437 close(fds[1]);
9438
9439 again:
9440 len = read(fds[0], &status, 1);
9441 if (len == -1 && (errno == EINTR))
9442 goto again;
9443
9444 if (len != 1)
9445 exit(1);
9446 else if (status == 1) {
9447 fprintf(stderr, "Could not acquire pidfile\n");
9448 exit(1);
9449 } else
9450 exit(0);
9451 } else if (pid < 0)
9452 exit(1);
9453
9454 setsid();
9455
9456 pid = fork();
9457 if (pid > 0)
9458 exit(0);
9459 else if (pid < 0)
9460 exit(1);
9461
9462 umask(027);
9463
9464 signal(SIGTSTP, SIG_IGN);
9465 signal(SIGTTOU, SIG_IGN);
9466 signal(SIGTTIN, SIG_IGN);
9467 }
9468 #endif
9469
9470 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
9471 if (daemonize) {
9472 uint8_t status = 1;
9473 write(fds[1], &status, 1);
9474 } else
9475 fprintf(stderr, "Could not acquire pid file\n");
9476 exit(1);
9477 }
9478
9479 #ifdef USE_KQEMU
9480 if (smp_cpus > 1)
9481 kqemu_allowed = 0;
9482 #endif
9483 linux_boot = (kernel_filename != NULL);
9484 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
9485
9486 if (!linux_boot && net_boot == 0 &&
9487 !machine->nodisk_ok && nb_drives_opt == 0)
9488 help(1);
9489
9490 if (!linux_boot && *kernel_cmdline != '\0') {
9491 fprintf(stderr, "-append only allowed with -kernel option\n");
9492 exit(1);
9493 }
9494
9495 if (!linux_boot && initrd_filename != NULL) {
9496 fprintf(stderr, "-initrd only allowed with -kernel option\n");
9497 exit(1);
9498 }
9499
9500 /* boot to floppy or the default cd if no hard disk defined yet */
9501 if (!boot_devices[0]) {
9502 boot_devices = "cad";
9503 }
9504 setvbuf(stdout, NULL, _IOLBF, 0);
9505
9506 init_timers();
9507 init_timer_alarm();
9508 if (use_icount && icount_time_shift < 0) {
9509 use_icount = 2;
9510 /* 125MIPS seems a reasonable initial guess at the guest speed.
9511 It will be corrected fairly quickly anyway. */
9512 icount_time_shift = 3;
9513 init_icount_adjust();
9514 }
9515
9516 #ifdef _WIN32
9517 socket_init();
9518 #endif
9519
9520 /* init network clients */
9521 if (nb_net_clients == 0) {
9522 /* if no clients, we use a default config */
9523 net_clients[nb_net_clients++] = "nic";
9524 #ifdef CONFIG_SLIRP
9525 net_clients[nb_net_clients++] = "user";
9526 #endif
9527 }
9528
9529 for(i = 0;i < nb_net_clients; i++) {
9530 if (net_client_parse(net_clients[i]) < 0)
9531 exit(1);
9532 }
9533 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
9534 if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
9535 continue;
9536 if (vlan->nb_guest_devs == 0)
9537 fprintf(stderr, "Warning: vlan %d with no nics\n", vlan->id);
9538 if (vlan->nb_host_devs == 0)
9539 fprintf(stderr,
9540 "Warning: vlan %d is not connected to host network\n",
9541 vlan->id);
9542 }
9543
9544 #ifdef TARGET_I386
9545 /* XXX: this should be moved in the PC machine instantiation code */
9546 if (net_boot != 0) {
9547 int netroms = 0;
9548 for (i = 0; i < nb_nics && i < 4; i++) {
9549 const char *model = nd_table[i].model;
9550 char buf[1024];
9551 if (net_boot & (1 << i)) {
9552 if (model == NULL)
9553 model = "ne2k_pci";
9554 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
9555 if (get_image_size(buf) > 0) {
9556 if (nb_option_roms >= MAX_OPTION_ROMS) {
9557 fprintf(stderr, "Too many option ROMs\n");
9558 exit(1);
9559 }
9560 option_rom[nb_option_roms] = strdup(buf);
9561 nb_option_roms++;
9562 netroms++;
9563 }
9564 }
9565 }
9566 if (netroms == 0) {
9567 fprintf(stderr, "No valid PXE rom found for network device\n");
9568 exit(1);
9569 }
9570 }
9571 #endif
9572
9573 /* init the memory */
9574 phys_ram_size = machine->ram_require & ~RAMSIZE_FIXED;
9575
9576 if (machine->ram_require & RAMSIZE_FIXED) {
9577 if (ram_size > 0) {
9578 if (ram_size < phys_ram_size) {
9579 fprintf(stderr, "Machine `%s' requires %llu bytes of memory\n",
9580 machine->name, (unsigned long long) phys_ram_size);
9581 exit(-1);
9582 }
9583
9584 phys_ram_size = ram_size;
9585 } else
9586 ram_size = phys_ram_size;
9587 } else {
9588 if (ram_size == 0)
9589 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
9590
9591 phys_ram_size += ram_size;
9592 }
9593
9594 phys_ram_base = qemu_vmalloc(phys_ram_size);
9595 if (!phys_ram_base) {
9596 fprintf(stderr, "Could not allocate physical memory\n");
9597 exit(1);
9598 }
9599
9600 /* init the dynamic translator */
9601 cpu_exec_init_all(tb_size * 1024 * 1024);
9602
9603 bdrv_init();
9604
9605 /* we always create the cdrom drive, even if no disk is there */
9606
9607 if (nb_drives_opt < MAX_DRIVES)
9608 drive_add(NULL, CDROM_ALIAS);
9609
9610 /* we always create at least one floppy */
9611
9612 if (nb_drives_opt < MAX_DRIVES)
9613 drive_add(NULL, FD_ALIAS, 0);
9614
9615 /* we always create one sd slot, even if no card is in it */
9616
9617 if (nb_drives_opt < MAX_DRIVES)
9618 drive_add(NULL, SD_ALIAS);
9619
9620 /* open the virtual block devices */
9621
9622 for(i = 0; i < nb_drives_opt; i++)
9623 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
9624 exit(1);
9625
9626 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
9627 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
9628
9629 /* terminal init */
9630 memset(&display_state, 0, sizeof(display_state));
9631 if (nographic) {
9632 if (curses) {
9633 fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
9634 exit(1);
9635 }
9636 /* nearly nothing to do */
9637 dumb_display_init(ds);
9638 } else if (vnc_display != NULL) {
9639 vnc_display_init(ds);
9640 if (vnc_display_open(ds, vnc_display) < 0)
9641 exit(1);
9642 } else
9643 #if defined(CONFIG_CURSES)
9644 if (curses) {
9645 curses_display_init(ds, full_screen);
9646 } else
9647 #endif
9648 {
9649 #if defined(CONFIG_SDL)
9650 sdl_display_init(ds, full_screen, no_frame);
9651 #elif defined(CONFIG_COCOA)
9652 cocoa_display_init(ds, full_screen);
9653 #else
9654 dumb_display_init(ds);
9655 #endif
9656 }
9657
9658 #ifndef _WIN32
9659 /* must be after terminal init, SDL library changes signal handlers */
9660 termsig_setup();
9661 #endif
9662
9663 /* Maintain compatibility with multiple stdio monitors */
9664 if (!strcmp(monitor_device,"stdio")) {
9665 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
9666 const char *devname = serial_devices[i];
9667 if (devname && !strcmp(devname,"mon:stdio")) {
9668 monitor_device = NULL;
9669 break;
9670 } else if (devname && !strcmp(devname,"stdio")) {
9671 monitor_device = NULL;
9672 serial_devices[i] = "mon:stdio";
9673 break;
9674 }
9675 }
9676 }
9677 if (monitor_device) {
9678 monitor_hd = qemu_chr_open(monitor_device);
9679 if (!monitor_hd) {
9680 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
9681 exit(1);
9682 }
9683 monitor_init(monitor_hd, !nographic);
9684 }
9685
9686 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
9687 const char *devname = serial_devices[i];
9688 if (devname && strcmp(devname, "none")) {
9689 serial_hds[i] = qemu_chr_open(devname);
9690 if (!serial_hds[i]) {
9691 fprintf(stderr, "qemu: could not open serial device '%s'\n",
9692 devname);
9693 exit(1);
9694 }
9695 if (strstart(devname, "vc", 0))
9696 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
9697 }
9698 }
9699
9700 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
9701 const char *devname = parallel_devices[i];
9702 if (devname && strcmp(devname, "none")) {
9703 parallel_hds[i] = qemu_chr_open(devname);
9704 if (!parallel_hds[i]) {
9705 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
9706 devname);
9707 exit(1);
9708 }
9709 if (strstart(devname, "vc", 0))
9710 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
9711 }
9712 }
9713
9714 machine->init(ram_size, vga_ram_size, boot_devices, ds,
9715 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
9716
9717 /* init USB devices */
9718 if (usb_enabled) {
9719 for(i = 0; i < usb_devices_index; i++) {
9720 if (usb_device_add(usb_devices[i]) < 0) {
9721 fprintf(stderr, "Warning: could not add USB device %s\n",
9722 usb_devices[i]);
9723 }
9724 }
9725 }
9726
9727 if (display_state.dpy_refresh) {
9728 display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
9729 qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
9730 }
9731
9732 #ifdef CONFIG_GDBSTUB
9733 if (use_gdbstub) {
9734 /* XXX: use standard host:port notation and modify options
9735 accordingly. */
9736 if (gdbserver_start(gdbstub_port) < 0) {
9737 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
9738 gdbstub_port);
9739 exit(1);
9740 }
9741 }
9742 #endif
9743
9744 if (loadvm)
9745 do_loadvm(loadvm);
9746
9747 if (incoming) {
9748 autostart = 0; /* fixme how to deal with -daemonize */
9749 qemu_start_incoming_migration(incoming);
9750 }
9751
9752 {
9753 /* XXX: simplify init */
9754 read_passwords();
9755 if (autostart) {
9756 vm_start();
9757 }
9758 }
9759
9760 if (daemonize) {
9761 uint8_t status = 0;
9762 ssize_t len;
9763 int fd;
9764
9765 again1:
9766 len = write(fds[1], &status, 1);
9767 if (len == -1 && (errno == EINTR))
9768 goto again1;
9769
9770 if (len != 1)
9771 exit(1);
9772
9773 chdir("/");
9774 TFR(fd = open("/dev/null", O_RDWR));
9775 if (fd == -1)
9776 exit(1);
9777
9778 dup2(fd, 0);
9779 dup2(fd, 1);
9780 dup2(fd, 2);
9781
9782 close(fd);
9783 }
9784
9785 main_loop();
9786 quit_timers();
9787
9788 #if !defined(_WIN32)
9789 /* close network clients */
9790 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
9791 VLANClientState *vc;
9792
9793 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
9794 if (vc->fd_read == tap_receive) {
9795 char ifname[64];
9796 TAPState *s = vc->opaque;
9797
9798 if (sscanf(vc->info_str, "tap: ifname=%63s ", ifname) == 1 &&
9799 s->down_script[0])
9800 launch_script(s->down_script, ifname, s->fd);
9801 }
9802 #if defined(CONFIG_VDE)
9803 if (vc->fd_read == vde_from_qemu) {
9804 VDEState *s = vc->opaque;
9805 vde_close(s->vde);
9806 }
9807 #endif
9808 }
9809 }
9810 #endif
9811 return 0;
9812 }