]> git.proxmox.com Git - ovs.git/blob - vswitchd/bridge.c
532458a690ae1ad2a7cdaad6364904f428ef664e
[ovs.git] / vswitchd / bridge.c
1 /* Copyright (c) 2008, 2009, 2010 Nicira Networks
2 *
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at:
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License.
14 */
15
16 #include <config.h>
17 #include "bridge.h"
18 #include <assert.h>
19 #include <errno.h>
20 #include <arpa/inet.h>
21 #include <ctype.h>
22 #include <inttypes.h>
23 #include <sys/socket.h>
24 #include <net/if.h>
25 #include <openflow/openflow.h>
26 #include <signal.h>
27 #include <stdlib.h>
28 #include <strings.h>
29 #include <sys/stat.h>
30 #include <sys/socket.h>
31 #include <sys/types.h>
32 #include <unistd.h>
33 #include "bitmap.h"
34 #include "coverage.h"
35 #include "dirs.h"
36 #include "dpif.h"
37 #include "dynamic-string.h"
38 #include "flow.h"
39 #include "hash.h"
40 #include "hmap.h"
41 #include "jsonrpc.h"
42 #include "list.h"
43 #include "mac-learning.h"
44 #include "netdev.h"
45 #include "odp-util.h"
46 #include "ofp-print.h"
47 #include "ofpbuf.h"
48 #include "ofproto/netflow.h"
49 #include "ofproto/ofproto.h"
50 #include "ovsdb-data.h"
51 #include "packets.h"
52 #include "poll-loop.h"
53 #include "proc-net-compat.h"
54 #include "process.h"
55 #include "sha1.h"
56 #include "shash.h"
57 #include "socket-util.h"
58 #include "stream-ssl.h"
59 #include "svec.h"
60 #include "system-stats.h"
61 #include "timeval.h"
62 #include "util.h"
63 #include "unixctl.h"
64 #include "vconn.h"
65 #include "vswitchd/vswitch-idl.h"
66 #include "xenserver.h"
67 #include "vlog.h"
68 #include "xtoxll.h"
69 #include "sflow_api.h"
70
71 VLOG_DEFINE_THIS_MODULE(bridge)
72
73 struct dst {
74 uint16_t vlan;
75 uint16_t dp_ifidx;
76 };
77
78 struct iface {
79 /* These members are always valid. */
80 struct port *port; /* Containing port. */
81 size_t port_ifidx; /* Index within containing port. */
82 char *name; /* Host network device name. */
83 tag_type tag; /* Tag associated with this interface. */
84 long long delay_expires; /* Time after which 'enabled' may change. */
85
86 /* These members are valid only after bridge_reconfigure() causes them to
87 * be initialized. */
88 struct hmap_node dp_ifidx_node; /* In struct bridge's "ifaces" hmap. */
89 int dp_ifidx; /* Index within kernel datapath. */
90 struct netdev *netdev; /* Network device. */
91 bool enabled; /* May be chosen for flows? */
92 const char *type; /* Usually same as cfg->type. */
93 const struct ovsrec_interface *cfg;
94 };
95
96 #define BOND_MASK 0xff
97 struct bond_entry {
98 int iface_idx; /* Index of assigned iface, or -1 if none. */
99 uint64_t tx_bytes; /* Count of bytes recently transmitted. */
100 tag_type iface_tag; /* Tag associated with iface_idx. */
101 };
102
103 #define MAX_MIRRORS 32
104 typedef uint32_t mirror_mask_t;
105 #define MIRROR_MASK_C(X) UINT32_C(X)
106 BUILD_ASSERT_DECL(sizeof(mirror_mask_t) * CHAR_BIT >= MAX_MIRRORS);
107 struct mirror {
108 struct bridge *bridge;
109 size_t idx;
110 char *name;
111 struct uuid uuid; /* UUID of this "mirror" record in database. */
112
113 /* Selection criteria. */
114 struct shash src_ports; /* Name is port name; data is always NULL. */
115 struct shash dst_ports; /* Name is port name; data is always NULL. */
116 int *vlans;
117 size_t n_vlans;
118
119 /* Output. */
120 struct port *out_port;
121 int out_vlan;
122 };
123
124 #define FLOOD_PORT ((struct port *) 1) /* The 'flood' output port. */
125 struct port {
126 struct bridge *bridge;
127 size_t port_idx;
128 int vlan; /* -1=trunk port, else a 12-bit VLAN ID. */
129 unsigned long *trunks; /* Bitmap of trunked VLANs, if 'vlan' == -1.
130 * NULL if all VLANs are trunked. */
131 const struct ovsrec_port *cfg;
132 char *name;
133
134 /* An ordinary bridge port has 1 interface.
135 * A bridge port for bonding has at least 2 interfaces. */
136 struct iface **ifaces;
137 size_t n_ifaces, allocated_ifaces;
138
139 /* Bonding info. */
140 struct bond_entry *bond_hash; /* An array of (BOND_MASK + 1) elements. */
141 int active_iface; /* Ifidx on which bcasts accepted, or -1. */
142 tag_type active_iface_tag; /* Tag for bcast flows. */
143 tag_type no_ifaces_tag; /* Tag for flows when all ifaces disabled. */
144 int updelay, downdelay; /* Delay before iface goes up/down, in ms. */
145 bool bond_compat_is_stale; /* Need to call port_update_bond_compat()? */
146 bool bond_fake_iface; /* Fake a bond interface for legacy compat? */
147 long long int bond_next_fake_iface_update; /* Time of next update. */
148 int bond_rebalance_interval; /* Interval between rebalances, in ms. */
149 long long int bond_next_rebalance; /* Next rebalancing time. */
150 struct netdev_monitor *monitor; /* Tracks carrier up/down status. */
151
152 /* Port mirroring info. */
153 mirror_mask_t src_mirrors; /* Mirrors triggered when packet received. */
154 mirror_mask_t dst_mirrors; /* Mirrors triggered when packet sent. */
155 bool is_mirror_output_port; /* Does port mirroring send frames here? */
156 };
157
158 #define DP_MAX_PORTS 255
159 struct bridge {
160 struct list node; /* Node in global list of bridges. */
161 char *name; /* User-specified arbitrary name. */
162 struct mac_learning *ml; /* MAC learning table. */
163 uint8_t default_ea[ETH_ADDR_LEN]; /* Default MAC. */
164 const struct ovsrec_bridge *cfg;
165
166 /* OpenFlow switch processing. */
167 struct ofproto *ofproto; /* OpenFlow switch. */
168
169 /* Kernel datapath information. */
170 struct dpif *dpif; /* Datapath. */
171 struct hmap ifaces; /* Contains "struct iface"s. */
172
173 /* Bridge ports. */
174 struct port **ports;
175 size_t n_ports, allocated_ports;
176 struct shash iface_by_name; /* "struct iface"s indexed by name. */
177 struct shash port_by_name; /* "struct port"s indexed by name. */
178
179 /* Bonding. */
180 bool has_bonded_ports;
181
182 /* Flow tracking. */
183 bool flush;
184
185 /* Port mirroring. */
186 struct mirror *mirrors[MAX_MIRRORS];
187 };
188
189 /* List of all bridges. */
190 static struct list all_bridges = LIST_INITIALIZER(&all_bridges);
191
192 /* OVSDB IDL used to obtain configuration. */
193 static struct ovsdb_idl *idl;
194
195 /* Each time this timer expires, the bridge fetches systems and interface
196 * statistics and pushes them into the database. */
197 #define STATS_INTERVAL (5 * 1000) /* In milliseconds. */
198 static long long int stats_timer = LLONG_MIN;
199
200 static struct bridge *bridge_create(const struct ovsrec_bridge *br_cfg);
201 static void bridge_destroy(struct bridge *);
202 static struct bridge *bridge_lookup(const char *name);
203 static unixctl_cb_func bridge_unixctl_dump_flows;
204 static unixctl_cb_func bridge_unixctl_reconnect;
205 static int bridge_run_one(struct bridge *);
206 static size_t bridge_get_controllers(const struct bridge *br,
207 struct ovsrec_controller ***controllersp);
208 static void bridge_reconfigure_one(struct bridge *);
209 static void bridge_reconfigure_remotes(struct bridge *,
210 const struct sockaddr_in *managers,
211 size_t n_managers);
212 static void bridge_get_all_ifaces(const struct bridge *, struct shash *ifaces);
213 static void bridge_fetch_dp_ifaces(struct bridge *);
214 static void bridge_flush(struct bridge *);
215 static void bridge_pick_local_hw_addr(struct bridge *,
216 uint8_t ea[ETH_ADDR_LEN],
217 struct iface **hw_addr_iface);
218 static uint64_t bridge_pick_datapath_id(struct bridge *,
219 const uint8_t bridge_ea[ETH_ADDR_LEN],
220 struct iface *hw_addr_iface);
221 static struct iface *bridge_get_local_iface(struct bridge *);
222 static uint64_t dpid_from_hash(const void *, size_t nbytes);
223
224 static unixctl_cb_func bridge_unixctl_fdb_show;
225
226 static void bond_init(void);
227 static void bond_run(struct bridge *);
228 static void bond_wait(struct bridge *);
229 static void bond_rebalance_port(struct port *);
230 static void bond_send_learning_packets(struct port *);
231 static void bond_enable_slave(struct iface *iface, bool enable);
232
233 static struct port *port_create(struct bridge *, const char *name);
234 static void port_reconfigure(struct port *, const struct ovsrec_port *);
235 static void port_del_ifaces(struct port *, const struct ovsrec_port *);
236 static void port_destroy(struct port *);
237 static struct port *port_lookup(const struct bridge *, const char *name);
238 static struct iface *port_lookup_iface(const struct port *, const char *name);
239 static struct port *port_from_dp_ifidx(const struct bridge *,
240 uint16_t dp_ifidx);
241 static void port_update_bond_compat(struct port *);
242 static void port_update_vlan_compat(struct port *);
243 static void port_update_bonding(struct port *);
244
245 static void mirror_create(struct bridge *, struct ovsrec_mirror *);
246 static void mirror_destroy(struct mirror *);
247 static void mirror_reconfigure(struct bridge *);
248 static void mirror_reconfigure_one(struct mirror *, struct ovsrec_mirror *);
249 static bool vlan_is_mirrored(const struct mirror *, int vlan);
250
251 static struct iface *iface_create(struct port *port,
252 const struct ovsrec_interface *if_cfg);
253 static void iface_destroy(struct iface *);
254 static struct iface *iface_lookup(const struct bridge *, const char *name);
255 static struct iface *iface_from_dp_ifidx(const struct bridge *,
256 uint16_t dp_ifidx);
257 static void iface_set_mac(struct iface *);
258 static void iface_set_ofport(const struct ovsrec_interface *, int64_t ofport);
259 static void iface_update_qos(struct iface *, const struct ovsrec_qos *);
260
261 static void shash_from_ovs_idl_map(char **keys, char **values, size_t n,
262 struct shash *);
263
264 /* Hooks into ofproto processing. */
265 static struct ofhooks bridge_ofhooks;
266 \f
267 /* Public functions. */
268
269 /* Initializes the bridge module, configuring it to obtain its configuration
270 * from an OVSDB server accessed over 'remote', which should be a string in a
271 * form acceptable to ovsdb_idl_create(). */
272 void
273 bridge_init(const char *remote)
274 {
275 /* Create connection to database. */
276 idl = ovsdb_idl_create(remote, &ovsrec_idl_class);
277
278 ovsdb_idl_set_write_only(idl, &ovsrec_open_vswitch_col_cur_cfg);
279 ovsdb_idl_set_write_only(idl, &ovsrec_open_vswitch_col_statistics);
280 ovsdb_idl_omit(idl, &ovsrec_open_vswitch_col_external_ids);
281
282 ovsdb_idl_omit(idl, &ovsrec_bridge_col_external_ids);
283
284 ovsdb_idl_omit(idl, &ovsrec_port_col_external_ids);
285 ovsdb_idl_omit(idl, &ovsrec_port_col_fake_bridge);
286
287 ovsdb_idl_set_write_only(idl, &ovsrec_interface_col_ofport);
288 ovsdb_idl_set_write_only(idl, &ovsrec_interface_col_statistics);
289 ovsdb_idl_omit(idl, &ovsrec_interface_col_external_ids);
290
291 /* Register unixctl commands. */
292 unixctl_command_register("fdb/show", bridge_unixctl_fdb_show, NULL);
293 unixctl_command_register("bridge/dump-flows", bridge_unixctl_dump_flows,
294 NULL);
295 unixctl_command_register("bridge/reconnect", bridge_unixctl_reconnect,
296 NULL);
297 bond_init();
298 }
299
300 /* Performs configuration that is only necessary once at ovs-vswitchd startup,
301 * but for which the ovs-vswitchd configuration 'cfg' is required. */
302 static void
303 bridge_configure_once(const struct ovsrec_open_vswitch *cfg)
304 {
305 static bool already_configured_once;
306 struct svec bridge_names;
307 struct svec dpif_names, dpif_types;
308 size_t i;
309
310 /* Only do this once per ovs-vswitchd run. */
311 if (already_configured_once) {
312 return;
313 }
314 already_configured_once = true;
315
316 stats_timer = time_msec() + STATS_INTERVAL;
317
318 /* Get all the configured bridges' names from 'cfg' into 'bridge_names'. */
319 svec_init(&bridge_names);
320 for (i = 0; i < cfg->n_bridges; i++) {
321 svec_add(&bridge_names, cfg->bridges[i]->name);
322 }
323 svec_sort(&bridge_names);
324
325 /* Iterate over all system dpifs and delete any of them that do not appear
326 * in 'cfg'. */
327 svec_init(&dpif_names);
328 svec_init(&dpif_types);
329 dp_enumerate_types(&dpif_types);
330 for (i = 0; i < dpif_types.n; i++) {
331 struct dpif *dpif;
332 int retval;
333 size_t j;
334
335 dp_enumerate_names(dpif_types.names[i], &dpif_names);
336
337 /* For each dpif... */
338 for (j = 0; j < dpif_names.n; j++) {
339 retval = dpif_open(dpif_names.names[j], dpif_types.names[i], &dpif);
340 if (!retval) {
341 struct svec all_names;
342 size_t k;
343
344 /* ...check whether any of its names is in 'bridge_names'. */
345 svec_init(&all_names);
346 dpif_get_all_names(dpif, &all_names);
347 for (k = 0; k < all_names.n; k++) {
348 if (svec_contains(&bridge_names, all_names.names[k])) {
349 goto found;
350 }
351 }
352
353 /* No. Delete the dpif. */
354 dpif_delete(dpif);
355
356 found:
357 svec_destroy(&all_names);
358 dpif_close(dpif);
359 }
360 }
361 }
362 svec_destroy(&bridge_names);
363 svec_destroy(&dpif_names);
364 svec_destroy(&dpif_types);
365 }
366
367 /* Initializes 'options' and fills it with the options for 'if_cfg'. Merges
368 * keys from "options" and "other_config", preferring "options" keys over
369 * "other_config" keys.
370 *
371 * The value strings in '*options' are taken directly from if_cfg, not copied,
372 * so the caller should not modify or free them. */
373 static void
374 iface_get_options(const struct ovsrec_interface *if_cfg, struct shash *options)
375 {
376 size_t i;
377
378 shash_from_ovs_idl_map(if_cfg->key_options, if_cfg->value_options,
379 if_cfg->n_options, options);
380
381 for (i = 0; i < if_cfg->n_other_config; i++) {
382 char *key = if_cfg->key_other_config[i];
383 char *value = if_cfg->value_other_config[i];
384
385 if (!shash_find_data(options, key)) {
386 shash_add(options, key, value);
387 } else {
388 VLOG_WARN("%s: ignoring \"other_config\" key %s that conflicts "
389 "with \"options\" key %s", if_cfg->name, key, key);
390 }
391 }
392 }
393
394 /* Returns the type of network device that 'iface' should have. (This is
395 * ordinarily the same type as the interface, but the network devices for
396 * "internal" ports have type "system".) */
397 static const char *
398 iface_get_netdev_type(const struct iface *iface)
399 {
400 return !strcmp(iface->type, "internal") ? "system" : iface->type;
401 }
402
403 /* Attempt to create the network device for 'iface' through the netdev
404 * library. */
405 static int
406 create_iface_netdev(struct iface *iface)
407 {
408 struct netdev_options netdev_options;
409 struct shash options;
410 int error;
411
412 memset(&netdev_options, 0, sizeof netdev_options);
413 netdev_options.name = iface->cfg->name;
414 netdev_options.type = iface_get_netdev_type(iface);
415 netdev_options.args = &options;
416 netdev_options.ethertype = NETDEV_ETH_TYPE_NONE;
417
418 iface_get_options(iface->cfg, &options);
419
420 error = netdev_open(&netdev_options, &iface->netdev);
421
422 if (iface->netdev) {
423 netdev_get_carrier(iface->netdev, &iface->enabled);
424 }
425
426 shash_destroy(&options);
427
428 return error;
429 }
430
431 static int
432 reconfigure_iface_netdev(struct iface *iface)
433 {
434 const char *netdev_type, *iface_type;
435 struct shash options;
436 int error;
437
438 /* Skip reconfiguration if the device has the wrong type. This shouldn't
439 * happen, but... */
440 iface_type = iface_get_netdev_type(iface);
441 netdev_type = netdev_get_type(iface->netdev);
442 if (iface_type && strcmp(netdev_type, iface_type)) {
443 VLOG_WARN("%s: attempting change device type from %s to %s",
444 iface->cfg->name, netdev_type, iface_type);
445 return EINVAL;
446 }
447
448 /* Reconfigure device. */
449 iface_get_options(iface->cfg, &options);
450 error = netdev_reconfigure(iface->netdev, &options);
451 shash_destroy(&options);
452
453 return error;
454 }
455
456 /* Callback for iterate_and_prune_ifaces(). */
457 static bool
458 check_iface(struct bridge *br, struct iface *iface, void *aux OVS_UNUSED)
459 {
460 if (!iface->netdev) {
461 /* We already reported a related error, don't bother duplicating it. */
462 return false;
463 }
464
465 if (iface->dp_ifidx < 0) {
466 VLOG_ERR("%s interface not in %s, dropping",
467 iface->name, dpif_name(br->dpif));
468 return false;
469 }
470
471 VLOG_DBG("%s has interface %s on port %d", dpif_name(br->dpif),
472 iface->name, iface->dp_ifidx);
473 return true;
474 }
475
476 /* Callback for iterate_and_prune_ifaces(). */
477 static bool
478 set_iface_properties(struct bridge *br OVS_UNUSED, struct iface *iface,
479 void *aux OVS_UNUSED)
480 {
481 /* Set policing attributes. */
482 netdev_set_policing(iface->netdev,
483 iface->cfg->ingress_policing_rate,
484 iface->cfg->ingress_policing_burst);
485
486 /* Set MAC address of internal interfaces other than the local
487 * interface. */
488 if (iface->dp_ifidx != ODPP_LOCAL && !strcmp(iface->type, "internal")) {
489 iface_set_mac(iface);
490 }
491
492 return true;
493 }
494
495 /* Calls 'cb' for each interfaces in 'br', passing along the 'aux' argument.
496 * Deletes from 'br' all the interfaces for which 'cb' returns false, and then
497 * deletes from 'br' any ports that no longer have any interfaces. */
498 static void
499 iterate_and_prune_ifaces(struct bridge *br,
500 bool (*cb)(struct bridge *, struct iface *,
501 void *aux),
502 void *aux)
503 {
504 size_t i, j;
505
506 for (i = 0; i < br->n_ports; ) {
507 struct port *port = br->ports[i];
508 for (j = 0; j < port->n_ifaces; ) {
509 struct iface *iface = port->ifaces[j];
510 if (cb(br, iface, aux)) {
511 j++;
512 } else {
513 iface_set_ofport(iface->cfg, -1);
514 iface_destroy(iface);
515 }
516 }
517
518 if (port->n_ifaces) {
519 i++;
520 } else {
521 VLOG_ERR("%s port has no interfaces, dropping", port->name);
522 port_destroy(port);
523 }
524 }
525 }
526
527 /* Looks at the list of managers in 'ovs_cfg' and extracts their remote IP
528 * addresses and ports into '*managersp' and '*n_managersp'. The caller is
529 * responsible for freeing '*managersp' (with free()).
530 *
531 * You may be asking yourself "why does ovs-vswitchd care?", because
532 * ovsdb-server is responsible for connecting to the managers, and ovs-vswitchd
533 * should not be and in fact is not directly involved in that. But
534 * ovs-vswitchd needs to make sure that ovsdb-server can reach the managers, so
535 * it has to tell in-band control where the managers are to enable that.
536 */
537 static void
538 collect_managers(const struct ovsrec_open_vswitch *ovs_cfg,
539 struct sockaddr_in **managersp, size_t *n_managersp)
540 {
541 struct sockaddr_in *managers = NULL;
542 size_t n_managers = 0;
543
544 if (ovs_cfg->n_managers > 0) {
545 size_t i;
546
547 managers = xmalloc(ovs_cfg->n_managers * sizeof *managers);
548 for (i = 0; i < ovs_cfg->n_managers; i++) {
549 const char *name = ovs_cfg->managers[i];
550 struct sockaddr_in *sin = &managers[i];
551
552 if ((!strncmp(name, "tcp:", 4)
553 && inet_parse_active(name + 4, JSONRPC_TCP_PORT, sin)) ||
554 (!strncmp(name, "ssl:", 4)
555 && inet_parse_active(name + 4, JSONRPC_SSL_PORT, sin))) {
556 n_managers++;
557 }
558 }
559 }
560
561 *managersp = managers;
562 *n_managersp = n_managers;
563 }
564
565 static void
566 bridge_reconfigure(const struct ovsrec_open_vswitch *ovs_cfg)
567 {
568 struct shash old_br, new_br;
569 struct shash_node *node;
570 struct bridge *br, *next;
571 struct sockaddr_in *managers;
572 size_t n_managers;
573 size_t i;
574 int sflow_bridge_number;
575
576 COVERAGE_INC(bridge_reconfigure);
577
578 collect_managers(ovs_cfg, &managers, &n_managers);
579
580 /* Collect old and new bridges. */
581 shash_init(&old_br);
582 shash_init(&new_br);
583 LIST_FOR_EACH (br, node, &all_bridges) {
584 shash_add(&old_br, br->name, br);
585 }
586 for (i = 0; i < ovs_cfg->n_bridges; i++) {
587 const struct ovsrec_bridge *br_cfg = ovs_cfg->bridges[i];
588 if (!shash_add_once(&new_br, br_cfg->name, br_cfg)) {
589 VLOG_WARN("more than one bridge named %s", br_cfg->name);
590 }
591 }
592
593 /* Get rid of deleted bridges and add new bridges. */
594 LIST_FOR_EACH_SAFE (br, next, node, &all_bridges) {
595 struct ovsrec_bridge *br_cfg = shash_find_data(&new_br, br->name);
596 if (br_cfg) {
597 br->cfg = br_cfg;
598 } else {
599 bridge_destroy(br);
600 }
601 }
602 SHASH_FOR_EACH (node, &new_br) {
603 const char *br_name = node->name;
604 const struct ovsrec_bridge *br_cfg = node->data;
605 br = shash_find_data(&old_br, br_name);
606 if (br) {
607 /* If the bridge datapath type has changed, we need to tear it
608 * down and recreate. */
609 if (strcmp(br->cfg->datapath_type, br_cfg->datapath_type)) {
610 bridge_destroy(br);
611 bridge_create(br_cfg);
612 }
613 } else {
614 bridge_create(br_cfg);
615 }
616 }
617 shash_destroy(&old_br);
618 shash_destroy(&new_br);
619
620 /* Reconfigure all bridges. */
621 LIST_FOR_EACH (br, node, &all_bridges) {
622 bridge_reconfigure_one(br);
623 }
624
625 /* Add and delete ports on all datapaths.
626 *
627 * The kernel will reject any attempt to add a given port to a datapath if
628 * that port already belongs to a different datapath, so we must do all
629 * port deletions before any port additions. */
630 LIST_FOR_EACH (br, node, &all_bridges) {
631 struct odp_port *dpif_ports;
632 size_t n_dpif_ports;
633 struct shash want_ifaces;
634
635 dpif_port_list(br->dpif, &dpif_ports, &n_dpif_ports);
636 bridge_get_all_ifaces(br, &want_ifaces);
637 for (i = 0; i < n_dpif_ports; i++) {
638 const struct odp_port *p = &dpif_ports[i];
639 if (!shash_find(&want_ifaces, p->devname)
640 && strcmp(p->devname, br->name)) {
641 int retval = dpif_port_del(br->dpif, p->port);
642 if (retval) {
643 VLOG_ERR("failed to remove %s interface from %s: %s",
644 p->devname, dpif_name(br->dpif),
645 strerror(retval));
646 }
647 }
648 }
649 shash_destroy(&want_ifaces);
650 free(dpif_ports);
651 }
652 LIST_FOR_EACH (br, node, &all_bridges) {
653 struct odp_port *dpif_ports;
654 size_t n_dpif_ports;
655 struct shash cur_ifaces, want_ifaces;
656
657 /* Get the set of interfaces currently in this datapath. */
658 dpif_port_list(br->dpif, &dpif_ports, &n_dpif_ports);
659 shash_init(&cur_ifaces);
660 for (i = 0; i < n_dpif_ports; i++) {
661 const char *name = dpif_ports[i].devname;
662 shash_add_once(&cur_ifaces, name, &dpif_ports[i]);
663 }
664
665 /* Get the set of interfaces we want on this datapath. */
666 bridge_get_all_ifaces(br, &want_ifaces);
667
668 hmap_clear(&br->ifaces);
669 SHASH_FOR_EACH (node, &want_ifaces) {
670 const char *if_name = node->name;
671 struct iface *iface = node->data;
672 bool internal = !iface || !strcmp(iface->type, "internal");
673 struct odp_port *dpif_port = shash_find_data(&cur_ifaces, if_name);
674 int error;
675
676 /* If we have a port or a netdev already, and it's not the type we
677 * want, then delete the port (if any) and close the netdev (if
678 * any). */
679 if (internal
680 ? dpif_port && !(dpif_port->flags & ODP_PORT_INTERNAL)
681 : (iface->netdev
682 && strcmp(iface->type, netdev_get_type(iface->netdev))))
683 {
684 if (dpif_port) {
685 error = ofproto_port_del(br->ofproto, dpif_port->port);
686 if (error) {
687 continue;
688 }
689 dpif_port = NULL;
690 }
691 if (iface) {
692 netdev_close(iface->netdev);
693 iface->netdev = NULL;
694 }
695 }
696
697 /* If it's not an internal port, open (possibly create) the
698 * netdev. */
699 if (!internal) {
700 if (!iface->netdev) {
701 error = create_iface_netdev(iface);
702 if (error) {
703 VLOG_WARN("could not create iface %s: %s", iface->name,
704 strerror(error));
705 continue;
706 }
707 } else {
708 reconfigure_iface_netdev(iface);
709 }
710 }
711
712 /* If it's not part of the datapath, add it. */
713 if (!dpif_port) {
714 error = dpif_port_add(br->dpif, if_name,
715 internal ? ODP_PORT_INTERNAL : 0, NULL);
716 if (error == EFBIG) {
717 VLOG_ERR("ran out of valid port numbers on %s",
718 dpif_name(br->dpif));
719 break;
720 } else if (error) {
721 VLOG_ERR("failed to add %s interface to %s: %s",
722 if_name, dpif_name(br->dpif), strerror(error));
723 continue;
724 }
725 }
726
727 /* If it's an internal port, open the netdev. */
728 if (internal) {
729 if (iface && !iface->netdev) {
730 error = create_iface_netdev(iface);
731 if (error) {
732 VLOG_WARN("could not create iface %s: %s", iface->name,
733 strerror(error));
734 continue;
735 }
736 }
737 } else {
738 assert(iface->netdev != NULL);
739 }
740 }
741 free(dpif_ports);
742 shash_destroy(&cur_ifaces);
743 shash_destroy(&want_ifaces);
744 }
745 sflow_bridge_number = 0;
746 LIST_FOR_EACH (br, node, &all_bridges) {
747 uint8_t ea[8];
748 uint64_t dpid;
749 struct iface *local_iface;
750 struct iface *hw_addr_iface;
751 char *dpid_string;
752
753 bridge_fetch_dp_ifaces(br);
754
755 iterate_and_prune_ifaces(br, check_iface, NULL);
756
757 /* Pick local port hardware address, datapath ID. */
758 bridge_pick_local_hw_addr(br, ea, &hw_addr_iface);
759 local_iface = bridge_get_local_iface(br);
760 if (local_iface) {
761 int error = netdev_set_etheraddr(local_iface->netdev, ea);
762 if (error) {
763 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
764 VLOG_ERR_RL(&rl, "bridge %s: failed to set bridge "
765 "Ethernet address: %s",
766 br->name, strerror(error));
767 }
768 }
769
770 dpid = bridge_pick_datapath_id(br, ea, hw_addr_iface);
771 ofproto_set_datapath_id(br->ofproto, dpid);
772
773 dpid_string = xasprintf("%016"PRIx64, dpid);
774 ovsrec_bridge_set_datapath_id(br->cfg, dpid_string);
775 free(dpid_string);
776
777 /* Set NetFlow configuration on this bridge. */
778 if (br->cfg->netflow) {
779 struct ovsrec_netflow *nf_cfg = br->cfg->netflow;
780 struct netflow_options opts;
781
782 memset(&opts, 0, sizeof opts);
783
784 dpif_get_netflow_ids(br->dpif, &opts.engine_type, &opts.engine_id);
785 if (nf_cfg->engine_type) {
786 opts.engine_type = *nf_cfg->engine_type;
787 }
788 if (nf_cfg->engine_id) {
789 opts.engine_id = *nf_cfg->engine_id;
790 }
791
792 opts.active_timeout = nf_cfg->active_timeout;
793 if (!opts.active_timeout) {
794 opts.active_timeout = -1;
795 } else if (opts.active_timeout < 0) {
796 VLOG_WARN("bridge %s: active timeout interval set to negative "
797 "value, using default instead (%d seconds)", br->name,
798 NF_ACTIVE_TIMEOUT_DEFAULT);
799 opts.active_timeout = -1;
800 }
801
802 opts.add_id_to_iface = nf_cfg->add_id_to_interface;
803 if (opts.add_id_to_iface) {
804 if (opts.engine_id > 0x7f) {
805 VLOG_WARN("bridge %s: netflow port mangling may conflict "
806 "with another vswitch, choose an engine id less "
807 "than 128", br->name);
808 }
809 if (br->n_ports > 508) {
810 VLOG_WARN("bridge %s: netflow port mangling will conflict "
811 "with another port when more than 508 ports are "
812 "used", br->name);
813 }
814 }
815
816 opts.collectors.n = nf_cfg->n_targets;
817 opts.collectors.names = nf_cfg->targets;
818 if (ofproto_set_netflow(br->ofproto, &opts)) {
819 VLOG_ERR("bridge %s: problem setting netflow collectors",
820 br->name);
821 }
822 } else {
823 ofproto_set_netflow(br->ofproto, NULL);
824 }
825
826 /* Set sFlow configuration on this bridge. */
827 if (br->cfg->sflow) {
828 const struct ovsrec_sflow *sflow_cfg = br->cfg->sflow;
829 struct ovsrec_controller **controllers;
830 struct ofproto_sflow_options oso;
831 size_t n_controllers;
832
833 memset(&oso, 0, sizeof oso);
834
835 oso.targets.n = sflow_cfg->n_targets;
836 oso.targets.names = sflow_cfg->targets;
837
838 oso.sampling_rate = SFL_DEFAULT_SAMPLING_RATE;
839 if (sflow_cfg->sampling) {
840 oso.sampling_rate = *sflow_cfg->sampling;
841 }
842
843 oso.polling_interval = SFL_DEFAULT_POLLING_INTERVAL;
844 if (sflow_cfg->polling) {
845 oso.polling_interval = *sflow_cfg->polling;
846 }
847
848 oso.header_len = SFL_DEFAULT_HEADER_SIZE;
849 if (sflow_cfg->header) {
850 oso.header_len = *sflow_cfg->header;
851 }
852
853 oso.sub_id = sflow_bridge_number++;
854 oso.agent_device = sflow_cfg->agent;
855
856 oso.control_ip = NULL;
857 n_controllers = bridge_get_controllers(br, &controllers);
858 for (i = 0; i < n_controllers; i++) {
859 if (controllers[i]->local_ip) {
860 oso.control_ip = controllers[i]->local_ip;
861 break;
862 }
863 }
864 ofproto_set_sflow(br->ofproto, &oso);
865
866 /* Do not destroy oso.targets because it is owned by sflow_cfg. */
867 } else {
868 ofproto_set_sflow(br->ofproto, NULL);
869 }
870
871 /* Update the controller and related settings. It would be more
872 * straightforward to call this from bridge_reconfigure_one(), but we
873 * can't do it there for two reasons. First, and most importantly, at
874 * that point we don't know the dp_ifidx of any interfaces that have
875 * been added to the bridge (because we haven't actually added them to
876 * the datapath). Second, at that point we haven't set the datapath ID
877 * yet; when a controller is configured, resetting the datapath ID will
878 * immediately disconnect from the controller, so it's better to set
879 * the datapath ID before the controller. */
880 bridge_reconfigure_remotes(br, managers, n_managers);
881 }
882 LIST_FOR_EACH (br, node, &all_bridges) {
883 for (i = 0; i < br->n_ports; i++) {
884 struct port *port = br->ports[i];
885 int j;
886
887 port_update_vlan_compat(port);
888 port_update_bonding(port);
889
890 for (j = 0; j < port->n_ifaces; j++) {
891 iface_update_qos(port->ifaces[j], port->cfg->qos);
892 }
893 }
894 }
895 LIST_FOR_EACH (br, node, &all_bridges) {
896 iterate_and_prune_ifaces(br, set_iface_properties, NULL);
897 }
898
899 free(managers);
900 }
901
902 static const char *
903 get_ovsrec_key_value(const struct ovsdb_idl_row *row,
904 const struct ovsdb_idl_column *column,
905 const char *key)
906 {
907 const struct ovsdb_datum *datum;
908 union ovsdb_atom atom;
909 unsigned int idx;
910
911 datum = ovsdb_idl_get(row, column, OVSDB_TYPE_STRING, OVSDB_TYPE_STRING);
912 atom.string = (char *) key;
913 idx = ovsdb_datum_find_key(datum, &atom, OVSDB_TYPE_STRING);
914 return idx == UINT_MAX ? NULL : datum->values[idx].string;
915 }
916
917 static const char *
918 bridge_get_other_config(const struct ovsrec_bridge *br_cfg, const char *key)
919 {
920 return get_ovsrec_key_value(&br_cfg->header_,
921 &ovsrec_bridge_col_other_config, key);
922 }
923
924 static void
925 bridge_pick_local_hw_addr(struct bridge *br, uint8_t ea[ETH_ADDR_LEN],
926 struct iface **hw_addr_iface)
927 {
928 const char *hwaddr;
929 size_t i, j;
930 int error;
931
932 *hw_addr_iface = NULL;
933
934 /* Did the user request a particular MAC? */
935 hwaddr = bridge_get_other_config(br->cfg, "hwaddr");
936 if (hwaddr && eth_addr_from_string(hwaddr, ea)) {
937 if (eth_addr_is_multicast(ea)) {
938 VLOG_ERR("bridge %s: cannot set MAC address to multicast "
939 "address "ETH_ADDR_FMT, br->name, ETH_ADDR_ARGS(ea));
940 } else if (eth_addr_is_zero(ea)) {
941 VLOG_ERR("bridge %s: cannot set MAC address to zero", br->name);
942 } else {
943 return;
944 }
945 }
946
947 /* Otherwise choose the minimum non-local MAC address among all of the
948 * interfaces. */
949 memset(ea, 0xff, sizeof ea);
950 for (i = 0; i < br->n_ports; i++) {
951 struct port *port = br->ports[i];
952 uint8_t iface_ea[ETH_ADDR_LEN];
953 struct iface *iface;
954
955 /* Mirror output ports don't participate. */
956 if (port->is_mirror_output_port) {
957 continue;
958 }
959
960 /* Choose the MAC address to represent the port. */
961 if (port->cfg->mac && eth_addr_from_string(port->cfg->mac, iface_ea)) {
962 /* Find the interface with this Ethernet address (if any) so that
963 * we can provide the correct devname to the caller. */
964 iface = NULL;
965 for (j = 0; j < port->n_ifaces; j++) {
966 struct iface *candidate = port->ifaces[j];
967 uint8_t candidate_ea[ETH_ADDR_LEN];
968 if (!netdev_get_etheraddr(candidate->netdev, candidate_ea)
969 && eth_addr_equals(iface_ea, candidate_ea)) {
970 iface = candidate;
971 }
972 }
973 } else {
974 /* Choose the interface whose MAC address will represent the port.
975 * The Linux kernel bonding code always chooses the MAC address of
976 * the first slave added to a bond, and the Fedora networking
977 * scripts always add slaves to a bond in alphabetical order, so
978 * for compatibility we choose the interface with the name that is
979 * first in alphabetical order. */
980 iface = port->ifaces[0];
981 for (j = 1; j < port->n_ifaces; j++) {
982 struct iface *candidate = port->ifaces[j];
983 if (strcmp(candidate->name, iface->name) < 0) {
984 iface = candidate;
985 }
986 }
987
988 /* The local port doesn't count (since we're trying to choose its
989 * MAC address anyway). */
990 if (iface->dp_ifidx == ODPP_LOCAL) {
991 continue;
992 }
993
994 /* Grab MAC. */
995 error = netdev_get_etheraddr(iface->netdev, iface_ea);
996 if (error) {
997 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
998 VLOG_ERR_RL(&rl, "failed to obtain Ethernet address of %s: %s",
999 iface->name, strerror(error));
1000 continue;
1001 }
1002 }
1003
1004 /* Compare against our current choice. */
1005 if (!eth_addr_is_multicast(iface_ea) &&
1006 !eth_addr_is_local(iface_ea) &&
1007 !eth_addr_is_reserved(iface_ea) &&
1008 !eth_addr_is_zero(iface_ea) &&
1009 memcmp(iface_ea, ea, ETH_ADDR_LEN) < 0)
1010 {
1011 memcpy(ea, iface_ea, ETH_ADDR_LEN);
1012 *hw_addr_iface = iface;
1013 }
1014 }
1015 if (eth_addr_is_multicast(ea)) {
1016 memcpy(ea, br->default_ea, ETH_ADDR_LEN);
1017 *hw_addr_iface = NULL;
1018 VLOG_WARN("bridge %s: using default bridge Ethernet "
1019 "address "ETH_ADDR_FMT, br->name, ETH_ADDR_ARGS(ea));
1020 } else {
1021 VLOG_DBG("bridge %s: using bridge Ethernet address "ETH_ADDR_FMT,
1022 br->name, ETH_ADDR_ARGS(ea));
1023 }
1024 }
1025
1026 /* Choose and returns the datapath ID for bridge 'br' given that the bridge
1027 * Ethernet address is 'bridge_ea'. If 'bridge_ea' is the Ethernet address of
1028 * an interface on 'br', then that interface must be passed in as
1029 * 'hw_addr_iface'; if 'bridge_ea' was derived some other way, then
1030 * 'hw_addr_iface' must be passed in as a null pointer. */
1031 static uint64_t
1032 bridge_pick_datapath_id(struct bridge *br,
1033 const uint8_t bridge_ea[ETH_ADDR_LEN],
1034 struct iface *hw_addr_iface)
1035 {
1036 /*
1037 * The procedure for choosing a bridge MAC address will, in the most
1038 * ordinary case, also choose a unique MAC that we can use as a datapath
1039 * ID. In some special cases, though, multiple bridges will end up with
1040 * the same MAC address. This is OK for the bridges, but it will confuse
1041 * the OpenFlow controller, because each datapath needs a unique datapath
1042 * ID.
1043 *
1044 * Datapath IDs must be unique. It is also very desirable that they be
1045 * stable from one run to the next, so that policy set on a datapath
1046 * "sticks".
1047 */
1048 const char *datapath_id;
1049 uint64_t dpid;
1050
1051 datapath_id = bridge_get_other_config(br->cfg, "datapath-id");
1052 if (datapath_id && dpid_from_string(datapath_id, &dpid)) {
1053 return dpid;
1054 }
1055
1056 if (hw_addr_iface) {
1057 int vlan;
1058 if (!netdev_get_vlan_vid(hw_addr_iface->netdev, &vlan)) {
1059 /*
1060 * A bridge whose MAC address is taken from a VLAN network device
1061 * (that is, a network device created with vconfig(8) or similar
1062 * tool) will have the same MAC address as a bridge on the VLAN
1063 * device's physical network device.
1064 *
1065 * Handle this case by hashing the physical network device MAC
1066 * along with the VLAN identifier.
1067 */
1068 uint8_t buf[ETH_ADDR_LEN + 2];
1069 memcpy(buf, bridge_ea, ETH_ADDR_LEN);
1070 buf[ETH_ADDR_LEN] = vlan >> 8;
1071 buf[ETH_ADDR_LEN + 1] = vlan;
1072 return dpid_from_hash(buf, sizeof buf);
1073 } else {
1074 /*
1075 * Assume that this bridge's MAC address is unique, since it
1076 * doesn't fit any of the cases we handle specially.
1077 */
1078 }
1079 } else {
1080 /*
1081 * A purely internal bridge, that is, one that has no non-virtual
1082 * network devices on it at all, is more difficult because it has no
1083 * natural unique identifier at all.
1084 *
1085 * When the host is a XenServer, we handle this case by hashing the
1086 * host's UUID with the name of the bridge. Names of bridges are
1087 * persistent across XenServer reboots, although they can be reused if
1088 * an internal network is destroyed and then a new one is later
1089 * created, so this is fairly effective.
1090 *
1091 * When the host is not a XenServer, we punt by using a random MAC
1092 * address on each run.
1093 */
1094 const char *host_uuid = xenserver_get_host_uuid();
1095 if (host_uuid) {
1096 char *combined = xasprintf("%s,%s", host_uuid, br->name);
1097 dpid = dpid_from_hash(combined, strlen(combined));
1098 free(combined);
1099 return dpid;
1100 }
1101 }
1102
1103 return eth_addr_to_uint64(bridge_ea);
1104 }
1105
1106 static uint64_t
1107 dpid_from_hash(const void *data, size_t n)
1108 {
1109 uint8_t hash[SHA1_DIGEST_SIZE];
1110
1111 BUILD_ASSERT_DECL(sizeof hash >= ETH_ADDR_LEN);
1112 sha1_bytes(data, n, hash);
1113 eth_addr_mark_random(hash);
1114 return eth_addr_to_uint64(hash);
1115 }
1116
1117 static void
1118 iface_refresh_stats(struct iface *iface)
1119 {
1120 struct iface_stat {
1121 char *name;
1122 int offset;
1123 };
1124 static const struct iface_stat iface_stats[] = {
1125 { "rx_packets", offsetof(struct netdev_stats, rx_packets) },
1126 { "tx_packets", offsetof(struct netdev_stats, tx_packets) },
1127 { "rx_bytes", offsetof(struct netdev_stats, rx_bytes) },
1128 { "tx_bytes", offsetof(struct netdev_stats, tx_bytes) },
1129 { "rx_dropped", offsetof(struct netdev_stats, rx_dropped) },
1130 { "tx_dropped", offsetof(struct netdev_stats, tx_dropped) },
1131 { "rx_errors", offsetof(struct netdev_stats, rx_errors) },
1132 { "tx_errors", offsetof(struct netdev_stats, tx_errors) },
1133 { "rx_frame_err", offsetof(struct netdev_stats, rx_frame_errors) },
1134 { "rx_over_err", offsetof(struct netdev_stats, rx_over_errors) },
1135 { "rx_crc_err", offsetof(struct netdev_stats, rx_crc_errors) },
1136 { "collisions", offsetof(struct netdev_stats, collisions) },
1137 };
1138 enum { N_STATS = ARRAY_SIZE(iface_stats) };
1139 const struct iface_stat *s;
1140
1141 char *keys[N_STATS];
1142 int64_t values[N_STATS];
1143 int n;
1144
1145 struct netdev_stats stats;
1146
1147 /* Intentionally ignore return value, since errors will set 'stats' to
1148 * all-1s, and we will deal with that correctly below. */
1149 netdev_get_stats(iface->netdev, &stats);
1150
1151 n = 0;
1152 for (s = iface_stats; s < &iface_stats[N_STATS]; s++) {
1153 uint64_t value = *(uint64_t *) (((char *) &stats) + s->offset);
1154 if (value != UINT64_MAX) {
1155 keys[n] = s->name;
1156 values[n] = value;
1157 n++;
1158 }
1159 }
1160
1161 ovsrec_interface_set_statistics(iface->cfg, keys, values, n);
1162 }
1163
1164 static void
1165 refresh_system_stats(const struct ovsrec_open_vswitch *cfg)
1166 {
1167 struct ovsdb_datum datum;
1168 struct shash stats;
1169
1170 shash_init(&stats);
1171 get_system_stats(&stats);
1172
1173 ovsdb_datum_from_shash(&datum, &stats);
1174 ovsdb_idl_txn_write(&cfg->header_, &ovsrec_open_vswitch_col_statistics,
1175 &datum);
1176 }
1177
1178 void
1179 bridge_run(void)
1180 {
1181 const struct ovsrec_open_vswitch *cfg;
1182
1183 bool datapath_destroyed;
1184 bool database_changed;
1185 struct bridge *br;
1186
1187 /* Let each bridge do the work that it needs to do. */
1188 datapath_destroyed = false;
1189 LIST_FOR_EACH (br, node, &all_bridges) {
1190 int error = bridge_run_one(br);
1191 if (error) {
1192 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1193 VLOG_ERR_RL(&rl, "bridge %s: datapath was destroyed externally, "
1194 "forcing reconfiguration", br->name);
1195 datapath_destroyed = true;
1196 }
1197 }
1198
1199 /* (Re)configure if necessary. */
1200 database_changed = ovsdb_idl_run(idl);
1201 cfg = ovsrec_open_vswitch_first(idl);
1202 if (database_changed || datapath_destroyed) {
1203 if (cfg) {
1204 struct ovsdb_idl_txn *txn = ovsdb_idl_txn_create(idl);
1205
1206 bridge_configure_once(cfg);
1207 bridge_reconfigure(cfg);
1208
1209 ovsrec_open_vswitch_set_cur_cfg(cfg, cfg->next_cfg);
1210 ovsdb_idl_txn_commit(txn);
1211 ovsdb_idl_txn_destroy(txn); /* XXX */
1212 } else {
1213 /* We still need to reconfigure to avoid dangling pointers to
1214 * now-destroyed ovsrec structures inside bridge data. */
1215 static const struct ovsrec_open_vswitch null_cfg;
1216
1217 bridge_reconfigure(&null_cfg);
1218 }
1219 }
1220
1221 #ifdef HAVE_OPENSSL
1222 /* Re-configure SSL. We do this on every trip through the main loop,
1223 * instead of just when the database changes, because the contents of the
1224 * key and certificate files can change without the database changing. */
1225 if (cfg && cfg->ssl) {
1226 const struct ovsrec_ssl *ssl = cfg->ssl;
1227
1228 stream_ssl_set_key_and_cert(ssl->private_key, ssl->certificate);
1229 stream_ssl_set_ca_cert_file(ssl->ca_cert, ssl->bootstrap_ca_cert);
1230 }
1231 #endif
1232
1233 /* Refresh system and interface stats if necessary. */
1234 if (time_msec() >= stats_timer) {
1235 if (cfg) {
1236 struct ovsdb_idl_txn *txn;
1237
1238 txn = ovsdb_idl_txn_create(idl);
1239 LIST_FOR_EACH (br, node, &all_bridges) {
1240 size_t i;
1241
1242 for (i = 0; i < br->n_ports; i++) {
1243 struct port *port = br->ports[i];
1244 size_t j;
1245
1246 for (j = 0; j < port->n_ifaces; j++) {
1247 struct iface *iface = port->ifaces[j];
1248 iface_refresh_stats(iface);
1249 }
1250 }
1251 }
1252 refresh_system_stats(cfg);
1253 ovsdb_idl_txn_commit(txn);
1254 ovsdb_idl_txn_destroy(txn); /* XXX */
1255 }
1256
1257 stats_timer = time_msec() + STATS_INTERVAL;
1258 }
1259 }
1260
1261 void
1262 bridge_wait(void)
1263 {
1264 struct bridge *br;
1265
1266 LIST_FOR_EACH (br, node, &all_bridges) {
1267 ofproto_wait(br->ofproto);
1268 if (ofproto_has_primary_controller(br->ofproto)) {
1269 continue;
1270 }
1271
1272 mac_learning_wait(br->ml);
1273 bond_wait(br);
1274 }
1275 ovsdb_idl_wait(idl);
1276 poll_timer_wait_until(stats_timer);
1277 }
1278
1279 /* Forces 'br' to revalidate all of its flows. This is appropriate when 'br''s
1280 * configuration changes. */
1281 static void
1282 bridge_flush(struct bridge *br)
1283 {
1284 COVERAGE_INC(bridge_flush);
1285 br->flush = true;
1286 mac_learning_flush(br->ml);
1287 }
1288
1289 /* Returns the 'br' interface for the ODPP_LOCAL port, or null if 'br' has no
1290 * such interface. */
1291 static struct iface *
1292 bridge_get_local_iface(struct bridge *br)
1293 {
1294 size_t i, j;
1295
1296 for (i = 0; i < br->n_ports; i++) {
1297 struct port *port = br->ports[i];
1298 for (j = 0; j < port->n_ifaces; j++) {
1299 struct iface *iface = port->ifaces[j];
1300 if (iface->dp_ifidx == ODPP_LOCAL) {
1301 return iface;
1302 }
1303 }
1304 }
1305
1306 return NULL;
1307 }
1308 \f
1309 /* Bridge unixctl user interface functions. */
1310 static void
1311 bridge_unixctl_fdb_show(struct unixctl_conn *conn,
1312 const char *args, void *aux OVS_UNUSED)
1313 {
1314 struct ds ds = DS_EMPTY_INITIALIZER;
1315 const struct bridge *br;
1316 const struct mac_entry *e;
1317
1318 br = bridge_lookup(args);
1319 if (!br) {
1320 unixctl_command_reply(conn, 501, "no such bridge");
1321 return;
1322 }
1323
1324 ds_put_cstr(&ds, " port VLAN MAC Age\n");
1325 LIST_FOR_EACH (e, lru_node, &br->ml->lrus) {
1326 if (e->port < 0 || e->port >= br->n_ports) {
1327 continue;
1328 }
1329 ds_put_format(&ds, "%5d %4d "ETH_ADDR_FMT" %3d\n",
1330 br->ports[e->port]->ifaces[0]->dp_ifidx,
1331 e->vlan, ETH_ADDR_ARGS(e->mac), mac_entry_age(e));
1332 }
1333 unixctl_command_reply(conn, 200, ds_cstr(&ds));
1334 ds_destroy(&ds);
1335 }
1336 \f
1337 /* Bridge reconfiguration functions. */
1338 static struct bridge *
1339 bridge_create(const struct ovsrec_bridge *br_cfg)
1340 {
1341 struct bridge *br;
1342 int error;
1343
1344 assert(!bridge_lookup(br_cfg->name));
1345 br = xzalloc(sizeof *br);
1346
1347 error = dpif_create_and_open(br_cfg->name, br_cfg->datapath_type,
1348 &br->dpif);
1349 if (error) {
1350 free(br);
1351 return NULL;
1352 }
1353 dpif_flow_flush(br->dpif);
1354
1355 error = ofproto_create(br_cfg->name, br_cfg->datapath_type, &bridge_ofhooks,
1356 br, &br->ofproto);
1357 if (error) {
1358 VLOG_ERR("failed to create switch %s: %s", br_cfg->name,
1359 strerror(error));
1360 dpif_delete(br->dpif);
1361 dpif_close(br->dpif);
1362 free(br);
1363 return NULL;
1364 }
1365
1366 br->name = xstrdup(br_cfg->name);
1367 br->cfg = br_cfg;
1368 br->ml = mac_learning_create();
1369 eth_addr_nicira_random(br->default_ea);
1370
1371 hmap_init(&br->ifaces);
1372
1373 shash_init(&br->port_by_name);
1374 shash_init(&br->iface_by_name);
1375
1376 br->flush = false;
1377
1378 list_push_back(&all_bridges, &br->node);
1379
1380 VLOG_INFO("created bridge %s on %s", br->name, dpif_name(br->dpif));
1381
1382 return br;
1383 }
1384
1385 static void
1386 bridge_destroy(struct bridge *br)
1387 {
1388 if (br) {
1389 int error;
1390
1391 while (br->n_ports > 0) {
1392 port_destroy(br->ports[br->n_ports - 1]);
1393 }
1394 list_remove(&br->node);
1395 error = dpif_delete(br->dpif);
1396 if (error && error != ENOENT) {
1397 VLOG_ERR("failed to delete %s: %s",
1398 dpif_name(br->dpif), strerror(error));
1399 }
1400 dpif_close(br->dpif);
1401 ofproto_destroy(br->ofproto);
1402 mac_learning_destroy(br->ml);
1403 hmap_destroy(&br->ifaces);
1404 shash_destroy(&br->port_by_name);
1405 shash_destroy(&br->iface_by_name);
1406 free(br->ports);
1407 free(br->name);
1408 free(br);
1409 }
1410 }
1411
1412 static struct bridge *
1413 bridge_lookup(const char *name)
1414 {
1415 struct bridge *br;
1416
1417 LIST_FOR_EACH (br, node, &all_bridges) {
1418 if (!strcmp(br->name, name)) {
1419 return br;
1420 }
1421 }
1422 return NULL;
1423 }
1424
1425 /* Handle requests for a listing of all flows known by the OpenFlow
1426 * stack, including those normally hidden. */
1427 static void
1428 bridge_unixctl_dump_flows(struct unixctl_conn *conn,
1429 const char *args, void *aux OVS_UNUSED)
1430 {
1431 struct bridge *br;
1432 struct ds results;
1433
1434 br = bridge_lookup(args);
1435 if (!br) {
1436 unixctl_command_reply(conn, 501, "Unknown bridge");
1437 return;
1438 }
1439
1440 ds_init(&results);
1441 ofproto_get_all_flows(br->ofproto, &results);
1442
1443 unixctl_command_reply(conn, 200, ds_cstr(&results));
1444 ds_destroy(&results);
1445 }
1446
1447 /* "bridge/reconnect [BRIDGE]": makes BRIDGE drop all of its controller
1448 * connections and reconnect. If BRIDGE is not specified, then all bridges
1449 * drop their controller connections and reconnect. */
1450 static void
1451 bridge_unixctl_reconnect(struct unixctl_conn *conn,
1452 const char *args, void *aux OVS_UNUSED)
1453 {
1454 struct bridge *br;
1455 if (args[0] != '\0') {
1456 br = bridge_lookup(args);
1457 if (!br) {
1458 unixctl_command_reply(conn, 501, "Unknown bridge");
1459 return;
1460 }
1461 ofproto_reconnect_controllers(br->ofproto);
1462 } else {
1463 LIST_FOR_EACH (br, node, &all_bridges) {
1464 ofproto_reconnect_controllers(br->ofproto);
1465 }
1466 }
1467 unixctl_command_reply(conn, 200, NULL);
1468 }
1469
1470 static int
1471 bridge_run_one(struct bridge *br)
1472 {
1473 int error;
1474
1475 error = ofproto_run1(br->ofproto);
1476 if (error) {
1477 return error;
1478 }
1479
1480 mac_learning_run(br->ml, ofproto_get_revalidate_set(br->ofproto));
1481 bond_run(br);
1482
1483 error = ofproto_run2(br->ofproto, br->flush);
1484 br->flush = false;
1485
1486 return error;
1487 }
1488
1489 static size_t
1490 bridge_get_controllers(const struct bridge *br,
1491 struct ovsrec_controller ***controllersp)
1492 {
1493 struct ovsrec_controller **controllers;
1494 size_t n_controllers;
1495
1496 controllers = br->cfg->controller;
1497 n_controllers = br->cfg->n_controller;
1498
1499 if (n_controllers == 1 && !strcmp(controllers[0]->target, "none")) {
1500 controllers = NULL;
1501 n_controllers = 0;
1502 }
1503
1504 if (controllersp) {
1505 *controllersp = controllers;
1506 }
1507 return n_controllers;
1508 }
1509
1510 static void
1511 bridge_reconfigure_one(struct bridge *br)
1512 {
1513 struct shash old_ports, new_ports;
1514 struct svec snoops, old_snoops;
1515 struct shash_node *node;
1516 enum ofproto_fail_mode fail_mode;
1517 size_t i;
1518
1519 /* Collect old ports. */
1520 shash_init(&old_ports);
1521 for (i = 0; i < br->n_ports; i++) {
1522 shash_add(&old_ports, br->ports[i]->name, br->ports[i]);
1523 }
1524
1525 /* Collect new ports. */
1526 shash_init(&new_ports);
1527 for (i = 0; i < br->cfg->n_ports; i++) {
1528 const char *name = br->cfg->ports[i]->name;
1529 if (!shash_add_once(&new_ports, name, br->cfg->ports[i])) {
1530 VLOG_WARN("bridge %s: %s specified twice as bridge port",
1531 br->name, name);
1532 }
1533 }
1534
1535 /* If we have a controller, then we need a local port. Complain if the
1536 * user didn't specify one.
1537 *
1538 * XXX perhaps we should synthesize a port ourselves in this case. */
1539 if (bridge_get_controllers(br, NULL)) {
1540 char local_name[IF_NAMESIZE];
1541 int error;
1542
1543 error = dpif_port_get_name(br->dpif, ODPP_LOCAL,
1544 local_name, sizeof local_name);
1545 if (!error && !shash_find(&new_ports, local_name)) {
1546 VLOG_WARN("bridge %s: controller specified but no local port "
1547 "(port named %s) defined",
1548 br->name, local_name);
1549 }
1550 }
1551
1552 /* Get rid of deleted ports.
1553 * Get rid of deleted interfaces on ports that still exist. */
1554 SHASH_FOR_EACH (node, &old_ports) {
1555 struct port *port = node->data;
1556 const struct ovsrec_port *port_cfg;
1557
1558 port_cfg = shash_find_data(&new_ports, node->name);
1559 if (!port_cfg) {
1560 port_destroy(port);
1561 } else {
1562 port_del_ifaces(port, port_cfg);
1563 }
1564 }
1565
1566 /* Create new ports.
1567 * Add new interfaces to existing ports.
1568 * Reconfigure existing ports. */
1569 SHASH_FOR_EACH (node, &new_ports) {
1570 struct port *port = shash_find_data(&old_ports, node->name);
1571 if (!port) {
1572 port = port_create(br, node->name);
1573 }
1574
1575 port_reconfigure(port, node->data);
1576 if (!port->n_ifaces) {
1577 VLOG_WARN("bridge %s: port %s has no interfaces, dropping",
1578 br->name, port->name);
1579 port_destroy(port);
1580 }
1581 }
1582 shash_destroy(&old_ports);
1583 shash_destroy(&new_ports);
1584
1585 /* Set the fail-mode */
1586 fail_mode = !br->cfg->fail_mode
1587 || !strcmp(br->cfg->fail_mode, "standalone")
1588 ? OFPROTO_FAIL_STANDALONE
1589 : OFPROTO_FAIL_SECURE;
1590 if (ofproto_get_fail_mode(br->ofproto) != fail_mode
1591 && !ofproto_has_primary_controller(br->ofproto)) {
1592 ofproto_flush_flows(br->ofproto);
1593 }
1594 ofproto_set_fail_mode(br->ofproto, fail_mode);
1595
1596 /* Delete all flows if we're switching from connected to standalone or vice
1597 * versa. (XXX Should we delete all flows if we are switching from one
1598 * controller to another?) */
1599
1600 /* Configure OpenFlow controller connection snooping. */
1601 svec_init(&snoops);
1602 svec_add_nocopy(&snoops, xasprintf("punix:%s/%s.snoop",
1603 ovs_rundir, br->name));
1604 svec_init(&old_snoops);
1605 ofproto_get_snoops(br->ofproto, &old_snoops);
1606 if (!svec_equal(&snoops, &old_snoops)) {
1607 ofproto_set_snoops(br->ofproto, &snoops);
1608 }
1609 svec_destroy(&snoops);
1610 svec_destroy(&old_snoops);
1611
1612 mirror_reconfigure(br);
1613 }
1614
1615 /* Initializes 'oc' appropriately as a management service controller for
1616 * 'br'.
1617 *
1618 * The caller must free oc->target when it is no longer needed. */
1619 static void
1620 bridge_ofproto_controller_for_mgmt(const struct bridge *br,
1621 struct ofproto_controller *oc)
1622 {
1623 oc->target = xasprintf("punix:%s/%s.mgmt", ovs_rundir, br->name);
1624 oc->max_backoff = 0;
1625 oc->probe_interval = 60;
1626 oc->band = OFPROTO_OUT_OF_BAND;
1627 oc->accept_re = NULL;
1628 oc->update_resolv_conf = false;
1629 oc->rate_limit = 0;
1630 oc->burst_limit = 0;
1631 }
1632
1633 /* Converts ovsrec_controller 'c' into an ofproto_controller in 'oc'. */
1634 static void
1635 bridge_ofproto_controller_from_ovsrec(const struct ovsrec_controller *c,
1636 struct ofproto_controller *oc)
1637 {
1638 oc->target = c->target;
1639 oc->max_backoff = c->max_backoff ? *c->max_backoff / 1000 : 8;
1640 oc->probe_interval = c->inactivity_probe ? *c->inactivity_probe / 1000 : 5;
1641 oc->band = (!c->connection_mode || !strcmp(c->connection_mode, "in-band")
1642 ? OFPROTO_IN_BAND : OFPROTO_OUT_OF_BAND);
1643 oc->accept_re = c->discover_accept_regex;
1644 oc->update_resolv_conf = c->discover_update_resolv_conf;
1645 oc->rate_limit = c->controller_rate_limit ? *c->controller_rate_limit : 0;
1646 oc->burst_limit = (c->controller_burst_limit
1647 ? *c->controller_burst_limit : 0);
1648 }
1649
1650 /* Configures the IP stack for 'br''s local interface properly according to the
1651 * configuration in 'c'. */
1652 static void
1653 bridge_configure_local_iface_netdev(struct bridge *br,
1654 struct ovsrec_controller *c)
1655 {
1656 struct netdev *netdev;
1657 struct in_addr mask, gateway;
1658
1659 struct iface *local_iface;
1660 struct in_addr ip;
1661
1662 /* Controller discovery does its own TCP/IP configuration later. */
1663 if (strcmp(c->target, "discover")) {
1664 return;
1665 }
1666
1667 /* If there's no local interface or no IP address, give up. */
1668 local_iface = bridge_get_local_iface(br);
1669 if (!local_iface || !c->local_ip || !inet_aton(c->local_ip, &ip)) {
1670 return;
1671 }
1672
1673 /* Bring up the local interface. */
1674 netdev = local_iface->netdev;
1675 netdev_turn_flags_on(netdev, NETDEV_UP, true);
1676
1677 /* Configure the IP address and netmask. */
1678 if (!c->local_netmask
1679 || !inet_aton(c->local_netmask, &mask)
1680 || !mask.s_addr) {
1681 mask.s_addr = guess_netmask(ip.s_addr);
1682 }
1683 if (!netdev_set_in4(netdev, ip, mask)) {
1684 VLOG_INFO("bridge %s: configured IP address "IP_FMT", netmask "IP_FMT,
1685 br->name, IP_ARGS(&ip.s_addr), IP_ARGS(&mask.s_addr));
1686 }
1687
1688 /* Configure the default gateway. */
1689 if (c->local_gateway
1690 && inet_aton(c->local_gateway, &gateway)
1691 && gateway.s_addr) {
1692 if (!netdev_add_router(netdev, gateway)) {
1693 VLOG_INFO("bridge %s: configured gateway "IP_FMT,
1694 br->name, IP_ARGS(&gateway.s_addr));
1695 }
1696 }
1697 }
1698
1699 static void
1700 bridge_reconfigure_remotes(struct bridge *br,
1701 const struct sockaddr_in *managers,
1702 size_t n_managers)
1703 {
1704 struct ovsrec_controller **controllers;
1705 size_t n_controllers;
1706 bool had_primary;
1707 const char *disable_ib_str;
1708 bool disable_in_band = false;
1709
1710 struct ofproto_controller *ocs;
1711 size_t n_ocs;
1712 size_t i;
1713
1714
1715 /* Check if we should disable in-band control on this bridge. */
1716 disable_ib_str = bridge_get_other_config(br->cfg, "disable-in-band");
1717 if (disable_ib_str && !strcmp(disable_ib_str, "true")) {
1718 disable_in_band = true;
1719 }
1720
1721 if (disable_in_band) {
1722 ofproto_set_extra_in_band_remotes(br->ofproto, NULL, 0);
1723 } else {
1724 ofproto_set_extra_in_band_remotes(br->ofproto, managers, n_managers);
1725 }
1726 had_primary = ofproto_has_primary_controller(br->ofproto);
1727
1728 n_controllers = bridge_get_controllers(br, &controllers);
1729
1730 ocs = xmalloc((n_controllers + 1) * sizeof *ocs);
1731 n_ocs = 0;
1732
1733 bridge_ofproto_controller_for_mgmt(br, &ocs[n_ocs++]);
1734 for (i = 0; i < n_controllers; i++) {
1735 struct ovsrec_controller *c = controllers[i];
1736
1737 if (!strncmp(c->target, "punix:", 6)
1738 || !strncmp(c->target, "unix:", 5)) {
1739 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
1740
1741 /* Prevent remote ovsdb-server users from accessing arbitrary Unix
1742 * domain sockets and overwriting arbitrary local files. */
1743 VLOG_ERR_RL(&rl, "%s: not adding Unix domain socket controller "
1744 "\"%s\" due to possibility for remote exploit",
1745 dpif_name(br->dpif), c->target);
1746 continue;
1747 }
1748
1749 bridge_configure_local_iface_netdev(br, c);
1750 bridge_ofproto_controller_from_ovsrec(c, &ocs[n_ocs]);
1751 if (disable_in_band) {
1752 ocs[n_ocs].band = OFPROTO_OUT_OF_BAND;
1753 }
1754 n_ocs++;
1755 }
1756
1757 ofproto_set_controllers(br->ofproto, ocs, n_ocs);
1758 free(ocs[0].target); /* From bridge_ofproto_controller_for_mgmt(). */
1759 free(ocs);
1760
1761 if (had_primary != ofproto_has_primary_controller(br->ofproto)) {
1762 ofproto_flush_flows(br->ofproto);
1763 }
1764
1765 /* If there are no controllers and the bridge is in standalone
1766 * mode, set up a flow that matches every packet and directs
1767 * them to OFPP_NORMAL (which goes to us). Otherwise, the
1768 * switch is in secure mode and we won't pass any traffic until
1769 * a controller has been defined and it tells us to do so. */
1770 if (!n_controllers
1771 && ofproto_get_fail_mode(br->ofproto) == OFPROTO_FAIL_STANDALONE) {
1772 union ofp_action action;
1773 struct flow flow;
1774
1775 memset(&action, 0, sizeof action);
1776 action.type = htons(OFPAT_OUTPUT);
1777 action.output.len = htons(sizeof action);
1778 action.output.port = htons(OFPP_NORMAL);
1779 memset(&flow, 0, sizeof flow);
1780 ofproto_add_flow(br->ofproto, &flow, OVSFW_ALL, 0, &action, 1, 0);
1781 }
1782 }
1783
1784 static void
1785 bridge_get_all_ifaces(const struct bridge *br, struct shash *ifaces)
1786 {
1787 size_t i, j;
1788
1789 shash_init(ifaces);
1790 for (i = 0; i < br->n_ports; i++) {
1791 struct port *port = br->ports[i];
1792 for (j = 0; j < port->n_ifaces; j++) {
1793 struct iface *iface = port->ifaces[j];
1794 shash_add_once(ifaces, iface->name, iface);
1795 }
1796 if (port->n_ifaces > 1 && port->cfg->bond_fake_iface) {
1797 shash_add_once(ifaces, port->name, NULL);
1798 }
1799 }
1800 }
1801
1802 /* For robustness, in case the administrator moves around datapath ports behind
1803 * our back, we re-check all the datapath port numbers here.
1804 *
1805 * This function will set the 'dp_ifidx' members of interfaces that have
1806 * disappeared to -1, so only call this function from a context where those
1807 * 'struct iface's will be removed from the bridge. Otherwise, the -1
1808 * 'dp_ifidx'es will cause trouble later when we try to send them to the
1809 * datapath, which doesn't support UINT16_MAX+1 ports. */
1810 static void
1811 bridge_fetch_dp_ifaces(struct bridge *br)
1812 {
1813 struct odp_port *dpif_ports;
1814 size_t n_dpif_ports;
1815 size_t i, j;
1816
1817 /* Reset all interface numbers. */
1818 for (i = 0; i < br->n_ports; i++) {
1819 struct port *port = br->ports[i];
1820 for (j = 0; j < port->n_ifaces; j++) {
1821 struct iface *iface = port->ifaces[j];
1822 iface->dp_ifidx = -1;
1823 }
1824 }
1825 hmap_clear(&br->ifaces);
1826
1827 dpif_port_list(br->dpif, &dpif_ports, &n_dpif_ports);
1828 for (i = 0; i < n_dpif_ports; i++) {
1829 struct odp_port *p = &dpif_ports[i];
1830 struct iface *iface = iface_lookup(br, p->devname);
1831 if (iface) {
1832 if (iface->dp_ifidx >= 0) {
1833 VLOG_WARN("%s reported interface %s twice",
1834 dpif_name(br->dpif), p->devname);
1835 } else if (iface_from_dp_ifidx(br, p->port)) {
1836 VLOG_WARN("%s reported interface %"PRIu16" twice",
1837 dpif_name(br->dpif), p->port);
1838 } else {
1839 iface->dp_ifidx = p->port;
1840 hmap_insert(&br->ifaces, &iface->dp_ifidx_node,
1841 hash_int(iface->dp_ifidx, 0));
1842 }
1843
1844 iface_set_ofport(iface->cfg,
1845 (iface->dp_ifidx >= 0
1846 ? odp_port_to_ofp_port(iface->dp_ifidx)
1847 : -1));
1848 }
1849 }
1850 free(dpif_ports);
1851 }
1852 \f
1853 /* Bridge packet processing functions. */
1854
1855 static int
1856 bond_hash(const uint8_t mac[ETH_ADDR_LEN])
1857 {
1858 return hash_bytes(mac, ETH_ADDR_LEN, 0) & BOND_MASK;
1859 }
1860
1861 static struct bond_entry *
1862 lookup_bond_entry(const struct port *port, const uint8_t mac[ETH_ADDR_LEN])
1863 {
1864 return &port->bond_hash[bond_hash(mac)];
1865 }
1866
1867 static int
1868 bond_choose_iface(const struct port *port)
1869 {
1870 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 20);
1871 size_t i, best_down_slave = -1;
1872 long long next_delay_expiration = LLONG_MAX;
1873
1874 for (i = 0; i < port->n_ifaces; i++) {
1875 struct iface *iface = port->ifaces[i];
1876
1877 if (iface->enabled) {
1878 return i;
1879 } else if (iface->delay_expires < next_delay_expiration) {
1880 best_down_slave = i;
1881 next_delay_expiration = iface->delay_expires;
1882 }
1883 }
1884
1885 if (best_down_slave != -1) {
1886 struct iface *iface = port->ifaces[best_down_slave];
1887
1888 VLOG_INFO_RL(&rl, "interface %s: skipping remaining %lli ms updelay "
1889 "since no other interface is up", iface->name,
1890 iface->delay_expires - time_msec());
1891 bond_enable_slave(iface, true);
1892 }
1893
1894 return best_down_slave;
1895 }
1896
1897 static bool
1898 choose_output_iface(const struct port *port, const uint8_t *dl_src,
1899 uint16_t *dp_ifidx, tag_type *tags)
1900 {
1901 struct iface *iface;
1902
1903 assert(port->n_ifaces);
1904 if (port->n_ifaces == 1) {
1905 iface = port->ifaces[0];
1906 } else {
1907 struct bond_entry *e = lookup_bond_entry(port, dl_src);
1908 if (e->iface_idx < 0 || e->iface_idx >= port->n_ifaces
1909 || !port->ifaces[e->iface_idx]->enabled) {
1910 /* XXX select interface properly. The current interface selection
1911 * is only good for testing the rebalancing code. */
1912 e->iface_idx = bond_choose_iface(port);
1913 if (e->iface_idx < 0) {
1914 *tags |= port->no_ifaces_tag;
1915 return false;
1916 }
1917 e->iface_tag = tag_create_random();
1918 ((struct port *) port)->bond_compat_is_stale = true;
1919 }
1920 *tags |= e->iface_tag;
1921 iface = port->ifaces[e->iface_idx];
1922 }
1923 *dp_ifidx = iface->dp_ifidx;
1924 *tags |= iface->tag; /* Currently only used for bonding. */
1925 return true;
1926 }
1927
1928 static void
1929 bond_link_status_update(struct iface *iface, bool carrier)
1930 {
1931 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 20);
1932 struct port *port = iface->port;
1933
1934 if ((carrier == iface->enabled) == (iface->delay_expires == LLONG_MAX)) {
1935 /* Nothing to do. */
1936 return;
1937 }
1938 VLOG_INFO_RL(&rl, "interface %s: carrier %s",
1939 iface->name, carrier ? "detected" : "dropped");
1940 if (carrier == iface->enabled) {
1941 iface->delay_expires = LLONG_MAX;
1942 VLOG_INFO_RL(&rl, "interface %s: will not be %s",
1943 iface->name, carrier ? "disabled" : "enabled");
1944 } else if (carrier && port->active_iface < 0) {
1945 bond_enable_slave(iface, true);
1946 if (port->updelay) {
1947 VLOG_INFO_RL(&rl, "interface %s: skipping %d ms updelay since no "
1948 "other interface is up", iface->name, port->updelay);
1949 }
1950 } else {
1951 int delay = carrier ? port->updelay : port->downdelay;
1952 iface->delay_expires = time_msec() + delay;
1953 if (delay) {
1954 VLOG_INFO_RL(&rl,
1955 "interface %s: will be %s if it stays %s for %d ms",
1956 iface->name,
1957 carrier ? "enabled" : "disabled",
1958 carrier ? "up" : "down",
1959 delay);
1960 }
1961 }
1962 }
1963
1964 static void
1965 bond_choose_active_iface(struct port *port)
1966 {
1967 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 20);
1968
1969 port->active_iface = bond_choose_iface(port);
1970 port->active_iface_tag = tag_create_random();
1971 if (port->active_iface >= 0) {
1972 VLOG_INFO_RL(&rl, "port %s: active interface is now %s",
1973 port->name, port->ifaces[port->active_iface]->name);
1974 } else {
1975 VLOG_WARN_RL(&rl, "port %s: all ports disabled, no active interface",
1976 port->name);
1977 }
1978 }
1979
1980 static void
1981 bond_enable_slave(struct iface *iface, bool enable)
1982 {
1983 struct port *port = iface->port;
1984 struct bridge *br = port->bridge;
1985
1986 /* This acts as a recursion check. If the act of disabling a slave
1987 * causes a different slave to be enabled, the flag will allow us to
1988 * skip redundant work when we reenter this function. It must be
1989 * cleared on exit to keep things safe with multiple bonds. */
1990 static bool moving_active_iface = false;
1991
1992 iface->delay_expires = LLONG_MAX;
1993 if (enable == iface->enabled) {
1994 return;
1995 }
1996
1997 iface->enabled = enable;
1998 if (!iface->enabled) {
1999 VLOG_WARN("interface %s: disabled", iface->name);
2000 ofproto_revalidate(br->ofproto, iface->tag);
2001 if (iface->port_ifidx == port->active_iface) {
2002 ofproto_revalidate(br->ofproto,
2003 port->active_iface_tag);
2004
2005 /* Disabling a slave can lead to another slave being immediately
2006 * enabled if there will be no active slaves but one is waiting
2007 * on an updelay. In this case we do not need to run most of the
2008 * code for the newly enabled slave since there was no period
2009 * without an active slave and it is redundant with the disabling
2010 * path. */
2011 moving_active_iface = true;
2012 bond_choose_active_iface(port);
2013 }
2014 bond_send_learning_packets(port);
2015 } else {
2016 VLOG_WARN("interface %s: enabled", iface->name);
2017 if (port->active_iface < 0 && !moving_active_iface) {
2018 ofproto_revalidate(br->ofproto, port->no_ifaces_tag);
2019 bond_choose_active_iface(port);
2020 bond_send_learning_packets(port);
2021 }
2022 iface->tag = tag_create_random();
2023 }
2024
2025 moving_active_iface = false;
2026 port->bond_compat_is_stale = true;
2027 }
2028
2029 /* Attempts to make the sum of the bond slaves' statistics appear on the fake
2030 * bond interface. */
2031 static void
2032 bond_update_fake_iface_stats(struct port *port)
2033 {
2034 struct netdev_stats bond_stats;
2035 struct netdev *bond_dev;
2036 size_t i;
2037
2038 memset(&bond_stats, 0, sizeof bond_stats);
2039
2040 for (i = 0; i < port->n_ifaces; i++) {
2041 struct netdev_stats slave_stats;
2042
2043 if (!netdev_get_stats(port->ifaces[i]->netdev, &slave_stats)) {
2044 /* XXX: We swap the stats here because they are swapped back when
2045 * reported by the internal device. The reason for this is
2046 * internal devices normally represent packets going into the system
2047 * but when used as fake bond device they represent packets leaving
2048 * the system. We really should do this in the internal device
2049 * itself because changing it here reverses the counts from the
2050 * perspective of the switch. However, the internal device doesn't
2051 * know what type of device it represents so we have to do it here
2052 * for now. */
2053 bond_stats.tx_packets += slave_stats.rx_packets;
2054 bond_stats.tx_bytes += slave_stats.rx_bytes;
2055 bond_stats.rx_packets += slave_stats.tx_packets;
2056 bond_stats.rx_bytes += slave_stats.tx_bytes;
2057 }
2058 }
2059
2060 if (!netdev_open_default(port->name, &bond_dev)) {
2061 netdev_set_stats(bond_dev, &bond_stats);
2062 netdev_close(bond_dev);
2063 }
2064 }
2065
2066 static void
2067 bond_run(struct bridge *br)
2068 {
2069 size_t i, j;
2070
2071 for (i = 0; i < br->n_ports; i++) {
2072 struct port *port = br->ports[i];
2073
2074 if (port->n_ifaces >= 2) {
2075 char *devname;
2076
2077 /* Track carrier going up and down on interfaces. */
2078 while (!netdev_monitor_poll(port->monitor, &devname)) {
2079 struct iface *iface;
2080 bool carrier;
2081
2082 iface = port_lookup_iface(port, devname);
2083 if (iface && !netdev_get_carrier(iface->netdev, &carrier)) {
2084 bond_link_status_update(iface, carrier);
2085 port_update_bond_compat(port);
2086 }
2087 free(devname);
2088 }
2089
2090 for (j = 0; j < port->n_ifaces; j++) {
2091 struct iface *iface = port->ifaces[j];
2092 if (time_msec() >= iface->delay_expires) {
2093 bond_enable_slave(iface, !iface->enabled);
2094 }
2095 }
2096
2097 if (port->bond_fake_iface
2098 && time_msec() >= port->bond_next_fake_iface_update) {
2099 bond_update_fake_iface_stats(port);
2100 port->bond_next_fake_iface_update = time_msec() + 1000;
2101 }
2102 }
2103
2104 if (port->bond_compat_is_stale) {
2105 port->bond_compat_is_stale = false;
2106 port_update_bond_compat(port);
2107 }
2108 }
2109 }
2110
2111 static void
2112 bond_wait(struct bridge *br)
2113 {
2114 size_t i, j;
2115
2116 for (i = 0; i < br->n_ports; i++) {
2117 struct port *port = br->ports[i];
2118 if (port->n_ifaces < 2) {
2119 continue;
2120 }
2121 netdev_monitor_poll_wait(port->monitor);
2122 for (j = 0; j < port->n_ifaces; j++) {
2123 struct iface *iface = port->ifaces[j];
2124 if (iface->delay_expires != LLONG_MAX) {
2125 poll_timer_wait_until(iface->delay_expires);
2126 }
2127 }
2128 if (port->bond_fake_iface) {
2129 poll_timer_wait_until(port->bond_next_fake_iface_update);
2130 }
2131 }
2132 }
2133
2134 static bool
2135 set_dst(struct dst *p, const struct flow *flow,
2136 const struct port *in_port, const struct port *out_port,
2137 tag_type *tags)
2138 {
2139 p->vlan = (out_port->vlan >= 0 ? OFP_VLAN_NONE
2140 : in_port->vlan >= 0 ? in_port->vlan
2141 : ntohs(flow->dl_vlan));
2142 return choose_output_iface(out_port, flow->dl_src, &p->dp_ifidx, tags);
2143 }
2144
2145 static void
2146 swap_dst(struct dst *p, struct dst *q)
2147 {
2148 struct dst tmp = *p;
2149 *p = *q;
2150 *q = tmp;
2151 }
2152
2153 /* Moves all the dsts with vlan == 'vlan' to the front of the 'n_dsts' in
2154 * 'dsts'. (This may help performance by reducing the number of VLAN changes
2155 * that we push to the datapath. We could in fact fully sort the array by
2156 * vlan, but in most cases there are at most two different vlan tags so that's
2157 * possibly overkill.) */
2158 static void
2159 partition_dsts(struct dst *dsts, size_t n_dsts, int vlan)
2160 {
2161 struct dst *first = dsts;
2162 struct dst *last = dsts + n_dsts;
2163
2164 while (first != last) {
2165 /* Invariants:
2166 * - All dsts < first have vlan == 'vlan'.
2167 * - All dsts >= last have vlan != 'vlan'.
2168 * - first < last. */
2169 while (first->vlan == vlan) {
2170 if (++first == last) {
2171 return;
2172 }
2173 }
2174
2175 /* Same invariants, plus one additional:
2176 * - first->vlan != vlan.
2177 */
2178 while (last[-1].vlan != vlan) {
2179 if (--last == first) {
2180 return;
2181 }
2182 }
2183
2184 /* Same invariants, plus one additional:
2185 * - last[-1].vlan == vlan.*/
2186 swap_dst(first++, --last);
2187 }
2188 }
2189
2190 static int
2191 mirror_mask_ffs(mirror_mask_t mask)
2192 {
2193 BUILD_ASSERT_DECL(sizeof(unsigned int) >= sizeof(mask));
2194 return ffs(mask);
2195 }
2196
2197 static bool
2198 dst_is_duplicate(const struct dst *dsts, size_t n_dsts,
2199 const struct dst *test)
2200 {
2201 size_t i;
2202 for (i = 0; i < n_dsts; i++) {
2203 if (dsts[i].vlan == test->vlan && dsts[i].dp_ifidx == test->dp_ifidx) {
2204 return true;
2205 }
2206 }
2207 return false;
2208 }
2209
2210 static bool
2211 port_trunks_vlan(const struct port *port, uint16_t vlan)
2212 {
2213 return (port->vlan < 0
2214 && (!port->trunks || bitmap_is_set(port->trunks, vlan)));
2215 }
2216
2217 static bool
2218 port_includes_vlan(const struct port *port, uint16_t vlan)
2219 {
2220 return vlan == port->vlan || port_trunks_vlan(port, vlan);
2221 }
2222
2223 static bool
2224 port_is_floodable(const struct port *port)
2225 {
2226 int i;
2227
2228 for (i = 0; i < port->n_ifaces; i++) {
2229 if (!ofproto_port_is_floodable(port->bridge->ofproto,
2230 port->ifaces[i]->dp_ifidx)) {
2231 return false;
2232 }
2233 }
2234 return true;
2235 }
2236
2237 static size_t
2238 compose_dsts(const struct bridge *br, const struct flow *flow, uint16_t vlan,
2239 const struct port *in_port, const struct port *out_port,
2240 struct dst dsts[], tag_type *tags, uint16_t *nf_output_iface)
2241 {
2242 mirror_mask_t mirrors = in_port->src_mirrors;
2243 struct dst *dst = dsts;
2244 size_t i;
2245
2246 if (out_port == FLOOD_PORT) {
2247 /* XXX use ODP_FLOOD if no vlans or bonding. */
2248 /* XXX even better, define each VLAN as a datapath port group */
2249 for (i = 0; i < br->n_ports; i++) {
2250 struct port *port = br->ports[i];
2251 if (port != in_port
2252 && port_is_floodable(port)
2253 && port_includes_vlan(port, vlan)
2254 && !port->is_mirror_output_port
2255 && set_dst(dst, flow, in_port, port, tags)) {
2256 mirrors |= port->dst_mirrors;
2257 dst++;
2258 }
2259 }
2260 *nf_output_iface = NF_OUT_FLOOD;
2261 } else if (out_port && set_dst(dst, flow, in_port, out_port, tags)) {
2262 *nf_output_iface = dst->dp_ifidx;
2263 mirrors |= out_port->dst_mirrors;
2264 dst++;
2265 }
2266
2267 while (mirrors) {
2268 struct mirror *m = br->mirrors[mirror_mask_ffs(mirrors) - 1];
2269 if (!m->n_vlans || vlan_is_mirrored(m, vlan)) {
2270 if (m->out_port) {
2271 if (set_dst(dst, flow, in_port, m->out_port, tags)
2272 && !dst_is_duplicate(dsts, dst - dsts, dst)) {
2273 dst++;
2274 }
2275 } else {
2276 for (i = 0; i < br->n_ports; i++) {
2277 struct port *port = br->ports[i];
2278 if (port_includes_vlan(port, m->out_vlan)
2279 && set_dst(dst, flow, in_port, port, tags))
2280 {
2281 int flow_vlan;
2282
2283 if (port->vlan < 0) {
2284 dst->vlan = m->out_vlan;
2285 }
2286 if (dst_is_duplicate(dsts, dst - dsts, dst)) {
2287 continue;
2288 }
2289
2290 /* Use the vlan tag on the original flow instead of
2291 * the one passed in the vlan parameter. This ensures
2292 * that we compare the vlan from before any implicit
2293 * tagging tags place. This is necessary because
2294 * dst->vlan is the final vlan, after removing implicit
2295 * tags. */
2296 flow_vlan = ntohs(flow->dl_vlan);
2297 if (flow_vlan == 0) {
2298 flow_vlan = OFP_VLAN_NONE;
2299 }
2300 if (port == in_port && dst->vlan == flow_vlan) {
2301 /* Don't send out input port on same VLAN. */
2302 continue;
2303 }
2304 dst++;
2305 }
2306 }
2307 }
2308 }
2309 mirrors &= mirrors - 1;
2310 }
2311
2312 partition_dsts(dsts, dst - dsts, ntohs(flow->dl_vlan));
2313 return dst - dsts;
2314 }
2315
2316 static void OVS_UNUSED
2317 print_dsts(const struct dst *dsts, size_t n)
2318 {
2319 for (; n--; dsts++) {
2320 printf(">p%"PRIu16, dsts->dp_ifidx);
2321 if (dsts->vlan != OFP_VLAN_NONE) {
2322 printf("v%"PRIu16, dsts->vlan);
2323 }
2324 }
2325 }
2326
2327 static void
2328 compose_actions(struct bridge *br, const struct flow *flow, uint16_t vlan,
2329 const struct port *in_port, const struct port *out_port,
2330 tag_type *tags, struct odp_actions *actions,
2331 uint16_t *nf_output_iface)
2332 {
2333 struct dst dsts[DP_MAX_PORTS * (MAX_MIRRORS + 1)];
2334 size_t n_dsts;
2335 const struct dst *p;
2336 uint16_t cur_vlan;
2337
2338 n_dsts = compose_dsts(br, flow, vlan, in_port, out_port, dsts, tags,
2339 nf_output_iface);
2340
2341 cur_vlan = ntohs(flow->dl_vlan);
2342 for (p = dsts; p < &dsts[n_dsts]; p++) {
2343 union odp_action *a;
2344 if (p->vlan != cur_vlan) {
2345 if (p->vlan == OFP_VLAN_NONE) {
2346 odp_actions_add(actions, ODPAT_STRIP_VLAN);
2347 } else {
2348 a = odp_actions_add(actions, ODPAT_SET_DL_TCI);
2349 a->dl_tci.tci = htons(p->vlan & VLAN_VID_MASK);
2350 a->dl_tci.tci |= htons(flow->dl_vlan_pcp << VLAN_PCP_SHIFT);
2351 }
2352 cur_vlan = p->vlan;
2353 }
2354 a = odp_actions_add(actions, ODPAT_OUTPUT);
2355 a->output.port = p->dp_ifidx;
2356 }
2357 }
2358
2359 /* Returns the effective vlan of a packet, taking into account both the
2360 * 802.1Q header and implicitly tagged ports. A value of 0 indicates that
2361 * the packet is untagged and -1 indicates it has an invalid header and
2362 * should be dropped. */
2363 static int flow_get_vlan(struct bridge *br, const struct flow *flow,
2364 struct port *in_port, bool have_packet)
2365 {
2366 /* Note that dl_vlan of 0 and of OFP_VLAN_NONE both mean that the packet
2367 * belongs to VLAN 0, so we should treat both cases identically. (In the
2368 * former case, the packet has an 802.1Q header that specifies VLAN 0,
2369 * presumably to allow a priority to be specified. In the latter case, the
2370 * packet does not have any 802.1Q header.) */
2371 int vlan = ntohs(flow->dl_vlan);
2372 if (vlan == OFP_VLAN_NONE) {
2373 vlan = 0;
2374 }
2375 if (in_port->vlan >= 0) {
2376 if (vlan) {
2377 /* XXX support double tagging? */
2378 if (have_packet) {
2379 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2380 VLOG_WARN_RL(&rl, "bridge %s: dropping VLAN %"PRIu16" tagged "
2381 "packet received on port %s configured with "
2382 "implicit VLAN %"PRIu16,
2383 br->name, ntohs(flow->dl_vlan),
2384 in_port->name, in_port->vlan);
2385 }
2386 return -1;
2387 }
2388 vlan = in_port->vlan;
2389 } else {
2390 if (!port_includes_vlan(in_port, vlan)) {
2391 if (have_packet) {
2392 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2393 VLOG_WARN_RL(&rl, "bridge %s: dropping VLAN %d tagged "
2394 "packet received on port %s not configured for "
2395 "trunking VLAN %d",
2396 br->name, vlan, in_port->name, vlan);
2397 }
2398 return -1;
2399 }
2400 }
2401
2402 return vlan;
2403 }
2404
2405 /* A VM broadcasts a gratuitous ARP to indicate that it has resumed after
2406 * migration. Older Citrix-patched Linux DomU used gratuitous ARP replies to
2407 * indicate this; newer upstream kernels use gratuitous ARP requests. */
2408 static bool
2409 is_gratuitous_arp(const struct flow *flow)
2410 {
2411 return (flow->dl_type == htons(ETH_TYPE_ARP)
2412 && eth_addr_is_broadcast(flow->dl_dst)
2413 && (flow->nw_proto == ARP_OP_REPLY
2414 || (flow->nw_proto == ARP_OP_REQUEST
2415 && flow->nw_src == flow->nw_dst)));
2416 }
2417
2418 static void
2419 update_learning_table(struct bridge *br, const struct flow *flow, int vlan,
2420 struct port *in_port)
2421 {
2422 enum grat_arp_lock_type lock_type;
2423 tag_type rev_tag;
2424
2425 /* We don't want to learn from gratuitous ARP packets that are reflected
2426 * back over bond slaves so we lock the learning table. */
2427 lock_type = !is_gratuitous_arp(flow) ? GRAT_ARP_LOCK_NONE :
2428 (in_port->n_ifaces == 1) ? GRAT_ARP_LOCK_SET :
2429 GRAT_ARP_LOCK_CHECK;
2430
2431 rev_tag = mac_learning_learn(br->ml, flow->dl_src, vlan, in_port->port_idx,
2432 lock_type);
2433 if (rev_tag) {
2434 /* The log messages here could actually be useful in debugging,
2435 * so keep the rate limit relatively high. */
2436 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(30,
2437 300);
2438 VLOG_DBG_RL(&rl, "bridge %s: learned that "ETH_ADDR_FMT" is "
2439 "on port %s in VLAN %d",
2440 br->name, ETH_ADDR_ARGS(flow->dl_src),
2441 in_port->name, vlan);
2442 ofproto_revalidate(br->ofproto, rev_tag);
2443 }
2444 }
2445
2446 /* Determines whether packets in 'flow' within 'br' should be forwarded or
2447 * dropped. Returns true if they may be forwarded, false if they should be
2448 * dropped.
2449 *
2450 * If 'have_packet' is true, it indicates that the caller is processing a
2451 * received packet. If 'have_packet' is false, then the caller is just
2452 * revalidating an existing flow because configuration has changed. Either
2453 * way, 'have_packet' only affects logging (there is no point in logging errors
2454 * during revalidation).
2455 *
2456 * Sets '*in_portp' to the input port. This will be a null pointer if
2457 * flow->in_port does not designate a known input port (in which case
2458 * is_admissible() returns false).
2459 *
2460 * When returning true, sets '*vlanp' to the effective VLAN of the input
2461 * packet, as returned by flow_get_vlan().
2462 *
2463 * May also add tags to '*tags', although the current implementation only does
2464 * so in one special case.
2465 */
2466 static bool
2467 is_admissible(struct bridge *br, const struct flow *flow, bool have_packet,
2468 tag_type *tags, int *vlanp, struct port **in_portp)
2469 {
2470 struct iface *in_iface;
2471 struct port *in_port;
2472 int vlan;
2473
2474 /* Find the interface and port structure for the received packet. */
2475 in_iface = iface_from_dp_ifidx(br, flow->in_port);
2476 if (!in_iface) {
2477 /* No interface? Something fishy... */
2478 if (have_packet) {
2479 /* Odd. A few possible reasons here:
2480 *
2481 * - We deleted an interface but there are still a few packets
2482 * queued up from it.
2483 *
2484 * - Someone externally added an interface (e.g. with "ovs-dpctl
2485 * add-if") that we don't know about.
2486 *
2487 * - Packet arrived on the local port but the local port is not
2488 * one of our bridge ports.
2489 */
2490 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2491
2492 VLOG_WARN_RL(&rl, "bridge %s: received packet on unknown "
2493 "interface %"PRIu16, br->name, flow->in_port);
2494 }
2495
2496 *in_portp = NULL;
2497 return false;
2498 }
2499 *in_portp = in_port = in_iface->port;
2500 *vlanp = vlan = flow_get_vlan(br, flow, in_port, have_packet);
2501 if (vlan < 0) {
2502 return false;
2503 }
2504
2505 /* Drop frames for reserved multicast addresses. */
2506 if (eth_addr_is_reserved(flow->dl_dst)) {
2507 return false;
2508 }
2509
2510 /* Drop frames on ports reserved for mirroring. */
2511 if (in_port->is_mirror_output_port) {
2512 if (have_packet) {
2513 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
2514 VLOG_WARN_RL(&rl, "bridge %s: dropping packet received on port "
2515 "%s, which is reserved exclusively for mirroring",
2516 br->name, in_port->name);
2517 }
2518 return false;
2519 }
2520
2521 /* Packets received on bonds need special attention to avoid duplicates. */
2522 if (in_port->n_ifaces > 1) {
2523 int src_idx;
2524 bool is_grat_arp_locked;
2525
2526 if (eth_addr_is_multicast(flow->dl_dst)) {
2527 *tags |= in_port->active_iface_tag;
2528 if (in_port->active_iface != in_iface->port_ifidx) {
2529 /* Drop all multicast packets on inactive slaves. */
2530 return false;
2531 }
2532 }
2533
2534 /* Drop all packets for which we have learned a different input
2535 * port, because we probably sent the packet on one slave and got
2536 * it back on the other. Gratuitous ARP packets are an exception
2537 * to this rule: the host has moved to another switch. The exception
2538 * to the exception is if we locked the learning table to avoid
2539 * reflections on bond slaves. If this is the case, just drop the
2540 * packet now. */
2541 src_idx = mac_learning_lookup(br->ml, flow->dl_src, vlan,
2542 &is_grat_arp_locked);
2543 if (src_idx != -1 && src_idx != in_port->port_idx &&
2544 (!is_gratuitous_arp(flow) || is_grat_arp_locked)) {
2545 return false;
2546 }
2547 }
2548
2549 return true;
2550 }
2551
2552 /* If the composed actions may be applied to any packet in the given 'flow',
2553 * returns true. Otherwise, the actions should only be applied to 'packet', or
2554 * not at all, if 'packet' was NULL. */
2555 static bool
2556 process_flow(struct bridge *br, const struct flow *flow,
2557 const struct ofpbuf *packet, struct odp_actions *actions,
2558 tag_type *tags, uint16_t *nf_output_iface)
2559 {
2560 struct port *in_port;
2561 struct port *out_port;
2562 int vlan;
2563 int out_port_idx;
2564
2565 /* Check whether we should drop packets in this flow. */
2566 if (!is_admissible(br, flow, packet != NULL, tags, &vlan, &in_port)) {
2567 out_port = NULL;
2568 goto done;
2569 }
2570
2571 /* Learn source MAC (but don't try to learn from revalidation). */
2572 if (packet) {
2573 update_learning_table(br, flow, vlan, in_port);
2574 }
2575
2576 /* Determine output port. */
2577 out_port_idx = mac_learning_lookup_tag(br->ml, flow->dl_dst, vlan, tags,
2578 NULL);
2579 if (out_port_idx >= 0 && out_port_idx < br->n_ports) {
2580 out_port = br->ports[out_port_idx];
2581 } else if (!packet && !eth_addr_is_multicast(flow->dl_dst)) {
2582 /* If we are revalidating but don't have a learning entry then
2583 * eject the flow. Installing a flow that floods packets opens
2584 * up a window of time where we could learn from a packet reflected
2585 * on a bond and blackhole packets before the learning table is
2586 * updated to reflect the correct port. */
2587 return false;
2588 } else {
2589 out_port = FLOOD_PORT;
2590 }
2591
2592 /* Don't send packets out their input ports. */
2593 if (in_port == out_port) {
2594 out_port = NULL;
2595 }
2596
2597 done:
2598 if (in_port) {
2599 compose_actions(br, flow, vlan, in_port, out_port, tags, actions,
2600 nf_output_iface);
2601 }
2602
2603 return true;
2604 }
2605
2606 static bool
2607 bridge_normal_ofhook_cb(const struct flow *flow, const struct ofpbuf *packet,
2608 struct odp_actions *actions, tag_type *tags,
2609 uint16_t *nf_output_iface, void *br_)
2610 {
2611 struct bridge *br = br_;
2612
2613 COVERAGE_INC(bridge_process_flow);
2614
2615 return process_flow(br, flow, packet, actions, tags, nf_output_iface);
2616 }
2617
2618 static void
2619 bridge_account_flow_ofhook_cb(const struct flow *flow, tag_type tags,
2620 const union odp_action *actions,
2621 size_t n_actions, unsigned long long int n_bytes,
2622 void *br_)
2623 {
2624 struct bridge *br = br_;
2625 const union odp_action *a;
2626 struct port *in_port;
2627 tag_type dummy = 0;
2628 int vlan;
2629
2630 /* Feed information from the active flows back into the learning table to
2631 * ensure that table is always in sync with what is actually flowing
2632 * through the datapath.
2633 *
2634 * We test that 'tags' is nonzero to ensure that only flows that include an
2635 * OFPP_NORMAL action are used for learning. This works because
2636 * bridge_normal_ofhook_cb() always sets a nonzero tag value. */
2637 if (tags && is_admissible(br, flow, false, &dummy, &vlan, &in_port)) {
2638 update_learning_table(br, flow, vlan, in_port);
2639 }
2640
2641 /* Account for bond slave utilization. */
2642 if (!br->has_bonded_ports) {
2643 return;
2644 }
2645 for (a = actions; a < &actions[n_actions]; a++) {
2646 if (a->type == ODPAT_OUTPUT) {
2647 struct port *out_port = port_from_dp_ifidx(br, a->output.port);
2648 if (out_port && out_port->n_ifaces >= 2) {
2649 struct bond_entry *e = lookup_bond_entry(out_port,
2650 flow->dl_src);
2651 e->tx_bytes += n_bytes;
2652 }
2653 }
2654 }
2655 }
2656
2657 static void
2658 bridge_account_checkpoint_ofhook_cb(void *br_)
2659 {
2660 struct bridge *br = br_;
2661 long long int now;
2662 size_t i;
2663
2664 if (!br->has_bonded_ports) {
2665 return;
2666 }
2667
2668 now = time_msec();
2669 for (i = 0; i < br->n_ports; i++) {
2670 struct port *port = br->ports[i];
2671 if (port->n_ifaces > 1 && now >= port->bond_next_rebalance) {
2672 port->bond_next_rebalance = now + port->bond_rebalance_interval;
2673 bond_rebalance_port(port);
2674 }
2675 }
2676 }
2677
2678 static struct ofhooks bridge_ofhooks = {
2679 bridge_normal_ofhook_cb,
2680 bridge_account_flow_ofhook_cb,
2681 bridge_account_checkpoint_ofhook_cb,
2682 };
2683 \f
2684 /* Bonding functions. */
2685
2686 /* Statistics for a single interface on a bonded port, used for load-based
2687 * bond rebalancing. */
2688 struct slave_balance {
2689 struct iface *iface; /* The interface. */
2690 uint64_t tx_bytes; /* Sum of hashes[*]->tx_bytes. */
2691
2692 /* All the "bond_entry"s that are assigned to this interface, in order of
2693 * increasing tx_bytes. */
2694 struct bond_entry **hashes;
2695 size_t n_hashes;
2696 };
2697
2698 /* Sorts pointers to pointers to bond_entries in ascending order by the
2699 * interface to which they are assigned, and within a single interface in
2700 * ascending order of bytes transmitted. */
2701 static int
2702 compare_bond_entries(const void *a_, const void *b_)
2703 {
2704 const struct bond_entry *const *ap = a_;
2705 const struct bond_entry *const *bp = b_;
2706 const struct bond_entry *a = *ap;
2707 const struct bond_entry *b = *bp;
2708 if (a->iface_idx != b->iface_idx) {
2709 return a->iface_idx > b->iface_idx ? 1 : -1;
2710 } else if (a->tx_bytes != b->tx_bytes) {
2711 return a->tx_bytes > b->tx_bytes ? 1 : -1;
2712 } else {
2713 return 0;
2714 }
2715 }
2716
2717 /* Sorts slave_balances so that enabled ports come first, and otherwise in
2718 * *descending* order by number of bytes transmitted. */
2719 static int
2720 compare_slave_balance(const void *a_, const void *b_)
2721 {
2722 const struct slave_balance *a = a_;
2723 const struct slave_balance *b = b_;
2724 if (a->iface->enabled != b->iface->enabled) {
2725 return a->iface->enabled ? -1 : 1;
2726 } else if (a->tx_bytes != b->tx_bytes) {
2727 return a->tx_bytes > b->tx_bytes ? -1 : 1;
2728 } else {
2729 return 0;
2730 }
2731 }
2732
2733 static void
2734 swap_bals(struct slave_balance *a, struct slave_balance *b)
2735 {
2736 struct slave_balance tmp = *a;
2737 *a = *b;
2738 *b = tmp;
2739 }
2740
2741 /* Restores the 'n_bals' slave_balance structures in 'bals' to sorted order
2742 * given that 'p' (and only 'p') might be in the wrong location.
2743 *
2744 * This function invalidates 'p', since it might now be in a different memory
2745 * location. */
2746 static void
2747 resort_bals(struct slave_balance *p,
2748 struct slave_balance bals[], size_t n_bals)
2749 {
2750 if (n_bals > 1) {
2751 for (; p > bals && p->tx_bytes > p[-1].tx_bytes; p--) {
2752 swap_bals(p, p - 1);
2753 }
2754 for (; p < &bals[n_bals - 1] && p->tx_bytes < p[1].tx_bytes; p++) {
2755 swap_bals(p, p + 1);
2756 }
2757 }
2758 }
2759
2760 static void
2761 log_bals(const struct slave_balance *bals, size_t n_bals, struct port *port)
2762 {
2763 if (VLOG_IS_DBG_ENABLED()) {
2764 struct ds ds = DS_EMPTY_INITIALIZER;
2765 const struct slave_balance *b;
2766
2767 for (b = bals; b < bals + n_bals; b++) {
2768 size_t i;
2769
2770 if (b > bals) {
2771 ds_put_char(&ds, ',');
2772 }
2773 ds_put_format(&ds, " %s %"PRIu64"kB",
2774 b->iface->name, b->tx_bytes / 1024);
2775
2776 if (!b->iface->enabled) {
2777 ds_put_cstr(&ds, " (disabled)");
2778 }
2779 if (b->n_hashes > 0) {
2780 ds_put_cstr(&ds, " (");
2781 for (i = 0; i < b->n_hashes; i++) {
2782 const struct bond_entry *e = b->hashes[i];
2783 if (i > 0) {
2784 ds_put_cstr(&ds, " + ");
2785 }
2786 ds_put_format(&ds, "h%td: %"PRIu64"kB",
2787 e - port->bond_hash, e->tx_bytes / 1024);
2788 }
2789 ds_put_cstr(&ds, ")");
2790 }
2791 }
2792 VLOG_DBG("bond %s:%s", port->name, ds_cstr(&ds));
2793 ds_destroy(&ds);
2794 }
2795 }
2796
2797 /* Shifts 'hash' from 'from' to 'to' within 'port'. */
2798 static void
2799 bond_shift_load(struct slave_balance *from, struct slave_balance *to,
2800 int hash_idx)
2801 {
2802 struct bond_entry *hash = from->hashes[hash_idx];
2803 struct port *port = from->iface->port;
2804 uint64_t delta = hash->tx_bytes;
2805
2806 VLOG_INFO("bond %s: shift %"PRIu64"kB of load (with hash %td) "
2807 "from %s to %s (now carrying %"PRIu64"kB and "
2808 "%"PRIu64"kB load, respectively)",
2809 port->name, delta / 1024, hash - port->bond_hash,
2810 from->iface->name, to->iface->name,
2811 (from->tx_bytes - delta) / 1024,
2812 (to->tx_bytes + delta) / 1024);
2813
2814 /* Delete element from from->hashes.
2815 *
2816 * We don't bother to add the element to to->hashes because not only would
2817 * it require more work, the only purpose it would be to allow that hash to
2818 * be migrated to another slave in this rebalancing run, and there is no
2819 * point in doing that. */
2820 if (hash_idx == 0) {
2821 from->hashes++;
2822 } else {
2823 memmove(from->hashes + hash_idx, from->hashes + hash_idx + 1,
2824 (from->n_hashes - (hash_idx + 1)) * sizeof *from->hashes);
2825 }
2826 from->n_hashes--;
2827
2828 /* Shift load away from 'from' to 'to'. */
2829 from->tx_bytes -= delta;
2830 to->tx_bytes += delta;
2831
2832 /* Arrange for flows to be revalidated. */
2833 ofproto_revalidate(port->bridge->ofproto, hash->iface_tag);
2834 hash->iface_idx = to->iface->port_ifidx;
2835 hash->iface_tag = tag_create_random();
2836 }
2837
2838 static void
2839 bond_rebalance_port(struct port *port)
2840 {
2841 struct slave_balance bals[DP_MAX_PORTS];
2842 size_t n_bals;
2843 struct bond_entry *hashes[BOND_MASK + 1];
2844 struct slave_balance *b, *from, *to;
2845 struct bond_entry *e;
2846 size_t i;
2847
2848 /* Sets up 'bals' to describe each of the port's interfaces, sorted in
2849 * descending order of tx_bytes, so that bals[0] represents the most
2850 * heavily loaded slave and bals[n_bals - 1] represents the least heavily
2851 * loaded slave.
2852 *
2853 * The code is a bit tricky: to avoid dynamically allocating a 'hashes'
2854 * array for each slave_balance structure, we sort our local array of
2855 * hashes in order by slave, so that all of the hashes for a given slave
2856 * become contiguous in memory, and then we point each 'hashes' members of
2857 * a slave_balance structure to the start of a contiguous group. */
2858 n_bals = port->n_ifaces;
2859 for (b = bals; b < &bals[n_bals]; b++) {
2860 b->iface = port->ifaces[b - bals];
2861 b->tx_bytes = 0;
2862 b->hashes = NULL;
2863 b->n_hashes = 0;
2864 }
2865 for (i = 0; i <= BOND_MASK; i++) {
2866 hashes[i] = &port->bond_hash[i];
2867 }
2868 qsort(hashes, BOND_MASK + 1, sizeof *hashes, compare_bond_entries);
2869 for (i = 0; i <= BOND_MASK; i++) {
2870 e = hashes[i];
2871 if (e->iface_idx >= 0 && e->iface_idx < port->n_ifaces) {
2872 b = &bals[e->iface_idx];
2873 b->tx_bytes += e->tx_bytes;
2874 if (!b->hashes) {
2875 b->hashes = &hashes[i];
2876 }
2877 b->n_hashes++;
2878 }
2879 }
2880 qsort(bals, n_bals, sizeof *bals, compare_slave_balance);
2881 log_bals(bals, n_bals, port);
2882
2883 /* Discard slaves that aren't enabled (which were sorted to the back of the
2884 * array earlier). */
2885 while (!bals[n_bals - 1].iface->enabled) {
2886 n_bals--;
2887 if (!n_bals) {
2888 return;
2889 }
2890 }
2891
2892 /* Shift load from the most-loaded slaves to the least-loaded slaves. */
2893 to = &bals[n_bals - 1];
2894 for (from = bals; from < to; ) {
2895 uint64_t overload = from->tx_bytes - to->tx_bytes;
2896 if (overload < to->tx_bytes >> 5 || overload < 100000) {
2897 /* The extra load on 'from' (and all less-loaded slaves), compared
2898 * to that of 'to' (the least-loaded slave), is less than ~3%, or
2899 * it is less than ~1Mbps. No point in rebalancing. */
2900 break;
2901 } else if (from->n_hashes == 1) {
2902 /* 'from' only carries a single MAC hash, so we can't shift any
2903 * load away from it, even though we want to. */
2904 from++;
2905 } else {
2906 /* 'from' is carrying significantly more load than 'to', and that
2907 * load is split across at least two different hashes. Pick a hash
2908 * to migrate to 'to' (the least-loaded slave), given that doing so
2909 * must decrease the ratio of the load on the two slaves by at
2910 * least 0.1.
2911 *
2912 * The sort order we use means that we prefer to shift away the
2913 * smallest hashes instead of the biggest ones. There is little
2914 * reason behind this decision; we could use the opposite sort
2915 * order to shift away big hashes ahead of small ones. */
2916 bool order_swapped;
2917
2918 for (i = 0; i < from->n_hashes; i++) {
2919 double old_ratio, new_ratio;
2920 uint64_t delta = from->hashes[i]->tx_bytes;
2921
2922 if (delta == 0 || from->tx_bytes - delta == 0) {
2923 /* Pointless move. */
2924 continue;
2925 }
2926
2927 order_swapped = from->tx_bytes - delta < to->tx_bytes + delta;
2928
2929 if (to->tx_bytes == 0) {
2930 /* Nothing on the new slave, move it. */
2931 break;
2932 }
2933
2934 old_ratio = (double)from->tx_bytes / to->tx_bytes;
2935 new_ratio = (double)(from->tx_bytes - delta) /
2936 (to->tx_bytes + delta);
2937
2938 if (new_ratio == 0) {
2939 /* Should already be covered but check to prevent division
2940 * by zero. */
2941 continue;
2942 }
2943
2944 if (new_ratio < 1) {
2945 new_ratio = 1 / new_ratio;
2946 }
2947
2948 if (old_ratio - new_ratio > 0.1) {
2949 /* Would decrease the ratio, move it. */
2950 break;
2951 }
2952 }
2953 if (i < from->n_hashes) {
2954 bond_shift_load(from, to, i);
2955 port->bond_compat_is_stale = true;
2956
2957 /* If the result of the migration changed the relative order of
2958 * 'from' and 'to' swap them back to maintain invariants. */
2959 if (order_swapped) {
2960 swap_bals(from, to);
2961 }
2962
2963 /* Re-sort 'bals'. Note that this may make 'from' and 'to'
2964 * point to different slave_balance structures. It is only
2965 * valid to do these two operations in a row at all because we
2966 * know that 'from' will not move past 'to' and vice versa. */
2967 resort_bals(from, bals, n_bals);
2968 resort_bals(to, bals, n_bals);
2969 } else {
2970 from++;
2971 }
2972 }
2973 }
2974
2975 /* Implement exponentially weighted moving average. A weight of 1/2 causes
2976 * historical data to decay to <1% in 7 rebalancing runs. */
2977 for (e = &port->bond_hash[0]; e <= &port->bond_hash[BOND_MASK]; e++) {
2978 e->tx_bytes /= 2;
2979 }
2980 }
2981
2982 static void
2983 bond_send_learning_packets(struct port *port)
2984 {
2985 struct bridge *br = port->bridge;
2986 struct mac_entry *e;
2987 struct ofpbuf packet;
2988 int error, n_packets, n_errors;
2989
2990 if (!port->n_ifaces || port->active_iface < 0) {
2991 return;
2992 }
2993
2994 ofpbuf_init(&packet, 128);
2995 error = n_packets = n_errors = 0;
2996 LIST_FOR_EACH (e, lru_node, &br->ml->lrus) {
2997 union ofp_action actions[2], *a;
2998 uint16_t dp_ifidx;
2999 tag_type tags = 0;
3000 struct flow flow;
3001 int retval;
3002
3003 if (e->port == port->port_idx
3004 || !choose_output_iface(port, e->mac, &dp_ifidx, &tags)) {
3005 continue;
3006 }
3007
3008 /* Compose actions. */
3009 memset(actions, 0, sizeof actions);
3010 a = actions;
3011 if (e->vlan) {
3012 a->vlan_vid.type = htons(OFPAT_SET_VLAN_VID);
3013 a->vlan_vid.len = htons(sizeof *a);
3014 a->vlan_vid.vlan_vid = htons(e->vlan);
3015 a++;
3016 }
3017 a->output.type = htons(OFPAT_OUTPUT);
3018 a->output.len = htons(sizeof *a);
3019 a->output.port = htons(odp_port_to_ofp_port(dp_ifidx));
3020 a++;
3021
3022 /* Send packet. */
3023 n_packets++;
3024 compose_benign_packet(&packet, "Open vSwitch Bond Failover", 0xf177,
3025 e->mac);
3026 flow_extract(&packet, 0, ODPP_NONE, &flow);
3027 retval = ofproto_send_packet(br->ofproto, &flow, actions, a - actions,
3028 &packet);
3029 if (retval) {
3030 error = retval;
3031 n_errors++;
3032 }
3033 }
3034 ofpbuf_uninit(&packet);
3035
3036 if (n_errors) {
3037 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
3038 VLOG_WARN_RL(&rl, "bond %s: %d errors sending %d gratuitous learning "
3039 "packets, last error was: %s",
3040 port->name, n_errors, n_packets, strerror(error));
3041 } else {
3042 VLOG_DBG("bond %s: sent %d gratuitous learning packets",
3043 port->name, n_packets);
3044 }
3045 }
3046 \f
3047 /* Bonding unixctl user interface functions. */
3048
3049 static void
3050 bond_unixctl_list(struct unixctl_conn *conn,
3051 const char *args OVS_UNUSED, void *aux OVS_UNUSED)
3052 {
3053 struct ds ds = DS_EMPTY_INITIALIZER;
3054 const struct bridge *br;
3055
3056 ds_put_cstr(&ds, "bridge\tbond\tslaves\n");
3057
3058 LIST_FOR_EACH (br, node, &all_bridges) {
3059 size_t i;
3060
3061 for (i = 0; i < br->n_ports; i++) {
3062 const struct port *port = br->ports[i];
3063 if (port->n_ifaces > 1) {
3064 size_t j;
3065
3066 ds_put_format(&ds, "%s\t%s\t", br->name, port->name);
3067 for (j = 0; j < port->n_ifaces; j++) {
3068 const struct iface *iface = port->ifaces[j];
3069 if (j) {
3070 ds_put_cstr(&ds, ", ");
3071 }
3072 ds_put_cstr(&ds, iface->name);
3073 }
3074 ds_put_char(&ds, '\n');
3075 }
3076 }
3077 }
3078 unixctl_command_reply(conn, 200, ds_cstr(&ds));
3079 ds_destroy(&ds);
3080 }
3081
3082 static struct port *
3083 bond_find(const char *name)
3084 {
3085 const struct bridge *br;
3086
3087 LIST_FOR_EACH (br, node, &all_bridges) {
3088 size_t i;
3089
3090 for (i = 0; i < br->n_ports; i++) {
3091 struct port *port = br->ports[i];
3092 if (!strcmp(port->name, name) && port->n_ifaces > 1) {
3093 return port;
3094 }
3095 }
3096 }
3097 return NULL;
3098 }
3099
3100 static void
3101 bond_unixctl_show(struct unixctl_conn *conn,
3102 const char *args, void *aux OVS_UNUSED)
3103 {
3104 struct ds ds = DS_EMPTY_INITIALIZER;
3105 const struct port *port;
3106 size_t j;
3107
3108 port = bond_find(args);
3109 if (!port) {
3110 unixctl_command_reply(conn, 501, "no such bond");
3111 return;
3112 }
3113
3114 ds_put_format(&ds, "updelay: %d ms\n", port->updelay);
3115 ds_put_format(&ds, "downdelay: %d ms\n", port->downdelay);
3116 ds_put_format(&ds, "next rebalance: %lld ms\n",
3117 port->bond_next_rebalance - time_msec());
3118 for (j = 0; j < port->n_ifaces; j++) {
3119 const struct iface *iface = port->ifaces[j];
3120 struct bond_entry *be;
3121
3122 /* Basic info. */
3123 ds_put_format(&ds, "slave %s: %s\n",
3124 iface->name, iface->enabled ? "enabled" : "disabled");
3125 if (j == port->active_iface) {
3126 ds_put_cstr(&ds, "\tactive slave\n");
3127 }
3128 if (iface->delay_expires != LLONG_MAX) {
3129 ds_put_format(&ds, "\t%s expires in %lld ms\n",
3130 iface->enabled ? "downdelay" : "updelay",
3131 iface->delay_expires - time_msec());
3132 }
3133
3134 /* Hashes. */
3135 for (be = port->bond_hash; be <= &port->bond_hash[BOND_MASK]; be++) {
3136 int hash = be - port->bond_hash;
3137 struct mac_entry *me;
3138
3139 if (be->iface_idx != j) {
3140 continue;
3141 }
3142
3143 ds_put_format(&ds, "\thash %d: %"PRIu64" kB load\n",
3144 hash, be->tx_bytes / 1024);
3145
3146 /* MACs. */
3147 LIST_FOR_EACH (me, lru_node, &port->bridge->ml->lrus) {
3148 uint16_t dp_ifidx;
3149 tag_type tags = 0;
3150 if (bond_hash(me->mac) == hash
3151 && me->port != port->port_idx
3152 && choose_output_iface(port, me->mac, &dp_ifidx, &tags)
3153 && dp_ifidx == iface->dp_ifidx)
3154 {
3155 ds_put_format(&ds, "\t\t"ETH_ADDR_FMT"\n",
3156 ETH_ADDR_ARGS(me->mac));
3157 }
3158 }
3159 }
3160 }
3161 unixctl_command_reply(conn, 200, ds_cstr(&ds));
3162 ds_destroy(&ds);
3163 }
3164
3165 static void
3166 bond_unixctl_migrate(struct unixctl_conn *conn, const char *args_,
3167 void *aux OVS_UNUSED)
3168 {
3169 char *args = (char *) args_;
3170 char *save_ptr = NULL;
3171 char *bond_s, *hash_s, *slave_s;
3172 uint8_t mac[ETH_ADDR_LEN];
3173 struct port *port;
3174 struct iface *iface;
3175 struct bond_entry *entry;
3176 int hash;
3177
3178 bond_s = strtok_r(args, " ", &save_ptr);
3179 hash_s = strtok_r(NULL, " ", &save_ptr);
3180 slave_s = strtok_r(NULL, " ", &save_ptr);
3181 if (!slave_s) {
3182 unixctl_command_reply(conn, 501,
3183 "usage: bond/migrate BOND HASH SLAVE");
3184 return;
3185 }
3186
3187 port = bond_find(bond_s);
3188 if (!port) {
3189 unixctl_command_reply(conn, 501, "no such bond");
3190 return;
3191 }
3192
3193 if (sscanf(hash_s, ETH_ADDR_SCAN_FMT, ETH_ADDR_SCAN_ARGS(mac))
3194 == ETH_ADDR_SCAN_COUNT) {
3195 hash = bond_hash(mac);
3196 } else if (strspn(hash_s, "0123456789") == strlen(hash_s)) {
3197 hash = atoi(hash_s) & BOND_MASK;
3198 } else {
3199 unixctl_command_reply(conn, 501, "bad hash");
3200 return;
3201 }
3202
3203 iface = port_lookup_iface(port, slave_s);
3204 if (!iface) {
3205 unixctl_command_reply(conn, 501, "no such slave");
3206 return;
3207 }
3208
3209 if (!iface->enabled) {
3210 unixctl_command_reply(conn, 501, "cannot migrate to disabled slave");
3211 return;
3212 }
3213
3214 entry = &port->bond_hash[hash];
3215 ofproto_revalidate(port->bridge->ofproto, entry->iface_tag);
3216 entry->iface_idx = iface->port_ifidx;
3217 entry->iface_tag = tag_create_random();
3218 port->bond_compat_is_stale = true;
3219 unixctl_command_reply(conn, 200, "migrated");
3220 }
3221
3222 static void
3223 bond_unixctl_set_active_slave(struct unixctl_conn *conn, const char *args_,
3224 void *aux OVS_UNUSED)
3225 {
3226 char *args = (char *) args_;
3227 char *save_ptr = NULL;
3228 char *bond_s, *slave_s;
3229 struct port *port;
3230 struct iface *iface;
3231
3232 bond_s = strtok_r(args, " ", &save_ptr);
3233 slave_s = strtok_r(NULL, " ", &save_ptr);
3234 if (!slave_s) {
3235 unixctl_command_reply(conn, 501,
3236 "usage: bond/set-active-slave BOND SLAVE");
3237 return;
3238 }
3239
3240 port = bond_find(bond_s);
3241 if (!port) {
3242 unixctl_command_reply(conn, 501, "no such bond");
3243 return;
3244 }
3245
3246 iface = port_lookup_iface(port, slave_s);
3247 if (!iface) {
3248 unixctl_command_reply(conn, 501, "no such slave");
3249 return;
3250 }
3251
3252 if (!iface->enabled) {
3253 unixctl_command_reply(conn, 501, "cannot make disabled slave active");
3254 return;
3255 }
3256
3257 if (port->active_iface != iface->port_ifidx) {
3258 ofproto_revalidate(port->bridge->ofproto, port->active_iface_tag);
3259 port->active_iface = iface->port_ifidx;
3260 port->active_iface_tag = tag_create_random();
3261 VLOG_INFO("port %s: active interface is now %s",
3262 port->name, iface->name);
3263 bond_send_learning_packets(port);
3264 unixctl_command_reply(conn, 200, "done");
3265 } else {
3266 unixctl_command_reply(conn, 200, "no change");
3267 }
3268 }
3269
3270 static void
3271 enable_slave(struct unixctl_conn *conn, const char *args_, bool enable)
3272 {
3273 char *args = (char *) args_;
3274 char *save_ptr = NULL;
3275 char *bond_s, *slave_s;
3276 struct port *port;
3277 struct iface *iface;
3278
3279 bond_s = strtok_r(args, " ", &save_ptr);
3280 slave_s = strtok_r(NULL, " ", &save_ptr);
3281 if (!slave_s) {
3282 unixctl_command_reply(conn, 501,
3283 "usage: bond/enable/disable-slave BOND SLAVE");
3284 return;
3285 }
3286
3287 port = bond_find(bond_s);
3288 if (!port) {
3289 unixctl_command_reply(conn, 501, "no such bond");
3290 return;
3291 }
3292
3293 iface = port_lookup_iface(port, slave_s);
3294 if (!iface) {
3295 unixctl_command_reply(conn, 501, "no such slave");
3296 return;
3297 }
3298
3299 bond_enable_slave(iface, enable);
3300 unixctl_command_reply(conn, 501, enable ? "enabled" : "disabled");
3301 }
3302
3303 static void
3304 bond_unixctl_enable_slave(struct unixctl_conn *conn, const char *args,
3305 void *aux OVS_UNUSED)
3306 {
3307 enable_slave(conn, args, true);
3308 }
3309
3310 static void
3311 bond_unixctl_disable_slave(struct unixctl_conn *conn, const char *args,
3312 void *aux OVS_UNUSED)
3313 {
3314 enable_slave(conn, args, false);
3315 }
3316
3317 static void
3318 bond_unixctl_hash(struct unixctl_conn *conn, const char *args,
3319 void *aux OVS_UNUSED)
3320 {
3321 uint8_t mac[ETH_ADDR_LEN];
3322 uint8_t hash;
3323 char *hash_cstr;
3324
3325 if (sscanf(args, ETH_ADDR_SCAN_FMT, ETH_ADDR_SCAN_ARGS(mac))
3326 == ETH_ADDR_SCAN_COUNT) {
3327 hash = bond_hash(mac);
3328
3329 hash_cstr = xasprintf("%u", hash);
3330 unixctl_command_reply(conn, 200, hash_cstr);
3331 free(hash_cstr);
3332 } else {
3333 unixctl_command_reply(conn, 501, "invalid mac");
3334 }
3335 }
3336
3337 static void
3338 bond_init(void)
3339 {
3340 unixctl_command_register("bond/list", bond_unixctl_list, NULL);
3341 unixctl_command_register("bond/show", bond_unixctl_show, NULL);
3342 unixctl_command_register("bond/migrate", bond_unixctl_migrate, NULL);
3343 unixctl_command_register("bond/set-active-slave",
3344 bond_unixctl_set_active_slave, NULL);
3345 unixctl_command_register("bond/enable-slave", bond_unixctl_enable_slave,
3346 NULL);
3347 unixctl_command_register("bond/disable-slave", bond_unixctl_disable_slave,
3348 NULL);
3349 unixctl_command_register("bond/hash", bond_unixctl_hash, NULL);
3350 }
3351 \f
3352 /* Port functions. */
3353
3354 static struct port *
3355 port_create(struct bridge *br, const char *name)
3356 {
3357 struct port *port;
3358
3359 port = xzalloc(sizeof *port);
3360 port->bridge = br;
3361 port->port_idx = br->n_ports;
3362 port->vlan = -1;
3363 port->trunks = NULL;
3364 port->name = xstrdup(name);
3365 port->active_iface = -1;
3366
3367 if (br->n_ports >= br->allocated_ports) {
3368 br->ports = x2nrealloc(br->ports, &br->allocated_ports,
3369 sizeof *br->ports);
3370 }
3371 br->ports[br->n_ports++] = port;
3372 shash_add_assert(&br->port_by_name, port->name, port);
3373
3374 VLOG_INFO("created port %s on bridge %s", port->name, br->name);
3375 bridge_flush(br);
3376
3377 return port;
3378 }
3379
3380 static const char *
3381 get_port_other_config(const struct ovsrec_port *port, const char *key,
3382 const char *default_value)
3383 {
3384 const char *value;
3385
3386 value = get_ovsrec_key_value(&port->header_, &ovsrec_port_col_other_config,
3387 key);
3388 return value ? value : default_value;
3389 }
3390
3391 static void
3392 port_del_ifaces(struct port *port, const struct ovsrec_port *cfg)
3393 {
3394 struct shash new_ifaces;
3395 size_t i;
3396
3397 /* Collect list of new interfaces. */
3398 shash_init(&new_ifaces);
3399 for (i = 0; i < cfg->n_interfaces; i++) {
3400 const char *name = cfg->interfaces[i]->name;
3401 shash_add_once(&new_ifaces, name, NULL);
3402 }
3403
3404 /* Get rid of deleted interfaces. */
3405 for (i = 0; i < port->n_ifaces; ) {
3406 if (!shash_find(&new_ifaces, cfg->interfaces[i]->name)) {
3407 iface_destroy(port->ifaces[i]);
3408 } else {
3409 i++;
3410 }
3411 }
3412
3413 shash_destroy(&new_ifaces);
3414 }
3415
3416 static void
3417 port_reconfigure(struct port *port, const struct ovsrec_port *cfg)
3418 {
3419 struct shash new_ifaces;
3420 long long int next_rebalance;
3421 unsigned long *trunks;
3422 int vlan;
3423 size_t i;
3424
3425 port->cfg = cfg;
3426
3427 /* Update settings. */
3428 port->updelay = cfg->bond_updelay;
3429 if (port->updelay < 0) {
3430 port->updelay = 0;
3431 }
3432 port->downdelay = cfg->bond_downdelay;
3433 if (port->downdelay < 0) {
3434 port->downdelay = 0;
3435 }
3436 port->bond_rebalance_interval = atoi(
3437 get_port_other_config(cfg, "bond-rebalance-interval", "10000"));
3438 if (port->bond_rebalance_interval < 1000) {
3439 port->bond_rebalance_interval = 1000;
3440 }
3441 next_rebalance = time_msec() + port->bond_rebalance_interval;
3442 if (port->bond_next_rebalance > next_rebalance) {
3443 port->bond_next_rebalance = next_rebalance;
3444 }
3445
3446 /* Add new interfaces and update 'cfg' member of existing ones. */
3447 shash_init(&new_ifaces);
3448 for (i = 0; i < cfg->n_interfaces; i++) {
3449 const struct ovsrec_interface *if_cfg = cfg->interfaces[i];
3450 struct iface *iface;
3451
3452 if (!shash_add_once(&new_ifaces, if_cfg->name, NULL)) {
3453 VLOG_WARN("port %s: %s specified twice as port interface",
3454 port->name, if_cfg->name);
3455 iface_set_ofport(if_cfg, -1);
3456 continue;
3457 }
3458
3459 iface = iface_lookup(port->bridge, if_cfg->name);
3460 if (iface) {
3461 if (iface->port != port) {
3462 VLOG_ERR("bridge %s: %s interface is on multiple ports, "
3463 "removing from %s",
3464 port->bridge->name, if_cfg->name, iface->port->name);
3465 continue;
3466 }
3467 iface->cfg = if_cfg;
3468 } else {
3469 iface = iface_create(port, if_cfg);
3470 }
3471
3472 /* Determine interface type. The local port always has type
3473 * "internal". Other ports take their type from the database and
3474 * default to "system" if none is specified. */
3475 iface->type = (!strcmp(if_cfg->name, port->bridge->name) ? "internal"
3476 : if_cfg->type[0] ? if_cfg->type
3477 : "system");
3478 }
3479 shash_destroy(&new_ifaces);
3480
3481 /* Get VLAN tag. */
3482 vlan = -1;
3483 if (cfg->tag) {
3484 if (port->n_ifaces < 2) {
3485 vlan = *cfg->tag;
3486 if (vlan >= 0 && vlan <= 4095) {
3487 VLOG_DBG("port %s: assigning VLAN tag %d", port->name, vlan);
3488 } else {
3489 vlan = -1;
3490 }
3491 } else {
3492 /* It's possible that bonded, VLAN-tagged ports make sense. Maybe
3493 * they even work as-is. But they have not been tested. */
3494 VLOG_WARN("port %s: VLAN tags not supported on bonded ports",
3495 port->name);
3496 }
3497 }
3498 if (port->vlan != vlan) {
3499 port->vlan = vlan;
3500 bridge_flush(port->bridge);
3501 }
3502
3503 /* Get trunked VLANs. */
3504 trunks = NULL;
3505 if (vlan < 0 && cfg->n_trunks) {
3506 size_t n_errors;
3507
3508 trunks = bitmap_allocate(4096);
3509 n_errors = 0;
3510 for (i = 0; i < cfg->n_trunks; i++) {
3511 int trunk = cfg->trunks[i];
3512 if (trunk >= 0) {
3513 bitmap_set1(trunks, trunk);
3514 } else {
3515 n_errors++;
3516 }
3517 }
3518 if (n_errors) {
3519 VLOG_ERR("port %s: invalid values for %zu trunk VLANs",
3520 port->name, cfg->n_trunks);
3521 }
3522 if (n_errors == cfg->n_trunks) {
3523 VLOG_ERR("port %s: no valid trunks, trunking all VLANs",
3524 port->name);
3525 bitmap_free(trunks);
3526 trunks = NULL;
3527 }
3528 } else if (vlan >= 0 && cfg->n_trunks) {
3529 VLOG_ERR("port %s: ignoring trunks in favor of implicit vlan",
3530 port->name);
3531 }
3532 if (trunks == NULL
3533 ? port->trunks != NULL
3534 : port->trunks == NULL || !bitmap_equal(trunks, port->trunks, 4096)) {
3535 bridge_flush(port->bridge);
3536 }
3537 bitmap_free(port->trunks);
3538 port->trunks = trunks;
3539 }
3540
3541 static void
3542 port_destroy(struct port *port)
3543 {
3544 if (port) {
3545 struct bridge *br = port->bridge;
3546 struct port *del;
3547 int i;
3548
3549 proc_net_compat_update_vlan(port->name, NULL, 0);
3550 proc_net_compat_update_bond(port->name, NULL);
3551
3552 for (i = 0; i < MAX_MIRRORS; i++) {
3553 struct mirror *m = br->mirrors[i];
3554 if (m && m->out_port == port) {
3555 mirror_destroy(m);
3556 }
3557 }
3558
3559 while (port->n_ifaces > 0) {
3560 iface_destroy(port->ifaces[port->n_ifaces - 1]);
3561 }
3562
3563 shash_find_and_delete_assert(&br->port_by_name, port->name);
3564
3565 del = br->ports[port->port_idx] = br->ports[--br->n_ports];
3566 del->port_idx = port->port_idx;
3567
3568 VLOG_INFO("destroyed port %s on bridge %s", port->name, br->name);
3569
3570 netdev_monitor_destroy(port->monitor);
3571 free(port->ifaces);
3572 bitmap_free(port->trunks);
3573 free(port->name);
3574 free(port);
3575 bridge_flush(br);
3576 }
3577 }
3578
3579 static struct port *
3580 port_from_dp_ifidx(const struct bridge *br, uint16_t dp_ifidx)
3581 {
3582 struct iface *iface = iface_from_dp_ifidx(br, dp_ifidx);
3583 return iface ? iface->port : NULL;
3584 }
3585
3586 static struct port *
3587 port_lookup(const struct bridge *br, const char *name)
3588 {
3589 return shash_find_data(&br->port_by_name, name);
3590 }
3591
3592 static struct iface *
3593 port_lookup_iface(const struct port *port, const char *name)
3594 {
3595 struct iface *iface = iface_lookup(port->bridge, name);
3596 return iface && iface->port == port ? iface : NULL;
3597 }
3598
3599 static void
3600 port_update_bonding(struct port *port)
3601 {
3602 if (port->monitor) {
3603 netdev_monitor_destroy(port->monitor);
3604 port->monitor = NULL;
3605 }
3606 if (port->n_ifaces < 2) {
3607 /* Not a bonded port. */
3608 if (port->bond_hash) {
3609 free(port->bond_hash);
3610 port->bond_hash = NULL;
3611 port->bond_compat_is_stale = true;
3612 port->bond_fake_iface = false;
3613 }
3614 } else {
3615 size_t i;
3616
3617 if (!port->bond_hash) {
3618 port->bond_hash = xcalloc(BOND_MASK + 1, sizeof *port->bond_hash);
3619 for (i = 0; i <= BOND_MASK; i++) {
3620 struct bond_entry *e = &port->bond_hash[i];
3621 e->iface_idx = -1;
3622 e->tx_bytes = 0;
3623 }
3624 port->no_ifaces_tag = tag_create_random();
3625 bond_choose_active_iface(port);
3626 port->bond_next_rebalance
3627 = time_msec() + port->bond_rebalance_interval;
3628
3629 if (port->cfg->bond_fake_iface) {
3630 port->bond_next_fake_iface_update = time_msec();
3631 }
3632 }
3633 port->bond_compat_is_stale = true;
3634 port->bond_fake_iface = port->cfg->bond_fake_iface;
3635
3636 port->monitor = netdev_monitor_create();
3637 for (i = 0; i < port->n_ifaces; i++) {
3638 netdev_monitor_add(port->monitor, port->ifaces[i]->netdev);
3639 }
3640 }
3641 }
3642
3643 static void
3644 port_update_bond_compat(struct port *port)
3645 {
3646 struct compat_bond_hash compat_hashes[BOND_MASK + 1];
3647 struct compat_bond bond;
3648 size_t i;
3649
3650 if (port->n_ifaces < 2) {
3651 proc_net_compat_update_bond(port->name, NULL);
3652 return;
3653 }
3654
3655 bond.up = false;
3656 bond.updelay = port->updelay;
3657 bond.downdelay = port->downdelay;
3658
3659 bond.n_hashes = 0;
3660 bond.hashes = compat_hashes;
3661 if (port->bond_hash) {
3662 const struct bond_entry *e;
3663 for (e = port->bond_hash; e <= &port->bond_hash[BOND_MASK]; e++) {
3664 if (e->iface_idx >= 0 && e->iface_idx < port->n_ifaces) {
3665 struct compat_bond_hash *cbh = &bond.hashes[bond.n_hashes++];
3666 cbh->hash = e - port->bond_hash;
3667 cbh->netdev_name = port->ifaces[e->iface_idx]->name;
3668 }
3669 }
3670 }
3671
3672 bond.n_slaves = port->n_ifaces;
3673 bond.slaves = xmalloc(port->n_ifaces * sizeof *bond.slaves);
3674 for (i = 0; i < port->n_ifaces; i++) {
3675 struct iface *iface = port->ifaces[i];
3676 struct compat_bond_slave *slave = &bond.slaves[i];
3677 slave->name = iface->name;
3678
3679 /* We need to make the same determination as the Linux bonding
3680 * code to determine whether a slave should be consider "up".
3681 * The Linux function bond_miimon_inspect() supports four
3682 * BOND_LINK_* states:
3683 *
3684 * - BOND_LINK_UP: carrier detected, updelay has passed.
3685 * - BOND_LINK_FAIL: carrier lost, downdelay in progress.
3686 * - BOND_LINK_DOWN: carrier lost, downdelay has passed.
3687 * - BOND_LINK_BACK: carrier detected, updelay in progress.
3688 *
3689 * The function bond_info_show_slave() only considers BOND_LINK_UP
3690 * to be "up" and anything else to be "down".
3691 */
3692 slave->up = iface->enabled && iface->delay_expires == LLONG_MAX;
3693 if (slave->up) {
3694 bond.up = true;
3695 }
3696 netdev_get_etheraddr(iface->netdev, slave->mac);
3697 }
3698
3699 if (port->bond_fake_iface) {
3700 struct netdev *bond_netdev;
3701
3702 if (!netdev_open_default(port->name, &bond_netdev)) {
3703 if (bond.up) {
3704 netdev_turn_flags_on(bond_netdev, NETDEV_UP, true);
3705 } else {
3706 netdev_turn_flags_off(bond_netdev, NETDEV_UP, true);
3707 }
3708 netdev_close(bond_netdev);
3709 }
3710 }
3711
3712 proc_net_compat_update_bond(port->name, &bond);
3713 free(bond.slaves);
3714 }
3715
3716 static void
3717 port_update_vlan_compat(struct port *port)
3718 {
3719 struct bridge *br = port->bridge;
3720 char *vlandev_name = NULL;
3721
3722 if (port->vlan > 0) {
3723 /* Figure out the name that the VLAN device should actually have, if it
3724 * existed. This takes some work because the VLAN device would not
3725 * have port->name in its name; rather, it would have the trunk port's
3726 * name, and 'port' would be attached to a bridge that also had the
3727 * VLAN device one of its ports. So we need to find a trunk port that
3728 * includes port->vlan.
3729 *
3730 * There might be more than one candidate. This doesn't happen on
3731 * XenServer, so if it happens we just pick the first choice in
3732 * alphabetical order instead of creating multiple VLAN devices. */
3733 size_t i;
3734 for (i = 0; i < br->n_ports; i++) {
3735 struct port *p = br->ports[i];
3736 if (port_trunks_vlan(p, port->vlan)
3737 && p->n_ifaces
3738 && (!vlandev_name || strcmp(p->name, vlandev_name) <= 0))
3739 {
3740 uint8_t ea[ETH_ADDR_LEN];
3741 netdev_get_etheraddr(p->ifaces[0]->netdev, ea);
3742 if (!eth_addr_is_multicast(ea) &&
3743 !eth_addr_is_reserved(ea) &&
3744 !eth_addr_is_zero(ea)) {
3745 vlandev_name = p->name;
3746 }
3747 }
3748 }
3749 }
3750 proc_net_compat_update_vlan(port->name, vlandev_name, port->vlan);
3751 }
3752 \f
3753 /* Interface functions. */
3754
3755 static struct iface *
3756 iface_create(struct port *port, const struct ovsrec_interface *if_cfg)
3757 {
3758 struct bridge *br = port->bridge;
3759 struct iface *iface;
3760 char *name = if_cfg->name;
3761
3762 iface = xzalloc(sizeof *iface);
3763 iface->port = port;
3764 iface->port_ifidx = port->n_ifaces;
3765 iface->name = xstrdup(name);
3766 iface->dp_ifidx = -1;
3767 iface->tag = tag_create_random();
3768 iface->delay_expires = LLONG_MAX;
3769 iface->netdev = NULL;
3770 iface->cfg = if_cfg;
3771
3772 shash_add_assert(&br->iface_by_name, iface->name, iface);
3773
3774 if (port->n_ifaces >= port->allocated_ifaces) {
3775 port->ifaces = x2nrealloc(port->ifaces, &port->allocated_ifaces,
3776 sizeof *port->ifaces);
3777 }
3778 port->ifaces[port->n_ifaces++] = iface;
3779 if (port->n_ifaces > 1) {
3780 br->has_bonded_ports = true;
3781 }
3782
3783 VLOG_DBG("attached network device %s to port %s", iface->name, port->name);
3784
3785 bridge_flush(br);
3786
3787 return iface;
3788 }
3789
3790 static void
3791 iface_destroy(struct iface *iface)
3792 {
3793 if (iface) {
3794 struct port *port = iface->port;
3795 struct bridge *br = port->bridge;
3796 bool del_active = port->active_iface == iface->port_ifidx;
3797 struct iface *del;
3798
3799 shash_find_and_delete_assert(&br->iface_by_name, iface->name);
3800
3801 if (iface->dp_ifidx >= 0) {
3802 hmap_remove(&br->ifaces, &iface->dp_ifidx_node);
3803 }
3804
3805 del = port->ifaces[iface->port_ifidx] = port->ifaces[--port->n_ifaces];
3806 del->port_ifidx = iface->port_ifidx;
3807
3808 netdev_close(iface->netdev);
3809
3810 if (del_active) {
3811 ofproto_revalidate(port->bridge->ofproto, port->active_iface_tag);
3812 bond_choose_active_iface(port);
3813 bond_send_learning_packets(port);
3814 }
3815
3816 free(iface->name);
3817 free(iface);
3818
3819 bridge_flush(port->bridge);
3820 }
3821 }
3822
3823 static struct iface *
3824 iface_lookup(const struct bridge *br, const char *name)
3825 {
3826 return shash_find_data(&br->iface_by_name, name);
3827 }
3828
3829 static struct iface *
3830 iface_from_dp_ifidx(const struct bridge *br, uint16_t dp_ifidx)
3831 {
3832 struct iface *iface;
3833
3834 HMAP_FOR_EACH_IN_BUCKET (iface, dp_ifidx_node,
3835 hash_int(dp_ifidx, 0), &br->ifaces) {
3836 if (iface->dp_ifidx == dp_ifidx) {
3837 return iface;
3838 }
3839 }
3840 return NULL;
3841 }
3842
3843 /* Set Ethernet address of 'iface', if one is specified in the configuration
3844 * file. */
3845 static void
3846 iface_set_mac(struct iface *iface)
3847 {
3848 uint8_t ea[ETH_ADDR_LEN];
3849
3850 if (iface->cfg->mac && eth_addr_from_string(iface->cfg->mac, ea)) {
3851 if (eth_addr_is_multicast(ea)) {
3852 VLOG_ERR("interface %s: cannot set MAC to multicast address",
3853 iface->name);
3854 } else if (iface->dp_ifidx == ODPP_LOCAL) {
3855 VLOG_ERR("ignoring iface.%s.mac; use bridge.%s.mac instead",
3856 iface->name, iface->name);
3857 } else {
3858 int error = netdev_set_etheraddr(iface->netdev, ea);
3859 if (error) {
3860 VLOG_ERR("interface %s: setting MAC failed (%s)",
3861 iface->name, strerror(error));
3862 }
3863 }
3864 }
3865 }
3866
3867 /* Sets the ofport column of 'if_cfg' to 'ofport'. */
3868 static void
3869 iface_set_ofport(const struct ovsrec_interface *if_cfg, int64_t ofport)
3870 {
3871 if (if_cfg) {
3872 ovsrec_interface_set_ofport(if_cfg, &ofport, 1);
3873 }
3874 }
3875
3876 /* Adds the 'n' key-value pairs in 'keys' in 'values' to 'shash'.
3877 *
3878 * The value strings in '*shash' are taken directly from values[], not copied,
3879 * so the caller should not modify or free them. */
3880 static void
3881 shash_from_ovs_idl_map(char **keys, char **values, size_t n,
3882 struct shash *shash)
3883 {
3884 size_t i;
3885
3886 shash_init(shash);
3887 for (i = 0; i < n; i++) {
3888 shash_add(shash, keys[i], values[i]);
3889 }
3890 }
3891
3892 struct iface_delete_queues_cbdata {
3893 struct netdev *netdev;
3894 const struct ovsdb_datum *queues;
3895 };
3896
3897 static bool
3898 queue_ids_include(const struct ovsdb_datum *queues, int64_t target)
3899 {
3900 union ovsdb_atom atom;
3901
3902 atom.integer = target;
3903 return ovsdb_datum_find_key(queues, &atom, OVSDB_TYPE_INTEGER) != UINT_MAX;
3904 }
3905
3906 static void
3907 iface_delete_queues(unsigned int queue_id,
3908 const struct shash *details OVS_UNUSED, void *cbdata_)
3909 {
3910 struct iface_delete_queues_cbdata *cbdata = cbdata_;
3911
3912 if (!queue_ids_include(cbdata->queues, queue_id)) {
3913 netdev_delete_queue(cbdata->netdev, queue_id);
3914 }
3915 }
3916
3917 static void
3918 iface_update_qos(struct iface *iface, const struct ovsrec_qos *qos)
3919 {
3920 if (!qos || qos->type[0] == '\0') {
3921 netdev_set_qos(iface->netdev, NULL, NULL);
3922 } else {
3923 struct iface_delete_queues_cbdata cbdata;
3924 struct shash details;
3925 size_t i;
3926
3927 /* Configure top-level Qos for 'iface'. */
3928 shash_from_ovs_idl_map(qos->key_other_config, qos->value_other_config,
3929 qos->n_other_config, &details);
3930 netdev_set_qos(iface->netdev, qos->type, &details);
3931 shash_destroy(&details);
3932
3933 /* Deconfigure queues that were deleted. */
3934 cbdata.netdev = iface->netdev;
3935 cbdata.queues = ovsrec_qos_get_queues(qos, OVSDB_TYPE_INTEGER,
3936 OVSDB_TYPE_UUID);
3937 netdev_dump_queues(iface->netdev, iface_delete_queues, &cbdata);
3938
3939 /* Configure queues for 'iface'. */
3940 for (i = 0; i < qos->n_queues; i++) {
3941 const struct ovsrec_queue *queue = qos->value_queues[i];
3942 unsigned int queue_id = qos->key_queues[i];
3943
3944 shash_from_ovs_idl_map(queue->key_other_config,
3945 queue->value_other_config,
3946 queue->n_other_config, &details);
3947 netdev_set_queue(iface->netdev, queue_id, &details);
3948 shash_destroy(&details);
3949 }
3950 }
3951 }
3952 \f
3953 /* Port mirroring. */
3954
3955 static struct mirror *
3956 mirror_find_by_uuid(struct bridge *br, const struct uuid *uuid)
3957 {
3958 int i;
3959
3960 for (i = 0; i < MAX_MIRRORS; i++) {
3961 struct mirror *m = br->mirrors[i];
3962 if (m && uuid_equals(uuid, &m->uuid)) {
3963 return m;
3964 }
3965 }
3966 return NULL;
3967 }
3968
3969 static void
3970 mirror_reconfigure(struct bridge *br)
3971 {
3972 unsigned long *rspan_vlans;
3973 int i;
3974
3975 /* Get rid of deleted mirrors. */
3976 for (i = 0; i < MAX_MIRRORS; i++) {
3977 struct mirror *m = br->mirrors[i];
3978 if (m) {
3979 const struct ovsdb_datum *mc;
3980 union ovsdb_atom atom;
3981
3982 mc = ovsrec_bridge_get_mirrors(br->cfg, OVSDB_TYPE_UUID);
3983 atom.uuid = br->mirrors[i]->uuid;
3984 if (ovsdb_datum_find_key(mc, &atom, OVSDB_TYPE_UUID) == UINT_MAX) {
3985 mirror_destroy(m);
3986 }
3987 }
3988 }
3989
3990 /* Add new mirrors and reconfigure existing ones. */
3991 for (i = 0; i < br->cfg->n_mirrors; i++) {
3992 struct ovsrec_mirror *cfg = br->cfg->mirrors[i];
3993 struct mirror *m = mirror_find_by_uuid(br, &cfg->header_.uuid);
3994 if (m) {
3995 mirror_reconfigure_one(m, cfg);
3996 } else {
3997 mirror_create(br, cfg);
3998 }
3999 }
4000
4001 /* Update port reserved status. */
4002 for (i = 0; i < br->n_ports; i++) {
4003 br->ports[i]->is_mirror_output_port = false;
4004 }
4005 for (i = 0; i < MAX_MIRRORS; i++) {
4006 struct mirror *m = br->mirrors[i];
4007 if (m && m->out_port) {
4008 m->out_port->is_mirror_output_port = true;
4009 }
4010 }
4011
4012 /* Update flooded vlans (for RSPAN). */
4013 rspan_vlans = NULL;
4014 if (br->cfg->n_flood_vlans) {
4015 rspan_vlans = bitmap_allocate(4096);
4016
4017 for (i = 0; i < br->cfg->n_flood_vlans; i++) {
4018 int64_t vlan = br->cfg->flood_vlans[i];
4019 if (vlan >= 0 && vlan < 4096) {
4020 bitmap_set1(rspan_vlans, vlan);
4021 VLOG_INFO("bridge %s: disabling learning on vlan %"PRId64,
4022 br->name, vlan);
4023 } else {
4024 VLOG_ERR("bridge %s: invalid value %"PRId64 "for flood VLAN",
4025 br->name, vlan);
4026 }
4027 }
4028 }
4029 if (mac_learning_set_flood_vlans(br->ml, rspan_vlans)) {
4030 bridge_flush(br);
4031 }
4032 }
4033
4034 static void
4035 mirror_create(struct bridge *br, struct ovsrec_mirror *cfg)
4036 {
4037 struct mirror *m;
4038 size_t i;
4039
4040 for (i = 0; ; i++) {
4041 if (i >= MAX_MIRRORS) {
4042 VLOG_WARN("bridge %s: maximum of %d port mirrors reached, "
4043 "cannot create %s", br->name, MAX_MIRRORS, cfg->name);
4044 return;
4045 }
4046 if (!br->mirrors[i]) {
4047 break;
4048 }
4049 }
4050
4051 VLOG_INFO("created port mirror %s on bridge %s", cfg->name, br->name);
4052 bridge_flush(br);
4053
4054 br->mirrors[i] = m = xzalloc(sizeof *m);
4055 m->bridge = br;
4056 m->idx = i;
4057 m->name = xstrdup(cfg->name);
4058 shash_init(&m->src_ports);
4059 shash_init(&m->dst_ports);
4060 m->vlans = NULL;
4061 m->n_vlans = 0;
4062 m->out_vlan = -1;
4063 m->out_port = NULL;
4064
4065 mirror_reconfigure_one(m, cfg);
4066 }
4067
4068 static void
4069 mirror_destroy(struct mirror *m)
4070 {
4071 if (m) {
4072 struct bridge *br = m->bridge;
4073 size_t i;
4074
4075 for (i = 0; i < br->n_ports; i++) {
4076 br->ports[i]->src_mirrors &= ~(MIRROR_MASK_C(1) << m->idx);
4077 br->ports[i]->dst_mirrors &= ~(MIRROR_MASK_C(1) << m->idx);
4078 }
4079
4080 shash_destroy(&m->src_ports);
4081 shash_destroy(&m->dst_ports);
4082 free(m->vlans);
4083
4084 m->bridge->mirrors[m->idx] = NULL;
4085 free(m->name);
4086 free(m);
4087
4088 bridge_flush(br);
4089 }
4090 }
4091
4092 static void
4093 mirror_collect_ports(struct mirror *m, struct ovsrec_port **ports, int n_ports,
4094 struct shash *names)
4095 {
4096 size_t i;
4097
4098 for (i = 0; i < n_ports; i++) {
4099 const char *name = ports[i]->name;
4100 if (port_lookup(m->bridge, name)) {
4101 shash_add_once(names, name, NULL);
4102 } else {
4103 VLOG_WARN("bridge %s: mirror %s cannot match on nonexistent "
4104 "port %s", m->bridge->name, m->name, name);
4105 }
4106 }
4107 }
4108
4109 static size_t
4110 mirror_collect_vlans(struct mirror *m, const struct ovsrec_mirror *cfg,
4111 int **vlans)
4112 {
4113 size_t n_vlans;
4114 size_t i;
4115
4116 *vlans = xmalloc(sizeof **vlans * cfg->n_select_vlan);
4117 n_vlans = 0;
4118 for (i = 0; i < cfg->n_select_vlan; i++) {
4119 int64_t vlan = cfg->select_vlan[i];
4120 if (vlan < 0 || vlan > 4095) {
4121 VLOG_WARN("bridge %s: mirror %s selects invalid VLAN %"PRId64,
4122 m->bridge->name, m->name, vlan);
4123 } else {
4124 (*vlans)[n_vlans++] = vlan;
4125 }
4126 }
4127 return n_vlans;
4128 }
4129
4130 static bool
4131 vlan_is_mirrored(const struct mirror *m, int vlan)
4132 {
4133 size_t i;
4134
4135 for (i = 0; i < m->n_vlans; i++) {
4136 if (m->vlans[i] == vlan) {
4137 return true;
4138 }
4139 }
4140 return false;
4141 }
4142
4143 static bool
4144 port_trunks_any_mirrored_vlan(const struct mirror *m, const struct port *p)
4145 {
4146 size_t i;
4147
4148 for (i = 0; i < m->n_vlans; i++) {
4149 if (port_trunks_vlan(p, m->vlans[i])) {
4150 return true;
4151 }
4152 }
4153 return false;
4154 }
4155
4156 static void
4157 mirror_reconfigure_one(struct mirror *m, struct ovsrec_mirror *cfg)
4158 {
4159 struct shash src_ports, dst_ports;
4160 mirror_mask_t mirror_bit;
4161 struct port *out_port;
4162 int out_vlan;
4163 size_t n_vlans;
4164 int *vlans;
4165 size_t i;
4166
4167 /* Set name. */
4168 if (strcmp(cfg->name, m->name)) {
4169 free(m->name);
4170 m->name = xstrdup(cfg->name);
4171 }
4172
4173 /* Get output port. */
4174 if (cfg->output_port) {
4175 out_port = port_lookup(m->bridge, cfg->output_port->name);
4176 if (!out_port) {
4177 VLOG_ERR("bridge %s: mirror %s outputs to port not on bridge",
4178 m->bridge->name, m->name);
4179 mirror_destroy(m);
4180 return;
4181 }
4182 out_vlan = -1;
4183
4184 if (cfg->output_vlan) {
4185 VLOG_ERR("bridge %s: mirror %s specifies both output port and "
4186 "output vlan; ignoring output vlan",
4187 m->bridge->name, m->name);
4188 }
4189 } else if (cfg->output_vlan) {
4190 out_port = NULL;
4191 out_vlan = *cfg->output_vlan;
4192 } else {
4193 VLOG_ERR("bridge %s: mirror %s does not specify output; ignoring",
4194 m->bridge->name, m->name);
4195 mirror_destroy(m);
4196 return;
4197 }
4198
4199 shash_init(&src_ports);
4200 shash_init(&dst_ports);
4201 if (cfg->select_all) {
4202 for (i = 0; i < m->bridge->n_ports; i++) {
4203 const char *name = m->bridge->ports[i]->name;
4204 shash_add_once(&src_ports, name, NULL);
4205 shash_add_once(&dst_ports, name, NULL);
4206 }
4207 vlans = NULL;
4208 n_vlans = 0;
4209 } else {
4210 /* Get ports, and drop duplicates and ports that don't exist. */
4211 mirror_collect_ports(m, cfg->select_src_port, cfg->n_select_src_port,
4212 &src_ports);
4213 mirror_collect_ports(m, cfg->select_dst_port, cfg->n_select_dst_port,
4214 &dst_ports);
4215
4216 /* Get all the vlans, and drop duplicate and invalid vlans. */
4217 n_vlans = mirror_collect_vlans(m, cfg, &vlans);
4218 }
4219
4220 /* Update mirror data. */
4221 if (!shash_equal_keys(&m->src_ports, &src_ports)
4222 || !shash_equal_keys(&m->dst_ports, &dst_ports)
4223 || m->n_vlans != n_vlans
4224 || memcmp(m->vlans, vlans, sizeof *vlans * n_vlans)
4225 || m->out_port != out_port
4226 || m->out_vlan != out_vlan) {
4227 bridge_flush(m->bridge);
4228 }
4229 shash_swap(&m->src_ports, &src_ports);
4230 shash_swap(&m->dst_ports, &dst_ports);
4231 free(m->vlans);
4232 m->vlans = vlans;
4233 m->n_vlans = n_vlans;
4234 m->out_port = out_port;
4235 m->out_vlan = out_vlan;
4236
4237 /* Update ports. */
4238 mirror_bit = MIRROR_MASK_C(1) << m->idx;
4239 for (i = 0; i < m->bridge->n_ports; i++) {
4240 struct port *port = m->bridge->ports[i];
4241
4242 if (shash_find(&m->src_ports, port->name)
4243 || (m->n_vlans
4244 && (!port->vlan
4245 ? port_trunks_any_mirrored_vlan(m, port)
4246 : vlan_is_mirrored(m, port->vlan)))) {
4247 port->src_mirrors |= mirror_bit;
4248 } else {
4249 port->src_mirrors &= ~mirror_bit;
4250 }
4251
4252 if (shash_find(&m->dst_ports, port->name)) {
4253 port->dst_mirrors |= mirror_bit;
4254 } else {
4255 port->dst_mirrors &= ~mirror_bit;
4256 }
4257 }
4258
4259 /* Clean up. */
4260 shash_destroy(&src_ports);
4261 shash_destroy(&dst_ports);
4262 }